
Web Development with JavaServer Pages



 



Web Development with

JavaServer Pages
SECOND EDITION

DUANE K. FIELDS
 MARK A. KOLB

SHAWN BAYERN

M A N N I N G
Greenwich

(74° w. long.)



For online information and ordering of this and other Manning books, 
go to www.manning.com. The publisher offers discounts on this book 
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior 
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial 
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the 
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Library of Congress Cataloging-in-Publication Data  

Manning Publications Co. Copyeditor: Elizabeth Martin
209 Bruce Park Avenue Typesetter: Tony Roberts
Greenwich, CT 06830 Cover designer: Leslie Haimes

 
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 04 03 02 01



 

 
 

 To Kris—
for her patience, encouragement 

and good humor that made this project possible
 D.K.F.

 
 For Megan, Andrew, and Jean—

your presence is my strength, and your love my inspiration
 M.A.K.

 
 To my parents—

 For teaching me everything I know (except JSP)
 S.B.

 





brief contents

1 �   �   �   �   Introduction 1

2 �   �   �   �   HTTP and servlets 17

3 �   �   �   �   First steps 30

4 �   �   �   �   How JSP works 46

5 �   �   �   �   Programming JSP scripts 65

6 �   �   �   �   Actions and implicit objects 101

7 �   �   �   �   Using JSP components 129

8 �   �   �   �   Developing JSP components 165

9 �   �   �   �   Working with databases 198

10 �   �   �   �   Architecting JSP applications 229

11 �   �   �   �   An example JSP project 272

12 �   �   �   �    Introducing filters and listeners 318

13 �   �   �   �   Applying filters and listeners 334

14 �   �   �   �   Deploying JSP applications 384

15 �   �   �   �   Performing common JSP tasks 418

16 �   �   �   �   Generating non-HTML content 470



viii BRIEF CONTENTS
17 �   �   �   �   JSP by example 493

18 �   �   �   �   Creating custom tags 529

19 �   �   �   �   Implementing advanced custom tags 582

20 �   �   �   �   Validating custom tag libraries 621

A �   �   �   �   Changes in the JSP 1.2 API 669

B �   �   �   �   Running the reference implementation 676

C �   �   �   �   Incorporating Java applets 683

D �   �   �   �   JSP resources 697

E �   �   �   �   JSP syntax reference 702

F �   �   �   �   JSP API reference 718



contents

preface to the second edition xxv

preface to the first edition xxix

acknowledgments xxxi

about this book xxxiii

about the authors xxxviii

authors online xxxix

about the cover illustration xl

1  Introduction 1
1.1 What is JSP? 2

1.2 Dynamic content on the web 2
Why dynamic content? 3 � Common Gateway 
Interface 4 � Template systems 5 � Java on 
the Web 8 � How XML fits in 11

1.3 The role of JSP 13
The JavaBeans component architecture 13
JSP and Java 2 Platform Enterprise Edition 15



x CONTENTS
2  HTTP and servlets 17
2.1 The Hypertext Transfer Protocol (HTTP) 18

HTTP basics 18 � GET versus POST 21

2.2 Java servlets 23
How a web server uses servlets 24 � The anatomy 
of a servlet 24 � A servlet example 26

3  First steps 30
3.1 Simple text 31

3.2 Dynamic content 32
Conditional logic 33 � Iteration 34
Non-HTML output 37

3.3 Processing requests and managing sessions 38
Accessing request parameters 38 � Using sessions 39

3.4 Separating logic from presentation 41
Reusing logic with JavaBeans 42
Abstracting logic with custom tags 44

3.5 Review of examples 45

4  How JSP works 46
4.1 The structure of JSP pages 47

Directives and scripting elements 47
Standard and custom actions 48

4.2 Behind the scenes 52
Translation to servlets 52 � Translation versus execution 54

4.3 What the environment provides 56
Automatic servlet generation 56 � Buffered output 57
Session management 59 � Exception handling 63
Implicit objects 64 � Support for JavaBeans 
and HTML forms 64



CONTENTS xi
5  Programming JSP scripts 65
5.1 Scripting languages 66

5.2 JSP tags 68

5.3 JSP directives 68
Page directive 68 � Include directive 80
Tag library directive 82

5.4 Scripting elements 83
Declarations 84 � Expressions 88 � Scriptlets 91

5.5 Flow of control 93
Conditionalization 93 � Iteration 94
Exception handling 94 � A word of caution 97

5.6 Comments 97
Content comments 98 � JSP comments 98
Scripting language comments 99

6  Actions and implicit objects 101
6.1 Implicit objects 102

Servlet-related objects 104 � Input/Output 105
Contextual objects 112 � Error handling 120

6.2 Actions 121
Forward 122 � Include 125 � Plug-in 128
Bean tags 128

7  Using JSP components 129
7.1 The JSP component model 130

Component architectures 130 � Benefits of a 
component architecture 131 � Component design 
for web projects 132 � Building applications 
from components 133



xii CONTENTS
7.2 JavaBean fundamentals 135
The different types of JavaBeans 138

7.3 JSP bean tags 140
Tag-based component programming 140 � Accessing JSP 
components 142 � Initializing beans 150
Controlling a bean’s scope 157

8  Developing JSP components 165
8.1 What makes a bean a bean? 166

Bean conventions 166 � The bean constructor 167
Defining a bean’s properties 168 � Indexed 
properties 172 � Implementing bean properties 
as cursors 176 � Boolean properties 178 � JSP type 
conversion 179 � Configuring beans 181

8.2 Some examples 182
Example: a TimerBean 182
A bean that calculates interest 184

8.3 Bean interfaces 189
The BeanInfo interface 189 � The Serializable 
interface 190 � The HttpSessionBindingListener 
interface 190
Other features of the Bean API 191

8.4 Mixing scriptlets and bean tags 192
Accessing beans through scriptlets 192
Accessing scriptlet created objects 193

9  Working with databases 198
9.1 JSP and JDBC 199

JNDI and data sources 200 � Prepared statements 201



CONTENTS xiii
9.2 Database driven JSPs 202
Creating JSP components from table data 202
JSPs and JDBC data types 205 � Maintaining persistent 
connections 208 � Handling large sets of results 211
Transaction processing 216

9.3 Example: JSP conference booking tool 217
Project overview 217 � Our database 218
Design overview 218

10  Architecting JSP applications 229
10.1 Web applications 230

Web application flow 232
Architectural approaches 233

10.2 Page-centric design 233
Role-based pages 233 � Managing page flow with 
action targets 236 � Building composite pages 238
Limitations of the page-centric approach 241

10.3 Servlet-centric design 242
Hello, World—with servlets 243 � JSP and the servlet 
API 244 � Servlets for application control 247
Servlets for handling application logic 248 � Servlets as 
single entry points 249 � Handling errors in the 
servlet 252 � Example: servlet-centric employee 
browser 253 � EmployeeBean 255
FetchEmployeeServlet 258 � JSP employee list 261
JSP page viewer 262

10.4 Enterprise JavaBeans 263
What are Enterprise JavaBeans? 263 � JavaBeans vs. 
EJBs 264 � Application servers and EJB containers 264
Application design with EJBs 265



xiv CONTENTS
10.5 Choosing an appropriate architecture 266
Application environment 267 � Enterprise software 
requirements 268 � Performance, scalability, and 
availability 269 � Technical considerations 269
Organizational considerations 270

11  An example JSP project 272
11.1 An FAQ system 273

Project motivations 273 � Application requirements 273
Application modules 275
Building an FAQ component 276

11.2 The storage module 278
Database schema 279 � The FaqRepository class 279
Storage module exceptions 285

11.3 The administration module 286
The administration servlet 287 � The main menu 293
Adding an FAQ 297 � Deleting an FAQ 300
Updating an FAQ 306

11.4 The web access module 311
The FaqServlet 312 � Viewing a single FAQ 313
Viewing all the FAQs 314 � A table of contents view 315
Plain text view 317

12   Introducing filters and listeners 318
12.1 Life-cycle event listeners 319

Session listeners 319 � Application listeners 324

12.2 Filters 326
How filters work 327 � Filter classes 330
Wrapper classes 332

12.3 Using filters and listeners 333



CONTENTS xv
13  Applying filters and listeners 334
13.1 Application description 335

13.2 User authentication 337
User account representation 337 � User management 
interface 338 � User management implementation 339

13.3 Web authentication 341
Session interactions 341 � Login servlet 344
Login pages 350 � Content pages 353
Logout servlet 357 � Logout pages 358

13.4 Access control filters 360
Authentication filter 361 � Role filter 364

13.5 Logging listener 368
HttpSessionListener methods 369
HttpSessionAttributeListener methods 369

13.6 Content filter 372
Filter methods 373 � Response wrapper inner class 375
Output stream inner class 376 � More filter methods 377
Filter results 380 � Other content filters 381

14  Deploying JSP applications 384
14.1 This means WAR 385

WAR is XML 386 � Waging WAR 389

14.2 The art of WAR 390
WAR materiel 390 � Drafting deployment descriptors 396

14.3 Maintaining a WAR footing 415



xvi CONTENTS
15  Performing common JSP tasks 418
15.1 Handling cookies 419

Managing cookies 419 � The Cookie class 420
Example 1: setting a cookie 421
Example 2: retrieving a cookie 422

15.2 Creating error pages 425
An erroneous page 426 � Data collection methods 427
Sending electronic mail 432 � The error page 433

15.3 Mixing JSP and JavaScript 437

15.4 Building interactive interfaces 441
Sticky widgets 441 � Utility methods 442
The example form 443 � Setting up the form 445
Text and hidden fields 446 � Text areas 447
Radio buttons 447 � Select boxes 448
Check boxes 448 � Form source 449

15.5 Validating form data 451
Client- and server-side validation 451
Example: server-side validation 452

15.6 Building a shopping cart 458
Overview 459 � The catalog page 460
ShoppingCartItem and InventoryManager 460
The ShoppingCart bean 464
Displaying the shopping cart 466

15.7 Miscellaneous tasks 467
Determining the last modification date 467
Executing system commands 468



CONTENTS xvii
16  Generating non-HTML content 470
16.1 Working with non-HTML content 471

The importance of MIME 471 � Controlling the 
content type 472 � Detecting your client 472
Designing multiformat applications 473
Controlling the file extension 474

16.2 Text content formats 475
Plain text output 475 � WYGIWYG output (what you 
generate is what you get) 476

16.3 XML documents 477
Creating voice XML documents 479

16.4 External content 482
JSP style sheets 483 � JavaScript 485

16.5 Advanced content formats 487
Excel spread sheets 488 � Code generation 489

17  JSP by example 493
17.1 A rotating banner ad 494

The BannerBean 494 � Using the bean 495

17.2 A random quote generator 497
The QuoteBean 497 � Using the bean 498

17.3 The Tell a Friend! sticker 499
The sticker 500 � The MailForm page 502
Sending the mail 503

17.4 A JSP Whois client 505
The Whois protocol 505 � Requirements and design 
considerations 507 � The WhoisBean 507
Building the front end 515



17.5 An index generator 517
A basic implementation 518 � An improved version 520
Going further 525

17.6 A button to view JSP source 525
Displaying the source 525 � Limitations of the view 
source program 527 � Adding a view source button 
\to a page 527 � Viewing source through a bookmark 528

18  Creating custom tags 529
18.1 Role of custom tags 530

18.2 How tag libraries work 531

18.3 Tag library descriptors 535
Library elements 535 � Validator elements 537
Listener elements 538 � Tag elements 538
Variable elements 540 � Attribute elements 541
Example element 543

18.4 API overview 544
Tag handlers 544 � Tag handler life-cycle 550
Helper classes 556 � Auxiliary classes 559

18.5 Example tag library 559

18.6 Content substitution 560

18.7 Tag attributes 563

18.8 Content translation 567
URL rewriting 568 � HTML encoding 572

18.9 Exception handling 575

18.10 To be continued 580



CONTENTS xix
19  Implementing advanced custom tags 582
19.1 Tag scripting variables 583

Example tag 583 � Scripting variable JavaBean 585

19.2 Flow of control 587
Conditionalization 588 � Iteration 595

19.3 Interacting tags 613
Interaction mechanisms 614 � Index tag 616

19.4 The final ingredient 619

20  Validating custom tag libraries 621
20.1 Two representations of JSP 622

20.2 JSP pages as XML documents 624
The root element 625 � Template text 626
Scripting elements 627 � Request-time attribute values 627
Directives and actions 629 � Sample page 629

20.3 Tag library validation 631

20.4 Example validators 634
Copying validator 635 � Script-prohibiting validator 638
Error handling 642 � Content handler 645
Nesting validator 651

20.5 Packaging the tag library 660
Packaging a single library 661
Packaging multiple libraries 662

20.6 For further information 666

A  Changes in the JSP 1.2 API 669
A.1 Introduction 669

A.2 Changes to the API 670
Java 2, Version 1.2 now a requirement 670



xx CONTENTS
Servlet API 2.3 required 670 � XML syntax now fully 
supported 670 � Determining the real path 671
Redirects are not relative to the servlet context 671
Restricted names 671 � Page encoding attribute 671
Flush on include no longer required 671

A.3 Web application changes 672
New 2.3 web application DTD 672 � Handling of white 
space 672 � Resolving path names in the web.xml file 672
Request mappings 672 � Dependency on installed 
extensions 672

A.4 Custom tag improvements 673
Translation time validation 673 � New tag 
interfaces 673 � Changes to the TLD 673

A.5 JavaBean changes 674
Bean tags cannot implicitly access scriptlet objects 674
Fully qualified class names required 674

A.6 New servlet features 674
Servlet filters 675 � Application events 675

B  Running the reference implementation 676
B.1 Prerequisites 677

B.2 Downloading and installing Tomcat 677

B.3 Web applications and Tomcat 681

C  Incorporating Java applets 683
C.1 Browser support for Java 683

C.2 The plug-in action 685
Required attributes 685 � Optional attributes 687
Parameters 688 � Fallback text 689

C.3 Example: applet configuration 690



CONTENTS xxi
D  JSP resources 697
D.1 Java implementations 697

D.2 JSP-related web sites 697

D.3 JSP FAQs and tutorials 698

D.4 JSP containers 698

D.5 Java application servers with JSP support 699

D.6 JSP development tools 700

D.7 Tools for performance testing 700

D.8 Mailing lists and newsgroups 700

E  JSP syntax reference 702
E.1 Content comments 702

E.2 JSP comments 703

E.3 <jsp:declaration> 704

E.4 <jsp:directive.include> 705

E.5 <jsp:directive.page> 706

E.6 <jsp:directive.taglib> 707

E.7 <jsp:expression> 708

E.8 <jsp:forward> 709

E.9 <jsp:getProperty> 710

E.10 <jsp:include> 711

E.11 <jsp:plugin> 712

E.12 <jsp:scriptlet> 713

E.13 <jsp:setProperty> 714

E.14 <jsp:useBean> 715



xxii CONTENTS
F  JSP API reference 718
F.1 JSP implicit objects 719

F.2 Package javax.servlet 719
Interface Filter† 719 � Interface FilterChain† 719
Interface FilterConfig† 720 � Class GenericServlet 720
Interface RequestDispatcher 720 � Interface servlet 721
Interface ServletConfig 721 � Interface ServletContext 721
Interface ServletContextAttributeEvent† 722
Interface ServletContextAttributeListener† 722
Interface ServletContextEvent† 722
Interface ServletContextListener† 723
Class ServletException 723 � Class ServletInputStream 723
Class ServletOutputStream 724
Interface ServletRequest 724
Class ServletRequestWrapper† 725
Interface ServletResponse 726
Class ServletResponseWrapper† 726
Interface SingleThreadModel 727
Class UnavailableException 727

F.3 Package javax.servlet.http 727
Class cookie 727 � Class HttpServlet 728
Interface HttpServletRequest 729
Class HttpServletRequestWrapper† 730
Interface HttpServletResponse 730
Class HttpServletResponseWrapper† 732
Interface HttpSession 733
Interface HttpSessionActivationListener† 733
Interface HttpSessionAttributeListener† 733
Class HttpSessionBindingEvent 734



CONTENTS xxiii
Interface HttpSessionBindingListener 734
Class HttpSessionEvent† 734
Interface HttpSessionListener† 735 �  Class HttpUtils 735

F.4 Package javax.servlet.jsp 735
Interface HttpJspPage 735 � Class JspEngineInfo 736
Class JspException 736 � Class JspFactory 736
Interface JspPage 737 � Class JspTagException 737
Class JspWriter 737 � Class PageContext 738

F.5 Package javax.servlet.jsp.tagext 740
Class BodyContent 740 � Interface BodyTag 740
Class BodyTagSupport 740 � Interface IterationTag† 741
Class PageData† 741 � Interface Tag 741
Class TagAttributeInfo 742 � Class TagData 742
Class TagExtraInfo 743 � Class TagInfo 743
Class TagLibraryInfo 744
Class TagLibraryValidator† 744
Class TagSupport 744 � Class TagVariableInfo† 745
Interface TryCatchFinally† 745 � Class VariableInfo 745

 index 747





preface to the second edition
When the first edition of Web Development with JavaServer Pages was published
some eighteen months ago, URLs ending with a .jsp file extension were a novelty.
Today, this is a commonplace occurrence for millions of web surfers. JSP has been
widely adopted, and we are very pleased to have played a supporting role in its
popularization.

 We are likewise very pleased with the reception of the first edition. As one of the
first JSP books on the market, we knew we were taking a risk. It’s clear from the
response, however, that JSP addresses a serious need in the development commu-
nity, resulting in an equally serious need for good reference material. By presenting
such reference material from the practitioner’s point of view, we appear to have
struck a nerve. The first edition received both critical and popular acclaim as one of
the leading books on the subject, and our thanks go out to all of the readers who
contributed to its success.

 Of course, the book’s success is due in no small part to the success of JSP itself.
JavaServer Pages technology has experienced a rapid adoption in the past year or
so, anxiously embraced by the “teeming millions” of Java and web developers who
had been clamoring for a standard mechanism for generating dynamic web con-
tent. At the time the first edition was published, there were only a handful of appli-
cation servers supporting JSP 1.0, and even fewer supporting version 1.1. As a
required component of the J2EE (Java 2 Enterprise Edition) platform, however,
there are now dozens of commercial application servers with full JSP support. Tool
support is another area that has thankfully experienced significant growth. Today,



xxvi PREFACE TO THE SECOND EDITION
web developers can take advantage of a wide array of editors, IDEs, and code gen-
erators with built-in support for JSP.

 As with any Internet technology though, JSP continues to evolve. 
 In September 2001 Sun released the JavaServer Pages 1.2 and the Java

Servlets 2.3 specifications. These APIs were updated to provide several new fea-
tures, clarify some outstanding issues from the previous specifications, and pave the
way for improved tool support. Among those new features are full XML support,
servlet filters and life-cycle event handlers, and enhanced validation of custom tag
libraries. Readers interested in a quick overview of the new APIs are directed to
Appendix A.

 Given these changes to the specifications, as well as our desire to fix a few gaffes
from the first edition, we felt an obligation to our readers—both past and future—
to start work on a second edition.

 As was true of the first edition, our goals for this new edition are twofold. In
addition to updating the text to address the changes and enhancements introduced
in JSP 1.2, we have also revised and expanded the opening chapters to provide a
gentler introduction to JSP and the underlying technologies (such as HTTP and
servlets) for those who are new to web development. At the turn of the millennium,
it was safe to assume that anyone brave enough to be dabbling with JSP already
knew their way around the underlying protocols. JSP is now an established platform
in its own right, and it was felt that providing a bit more context for understanding
the inherent properties of that platform was more than justified.

 We’ve also added more examples, including the much-requested shopping cart,
as well as an entire chapter on creating non-HTML content. JSP was always intended
as a general-purpose mechanism for generating dynamic content of all kinds, not
just HTML. With the recent excitement revolving around XML and other text-based
document formats, full coverage of this topic was a given for the second edition.

 A pair of new chapters focus on servlet filters and life-cycle event listeners, two
new features of the Servlet 2.3 API that are equally applicable to JSP applications.
Filters enable developers to layer new functionality—such as on-the-fly encryption,
compression, translation, or authentication—atop existing servlets and JSP pages,
without having to change the original code. Event listeners provide applications
with the ability to monitor (and therefore take advantage of) the activity of the
underlying servlet or JSP container more closely. A chapter-length example demon-
strates how both of these features may be leveraged to simplify the implementation
of key application behaviors.



PREFACE TO THE SECOND EDITION xxvii
 As we continue to gain experience in real-world web development projects, we
are often exposed to new techniques for architecting JSP applications. In the
interest of keeping readers abreast of such alternatives, new material in chapter 10
introduces the concept of action targets, an extension to the page-centric design
approach presented in the first edition.

 In keeping with the industry’s growing interest in custom tag libraries, we’ve
expanded our coverage of this topic, as well. There are now three chapters dedi-
cated to using, developing, validating, and deploying custom tags. New examples
are included to demonstrate JSP 1.2 enhancements, and new custom tag libraries
are available from our companion web site, http://www.taglib.com/.

 Observant readers will notice an additional name on the cover of this second edi-
tion, Shawn Bayern. Shawn, an active member of the Java Community Process, is
the reference-implementation lead for the JSP Standard Tag Library, a collection of
general-purpose custom tags that will ultimately be supported by all JSP containers.
He lends us his unique insight into JSP’s place in the technology spectrum, and we
are confident that readers will value his contributions to this book as much as we do.

 Welcome then, to readers both new and returning. We hope that this second
edition will prove itself a worthy successor to the original Web Development with
JavaServer Pages. And we look forward to uncovering even more .jsp file extensions
as we surf the web, hunting for the next generation of killer web applications.





preface to the first edition
In late 1998 we were asked to develop the architecture for a new web site. Our
employer, a vendor of enterprise software for system and network management,
had an unconventional set of requirements: that the site be able to provide product
support data customized for each customer; and that the support data be tailored
to the software the customer had already purchased, as well as the configurations
already selected.

 Of course, the web site needed to look sharp and be easy to navigate. Manage-
ment software, which of necessity must be flexible and support a wide range of
operating conditions, tends to be very complex. This particular software was tar-
geted at Internet and electronic commerce applications, so using the web as a major
component of product support was a natural fit. By personalizing web-based sup-
port for each customer, this inherent complexity would be reduced, and the cus-
tomer experience improved. But how to accomplish that ... and how to do it within
the time constraints the project required?

 What we needed was an architecture that would give everyone on the team,
both the designers and the programmers, as much freedom as possible to work
unhindered in the limited time available. The ability of these two groups to
progress independently, without costly rework, was crucial. A solution that could
provide dynamic content as an add-on to otherwise conventional HTML files clearly
was the best approach. We briefly considered, then just as quickly dismissed, the
notion of building our own dynamic context system. There just wasn’t enough time
to deliver both a publishing system and a web site.



xxx PREFACE TO THE FIRST EDITION
 At the time we were already familiar with Java servlets. Indeed, servlets were a
key element of the architecture of the product to which this site would be devoted.
We mulled over using servlets for the site itself but were concerned with how this
would affect those responsible for the content, graphics, and layout of the site.

 As we researched the problem further we were reminded of an ongoing initiative
at Sun Microsystems called JavaServer Pages (JSP). JSP was still being refined, and
Version 1.0 was months away. However, it was intended to become a standard Java
technology, and it used Java servlets as its foundation. It also allowed us to imple-
ment dynamic content on top of standard HTML files. Best of all, it worked! As we
became more familiar with JSP, we found that it worked very well indeed.

 As is often the case, there were some rough spots as the JSP specification went
through major changes along the way. Hair was pulled, teeth were gnashed, les-
sons were learned. Fortunately, we obtained a great deal of help from the JSP com-
munity—the developers at Sun and the other JSP vendors, as well as our fellow
early adopters.

 This book thus serves a twofold purpose. First, we hope to help future users of
JSP by sharing the hard-earned lessons of our experience. We offer them what we
hope is a helpful guide to the current JSP feature set: JavaServer Pages is now at ver-
sion 1.1 and the need for published reference material has long been recognized.

 Second, we offer this book as an expression of gratitude to the current commu-
nity of JSP developers in return for the assistance they provided when we needed it.
Thanks to all.



acknowledgments
We recognize the support and understanding of the many people who helped make
this book possible. We acknowledge:

 T. Preston Gregg, the former development manager of Duane and Mark, for
allowing them to make the early leap to a JSP architecture, before the technology
was considered ready for prime time. This head start was painful at times, but ulti-
mately proved a boon to their web development projects. It also gave them the
experience necessary to develop this text, for which they are equally grateful. Other
colleagues who advised them during the writing of the this book include Kirk
Drummond and Ward Harold.

 Pierre Delisle for encouraging and guiding Shawn’s efforts in the Java commu-
nity. Merci pour tout, mon ami. Shawn also wishes to thank his colleagues at Yale,
especially Andy Newman and Nicholas Rawlings.

 The JSP design team at Sun Microsystems, especially Eduardo Pelegrí-Llopart. His
assistance and attentiveness to our queries was critical to the success of this effort.

 The teeming millions of Java and JSP developers who continue to offer their
insights and expertise to the development community through their unselfish par-
ticipation in mailing lists, newsgroups, and the web. Double thanks to everyone
participating in the Jakarta and Apache projects for their outstanding work in the
Open Source arena. You are all instrumental to the continuing success of Java and
establishing it as a lingua franca for Internet development.

 Our publisher, Marjan Bace, for giving us this opportunity; our editor, Elizabeth
Martin, for her yeoman’s effort in polishing this manuscript; and our typesetter,



xxxii ACKNOWLEDGMENTS
Tony Roberts. Their insights, guidance, and expertise were invaluable to the com-
pletion of this book.

 Our reviewers, whose comments, criticisms, and commendations advised, cor-
rected and encouraged us. Our deep appreciation is extended to Michael Andreano,
Dennis Hoer, Vimal Kansal, Chris Lamprecht, Max Loukianov, James McGovern,
Dave Miller, Dr. Chang-Shyh Peng, Anthony Smith, and Jason Zhang. Special
thanks to Lance Lavandowska for his technical edit of the final manuscript.

 Our friends, families, and coworkers for their unfailing support, assistance, and
tolerance throughout the writing process. Without them this book could not have
been possible.



about this book
JavaServer Pages is a technology that serves two different communities of develop-
ers. Page designers use JSP technology to add powerful dynamic content capabilities
to web sites and online applications. Java programmers write the code that imple-
ments those capabilities behind the scenes.

 Web Development with JavaServer Pages is intended to present this technology to
both groups. It is impossible in a book of this length to provide all the background
information required by this subject, and, for this reason, we do not attempt to
describe the HTML markup language. It is assumed that the reader is sufficiently
familiar with HTML to follow the examples presented. It is likewise assumed that
the reader is familiar with URLs, document hierarchies, and other concepts related
to creating and publishing web pages.

 We also do not include a primer on the Java programming language. As with
HTML, there is a wealth of reference information available on the language itself.
Programmers reading this book are assumed to be familiar with Java syntax, the
development cycle, and object-oriented design concepts. A basic understanding of
relational database technology in general, and JDBC in particular, is recommended
but not required.

 Our focus here, then, is strictly on JavaServer Pages. The interaction between
JSP and the technologies already mentioned—HTML, Java, and databases—will of
course be covered in depth. For the benefit of readers not so well versed in the
enabling technologies upon which JSP depends, however, this second edition fea-
tures new coverage of HTTP, the protocol that web browsers and web servers use to



xxxiv ABOUT THIS BOOK
communicate with one another, and Java servlets, the foundational technology for
server-side Java applications.

 The topics covered are as follows:
 Chapter 1 introduces JavaServer Pages (JSP) and presents a brief history of web

development. JSP is contrasted with past and present web technologies. Since this
chapter provides historical context and a broad introduction, it is intended for a
general audience.

 Chapter 2 discusses core technologies on which JSP depends. The Hypertext
Transfer Protocol (HTTP) and the Java Servlet platform, both of which help define
how JSP operates, are introduced. A simple Java Servlet example is discussed. This
chapter focuses on technical details that are important for programmers, but page
designers can read it to learn how the web works.

 Chapter 3 presents a tutorial introduction to JSP. Examples designed to demon-
strate JSP’s capabilities—from simple iteration and conditionalization to session
management and non-HTML content generation—are discussed in a gradual pro-
gression. This chapter’s examples are intended for a general audience.

 Chapter 4 provides more information for programmers and page designers
about how JSP operates behind the scenes. The chapter focuses on how JSP works
and introduces some of the core, time-saving features that JSP provides. The core
elements of a JSP page are also introduced more formally than in chapter 3.

 Chapters 5 and 6 introduce the four basic categories of JSP tags: directives,
scripting elements, comments, and actions. The use and syntax of all standard JSP
tags is presented, with the exception of those specific to JavaBeans. The first three
categories are covered in chapter 5.

 Chapter 6 introduces action tags, and describes the implicit Java objects accessi-
ble from all JSP pages. In both of these chapters, particular emphasis is placed on the
application of these tags and objects to dynamic content generation via scripting.
The scripting examples use the Java programming language, and may be of second-
ary interest to page designers. Because this chapter introduces most of the major
functionality provided by JavaServer Pages, it is intended for a general audience.

 Chapters 7 and 8 cover JSP’s component-centric approach to dynamic page
design through the use of JavaBeans and JSP bean tags. The JSP tags covered in
chapter 7 allow page designers to interact with Java components through HTML-
like tags, rather than through Java code. Chapter 8 will explain the JavaBeans API
and teach you to develop your own JSP components.

 Chapter 9 covers techniques for working with databases through JSP. Nowadays,
most large-scale web sites employ databases for at least some portion of their



ABOUT THIS BOOK xxxv
content, and JSP fits in nicely. By combining the power of a relational database with
the flexibility of JSP for content presentation and front-end design, it is practical to
build rich, interactive interfaces.

 In chapter 10, we discuss several architectural models useful for developing JSP
applications. We examine the various architectural options available when we com-
bine JSP pages with servlets, Enterprise JavaBeans, HTML, and other software ele-
ments to create web-based applications.

 In chapter 11 we apply the JSP programming techniques we covered in previous
chapters to the development of a real world, enterprise web application. In a chapter-
length example, we will be developing a system for managing and presenting lists of
frequently asked questions (FAQs). This chapter is based on a project the authors
recently completed for a major software company’s customer support site. The pre-
sentation aspect of this chapter should be of interest to page designers, while the
implementation aspects should be of interest to programmers.

 Chapters 12 and 13 introduce two new features of the JSP 1.2 and Servlet 2.3
specifications—filters and listeners. Filters can be used to layer new functionality
onto JSP and servlet-based applications in a modular fashion, such as encryption,
compression, and authentication. Listeners enable developers to monitor various
activities and events occurring over the lifecycle of a web application. Chapter 12
covers the basics, while chapter 13 presents a chapter-length intranet example which
demonstrates the use of filters and listeners to add enhanced capabilities to an exist-
ing application.

 Issues surrounding the deployment of web-based applications are the focus of
chapter 14. Web Application Archives provide a portable format for the packaging
of related servlets and JSP pages into a single, easily-deployed file, called a WAR file.
The practical aspects of this approach to web deployment are demonstrated
through coverage of the configuration and construction of a WAR file for the exam-
ple application presented in chapter 13. Since both code and pages are stored
together in a WAR file, this chapter should be of interest to all JSP developers.

 Chapter 15 explains how to perform common tasks with JSP. A multitude of
examples and mini-projects address issues such as cookies, form processing, and error
handling. If you learn best by example, you will find this chapter particularly helpful.

 In chapter 16 we examine a newer application of JSP programming, creating
content other than HTML. The chapter explores this new area with coverage of
plain text, XML, JavaScript, and even dynamic spreadsheets.



xxxvi ABOUT THIS BOOK
 We return to the topic of JSP examples in chapter 17. Here, the emphasis is on
full-fledged applications that illustrate the various techniques and practices pre-
sented in previous chapters.

 Chapter 18 covers the development, deployment, and application of custom tag
libraries. This material focuses primarily on the implementation of custom tags by
Java programmers. From the perspective of jointly designing a set of application-
specific tags, page designers may find some benefit in reviewing the introductory
sections of this chapter, which discuss the types of functionality that can be pro-
vided by custom tags. 

 In chapter 19, we expand upon the topic of custom tags with additional exam-
ples that take advantage of more advanced features of Java and JSP.

 Coverage of JSP custom tags concludes in chapter 20 with a discussion of tag
library validators, a new feature introduced in JSP 1.2. Using validators, custom tag
developers can enforce constraints and manage dependencies within all JSP pages
that make use of their tags. Furthermore, because tag library validation occurs dur-
ing page translation and compilation, rather than in response to a request, it enables
custom tag errors to be detected earlier in the development process.

 There are six appendices in the book. Appendix A is provided for the benefit of
readers of the first edition, the terminally impatient, and those wanting a quick look
at what’s new. In it we hit the highlights of recent advances in JSP technology, nota-
bly JSP 1.2 and the Servlet 2.3 API.

 Appendix B describes how to download, install, and run Tomcat, the JSP refer-
ence implementation. This appendix is aimed at readers who don’t already have a
JSP container to use; setting up Tomcat will help these readers experiment with the
book’s examples.

 Java applets are small applications that run within the context of a web browser.
Appendix C describes the <jsp:plugin> action, a cross-platform tag for specifying
applets which use Sun Microsystems’s Java Plug-in technology in order to take
advantage of the Java 2 platform within the browser. This appendix is directed at
Java programmers.

 As is the case with any major software technology in use today, there is a wealth
of information on JSP and related topics available online. Appendix D provides a col-
lection of mailing lists, newsgroups, and web sites of relevance to both categories of
JSP developers, accompanied by brief descriptions of the content available from each.

 Appendix E, serving as a quick reference, summarizes the use and syntax of all of
the standard (i.e., built-in) JSP tags available to page designers.



ABOUT THIS BOOK xxxvii
 Appendix F, geared toward Java programmers, lists all of the Java classes intro-
duced by the JSP and servlet specifications to supplement the standard Java class
library for web-based application development. Summary descriptions of these
classes and their methods are provided, as is a table of the JSP implicit objects.

Source code

The source code for all of the examples called out as listings in the book is freely
available from our publisher’s web site, www.manning.com/fields2, and from the
book’s companion web site, www.taglib.com. The listings are organized by chapter
and topic and include the source for both Java classes and JSP pages used in the
examples. If any errors are discovered updates will be made available on the web.

Code conventions

Courier typeface is used to denote code (JSP, Java, and HTML) as well as file
names, variables, Java class names, and other identifiers. When JSP is interspersed
with HTML, we have used a bold Courier font for JSP elements in order to improve
the readability of the code. Italics are used to indicate definitions and user specified
values in syntax listings.



about the authors
DUANE K. FIELDS, web applications developer and Internet technologist, has an
extensive background in the design and development of leading edge Internet
applications for companies such as IBM and Netscape Communications. Duane
lives in Austin, Texas, where he consults, does Java applications development, and
tries to find more time to fish. He frequently speaks at industry conferences and
other events and has published numerous articles on all aspects of web application
development from Java to relational databases. He is a Sun Certified Java Program-
mer, an IBM Master Inventor, and holds an engineering degree from Texas A&M
University. He can be reached at his web site at www.deepmagic.com.

MARK A. KOLB, Ph.D., is a reformed rocket scientist with graduate and undergrad-
uate degrees from MIT. A pioneer in the application of object-oriented modeling to
aerospace preliminary design, his contributions in that field were recently recog-
nized with a NASA Space Act Award. With over 15 years’ experience in software
design, Mark’s current focus is on Internet applications, ranging from applet-based
HTML editors to server-side systems for unified messaging and residential security
monitoring. Mark resides in Round Rock, Texas, with his family and a large stack of
unread books he’s hoping to get to now that this one is done. His home on the web
is at www.taglib.com.

SHAWN BAYERN is a research programmer at Yale University. An active participant
in the Java Community Process, he serves as the reference-implementation lead for
the JSP Standard Tag Library (JSPTL). He is a committer for the Jakarta Taglibs
Project and has written articles for a number of popular industry journals. Shawn
holds a computer-science degree from Yale University and lives in New Haven,
Connecticut. He can be found on the web at www.jsptl.com.



authors online
Purchase of Web Development with Java Server Pages includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to
www.manning.com/fields2 This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

 



about the cover illustration
The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs. This book was first published
in Paris in 1788, one year before the French Revolution. Its title alone required no
fewer than 30 words.

“Costumes Civils actuels de tous les peuples connus dessinés d’après
nature gravés et coloriés, accompagnés d’une notice historique sur
leurs coutumes, moeurs, religions, etc., etc., redigés par M. Sylvain
Maréchal”

 The four volumes include an annotation on the illustrations: “gravé à la manière
noire par Mixelle d’après Desrais et colorié.” Clearly, the engraver and illustrator
deserved no more than to be listed by their last names—after all they were mere
technicians. The workers who colored each illustration by hand remain nameless.

 The remarkable diversity of this collection reminds us vividly of how distant and
isolated the world’s towns and regions were just 200 years ago. Dress codes have
changed everywhere and the diversity by region, so rich at the time, has melted
away. It is now hard to tell the inhabitant of one continent from another. Perhaps
we have traded cultural diversity for a more varied personal life—certainly a more
varied and interesting technological environment.

 At a time when it is hard to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life
by Maréchal’s pictures. Just think, Maréchal’s was a world so different from ours
people would take the time to read a book title 30 words long.



 1Introduction
This chapter covers
� An introduction to JSP technology

� The evolution of dynamic content on the Web

� How JSP interacts with other Java code

� How to separate presentation and 
implementation
1



2 CHAPTER 1

Introduction
Welcome to Web Development with JavaServer Pages. This book has been written to
address the needs of a wide audience of web developers. You might just be starting
out as a web programmer, or perhaps you’re moving to JavaServer Pages (JSP) from
another language such as Microsoft Active Server Pages (ASP) or ColdFusion. You
could be a Hypertext Markup Language (HTML) designer with little or no back-
ground in programming—or a seasoned Java architect! In any case, this book will
show you how to use JSP to improve the look and maintainability of web sites, and
it will help you design and develop web-based applications. Without further ado,
let’s begin our look at JavaServer Pages.

1.1 What is JSP?

JavaServer Pages—JSP, for short—is a Java-based technology that simplifies the pro-
cess of developing dynamic web sites. With JSP, designers and developers can
quickly incorporate dynamic content into web sites using Java and simple markup
tags. The JSP platform lets the developer access data and Java business logic without
having to master the complexities of Java application development.

 In short, JSP gives you a way to define how dynamic content should be intro-
duced into an otherwise static page, such as an unchanging HTML file. When a JSP
page is requested by a web browser, the page causes code to run and decide, on the
fly, what content to send back to the browser. Such dynamic content allows for the
construction of large and complex web applications that interact with users.

 JSP is flexible: it adapts to the needs of developers and organizations. For some,
JSP is a simple way to mix Java code and HTML text to produce dynamic web pages.
For others, it helps separate Java code from presentation text, giving nonprogram-
mers a way to produce functional and dynamic web pages. JSP is not even limited to
the production of dynamic HTML-based content. For instance, it can be used in
wireless and voice-driven applications.

 Because JSP is based on widely accepted standards, products from numerous
vendors support it. Like Java itself, JSP isn’t dependent on a particular platform.
When you learn JSP, you can be confident that your new skills will be applicable
outside the individual environment in which you learned them.

1.2 Dynamic content on the web

The simplest application of the web involves the transmission of static, unchanging
data (figure 1.1). When discussing computer systems, however, it’s important to
keep in mind that static is a relative term. Compared with traditional forms of data



Dynamic content on the web 3
storage—file cabinets and stone
carvings, for instance—all computer
files are transient. When we discuss
content on the Web, we draw a con-
ventional distinction between URLs
that refer to simple files and those
tha t  r e f e r  to  the  ou tpu t  o f  a
program.

DEFINITION Static content on the Web comes directly from text or data files, such as
HTML or JPEG files. These files might be changed, but they are not al-
tered automatically when requested by a web browser. Dynamic content,
on the other hand, is generated on the fly, typically in response to an indi-
vidual request from a browser.

1.2.1 Why dynamic content?

By our definition, dynamic content is typically generated upon individual requests
for data over the Web. This is not the only way that an ever-changing web site
might be produced. A typical computer system that runs a web server might easily
run other software that can modify files in the server’s file systems. If the web server
then sends these automatically processed files to web browsers, the server achieves a
primitive style of dynamic content generation. 

 For example, suppose that a pro-
gram running in the background on
a web server updates an HTML file
every five minutes, adding a ran-
domly selected quotation at the bot-
tom.  Or  suppose  tha t  a  news
organization has a program that
accepts manual entry of breaking-
news stories from journalists, formats
these into HTML, and saves them in
a file accessible by a web server. In both cases, a web site provides relatively dynamic
data without requiring specific web programming (figure 1.2).

 However, such web sites don’t easily support interaction with web users. Sup-
pose there were a search engine that operated using this type of behind-the-scenes
approach. Theoretically, such an engine could figure out all of the search terms it

Web browser Web server

File 1

File 2

1. Requests a URL

2. Responds with 
correct file

Figure 1.1 Static web sites transmit only simple, 
static files

Web browser Web server

File 1

File 2

1. Requests a URL

2. Responds with 
correct file

Normal, non-web program 
modifies data (whenever

it needs to)

Figure 1.2 A simple way to achieve dynamic 
content is to modify files behind the 
scenes programmatically.



4 CHAPTER 1

Introduction
supported and then create—and store—individual HTML pages corresponding to
every supported combination of terms. Then, it could produce a gigantic list of
HTML hyperlinks to all of them, in a file that looked like the following:

...
<a href="aardvark-and-lizard.html">Search for "aardvark and lizard"</a>
<a href="aardvark-and-mouse.html">Search for "aardvark and mouse"</a>
<a href="aardvark-and-octopus.html">Search for "aardvark and octopus"</a>
...

Such a scheme, of course, would rapidly become unworkable in practice. Not only
would the user interface be tedious, but the search engine would have to store
redundant copies of formatted search results across trillions of HTML files. Imagine
how long it would take to generate these files when new search terms were added,
and consider how much disk space would be required.

 Moreover, many sites need to be able to respond to arbitrary, unpredictable
input from the user. An online email application certainly couldn’t predict every
message a user might write. And often, a web site needs to do more than simply
send HTML or other data when a request is issued; it also needs to take program-
matic, behind-the-scenes action in responce to a request. For example, an online
store might need to save users’ orders into a database, and an email application
would actually have to send email messages. In many cases, simply displaying pre-
fabricated HTML isn’t enough.

 For all of these reasons, several web-specific technologies have been designed to
allow programmers to design sites that respond dynamically to requests for URLs
from browsers. JSP is one such technology, and we can get a better sense of how JSP
is useful if we look at a few of its predecessors and competitors.

1.2.2 Common Gateway Interface

The first widely used standard for producing dynamic web content was the Com-
mon Gateway Interface, or CGI, which defined a way for web servers and external
programs to communicate. Under typical operating systems, there are only a few
ways that a program can communicate with another one that it starts: it might
specify particular text on the target program’s command line, set up environment
variables, or use a handful of other strategies. CGI takes advantage of these
approaches to allow a web server to communicate with other programs. As shown
in figure 1.3, when a web server receives a request that’s intended for a CGI pro-
gram, it runs that program and provides it with information associated with the par-
ticular incoming request. The CGI program runs and sends its output back to the
server, which in turn relays it to the browser.



Dynamic content on the web 5
 CGI is not an application programming interface (API) for any particular lan-
guage. In fact, CGI is almost completely language-neutral. Many CGI programs
have been written in Perl, but nothing prevents you from writing one in C, LISP, or
even Java. The CGI standard simply defines a series of conventions which, when fol-
lowed, let programs communicate with CGI-aware web servers and thus respond to
web requests.

 Because it imposes few constraints, CGI is quite flexible. However, the CGI
model has an important drawback: a web server that wants to use a CGI program
must call a new copy in response to every incoming web request. 

DEFINITION In operating-system parlance, a running instance of a program is known
as a process. In slightly more formal terms, then, CGI requires that a new
process be created, or spawned, for every new incoming web request.

CGI doesn’t provide for any mechanism to establish an ongoing relationship
between a server process and the external CGI processes it runs. This limitation
leads to a relatively large cost of initialization upon each new request, for creating a
process on a server is a relatively expensive operation. This cost isn’t immediately
obvious when a server runs only a handful of programs, but for large web sites that
deal with thousands of requests every minute, CGI becomes an unattractive solu-
tion, no matter how efficient an individual CGI program might be. 

1.2.3 Template systems

The CGI model has another drawback: it requires programs to produce HTML files
and other content, meaning that program code often needs to contain embedded
fragments of static text and data (figure 1.4). Many newer technologies have taken
a different approach. Systems such as Macromedia ColdFusion, Microsoft ASP, and
the open-source PHP (a hypertext preprocessor) all permit the integration of script-
ing code directly into an otherwise static file. In such a file, the static text—typically
HTML—can be thought of as a template around which the dynamic content, gener-
ated by the scripting code, is inserted (figure 1.5). The mechanism is similar to the

Web browser Web server1. Requests a URL

4. Transmits response
(HTML, etc.)

CGI program2. Runs program,  
passing information

about request

3. Sends output
(HTML, etc.)

Figure 1.3 To respond dynamically, a web server can spawn a CGI program to handle 
a web request.



6 CHAPTER 1

Introduction
now-ancient idea of mail merge, a feature supported by nearly all word-processing
systems whereby the same letter can be printed multiple times, varying only in the
particular spots where customized content is necessary.

 Such template systems provide a convenient way for
web designers to insert dynamic content into their
web pages. Unlike CGI, template systems don’t
require developers to write stand-alone, executable
programs that print HTML. In fact, a template system
usually doesn’t require an in-depth understanding of
programming in the first place. Instead, designers
need only learn a scripting language supported by the
template system they use. Even the procedure for
debugging and testing pages developed under such
systems is similar to that of HTML: reload a page in
the browser, and changes to both scripting code and
template HTML take effect.

 Conceptually, template languages are all fairly simi-
lar. The most visible differences among these systems
involve the particular scripting languages they sup-
port, the syntax used for accessing such languages, and
the way that they provide access to back-end logic.

ColdFusion
ColdFusion provides a set of HTML-like tags that can
be used to produce dynamic content. Instead of writ-
ing more traditional types of code, ColdFusion devel-
opers can build applications using a combination of
HTML tags and ColdFusion-specific tags. Using tag-
based syntax has the advantage of consistency: pages
that consist only of HTML-like tags are more accessi-
ble to HTML designers who do not have experience
with programming languages.

 ColdFusion is available for Microsoft Windows and a variety of UNIX platforms,
and it allows developers to write extensions to its core tag set in C++ and Java. Fur-
thermore, ColdFusion code can access reusuable components such as CORBA
objects and Enterprise JavaBeans (EJBs)—as well as COM objects when it runs on
Windows. Work on ColdFusion also gave birth to a technology known as Web-
Distributed Data Exchange (WDDX), which helps transfer data from one platform

source_code {
    function1();
    function2();
    if (x) {
        print

    
    }
}

[HTML  
Fragment]

Figure 1.4 CGI often requires 
that HTML fragments appear 
within program code, making 
both harder to maintain.

<p>
Your order's
total comes to …

$

That's right;
we're ripping
you off.
</p>

[simple
program code]

Figure 1.5 Template systems 
let HTML designers embed 
simple program code within 
HTML documents.



Dynamic content on the web 7
to another. ColdFusion supports WDDX and can communicate with other services
that use it. 

Active Server Pages
ASP technology supports multiple scripting languages, which can be embedded in
HTML documents between the delimiters <% and %>. (As we will see, JSP uses these
same delimiters.) ASP is a core feature of the Microsoft Internet Information Server
(IIS), and it provides access to reusable Windows-based objects known as ActiveX
components. Traditional ASP supports two scripting languages by default—Visual
Basic Scripting Edition, based on Visual Basic, and JScript, based on JavaScript.

 More recently, Microsoft has introduced ASP.NET as part of its .NET framework.
While classic ASP offers an interpreted scripting environment where code is exe-
cuted directly out of a text file every time a page is loaded, ASP.NET logic is com-
piled, yielding greater performance. ASP.NET offers access to any programming
language supported in the .NET environment, including Visual Basic (in contrast
with simple VBScript on ASP) and C#, which is pronounced “C sharp” and repre-
sents a new language offering from Microsoft. The new ASP.NET environment, like
Java, supports type-safe programming, which can improve code maintainability.
Furthermore, ASP.NET introduces the concept of an ASP.NET server control, which
lets ASP.NET code authors access logic using a simple, HTML-like tag interface, just
like ColdFusion—and, as we will see later, JSP.

 The greatest drawback of the ASP and ASP.NET environments is that they are
centered primarily on a single platform—Windows. Some vendors, such as
Chili!Soft, have introduced products that support ASP in other environments. And
the more recent .NET framework promotes certain kinds of integration with non-
Microsoft platforms. Nonetheless, ASP and ASP.NET have not typically been
regarded as attractive solutions for organizations that are not committed to
Microsoft technology.

PHP and other alternatives
PHP is an open source template system. As with other open source projects, such as
the Linux operating system and the Apache HTTP Server, PHP is not a commercial
product. Instead, it is the result of contributions from a community of developers
who freely build and support its code base. Open source products are typically avail-
able on a variety of operating systems, and PHP is no exception.

 Like ASP, PHP was once based on purely interpreted scripting, but it has moved
closer to compilation over time. PHP 4 provides improved efficiency over PHP 3 by
compiling scripts before executing them. PHP 4 comes with a rich function library



8 CHAPTER 1

Introduction
that includes support for accessing mail services, directories, and databases. Like
ColdFusion, it supports WDDX, which provides for interoperability with other lan-
guages. Furthermore, it can interact with Java code, and it provides an API that
allows programmers to insert custom modules.

 PHP isn’t the only open source platform for generating dynamic content on the
Web. For instance, like PHP, a system called Velocity falls under the umbrella of the
Apache Software Foundation. Velocity is a template engine that is geared toward
providing access to Java objects using a simple, custom template language.

 Open source template systems are flexible and free. Because their source code is
available, experienced developers can debug nearly any problem they run into while
using open source systems. In contrast, when a bug is encountered in a proprietary
system, developers might need to wait for new releases to see it addressed. Some
developers, however, see the sheer number of solutions offered by the open source
community as a drawback. With dozens of competing alternatives that change fre-
quently, the community can appear fragmentary, and some organizations might find
it hard to settle with confidence on a solution they trust to be stable.

1.2.4 Java on the Web

So far, we have mentioned little about how Java and JSP fit into the larger picture.
Java, as you probably know, is a language that was developed by Sun Microsystems.
Java programs run inside a Java Virtual Machine (JVM), which provides a platform-
independent level of processing for Java bytecodes, into which Java source files are
compiled. Java thus avoids tying itself to a particular hardware platform, operating-
system vendor, or web server. Furthermore, because Java has gained wide industry
acceptance, and because the Java Community Process provides a well-defined
mechanism for introducing changes into the platform when enough industry sup-
port exists, Java users can be confident that they develop applications on a standard
and flexible platform. Let’s take a quick look at how Java is used on the Web.

Java applets
All of the technologies discussed so far involve dynamic content generation on the
web server’s end. However, the Web can also be used to deliver software that acts
dynamically once it reaches the client machine.

 Determining the appropriate mixture of client-side and server-side code to use
in an application is a complex problem, and the industry historically seems to swing
between the two alternatives. At the client-side end of the spectrum, a web site
could offer fully functional, downloadable programs that users can run; at the



Dynamic content on the web 9
server-side end, servers handle almost all of the processing of an application, merely
asking clients to render screens of HTML or other markup languages.

 Java applets, an early use of Java technology that remains popular in some envi-
ronments, are examples of client-side code. Applets are typically small programs
that can be downloaded and run inside web browsers. Applets can access the net-
work and perform a variety of other functions, offering a rich user interface from
within a simple web browser. But applets have drawbacks and are not suitable for all
applications. For instance, not all web browsers support Java applets identically; in
fact, not all web browsers support Java applets in the first place. Furthermore, in
many situations, server-side code is easier to maintain and support.

Java servlets
A Java servlet relates to a server, roughly, as a Java applet does to a web browser. A
servlet is a program that plugs into a web server and allows it to respond to web
requests according to instructions provided as Java code. As we mentioned, the CGI
standard allows developers to write code in Java. Why, then, would a separate stan-
dard for Java servlets be necessary?

 Foremost, servlets offer a great performance advantage over CGI programs. This
may seem counterintuitive to those who realize that code that runs inside a JVM is
typically slower than code that runs natively on a particular platform. Even though
the performance difference between Java and native code diminishes as research
improves, the gap is still noticeable. Thus, if CGI supports native code but Java
requires a JVM, how could servlets be faster than CGI programs?

 The major difference lies in the limitation of CGI that we discussed earlier: CGI
processes need to be run individually in response to web requests. The Java Servlet
platform offers a different model that allows a Java program within a single JVM
process to direct requests to the right Java classes. Since no new operating-system
processes—only lighter-weight threads of execution within the JVM—need to be
created for incoming requests, servlets end up scaling better than CGI programs do.

 Servlets also offer Java programmers more convenience than the base CGI speci-
fication. CGI does not provide language-specific APIs, nor does it provide standard
libraries to facilitate programming. The Java Servlet standard, in contrast, provides
an API that supports abstraction and convenience. In order to access information
about incoming requests, for example, servlet programmers can use objects from a
particular class hierarchy defined in the Servlet specification. Moreover, servlets
have access to all of the benefits of the Java platform itself, including reusable class
libraries and platform independence. Since a servlet is just a Java class, it can natu-
rally access other Java code.



10 CHAPTER 1

Introduction
NOTE We’ll look more at servlets in the next chapter. Appendix F provides a refer-
ence to the servlet API.

Servlets first appeared as part of the Sun Java web server product, which was an
HTTP server written in Java. Versions 2.1 and 2.2 of the Servlet standard appeared
in 1999, and version 2.3 was released in 2001. The evolution of the Servlet plat-
form continues under the Java Community Process.

 Even with the services provided by the Java Servlet API, however, the platform
has a drawback in terms of convenience and maintainability when it is used to pro-
duce dynamic web pages. Servlets offer all of the tools necessary to build web sites,
but just like the CGI standard, they require developers to write code that prints
entire HTML files—or other data—on demand. Code that looks like

out.println("<p>One line of HTML.</p>");
out.println("<p>Another line of HTML.</p>");

is common. The ease of template systems, where code can simply be embedded in
static text, is not present.

 Libraries and toolkits help orient the servlet environment toward the creation of
HTML pages (and other types of data). For instance, the Element Construction Set
(ECS), another open source project under the Apache Software Foundation’s
umbrella, offers an approach that should be familiar to object-oriented program-
mers. ECS supports the creation of HTML and Extensible Markup Language (XML)
pages using a class hierarchy representing textual elements. This approach facilitates
the construction and maintenance of textual documents, but it has a potential
drawback: all document content, both static and dynamic, still exists inside source
code. To edit the layout of a page, a developer must modify Java code; an HTML
designer cannot simply edit a straightforward text file. 

JavaServer Pages (JSP)
Ideally, then, it seems that web designers and developers who use the Java platform
would want a standards-based template system built on top of the Servlet platform.
As we discussed, servlets provide performance benefits and can take advantage of
existing Java code. But template systems let dynamic web pages be created and
maintained easily.

 JSP was the natural result of this need. JSP works like a template system, but it
also extends the Servlet platform and provides most of the advantages of servlets.
Like servlets, JSP pages have access to the full range of Java code’s capabilities. JSP
pages can include Java as embedded scripting code between <% and %> delimiters,



Dynamic content on the web 11
the same as those used in ASP. But like ColdFusion, JSP also provides several standard
HTML-like tags to access back-end logic, and it lets developers design new tags.

 In short, JSP is a standards-based template system that extends the Java Servlet
framework. The first draft of the JSP specification appeared in 1998, followed by
versions 1.0 and 1.1 in 1999. The newest version of the standard—JSP 1.2—was
released in 2001; this version is the one covered by this book.

 In addition to the underlying technical specifics, servlets and JSP differ from
most other technologies in another important respect: they are supported by a wide
variety of vendors. Dozens of server-side platforms and development tools support
servlets and JSP.

1.2.5 How XML fits in

What implications does  XML have for web developers? XML is not a development
language; it does not serve a function coordinate with that of template systems,
CGI, or anything else we’ve discussed so far. XML is, at heart, a format for repre-
senting data. A quick primer on XML’s syntax and how it relates to HTML is given
in chapter 4, but for now, think of an XML document as a way to represent tree-
structured data in textual form. XML is not tied to any particular programming lan-
guage, so it is sometimes called “portable data.” (For example, the WDDX technol-
ogy mentioned in section 1.2.3 is based on XML.)

A quick tour of XML technologies
Several technologies support XML and make it useful as a mechanism for storing,
transmitting, and manipulating data for web applications. For instance, document
type definitions (DTDs) ensure a certain level of structure in XML documents. XML
Schema is a technology that goes far beyond DTDs in ensuring that an XML docu-
ment meets more complex constraints.

TIP Here’s a relatively lighthearted but instructional way to look at XML basics.
Suppose you want to store a list of jokes on your computer. You could easily
store such a list in a simple text file. XML lets you impose structure: for ex-
ample, you can mark off sections of the jokes into set-ups and punchlines.
Given such a structured file, DTDs let you make sure that every joke has a
punchline. And XML Schema, one might say, comes close to ensuring that
the punchlines are funny!

Of course, such a claim about XML Schema is not literally true. But XML
Schema can be used to define details about how data needs to appear in a
document.



12 CHAPTER 1

Introduction
Several APIs and languages exist for manipulating XML. The Document Object
Model (DOM) provides programmatic, well-defined access to an in-memory copy
of an XML document. The Simple API for XML (SAX), by contrast, supports an
event-driven model that allows programmers to handle XML without keeping an
entire document in memory at once.

 Extensible Stylesheet Language Transformations (XSLT) provides a mechanism
for manipulating XML documents—that is, for extracting pieces of them, rearrang-
ing these pieces, and so on. XSLT uses the XML Path Language (XPath) for refer-
encing portions of the XML document. An XPath expression, as an example, can
refer to “all <punchline> elements under all <joke> elements” within a document.
An XSLT transformation would let you format an XML document containing data
into HTML for presentation on web browsers—and also into the Wireless Markup
Language (WML) for use on cell phones and other wireless devices.

 Some web-specific technologies have focused specifically on XML. One such
technology is Cocoon, yet another product of the Apache Software Foundation.
Cocoon supports pipelines of XSLT transformations and other operations, so that a
single XML document gets massaged through a series of steps before being sent to
its final destination. Cocoon uses this model to support presentation of data in
HTML and other formats. The Cocoon framework also introduces the idea of
eXtensible Server Pages (XSP), which works like an XML-based template system;
XSP can be used to generate XML documents dynamically, using markup that refer-
ences either embedded or external instructions.

XML and JSP
JSP touches on XML technology at a number of points. Most simply, JSP can easily
be used to create dynamic XML documents, just as it can create dynamic HTML
documents. Java code used by JSP pages can, moreover, easily manipulate XML doc-
uments using any of the Java APIs for XML, such as the Java API for XML Processing
(JAXP). JSP pages can even be written as XML documents; most of JSP syntax is
compatible with XML, and the syntactic constructs that aren’t compatible have anal-
ogous representations that are.

 Behind the scenes, the JSP 1.2 specification uses XML to let developers validate
pages. Just as JSP pages can be authored in XML, every JSP page is represented,
internally by the JSP processor, as an XML document. JSP 1.2 lets developers use
this view of the page to verify the document as it is being processed—that is, to
ensure that the page meets custom constraints the developer can specify. This might
be useful in environments where back-end developers want to ensure that HTML
designers using the developers’ code follow certain conventions appropriately.



The role of JSP 13
Future versions of JSP might use this internal XML representation to let developers
execute automatic XSL transformations, or other modifications, on JSP pages
before they execute.

1.3 The role of JSP

When we presented individual template systems, we discussed how they provided
access to back-end libraries and custom logic. For instance, ASP supports ActiveX
controls and ColdFusion can be extended with C++ or Java, thus providing access
to back-end C++ or Java objects. We now look at how JSP pages fit into Java frame-
works—that is, how they access reusable Java classes, and what role they play in
large, distributed Java applications.

1.3.1 The JavaBeans component architecture

JavaBeans is a component architecture for Java. To software developers, the term
component refers to reusable logic that can be plugged into multiple applications
with ease. The goals of component architectures include abstraction and reusability.
That is, new applications don’t need to know the details of how a particular compo-
nent works, and the same component can be used in a variety of applications.
Because of this reusability, component architectures increase productivity; code per-
forming the same task does not need to be written, debugged, and tested repeatedly.

 Think of JavaBeans as Java classes that follow particular conventions designed to
promote reusability. JavaBeans can encapsulate data and behaviors. For instance,
you might design JavaBeans that represent your customers or products, or you
might write a bean that handles a particular type of network call. Because JavaBeans
automatically provide information to their environments about how their data can
be accessed, they are ideally suited for use by development tools and scripting lan-
guages. For example, a scripting language might let you recover the last name of a
customer whose data is stored in a JavaBean just by referring to the bean’s last-
Name property. Because of JavaBeans’ conventions, the scripting language can auto-
matically determine, on the fly, the appropriate methods of the JavaBean to call in
order to access such a property (as well as the Java data type of the property). Java-
Beans can also, because of their generality, be connected and combined to support
more sophisticated, application-specific functionality.



14 CHAPTER 1

Introduction
NOTE We’ll discuss more about the technical details of JavaBeans in chapter 8. For
now, our intent is to explore high-level advantages that JavaBeans provide to
JSP applications.

Just as JavaBeans can be used by scripting languages, they can also be used inside
JSP pages. Of course, the Java code that is embedded in a JSP page can access Java-
Beans directly. In addition, though, JSP provides several standard HTML-like tags to
support access to properties within JavaBeans. For instance, if you wanted to print
the lastName property of a customer bean, you might use a tag that looks like this:

<jsp:getProperty name="customer" property="lastName"/>

In addition to the typical reusability
that the JavaBeans’ architecture offers
(figure 1.6), beans thus serve another
role in the JSP environment. Specifi-
cally, they promote the separation of
presentation instructions and imple-
mentation logic. A customer bean ref-
erenced by a JSP page might have an
arbitrarily complex implementation;
for instance, it might use the JDBC
Data Access API to retrieve customer
information or process demographic
data related to the customer. Regard-
less of what goes on behind the scenes,
however, the single line of JSP code
above stil l retrieves the lastName
property out of the customer bean.
The Java code is thus abstracted out of
the JSP page itself, so that an HTML designer editing the page would not even need
to see it—much less be given a chance to modify it accidentally.

 Note that JavaBeans, while greatly assisting the separation of presentation
instructions from back-end program logic, do not provide this separation automati-
cally. JavaBeans’ properties can contain arbitrary data, and you could easily con-
struct an application that stores HTML tags as data inside JavaBeans. For instance,
instead of a lastName property that might store the name Jones, you might instead
store a formattedLastName property that looked more like this:

JSP
page

JSP
page

JSP
page

JavaBean

JavaBean

JavaBean

JavaBean

Figure 1.6 The same JavaBeans component can 
be used in multiple JSP pages.



The role of JSP 15
<p><font color=”red”>Jones</font></p>

Doing this would compromise the separation of HTML from logic, however.
Including this HTML inside a JavaBean would limit the bean’s reusability. Suppose
you wanted to start using the bean in a wireless, WML-based application, or in an
applet. In such a case, storing HTML inside the bean would not be desirable.
Instead, it would be more productive to surround the JSP tag that refers to the bean
with HTML formatting.

 Similarly, JavaBean logic itself should not produce HTML tags. You might be
tempted to use a JavaBean to construct an HTML table automatically as the result
of a database query, but in most situations, it would be better, instead, to use JSP to
construct the table and the JavaBean only to access the database.

 The separation between logic and presentation that JSP promotes can, as we’ve
hinted, assist with division of labor within development teams. The more Java code
that is removed from JSP pages, the more those pages should feel familiar to web
designers. When programmers focus their work on Java code and designers manage
HTML pages, the need for coordination among team members is reduced, and the
team can become more productive. Even on relatively small projects, using JavaBeans
might save you work and make your code more maintainable. It is typically easier to
debug standalone JavaBeans than Java code embedded in a JSP page—and, as we’ve
discussed, encapsulating code in a bean will let you easily use it in multiple pages. 

NOTE JavaBeans are not the only way to abstract logic out of JSP pages. Custom
tags, described in more detail in chapters 17–19, provide another means of
referencing Java logic within JSP pages without embedding it in the page it-
self. Chapter 18 covers design considerations that will help you choose be-
tween JavaBeans and custom tags. 

1.3.2 JSP and Java 2 Platform Enterprise Edition

JSP technology is integral to the Java 2 Platform, Enterprise Edition (J2EE). Because
it focuses on tasks related to presentation and flexibly supports access to back-end
functionality, JSP is a natural choice for the web tier of multi-layer applications.

 J2EE in contrast with the Standard Edition (J2SE) and the Micro Edition
(J2ME), supports the development of enterprise applications. J2EE includes tech-
nologies targeted at designing robust, scalable applications. At J2EE’s core is the
Enterprise JavaBeans (EJB) specification, which aids developers of enterprise com-
ponents by managing such things as security, transactions, and component life
cycle considerations.



16 CHAPTER 1

Introduction
 The J2EE BluePrints, a set of documents and examples from Sun Microsystems
that describe recommendations for building enterprise applications, prominently
feature JSP technology. In many enterprise environments, JSP provides an effective
mechanism for handling the presentation of data, irrespective of the data’s source,
the use of EJB, and other considerations.

 JSP is also being used as the basis for emerging standards. For example, the Java-
Server Faces initiative, operating under the Java Community Process, had recently
begun investigations into a standard mechanism for simplifying the development of
graphical web applications using servlets and JSP.

 Because JSP is regarded as enterprise-quality technology, JSP developers can
depend on backwards compatibility from future versions of the JSP specification.
While JSP actively continues to evolve, its days as an experimental platform are over.
Instead, users of JSP can rely on its platform independence, its status as an enter-
prise technology, and its basis on standards accepted by the industry.



 2HTTP and servlets
This chapter covers
� HTTP basics

� HTTP GET versus HTTP POST

� Java servlet basics

� An example servlet
17



18 CHAPTER 2

HTTP and servlets
Like most web applications, JSP pages require a style of programming different
from that of traditional desktop applications. For one thing, you cannot choose
how and when your JSP application interacts with its users; JSP pages are limited by
the protocols and technologies on which they rest. In this chapter, we look at the
Hypertext Transfer Protocol (HTTP) and Java servlets, both of which help define
how JSP functions.

2.1 The Hypertext Transfer Protocol (HTTP)

HTTP is the default protocol for JSP, which means that JSP applications typically
receive requests and send responses over this protocol. HTTP is also the basic proto-
col of the World Wide Web, and you’ve almost certainly used it already if you’ve
accessed a web page.

 For computers on a network to communicate, they need a set of rules—that is, a
protocol—for sending and receiving data. HTTP is one such protocol, and it’s the
one that has been adopted by the web. All web browsers support HTTP, as do the
web servers they connect to. HTTP supports both static content, such as HTML
files, and dynamic content, including data generated by the technologies we dis-
cussed in chapter 1.

DEFINITION Web server is a general term that can be used to describe both the hard-
ware and the software of a machine that answers requests from web
browsers. In this discussion, we usually refer to the software—that is, to
HTTP-server software running on a networked machine. Examples of
HTTP servers include the Apache Server and Microsoft IIS.

2.1.1 HTTP basics

As it turns out, HTTP is simpler than many other protocols. It defines a relatively
straightforward model of interaction between a web browser and a server. Specifi-
cally, HTTP is oriented around requests and responses. Under HTTP, a browser
sends a request for data to a server, and the server responds to that request by pro-
viding HTML or some other content.



The Hypertext Transfer Protocol (HTTP) 19
 By contrast, some application protocols are
bidirectional. For example, when you establish
a terminal connection to a host using Telnet,
either your client program or the server may
arbitrarily decide that it is time to send a mes-
sage to the other par ty. As suggested in
figure 2.1, web servers do not have this flexi-
bility. For a web server to send data to a web
browser, it must wait until it receives a request
from that browser. While a Windows applica-
tion like Microsoft Word, or even a terminal
application running on top of Telnet, can sim-
ply decide to display a message on the user’s
screen when it needs new input, an HTTP-
based application must follow the request/
response model.

NOTE To get around some of HTTP’s constraints on application flow, web applica-
tions can send JavaScript code—or even full programs like Java applets—as
part of their responses to browsers. (See chapter 15 for an example of using
JavaScript, and see appendix C for more information about applets.)

Applets and scripting code are not appropriate for all web applications. For
example, not every browser supports JavaScript and Java applets. Further-
more, underneath such code, the requests and responses of HTTP are still
present, and you will need to keep them in mind when designing your web
applications.

HTTP is also stateless, meaning that once a web server answers a request, it doesn’t
remember anything about it. Instead, the web server simply moves to the next
request, forgetting tasks as it finishes them. You will occasionally need to keep this
statelessness of HTTP in mind as you develop web applications. For example, sup-
pose you want to design an application that ties together successive requests; per-
haps you want to remember that a user added a product to a shopping cart, or you
need to assemble the results of several pages’ worth of HTML forms. By itself,
HTTP does not join together such logically connected requests—a task often
referred to as session management. As we will see in chapter 4, the JSP environment
provides support for session management, but you should keep in mind that you

Client Server

a

b

Client Server

.

.

.

Figure 2.1 a. A request-response 
protocol such as HTTP. b. A bidirectional 
protocol such as Telnet. Note that the 
server can initiate a message once the 
protocol is established.



20 CHAPTER 2

HTTP and servlets
have some control over how your application manages sessions; HTTP does not
solve, or even address, this issue for you.

 Because HTTP is stateless, a web browser must build two separate, complete
requests if it needs two pages from a server. In fact, for pages that contain embed-
ded images, music, or other data, the browser might have to send numerous
requests to the server in order to load a single page completely.

NOTE If you have experimented with HTTP, you may have realized that it supports
persistent connections, meaning that a browser can keep a single network con-
nection open if it has many requests it needs to send to a server. This ability is
just an implementation detail, however: it represents only a low-level perfor-
mance improvement. As far as web applications are concerned, persistence
does not change the way HTTP functions; the protocol is still stateless and
oriented around individual requests and their responses.

Although HTML is clearly one of the most popular formats for data on the web,
HTTP is a general-purpose protocol and is not limited to serving HTML. For exam-
ple, HTTP also frequently carries images, sound files, and other multimedia—and it
can be used for just about anything else. HTTP responses are typically tagged with a
content type; that is, they include information about the data’s format. This extra
information is encoded as part of an HTTP message’s headers.

 A typical HTTP response has a status line, headers, and a
body (figure 2.2). The body contains the response’s pay-
load—an HTML file, for example—while the header and sta-
tus line provide information that the browser uses to figure
out how to handle the response. Although the web server typ-
ically manages some response headers itself, JSP pages have
access to set the headers for the responses they generate. For
example, your JSP page can set the content type of its
response; we’ll see how to take advantage of this ability in
chapter 15.

 As described, HTTP is a reasonably simple protocol. Many
users of the web think that HTTP does more than it really
does. An important point to keep in mind is that HTTP
doesn’t care what content it carries or how that content was generated. Neither, in
fact, do web browsers: a browser does not need to know whether the HTML it ren-
ders was transmitted from a static file, a CGI script, an ASP page, or a JSP applica-
tion. As suggested by figure 2.3, the flow of a typical web application is not very

Headers
Information about  
the response

Response
Status Line

Body
HTML, JPG, or a file
in another format

Figure 2.2 The 
typical structure of an 
HTTP response.



The Hypertext Transfer Protocol (HTTP) 21
different, as far as a web browser is concerned, from aimless browsing of static pages
by a user: the browser transmits a request and gets a response, the user reads the
page and takes some action, and the cycle repeats.

 As an example of HTTP’s simplicity, consider a
web-server feature you might be familiar with.
When a browser asks for a URL that corresponds to
a directory of files instead of a particular file name,
many servers generate a listing of the files in that
directory. It is important to realize that the server
generates this listing; it automatically fabricates an
HTML message that represents a directory listing,
and the browser renders this HTML message just as
it would render a static file. (In other words, the
browser has no idea that it just requested a list of
files.) The very correspondence between the URL
and a directory is idiosyncratic to the web server’s
configuration; the web server, on its own, establishes
this mapping. Likewise, it’s up to web servers to
decide whether a particular request will be served
from a simple file or dispatched to a JSP page.

2.1.2 GET versus POST

As we discussed earlier, HTTP servers need to wait for requests from web browsers.
These requests can come in a variety of forms, but the two request types—formally
called methods—that are most important to web developers are called GET and POST.

 Just like HTTP responses, HTTP requests can be broken
up into headers and bodies. However, while most HTTP
response messages contain a body, many HTTP requests do
not. A simple type of HTTP request just asks for information
identified by a URL. (To be more specific, browsers don’t
send the entire URL to servers; they send only the portion of
the URL relative to the server’s root. When we discuss URLs
in HTTP requests, we refer to this type of relative URL.) This
kind of request usually consists of a line of text indicating the
desired URL, along with some headers (figure 2.4). Because
such requests support simple information retrieval, they are called GET requests.

 Handling GET requests is relatively simple: the server reads and parses the
requested URL and sends an appropriate response. GET methods are often used to

User Server

...

Request

Response

...

Request

Response

Request

Response

Figure 2.3 The flow of a typical 
web application is not substantially 
different from that of aimless 
browsing by a web user. Broadly 
speaking, the web is made up of 
requests and responses.

Headers
Information about  
the request

GET Request
GET url HTTP/1.1

Figure 2.4 The 
typical structure of a 
GET request.



22 CHAPTER 2

HTTP and servlets
retrieve simple files, such as static HTML or images. However, they are not limited
to this simple functionality. URLs come in many shapes and sizes, and as we’ve dis-
cussed, servers have discretion in processing them: URLs don’t necessarily map to
files in a filesystem, JSP pages, or anything else. Furthermore, information can be
encoded dynamically into a URL. For example, a value you type into an HTML form
might be added to the end of a URL. A web server can process this information on
the fly, taking customized action depending on the information that a URL contains.

 As an example, suppose a web server is configured to respond with a custom
greeting based on information that it parses out of the URL. When the server
receives a request corresponding to a URL such as

http://example.taglib.com/hello?name=Name

it responds with HTML output of the form

<html><body><p> Hello, Name </p></body></html>

The server is well within its rights to respond to a request in this manner; again, a
URL doesn’t necessarily correspond to a particular file on the server, so no file
called hello or hello?name= or anything similar needs to exist on the exam-
ple.taglib.com server. The server can simply make an arbitrary decision to
respond to the request in this way.

 As it turns out, many real-life web applications handle GET
requests in a very similar fashion when responding to HTML
forms. Web browsers have a standard format for submitting
the information that users enter through such forms. (There-
fore, when servers parse this information, they can know what
to expect.) One way that browsers submit this kind of
encoded information is by appending it to the URL in a GET
request.

 POST requests are similar to GET requests. However, in
addition to transmitting information as part of the structure
of the URL, POST requests send data as part of the request’s
body (figure 2.5). As with GET requests, this information
might be in any format, but web browsers and server-side
applications generally use standard encoding rules.

 When requesting URLs as the result of an <a>, <img>, or similar HTML element,
web browsers use GET requests. When submitting the result of an HTML <form>,
browsers use GET by default but can be told to use POST by specifying the method
attribute of <form> as POST, as follows:

Headers
Information about  
the request

POST Request
POST url HTTP/1.1

Body
Information sent as
part of the request,
usually intended for
a web application

Figure 2.5 The 
typical structure of a 
POST request.



Java servlets 23
<form method=”POST”>

Why is there a need for both GET and POST, considering how similarly they func-
tion? For one thing, many web applications require the browser to transmit a large
volume of data back to the server, and long URLs can get unwieldy. Although there
is no formal length limitation on URLs, some software—such as HTTP proxies—has
historically failed to function properly when URLs are greater than 255 characters.
POST is therefore useful to get around this limitation.

 The HTTP standard also draws a logical difference between the two types of
requests. The standard suggests that GET methods, by convention, should not cause
side effects. For example, a properly functioning web application should not store
information in a database in response to a GET request; actions that cause side effects
should be designed, instead, to use POST requests. In practice, this guideline is not
always followed, and in most cases, it does not have many practical ramifications.

 A more important consideration raised by the HTTP standard is that software
engaged in the processing of URLs—including web browsers, proxies, and web
servers—often stores these URLs as they are processed. For instance, browsers often
keep histories of visited URLs, and servers often maintain logs of URLs that have
been requested. Therefore, if your web application passes sensitive data, such as a
user’s password, using an HTML form, it should POST the data instead of sending it
as part of the URL in a GET request. Data sent as the body of a POST is not typically
logged by browsers, proxies, or servers.

TIP As you develop web applications, you’ll probably find that you use POST re-
quests more frequently than GET requests for submitting web forms, given
the volume and sensitivity of the data you’ll need to transfer. GET requests
are useful, however, if you want to access dynamic content from an <a> or
<img> tag; these tags cause browsers to use the GET method. We’ll see an
example of this use of <a> in the servlet example.

2.2 Java servlets

A Java servlet is a special type of web-based Java program. As we saw in chapter 1,
JSP pages depend intricately on servlets. In fact, every JSP page ultimately becomes
a servlet before it's used. Therefore, before jumping into JSP, you might want to
familiarize yourself with how servlets work.



24 CHAPTER 2

HTTP and servlets
2.2.1 How a web server uses servlets

A web server, as we have seen, has fairly wide discretion in how it decides to
respond to HTTP requests. It might serve files from a disk, or it might call a
program and produce a response based on that program’s output. More sophisti-
cated servers, such as the Apache Server, have rich configuration mechanisms that
allow modules to be installed and run from within the web server’s process. One
such program might be a servlet container.

DEFINITION A program that manages servlets is called a servlet container, or a servlet
engine. If a web server is configured to respond to certain types of re-
quests by running a servlet, a servlet container is responsible in part for
handling these requests. For example, the container sets up and shuts
down servlets as necessary and provides information to servlets to facili-
tate their processing. The servlet container also calls the appropriate
methods on servlet objects in order to cause specific servlets’ logic to run.

A servlet container might
be implemented as a sepa-
rate operating-system pro-
cess from the web server it
communicates with, or it
might be configured to run
inside the web server’s pro-
ce s s  ( f igur e 2 .6) .  The
model of communication
between web servers and
servlet containers is fairly
general; as long as the con-
tainer can manage servlets appropriately, hand them requests, and deliver their
responses, servlet and JSP developers can be shielded from the details of the back-
end interaction between servlet containers and the generic web-server logic that
drives them.

2.2.2 The anatomy of a servlet

Like HTTP, servlets are based on the request/response model. In fact, a servlet is
essentially a Java class that implements a particular, formal interface for producing
responses based on requests. The Java interface javax.servlet.Servlet, which
defines how servlets function, has a method that looks like

Browser Web server
process

Servlet continer
process

a

Browser Web server
process

b

Servlet
container

Figure 2.6 A servlet container may run in a separate operating-
system process from the web server logic that depends on it (a). 
A servlet container may also run inside a web server’s process (b).



Java servlets 25
public void service(ServletRequest req, ServletResponse res)

The ServletRequest and ServletResponse interfaces, both in the javax.servlet
package, represent the requests that a servlet processes and the responses that a
servlet generates.

 Because all servlets implement the javax.servlet.Servlet interface, each pro-
vides an implementation of the service() method. (Implementing a Java interface
requires that a class provide implementations of all of the methods declared in that
interface.) Therefore, all servlets have logic for processing a request and producing
a response.

 The Servlet interface has other methods that servlets must implement. JSP
developers do not typically need to deal with these methods directly, but it may be
useful to know that servlets can provide logic to handle initialization in an init()
method and cleanup in a destroy() method.

 The most common type of servlet is
tied specifically to HTTP, which the Serv-
let specification requires every servlet
container to support. The servlet stan-
dard def ines a  c lass ,  javax.serv-
let.http.HttpServlet, that represents
HTTP-capable ser vlets and contains
some convenience logic for their pro-
grammers. Specifically, authors of HTTP
servlets do not usually need to write a service() method manually; instead, they
can extend the HttpServlet class and override one or more of the higher-level
methods it provides. Since HttpServlet is aware of HTTP, it has Java methods that
correspond to HTTP methods: for instance, it specifies a doGet() method to handle
GET requests and a doPost() method to handle POST requests. As figure 2.7 sug-
gests, the service() method of HttpServlet calls these methods when the servlet
receives GET or POST requests. Because service() provides this switching mecha-
nism to differentiate among different types of HTTP requests, the developer of an
HTTP servlet does not need to analyze each request, determine its type, and decide
how to handle it. Instead, HTTP servlet authors can simply plug in logic to respond
to GET or POST requests, as appropriate to their applications.

 The doGet() and doPost() methods accept arguments of type HttpServlet-
Request  and HttpServletResponse , both of which are located in the
javax.servlet.http package. These two interfaces extend their more generic
equivalents and provide HTTP-specific request information and response directives.
For example, because the type of message headers we discussed earlier are an HTTP

service()

doGet() doPost()

GET request POST request

Figure 2.7 The mapping of GET and POST 
requests within an HttpServlet implementation.



26 CHAPTER 2

HTTP and servlets
concept and might not be present in another protocol, the method getHeaders()
is defined in HttpServletRequest, not in the base ServletRequest interface. That
is, the general interface does not need to have any concept of HTTP headers, but
HTTP-specific request objects do. Similarly, the HttpServletResponse interface
lets a servlet set HTTP cookies, which are described in more detail in chapters 4 and
14; cookie functionality would not be appropriate in the generic interface.

 Consider another use of the ServletRequest interface. As we discussed earlier,
browsers have a standard mechanism for encoding the data that users enter on
HTML forms. In the servlet environment, it is the job of the servlet container to
understand this encoding and represent it to the servlet. It does this through a
ServletRequest object, which has methods like getParameter() that let the serv-
let easily recover the information entered by the user. Servlet authors therefore
don’t need to parse the encoded form data themselves; they can use the simple Java
API that the container provides. HttpServletRequest objects will resurface when
we begin to discuss the details of JSP functionality.

NOTE For more information on the servlet and JSP APIs, including the classes and
interfaces shown in this chapter, see appendix F.

2.2.3 A servlet example

Even though detailed knowledge of servlets is not necessary for JSP developers—in
fact, one of JSP’s great advantages is that it lets developers create Java-based web
applications without having to write servlets by hand—a simple servlet example
might help you understand how servlets function. As we discussed, the servlet con-
tainer does a lot of work behind the scenes, so a simple servlet is actually fairly
straightforward to write. A basic HTTP servlet just needs to provide logic to
respond to GET or POST request, which it can do by overriding the doGet() or
doPost() methods in HttpServlet. The source code to a basic servlet that greets
the user and prints extra information is shown in listing 2.1.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class BasicServlet extends HttpServlet {

  public void doGet(HttpServletRequest req, HttpServletResponse res)
      throws IOException {

Listing 2.1 A servlet that greets and prints



Java servlets 27
    // output to the browser via the "response" object's Writer
    PrintWriter out = res.getWriter();

    // print out some unchanging template "header" text
    out.println("<html>");
    out.println("<body>");
    out.println("<p>");

    // print some dynamic information based on the request
    String name = req.getParameter("name");
    if (name != null)
      out.println("Hello, " + name + ".");
    else
      out.println("Welcome, anonymous user.");
    out.println("You're accessing this servlet from "
      + req.getRemoteAddr() + ".");

    // print out some unchanging template "footer" text
    out.println("</p>");
    out.println("</body>");
    out.println("</html>");

  }
}

This servlet implements only the doGet() method; it does not concern itself with
POST requests. From doGet(), the servlet prints unchanging information, often
called template data, to a java.io.PrintWriter object it has retrieved from the
HttpServletResponse object it was passed. Then, it greets the user by retrieving a
particular parameter from the HTTP request, much as the web server in our prior dis-
cussion did. It also prints the IP address from which the request originated. (Some
applications use this information for gathering statistics or auditing users.)

TIP It is relatively easy to install a servlet container and run the servlet from
listing 2.1. See appendix B for more information on Jakarta Tomcat, a free
servlet and JSP container that provides the official reference implementation
for the Java servlets and JSP platforms.

Notice how the servlet makes multiple calls of the form out.println() in order to
display HTML and other miscellaneous text. Servlets that print HTML become
unwieldy quickly because they output a large amount of text from within program
logic. As we saw in chapter 1, this awkward use of servlets is one of the motivating
factors behind JSP.



28 CHAPTER 2

HTTP and servlets
 Figures 2.8 and 2.9 show the servlet responding to two different requests. Note
the differences between the two trial runs of the servlet. In figure 2.8, no name
parameter is specified, so the test against such a parameter in the code causes an
anonymous greeting to be displayed; figure 2.9 greets the user by name. Note also
that the IP addresses shown in the two windows are different; the servlet detects the
IP address of each new request as it’s processed.

 The servlet determines the name parameter from the HTTP request by parsing it
according to the standard rules we mentioned before; the details of these rules are not
important for now, but as you can probably see from the example, strings of the form

name=value

following a question mark (?) in the URL are interpreted as request parameters.
 URLs containing such parameters can also be constructed manually—for exam-

ple, as references from an <a> element. A file containing the following HTML might
allow a user to click two different links and be greeted by two different names:

<a href=”BasicServlet?name=Justin”> Say hello to Justin. </a>
<a href=”BasicServlet?name=Melissa”> Say hello to Melissa. </a>

More dynamically, an HTML form containing the element

<input type=”text” name=”name” />

could allow the user to enter his or her name and be greeted appropriately.

Figure 2.8 Output of the basic servlet when no name is specified.

Figure 2.9 Output of the basic servlet when a name is specified.



Java servlets 29
 This crash course in servlets was not designed to turn you into a servlet pro-
grammer overnight. As we’ve discussed, JSP makes it easy to develop dynamic web
pages without having to use servlets. But many JSP programmers find a basic under-
standing of servlets useful as they approach more complex problems. Some applica-
tions, as we will see in chapter 10, can be built using both JSP and servlets. In other
situations, having experimented with servlets will give you a deeper understanding
of the JSP environment; we’ll discuss more about how JSP pages and servlets inter-
relate in chapter 4.



 3First steps
This chapter covers
� Writing your first JSP page

� Simple dynamic content with JSP

� Basic session management

� Abstracting logic behind JSP pages
30



Simple text 31
Now we’re ready to see what JSP looks like. This chapter explores some of JSP’s
capabilities, giving you a quick tour of its basic functionality. The goal isn’t to
swamp you with technical details; we’ll begin to consider those in the next two
chapters, when we introduce the syntax and back-end implementation of JSP. The
examples in this chapter should familiarize you with JSP pages’ look and feel, which
will be helpful when we discuss the syntax more formally.

About the examples
As indicated in chapter 1, a strength of JSP is that it lets you produce dynamic con-
tent using a familiar, HTML-like syntax. At the same time, however, the mixture of
JSP elements and static text can make it difficult to look at a file and quickly find the
JSP elements. To help remedy this problem for the examples in this book that mix
JSP elements with static text, we have adopted the convention of marking JSP tags
in such examples in boldface.

 All of the examples presented in this chapter (except for one) are real, usable JSP,
and you’re encouraged to experiment with them yourself before moving forward. If
you do not yet have a JSP environment in which to experiment, appendix B contains
a quick installation guide for Tomcat, a free JSP container that provides the refer-
ence implementation for the JSP platform.

DEFINITION A JSP container is similar to a servlet container, except that it also pro-
vides support for JSP pages.

3.1 Simple text

No programming book would be complete without an example that prints “Hello,
world!” This simple task serves as an excellent starting point for experimentation.
Once you can use a language to print a text string of your choice, you’re well on
your way to becoming a programmer in that language.

 For the web, it makes sense to print “Hello, world!” inside an HTML file. Here’s
a JSP page that does this:

<html>
<body>
<p>
Hello, world!
</p>
</body>
</html>



32 CHAPTER 3

First steps
At this point, you’re probably thinking, “Wait! That’s nothing but a plain HTML
file.” And you’re exactly right; this example is almost disappointingly simple. But it
emphasizes an important point about JSP pages: they can contain unchanging text,
just as normal HTML files do. Typically, a JSP page contains more than simple static
content, but this static—or template—text is perfectly valid inside JSP pages.

 If a JSP container were to use the JSP page in the example code to respond to an
HTTP request, the simple HTML content would be included in the generated
HTTP response unchanged. This would be a roundabout way of delivering simple,
static HTML to a web browser, but it would certainly work.

 Unfortunately, this example didn’t show us much about what JSP really looks
like. Here’s a JSP page that prints the same “Hello, world!” string using slightly
more of JSP’s syntax:

<html>
<hody>
<p>
<%= "Hello, world!" %>
</p>
</body>
</html>

This example differs from the previous one because it includes a tag, or element, that
has special meaning in JSP. In this case, the tag represents a scripting element. Script-
ing elements are marked off by <% and %>, and they let you include Java code on the
same page as static text. While static text simply gets included in the JSP page’s out-
put, scripting elements let Java code decide what gets printed. In this case, the Java
code is trivial: it’s simply a literal string, and it never changes. Still, the processing of
this page differs from that of the prior example: the JSP container notices the script-
ing element and ends up using our Java code when it responds to a request.

3.2 Dynamic content

If JSP pages could only print unchanging text, they wouldn’t be very useful. JSP
supports the full range of Java’s functionality, however. For instance, although the
scripting element in the last example contained only a simple Java string, it might
have contained any valid Java expression, as in

<%= customer.getAddress() %>

or

<%= 17 * n %>



Dynamic content 33
NOTE As we’ll see in chapter 5, JSP is not strictly limited to Java code. The JSP stan-
dard provides for the possibility that code from other languages might be in-
cluded between <% and %>. However, Java is by far the most common and
important case, and we’ll stick with it for now.

Let’s take a closer look at some examples of JSP pages that produce content
dynamically.

3.2.1 Conditional logic

One of the simplest tasks for a Java program, and thus for a JSP page, is to differen-
tiate among potential courses of action. That is, a program can make a decision
about what should happen next. You are probably familiar with basic conditional
logic in Java, which might look like this:

if (Math.random() < 0.5)
    System.out.println("Your virtual coin has landed on heads.");
else
    System.out.println("Your virtual coin has landed on tails.");

This Java code, which simulates the flip of a coin, can transfer to a JSP page with
only small modifications:

<html>
<body>
<p>Your virtual coin has landed on
<% if (Math.random() < 0.5) { %>
heads.
<% } else { %>
tails.
<% } %>
</p>
</body>
</html>

This example is similar to the Java code, except that JSP takes care of the output for
us automatically. That is, we don’t need to call System.out.println() manually.
Instead, we simply include template text and let the JSP container print it under the
right conditions.

 So what, exactly, does this latest example do? Up until the first <%, the page is
very similar to our first example: it contains just static text. This text will be printed
for every response. However, the template text is interrupted by the Java code
between the <% and %> markers. In this case, the Java code uses Math.random() to
generate a pseudorandom number, which it uses to simulate the flip of a coin. If this



34 CHAPTER 3

First steps
number is less than 0.5, the block of JSP between the first two { and } braces gets
evaluated. This block consists of static text (heads.), so this text simply gets
included if the conditional check succeeds. Otherwise, the value tails. will be
printed. Finally, the template text after the final %> marker gets included, uncondi-
tionally, into the output.

 Therefore, this JSP page can result in two different potential outputs. Ignoring
white space, one response looks like this:

<html>
<body>
<p>Your virtual coin has landed on
heads.
</p>
</body>
</html>

The other potential response is identical, except that the line containing the word
“heads” is replaced with one containing “tails.” In either case, the browser renders
the resulting HTML. Recall from chapter 2 that browsers do not need to know how
the HTML was generated; they simply receive a file and process it.

3.2.2 Iteration

Another fundamental task for programs is iteration—that is, looping. Like condi-
tional logic, iterative code can be moved into JSP pages as well. Let’s take the previ-
ous example and turn it into a page that flips five coins instead of one:

<html>
<body>
<% for (int i = 0; i < 5; i++) { %>
  <p>
  Your virtual coin has landed on
  <% if (Math.random() < 0.5) { %>
    heads.
  <% } else { %>
    tails.
  <% } %>
  </p>
<% } %>
</body>
</html>

How have we modified the example from the conditional logic section (other than
by indenting it for clarity)? We’ve simply added a Java for() loop around part of it,
embedded between the same <% and %> markers that we used earlier. As shown in
figure 3.1, this loop causes its body to be executed five times.



Dynamic content 35
 To get more of a feel for iteration, let’s look at a simple JSP page that prints a
traditional multiplication table in HTML (figure 3.2). This table would be tedious
to type by hand, even for the most capable mathematicians. JSP turns the problem
into a simple programming task that can be solved using two loops, one nested
inside the other:

<table border="1">
<% for (int row = 1; row < 11; row++) { %>
   <tr>
   <% for (int column = 1; column < 11; column++) { %>
       <td><tt><%= row * column %></tt></td>
   <% } %>
   </tr>
<% } %>
</table>

How does this example work? First, we set up an HTML table with the <table> ele-
ment. Then, for each number in the outer loop, we start a new row with the <tr>
element. Within each row, we create columns for each number in the inner loop
using the HTML <td> element. We close all elements appropriately and, finally,
close the table.

 Figure 3.3 shows the HTML source (from our browser’s View Source com-
mand) for the HTTP response sent when the multiplication-table page runs. Note
how, as we’ve emphasized before, the browser plays no part in the generation of
this HTML. It does not multiply our numbers, for instance. It simply renders the
HTML that the JSP engine generates.

Figure 3.1 A sample run of our iteration example.



36 CHAPTER 3

First steps
WARNING You might not have expected JSP processing to add some of the white space
that appears in figure 3.3. JSP processing preserves the spaces in the source
JSP file. For example, the body of the inner loop in our multiple-table exam-
ple begins by starting a new line, for a line starts immediately after the inner
for() loop’s closing %> tag. In the majority of cases, you won’t need to wor-
ry about the spacing of your output, but on rare occasions, you may need to
eliminate extra white space in your source file.

This is the first example we’ve shown that mixes the simple <% marker with the <%=
marker. As in the ASP environment, the <% marker introduces code that will simply
be executed. By contrast, <%= introduces an expression whose result is converted to
a string and printed. In the JSP code in the multiplication table example, the for()
loops are structural and thus appear in blocks beginning with <%. When it comes
time to print our row * column value, however, we include the Java code inside a
block that starts with <%=.

NOTE We’ll cover the details of these special markup tags—and describe more about
iteration and conditional logic—in chapter 5.

Figure 3.2 A multiplication table printed in a web browser



Dynamic content 37
3.2.3 Non-HTML output

JSP doesn’t care about the form of static, template text. To demonstrate that JSP isn’t
tied to HTML exclusively, here’s a simple JSP page that can be used as a time service
for cell phones. It outputs WML, a form of XML that’s used by some wireless devices:

<%@ page contentType="text/vnd.wap.wml;charset=UTF-8"
         import="java.text.*, java.util.*"
%><?xml version="1.0"?>
<%
  SimpleDateFormat df =
    new SimpleDateFormat("hh:mm a");
%>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="time" title="Time">
   <p>It's <%= df.format(new Date()) %>.</p>
   <p>(Do you know where your laptop is?)</p>
 </card>
</wml>

Figure 3.3
Output of the multiplication-table JSP page



38 CHAPTER 3

First steps
Don’t worry about the details of WML. JSP doesn’t, and WML
specifics are beyond the scope of this book. This example just
demonstrates an application of JSP beyond the traditional,
HTML-based web. Figure 3.4 shows sample output on an
emulator for a particular wireless device, the Ericsson R320s.

NOTE For further details on the generation of non-HTML
content, see chapter 15.

3.3 Processing requests and managing sessions

So far, our examples have performed simple tasks that aren’t
inherently web based. That is, you could write a command-line
or Windows program analogous to each of the JSP examples pre-
sented so far. Let’s move on to JSP pages that are web specific.

 In JSP, several Java objects are exposed automatically to scripting
code. When you write scripting code, you can refer to these objects
without having to declare them by hand. Known as implicit objects,
these variables—with names such as request, session, and
response—give you a simple mechanism to access requests, manage
sessions, and configure responses, among other tasks. The next few
examples rely on features that the JSP container exposes through
implicit objects. They make sense only in environments that are, like
the Web, based on the request/response model described in chapter 2.

 We’ll go into further detail about implicit objects in
chapter 6. For now, we introduce them just to demonstrate some more of JSP’s
functionality.

3.3.1 Accessing request parameters

In chapter 2, we saw how the Java Servlets API gives servlets access to information
sent as part of the request. We also saw an example of a servlet that uses this infor-
mation to greet the user by name. Compared to the servlet in listing 2.1, the JSP
code to perform the same task is even simpler. Here’s a JSP page that works just like
the servlet in the last chapter:

<% String name = request.getParameter("name"); %>
<html>
<body>
<p>
<% if (name != null) { %>

Figure 3.4 Output 
of a WML emulator 
receiving input 
from a sample JSP 
page



Processing requests and managing sessions 39
  Hello, <%= name %>.
<% } else { %>
  Welcome, anonymous user.
<% } %>
You're accessing this servlet
from <%= request.getRemoteAddr() %>.
</p>
</body>
</html>

This example pulls out two pieces of information from the request: the value of the
name parameter and the IP address of the machine that sent the request. (The calls
work just as they did in listing 2.1.) Notice that we didn’t need to declare the
request variable; the environment has done so for us. The call to request.get-
RemoteAddr() means, “Get the IP address of the current request”; every time the
JSP page runs, the value of the request object automatically represents the then-cur-
rent request.

 Accessing requests is very common in JSP, for access to requests lets JSP pages
retrieve information from users. The request object is, by default, an instance of
the same HttpServletRequest interface that we saw in chapter 2. All of the func-
tionality of HttpServletRequest is thus available through the request object. For
example, you can access the data entered into an HTML form by calling
request.getParameter(), just as our example does.

3.3.2 Using sessions

Recall that HTTP is stateless, meaning that a web server starts with a blank slate as it
processes each new request it receives. If you need to tie different requests—for
example, all requests from the same user—into a session, you need either to program
this yourself or to use a platform that handles the task for you.

 Fortunately, JSP is one such platform. We’ll see how JSP actually manages ses-
sions later, in chapters 4 and beyond, but let’s take a look now at how sessions
might be used. As we mentioned, scripting elements in JSP pages have access to an
implicit session object. You can store and retrieve session-related data by using
methods this object provides.

 As an example, imagine that during the processing of a request, you have built
up an object called userData for a particular user. Suppose you wish to remember
this object for subsequent requests that come from the same user. The session
object lets you make this association. First, you would write a call like ses-
sion.setAttribute("login", userData) to tie the userData object to the
session. Then, for the rest of the session, even for different requests, you would be
able to call session.getAttribute("login") to recover the same userData



40 CHAPTER 3

First steps
object. The session object keys data under particular names, much as a typical hash
table, or an implementation of java.util.Map, does. In this case, the userData
object is keyed under the name login.

 Let’s see how sessions work in practice by converting our virtual coin-flip page
from before into one that keeps track of how many times “heads” and “tails” have
been chosen. Listing 3.1 shows the source code for such a page.

<%
   // determine the winner
   String winner;
   if (Math.random() < 0.50)
     winner = "heads";
   else
     winner = "tails";

   synchronized (session) {
     // initialize the session if appropriate
     if (session.isNew()) {
       session.setAttribute("heads", new Integer(0));
       session.setAttribute("tails", new Integer(0));
     }
     // increment the winner
     int oldValue =
       ((Integer) session.getAttribute(winner)).intValue();
     session.setAttribute(winner, new Integer(oldValue + 1));
   }
%>
<html>
<body>
<h1>Current standings:</h1>
<table border="1">
<tr>
  <th>Heads</th>
  <th>Tails</th>
</tr>
<tr>
  <td><%= session.getAttribute("heads") %></td>
  <td><%= session.getAttribute("tails") %></td>
</tr>
</table>
</body>
</html>

Listing 3.1 A small application that uses sessions



Separating logic from presentation 41
At its heart, this page is similar
to the one from before that
emulates a coin flip. However,
the page contains extra logic to
keep a tally of prior coin flips in
the session object. Without
getting too caught up in the
details, the page initializes the
session if it’s new—that is, if
session.isNew()  r e tu r n s
true—and then it keeps track of
the tally for “heads” and “tails,”
keying the data, imaginatively
enough, under the names heads
and tails. Every time you reload
the page, it updates the tallies and displays them for you in an HTML table
(figure 3.5). If you reload the page, the tallies change. If your friend, however,
begins accessing the application from a different computer, the session object for
your friend’s requests would refer to a new session, not yours. When different users
access the page, they will all receive their own, individual tallies of heads and tails.
Behind the scenes, the JSP container makes sure to differentiate among the various
users’ sessions.

3.4 Separating logic from presentation

In the examples so far, Java code has been mixed right in with HTML and other
static text. A single JSP file might contain some HTML, then some Java code, and
finally some more HTML. While this mixture is a convenient way to generate
dynamic content, it might be difficult for a large software-development team to
maintain. For instance, programmers and HTML designers would need to manage
the same combined JSP files. If problems are encountered, they might not be imme-
diately clear whether they come from HTML problems or logic errors.

 To help address these issues and provide for greater maintainability, JSP provides
another mechanism for generating on-the-fly content. In addition to the simple
scripting elements we’ve shown, JSP allows special, XML-based tags called actions to
abstract Java code away from the JSP page itself.

 Many actions look just like HTML tags, but they work like a signal to the JSP
container to indicate that some processing needs to occur. When processing of a JSP

Figure 3.5 A stateful tally of prior events, made 
possible by session management.



42 CHAPTER 3

First steps
page hits a block of static HTML text, like <p>Hello!</p>, such text is simply passed
through to the JSP page’s output. Processing for actions is different: when the JSP
page hits an action, such as <jsp:include>, it runs extra code to figure out how pro-
cessing should proceed. Unlike the Java between scripting elements <% and %> tags,
however, the code for actions does not appear directly on the JSP page. Instead, it can
either be built into the container or provided as a custom add-on by developers.

 We’ll cover actions in more depth in chapters 4 and 6. For now, let’s take a look
at how these tags might help you manage your JSP applications.

3.4.1 Reusing logic with JavaBeans

One common use of the special XML-based tags we’ve mentioned is to communi-
cate with JavaBeans. In fact, JSP provides several standard action tags to help you
communicate with these beans. As we discussed in chapter 1, JavaBeans are reusable
Java components: they are Java classes that follow conventions, defined in the Java-
Beans standard, that promote modularity and reusability. The details of this stan-
dard, as it relates to JSP pages, will be covered in chapter 8. For now, let’s look at a
simple JavaBean class so that we can present a JSP page that uses it:

package com.taglib.wdjsp.firststeps;
public class HelloBean implements java.io.Serializable {
  String name = "world";
  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }
}

Indeed, this is a very simple Java class. It contains a single instance variable, name,
which refers to a string. By default, this string has the value world, but it can be
changed using the method setName(), which takes an instance of the Java String
class as its parameter. Code outside the bean can retrieve the name by using
getName(). These methods have names that the JavaBeans framework will look for,
by default, when it needs to modify or retrieve the name variable, which in bean
terms is called a property.

 A JSP page may use this bean as follows:

<html>
<body>
<p>
<jsp:useBean id="hello"
  class="com.taglib.wdjsp.firststeps.HelloBean"/>



Separating logic from presentation 43
<jsp:setProperty name="hello" property="name"/>
Hello, <jsp:getProperty name="hello" property="name"/>!
</p>
</body>
</html>

The first action tag that appears is the <jsp:useBean> tag. As its name suggests,
this tag lets the JSP page begin using a bean, specified by a particular class name and
page-specific ID. In this case, we have indicated that we wish to use an instance of
the HelloBean class and, for the purposes of the page, to call it hello. The appear-
ance of the <jsp:setProperty> tag in the code causes the request parameter called
name—if it exists and isn’t an empty string—to be passed as the String parameter in
a call to the bean’s setName() method. We could have written

<% if (request.getParameter("name") != null
       && !request.getParameter("name").equals(""))
     hello.setName(request.getParameter("name"));
%>

and it would have had a similar effect, but <jsp:setProperty> is both easier to use
and provides us with a level of abstraction. If we needed to set multiple properties
in the HelloBean, <jsp:setProperty> would make our page substantially easier to
read and less prone to errors.

 The final action tag that appears in the example is <jsp:getProperty>, which
retrieves the name property from the HelloBean and includes it in the JSP page’s
output. Therefore, the example prints a personalized greeting if it can retrieve the
user’s name from the request; if not, it simply prints Hello, world!, just like our
first example.

 The bean-centered approach gives our page several advantages in readability and
maintainability. As we just mentioned, the tags beginning with <jsp: take care of
various operations for us behind the scenes. This way, we don’t have to write Java
code that manually sets and retrieves information out of the bean. 

 Suppose that HelloBean were a little more complex. Instead of a bean that sim-
ply stores a name, imagine one that capitalizes names correctly or that uses the
name as part of a database query that retrieves more information about the user.
Even if HelloBean performed these extra tasks, its interface with the JSP page
would be the same: <jsp:getProperty> and <jsp:setProperty> would still work
just as they do in the example we just saw. If multiple pages in your application—or
even multiple applications—need to use the logic contained inside the bean, they
can all simply use different copies of the bean—or even the same copy—via the
<jsp:useBean> tag. Beans therefore let you move more of your own Java code out-
side the JSP page itself, and they let you reuse this code among multiple pages. By



44 CHAPTER 3

First steps
contrast, Java logic that appears between <% and %> might need to be replicated in a
number of different pages.

NOTE We cover JavaBeans and bean-based design strategies in detail, beginning
with chapter 7.

3.4.2 Abstracting logic with custom tags

Action tags thus have some of the benefits as do functions in a language like Java;
they let you hide and reuse logic. Tags have an additional benefit, too: their syntax,
being XML-based, is similar to that of HTML. Therefore, if you are working as a
developer on part of a team that also includes nonprogramming HTML designers,
you might decide that you want to expose your back-end functionality through tags
instead of through simple function calls.

 As we’ll discuss further in the next chapter, JSP lets you write your own new
actions and expose them in tag libraries. Writing new tags is an advanced JSP topic
that we leave until chapters 17–19, but let’s briefly look, for now, at how we might
use one of the tags we demonstrate in those later chapters. One such tag is
<mut:ifProperty>, which, in its simplest usage, conditionally includes the text
contained between it and its ending </mut:ifProperty> tag if the specified prop-
erty of a JavaBean is true instead of false.

 Once we import the appropriate tag library—a procedure we'll learn more
about in chapter 5—we can use the <mut:ifProperty> tag in a JSP page as follows:

<mut:ifProperty name="user" property="important">
Welcome!  Thanks for visiting again.
</mut:ifProperty>

<mut:ifProperty name="user" property="unimportant">
Oh, it's you again.  Sigh.
</mut:ifProperty>

WARNING As we mentioned, this JSP fragment depends on advanced JSP features. You
won’t be able to run it just as it appears. See chapters 17–19 for more infor-
mation on custom tag libraries.

As with <jsp:setProperty>, we could have written functionally similar code by
using Java inside <% and %> delimiters, but these tags give us a level of abstraction
and allow us to reuse logic.



Review of examples 45
3.5 Review of examples

The goal in this chapter wasn’t to cover any syntactic specifics or to explain behind-
the-scenes operation; we’ll have ample time for that later. For now, our progression
of examples has given you a first look at JSP. You’ve seen that JSP pages can contain

� static HTML text
� static non-HTML text
� embedded Java code that supports iteration, conditionalization, and other

abstract logic

� standard tags that, among other benefits, hide logic and let you access JavaBeans
� custom tags that you’ve written yourself, or that other developers have written

Now, we’re ready to look more formally at how JSP pages are composed and how
they get processed before they execute.



 4How JSP works
This chapter covers
� JSP directives and scripting elements

� JSP action elements

� Phases in processing a JSP page

� Advantages of the JSP environment
46



The structure of JSP pages 47
In chapter 3, we jumped into JSP by looking at some of its capabilities. Let’s now
take a closer look at the structure of JSP pages, studying the building blocks of JSP
pages in more detail. Full syntax and functionality will be covered in chapter 5 and
beyond; our goal for now is to discuss how JSP works, what happens to JSP pages
behind the scenes before and while they run, and how the JSP container provides
services on which you will rely as you learn more about JSP.

4.1 The structure of JSP pages

As we saw in chapter 3, JSP pages
are a combination of text and special
markup tags (figure 4.1). Template
text is stat ic text that’s passed
through to the output, while the
special JSP markup tags allow JSP
pages to be dynamic. For example, a
markup tag might cause on-the-fly
HTML to get generated, or it might
decide whether static text will be
displayed. A markup tag might also
take some behind-the-scenes action,
such as sending an email or check-
ing a database.

 One group of such dynamic JSP
tags is reminiscent of ASP’s syntax;
this variety of tags supports configu-
ration and scripting. Another class
of tags is based on the syntax of the XML and lets JSP developers produce dynamic
content without including Java code directly on a JSP page.

4.1.1 Directives and scripting elements

Some JSP tags begin with the characters <% and end with %>, the same delimiters
used in the ASP environment. In JSP, an additional character may appear after the
leading <% to further describe the purpose of the tag.

 Tags of this style have one of two purposes: either they include Java code in the
JSP page, or they contain instructions for the JSP container.

JSP Page

Actions

Directives
Scripting
elements

Standard
actions

Custom 
actions

Template text

Figure 4.1 Elements that can appear, in any 
order, in a JSP page



48 CHAPTER 4

How JSP works
DEFINITION If a tag introduces Java code into a JSP page, it is called a scripting ele-
ment. A JSP directive, by contrast, provides instructions to the JSP con-
tainer; it either requests action on the part of the container, or it specifies
information about the JSP page.

The following tags are examples of scripting elements:

<%! int count = 0; %>
<%= 2 * Math.PI * radius %>
<%
  if (radius > 10.0) {
    out.println(“Exceeds recommended maximum.  Stress analysis advised.”);
  }
%>

Similarly, examples of directives include:

<%@ page isErrorPage=”true” %>
<%@ include file=”header.html” %>

NOTE These tags are not compatible with XML; an XML document could not con-
tain elements that begin with <% and end with %>, with somewhat arbitrary
content in between. Since JSP 1.2 allows authorship of JSP pages in XML-
compliant syntax, as chapter 1 described, these tags pose a problem. JSP
solves this issue by specifying a corresponding XML-compliant element for
each type of non-XML tag. Chapter 5, in addition to covering the full use and
functionality of directives and scripting elements, will go into further detail
about the dual, XML-compliant elements.

4.1.2 Standard and custom actions

The rest of the JSP special markup tags are based on XML syntax. That is, they fol-
low the style and conventions of XML. Before going into too much detail about
how these tags work, let’s first describe some of the basics of XML syntax, in case it
is new to you.

Basic XML syntax
XML looks a lot like HTML, but it is specified a more strictly. For example, XML tags
are case sensitive, while HTML tags are not. When designing a page in HTML, you
might choose to write either <p> or <P>, and it doesn’t much matter which one you
pick. In XML, these two tags are entirely different elements.



The structure of JSP pages 49
 XML also requires that all attribute values be placed within quote marks. HTML
is often written without quote characters surrounding attributes, as in

<a href=http://www.taglib.com/>

This tag would be illegal in XML; instead, the URL specified for the href attribute
would need to be surrounded with either single or double quotes. XML also requires
that every nonempty tag—that is, any tag that contains text or other tags—have an
appropriate closing counterpart. It is common to see HTML that looks like this:

<ul>
<li> First list item
<li> Second list item

</ul>

This fragment could not be part of a legal XML document. For use in XML, closing
tags would need to be provided. For example:

<ul>
<li> First list item </li>
<li> Second list item </li>

</ul>

Not every tag contains text or other tags, however. For instance, the HTML <br>
tag stands alone and can’t sensibly contain anything else. To differentiate such tags
from those that do require a closing counterpart, XML uses /> as the ending delim-
iter for the tag. For instance, a standalone tag like HTML’s <br> would be written
as <br/> in XML. (Technically, you could also write <br></br>, but there is gener-
ally little reason not to use the /> shortcut.)

 While HTML has a fixed set of tags, you can extend XML in application-specific
ways by defining sets of tags that have meaning in a particular context. For
instance, if you wanted to store a database of jokes in an XML file, you might
define tags such as <joke>, <setup>, <punchline>, and so on, and then include
them in a file as follows:

<joke quality=”poor”>
  <setup>
    ...
  </setup>
  <punchline>.
     ... and she said, “No, silly, it’s a servlet container!”
  </punchline>
</joke>

To allow tags defined for different applications to appear unambiguously in the
same file, XML uses namespaces, which are essentially collections of tag and attribute



50 CHAPTER 4

How JSP works
names. An XML file can refer to a namespace by attaching the namespace identifier,
followed by a colon (:), to the beginning of a tag’s name. In this manner, a single
XML file can use two different tags with the same name, as long as they are part of
different namespaces. For example, if our joke-oriented tags were qualified with the
namespace identifier joke, and a separate namespace identified by the name con-
figuration had a <setup> element, namespaces would allow a single document to
use both elements by specifying them as <joke:setup> and <configura-
tion:setup>. (We leave it to your imagination to concoct a file that would appro-
priately contain both configuration directives and jokes.)

JSP action elements
JSP actions are XML-style tags that cause special processing to occur at a specific
point in the run-time execution of a JSP page. This processing might involve the
text contained by the action tag, or it might simply involve calling some stand-alone
Java code that performs a task.

 JSP action tags come in two varieties, standard and custom. First, JSP defines
several tags known as standard actions.

DEFINITION A standard action is an action tag that has been defined by the JSP stan-
dard. For JSP, standard actions are associated with the namespace jsp,
and standard actions appear in JSP pages with a prefix of jsp:, even for
JSP pages that are not written using the XML-compliant syntax mentioned
earlier.

JSP defines actions that cover several commonly used features, like forwarding a
request to a new page. Standard actions, however, are not the only actions sup-
ported in JSP pages. A powerful feature of JSP is the ability to program new actions.

DEFINITION A custom action is an action tag whose behavior is added to the environ-
ment through an API provided by the JSP standard. Collections of custom
actions are usually called tag libraries.

Tag libraries are incorporated into JSP pages using the JSP <%@ taglib %> directive.
This directive associates a prefix with each tag library imported into a page. As with
namespaces, these prefixes prevent clashes between two tags with the same name
but from different tag libraries. (In fact, in the XML view of a JSP page, tag libraries
are imported using the actual XML namespace mechanism.)



The structure of JSP pages 51
NOTE In some organizations that use JSP to develop large applications, custom tag
libraries provide a means of abstracting logic away from JSP pages—and even
for eliminating Java code from them, if this is desired. A complex operation,
such as a database update, might be hidden behind a custom tag. In some
cases, this abstraction can simplify maintenance of JSP pages. Some organiza-
tions have adopted the approach of separating JSP developers from tag de-
velopers: the former group is familiar with HTML and JSP tags, and the latter
group programs in Java and exposes all custom application logic through
tags. The premise, in short, is that HTML developers can easily learn how to
use custom JSP tag libraries because the syntax of JSP tags is so similar to
that of HTML.

This organizational style is just one of many options for developing web ap-
plications, but it might help you envision one benefit of JSP’s ability to ex-
pose Java logic through XML-like tags. We discuss several architectures and
organizational models for JSP pages in chapter 10.

Although JSP actions are, as we’ve discussed, based primarily on XML syntax, JSP
departs from XML syntax by allowing tags to be embedded within one another.
This can happen in two different ways. First, any JSP tag—including directives or
scripting expressions—can appear arbitrarily inside an HTML tag, supplying
dynamic content to fill in the HTML tag’s attributes (or even part of its name). For
example, the following is legal JSP:

<a href=”<%= sourceVariable %>”>

This is not a major issue, though; the JSP container can regard HTML merely as
arbitrary text. Since JSP doesn’t process HTML tags, it can treat them as plain text.
And since JSP tags can clearly be embedded in plain text, it is not problematic to
embed them in HTML or other tag-based content.

 Second, more interesting use of JSP tags occurs inside other JSP tags. Specifi-
cally, a JSP scripting expression can specify the value of a JSP action’s attribute. For
example, the following can be legal JSP:

<myTagLibrary:customAction attribute=”<%= value %>” />

As a real-life example of this feature, consider the following use of a standard
action tag:

<jsp:setProperty name=”login” property=”visits”
                   value=”<%= previousVisits + 1 %>”/>



52 CHAPTER 4

How JSP works
Such embedded tags are referred to as request-time attribute expressions or request-
time attribute values, for the attribute’s value is determined when the page is run in
response to a request, not when the page is initially processed. These embedded
expression tags may look strange, but they are very useful in practice. We’ll see
more about request-time attribute values, including the restrictions placed on their
use, in the next three chapters.

 The syntax we’ve shown here for request-time attribute values is not valid in
XML. But like other constructs valid in JSP but not in XML, the JSP standard defines
an XML-attribute equivalent that can be used when authoring pages in XML syntax.
The particulars of this mechanism are not important for now, however.

NOTE Details on most JSP actions will be presented in chapters 5 and 6. A few ac-
tion tags, however, are specific to JSP’s built-in support for the JavaBeans
component programming model. Descriptions of these tags will be covered
in chapter 7.

4.2 Behind the scenes

Once a JSP container has been installed and configured, using it is relatively
straightforward. JSP files that are added to the appropriate directory hierarchy—or
otherwise marked off in a manner agreed upon by the web server and the JSP
server, such as by using a file extension of .jsp or another configured value—are
simply handled by the JSP container when appropriate. (Chapter 13 describes the
process of deploying JSP applications in more detail.)

 Although you can rely on this process and ignore the details of how the JSP con-
tainer works most of the time, some knowledge of its operation will help you get
more out of the JSP environment. 

4.2.1 Translation to servlets

Like most source code, JSP pages start life as text files and end up being compiled.
A JSP file, though, takes a somewhat more circuitous route through this process
than does a typical Java program. Before being run, JSP pages are translated to serv-
lets. This translation involves conversion of JSP source code into servlet source code
by the JSP container. (This step is sometimes referred to as compilation of a JSP page
into a servlet, but it should be differentiated from compilation of Java code into
bytecodes.) After this translation, the servlet class is, itself, compiled.

 Because JSP pages are translated to servlets, they inherit servlets’ dependence on
the request/response model. JSP pages, like servlets, are called in response to



Behind the scenes 53
requests, and they produce responses. When the JSP container translates the body
of a JSP page into a ser vlet, it produces a new class that implements the
javax.servlet.Servlet interface. This class has a method called _jspService()
that is built from the body of the JSP page. Furthermore, unless the page author
specifically requests greater control via the extends attribute of the <%@ page %>
directive—which is extremely rare—the container bases the generated class on a
class whose service() calls _jspService(). In short, a JSP page is translated into a
method that maps requests to responses based on the contents of the JSP page.

 How do the contents get translated? The easiest part of the JSP source file to
translate is the template text—that is, the part of the page that isn’t a directive, a
scripting element, an action, or anything else specific to JSP (such as JSP comments,
which will be introduced in chapter 5). This template text might be HTML, or it
could be XML or text in an arbitrary format. The JSP container doesn’t care what it
is; it simply outputs it as part of the response. For example, the following text:

<p>Template text</p>

might be converted into a call that looks like

out.println(“<p>Template text</p>”);

Scripting expressions are also easy to translate and incorporate into the servlet, for
the Java code embedded in them is passed through as is. The Java code will be
included at the right place in the servlet, and it will be run as appropriate when the
servlet is run.

WARNING As we will see again in chapter 5, JSP technically allows scripting languages
other than Java to be included in scripting expressions. However, the JSP 1.2
standard doesn’t provide formal rules for what happens when a JSP page uses
a language other than Java for scripting elements. The discussion here applies
only to cases where Java is used as the scripting language—which is, for now,
the vast majority.

Action elements are somewhat more complicated to transfer, but the end result is
that the JSP container writes calls to appropriate Java code at the correct spots in the
generated servlet’s source code. If the action is a custom action you’ve written
yourself, the translation will involve creating calls to your custom code.

 Once the translation from the JSP page into a servlet is complete, the behind-
the-scenes servlet is compiled into Java bytecodes. 



54 CHAPTER 4

How JSP works
4.2.2 Translation versus execution

JSP defines two stages of processing for JSP pages: the translation phase and the exe-
cution phase. (It is common to speak of the execution phase as the request phase or
simply as run time). We’ve just discussed what occurs during translation: the JSP
page is converted into a servlet. Subsequently, when a request is received by the
container, this servlet is run. The distinction between the purposes of the two
phases is clear, but there are still some differences worth emphasizing.

Performance implications
The translation phase occurs only when necessary, not as a response to every
request. As you can imagine, the process of parsing a JSP page, translating it to a
servlet, and then compiling that servlet can be time-consuming. Fortunately, the
JSP container does not need to repeat the process of translation for each request
that it handles. As long as the underlying JSP page hasn’t been changed, there’s no
reason to generate a new servlet. A typical JSP container, therefore, will check the
last modification time on a JSP file, and it will translate the file only if necessary.
This extra check does not reduce the amount of time necessary for translation upon
the first request for a JSP page; however, all subsequent requests will proceed much
more quickly, for these requests can simply be served from a compiled servlet. (This
process is summarized in figure 4.2.)

TIP JSP also supports precompilation of JSP pages into servlets to avoid the perfor-
mance hit associated with compiling a JSP page the first time it is requested. If
the JSP page is compiled before any user requests it, the first request will pro-
ceed smoothly. For details, see chapter 13.

The separation of translation and request phases gives JSP a performance edge over
many other web-based development environments. In many scripting environ-
ments, script code needs to be interpreted for every request. Since JSP can take care
of expensive parsing and compilation operations before requests are processed, the
JSP container’s delay during a response is greatly reduced. Furthermore, since JSP
pages depend on servlets, the JSP environment automatically yields the benefits of
servlets’ performance improvements. Recall from chapter 1 that servlets are multi-
threaded, which makes them substantially faster than environments such as CGI that
depend on spawning new processes at request time.



Behind the scenes 55
Error handling
Another difference between the translation and request phases concerns how errors
are handled. Translation-time errors in JSP are analogous to compile-time errors in
traditional Java programming: some, but not all, errors can be caught before the
program even runs, but the rest must, unfortunately, show up at run time.

 Broadly speaking, there are two sorts of translation-time errors a container
might encounter. First, there are errors in the structure of the JSP page. For
instance, a scripting expression might not contain its closing %>, or a directive’s
name might be misspelled. In cases like this, the container might be able to

Web
request

Process request using logic  
from JSP page

Web
response

Compiled 
servlet

JSP container

JSP servlet
current?

Translate JSP
into servlet

Compile 
servlet

No

Figure 4.2 The typical process for translating and running 
JSP pages



56 CHAPTER 4

How JSP works
pinpoint the error’s location in the JSP file and return a reasonably useful message
to help you fix the problem.

 The second class of errors is more insidious; these errors show up only once the
JSP page is translated into a servlet. Recall that the JSP container does not necessar-
ily process Java code embedded within scripting elements; it merely includes this
code directly as part of the servlet’s source code. Therefore, errors in such code
only show up as a failure of the generated servlet to compile. If this embedded Java
code leads to a compile-time error, the error can be somewhat difficult to track
down. The container might provide you with only the error’s line number in the
offending servlet’s source code, for example. You might get lucky and be able to
correlate a misspelling highlighted by the compiler’s error with a misspelling in the
original JSP code, but if not, you might need to look through the generated serv-
let’s source code to identify the problem. (The location of the servlet’s source code
is container-specific; check your JSP container’s documentation to find out what it
does with its generated servlets.)

 The way that containers report errors is implementation dependent, but if the
problematic translation occurred in response to a web request for a newly changed
JSP file, it is likely that the error will be reported as part of the HTTP response to
that request. That is, you’ll get the error message in your web browser, instead of
getting the output you expected. This often lets you debug without having to
search through log files to find error messages.

 As we mentioned, not all errors can be caught at translation time. Request-time
errors occur by virtue of a Java exception (or, more strictly, a Java Throwable
object) being thrown as the JSP page’s compiled servlet is run in response to a
request. JSP provides a mechanism to let developers catch request-time errors grace-
fully; we’ll discuss the advantages of this mechanism in the next section and detail
its operation in chapter 14.

4.3 What the environment provides

JSP inherits convenience features from servlets, and it provides features of its own.
Let’s take a look at some of these advantages and go into detail about how JSP con-
tainers provide them. These services are some of the features you’ll come to rely on
as you design and write JSP applications.

4.3.1 Automatic servlet generation

As we’ve seen, an obvious difference between writing servlets and JSP pages is that
JSP authors don’t need to write servlets manually. Instead, the JSP container creates



What the environment provides 57
servlets automatically. In fact, JSP might be looked at—or even used—as a conve-
nient platform for developing stand-alone servlets rapidly. (In practice, though,
most JSP authors think of servlets as a behind-the-scenes detail.)

 Besides the simple convenience of not having to write doGet() and doPost()
methods by hand, the automatic creation of servlets has another important advan-
tage: it supports an organizational model that separates presentation tasks from
back-end implementation tasks. That is, JSP provides for a productive division of
labor for web-application development. Because the JSP environment takes care of
the compilation process automatically and hides the details of the Java methods that
need to be written, JSP pages become more accessible to nonprogrammers or nov-
ice programmers. JSP authors do not need to know the detailed structure of a Java
class or the syntax for declaring methods; instead, they can write Java code as if it
were simple scripting code. Furthermore, as we noted earlier, some uses of JSP that
rely heavily on tag libraries can even push Java code entirely out of JSP pages.

NOTE Engineers working under the Java Community Process are striving to provide
a standard tag library for JSP with some of these goals in mind. Automatic
servlet generation made JSP pages accessible to novice programmers, and a
standard tag library would continue the trend by providing new standard tags
for common operations within JSP page. These tags could help minimize the
use of Java code in JSP pages. For example, instead of writing a simple condi-
tional block using Java code inside scripting expressions, a JSP author could
use a standard conditional tag to provide for control flow.

Even advanced Java programmers can appreciate the convenience that comes with
automatic generation of a servlet. If a programmer needs to add dynamic content to
a web page, adding a simple scripting element is much easier than manually writing
a servlet that prints out a large block of HTML with calls like out.println().

4.3.2 Buffered output

As we saw in chapter 2, HTTP places constraints on the way that web applications
can interact with web browsers. In that discussion, we saw that HTTP responses
typically contain a status line, followed by headers, followed by a body. This
sequence is not negotiable; that is, once the body of an HTTP response begins
transmission on the network, the web server has lost its opportunity to specify
headers or the status line.

 Because the pre-body structures support error reporting (among many other
features), this constraint might have been a problem for fault-tolerant JSP



58 CHAPTER 4

How JSP works
applications. Suppose that halfway through the code that generates a response, an
error occurs, and the JSP page decides that it needs to set a status code to describe
the error or a header to forward the user to a new page. If the web server has
already sent part of the response’s body, it will not be able to go back and edit the
headers or status line.

 JSP solves this problem by buffering the output of JSP pages.

DEFINITION A buffer is a temporary space for storing information. Buffering involves
using such temporary space to hold data before sending it on to its ulti-
mate destination.

Instead of sending the output generated by a JSP page directly to web browsers, the
JSP container first buffers the output. This buffering gives the JSP page leeway if it
needs to add or modify a header after generation of the page’s output has begun.
That is, the JSP page can simply modify the buffer before sending it on the network.
If the JSP page decides to forward the request to another page, it can simply clear
the buffer (figure 4.3).

WARNING JSP output buffers do not grow automatically; that is, they have a fixed size.
We will see in the next chapter how to configure this size, but it is important
to understand how the buffer size might affect the functionality of a JSP

JSP
Page

Generated
response

JSP Page

Generated response

Buffer
modify clear send

Figure 4.3 Unbuffered versus buffered output. When output is unbuffered, it leaves the JSP 
page’s control immediately and cannot be retracted.



What the environment provides 59
page. By default, when the buffer fills up, its contents are sent to the brows-
er. Therefore, once the initial buffer for a response has filled up and is sent,
the JSP page no longer has an opportunity to set headers.

If seamless error reporting or header handling is essential to an application,
the JSP container can be configured to throw an exception when the buffer
becomes full. This prevents a partial response from being sent to the web
browser, and it ensures that a JSP page will never run into a situation where
it unexpectedly finds it can’t set a header. In practice, however, it is rare for
an output buffer to be filled by a JSP application; the default size must be at
least 8 kilobytes (KB) on any container, and this is enough for a typical JSP
page. For details, see chapter 5.

Because the JSP container, by default, automatically builds output buffering into
the servlets it generates for JSP pages, JSP authors can simply forget about the issue
in most cases. For example, you can use the mechanisms we’ll discuss in chapter 6
to modify the response’s headers, and you will not typically need to remember how
HTTP response messages are structured. The container takes care of the ugly details
for you.

4.3.3 Session management

As we saw in chapter 2, HTTP is stateless, meaning in part that HTTP servers do not
remember requests once they’ve processed them. If a server gets three requests in a
row from the same web browser, it sees these as three separate requests; nothing
binds them together.

Cookies
One common way to connect requests together is through HTTP cookies, which
work specifically to bind requests together. Cookies work as follows: in response to
a request, a web server decides to send a cookie to a browser. It does this by adding
a particular header to its response. If the browser supports cookies, it processes the
header and finds the cookie, which it stores for later use. For all subsequent requests
the browser sends, the browser checks its lists of cookies and finds the ones whose
properties indicate that the cookie is appropriate for the request. Keep in mind that
the server does not subsequently request cookies it has sent. Instead, the server
relies on the browser to send cookies automatically once the browser receives them.
(This process is depicted in figure 4.4.)

 If a server wants to link requests together into a session, it is easy to see how it
might accomplish this via cookies. Suppose a server stores a unique session



60 CHAPTER 4

How JSP works
identifier in the cookie that it sends to a browser. When the server processes subse-
quent requests and notices this session ID in a cookie sent back to it, it knows that
the request came from the same user to whom the server sent the cookie in the past. 

NOTE Because not every browser supports cookies, other mechanisms have been
devised for handling session management. A session ID can be sent back to
the server as part of the URL (a practice generally known as URL rewrit-
ing), or for form-based applications, it can be included in HTML forms as

Browser Server

a

Request

Response

Headers

Cookie

Body

Browser Server
b Request

Response

Headers

Cookie

Body

Request

Response

Request

Response

Time

Figure 4.4 Setting and using an HTTP cookie. Step 1, a cookie is sent to 
the browser as part of the response headers (a). Step 2, once 
the cookie is sent, it is sent back by the browser automatically 
for all requests in the cookie’s scope. The server does not 
subsequently request the cookie; it gets it automatically (b).



What the environment provides 61
an <input type=”hidden”> element. Since environments such as JSP can
dynamically generate HTML, including the URLs and forms it contains,
web developers can add the appropriate session IDs to HTML output as
part of their applications’ responses.

Sessions are extremely popular in web applications, since they allow an application
to remember previous actions of the user and provide a level of continuity in the
user interface. For instance, any e-commerce web site that lets a user browse prod-
ucts and store them in a shopping cart needs some way to manage sessions. Applica-
tions that support data entry across multiple HTML forms also require some way to
associate the various forms with one another. Portal sites may allow a user to receive
a customized view of an application without having to repeatedly enter their prefer-
ences; to do so, they needs sessions.

 Fortunately, the JSP environment supports sessions automatically, for it inherits
the session support that comes with the servlet platform. By default, a JSP page has
access to an implicit object called session that represents the session for the current
request. The author of the JSP page can store data in this session and retrieve it later,
during a different request. The JSP container takes care of session-management auto-
matically; individual JSP pages do not typically need to handle session IDs or decode
session cookies automatically. There is a small caveat: if an alternative to cookies is
used, more work may need to be handled manually by the JSP page; for instance, if
URL rewriting is used, URLs need to be generated dynamically and can’t appear sim-
ply as static text in the page.

Session pitfalls
JSP’s session management facilities usually let JSP developers ignore the underlying
mechanism; for the most part, JSP pages can assume that session management is
handled properly by the container. However, two issues related to session manage-
ment might complicate the design and deployment of web applications.

 First, a session-based web application that serves a large base of users should
consider how much storage each session requires. Even if you store data as small as
5 KB in the session, supporting 1,000 simultaneous users takes up 5 megabytes
(MB) of storage. For a million active sessions, the requirement becomes 5 gigabytes
(GB). There is no need for all of this storage to be physical memory, of course;
typical operating systems support virtual memory as well. Still, an application that
has a large base of users requires careful planning and an understanding of storage
requirements imposed by sessions; the size of the data stored in a session has a



62 CHAPTER 4

How JSP works
direct impact on the number of simultaneous users that can be practically supported
on a particular hardware configuration.

TIP Java has no analog of the sizeof operator in C or C++, but you can estimate
the storage requirements of a Java object in several ways. In some cases, you
can make this estimate by writing a stand-alone program that calls the
freeMemory() method of java.lang.Runtime before and after instantiat-
ing the object. Another strategy is to use Java’s serialization facility. If the ob-
ject you are measuring implements the java.io.Serializable interface,
you can write it out to disk using the writeObject() method of ja-
va.io.ObjectOutputStream. The size of the resulting file will provide a
conservative estimate of the object’s memory footprint.

We’ve discussed active or simultaneous users, but this concept is somewhat vague.
Because HTTP is stateless, JSP containers have no way of knowing or not whether a
session is still in use. A user might simply be taking a long time to fill in a form, or
that user might have exited the web browser and walked away from the computer.
JSP and servlets base session expiration on time-outs. After a configurable period of
inactivity, the session and its contents will be removed from memory. Applications
can also provide an explicit mechanism to let a user log out; for example, an applica-
tion can display a link labeled Log Out and clear out a session in response to that
link. (Of course, there is no guarantee that users will click such a link before leaving
the application, so the inactivity time-out is useful in these cases as well.) 

 A second issue is that sessions have an effect on the scalability of your applica-
tion. Suppose an application has too many users to run with acceptable perfor-
mance on a single server. A common response might be to spread the application
out among many servers. This strategy is known as load balancing or load distribu-
tion. However, session management complicates such a solution, for the session
object represents an actual, in-memory Java object on a particular computer.

 This object is not automatically available on every server that might need to take
part in the processing of the application.

 One way around this is to make sure the user’s browser always communicates
with the server that happens to store that particular user’s session. For instance, the
application might have a front page that chooses one of several load-balancing serv-
ers randomly and then redirects the user to that server. All of the user’s subsequent
interactions will be with that server, and the application will therefore be able to
recover the user’s session state easily, for it exists as a simple object on that server.



What the environment provides 63
 In some cases, this approach is not good enough. For example, if a high degree
of fault tolerance is required, it might not be acceptable to associate a particular
server with a user; if this server goes down, the user may be left stranded. In other
situations, a higher granularity of load-balancing might be necessary; an application
or container might need to decide to pass off a user to a new machine in the middle
of that user’s session. In some cases, it may therefore be necessary to make sure that
all servers that take part in an application are able to recover a user’s session. This is
handled by a mechanism known as session migration, which involves copying a
user’s session object from one server to another as needed.

NOTE  Web applications in a servlet environment may be marked as distributable us-
ing a feature defined in the servlet standard. When an application is marked in
this manner, objects stored in the session should implement the same
java.io.Serializable interface that we noted earlier. Keep this in mind
when using sessions from within JSP pages that are part of a distributable ap-
plication. Making sure that the objects you store in your sessions are serializ-
able is good practice in general, since it also allows sessions to be stored on
server shutdown under JSP containers that support this behavior.

4.3.4 Exception handling

JSP uses Java’s exception-handling mechanism, which helps keep code readable by
letting developers focus on the tasks they’re trying to solve, instead of on handling
errors manually. A key principle of Java’s exception support is that it lets errors
propagate up to the code that’s appropriate to handle them. For instance, a library
function might be able to deal with some errors, but it should pass any errors it
can’t handle up to its caller.

 A JSP page works similarly: if a JSP page wants to handle certain types of unex-
pected events, it certainly can do so. But a JSP page can also ignore certain errors
and let them be handled by code that gets built into the servlets that the JSP con-
tainer generates. Specifically, JSP allows you to specify an error page that handles
unexpected errors that occur during its processing. Suppose you write a JSP page
that connects to a database, but the database is down. You don’t need to catch this
unexpected event by writing code in your JSP page. Instead, you can use the
errorPage mechanism to let the environment catch the error for you, thus giving
you less to worry about for each new JSP page you write.

NOTE The errorPage mechanism is described further in chapters 5 and 14.



64 CHAPTER 4

How JSP works
4.3.5 Implicit objects

The Servlet API specifies a Java mapping to functionality that is useful for web appli-
cations. For example, through the HttpServletRequest and HttpServletRe-
sponse interfaces introduced in chapter 2, Java web applications can easily access
requests and configure responses.

 Since JSP inherits functionality from the servlet API, JSP applications can take
advantage of the convenient Java mappings provided by the servlet environment. JSP
takes things a step further, too, by giving simple names to commonly used objects.
These names can be accessed from within scripting elements to give Java code within
JSP pages easy access to its environment. For instance, in a JSP page operating over
HTTP, the name request is given to the HttpServletRequest object, and request
parameters can be accessed simply through calls to request.getParameter(). This
explains the convenient syntax we demonstrated in chapter 2.

NOTE There are implicit objects for accessing the request, the response, the session,
and other useful functionality, including the exception-handling features we
just mentioned. Implicit objects will be covered in detail in chapter 6.

4.3.6 Support for JavaBeans and HTML forms

Recall that JavaBeans are reusable Java components that can simplify application
development. JSP includes built-in support for JavaBeans through standard actions
that let you easily set and retrieve properties from JavaBeans without having to
write Java code to do so. Recall also that the servlet environment, and hence JSP,
also supports automatic parsing of request parameters—for example, data from
HTML forms. Servlets and JSP pages have simple access to request parameters
through an object of type HttpServletRequest.

 Using these two features together can simplify one of the most common tasks
that web developers need to implement: reading and storing information from
HTML forms. JSP provides a standard action, <jsp:setProperty>, that has a mode
that causes data from an entire form to be stored in an appropriately constructed
JavaBean. This means that in many cases, you can process an HTML form without
writing more than a single line of code.

NOTE <jsp:setProperty> and other features of JSP’s JavaBean support are dis-
cussed in detail in chapter 7.



 5Programming JSP script
s

This chapter covers
� Using JSP directives

� JSP scripting elements

� Flow of control via scriptlets

� Comments in JSP pages
65



66 CHAPTER 5

Programming JSP scripts
In chapter 1, emphasis was placed on leveraging component-centric design to pro-
mote the separation of presentation and implementation. By taking advantage of
JSP’s built-in support for server-side JavaBeans, it is possible to write JSP pages that
contain only HTML and HTML-like tags. Doing so yields considerable benefits with
respect to code reuse, application maintainability, and division of labor. This “purist”
approach to JSP development is not always the most practical solution, however. Cir-
cumstances may dictate the use of an alternative approach: JSP pages with embedded
scripts, typically referred to as scripting elements.

 For example, when developing an application prototype, the schedule may not
provide developers with sufficient time for a full-scale component design effort. Of
course, if the design is not based on JavaBeans, then the JSP bean tags (see
chapter 7) will be of little use. The scripting tags, however, can apply the full
expressive power of the underlying Java language, and are, therefore, fully compati-
ble with whatever data model you select, JavaBeans or otherwise.

 Furthermore, even if you are using JavaBeans, the capabilities of the built-in JSP
bean tags are somewhat limited. If your needs go beyond the creation of server-side
JavaBeans and the access and modification of their properties, you will either need
to use (and perhaps even write) a custom tag library, or take advantage of the exist-
ing scripting tags. Like JavaBeans component design, creating a custom tag library
requires a considered approach that your development schedule may not permit.
Designing a custom tag library is only justified when you know you will be using its
custom tags over and over again. Reusability is a key element of tag library design,
and a key reason that good library design tends to be difficult and time-consuming.
If such an effort is infeasible, the scripting tags are available to supply any required
functionality not provided by the standard bean tags.

 What scripts lack in abstraction, then, they more than make up for in power.
This power results, of course, from the ability of scripts to express arbitrary compu-
tations in the associated scripting language. With the full strength of a program-
ming language at their disposal, scripts are the ultimate tool of last resort when
developing JSP: if you can’t find another way to do something, you can always write
a script. And, as suggested earlier, there are also times when scripts are the first tool
of choice.

5.1 Scripting languages

The default scripting language for JSP is, naturally enough, Java. Unless otherwise
specified, the JSP parser assumes that all scripting elements on a page are written in



Scripting languages 67
Java. Given that JSP pages are compiled into Java servlets, this assumption makes
the translation of scripts into servlet code very straightforward.

 The JSP specification, however, allows JSP implementers to support alternative
scripting languages as well. To be acceptable for use with JSP, a scripting language
must meet three requirements:

� It must support the manipulation of Java objects. This includes creating
objects and, in the case of JavaBeans, accessing and modifying their
properties.

� It must be able to invoke methods on Java objects.
� It must include the ability to catch Java exceptions, and specify exception

handlers.

More succinctly, for a scripting language to be compatible with JSP, it needs to have
sufficient expressive power to take advantage of the capabilities provided by the JSP
platform. For example, if a scripting language cannot access Java objects and call
their methods, it cannot read request parameters, participate in session manage-
ment, or set cookies. The core functionality of JSP is made accessible to web devel-
opers via Java objects, so a scripting language that cannot use these objects is of
limited utility.

 If a scripting language is able to interact with Java objects, or can be extended to
interact with Java objects, then it is a good candidate for integration with a JSP con-
tainer. Caucho Technology, for example, has developed a JSP container called Resin,
which is integrated with the company’s Java-based implementation of JavaScript. As
a result, Resin supports both Java and JavaScript as its scripting languages. Support
for alternative scripting languages makes JSP accessible to a larger development
community by giving developers who are uncomfortable with Java syntax the
option to use a different programming language in their JSP pages.

 Unfortunately, while alternative languages for JSP scripting are supported by the
JSP specification, portable mechanisms for integrating scripting languages with JSP
containers are not. Such a mechanism is under consideration for a future version of
JSP, but the only JSP scripting language that is universally available is Java. For this
reason, we will use Java as the scripting language for all of the examples in this
book. If you are using a JSP container that supports scripting languages other than
Java, please consult your software documentation for further details on the use of
those alternatives.



68 CHAPTER 5

Programming JSP scripts
5.2 JSP tags

JSP provides four major categories of markup tags. The first, directives, is a set of
tags for providing the JSP container with page-specific instructions for how the doc-
ument containing the directives is to be processed. Directives do not affect the han-
dling of individual requests, but instead affect global properties of the JSP page that
influence its translation into a servlet.

 Scripting elements are used to embed programming instructions, written in the
designated scripting language for the page, which are to be executed each time the
page is processed for a request. Some scripting elements are evaluated purely for
their side effects, but they may also be used to generate dynamic content that
appears in the output of the page.

 Comments are used for adding documentation strings to a JSP page. JSP supports
multiple comment styles, including one which enables documentation to appear in
the output from the page. Other JSP comments can only be viewed in the original
JSP file, or in the source code for the servlet into which the page is translated.

 Actions support several different behaviors. Like scripting elements, actions are
processed for each request received by a page. Actions can transfer control between
pages, specify applets, and interact with server-side JavaBeans components. Like
scripting elements, actions may or may not generate dynamic content. All custom
tags incorporated via extended tag libraries take the form of actions.

 The remaining sections of this chapter cover the first three categories of JSP tags,
while the fourth will be presented in chapters 6 and 7. The individual tags included
in these categories are introduced, and their use is described.

5.3 JSP directives

Directives are used to convey special processing information about the page to the
JSP container. For example, directives may be used to specify the scripting language
for the page, to include the contents of another page, or to indicate that the page
uses a custom tag library. Directives do not directly produce any output that is visi-
ble to end users when the page is requested; instead, they generate side effects that
change the way the JSP container processes the page.

5.3.1 Page directive

The page directive is the most complicated JSP directive, primarily because it sup-
ports such a wide range of attributes and associated functionality. The basic syntax
of the page directive is as follows:



JSP directives 69
<%@ page attribute1="value1" attribute2="value2" attribute3=… %>

White space after the opening <%@ and before the closing %> is optional, but rec-
ommended to improve readability. Like all JSP tag elements, the page directive has
an XML-based form, as well:

<jsp:directive.page attribute1="value1"
                    attribute2="value2" attribute3=… />

Attribute specifications are identical for the two tag styles, and there are twelve dif-
ferent attributes recognized for the page directive. In the examples to follow, we
will use the first style, which is much more amenable to manual page creation. To
use the XML format, the entire JSP page must be specified as an XML document,
such as is produced when a page using the first style is parsed by the page compiler
(see chapter 20 for further details). 

A summary of the twelve attributes supported by the page directive is presented in
table 5.1, and individual discussions of each attribute follow. In view of this large
number of attributes, you will likely find it very convenient that JSP allows you to
specify multiple page directives on a single page. With the exception of the import

Table 5.1 Attributes supported by the page directive

Attribute Value Default Examples

info Text string None info="Registration form."

language Scripting language 
name

"java" language="java"

contentType MIME type,
character set

See first exam-
ple

contentType="text/html;
   charset=ISO-8859-1"
contentType="text/xml"

pageEncoding Character set "ISO-8859-1" pageEncoding="ISO-8859-1"

extends Class name None extends="com.taglib.wdjsp.MyJspPage"

import Class and/or pack-
age names

None import="java.net.URL"
import="java.util.*, java.text.*"

session Boolean flag "true" session="true"

buffer Buffer size, or 
false

"8kb" buffer="12kb"
buffer="false"

autoFlush Boolean flag "true" autoFlush="false"

isThreadSafe Boolean flag "true" isThreadSafe="true"

errorPage Local URL None errorPage="results/failed.jsp"

isErrorPage Boolean flag "false" isErrorPage="false"



70 CHAPTER 5

Programming JSP scripts
attribute, however, no individual page directive attribute may be specified multiple
times on the same page. This means an attribute cannot appear multiple times
within the same directive, nor can it appear in multiple directives on the same page.
For example, the following sequence of page directives is valid, since the only
attribute that is repeated is import:

<%@ page info="This is a valid set of page directives." %>
<%@ page language="java" import="java.net.*" %>
<%@ page import="java.util.List, java.util.ArrayList" %>

The following page directive, however, is not valid, because the session attribute
occurs twice:

<%@ page info="This is an invalid page directive" session="false"
         buffer="16k" autoFlush="false" session="false" %>

Similarly, this sequence of page directives is invalid because the info attribute is
repeated:

<%@ page info="This is not a valid set of page directives." %>
<%@ page extends="com.taglib.wdjsp.MyJspPage"
         info="Use my superclass." %>

Unrecognized attributes are also invalid. If a JSP page contains any invalid page
directives, a translation-time error will result when the JSP container attempts to
generate the source code for the corresponding servlet.

Info attribute
The info attribute allows the author to add a documentation string to the page
that summarizes its functionality. This string will then be available for use by the JSP
container or other tools in a programmatic manner for displaying the summary
information. There are no restrictions on the length or contents of the docu-
mentation string, but author, version, and copyright information are commonly
included, as in the following example:

<%@ page info="The CLU homepage, Copyright 1982 by Kevin Flynn." %>

The default value for the info attribute is the empty string.

Language attribute
The language attribute specifies the language to be used in all scripting elements
on the page. All JSP containers are required to support Java as a scripting language,
and this is the default if the language attribute is not explicitly specified. As indi-
cated earlier in the chapter, support for other scripting languages is optional, and



JSP directives 71
varies among JSP implementations. Here is how the language attribute is used to
specify Java as the scripting language: 

<%@ page language="java" %>

Note that if the include directive is employed, scripting elements in the included
page must use the same scripting language as the current page.

ContentType attribute
This attribute is used to indicate the MIME type of the response being generated by
the JSP page. Although MIME stands for Multipurpose Internet Mail Extensions,
MIME types are also used to indicate the type of information contained in an HTTP
response, and this is the context in which they are used in JSP. The most common
MIME types for JSP are "text/html", "text/xml", and "text/plain", indicating
responses in HTML, XML, and plain text formats, respectively. To specify that a JSP
document is generating XML content, for example, this attribute is specified as follows:

<%@ page contentType="text/xml" %>

The default MIME type for JSP pages is "text/html".
 The contentType attribute can also be used to specify an alternate character set

for the JSP page. This enables page authors to deliver localized content using the
language encoding most appropriate for that content. The character set is specified
via the contentType attribute by appending a semicolon, the string charset=, and
the name of the desired character set to the end of the attribute value. (An optional
space is permitted between the semicolon and charset=.) For example, to specify
an HTML response using the (default) ISO-8859-1 character set, the following
directive would be used:

<%@ page contentType="text/html; charset=ISO-8859-1" %>

Note that if the response to be generated by a JSP uses an alternate character set,
the JSP page must itself be written in that character set. Of course, the JSP container
can’t know a page is using an alternate character set until it reads the page directive
that specifies the character set, so only character sets that allow specification of this
directive are valid for use in a JSP page. Once the directive has been read by the JSP
container (i.e., using the default character set), it can switch to the indicated charac-
ter set for the remainder of the page. All the characters read before switching char-
acter sets, however, must be compatible with the final character set.

 The official registrar for both MIME types and character sets is the Internet
Assigned Numbers Authority (IANA). This standards body maintains lists of all valid
MIME types and character set names. 



72 CHAPTER 5

Programming JSP scripts
PageEncoding attribute
The pageEncoding attribute, introduced in JSP 1.2, provides an alternate means for
specifying the character set used by the JSP page. Instead of supplying the character
set as part of the contentType attribute’s value,  it can be declared independently
via the pageEncoding attribute, as in:

<%@ page pageEncoding="ISO-8859-1" %>

The default character set for JSP pages is ISO-8859-1, also known as latin-1. The
various caveats regarding alternate character sets presented in the discussion of the
contentType attribute apply to the pageEncoding attribute, as well.

Extends attribute
The extends attribute identifies the superclass to be used by the JSP container
when it is translating the JSP page into a Java servlet, and is specified as follows:

<%@ page extends="com.taglib.wdjsp.myJspPage" %>

There is no default value for this attribute. If this attribute is not specified, the JSP
container is free to make its own choice of JSP servlet class to use as the superclass
for the page. Note that if you specify this attribute, JSP imposes certain restrictions
on the specified superclass. If, as is typically the case, the JSP page is being delivered
via the HTTP protocol, then the specified superclass must implement the
javax.servlet.jsp.HttpJspPage interface. If an alternate protocol is being used,
then the specified superclass must implement the javax.servlet.jsp.JspPage
interface. (The API documentation for these classes is available from Sun Microsys-
tems, and is included with the JSP reference implementation described in
appendix B.)

 In practice, this attribute is very rarely used because the default behavior, let-
ting the JSP container select the superclass for the page, typically yields the best
performance. The vendors of JSP containers devote considerable resources to tun-
ing their implementations, including optimization of their default page super-
classes. Except when you have very specific needs not anticipated by your JSP
vendor, it is unlikely that writing and optimizing your own page superclass will be
worth the effort.

Import attribute
Unlike the extends attribute, use of the import attribute is quite common, because
it extends the set of Java classes which may be referenced in a JSP page without hav-
ing to explicitly specify class package names (in other words, because it saves typ-
ing). All Java classes and interfaces are associated with a package name; to



JSP directives 73
completely specify a class, the package name must be prepended to the class name.
For example, the discussion of the extends attribute makes mention of the interface
javax.servlet.jsp.HttpJspPage. This is actually a reference to an interface
named HttpJspPage, which resides in the javax.servlet.jsp package. 

NOTE Java programmers will notice from the discussion that follows that the im-
port attribute of the page directive has an analogous role to Java’s import
statement, used when writing Java class files. This is, of course, no coinci-
dence. When a JSP page is compiled into a servlet, any import attributes are
translated directly into the corresponding import statements.

The advantages of packages are twofold. First, packages make it easy to keep track
of classes that are related in functionality and origin, since these are typically used as
the criterion for grouping a set of classes into a package. Second, they make it possi-
ble to avoid class naming collisions between different developers (or groups of
developers). As long as the developers put their classes into separate packages, there
will not be any conflicts if some of the classes share the same name. For example,
the J2SE platform includes two classes (actually, one class and one interface) named
List. One resides in the java.awt package, and represents a user interface compo-
nent for selecting one or more items from a scrolling list. The second resides in the
java.util package, and represents an ordered collection of objects. Users of these
classes distinguish between the two via their package names.

 It can become very tedious, however, to always have to refer to classes using
their package names. The import attribute can be used to identify classes and/or
packages that will be frequently used on a given page, so that it is no longer neces-
sary to use package names when referring to them. This is referred to as importing a
class or package into the JSP page. To import a specific class, simply specify its name
(including the package) as the value of the import attribute, as in:

<%@ page import="java.util.List" %>

If this directive is present in a JSP page, the java.util.List class can be referred to
on that page by simply using the unqualified class name, List, also called its base
name. This will hold true anywhere on the page a class name might appear in a JSP
element—including both scripting elements and Bean tags—except in the
<jsp:plugin> tag (appendix C).

 It is also possible to import an entire package into a JSP page, in cases where
multiple classes from the same package are being used. This is accomplished by



74 CHAPTER 5

Programming JSP scripts
specifying the name of the package, followed by a period and an asterisk, as the
value of the import attribute:

<%@ page import="java.util.*" %>

This example directive has the effect of importing all of the classes in the java.util
package into the current JSP page, such that any class in the java.util package
may now be referred to using only its base name.

 As mentioned previously in this chapter, import is the only attribute of the page
directive that may occur multiple times within a single JSP page. This allows JSP
developers to import multiple classes and/or packages into the same page, via mul-
tiple page directives with import attributes, or multiple import attributes within
the same page directive, or a combination. In addition, the import attribute itself
supports importing multiple classes and/or packages via a single attribute value, by
separating the items to be imported using commas. For example, the following
directive imports an interface, a class, and a package using a single import attribute:

<%@ page import="java.util.List, java.util.ArrayList, java.text.*" %>

The space character following the comma is optional, but recommended for
improved readability.

 You may be wondering what would happen if you tried to import two classes
that have the same base name, as in the following:

<%@ page import="java.util.List, java.awt.List" %>

The JSP container considers this to be an illegal statement, and will refuse to process
a JSP page that includes such an ambiguity. You might instead try to import these
two classes using their packages, as follows: 

<%@ page import="java.util.*, java.awt.*" %>

In this case, however, the conflict is resolved by allowing neither of the two List
classes to be referred to by its base name. Instead, both must use their fully qualified
class names, which include their package names. In order to be able to refer to one
of the two classes by its base name, you will have to explicitly import that class, as in
the following: 

<%@ page import="java.util.*, java.awt.List" %>

Using this last directive, the List class from the java.awt package can be referred
to via its base name, but the List class from the java.util package must be
referred to using its full name, java.util.List.



JSP directives 75
 Finally, note that, as a convenience for JSP developers, every page for which Java
is selected as the scripting language automatically imports all of the classes from the
following four packages: java.lang, javax.servlet, javax.servlet.http, and
javax.servlet.jsp. 

Session attribute
The session attribute is used to indicate whether or not a JSP page participates in
session management (as described in chapter 4). The value for this attribute is a
simple boolean indicator, either true or false. For example, to specify that a page
is not part of a session, the following form is used: 

<%@ page session="false" %>

The default value for this attribute is true; by default then, all pages participate in
session management. If a JSP does not interact with the session, then a slight perfor-
mance gain can be obtained by setting this attribute to false. Note, however, that
the session implicit object, described in chapter 6, is available only on pages for
which the session attribute is set to true.

Buffer attribute
The buffer attribute controls the use of buffered output for a JSP page. To turn off
buffered output, so that all JSP content is passed immediately to the HTTP
response, this attribute should be set to none, as follows: 

<%@ page buffer="none" %>

Alternatively, this attribute can be used to set the size of the output buffer in kilo-
bytes, by specifying the attribute value as an integer, followed by the character
string “kb”. For example: 

<%@ page buffer="12kb" %>

The default value for this attribute is "8kb". Note that the JSP container is allowed
to use an output buffer larger than the requested size, if it so chooses; the specified
value can therefore be thought of as the minimum buffer size for the page. This
allows the JSP container to optimize performance by creating a pool of output buff-
ers and using them as needed, instead of creating a new output buffer for every JSP
page request.

 Buffering the output of JSP pages is generally a good practice to follow, primarily
because it enables transferring control from one page to another (e.g., via the
<jsp:forward> action, described in chapter 6). This enables you to retract all of the



76 CHAPTER 5

Programming JSP scripts
output generated so far by a page, including headers and cookies, for replacement
with the contents of another page.

 In particular, output buffering allows you to make full use of the errorPage
attribute of the page directive, discussed later, to forward control to a user-friendly
error page when exceptions arise in the course of JSP processing. Such custom error
pages are greatly preferred over the output of JVM error messages in the middle of
what otherwise appears to be normal output. In addition, error pages can be
scripted to notify the webmaster or the development team when a run-time error
occurs, yielding a dual benefit: the end user sees an unintimidating and perhaps
apologetic message that there was a problem in responding to their request, while
the implementers receive a full report detailing the context and circumstances of the
error. (For further details, see the error-handling example in chapter 15.)

 If, as recommended, you elect to use buffered output, it is key that you select an
appropriate buffer size. This is because, as indicated in chapter 4, if the output from
the page is able to fill the buffer, most of the benefits of buffering—including the
ability to forward to an alternate page—will be lost. Fortunately, estimating the size
of your output is a rather straightforward, if tedious, exercise. If your output is pri-
marily English text, then one character of output will consume 1 byte of data in your
output buffer. Other encodings use multiple bytes of data for representing individual
characters. Once you know the size of the characters you will be using, the next step
is to estimate the number of characters that will be generated by the page.

 Each character of static text in the original JSP page will of course translate into
one character’s worth of data in the final output. For dynamically generated con-
tent, a conservative approach is to estimate the maximum number of characters cor-
responding to each JSP element which generates output. After summing all of these
character counts, multiply by the number of bytes per character to compute the
required buffer size, dividing by 1,024 to convert bytes into kilobytes. You will
likely find that the default value of 8 KB is sufficient for most JSP pages, but pages
which generate significant amounts of dynamic content may need correspondingly
larger output buffers.

AutoFlush attribute
This attribute is also used for controlling buffered output. In particular, this
attribute controls the behavior of the JSP container when the page’s output buffer
becomes full. If this attribute is set to true (the default), the output buffer will
automatically be flushed, and its current contents sent to the HTTP server for trans-
mission to the requesting web browser. Page processing then resumes, with any and



JSP directives 77
all new content being buffered until the buffer once again becomes full, or the end
of the page is reached. This attribute is set as follows: 

<%@ page autoFlush="true" %>

As mentioned in chapter 4, note that once the buffer has been flushed and its initial
contents sent to the browser, it is no longer possible for the JSP page to set response
headers or forward processing to a different JSP page.

 If autoFlush is set to false, the JSP container will not automatically flush the
buffer when it becomes full. Instead, it will raise an exception, which will have the
effect of halting processing of the JSP page and displaying an error page in the
browser that originally requested the page. The class of the exception raised under
these circumstances is implementation-specific. Also, keep in mind that it is illegal
to set the autoflush attribute to false when the buffer attribute is set to none. In
other words, the JSP container cannot be set to signal an exception when the output
buffer becomes full if there is no output buffer in the first place. 

 The best setting for this attribute will vary from page to page. If the amount of
output that might be generated by a page is unpredictable, the autoFlush attribute
should be set to true. Under such circumstances, overflowing the output buffer is a
very real possibility, so you need to ensure that the page’s contents will be delivered
to the browser, rather than an error message. If you also might need to set response
headers on this page, or conditionally forward to another page, the decision to do
so should be made near the beginning of the page, in order to guarantee that these
actions will take place before the buffer might be flushed and the opportunity for
taking these actions is lost.

 If, however, you need to keep your options open as long as possible with respect
to setting response headers or forwarding to another page, then setting autoFlush
to false is the appropriate choice. In this case, it is critical that the page’s output
buffer be large enough for any conceivable output that might be generated by the
page. If not, you again risk the possibility that, if it turns out the output buffer must
be flushed, the end user will see an error message rather than your page contents.

IsThreadSafe attribute
The isThreadSafe attribute is used to indicate whether your JSP page, once it is
compiled into a servlet, is capable of responding to multiple simultaneous requests.
If not, this attribute should be set to false, as in the following: 

<%@ page isThreadSafe="false" %>

When this attribute is set to false, the JSP container will dispatch outstanding
requests for the page sequentially, in the order they were received, waiting for the



78 CHAPTER 5

Programming JSP scripts
current request to finish processing before starting the next. When this attribute is
set to true (the default), a thread is created to handle each request for the page,
such that multiple requests for the page are handled simultaneously. 

 This attribute should be set to its default value of true. If not, performance will
suffer dramatically whenever multiple users try to access the JSP page at the same
time, since each subsequent user will have to wait until all previously submitted
requests have been handled before processing of their request can begin. If the page
is heavily trafficked, or its content generation is at all computationally intensive, this
delay will likely not be acceptable to users.

 Whether or not this attribute can be set to true, however, is usually dependent
upon its use of resources. For example, if your JSP page creates and stores a data-
base connection that can be used by only one end user at a time, then, unless special
measures are taken to control the use of that connection, the page cannot safely be
accessed by multiple threads simultaneously. In this case, the isThreadSafe
attribute should be set to false, or else your users are likely to encounter run-time
errors when accessing the page. If, however, your JSP page accesses a pool of data-
base connections and waits for a free connection before it begins processing, then
the isThreadSafe attribute can probably be set to true.

 Setting isThreadSafe to false is certainly the more conservative approach.
However, this yields a significant performance penalty. Fortunately, the thread
safety of a JSP page is typically dependent more upon how resources are used, rather
than what resources are used. If you are not a Java developer and are concerned
about whether or not your page is safe for multithreading, the best approach is to
consult an experienced programmer; if the page is not thread-safe as is, it can usu-
ally be made so.

TIP Judicious use of Java’s synchronized keyword is the best approach to ensur-
ing thread safety. All access to objects that are shared across multiple JSP pag-
es, or across multiple invocations of the same JSP page, should be
synchronized if there is the potential for inconsistency or deadlocks should
those objects be simultaneously accessed and/or modified by multiple
threads. In this vein, you should carefully examine all static variables, and all
objects used by JSP pages whose scope is either session or application (as
discussed in chapter 6), for potential thread safety issues.

 Finally, you also need to be aware that, even if a JSP page sets the isThreadSafe
attribute to false, JSP implementations are still permitted to create multiple
instances of the corresponding servlet in order to provide improved performance. In



JSP directives 79
this way, the individual instances handle only one request at a time, but by creating a
pool of servlet instances, the JSP container can still handle some limited number of
simultaneous requests. For this reason, you still must consider the resource usage
even of pages that are not marked thread-safe, to make sure there are no potential
conflicts between these multiple instances. Given this harsh reality, you are usually
better off biting the bullet and making sure that your page is fully thread-safe. This
discussion of the isThreadSafe attribute is presented here in the interest of com-
pleteness, but the bottom line is that if you’re tempted to set this attribute’s value to
false, you will be doing both yourself and your users a favor if you reconsider.

ErrorPage attribute
This attribute is used to specify an alternate page to display if an (uncaught) error
occurs while the JSP container is processing the page. This alternate page is indi-
cated by specifying a local URL as the value for this attribute, as in the following: 

<%@ page errorPage="/misc/error.jsp" %>

The error page URL must specify a JSP page from within the same web application
(see chapter 14) as the original page. As in this example, it may be an absolute URL,
which includes a full directory specification. Such URLs are resolved within the
context of that web application; typically, this means a top-level directory—corre-
sponding to the name under which the web application was deployed—will be
appended to the beginning of the URL. Alternatively, a relative URL may be speci-
fied, in which case any directory information included in the URL is appended to
the directory information associated with the current page, in order to form a new
URL. In the context of the errorPage attribute, absolute URLs start with a forward
slash, while relative URLs do not.

 The default value for this attribute is implementation-dependent. Also, note that
if the output of the JSP page is not buffered and any output has been generated
before the error occurs, it will not be possible to forward to the error page. If the
output is buffered and the autoFlush attribute is set to true, once the buffer
becomes full and is flushed for the first time, it will likewise become impossible to
forward to the error page. As you might expect, if autoFlush is false, then the
exception raised when the buffer is filled will cause the JSP container to forward
control to the page specified using the errorPage attribute.

IsErrorPage attribute
The isErrorPage attribute is used to mark a JSP page that serves as the error page
for one or more other JSP pages. This is done by specifying a simple boolean
attribute value, as follows: 



80 CHAPTER 5

Programming JSP scripts
<%@ page isErrorPage="true" %>

When this attribute is set to true, it indicates that the current page is intended for
use as a JSP error page. As a result, this page will be able to access the exception
implicit object, described in chapter 6, which will be bound to the Java exception
object (i.e., an instance of the java.lang.Throwable class) which caused control to
be forwarded to the current page.

 Since most JSP pages do not serve as error pages, the default value for this
attribute is false. 

5.3.2 Include directive

The second JSP directive enables page authors to include the contents of one file in
another. The file to be included is identified via a local URL, and the directive has
the effect of replacing itself with the contents of the indicated file. The syntax of the
include directive is as follows: 

<%@ include file="localURL" %>

Like all JSP tags, an XML translation of this directive is also available. Its syntax is as
follows: 

<jsp:directive.include file="localURL" />

There are no restrictions on the number of include directives that may appear in a
single JSP page. There are also no restrictions on nesting; it is completely valid for a
JSP page to include another JSP page, which itself includes one or more other JSP
pages. As mentioned earlier, however, all included pages must use the same script-
ing language as the original page.

 As in the URL specification for the errorPage attribute of the page directive,
the value of the include directive’s file attribute can be specified as an absolute
path within the current web application (chapter 14), or relative to the current
page, depending upon whether or not it starts with a forward slash character. For
example, to include a file in a subdirectory of the directory that the current JSP
page is in, a directive of the following form would be used: 

<%@ include file="includes/navigation.jspf" %>

To include a file using an absolute path within a web application, the following
form would be used: 

<%@ include file="/shared/epilogue/copyright.html" %>



JSP directives 81
The decision whether to use a common top-level directory for shared content, ver-
sus directory-specific files, depends upon the overall design of your web site or
application hierarchy. A combination of both approaches may also be appropriate. 

 It is recommended that the .jsp file extension be reserved for JSP pages that will
be viewed as top-level documents (i.e., pages that are expected to be referenced
explicitly in URLs requested by an end user). An alternate extension, such as .jspf or
.jsf, is preferred for JSP fragments meant to be included as elements of other JSP
pages. As indicated in figure 5.1, the include directive has the effect of substituting
the contents of the included file before the page is translated into source code and
compiled into a servlet. The contents of the included file may be either static text
(e.g., HTML) or additional JSP elements that will be processed as if they were part
of the original JSP page. This means that it is possible to make reference in the
included page to variables that are local to the original page, and vice versa, since
the included page effectively becomes part of that original page. In practice, this
approach can lead to software maintenance problems, since it breaks the modularity
of the individual files. If used in a disciplined manner, though, it can be helpful to
isolate code that appears repeatedly across a set of JSP pages into a single file, and
use the include directive to share this common code.

NOTE For C and C++ developers, the JSP include directive is a direct analog of the
#include directive provided by the preprocessor for those two languages.

<%@ include... %>

Including and Included
Pages

Combined 
Source

Combined Page 
Servlet

Figure 5.1 Effect of the include directive on page compilation



82 CHAPTER 5

Programming JSP scripts
As described in chapter 4, the JSP container will automatically rebuild and recompile
the servlet associated with a JSP page whenever it detects that the file defining the
page’s contents has been modified. This only applies to the file for the JSP page itself,
however, not to any files which have been incorporated via the include directive.
The JSP container is not required to keep track of file dependencies resulting from the
use of this directive, so modifications to included files will not automatically trigger
the generation of a new JSP servlet. The easiest way to force the construction of a new
servlet is to manually update the modification date on the file for the including page.

TIP On the UNIX platform, the easiest way to update a file’s modification date is
via the touch command. Unfortunately, there is no direct equivalent on the
Windows platform. Alternate Windows command shells are available which
provide this functionality, or you can simply open the file in an editor and
save its contents, unchanged.

JSP also provides an alternative means for including the contents of one JSP file
within another, via the <jsp:include> action, described in chapter 6. Unlike the
include directive, which treats the contents of the file to be included as if it were
part of the original page, the <jsp:include> action obtains the contents of the file
to be included at the time the request for the original page is being handled, by for-
warding the request to the included page and then inserting the results of process-
ing this secondary request into the results of the original page.

5.3.3 Tag library directive

This directive is used to notify the JSP container that a page relies on one or more
custom tag libraries. A tag library is a collection of custom tags that can be used to
extend the functionality of JSP on a page-by-page basis. Once this directive has been
used to indicate the reliance of a page on a specific tag library, all of the custom tags
defined in that library become available for use on that page. The syntax of this
directive is as follows: 

<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>.

Here, the value of the uri attribute indicates the location of the Tag Library
Descriptor (TLD) file for the library, and the prefix attribute specifies the XML
namespace identifier that will be prepended to all occurrences of the library’s tags
on the page. For example, the following directive loads in a tag library whose TLD
is accessible via the local URL /EncomTags:

<%@ taglib uri="/EncomTags" prefix="mcp" %>



Scripting elements 83
Within the page in which this directive appears, the tags defined by this library are
accessed using the prefix mcp. A tag from this library named endProgram, then,
would be referenced within the page as <mcp:endProgram/>. Note that all custom
tags follow XML syntax conventions. In addition, the prefix names jsp, jspx, java,
javax, servlet, sun, and sunw are reserved by the JSP specification; you may not
provide them as the value for the prefix attribute of the taglib directive within
your own JSP pages.

NOTE Unlike the other directives introduced in this chapter, there is no direct XML
version of the taglib directive. Instead, when constructing a JSP page as an
XML document, the use of a custom tag library is specified as an attribute of
the document’s root element. For further details, see chapter 20.

Because the custom tag prefix is specified external to the library itself, and on a page-
specific basis, multiple libraries can be loaded by a single page without the risk of
conflicts between tag names. If two libraries both define tags with the same name, a
JSP page would still be able to load and use both libraries since it can distinguish
those tags via their prefixes. As such, there are no restrictions on how many tag
library directives may appear on a page, as long as each is assigned a unique prefix. If,
however, the JSP container cannot find the TLD at the indicated location, or the
page references a tag that is not actually defined in the library (based on the contents
of the TLD), an error will result when the JSP container tries to compile the page.

 The construction of custom tag libraries and their associated TLDs is described
in chapter 18. The deployment of custom tag libraries is presented in chapter 14. 

WARNING For security reasons, the JSP specification mandates that the Java classes imple-
menting a library’s custom tags must be stored locally, as part of the deployed
web application which uses them (see chapter 13). Some JSP containers, how-
ever, allow page authors to specify URLs referencing complete tag library JAR
files in the uri attribute of the taglib directive, including JAR files stored on
remote servers. Support for this behavior is intended to ease development, but
keep in mind that downloading arbitrary Java code from a remote URL and
running that code on your web server is a rather risky proposition.

5.4 Scripting elements

Whereas the JSP directives influence how the page is processed by the JSP container,
scripting elements enable developers to directly embed code in a JSP page, includ-
ing code that generates output to appear in the results sent back to the user. JSP



84 CHAPTER 5

Programming JSP scripts
provides three types of scripting elements: declarations, scriptlets, and expressions.
Declarations allow the developer to define variables and methods for a page, which
may be accessed by other scripting elements. Scriptlets are blocks of code to be exe-
cuted each time the JSP page is processed for a request. Expressions are individual
lines of code. Like scriptlets, they are executed for every request. The results of eval-
uating an expression, however, are automatically inserted into the page output in
place of the original expression tag.

 All scripting elements in a page are written in the scripting language designated
for the page via the language attribute of the page directive. In the absence of an
explicit specification of the scripting language, it is assumed by the JSP container
that the scripting language is Java. Recall, as well, that if the include directive is
used to incorporate the contents of one JSP page into another, both pages must use
the same scripting language. Finally, none of the tags for the JSP scripting elements
supports attributes.

5.4.1 Declarations

Declarations are used to define variables and methods specific to a JSP page.
Declared variables and methods can then be referenced by other scripting elements
on the same page. The syntax for declarations is:

<%! declaration(s) %>

Note that multiple declarations may appear within a single tag, but each declaration
must be a complete declarative statement in the designated scripting language. Also
note that white space after the opening delimiter and before the closing delimiter is
optional, but recommended to improve readability. For JSP pages specified as XML
documents, the corresponding syntax is: 

<jsp:declaration> declaration(s) </jsp:declaration>

The two forms are identical in effect. 

Variable declarations
Variables defined as declarations become instance variables of the servlet class into
which the JSP page is translated and compiled. Consider the following declaration
of three variables:

<%! private int x = 0, y = 0; private String units = "ft"; %>

This declaration will have the effect of creating three instance variables in the servlet
created for the JSP page, named x, y, and units. These variables can be referenced



Scripting elements 85
by any and all other scripting elements on the page, including those scripting ele-
ments that appear earlier in the page than the declaration itself. 

 When declaring JSP instance variables, it is important to keep in mind the poten-
tial that multiple threads will be accessing a JSP simultaneously, representing multi-
ple simultaneous page requests. If a scripting element on the page modifies the
value of an instance variable, all subsequent references to that instance variable will
use the new value, including references in other threads. If you wish to create a vari-
able whose value is local to the processing of a single request, this may be done in a
scriptlet. Declared variables are associated with the page itself (through the servlet
class), not with individual requests.

 Since variables specified via JSP declarations are directly translated into variables
of the corresponding servlet class, they may also be used to declare class variables.
Class, or  static, variables, are those whose values are shared among all instances of a
class, rather than being specific to an individual instance. When the scripting lan-
guage is Java, class variables are defined using the static keyword, as in the follow-
ing example: 

<%! static public int counter = 0; %>

The effect of this declaration is to create an integer variable named counter that is
shared by all instances of the page’s servlet class. If any one instance changes the
value of this variable, all instances see the new value.

 In practice, because the JSP container typically creates only one instance of the
servlet class representing a particular JSP page, there is little difference between
declaring instance variables and declaring class variables. As explained earlier, the
major exception to this rule is when a JSP page sets the isThreadSafe attribute of
the page directive to false, indicating that the page is not thread-safe. In this case,
the JSP container may create multiple instances of the page’s servlet class, in order
to handle multiple simultaneous requests, one request per instance. To share a vari-
able’s value across multiple requests under these circumstances, the variable must be
declared as a class variable, rather than an instance variable. 

 When the isThreadSafe attribute is true, however, it makes little practical dif-
ference whether a variable is declared as an instance variable or a class variable.
Declaring instance variables saves a little bit of typing, since you don’t have to
include the static keyword. Class variables, though, do a somewhat better job of
conveying the typical usage of declared JSP variables, and are appropriate regardless
of the setting of the isThreadSafe attribute.



86 CHAPTER 5

Programming JSP scripts
Method declarations
Methods defined via declarations become methods of the servlet class into which
the JSP page is compiled. For example, the following declaration defines a method
for computing factorials:

<%! public long fact (long x) {
       if (x == 0) return 1;
       else return x * fact(x-1);
    } %>

As with variable declarations, declared methods can be accessed by any and all
scripting elements on the page, regardless of the order in which the method decla-
ration occurs relative to other scripting elements. 

 DEFINITION The factorial of a number is the product of all of the integers between
that number and 1. The factorial function is only valid for non-negative
integers, and the factorial of zero is defined to be one. The standard
mathematical notation for the factorial of a variable x is x! Thus, x! = x *
(x – 1) * (x – 2) * ... * 1. For example, 5! = 5 * 4 * 3 * 2 * 1 = 120. The
method definition provided here implements this definition in a recursive
manner, by taking advantage of the fact that 0! = 1, and the observation
that, for x > 0, it is true that x! = x * (x-1)!

In addition, multiple method definitions can appear within a single declaration tag,
as can combinations of both variable and method declarations, as in the following:

<%! static private char[] vowels =
      { ’a’, ’e’, ’i’, ’o’, ’u’, ’A’, ’E’, ’I’, ’O’, ’U’ };
    public boolean startsWithVowel (String word) {
      char first = word.charAt(0);
      for (int i = 0; i < vowels.length; ++i) {
        if (first == vowels[i]) return true;
      }
      return false;
    }
    static private String[] articles = { "a ", "an " };
    public String withArticle (String noun) {
      if (startsWithVowel(noun)) return articles[1] + noun;
      else return articles[0] + noun;
    }
%>

This declaration introduces two methods and two class variables. The withArti-
cle() method, which relies upon the other variables and methods included in the



Scripting elements 87
declaration, can be used to prepend the appropriate indefinite article to whatever
character string is provided as its argument.

 As with class variables, class methods may be specified using JSP declarations.
Class methods, also known as static methods, are methods associated with the class
itself, rather than individual instances, and may be called without requiring access to
an instance of the class. In fact, class methods are typically called simply by prepend-
ing the name of the class to the name of the method. Class methods may reference
only class variables, not instance variables. In practice, because it is generally not
possible to obtain (or predict) the name of the servlet class corresponding to a par-
ticular JSP page, class methods have little utility in the context of JSP. 

Handling life-cycle events
One particularly important use for method declarations is the handling of events
related to the initialization and destruction of JSP pages. The initialization event
occurs the first time the JSP container receives a request for a JSP page. The destruc-
tion event occurs when the JSP container unloads the servlet class, either because
the JSP container is being shut down, or because the page has not been requested
recently and the JSP container needs to reclaim the resources (e.g., system memory)
associated with its servlet class.

 These events are handled by declaring special life-cycle methods that will auto-
matically be called by the JSP container when the corresponding event occurs. The
initialization event is handled by jspInit(), and the destruction event is handled
by jspDestroy(). Neither method returns a value nor takes any arguments, so the
general format for declaring them is:

<%! public void jspInit () {
      // Initialization code goes here...
    }
    public void jspDestroy () {
      // Destruction code goes here...
    }
%>

Both methods are optional. If a JSP life-cycle method is not declared for a JSP page,
the corresponding event is simply ignored.

 If jspInit() is defined, the JSP container is guaranteed to call it after the servlet
class has been instantiated, but before the first request is processed. For example,
consider a JSP page that relies upon a pool of database connections in order to col-
lect the data used to generate its contents. Before the page can handle any requests,
it needs to ensure that the connection pool has been created, and is available for



88 CHAPTER 5

Programming JSP scripts
use. The initialization event is the standard JSP mechanism for enforcing such
requirements, as in:

<%! static private DbConnectionPool pool = null;
    public void jspInit () {
      if (pool == null) {
        String username = "sark", password = "mcpr00lz";
        pool = DbConnectionPool.getPool(this, username, password);
      }
    } %>

Here, a class variable is declared for storing a reference to the connection pool, an
instance of some hypothetical DbConnectionPool class. The jspInit() method
calls a static method of this class named getPool(), which takes the page instance
as well as a username and password for the database as its arguments, and returns
an appropriate connection pool, presumably either reusing an existing connection
pool or, if necessary, creating one.

 In a similar manner, if jspDestroy() is defined, it will be called after all pending
requests have been processed, but just before the JSP container removes the corre-
sponding servlet class from service. To continue the example introduced above,
imagine the following method declaration for the page destruction event:

<%! public void jspDestroy () {
      pool.maybeReclaim(this);
    } %>

Here, the connection pool is given a chance to reclaim its resources by calling its
maybeReclaim() method with the page instance as its sole argument. The implica-
tion here is that if this page is the only consumer of connection pools that is still
using this particular pool, the pool can reclaim its resources because this page no
longer needs them.

5.4.2 Expressions

Declarations are used to add variables and methods to a JSP page, but are not able
to directly contribute to the page’s output, which is, after all, the objective of
dynamic content generation. The JSP expression element, however, is explicitly
intended for output generation. The syntax for this scripting element is as follows:

<%= expression %>

An XML version is also provided:

<jsp:expression> expression </jsp:expression>



Scripting elements 89
In both cases, the expression should be a valid and complete scripting language
expression, in whatever scripting language has been specified for the page. The
effect of this element is to evaluate the specified expression and substitute the
resulting value into the output of the page, in place of the element itself. 

 JSP expressions can be used to print out individual variables, or the result of
some calculation. For example, the following expression, which uses Java as the
scripting language, will insert the value of π into the page’s output, courtesy of a
static variable provided by the java.lang.Math class:

<%= Math.PI %>

Assuming a variable named radius has been introduced elsewhere on the page, the
following expression can be used to print the area of the corresponding circle:

<%= Math.PI * Math.pow(radius, 2) %>

Again, any valid scripting language expression is allowed, so calls to methods are
likewise permitted. For example, a page including the declaration of the fact()
method could then insert factorial values into its output using expressions of the
following form:

<%= fact(12) %>

This particular expression would have the effect of substituting the value 479001600
into the contents of the page.

 These three expressions all return numeric values, but there are no restrictions
on the types of values that may be returned by JSP expressions. Expressions can
return Java primitive values, such as numbers, characters, and booleans, or full-
fledged Java objects, such as strings and JavaBeans. All expression results are con-
verted to character strings before they are added to the page’s output. As indicated
in table 5.2, various static toString() methods are used to convert primitive values
into strings, while objects are expected to provide their own toString() methods
(or rely on the default implementation provided by the java.lang.Object class).

Table 5.2 Methods used to convert expression values into strings

Value Type Conversion to String

boolean java.lang.Boolean.toString(boolean)

byte java.lang.Byte.toString(byte)

char new java.lang.Character(char).toString()

double java.lang.Double.toString(double)

int java.lang.Integer.toString(int)



90 CHAPTER 5

Programming JSP scripts
Notice that no semicolon was provided at the end of the Java code used in the
example JSP expressions. This is because Java’s semicolon is a statement delimiter. A
semicolon has the effect of transforming a Java language expression into a program
statement. In Java, statements are evaluated purely for their side effects; they do not
return values. Thus, leaving out the semicolon in JSP expressions is the right thing
to do, because the JSP container is interested in the value of the enclosed code, not
its side effects.

 Given that this scripting element produces output only from expressions, not
statements, you may be wondering if there is a convenient way to do conditional
output in a JSP page. Java’s standard if/then construct, after all, is a statement, not
an expression: its clauses are evaluated purely for side effects, not value. Fortunately,
Java supports the oft-forgotten ternary conditional operator, which does return a
value based on the result of a conditional test. The syntax of Java’s ternary operator
is as follows:

test_expr ? true_expr : false_expr 

Each operand of the ternary operator is itself an expression. The test_expr expres-
sion should evaluate to a boolean value. If the value of test_expr expression is
true, then the true_expr expression will be evaluated and its result returned as the
result of the ternary operator. Alternatively, if the value of test_expr expression is
false, then the false_expr expression is evaluated and its result will be returned.

 The ternary operator can thus be used in a JSP expression as in the following:

<%= (hours < 12) ? "AM" : "PM" %>

In this particular example, the value of the hours variable is checked to determine
whether it is less than twelve. If so, the ternary operator returns the string "AM",
which the JSP expression then inserts into the page. If not, the operator returns
"PM" and, again, the JSP expression adds this result to the page output. 

TIP The ternary operator is particularly convenient for use in JSP expressions not
just for its functionality, but also for its brevity.

float java.lang.Float.toString(float)

long java.lang.Long.toString(long)

object toString() method of object’s class

Table 5.2 Methods used to convert expression values into strings (continued)

Value Type Conversion to String



Scripting elements 91
5.4.3 Scriptlets

Declarations and expressions are intentionally limited in the types of scripting code
they support. For general purpose scripting, the appropriate JSP construct is the
scriptlet. Scriptlets can contain arbitrary scripting language statements which, like
declarations, are evaluated for side effects only. Scriptlets do not, however, automat-
ically add content to a JSP page’s output. The general syntax for scriptlets is: 

<% scriptlet %>

Scriptlets can also be specified using XML notation, as follows:

<jsp:scriptlet> scriptlet </jsp:scriptlet>

For either tag style, the scriptlet should be one or more valid and complete state-
ments in the JSP page’s scripting language. Alternatively, a scriptlet can leave open
one or more statement blocks, which must be closed by subsequent scriptlets in the
same page. In the case where the JSP scripting language is Java, statement blocks are
opened using the left brace character (i.e., {) and closed using the right brace char-
acter (i.e., }).

 Here is an example of a scriptlet which contains only complete statements:

<% GameGrid grid = GameGrid.getGameGrid();
   Recognizer r1 = new Recognizer(new Coordinates(grid, 0, 0));
   Recognizer r2 = new Recognizer(new Coordinates(grid, 100, 100));
   r1.findProgram("Flynn");
   r2.findProgram("Flynn"); %>

This scriptlet fetches one object via a class method, which it then uses to
instantiate two new objects. Methods are then called on these objects to ini-
tiate some computation.

 Note that a page’s scriptlets will be run for each request received by the page. For
the previous example, this means that two instances of the Recognizer class are cre-
ated every time the JSP page containing this scriptlet is requested. Furthermore, any
variables introduced in a scriptlet are available for use in subsequent scriptlets and
expressions on the same page (subject to variable scoping rules). The foregoing
scriptlet, for example, could be followed by an expression such as the following:

<%= r1.statusReport() %>

This expression would then insert the results of the statusReport() method call
for instance r1 into the page’s output. Later scriptlets or expressions could make
additional references (such as method calls, or inclusion in argument lists) to this
instance and the r2 instance, as well the grid object.



92 CHAPTER 5

Programming JSP scripts
 If you wish to control the scoping of a variable introduced by a scriptlet, you can
take advantage of JSP’s support for leaving code blocks open across multiple script-
lets. Consider, for example, the following JSP page which reproduces the above
scriptlet, with one small but important modification:

<html>
<body>
<h1>Intruder Alert</h1>
<p>Unauthorized entry, dispatching recognizers...</p>
<% GameGrid grid = GameGrid.getGameGrid();
   { Recognizer r1 = new Recognizer(new Coordinates(grid, 0, 0));
     Recognizer r2 = new Recognizer(new Coordinates(grid, 100, 100));
     r1.findProgram("Flynn");
     r2.findProgram("Flynn"); %>
<h2>Status</h2>
<ul>
<li>First Recognizer: <%= r1.statusReport() %>
<li>Second Recognizer: <%= r2.statusReport() %>
</ul>
<% } %>
Alert Level: <%= grid.alertLevel() %>
</body>
</html>

In this case, the first scriptlet introduces a new program block before creating the
two Recognizer instances. The second scriptlet, toward the end of the page, closes
this block. Within that block, the r1 and r2 instances are said to be in scope, and
may be referenced freely. After that block is closed, these objects are out of scope, and
any references to them will cause a compile-time error when the page is compiled
into a servlet by the JSP container. Note that because the grid variable is intro-
duced before the block is opened, it is in the page’s top-level scope, and can con-
tinue to be referenced after the second scriptlet closes the block opened by the first,
as in the call to its alertLevel() method near the end of the page.

 The reason this works has to do with the translation of the contents of a JSP
page into source code for a servlet. Static content, such as HTML code, is translated
into Java statements which print that text as output from the servlet. Similarly,
expressions are translated into Java statements which evaluate the expression, con-
vert the result to a string, and print that string value as output from the servlet.
Scriptlets, however, undergo no translation at all, and are simply inserted into the
source code of the servlet as is. If a scriptlet opens a new block without also closing
it, then the Java statements corresponding to any subsequent static content or JSP
elements simply become part of this new block. The block must ultimately be
closed by another scriptlet, or else compilation will fail due to a Java syntax error.



Flow of control 93
NOTE Java statements corresponding to a JSP page’s static content, expressions, and
scriptlets are used to create the _jspService() method of the correspond-
ing servlet. This method is responsible for generating the output of the JSP
page. Directives and declarations are also translated into servlet code, but do
not contribute to the _jspService() method and so are not affected by
scoping due to scriptlets. On the other hand, the JSP Bean tags, discussed in
chapter 7, are translated into Java statements for the _jspService() meth-
od and therefore are subject to scoping restrictions introduced via scriptlets.

5.5 Flow of control

This ability of scriptlets to introduce statement blocks without closing them can be
put to good use in JSP pages to affect the flow of control through the various ele-
ments, static or dynamic, that govern page output. In particular, such scriptlets can
be used to implement conditional or iterative content, or to add error handling to a
sequence of operations.

5.5.1 Conditionalization

Java’s if statement, with optional else if and else clauses, is used to control the
execution of code based on logical true/false tests. Scriptlets can use the if state-
ment (or the appropriate analog if the scripting language is not Java) to implement
conditional content within a JSP page. The following page fragment, for example,
uses the fact() method introduced earlier in this chapter to compute the factorial
of a page variable named x, as long as it is within the appropriate range:

<% if (x < 0) { %>
   <p>Sorry, can’t compute the factorial of a negative number.</p>
<% } else if (x > 20) { %>
   <p>Sorry, arguments greater than 20 cause an overflow error.</p>
<% } else { %>
   <p align=center><%= x %>! = <%= fact(x) %></p>
<% } %>

Three different blocks of statements are created by these scriptlets, only one of
which will actually be executed. If the value of x is negative, then the first block will
be executed, causing the indicated static HTML code to be displayed. If x is greater
than 20, the second block is executed, causing its static HTML to be displayed. Oth-
erwise, the output from the page will contain the static and dynamic content speci-
fied by the third block, including the result of the desired call to the fact() method.



94 CHAPTER 5

Programming JSP scripts
5.5.2 Iteration

Java has three different iteration constructs: the for loop, the while loop, and the
do/while statement. They may all be used via scriptlets to add iterative content to a
JSP page, and are particularly useful in the display of tabular data. Here, for exam-
ple, is a page fragment which uses the fact() method defined earlier in this chapter
to construct a table of factorial values:

<table>
<tr><th><i>x</i></th><th><I>x</I>! </th></tr>
<% for (long x = 01; x <= 201; ++x) { %>

<tr><td><%= x %></td><td><%= fact(x) %></td></tr>
<% } %>
</table>

Static HTML is used to create the table and its headers, while a for loop is used to
generate the contents of the table. Twenty-one rows of data are created in this man-
ner (figure 5.2). The other iteration constructs may be used in a similar manner. In
addition to generating row data for HTML tables, another common use for itera-
tion scriptlets is looping through a set of results from a database query.

5.5.3 Exception handling

As described in chapter 4, the default behavior when an exception is thrown while
processing a JSP page is to display an implementation-specific error message in the
browser window. In this chapter, we have also seen how the errorPage attribute of
the page directive can be used to specify an alternative page for handling any
uncaught errors thrown by a JSP page. A third option allows even finer control over
errors by incorporating the standard Java exception-handling mechanisms into a JSP
page using scriptlets.

 If a block of code on a JSP page has the potential of signaling an error, Java’s
exception handling construct, the try block, may be used in a set of scriptlets to
catch the error locally and respond to it gracefully within the current page. By way
of example, consider the following alternative declaration for the factorial method
presented earlier:

<%! public long fact (long x) throws IllegalArgumentException {
       if ((x < 0) || (x > 20))
         throw new IllegalArgumentException("Out of range.");
       else if (x == 0) return 1;
       else return x * fact(x-1);
    } %>



Flow of control 95
This version of the method verifies that the method’s argument is within the valid
range for this calculation, signaling an IllegalArgumentException if it is not. 

 Using this version of the method, we could consider an alternative implementa-
tion of the example presented in the foregoing section on conditionals, as follows:

<% try { %>
<p align=center> <%= x %>! = <%= fact(x) %></p>

<% } catch (IllegalArgumentException e) { %>
<p>Sorry, factorial argument is out of range.</p>

<% } %>

Figure 5.2 Tabular results generated by the iteration example



96 CHAPTER 5

Programming JSP scripts
Like the earlier example, the intent here is to print the result of a factorial calcu-
lation, or display an error message if the calculation cannot be made. In this case, a
try block is established around the expression which calls fact(). If this call raises
an IllegalArgumentException the catch block will handle it by printing an error
message. If no exception is raised, the content enclosed by the catch block will be
ignored, and only the successful results are displayed.

 In figure 5.3 an attempt to calculate the factorial of 42 has been made, but this
is out of the range of permitted values for the fact() method. (This is because Java
integer values of type long are limited to 64 bits. Twenty is the largest integer
whose factorial can be expressed using 64 bits.) As a result, the IllegalArgument-
Exception is thrown, and then caught. Notice that all of the output generated up
until the call to the fact() method appears on the page. This is because the
corresponding servlet code for this output does not raise any exceptions, and there-
fore is executed when the page is processed. As soon as the call to fact() occurs,
however, the exception is raised and control is transferred to the catch block,
which then prints the error message.

 In order to suppress the equation output altogether, the code on the JSP page
must be rearranged to call the fact() method before any of that output is gener-
ated. One possible approach is to rewrite the first scriptlet:

<% try { 
     long result = fact(x); %>

<p align=center> <%= x %>! = <%= result %></p>
<% } catch (IllegalArgumentException e) { %>

<p>Sorry, factorial argument is out of range.</p>
<% } %>

Figure 5.3 Failure results generated by the first exception handler example



Comments 97
In this case, the factorial value is computed in the scriptlet itself, at the beginning of
the try block, and stored in a new local variable named result. This variable is
then used in the expression which displays the factorial value, rather than directly
calling the method, as before. And because the method call now precedes any out-
put, if an exception is thrown, control will be transferred to the catch block before
the output in the try block begins.

5.5.4 A word of caution

As you can see from these examples, scriptlets that introduce enclosing blocks are
very powerful. Short of using custom tag libraries, they are the only means available
in JSP to implement conditional or iterative content, or to add custom exception
handlers to a page. At the same time, excessive use of these scriptlets can lead to
maintainability problems.

 The primary reason for this is readability. The fact that Java delimiters (i.e., {
and }) appear adjacent to the HTML-like scriptlet delimiters (i.e., <% and %>) intro-
duces a syntax clash, which can make these tags difficult to follow. Adhering to an
indentation convention, as the examples here do, can help address this issue, partic-
ularly when there are several lines of content interleaved between the scriptlet that
opens a block and the scriptlet that closes it.

 As discussed in chapter 1, maintenance of JSP pages is often shared by individu-
als skilled in Java programming and others who are skilled in page design and
HTML. While it is certainly true that HTML has tags that must appear in pairs in
order to have meaning, the notion that some scriptlets are stand-alone while others
are mutually dependent is somewhat foreign to those familiar with HTML syntax
but not Java syntax. As the preceding examples demonstrate, there are cases where
three or more scriptlets are required to implement conditional logic or exception
handling, a scenario that has no parallels in HTML.

 As a result, modifying and debugging pages that make heavy use of scriptlets
such as these can be complicated. If the web designers on a team are uncomfortable
with the syntax issues, it is not unlikely that they will involve the programming staff
when making even minor changes to a page. Likewise, if there is a problem with the
display of a page, a joint effort may be required to resolve it.

5.6 Comments

If the number of ways comments can be expressed in a language is an indication of
its power, then JSP must be the most powerful dynamic content system around:
there are three different ways to insert comments into a JSP page. These three styles



98 CHAPTER 5

Programming JSP scripts
of comments themselves divide into two major types, comments that are transmit-
ted back to the browser as part of the JSP response, and those that are only visible in
the original JSP source file.

5.6.1 Content comments

Only one of the three comments styles falls into the first group. These are referred
to as content comments, because they use the comment syntax associated with the
type of content being generated by the JSP page. To write a comment that will be
included in the output of a JSP page that is generating web content, the following
syntax is used:

<!-- comment -->

Those familiar with HTML and XML will recognize that this is the standard comment
syntax for those two markup languages. Thus, a JSP page that is generating either
HTML or XML simply uses the native comment syntax for whichever form of content
it is constructing. Such comments will then be sent back to the browser as part of the
response. Since they are comments, they do not produce any visible output, but they
may be viewed by the end user via the browser’s View Source menu item.

 Since these comments are part of the output from the page, you can, if you wish,
include dynamic content in them. HTML and XML comments can, for example,
include JSP expressions, and the output generated by these expressions will appear
as part of the comment in the page’s response. For example:

<!-- Java longs are 64 bits, so 20! = <%= fact(20) %> is
     the upper limit. -->

In this case, the computed value of the factorial expression will appear in the com-
ment that is actually sent to the browser.

5.6.2 JSP comments

JSP comments are independent of the type of content being produced by the
page. They are also independent of the scripting language used by the page.
These comments can only be viewed by examining the original JSP file, and take
the following form:

<%-- comment --%>

The body of this comment is ignored by the JSP container. When the page is com-
piled into a servlet, anything appearing between these two delimiters is skipped
while translating the page into servlet source code. 



Comments 99
 For this reason, JSP comments such as this are very useful for commenting out
portions of a JSP page, as when debugging. In the following page fragment, for
example, only the first and last expressions, displaying the factorials of 5 and 9, will
appear in the page output:

5! = <%= fact(5) %><br>
<%--
6! = <%= fact(6) %><br>
7! = <%= fact(7) %><br>
8! = <%= fact(8) %><br>
--%>
9! = <%= fact(9) %><br>

All of the other expressions have been commented out, and will not appear in the
page’s output. Keep in mind that these comments do not nest. Only the content
between the opening comment delimiter, <%--, and the first occurrence of the clos-
ing delimiter, --%>, is ignored.

5.6.3 Scripting language comments

Finally, comments may also be introduced into a JSP page within scriptlets, using
the native comment syntax of the scripting language. Java, for example, uses /* and
*/ as comment delimiters. With Java as the JSP scripting language, then, scripting
language comments take the following form:

<% /* comment */%>

Like JSP comments, scripting language comments will not appear in the page’s out-
put. Unlike JSP comments, though, which are ignored by the JSP container, script-
ing language comments will appear in the source code generated for the servlet.

 Scripting language comments can appear by themselves in scriptlets or may
accompany actual scripting code, as in the following example:

<% long valid = fact(20);
   long overflow = fact(21); /* Exceeds 64-bit long! */
%>

In this case, the comment will again appear in the source code of the corresponding
servlet.

 Scripting language comments can also appear in JSP expressions, as long as they
are also accompanied by, or part of, an expression. For example, all of the following
JSP expressions are valid:

<%= /* Comment before expression */ fact(5) %>
<%= fact(7) /* Comment after expression */ %>
<%= fact(9 /* Comment inside expression */) %>



100 CHAPTER 5

Programming JSP scripts
A JSP expression that contains only a comment, but not a scripting language expres-
sion, is not valid, and will result in a compilation error.

 Java also supports a second comment syntax, in which the characters // are the
opening delimiter, and the closing delimiter is the end of the line. This comment
syntax can also be used in JSP pages, as long as the scriptlet or expression in which it
is used is careful to include the end-of-line delimiter, as in the following examples: 

<% long valid = fact(20); // This one fits in a 64-bit long.
   long overflow = fact(21); // This one doesn’t.
%>

5! = <%= fact(5) // Getting tired of factorial examples yet?
%>

If the scriptlet or expression does not include the end-of-line delimiter, there is a
danger that the content immediately following it may be commented out when
the JSP page is translated into a servlet. Consider, for example, the following JSP
page fragment:

Lora’s brother is over <%= fact(3) // Strange ruler... %> feet tall!

Depending upon the implementation of the JSP container, it is possible that the code
generated to print out the character string "feet tall!" may appear in the servlet
source code on the same line as the code corresponding to the JSP expression. If so,
this code will be commented out in the servlet source code and never appear in the
output from the page. In fact, it is also possible that part of the code generated for the
expression itself will be commented out, in which case a syntax error will result the
first time the page is compiled. For this reason, the fully delimited Java comment syn-
tax (i.e., /* ... */) is the preferred style for JSP usage, particularly in JSP expressions.



 6Actions and implicit object
s

This chapter covers
� Types of JSP implicit objects

� Accessing and applying implicit objects

� Attributes and scopes

� Action tags for transfer of control
101



102 CHAPTER 6

Actions and implicit objects
Three types of JSP tags were introduced in chapter 5: directives, scripting elements,
and comments. The remaining type, actions, will be introduced here. Actions
encapsulate common behavior into simple tags for use from any JSP page. Actions
are the basis of the custom tag facility described in chapters 18–20, but a number of
standard actions are also provided by the base JSP specification. These standard
actions, presented later in this chapter, are supported by all JSP containers.

 Before we look at the standard actions, however, we will first consider the set of
Java objects that the JSP container makes available to developers from each page.
Through their class APIs, these objects enable developers to tap into the inner
workings of the JSP container and leverage its functionality. These objects can be
accessed as built-in variables via scripting elements. They may also be accessed pro-
grammatically by JavaBeans (chapter 7), servlets (chapter 10) and JSP custom tags
(chapters 18–20).

6.1 Implicit objects

As the examples presented in chapter 5 suggest, the JSP scripting elements provide a
great deal of power for creating, modifying, and interacting with Java objects in order
to generate dynamic content. Application-specific classes can be instantiated and values
from method calls can be inserted into JSP output. Network resources and repositories,
such as databases, can be accessed to store and retrieve data for use by JSP pages.

 In addition to objects such as these, which are completely under the control of
the developer, the JSP container also exposes a number of its internal objects to the
page author. These are referred to as implicit objects, because their availability in a
JSP page is automatic. The developer can assume that these objects are present and
accessible via JSP scripting elements. More specifically, these objects will be auto-
matically assigned to specific variable names in the page’s scripting language. Fur-
thermore, as summarized in table 6.1, each implicit object must adhere to a
corresponding API, in the form of a specific Java class or interface definition. Thus,
it will either be an instance of that class or interface, or of an implementation-
specific subclass.

Table 6.1 JSP implicit objects and their APIs for HTTP applications

Object Class or Interface Description

page javax.servlet.jsp.HttpJspPage Page’s servlet instance.

config javax.servlet.ServletConfig Servlet configuration data.

request javax.servlet.http.HttpServletRequest Request data, including 
parameters.



Implicit objects 103
The nine implicit objects provided by JSP fall naturally into four major categories:
objects related to a JSP page’s servlet, objects concerned with page input and out-
put, objects providing information about the context within which a JSP page is
being processed, and objects resulting from errors. 

 Beyond this functional categorization, four of the JSP implicit objects—
request, session, application, and pageContext—have something else in com-
mon: the ability to store and retrieve arbitrary attribute values. By setting and get-
ting attribute values, these objects are able to transfer information between and
among JSP pages and servlets as a simple data-sharing mechanism. 

 The standard methods for attribute management provided by the classes and
interfaces of these four objects are summarized in table 6.2. Note that attribute keys
take the form of Java String objects, while their values are referenced as instances
of java.lang.Object. 

WARNING Note that attribute names beginning with the prefix java are reserved by the
JSP specification, and should therefore not be used within your application.
An example of this is the javax.servlet.jsp.jspException attribute as-
sociated with requests, as presented in chapter 10.

response javax.servlet.http.HttpServletResponse Response data.

out javax.servlet.jsp.JspWriter Output stream for page content.

session javax.servlet.http.HttpSession User-specific session data.

application javax.servlet.ServletContext Data shared by all application 
pages.

pageContext javax.servlet.jsp.PageContext Context data for page execution.

exception java.lang.Throwable Uncaught error or exception.

Table 6.2 Common methods for storing and retrieving attribute values

Method Description

setAttribute(key, value) Associates an attribute value with a key (i.e., a name).

getAttributeNames() Retrieves the names of all attributes associated with the session.

getAttribute(key) Retrieves the attribute value associated with the key.

removeAttribute(key) Removes the attribute value associated with the key.

Table 6.1 JSP implicit objects and their APIs for HTTP applications (continued)

Object Class or Interface Description



104 CHAPTER 6

Actions and implicit objects
6.1.1 Servlet-related objects

The two JSP implicit objects in this category are based on the JSP page’s implemen-
tation as a servlet. The page implicit object represents the servlet itself, while the
config object stores the servlet’s initialization parameters, if any.

Page object
The page object represents the JSP page itself or, more specifically, an instance of
the servlet class into which the page has been translated. As such, it may be used to
call any of the methods defined by that servlet class. As indicated in the previous
chapter, the extends attribute of the page directive may be used to specify a servlet
superclass explicitly, otherwise an implementation-specific class will be used by the
JSP container when constructing the servlet. In either case, the servlet class is always
required to implement the javax.servlet.jsp.JspPage interface. In the specific
case of web-based JSP applications built on HTTP, the servlet class must implement
the javax.servlet.jsp.HttpJspPage interface. The methods of this class are pre-
sented in appendix F.

 In practice, the page object is rarely used when the JSP scripting language is
Java, because the scripting elements will ultimately be incorporated as method code
of the constructed servlet class, and will automatically have access to the class’s
other methods. (More specifically, when the scripting language is Java, the page
object is the same as the this variable.) For other scripting languages, however, the
scripting variable for this implicit object grants access to all of the methods provided
by the javax.servlet.jsp.JspPage interface, as well as any methods that have
been defined for the page via method declarations.

 Here is an example page fragment that utilizes this implicit object:

<%@ page info="Page implicit object demonstration." %>
Page info:
<%= ((javax.servlet.jsp.HttpJspPage)page).getServletInfo() %>

This expression will insert the value of the page’s documentation string into the
output from the page. In this example, note that because the servlet class varies
from one page to another, the standard type for the page implicit object is the
default Java type for nonprimitive values, java.lang.Object. In order to access
methods defined by the javax.servlet.jsp.HttpJspPage interface, the page
object must first be cast to that interface.

Config object
The config object stores servlet configuration data—in the form of initialization
parameters—for the servlet into which a JSP page is compiled. Because JSP pages are



Implicit objects 105
seldom written to interact with initialization parameters, this implicit object is rarely
used in practice. This object is an instance of the javax.servlet.ServletConfig
interface. The methods provided by that interface for retrieving servlet initialization
parameters are listed in table 6.3. 

Due to its role in servlet initialization, the config object tends to be most relevant
in the initialization of a page’s variables. Consider the following declaration and
scriptlet, which provide similar functionality to the sample jspInit() method pre-
sented in the previous chapter:

<%! static private DbConnectionPool pool = null; %>
<%  if (pool == null) {
      String username = config.getInitParameter("username");
      String password = config.getInitParameter("password");
      pool = DbConnectionPool.getPool(this, username, password);
    } %>

In this case, rather than storing the username and password values directly in the
JSP page, they have been provided as initialization parameters and are accessed via
the config object.

 Values for initialization parameters are specified via the deployment descriptor
file of a web application. Deployment descriptor files are described in chapter 14. 

6.1.2 Input/Output

These implicit objects are focused on the input and output of a JSP page. More spe-
cifically, the request object represents the data coming into the page, while the
response object represents its result. The out implicit object represents the actual
output stream associated with the response, to which the page’s content is written.

Request object
The request object represents the request that triggered the processing of the cur-
rent page. For HTTP requests, this object provides access to all of the information
associated with a request, including its source, the requested URL, and any headers,
cookies, or parameters associated with the request. The request object is required
to implement the javax.servlet.ServletRequest interface. When the protocol is

Table 6.3 Methods of javax.servlet.ServletConfig interface for accessing initialization parameters

Method Description

getInitParameterNames() Retrieves the names of all initialization parameters.

getInitParameter(name) Retrieves the value of the named initialization parameter.



106 CHAPTER 6

Actions and implicit objects
HTTP, as is typically the case, it must implement a subclass of this interface,
javax.servlet.http.HttpServletRequest. 

 The methods of this interface fall into four general categories. First, the request
object is one of the four JSP implicit objects that support attributes, by means of the
methods presented in table 6.2. The HttpServletRequest interface also includes
methods for retrieving request parameters and HTTP headers, which are summa-
rized in tables 6.4 and 6.5, respectively. The other frequently used methods of this
interface are listed in table 6.6, and provide miscellaneous functionality such as
access to the request URL and the session. 

 Among the most common uses for the request object are looking up parameter
values and cookies. Here is a page fragment illustrating the use of the request
object to access a parameter value: 

<% String xStr = request.getParameter("num");
   try { long x = Long.parseLong(xStr); %>
     Factorial result: <%= x %>! = <%= fact(x) %>
<% } catch (NumberFormatException e) { %>
     Sorry, the <b>num</b> parameter does not specify an
     integer value.
<% } %>

In this example, the value of the num parameter is fetched from the request. Note
that all parameter values are stored as character strings, so conversion is required
before it may be used as a number. If the conversion succeeds, this value is used to
demonstrate the factorial function. If not, an error message is displayed.

WARNING When naming your request parameters, keep in mind that parameter names
beginning with the prefix jsp are reserved by the JSP specification. You must
therefore avoid the temptation of using them in your own applications, since
the container is likely to intercept them and may block access to them from
your JSP pages. An example of this is the jsp_precompile request parameter,
presented in chapter 14.

 When utilizing the <jsp:forward> and <jsp:include> actions described at the
end of this chapter, the request object is also often used for storing and retrieving
attributes in order to transfer data between pages.    



Implicit objects 107
Response object
The response object represents the response that will be sent back to the user as a
result of processing the JSP page. This object implements the javax.servlet.Serv-
letResponse interface. If it represents an HTTP response, it will furthermore

Table 6.4 Methods of the javax.servlet.http.HttpServletRequest interface for accessing request 
parameters

Method Description

getParameterNames() Returns the names of all request parameters

getParameter(name) Returns the first (or primary) value of a single request parameter

getParameterValues(name) Retrieves all of the values for a single request parameter.

Table 6.5 Methods of the javax.servlet.http.HttpServletRequest 
interface for retrieving request headers

Method Description

getHeaderNames() Retrieves the names of all headers associated with the request.

getHeader(name) Returns the value of a single request header, as a string.

getHeaders(name) Returns all of the values for a single request header.

getIntHeader(name) Returns the value of a single request header, as an integer.

getDateHeader(name) Returns the value of a single request header, as a date.

getCookies() Retrieves all of the cookies associated with the request.

Table 6.6 Miscellaneous methods of the javax.servlet.http.HttpServletRequest interface

Method Description

getMethod() Returns the HTTP (e.g., GET, POST) method for the request.

getRequestURI() Returns the path information (directories and file name) for the 
requested URL.

getRequestURL() Returns the requested URL, up to, but not including any query string.

getQueryString() Returns the query string that follows the request URL, if any.

getRequestDispatcher(path) Creates a request dispatcher for the indicated local URL.

getRemoteHost() Returns the fully qualified name of the host that sent the request.

getRemoteAddr() Returns the network address of the host that sent the request.

getRemoteUser() Returns the name of user that sent the request, if known.

getSession(flag) Retrieves the session data for the request (i.e., the session implicit 
object), optionally creating it if it doesn’t exist.



108 CHAPTER 6

Actions and implicit objects
implement a subclass of this interface, the javax.servlet.http.HttpServletRe-
sponse interface. 

 The key methods of this latter interface are summarized in tables 6.7–6.10.
Table 6.7 lists a pair of methods for specifying the content type and encoding of a
response. Table 6.8 presents methods for setting response headers, while those in
table 6.9 are for setting response codes. The two methods in table 6.10 provide
support for URL rewriting, which is one of the techniques supported by JSP for ses-
sion managment. For a full listing of all the methods associated with the
javax.servlet.http.HttpServletResponse interface, consult appendix F.         

Table 6.7 Methods of the javax.servlet.http.HttpServletResponse 
interface for specifying content

Method Description

setContentType() Sets the MIME type and, optionally, the character encoding of the 
response’s contents.

getCharacterEncoding() Returns the character encoding style set for the response’s contents.

Table 6.8 Methods of the javax.servlet.http.HttpServletResponse 
interface for setting response headers

Method Description

addCookie(cookie) Adds the specified cookie to the response.

containsHeader(name) Checks whether the response includes the named header.

setHeader(name, value) Assigns the specified string value to the named header.

setIntHeader(name, value) Assigns the specified integer value to the named header.

setDateHeader(name, date) Assigns the specified date value to the named header.

addHeader(name, value) Adds the specified string value as a value for the named header.

addIntHeader(name, value) Adds the specified integer value as a value for the named header.

addDateHeader(name, date) Adds the specified date value as a value for the named header.

Table 6.9 Response code methods of the javax.servlet.http.HttpServletResponse 
interface

Method Description

setStatus(code) Sets the status code for the response (for nonerror circumstances).

sendError(status, msg) Sets the status code and error message for the response.

sendRedirect(url) Sends a response to the browser indicating it should request an alternate 
(absolute) URL.



Implicit objects 109
Here, for example, is a scriptlet that uses the response object to set various headers
for preventing the page from being cached by a browser:

<% response.setDateHeader("Expires", 0);
   response.setHeader("Pragma", "no-cache");
   if (request.getProtocol().equals("HTTP/1.1")) {
     response.setHeader("Cache-Control", "no-cache");
   }
%>

The scriptlet first sets the Expires header to a date in the past. This indicates to the
recipient that the page’s contents have already expired, as a hint that its contents
should not be cached. 

NOTE For the java.util.Date class, Java follows the tradition of the UNIX oper-
ating system in setting time zero to midnight, December 31, 1969 (GMT).
That moment in time is commonly referred to as the UNIX epoch.

The no-cache value for the Pragma header is provided by version 1.0 of the HTTP
protocol to further indicate that browsers and proxy servers should not cache a
page. Version 1.1 of HTTP replaces this header with a more specific Cache-Control
header, but recommends including the Pragma header as well for backward compat-
ibility. Thus, if the request indicates that the browser (or its proxy server) supports
HTTP 1.1, both headers are sent.

Out object
This implicit object represents the output stream for the page, the contents of which
will be sent to the browser as the body of its response. The out object is an instance
of the javax.servlet.jsp.JspWriter class. This is an abstract class that extends
the standard java.io.Writer class, supplementing it with several of the methods
provided by the java.io.PrintWriter class. In particular, it inherits all of the stan-
dard write() methods provided by java.io.Writer, and also implements all of the
print() and println() methods defined by java.io.PrintWriter. 

Table 6.10 Methods of the javax.servlet.http.HttpServletResponse 
interface for performing URL rewriting

Method Description

encodeRedirectURL(url) Encodes a URL for use with the sendRedirect() method to include 
session information.

encodeURL(name) Encodes a URL used in a link to include session information.



110 CHAPTER 6

Actions and implicit objects
 For example, the out object can be used within a scriptlet to add content to the
generated page, as in the following page fragment:

<P>Counting eggs
<% int count = 0;
   while (carton.hasNext()) {
     count++;
     out.print(".");
   }
%>
<BR>
There are <%= count %> eggs.</P>

The scriptlet in this fragment, in addition to counting the elements in some hypo-
thetical iterator named carton, also has the effect of printing a period for each
counted element. If there are five elements in this iterator, this page fragment will
produce the following output:

Counting eggs.....
There are 5 eggs.

By taking advantage of this implicit object, then, output can be generated from
within the body of a scriptlet without having to temporarily close the scriptlet to
insert static page content or JSP expressions.

 In addition, the javax.servlet.jsp.JspWriter class defines a number of
methods that support JSP-specific behavior. These additional methods are summa-
rized in table 6.11, and are primarily used for controlling the output buffer and
managing its relationship with the output stream that ultimately sends content back
to the browser. The full set of methods for this class appears in appendix F. 

Table 6.11 JSP-oriented methods of the javax.servlet.jsp.JspWriter interface

Method Description

isAutoFlush() Returns true if the output buffer is automatically flushed when it becomes full, 
false if an exception is thrown.

getBufferSize() Returns the size (in bytes) of the output buffer.

getRemaining() Returns the size (in bytes) of the unused portion of the output buffer.

clearBuffer() Clears the contents of the output buffer, discarding them.

clear() Clears the contents of the output buffer, signaling an error if the buffer has pre-
viously been flushed.

newLine() Writes a (platform-specific) line separator to the output buffer.

flush() Flushes the output buffer, then flushes the output stream.

close() Closes the output stream, flushing any contents.



Implicit objects 111
Here is a page fragment that uses the out object to display the buffering status:

<% int total = out.getBufferSize();
   int available = out.getRemaining();
   int used = total – available; %>
Buffering Status:
<%= used %>/<%= total %> = <%= (100.0 * used)/total %>%

Local variables are created to store the buffer size parameters, and expressions are
used to display the values of these local variables. This page fragment is particularly
useful when tuning the buffer size for a page, but note that the values it prints are
only approximate, because the very act of displaying these values on the page uses
up some of the output buffer. As written, the displayed values are accurate for all of
the content that precedes this page fragment, but not for the fragment itself (or any
content that follows it, of course). Given, however, that this code would most likely
be used only during page development and debugging, this behavior is not only
acceptable, but also preferable: the developer needs to know the buffer usage of the
actual page content, not of the debugging message.

 The methods provided for clearing the buffer are also particularly useful. In the
discussion of exception handling, recall that it was necessary to rewrite our original
example in order to make the output more user-friendly when an error condition
arose. More specifically, it was necessary to introduce a local variable and pre-
compute the result we were interested in. Consider, instead the following approach:

<% out.flush();
   try { %>

<p align=center> <%= x %>! = <%= fact(x) %></p>
<% } catch (IllegalArgumentException e) {
           out.clearBuffer(); %>

<p>Sorry, factorial argument is out of range.</p>
<% } %>

In this version, the flush() method is called on the out object to empty the buffer
and make sure all of the content generated so far is displayed. Then the try block is
opened and the call to the fact() method, which has the potential of throwing an
IllegalArgumentException, is made. If this method call successfully completes,
the code and content in the catch block will be ignored.

 If the exception is thrown, however, then the clearBuffer() method is called
on the out object. This will have the effect of discarding any content that has been
generated since the last time the output buffer was flushed. In this particular case,
the output buffer was flushed just before opening the try block. Therefore, only
the content generated by the try block before the exception occurred would be in
the output buffer, so only that content will be removed when the output buffer is



112 CHAPTER 6

Actions and implicit objects
cleared. The output buffer will then be overwritten with the error message indicat-
ing that the argument was out of range.

WARNING There is, of course, a down side to this approach. Recall from the discussion
of buffered output in chapter 4, that once the output buffer has been flushed,
it is no longer possible to change or add response headers, or forward to an-
other page. The call to the flush() method at the beginning of this page
fragment thus limits your options for processing the remainder of the page.

6.1.3 Contextual objects

The implicit objects in this category provide the JSP page with access to the context
within which it is being processed. The session object, for example, provides the
context for the request to which the page is responding. What data has already been
associated with the individual user who is requesting the page? The application
object provides the server-side context within which the page is running. What
other resources are available, and how can they be accessed? In contrast, the page-
Context object is focused on the context of the JSP page itself, providing program-
matic access to all of the other JSP implicit objects which are available to the page,
and managing their attributes.

Session object
This JSP implicit object represents an individual user’s current session. As described
in the section on session management in chapter 4, all of the requests made by a
user that are part of a single series of interactions with the web server are considered
to be part of a session. As long as new requests by that user continue to be received
by the server, the session persists. If, however, a certain length of time passes with-
out any new requests from the user, the session expires.

 The session object, then, stores information about the session. Application-
specific data is typically added to the session by means of attributes, using the meth-
ods in table 6.12. Information about the session itself is available through the other
methods of the javax.servlet.http.HttpSession interface, of which the ses-
sion object is an instance. The most commonly used methods of this interface are
summarized in table 6.12, and the full API appears in appendix F.  



Implicit objects 113
One of the primary uses for the session object is the storing and retrieving of
attribute values, in order to transmit user-specific information between pages. As an
example, here is a scriptlet that stores data in the session in the form of a hypotheti-
cal UserLogin object:

<% UserLogin userData = new UserLogin(name, password);
   session.setAttribute("login", userData); %>

Once this scriptlet has been used to store the data via the setAttribute() method,
another scripting element—either on the same JSP page or on another page later
visited by the user—could access that same data using the getAttribute()
method, as in the following:

<% UserLogin userData = (UserLogin) session.getAttribute("login");
   if (userData.isGroupMember("admin")) {
     session.setMaxInactiveInterval(60*60*8);
   } else {
     session.setMaxInactiveInterval(60*15);
   }
%>

Note that when this scriptlet retrieves the stored data, it must use the casting oper-
ator to restore its type. This is because the base type for attribute values is
java.lang.Object, which is therefore the return type for the getAttribute()
method. Casting the attribute value enables it to be treated as a full-fledged
instance of the type to which it has been cast. In this case, a hypothetical isGroup-
Member() method is called to determine whether or not the user is a member of the
administrator group. If so, the session time-out is set to eight hours. If not, the ses-
sion is set to expire after fifteen minutes of inactivity. The implication is that

Table 6.12 Relevant methods of the javax.servlet.http.HttpSession interface

Method Description

getId() Returns the session ID.

getCreationTime() Returns the time at which the session was created.

getLastAccessedTime() Returns the last time a request associated with the session was 
received.

getMaxInactiveInterval() Returns the maximum time (in seconds) between requests for which 
the session will be maintained.

setMaxInactiveInterval(t) Sets the maximum time (in seconds) between requests for which the 
session will be maintained.

isNew() Returns true if user’s browser has not yet confirmed the session ID.

invalidate() Discards the session, releasing any objects stored as attributes.



114 CHAPTER 6

Actions and implicit objects
administrators (who are presumably more responsible about restricting access to
their computers) should not be required to log back in after short periods of inac-
tivity during the workday, while access by other users requires stricter security.

 Note that JSP provides a mechanism for objects to be notified when they are
added to or removed from a user’s session. In particular, if an object is stored in a
session and its class implements the javax.servlet.http.HttpSessionBind-
ingListener interface, then certain methods required by that interface will be
called whenever session-related events occur. Details on the use of this interface are
presented in chapter 8.

 Unlike most of the other JSP implicit objects which can be accessed as needed
from any JSP page, use of the session object is restricted to pages that participate
in session management. This is indicated via the session attribute of the page
directive, as described earlier in this chapter. The default is for all pages to partici-
pate in session management. If the session attribute of the page directive is set to
false, however, any references to the session implicit object will result in a compi-
lation error when the JSP container attempts to translate the page into a servlet.

Application object
This implicit object represents the application to which the JSP page belongs. It is
an instance of the javax.servlet.ServletContext interface. JSP pages are
deployed as a group (in combination with other web-based assets such as servlets,
images, and HTML files) in the form of a web application. This grouping is then
reflected by the JSP container in the URLs by which those assets are exposed. More
specifically, JSP containers typically treat the first directory name in a URL as an
application. For example, http://server/ games/index.jsp, http://server/games/
matrixblaster.jsp, and http://server/ games/space/paranoids.jsp are all elements of
the same games application. Specification of this grouping and other properties of
the web application is accomplished via Web Application Descriptor files, as
described in chapter 14.

 The key methods of the javax.servlet.ServletContext interface can be
grouped into five major categories. First, the methods in table 6.13  allow the
developer to retrieve version information from the servlet container. Next,
table 6.14 lists several methods for accessing server-side resources represented as file
names and URLs. The application object also provides support for logging, via
the methods summarized in table 6.15. The fourth set of methods supported by
this interface are those for getting and setting attribute values, presented in
table 6.2. A final pair of methods (identical to those in table 6.3) provides access to
initialization parameters associated with the application as a whole (as opposed to



Implicit objects 115
the page-specific initialization parameters accessed via the config implicit object).
For the full API of the javax.servlet.ServletContext interface, see appendix F.          

As indicated in tables 6.13–6.15, the application object provides a number of
methods for interacting with the HTTP server and the servlet container in an imple-
mentation-independent manner. From the point of view of JSP development, how-
ever, perhaps the most useful methods are those for associating attributes with an
application. In particular, a group of JSP pages that reside in the same application
can use application attributes to implement shared resources. Consider, for exam-
ple, the following expression, which implements yet another variation on the con-
struction and initialization of a database connection pool:

Table 6.13 Container methods of the javax.servlet.ServletContext interface

Method Description

getServerInfo() Returns the name and version of the servlet container.

getMajorVersion() Returns the major version of the Servlet API for the servlet container.

getMinorVersion() Returns the minor version of the Servlet API for the servlet container.

Table 6.14 Methods of the javax.servlet.ServletContext interface 
for interacting with server-side paths and files

Method Description

getMimeType(y) Returns the MIME type for the indicated file, if known by the 
server.

getResource(path) Translates a string specifying a URL into an object that 
accesses the URL’s contents, either locally or over the net-
work.

getResourceAsStream(path) Translates a string specifying a URL into an input stream for 
reading its contents.

getRealPath(path) Translates a local URL into a pathname in the local filesystem.

getContext(path) Returns the application context for the specified local URL.

getRequestDispatcher(path) Creates a request dispatcher for the indicated local URL.

Table 6.15 Methods of the javax.servlet.ServletContext interface for message logging

Method Description

log(message) Writes the message to the log file.

log(message, exception) Writes the message to the log file, along with the stack trace for the 
specified exception.



116 CHAPTER 6

Actions and implicit objects
<% DbConnectionPool pool =
     (DbConnectionPool) application.getAttribute("dbPool");
   if (pool == null) {
     String username = application.getInitParameter("username");
     String password = application.getInitParameter("password");
     pool = DbConnectionPool.getPool(this, username, password);
     application.setAttribute("dbPool", pool);
   } %>

In this case, the connection pool is constructed in the same manner, but is stored in
a local variable instead of a class variable. This is done because the long-term stor-
age of the connection pool is handled via an application attribute. Before construct-
ing the connection pool, the application attribute is first checked for a pool that has
already been constructed.

 If a pool is not available via this application attribute, a new connection pool must be
constructed. In this case, construction proceeds as before, with the added step of assign-
ing this pool to the application attribute. The other significant difference is that, in this
version, the initialization parameters are retrieved from the application object, rather
than from the config object. Initialization parameters associated with the application
can be accessed by any of the application’s JSP pages. Such parameters need only be
specified once, using the Web Application Descriptor file (see chapter 14), whereas the
initialization parameters associated with the config object must be specified on a page-
by-page basis.

 Reliance on application initialization parameters enables reuse of this code across
multiple JSP pages within the application, without having to specify the initialization
parameters multiple times. Such reuse can be facilitated by making use of the JSP
include directive, and enables you to ensure that the connection pool will only be con-
structed once, and then shared among all of the pages.

TIP Like session attributes, the base type for application attributes is
java.lang.Object. When attribute values are retrieved from an applica-
tion, they must be cast back to their original type in order to access their
full functionality. Initialization parameters take the form of String objects.

As indicated in table 6.13, the application implicit object also provides access to
information about the environment in which the JSP page is running, through the
getServerInfo(), getMajorVersion(), and getMinorVersion() methods. Keep
in mind, however, that the data returned by these methods is with respect to the
servlet container in which the JSP page is running. To obtain the corresponding
information about the current JSP container, the JSP specification provides an



Implicit objects 117
abstract class named javax.servlet.jsp.JspEngineInfo that provides a method
for retrieving the JSP version number. Since this is an abstract class, a somewhat
convoluted path is necessary in order to access an actual instance. The required
steps are implemented by the following JSP page fragment:

<%@ page import="javax.servlet.jsp.JspFactory" %>
<% JspFactory factory = JspFactory.getDefaultFactory(); %>
JSP v. <%= factory.getEngineInfo().getSpecificationVersion() %>

For further details on the JspEngineInfo and JspFactory classes, see appendix F.

PageContext object
The pageContext object provides programmatic access to all other implicit objects.
For the implicit objects that support attributes, the pageContext object also pro-
vides methods for accessing those attributes. In addition, the pageContext object
implements methods for transferring control from the current page to another,
either temporarily to generate output to be included in the output of the current
page or permanently to transfer control altogether.

 The pageContext object is an instance of the javax.servlet.jsp.PageCon-
text class. The full API for this class in presented in appendix F, but the important
methods of this class fall into four major groups. First, there is a set of methods for
programmatically accessing all of the other JSP implicit objects, as summarized in
table 6.16. While these methods are not particularly useful from a scripting perspec-
tive (since these objects are already available as scripting variables), we will discover
their utility in chapter 18 when we look at how JSP custom tags are implemented.

 The second group of javax.servlet.jsp.PageContext methods enables the
dispatching of requests from one JSP page to another. Using the methods—listed in
table 6.17, the handling of a request can be transferred from one page to another
either temporarily or permanently. Further details on the application of this func-
tionality will be provided when we look at the <jsp:forward> and <jsp:include>
actions toward the end of this chapter.     

Table 6.16 Methods of the javax.servlet.jsp.PageContext class for 
programatically retrieving the JSP implicit objects

Method Description

getPage() Returns the servlet instance for the current page (i.e., the page implicit 
object).

getRequest() Returns the request that initiated the processing of the page (i.e., the request 
implicit object).

getResponse() Returns the response for the page (i.e., the response implicit object).



118 CHAPTER 6

Actions and implicit objects
The remaining two groups of methods supported by the pageContext object deal
with attributes. This implicit object is among those capable of storing attributes. Its
class therefore implements all of the attribute access methods listed in table 6.2. In
keeping with its role as an avenue for programmatically accessing the other JSP
implicit objects, however, the javax.servlet.jsp.PageContext class provides a
set of methods for managing their attributes, as well. These methods are summa-
rized in table 6.18. 

getOut() Returns the current output stream for the page (i.e., the out implicit object).

getSession() Returns the session associated with the current page request, if any (i.e., the 
session implicit object).

getServletConfig() Returns the servlet configuration object (i.e., the config implicit object).

getServletContext() Returns the context in which the page’s servlet runs (i.e., the application 
implicit object).

getException() For error pages, returns the exception passed to the page (i.e., the exception 
implicit object).

Table 6.17 Request dispatch methods of the javax.servlet.jsp.PageContext class

Method Description

forward(path) Forwards processing to another local URL.

include(path) Includes the output from processing another local URL.

Table 6.18 Methods of the javax.servlet.jsp.PageContext class 
for accessing attributes across multiple scopes 

Method Description

setAttribute(key, value, scope) Associates an attribute value with a key in a specific scope.

getAttributeNamesInScope(scope) Retrieves the names of all attributes in a specific scope.

getAttribute(key, scope) Retrieves the attribute value associated with the key in a 
specific scope.

removeAttribute(key, scope) Removes the attribute value associated with the key in a 
specific scope.

findAttribute(name) Searches all scopes for the named attribute.

getAttributesScope(name) Returns the scope in which the named attribute is stored.

Table 6.16 Methods of the javax.servlet.jsp.PageContext class for 
programatically retrieving the JSP implicit objects (continued)

Method Description



Implicit objects 119
As indicated earlier in this chapter, four different implicit objects are capable of stor-
ing attributes: the pageContext object, the request object, the session object,
and the application object. As a result of this ability, these objects are also referred
to as scopes, because the longevity of an attribute value is a direct result of the type
of object in which it is stored. Page attributes, stored in the pageContext object,
only last as long as the processing of a single page. Request attributes are also short-
lived, but may be passed between pages as control is transferred during the han-
dling of a single request. Session attributes persist as long as the user continues
interacting with the web server. Application attributes are retained as long as the JSP
container keeps one or more of an application’s pages loaded in memory—conceiv-
ably, as long as the JSP container is running.

NOTE Only a single thread within the JSP container can access attributes stored with
either page or request scope: the thread handling the processing of the associ-
ated request. Thread safety is more of a concern, then, with session and appli-
cation attributes. Because multiple requests for an application’s pages will be
handled simultaneously, objects stored with application scope must be robust
with respect to access by these multiple threads. Similarly, because a user may
have multiple browser windows accessing a server’s JSP pages at the same
time, it must be assumed that objects stored with session scope may also be
accessed by more than one thread at a time.

 In conjunction with the methods listed in table 6.18 whose parameters include a
scope specification, the javax.servlet.jsp.PageContext class provides static vari-
ables for representing these four different scopes. Behind the scenes, these are just
symbolic names for four arbitrary integer values. Since the actual values are hidden,
the symbolic names are the standard means for indicating attribute scopes, as in the
following page fragment:

<%@ page import="javax.servlet.jsp.PageContext" %>
<% Enumeration atts = 
     pageContext.getAttributeNamesInScope(PageContext.SESSION_SCOPE);
   while (atts.hasMoreElements()) { %>

Session Attribute: <%= atts.nextElement() %><BR>
<% } %>

These variables are summarized in table 6.19.   



120 CHAPTER 6

Actions and implicit objects
The last two methods listed in table 6.18 enable developers to search across all of
the defined scopes for an attribute with a given name. In both cases, the page-
Context object will search through the scopes in order—first page, then request,
then session, and finally application—to either find the attribute’s value or identify
in which scope (if any) the attribute is defined. 

WARNING The session scope is accessible only to pageContext methods on pages that
actually participate in session management.

6.1.4 Error handling

This last category of JSP implicit objects has only one member, the exception
object. As its name implies, this implicit object is provided for the purpose of error
handling within JSP.

Exception object
The ninth and final JSP implicit object is the exception object. Like the session
object, the exception object is not automatically available on every JSP page.
Instead, this object is available only on pages that have been designated as error
pages using the isErrorPage attribute of the page directive. On those JSP pages
that are error pages, the exception  object wil l  be an instance of  the
java.lang.Throwable class corresponding to the uncaught error that caused con-
trol to be transferred to the error page. The methods of the java.lang.Throwable
class that are particularly useful in the context of JSP are summarized in table 6.20.

Table 6.19 Class scope variables for the javax.servlet.jsp.PageContext class

Variable Description

PAGE_SCOPE Scope for attributes stored in the pageContext object.

REQUEST_SCOPE Scope for attributes stored in the request object.

SESSION_SCOPE Scope for attributes stored in the session object.

APPLICATION_SCOPE Scope for attributes stored in the application object.



Actions 121
Here is an example page fragment demonstrating the use of the exception object: 

<%@ page isErrorPage="true" %>
<H1>Warning!</H1>
The following error has been detected:<BR>
<B><%= exception %></B><BR>
<% exception.printStackTrace(new java.io.PrintWriter(out)); %>

In this example, the exception object is referenced in both an expression and a
scriptlet. As you may recall, expression values are converted into strings for printing.
The expression here will therefore call exception object’s toString() method in
order to perform this conversion, yielding the results described in table 6.20. The
scriptlet is used to display the stack trace for the exception, by wrapping the out
implicit object in an instance of java.io.PrintWriter and providing it as the argu-
ment to the printStackTrace() method.

6.2 Actions

In chapter 5 we examined three types of JSP tags, directives, scripting elements, and
comments. Actions are the fourth and final major category of JSP tags, and them-
selves serve three major roles. First, JSP actions allow for the transfer of control
between pages. Second, actions support the specification of Java applets in a
browser-independent manner. Third, actions enable JSP pages to interact with Java-
Beans component objects residing on the server. 

 In addition, all custom tags defined via tag libraries take the form of JSP actions.
The creation and use of custom tags is described in chapter 18. Finally, note that
unlike directives and scripting elements, actions employ only a single, XML-based
syntax.

Table 6.20 Relevant methods of the java.lang.Throwable class

Method Description

getMessage() Returns the descriptive error message associated with the exception 
when it was thrown.

printStackTrace(output) Prints the execution stack in effect when the exception was thrown to 
the designated output stream.

toString() Returns a string combining the class name of the exception with its error 
message (if any).



122 CHAPTER 6

Actions and implicit objects
6.2.1 Forward

The <jsp:forward> action is used to permanently transfer control from a JSP page
to another location within the same web application (see chapter 13) as the original
page. Any content generated by the current page is discarded, and processing of the
request begins anew at the alternate location. The basic syntax for this JSP action is
as follows:

<jsp:forward page="localURL" />

The page attribute of the <jsp:forward> action is used to specify this alternate
location to which control should be transferred, which may be a static document, a
servlet, or another JSP page. Note that the browser from which the request was sub-
mitted is not notified when the request is transferred to this alternate URL. In par-
ticular, the location field at the top of the browser window will continue to display
the URL that was originally requested. The behavior of the <jsp:forward> action is
depicted in figure 6.1. As with the include directive described in the previous
chapter, if the string value identifying the URL for the page attribute starts with a
forward slash character, it is resolved relative to the top-level URL directory of the
web application. If not, it is resolved relative to the URL of the JSP page containing
the <jsp:forward> action.

 For added flexibility, the <jsp:forward> action supports the use of request-time
attribute values (as described in chapter 4) for the page attribute. Specifically, this
means that a JSP expression can be used to specify the value of the page attribute, as
in the following example:

<jsp:forward page=’<%= "message" + statusCode + ".html" %>’ />

Every time the page is processed for a request and the <jsp:forward> action is to
be taken, this expression will be evaluated by the JSP container, and the resulting

<jsp:forward... />

Original
page

Request

Forwarded
page

Response

Request

Figure 6.1 Effect of the <jsp:forward> action on the processing of a request



Actions 123
value will be interpreted as the URL to which the request should be forwarded. In
this particular example, the URL value is constructed by concatenating two constant
String values with the value of some local variable named statusCode. If, for
example, the value of statusCode were 404, then this action would forward con-
trol to the relative URL, message404.html.

 As mentioned, the <jsp:forward> action can be used to transfer control to any
other document within the same web application. For the specific case when con-
trol is transferred to another JSP page, the JSP container will automatically assign a
new pageContext object to the forwarded page. The request object, the session
object, and the application object, though, will be the same for both the original
page and the forwarded page. As a result, some but not all of the attribute values
accessible from the original page will be accessible on the forwarded page, depend-
ing upon their scope: page attributes are not shared, but request, session, and appli-
cation attributes are. If you need to transfer data as well as control from one page to
another, the typical approach is to store this data either in the request, the session, or
the application itself, depending upon how much longer the data will be needed, and
whether it is user-specific. (Recall, however, that the session object is available only
on pages which are marked as participating in session management.)

TIP All of the objects in which JSP pages can store attribute values, with the ex-
ception of the pageContext, are also accessible via the servlet API. As a result,
this approach can also be used to transfer data when forwarding from a JSP
page to a servlet.

Since the request object is common to both the original page and the forwarded
page, any request parameters that were available on the original page will also be
accessible from the forwarded page. It is also possible to specify additional request
parameters to be sent to the forwarded page through use of the <jsp:param> tag
within the body of the <jsp:forward> action. The syntax for this second form of
the <jsp:forward> action is as follows:

<jsp:forward page="localURL">
  <jsp:param name="parameterName1"
             value="parameterValue1"/>
      … 
  <jsp:param name="parameterNameN"
             value="parameterValueN"/>
</jsp:forward>

For each <jsp:param> tag, the name attribute identifies the request parameter to be
set and the value attribute provides the corresponding value. This value can be



124 CHAPTER 6

Actions and implicit objects
either a static character string or a request-time attribute value (i.e., a JSP expres-
sion). There is no limit on the number of request parameters that may be specified
in this manner. Note also that the passing of additional request parameters is inde-
pendent of the type of document to which control is transferred; the <jsp:param>
tag can thus be used to set request parameters for both JSP pages and servlets.

NOTE As you might infer from the inclusion of getParameterValues() among
the methods of the request implicit object listed in table 6.4, HTTP request
parameters can actually have multiple values. The effect of the <jsp:param>
tag when used with the <jsp:forward> and <jsp:include> actions is to
add a value to a particular parameter, rather than simply set its value. 

This means that if a request parameter has already been assigned one or
more values by some other mechanism, the <jsp:param> tag will simply
add the specified value to those already present. Note, however, that this
new value will be added as the first (or primary) value of the request parame-
ter, so subsequent calls to the getParameter() method, which returns only
one value, will in fact return the value added by the <jsp:param> tag.

If the <jsp:param> tag is applied to a request parameter that does not al-
ready have any values, then the value specified in the tag becomes the param-
eter’s first and only value. Again, subsequent calls to getParameter() will
return the value set by the tag.

Given that the <jsp:forward> action effectively terminates the processing of the cur-
rent page in favor of the forwarded page, this tag is typically used in conditional code.
Although the <jsp:forward> action could be used to create a page which generates
no content of its own, but simply uses the <jsp:param> tag to set request parameters
for some other page, scenarios such as the following are much more common:

<% if (! database.isAvailable()) { %>
<%-- Notify the user about routine maintenance. --%>
<jsp:forward page="db-maintenance.html"/>

<% } %>
<%-- Database is up, proceeed as usual... --%>

Here, a method is called to check whether or not a hypothetical database server is
available. If not, control is forwarded to a static HTML page which informs the user
that the database is currently down for routine maintenance. If the server is up and
running, then processing of the page continues normally, as indicated in the com-
ment following the conditional code.



Actions 125
 One factor that you need to keep in mind when using this tag is its interaction
with output buffering. When the processing of a page request encounters the
<jsp:forward> tag, all of the output generated thus far must be discarded by
clearing the output buffer. If the output buffer has been flushed at least once,
however, some of the output from the page will already have been sent to the
user’s browser. In this case, it is impossible to discard that output. Therefore, if the
output buffer associated with the current page request has ever been flushed prior
to the <jsp:forward> action, the action will fail, and an IllegalStateException
will be thrown.

 As a result, any page that employs the <jsp:forward> action should be checked
to make sure that its output buffer is large enough to ensure that it will not be
flushed prior to any calls to this action. Alternatively, if output buffering is disabled
for the page, then any code which might call the <jsp:forward> action must
appear on the page before any static or dynamic elements that generate output.

 The final consideration in the use of this tag is the issue of cleanup code. If a JSP
page allocates request-specific resources, corresponding cleanup code may need to
be run from the page once those resources are no longer needed. If such a page
makes use of the <jsp:forward> tag, then processing of that page will end if and
when this tag is reached. Any cleanup code that appears in the JSP file after the
<jsp:forward> tag will therefore not be run if processing of the page causes this
action to be taken. Dependent upon the logic in the page, then, it may be necessary
to include a call to the cleanup code just before the <jsp:forward> tag, in order to
make sure that resources are managed properly.

6.2.2 Include

The <jsp:include> action enables page authors to incorporate the content gener-
ated by another local document into the output of the current page. The output
from the included document is inserted into the original page’s output in place of
the <jsp:include> tag, after which processing of the original page resumes. In
contrast to the <jsp:forward> tag, then, this action is used to temporarily transfer
control from a JSP page to another location on the local server.

 The <jsp:include> action takes the following form:

<jsp:include page="localURL" flush="flushFlag" />

The page attribute of the <jsp:include> action, like that of the <jsp:forward>
action, is used to identify the document whose output is to be inserted into the cur-
rent page, and is specified as a URL within that page’s web application  (i.e., there is
no host or protocol information in the URL, just directories and a file name). The



126 CHAPTER 6

Actions and implicit objects
included page can be a static document, a servlet, or another JSP page. As with the
<jsp:forward> action, the page attribute of the <jsp:include> action supports
request-time attribute values (i.e., specifying its value via a JSP expression). 

 The flush attribute of the <jsp:include> action controls whether or not the
output buffer for the current page (if any) is flushed prior to including the content
from the included page. In version 1.1 of the JSP specification, it was required that
the flush attribute be set to true, indicating that the buffer is flushed before pro-
cessing of the included page begins. This was a result of earlier limitations in the
underlying servlet API. In JSP 1.2, which is based on version 2.3 of the servlet API,
this limitation has been removed. In containers implementing JSP 1.2, then, the
flush attribute of the <jsp:include> action can be set to either true or false; the
default value is false.

 When the value of the flush attribute is set to true, the first step of the JSP
container in performing the <jsp:include> action is to flush the output buffer.
Under these circumstsances, then, the standard restrictions on the behavior of JSP
pages after the buffer has been flushed apply. In particular, forwarding to another
page— including an error page—is not possible. Likewise, setting cookies or other
HTTP headers will not succeed if attempted after processing the <jsp:include> tag.
For similar reasons, attempting to forward requests or set headers or cookies in the
included page will also fail (in fact, an exception will be thrown), although it is per-
fectly valid for an included page to itself include other pages via the <jsp:include>
action. If the flush attribute is set to false, only the restrictions on setting headers
and cookies still apply; forwarding, including to error pages, is supported.

 As with pages accessed via the <jsp:forward> action, JSP pages processed via
the <jsp:include> tag will be assigned a new pageContext object, but will share
the same request, session, and application objects as the original page. As was
also the case with the <jsp:forward> action, then, the best way to transfer informa-
tion from the original page to an included JSP page (or servlet) is by storing the
data as an attribute of either the request object, the session object, or the appli-
cation object, depending upon its expected longevity.

 Another element of functionality that the <jsp:include> action has in com-
mon with the <jsp:forward> action is the ability to specify additional request
parameters for the included document. Again, this is accomplished via use of the
<jsp:param> tag within the body of the <jsp:include> action, as follows:

<jsp:include page="localURL" flush="true">
  <jsp:param name="parameterName1"
             value="parameterValue1"/>
      … 



Actions 127
  <jsp:param name="parameterNameN"
             value="parameterValueN"/>
</jsp:include>

As before, the name attribute of the <jsp:param> tag identifies the request parame-
ter to be set and the value attribute provides the corresponding value (which may
be a request-time attribute value), and there is no limit on the number of request
parameters that may be specified in this manner, or on the type of document to
which the request parameters will be passed.

 As indicated in figure 6.2, the <jsp:include> action works by passing its
request on to the included page, which is then handled by the JSP container as it
would handle any other request. The output from the included page is then folded
into the output of the original page, which resumes processing. This incorporation
of content takes place at the time the request is handled. In addition, because the
JSP container automatically generates and compiles new servlets for JSP pages that
have changed, if the text in a JSP file included via the <jsp:include> action is
changed, the changes will automatically be reflected in the output of the including
file. When the request is directed from the original file to the included JSP page, the
standard JSP mechanisms—that is, translation into a stand-alone servlet, with auto-
matic recompilation of changed files—are employed to process the included page.

 In contrast, the JSP include directive, described in the previous chapter, does not
automatically update the including page when the included file is modified. This is
because the include directive takes effect when the including page is translated into
a servlet, effectively merging the base contents of the included page into those of the
original. The <jsp:include> action takes effect when processing requests, and
merges the output from the included page, rather than its original text. 

 There are a number of tradeoffs, then, that must be considered when deciding
whether to use the action or the directive. The <jsp:include> action provides
the benefits of automatic recompilation, smaller class sizes (since the code

<jsp:include.../>

Original
page

Request

Included
page

Response

Request

Response

Figure 6.2 Effect of the <jsp:include> action on the processing of a request



128 CHAPTER 6

Actions and implicit objects
corresponding to the included file is not repeated in the servlets for every including
JSP page), and the option of specifying additional request parameters. The
<jsp:include> action also supports the use of request-time attribute values for
dynamically specifying the included page, which the directive does not. Further-
more, the include directive can only incorporate content from a static document
(e.g., HTML) or another JSP page. The <jsp:include> action, since it includes the
output from an included URL rather than the contents of an included source docu-
ment, can be used to include dynamically generated output, such as from a servlet.

 On the other hand, the include directive offers the option of sharing local vari-
ables, as well as slightly better run-time efficiency, since it avoids the overhead of
dispatching the request to the included page and then incorporating the response
into the output of the original page. In addition, because the include directive is
processed during page translation and compilation, rather than during request han-
dling, it does not impose any restrictions on output buffering. As long as the output
buffer is sufficiently large, pages which utilize the include directive are not limited
with respect to setting headers and cookies or forwarding requests.

6.2.3 Plug-in

The <jsp:plugin> action is used to generate browser-specific HTML for specifying
Java applets which rely on the Sun Microsystems Java plug-in. As the primary focus
of this book is the use of JSP for server-side Java applications rather than client-side
applications, details on the use of this action may be found in appendix C.

6.2.4 Bean tags

JSP provides three different actions for interacting with server-side JavaBeans:
<jsp:useBean>, <jsp:setProperty>, and <jsp:getProperty>. Because compo-
nent-centric design provides key strengths with respect to separation of presenta-
tion and application logic, the next two chapters are devoted to the interaction
between JSP and JavaBeans.



 7Using JSP component
s

This chapter covers
� The JSP component model

� JavaBean fundamentals

� Interacting  with components through JSP
129



130 CHAPTER 7

Using JSP components
JSP scriptlets and expressions allow developers to add dynamic elements to web pages
by interleaving their HTML pages with Java code. While this is a great way for Java
programmers to create web-based applications and expressive sites, in general this
approach lacks an elegant separation between presentation and implementation, and
requires the content developer to be well versed in the Java programming language.
Along with scripting, JSP provides an alternative, component-centric approach to
dynamic page design. JSP allows content developers to interact with Java compo-
nents not only though Java code, but through HTML-like tags as well. This approach
allows for a cleaner division of labor between application and content developers. 

7.1 The JSP component model

The JSP component model is centered on software components called JavaBeans.
Before we can explain the specifics of JavaBeans and how they relate to JSP develop-
ment we must first understand the role of software components in the development
process. Once we have an understanding of component-based design principles we
will learn how to apply these techniques to web page design in JSP.

7.1.1 Component architectures

Components are self-con-
tained, reusable software
elements that encapsulate
application behavior or
data into a discrete pack-
age.  You can think of
components as black box
devices that perform specific operations without revealing the details of what’s
going on under the hood. Because they abstract their behavior from their implemen-
tation, they shield their user from messy details—providing added functionality with-
out increased complexity. Components are stand-alone and not bound tightly to any
single application or use. This allows them to be used as building blocks for multiple,
potentially unrelated projects. These two principles, abstraction and reusability, are
the cornerstones of component-centric design. Figure 7.1 illustrates how a collec-
tion of independent software components is assembled to form a complete solution.

 Think of components as reusable software elements that we can glue together
to construct our applications. A good component model allows us to eliminate or
greatly reduce the amount of glue code necessary to build our applications.
Component architectures work by employing an interface that allows our

Bank 
teller
user

interface

Account
manager
module

Database
access

component
Database

Figure 7.1 A component-based application



The JSP component model 131
components to work together in a more integrated fashion. It is this commonality
that binds components together and allows them to be used by development tools
that understand the interface to further simplify development.

7.1.2 Benefits of a component architecture

Let’s look at an example of component-centric design that’s more concrete. When
an architect designs a new home he or she relies on components to save time,
reduce complexity, and cut costs. Rather than design every wall unit, window
frame, and electrical system from scratch he or she uses existing components to sim-
plify the task. Architects don’t design a custom air-conditioning system; they select
an existing unit that will fit their requirements from the many models available on
the market. There’s a good chance that the architect doesn’t have the skills or
resources to design an air-conditioning system anyway. And conversely the designer
of the air-conditioning system probably couldn’t build a house. Because of this
component-based approach the architect and contractor can concentrate on build-
ing what they know best—houses, and the air-conditioning company can build air-
conditioners. Component architectures allow us to hide a component’s complexity
behind an interface that allows it to interact with its environment or other compo-
nents. It isn’t necessary to know the details of how a component works in order to
access its functionality.

 We can use this real world example to illustrate another important feature of
component design—reusability. The construction company can select an off-the-
shelf air-conditioner because it supports standard connectors, fastens with standard
screws, and runs off a standard electric voltage. Later, if the homeowner decides to
replace the unit with a new and improved model, there is no need to rebuild the
house—simply swap out the old component for the new. Standardized environ-
ments and design specifications have allowed for a flexible system that is easily main-
tained. Software components are designed to operate in specific environments, and
interact in predetermined ways. The fact that components must follow a certain set
of rules allows us to design systems that can accept a wide array of components.

Component development 
While it would be nice if we could design our entire application from pre-existing
components, that’s an approach that’s rarely practical for real application design.
Usually an application developed with a component approach involves a combina-
tion of general purpose and application specific components. The benefits of com-
ponent reuse sur face not only by sharing components among dif fering



132 CHAPTER 7

Using JSP components
applications, but through reuse of components across several segments of the same
or related applications.

 A banking application, for example, might have several different customer inter-
faces, an employee access module, and an administrative screen. Each of these
related applications could make use of a common component that contained all of
the knowledge necessary to display the specifics of a particular bank account. With
luck, and good forethought during component design, this banking component
might be useful to anyone developing financial management applications.

 Once a component has been designed, the component’s author is relatively free to
change its inner-workings without having to track down all of the component’s users.
The key to achieving this high level of abstractness is defining an interface that shields
any application relying on the component from the details of its implementation.

7.1.3 Component design for web projects

A component-based approach is ideal for the design of web applications. JSP lets
web designers employ the same component design principles that other software
developers have been using for years. Rather than having to embed complex logic
directly into pages through scripting code, or building page content into the pro-
gramming logic, they can simply employ HTML layout around components. The
component model’s ability to reuse common components can reduce development
time and project complexity.

 Isolating application logic from presentation layout is a necessity for web devel-
opment organizations that are built around teams whose members have a diverse
set of complementary skill sets. In many enterprises the web team is composed of
both application developers and web developers. Java application developers are
skilled in tasks such as exchanging information with a database and optimizing
back-end server code for performance, while web developers are good with the pre-
sentation aspects such as interface design and content layout. In a componentized
JSP development project, application developers are free to concentrate on develop-
ing components that encapsulate program logic, while web developers build the
application around these components, focusing their energies on its presentation.
As illustrated in figure 7.2, clearly defined boundaries between an application’s core
functionality and its presentation to its user allow for a clearer separation of respon-
sibilities between development teams.

 In some cases a single person may handle both aspects of design, but as project
complexity grows, splitting up the tasks of the development process can yield a
number of benefits. Even for web projects being handled by a small, unified team of
developers, a component-based architecture makes sense. The flexibility offered by



The JSP component model 133
components allows a project to handle the sudden changes in requirements that
often seem to accompany web projects.

7.1.4 Building applications from components

So how can we use these component design principles in the design of web applica-
tions? Let’s look at how we might develop a web shopping application with such an
approach. As is typical for an enterprise application, this example involves collecting
information from a database based on user input, performing some calculations on
the data, and displaying the results to the user. In this case we will display a catalog
of items, allow the user to select some for purchase, and calculate tax and shipping
costs, before sending the total back to the user.

 What we want to end up with is an online form that allows us to enter the cus-
tomer’s purchases, and, upon submitting the form, returns a new page with a nicely
formatted invoice that includes shipping fees and tax. Our page designers should
have no problem creating an attractive input form and invoice page, and our devel-
opers can easily calculate shipping and tax costs. It is only the interaction between
the two worlds that gets a little sticky. What technologies are best utilized in the
design of such an application?

 Since our product catalog is stored in a database, that portion of the application
has to be tied to the server, but where should the tax and shipping calculations take
place? We could use a client-side scripting approach with something like JavaScript.
However, JavaScript isn’t supported in every browser, and would reveal our calcula-
tions in the source of our page. Important calculations such as shipping and tax
should be confined to the server for security purposes; we certainly don’t want the
client browser performing the task.

Data
presentation

Application
logic

Database

Java developer’s domain

Web
designer’s
domain

Data
access

Figure 7.2 Division of labor in a web application’s development



134 CHAPTER 7

Using JSP components
 A server-side approach using JSP scripts would get around this problem. We can
access back-end resources with the code running safely on the server. While this
approach works well for smaller projects, it creates a number of difficulties for a
project such as this one. Directly imbedding JSP scripts into all of our pages intro-
duces a high degree of intermingling between our HTML page design and our busi-
ness logic. Our web designers and application developers will require a detailed
understanding of each other’s work in order to create the application. We could
choose to have the developers create a bare-bones implementation, then let our
designers polish it up. Or, we could let the designers develop a nice page layout
with no logic in it and then have the application developer punch in the code to cal-
culate tax and shipping. Does that provide the division of labor we’re looking for?
Not quite.

 A problem with this approach surfaces when we deploy and maintain our appli-
cation. Consider, for example, what happens when our catalog sales application
(originally developed for use by a single location of the company) becomes so wildly
successful our bosses decide to deploy it companywide to all twenty-eight branches.
Of course the sales tax is different at each branch so we make twenty-eight copies of
our page and find an application developer familiar with the code to make the nec-
essary changes to the JSP scripts. Then, we have to get our web developers to
change the HTML of each page to correct any branch-specific design or branding
issues. Over the course of the application’s lifetime we will constantly have to fiddle
with calculations, fix bugs, increase shipping rates, update the design, and add new
features. All of this work must happen across twenty-eight different versions of the
code. Why should we need two groups of people doing the same job twenty-eight
times over?

 A web application developed around components offers a better approach. With
the ability to deploy components into our HTML pages we can allow our applica-
tion developers to design tax and shipping calculating components that can be con-
figured at run time with determining factors like the local tax rate. Our web page
developers can then rely on these components without having to involve the appli-
cation developers each time some HTML needs to be changed or a new version of
the page created. On the application development side any bug fixes or updates
would be isolated to the components themselves and would not affect our web
page developer’s duties. So how do components fit in with JSP? JSP leverages the
JavaBeans component model, which we’ll explore next.



JavaBean fundamentals 135
7.2 JavaBean fundamentals

JavaBeans are software components written in Java. The components themselves are
called beans and must adhere to specifications outlined in the JavaBeans API. The
JavaBeans API was created by Sun with the cooperation of the industry and dictates
the rules that software developers must follow in order to create stand-alone, reus-
able software components. Like many other software components, beans encapsulate
both state and behavior. By using JSP’s collection of bean-related tags in their web
pages, content developers can leverage the power of Java to add dynamic elements to
their pages without writing a single line of Java code. Before delving into the specifics
of working with beans in JSP, we need to learn more about the beans themselves.

Bean containers
A bean container is an application, environment, or programming language that
allows developers to call up beans, configure them, and access their information and
behavior. Applications that use beans are composed purely of Java code, but bean
containers allow developers to work with it at a higher conceptual level. This is pos-
sible because JavaBeans expose their features and behavior to the bean container,
allowing the developer to work with the bean in a more intuitive fashion. The bean
container defines its own way of presenting and interacting with the bean and writes
the resulting Java code itself.

 If you have used Sun’s Bean Box, IBM’s Visual Age for Java, Visual Café, or
other Java development tools you’ve already had some experience with beans.
These applications include bean containers that work with beans in a visual format.
With these tools you can build an application by simply dragging bean icons into
position and defining the specifics of their behavior and their connections to other
beans. The application then generates all of the necessary Java code. Like these
visual tools, JSP containers allow developers to create web-based Java applications
without needing to write Java. In JSP we interact with beans through a collection of
tags that we can embed inside our HTML.

Bean properties
Bean containers allow you to work with beans in terms of properties—named
attributes of the bean that maintain its state and control its behavior. A bean is
defined by its properties, and would be pretty much useless without them. Bean
properties can be modified at run time by the bean container to control specifics of
the bean’s behavior. These property values are the sole mechanism the bean con-
tainer uses to expose beans to the developer.



136 CHAPTER 7

Using JSP components
 As an example, let’s suppose we have a bean called WeatherBean that knows var-
ious things about the current weather conditions and forecasts. The bean could col-
lect current weather information from the National Weather Service computers, or
extract it from a database—the point being that as the bean’s user we do not need
to understand the specifics of how the bean gets its information. All we care about
as developers is that the WeatherBean is able to give us information such as the cur-
rent temperature, the projected high, or the chances for rain. Each of these bits of
information is exposed to the bean container as a property of the bean whose value
we can access for our web page or application.

 Each bean will have a different set of properties depending on the type of infor-
mation it contains. We can customize a bean by setting some of its property values
ourselves. The bean’s creator will impose restrictions on each property of the bean,
controlling our access to it. A property can be read-only, write-only, or readable and
writable. This concept of accessibility allows the bean designer to impose limits on
how the beans can be used. In our WeatherBean, for example, it doesn’t make any
sense to allow developers to modify the value of the bean’s property representing
today’s high temperature. That information is managed by the bean itself and
should be left read-only. On the other hand, if the bean had a property controlling
the ZIP code of the region in whose weather we are interested, it would certainly
make sense to allow developers to specify it. Such a property would be writable, and
probably readable as well.

NOTE As we’ll learn in detail in chapter 8, behind the scenes JavaBeans are merely
Java objects. A JavaBean’s properties map to the methods of a Java object
that manipulates its state. So when you set a property of a bean, it’s like a
shortcut for calling object methods through Java. Likewise, viewing the cur-
rent value of a bean’s property is essentially calling a method of an object and
getting its results. We’ll learn how a Java object’s methods map into bean
properties in the next chapter.

Trigger and linked properties
Some properties are used to trigger behavior as well as report information and are
thus called trigger properties. Reading from or writing to a trigger property signals
the bean to perform an activity on the back end. These triggers, once activated, can
either update the values of other properties or cause something to happen on the
back end. Changing the value of our ZIP code property for example might cause
the bean to run off to the National Weather Service, request weather conditions in
the new ZIP code, and update its other weather related properties accordingly. In



JavaBean fundamentals 137
that case the weather properties and the ZIP code property are considered linked
properties because changing the value of one updates the values of others.

Indexed properties
It is also possible for a single property to store a collection of values. These proper-
ties are known as indexed properties because each value stored in the property is
accessed through an index number, which specifies which particular value you want.
For example you can request the first value in the list, the third, or the twenty-
seventh. Our WeatherBean could have a property that holds forecasted tempera-
tures for the next five days, for example. Not every bean container provides a simple
mechanism for working with these multivalue properties directly, however. The JSP
bean tags, for example, do not recognize indexed properties. Instead, you must use
JSP scriptlets, JSP expressions, or custom JSP tags (discussed in chapters 18 and 19)
to access them.

Property data types
Bean properties can be used to hold a wide array of information. WeatherBean’s
properties would need to store everything from temperatures to rainfall odds, fore-
casts, ZIP codes, and more. Each property of a bean can hold only one specific type
of data such as text or a number. bean property values are assigned a Java data type,
which is used internally by the bean and in the Java code generated by the bean
container. As you might expect, properties can hold any of the Java primitives like
int or double, as well as Java objects like Strings and Dates. Properties can also
store user-defined objects and even other beans. Indexed properties generally store
an array of values, each of the same data type.

 The bean container determines how we work with the property values of a bean.
With JSP scriptlets and expressions we reference property values by their Java data
type. If a property stores integer values we get integer values out of it and must put
integer values into it. With bean tags, however, we treat every property as if it were
stored text, or in Java parlance, a String. When you set the value of a bean prop-
erty, you pass it text. Likewise, when you read the contents of a property you get
back text, regardless of the internal data type used inside the bean. This text-only
strategy keeps JSP bean tags simple to work with and fits in nicely with HTML.

 The JSP container automatically performs all of the necessary type conversions.
When you set an integer property, for example, it performs the necessary Java calls to
convert the series of numeric characters you gave it into an actual integer value. Of
course this conversion process requires you to pass in appropriate text values that
Java can correctly convert into the native data type. If a property handles floating



138 CHAPTER 7

Using JSP components
point values, for example, it would throw an error if you attempted to set the value
to something like banana bread, one hundred, or (3,9).

 Clever bean designers can control property values themselves by accepting string
values for nonstring properties and performing the conversions themselves. For any
value which is neither a string nor a Java primitive type, this technique must be
used. Therefore it might be perfectly legal to set an integer property to one hun-
dred, provided the bean’s designer had prepared it for such input.

Bean property sheets
A bean’s capabilities are documented in a table called a property sheet which lists all
of the properties available on the bean, their level of access afforded to the users,
and their Java type. Property sheets may also specify example or valid values for each
property of the bean. Table 7.1 shows the property sheet for the WeatherBean
component that we have been using.

Property sheets allow bean designers to describe the features of a bean to its users,
such as JSP developers, servlet programmers, and the like. From the property sheet
a developer can determine what type of information the bean can contain and what
behavior it can provide. Of course, the property sheet alone may not be enough to
adequately explain the behavior of a bean to the end user. In this case additional
information can be communicated through the bean’s documentation.

7.2.1 The different types of JavaBeans

For purposes of discussion we can think of beans as falling into three general cate-
gories: visual component beans used as elements of graphical user interfaces (GUI),
data beans that provide access to a collection of information, and service beans (also

Table 7.1 Property sheet examples 

Name Access Java Type Example Value

zipCode read/write String 77630

currentTemp read-only int 87

todaysHigh read-only int 101

todaysLow read-only int 85

rainOdds read-only float 0.95

forecasts read-only String[] Sunny, Rainy, Cloudy, Sunny, Hot

iconURL read-only URL http://imageserver/weather/rainy.gif



JavaBean fundamentals 139
known as worker beans) that can perform specific tasks or calculations. Of course
some beans can be classified in more than one category.

Visual component beans
The development of visual components has been one of the most common uses of
JavaBeans. Visual components are elements such as text fields, selectors, or other
widgets useful for building user interfaces. By packaging GUI components into
beans, Java development environments can take advantage of JavaBean’s support
for visual programming. This allows developers to create their interfaces by simply
dragging the desired elements into position. Since visual beans have been designed
to run as part of graphical Java applications, they are not compatible with JSP, which
is intended for text-based applications such as HTML interface design.

Data beans
Data beans provide a convenient way to access data that a bean itself does not nec-
essarily have the capability to collect or generate. The calculation or collection of
the data stored inside data beans is the responsibility of some other, more complex
component or service. Data beans are typically read-only, allowing you to fetch data
from them but not allowing you to modify their values on your own.

 However, some data beans allow you to set some of their properties in order to
control how data is formatted or filtered before being returned through other prop-
erties. For example, an AccountStatusBean might also have a currencyType prop-
erty that controls whether the balance property returned data in dollars, pounds, or
Swiss francs. Because of their simplicity, data beans are useful to standardize access
to information by providing a stable interface.

Service beans
Service beans, as you might expect, provide access to a behavior or particular ser-
vice. For this reason they are sometimes referred to as worker beans. They can
retrieve information from a database, perform calculations, or format information.
Since the only way that we can interact with a bean is through its properties, this is
how we will access a bean’s services. In a typical design, we will set the value of cer-
tain properties that control the bean’s behavior, and then read the results of the
request through other properties. A bean designed to access a database of employee
phone numbers, for example, might have a property called employee, which we
could set to the name we wish to look up. Setting this property triggers the data-
base search and sets the phone and email properties of the bean to reflect the infor-
mation of the requested employee.



140 CHAPTER 7

Using JSP components
 Not all service beans collect data from a back-end source. Some simply encapsu-
late the logic necessary to perform calculations, conversions, or operations. A
StatisticsBean might know how to calculate averages, medians, and standard
deviations, for example. A UnitConversionBean might allow the page designer to
specify some distance in inches and get it back in feet, yards, miles, or furlongs.

 Some service beans will not return any information. Their service may be to
store information in a database or log file, for example. In this case, you might set a
property’s value not to get results of the service, but simply for its side-effect behav-
ior—what happens on the back end. Service beans allow for a clear separation of
responsibility and for teams to have separate knowledge domains. The web designer
doesn’t need to understand statistical calculations and the programmer doesn’t need to
understand subtleties of page layout. A change in either the presentation or the pro-
gram logic will not affect the others, provided the bean’s interface does not change.

7.3 JSP bean tags

Now that we have a good understanding of the principles of component architec-
ture and JavaBeans we can get into the nitty-gritty of building web pages around
them. JSP has a set of bean tags which can be used to place beans into a page, then
access their properties. Unlike JSP scriptlets and expressions we explored in the pre-
vious chapter, you do not need to be a Java programmer in order to design pages
around beans. In fact, you don’t need to be any type of programmer at all because
JSP does a pretty good job of eliminating the need for messy glue between our
HTML and components.

7.3.1 Tag-based component programming

JSP needs only three simple tags to enable interaction with JavaBeans: <jsp:use-
Bean>, <jsp:setProperty>, and <jsp:getProperty>. These tags allow you to
place beans into the page as well as alter and access their properties. Some people
complain about the simplicity of the JSP tag set, preferring an approach that embeds
more functionality into the tags themselves similar to PHP or ColdFusion. It is
important to understand that the limited set of functionality afforded to JSP bean
tags is intentional. They are not meant to provide a full-featured programming lan-
guage; programmers can use JSP scriptlets for that. Instead, the bean tags enable the
use of component design strategies in HTML documents without the need for the
page author to learn a programming language or to understand advanced program-
ming concepts.



JSP bean tags 141
 As always, there is a fine line in determining the trade-off between the power of
a language and its complexity. As a good compromise, the JSP designers elected to
keep the core functionality very simple, defining only a few tags for working with
beans and establishing a specification that allows for the development of new, cus-
tom tags that solve specific problems. The standard tags allow you to create
references to beans you need to use, set the values of any configurable properties
they might have, and read information from the bean’s properties. Custom tags
with more complex levels of functionality can be developed by individuals and orga-
nizations and integrated into any JSP environment through an extension mecha-
nism known as custom tag libraries. Through custom tags the JSP language can be
extended to support additional programming constructs, like conditionals and
loops, as well as provide additional functionality such as direct access to databases.
We’ll learn about custom tags and tag libraries in chapters 18 and 19. 

An illustrative example
Let’s whet our appetite by looking at JSP code built around components, rather
than scriptlets. This example shows some of the things we can accomplish with the
component-centric design model, and will serve as a kickoff to our discussion of
JSP’s component features.

<jsp:useBean id="user" class="RegisteredUser" scope="session"/>
<jsp:useBean id="news" class="NewsReports" scope="request">
  <jsp:setProperty name="news" property="category" value="financial"/>
  <jsp:setProperty name="news" property="maxItems" value="5"/>
</jsp:useBean>
<html>
<body>
Welcome back <jsp:getProperty name="user" property="fullName"/>,
your last visit was on
<jsp:getProperty name="user" property="lastVisitDate"/>.
Glad to see you again!
<P>
There are <jsp:getProperty name="news" property="newItems"/> new articles
available for your reading pleasure. Please enjoy your stay and come back soon.
</body>
</html>

Notice how straightforward the page design has become? We have used a few spe-
cial JSP tags to eliminate all of the Java code from our page. Even though we have
not yet discussed the specifics of any of the bean tags, you probably already have a
good idea of what the code does just by looking at it. It uses two components, user
and news. The first allows us to greet visitors personally, and the second stores news
items in which they might be interested. JSP bean tags allow us to more clearly



142 CHAPTER 7

Using JSP components
understand the page’s layout because we are writing HTML, not code. Figure 7.3
shows what the page looks like on the browser.

7.3.2 Accessing JSP components

To interact with a bean we first tell the page where to find the Java class file that
defines the bean and assign it a name. We can then use this name to access the val-
ues stored in the bean’s properties. By mastering just three simple JSP tags you can
add component-based web page design to your repertoire. We will look at each of
these tags in-depth.

The <jsp:useBean> tag
The <jsp:useBean> tag tells the page that we want to make a bean available to the
page. The tag is used to create a bean or fetch an existing one from the server.
Attributes of the tag specify the type of bean you wish to use and assign it a name
we can use to refer to it. The <jsp:useBean> tag comes in two forms, a single
empty tag and a matching pair of start and end tags that contain the body of the tag
which can be used to specify additional configuration information. In its simplest
and most straightforward form the <jsp:useBean> tag requires only two attributes,
id and class. Like all of the JSP tags, you must enclose each attribute value in
quotes. The basic syntax for the tag’s two forms is:

<jsp:useBean id="bean name" class="class name"/>

<jsp:useBean id="bean name" class="class name">
  initialization code
</jsp:useBean>

Figure 7.3 Dynamic content with JSP



JSP bean tags 143
Table 7.2 shows all of the possible attribute values supported by the <jsp:use-
Bean> tag. We will discuss the purpose of each throughout the chapter, but for now
we will concentrate on understanding the basic bean tag attributes.

The ID attribute
The id attribute specifies a name for the bean—a unique value that will refer to this
particular bean throughout the page and over the course of its lifetime (we’ll learn
how to extend the bean’s life beyond the current page later). We can use multiple
<jsp:useBean> tags to define more than one bean within a page, even multiple
instances of the same bean class, as long as there is a unique identifier associated
with each individual bean. The name we select for our bean is arbitrary, but it must
follow some simple rules:

� It must be unique to the page
� It must be case sensitive

� The first character must be a letter
� Only letters, numbers, and the underscore character (_) are allowed (no spaces)

The class attribute
The value of the class attribute specifies the class name of the JavaBean itself. To
help better organize code and avoid conflicts, Java classes are usually organized into
packages. Packages are collections of individual Java class files organized inside a sin-
gle directory. Package names are usually composed of multiple, period-separated
names where each name is a directory in the package hierarchy. You must always
specify the fully qualified name of the bean class. A fully qualified class name consists
of the name of the class’s package and the class name itself. By convention, packages
begin with the Internet domain name of their creator, and usually include more

Table 7.2 Attributes of the <jsp:useBean> tag

Attribute Value Default Example Value

id Java identifier none myBean

scope page, request, session, appli-
cation

page session

class Java class name none java.util.Date

type Java class name same as 
class

com.manning.jsp.AbstractPerson

beanName Java class or serialized Bean none com.manning.jsp.USCurrency.ser



144 CHAPTER 7

Using JSP components
levels of hierarchy to help better organize collections of classes into logical collec-
tions. The bean’s developer will determine the actual package and class name of the
bean. Some fully qualified bean class names might look something like the following:

com.manning.RegisteredUserBean
com.deepmagic.beans.database.logging.LogBean
com.blokware.MagicPizzaBean
com.taglib.wdjsp.arch.EmployeeBean

The actual bean class is the last part of the fully qualified name, so in the first exam-
ple we are talking about a RegisteredUserBean inside the com.manning package.
Unlike other Java code, which allows you to import packages and refer to the class-
name alone, JSP requires fully qualified class names inside the <jsp:useBean> tag.
For example, the following does not work:

<%@page import="com.manning.*" %>
<jsp:useBean id="user" class="RegisteredUserBean" />

The correct way…

<jsp:useBean id="user" class="com.manning.RegisteredUserBean" />

Early implementations of the JSP specification sometimes allowed non-fully quali-
fied class names in this tag, but as of version 1.2 these are no longer allowed. Even
if your container supports this shortcut, you should always fully qualify your names
to keep your code compatible with other containers or updates to yours. Note that
for scripting variables, imported packages are supported and fully qualified class
names are not required.

The type attribute
In practice you won’t use this attribute too much. The <jsp:useBean> tag’s class
attribute determines which Java class is used to create our bean, but JSP offers a way
of fine-tuning the JSP container’s interpretation of the bean’s type which is some-
times needed when beans exist on the server and are not being instantiated by the
current page. By default, the bean is referenced by the class type corresponding
directly to the underlying object’s class. However, if you need to refer to the bean
as another type, for example a base class or an interface that the bean implements,
you can use the type attribute of the <jsp:useBean> tag to do so. The class type
you specify is used to represent the bean object in the Java resulting from the JSP
compilation phase. The bean’s actual class must, of course, be assignable to the class
type specified. If you specify both class and type attributes, the bean will be cre-
ated using the given class, then cast to the given type. The type attribute can only
be used alone (that is without a corresponding class attribute) in cases where the



JSP bean tags 145
bean already exists on the server, a feature known as scope which we’ll cover in the
last section of this chapter. Like the class attribute, you must specify the fully quali-
fied name of the class.

The beanName attribute
This attribute, which is not used too often, specifies the name of a bean which will
be passed to the instantiate() method of  the java.beans.Beans class. It will
always take the format of “x.y.z”, but can refer to either a fully qualified classname
or a local serialized bean, located in the file path x/y/z.ser. If present, this class or
resource will be instantiated and assigned to the reference specified by the id
attribute. One unique feature of this attribute of the <jsp:useBean> tag is that it
can be assigned through a run-time expression, allowing you to specify the name of
the class or resource via a request parameter.

The tag body
The tag’s optional body portion can be used to initialize any user configurable
properties of the bean. This lets us configure a bean specifically for this page or our
particular application. We will discuss bean initialization in detail later. For now, we’ll
look at beans that do not require any special initialization at the time they are created. 

<jsp:useBean> in action
Let’s get into using the bean tags. Here’s an example of the <jsp:useBean> tag in
action.

<jsp:useBean id="myclock" class="com.manning.jsp.ClockBean"/>
<html>
<body>
There is a Bean hiding in this page!
</body>
</html>

We’ve told the page that we will be using a bean that is defined in the Java class file
ClockBean in the com.manning.jsp package and we’ve named the bean myclock
for use in the page. In practice we like to put all of our <jsp:useBean> tags at the
beginning of the HTML document, but syntactically it is valid to use the tag any-
where in the page. However, keep in mind that beans are only available to portions
of the page following the <jsp:useBean> tag in which they were defined. Portions
of the page before the <jsp:useBean> tag will have no reference to the bean, and
attempting to access the bean will cause an error.

 The <jsp:useBean> tag creates an instance of the bean and assigns its ID as
specified by the id attribute. When the new bean is created it performs any tasks or



146 CHAPTER 7

Using JSP components
data processing as designed by the bean’s author. For example, the ClockBean sets
its internal state to reflect the current time and date, while another bean might look
up information in a database. This is part of the normal Java instantiation process
and happens without any help from you. Once a bean has been given a name and
been made available to the page we can begin using its properties. Depending on
the bean design, the properties may simply provide information such as the time of
day or the name of the current user, or they might also execute complex transac-
tions or look up information in a database. Whichever the case, the results are acces-
sible through the bean’s properties.

 It is important to understand the difference between a bean’s class and its
instance. The bean’s class controls what type of bean will be created, its properties,
and capabilities. It is used like an object template to create a unique instance of the bean
with each call of the <jsp:useBean> tag. For example, consider the following tags:

<jsp:useBean id="clock1" class="com.manning.jsp.ClockBean" />
<jsp:useBean id="clock2" class="com.manning.jsp.ClockBean" />

This creates two independent, that is, completely separate, beans with their own
names: clock1 and clock2. They are instances of the same class, but any changes
made to one bean will have no effect on the other. Later in this chapter we will talk
about how other attributes of the <jsp:useBean> tag can allow a bean to be reused
between visits to a single page or across multiple pages throughout the site. In the
examples above, our beans are there, but we aren’t actually using them to do any-
thing. The next bean tag, <jsp:getProperty> allows us to retrieve the information
stored inside the bean.

Accessing bean properties with <jsp:getProperty>
The primary way to access a bean’s properties in JSP is through the <jsp:getProp-
erty> tag. Unlike the <jsp:useBean> tag which performs some work behind the
scenes but doesn’t produce any output, the <jsp:getProperty> tag actually pro-
duces content that we can see in the HTML generated by the page. The <jsp:get-
Property> tag is empty with no body element and expects two attributes, name and
property. Its syntax is:

<jsp:getProperty name="bean name" property="property name"/>

The name attribute specifies the bean we are evaluating, and should correspond to
the name we selected for the bean in the <jsp:useBean> tag’s id attribute. Don’t
forget that the <jsp:useBean> tag refers to the bean with the id attribute, and that
other tags refer to the bean through a name attribute. It is a JSP convention that the



JSP bean tags 147
id attribute is used to define a new object, while the name attribute is used to refer-
ence an existing object. Be careful, it can be easy to confuse the two.

 In the resulting HTML that is displayed at run time, the tag is replaced with the
value of the property of the bean you request. Of course, since we are creating an
HTML document, the property is first converted into text by the JSP container. This
tag is very easy to use. Let’s look at the ClockBean example again, but this time
we’ll use the <jsp:getProperty> tag to ask the bean to tell us what time it is:

<jsp:useBean id="myclock" class="com.manning.jsp.ClockBean"/>
<html>
<body>
The Bean says that the time is now:
<jsp:getProperty name="myclock" property="time"/>
</body>
</html>

This should display HTML that looks something like:

<html>
<body>
The Bean says that the time is now: 12:33 pm
</body>
</html>

You’ll use this tag a lot, as it’s the key to component-based dynamic output with
JSP. You can use as many <jsp:getProperty> tags in your page as you need. You
can intersperse them with HTML to not only dynamically generate single values and
blocks of text, but to control attributes of the HTML as well. It is perfectly legal to
nest JSP tags inside HTML attributes. A bean’s property could be used to control
the page’s background color, the width of a table, or the source of an image. For
example, a bean reflecting a standardized corporate style might have a property that
exposes the URL location of the latest version of the corporate logo and the corpo-
rate color scheme. We can display this image in our HTML as shown next without
hard coding the URL value in each page.

<jsp:useBean id="style" class="beans.CorporateStyleBean"/>
<html>
<body bgcolor="<jsp:getProperty name="style" property="color"/>">
<center>
<img src="<jsp:getProperty name="style" property="logo"/>">
Welcome to Big Corp!
</center>
</body>
</html>

This would generate HTML like this:



148 CHAPTER 7

Using JSP components
<html>
<body bgcolor="pink">
<center>
<img src="http://imageserver/logo.gif">
Welcome to Big Corp!
</center>
</body>
</html>

If the logo changes next week when the company replaces the corporate branding
director, or is acquired, all of your pages will instantly reflect the new value built
into the CorporateStyleBean. Another advantage here is that application pro-
grammers might be relying on the same bean to brand their interfaces, and the
change would be reflected there as well.

TIP According to the specifications, white space in a document is not significant
to the JSP parser, but should be preserved by the JSP processor. In some im-
plementations that we have encountered, however, the parser does not prop-
erly preserve white space characters between JSP bean tags when no other
(non-white space) characters are present. For example, you would expect the
following JSP code to display something like “Firstname Lastname”, but in-
stead you might get “FirstnameLastname”:

<jsp:getProperty name="user" property="firstName"/>
<jsp:getProperty name="user" property="lastName"/>

This might happen because the JSP parser ignored the newline, which would
normally be treated as a white space character. If this happens, adding blank
lines probably won’t help as the JSP parser would simply ignore them too, as-
suming that there was nothing relevant between the two bean tags.

If your JSP container suffers from this annoyance, you can work around it by
placing meaningful, but empty content, such as an HTML comment, which
should force it to preserve the newline character in the page output.

<jsp:getProperty name="user" property="firstName"/>
<!-- insert a space -->
<jsp:getProperty name="user" property="lastName"/>

The <jsp:setProperty> tag
We use <jsp:setProperty> to modify the properties of beans. The <jsp:setProp-
erty> tag can be used anywhere within the page to modify a bean’s properties,
provided that the property has been made writable by the bean developer. We mod-
ify property values of a bean either to control specifics of the bean’s operation or



JSP bean tags 149
access its services. The exact behavior of changing a property’s value is bean spe-
cific. The bean’s author might, for example, provide a query property that specifies
a database query whose results are reflected in other properties. In that case you
might call <jsp:setProperty> several times in the page, reading the results proper-
ties again and again, since they would return new values after each change to the
query property.

 Most service beans will require some amount of run-time configuration to be
useful, because they depend on user-configurable properties that control some
aspect of their behavior. This allows the same bean to be used over and over again
to encapsulate different sets of information. For example, if a developer needed a
bean to provide information about a registered user it would not be necessary to
create a different type of bean for each user—BobBean, SueBean, JoeBean, and so
forth. The developer would instead design the bean’s properties to abstractly refer
to properties of any user, and then make one of the bean’s properties control which
user’s information is stored in the bean

 The <jsp:setProperty> tag is relatively straightforward. It requires three
attributes: name, property, and value. Just as in the <jsp:getProperty> tag, the
name attribute specifies the bean you are working with; the property attribute spec-
ifies which of the bean’s properties you wish to set; the value attribute is text to
which you want to set the property.

<jsp:setProperty name="bean name" property="property name" 
value="property value"/>

The <jsp:setProperty> tag can be used anywhere inside the JSP document after
the bean has been defined with the <jsp:useBean> tag. At run time JSP evaluates
the tags in a page in the order they were defined, from top to bottom. Any property
values that you set will only affect tags in the page that follow the <jsp:setProp-
erty> tag. The value attribute can be specified as text or calculated at run time
with JSP expressions. For example, here are a couple of ways that we can set the
days since a user’s last visit by setting the value of a property. Both examples are
functionally equivalent, they set the daysLeft property to a value of 30.

<jsp:setProperty name="user" property="daysLeft" value="30"/>
<jsp:setProperty name="user" property="daysLeft" value="<%= 15 * 2 %>"/>

Indexed properties
As we mentioned earlier, indexed properties contain a whole collection of values for
the property. To access a value, you must pass the bean an index to indicate which
value you are interested in. The standard JSP bean tags cannot deal with indexed
properties; they can only be accessed through JSP scriptlets, expressions, and



150 CHAPTER 7

Using JSP components
custom tags. For example, let’s look at WeatherBean’s forecasts property, which
holds five String values, a forecast for each of the next five days. To view tomor-
row’s forecast we must specify the first element, which is referenced in array style
notation as element 0, the next day’s is element 1, and so forth. You access an
indexed property through a JSP scriptlet or expression simply by calling the method
behind the property and passing it an index value. To read from an indexed prop-
erty, prefix it with the word get; to write to it use the prefix set. (We’ll explain how
properties are mapped to method names in detail in chapter 8.) To read from the
forecasts property we would call the method getForecasts(). For example:

<B>Tomorrow’s Forecast</B>: <%= weather.getForecasts(0) %> <BR>
<B>The Rest of the Week</B>
<UL>
<% for (int index=1; index < 5; index++) { %>
<LI><%= weather.getForecasts(index) %> (maybe)
<% } %>
</UL>

In the above example we use JSP scriptlets and expressions to access the indexed
forecasts property of our WeatherBean, which has been loaded into the page with
an id of weather. To display the forecast for tomorrow, we use a JSP expression to
get the first element of the forecast’s property by calling its access method, get-
Forecasts(), with an argument of 0. We then use a scriptlet to loop through ele-
ments 1, 2, 3, and 4 to display a list of the forecasts for the rest of the week.

 Beans with indexed properties can be designed to work more easily with JSPs so
that the JSP developer doesn’t have to resort to scriptlets in order to access them. A
bean can include a convenience property that allows you to treat an indexed prop-
erty as a single string value by separating each value with a comma or other delimiter.

7.3.3 Initializing beans

When a bean is first created it can be initialized by setting the value of its config-
urable properties. This initialization happens only the first time the bean is created.
By default, this initialization phase will take place each time the page is accessed,
since a bean is being created for each request. As we will see later when we discuss
the bean life cycle, beans can also be stored in and retrieved from the environment
of the web server, in which case they will not need to be reinitialized.

 When a bean is first created it may be necessary to initialize it by setting the
value of any properties that control its operation before we attempt to read any
bean properties. We could simply use the <jsp:setProperty> tag in the page, but
as we will learn later on, it is possible for beans to exist beyond the scope of a single



JSP bean tags 151
page request, and thus it becomes important to define a separate block of initializa-
tion code for the bean.

Bean configuration
The body tag version of the <jsp:useBean> tag allows you to configure the bean
before using it by setting any necessary properties with the <jsp:setProperty>
tag. This form of the <jsp:useBean> has both start and end tags enclosing a body
area as follows:

<jsp:useBean id="myBean" class="com.manning.jsp.MyBean">
<%-- This is the body area --%>
</jsp:useBean>

Any commands inside the body are processed immediately after the bean is instanti-
ated and before it is made available to the rest of the page. For example:

<jsp:useBean id="clock" class="com.manning.jsp.ClockBean">
  <jsp:setProperty name="clock" property="timezone" value="CST"/>
</jsp:useBean>

You can think of the <jsp:useBean> tag’s body elements as a run-once configura-
tion phase. It is a useful way to configure the bean with page-specific configuration
data or to prepare the bean for use later in the page. You can even set properties of
other beans, as long as they have been created earlier in the page.

 The body of the <jsp:useBean> tag can also contain JSP scriptlets and arbitrary
HTML markup. This HTML will be displayed as part of the page only if the bean
must be instantiated. (Be sure that you place such text after your opening HTML
tag!) If the bean already exists in the environment, then subsequent page requests
will not display this initialization HTML. For example:

<html>
<body>
<jsp:useBean id="clock" class="com.manning.jsp.ClockBean">
  The <b>ClockBean</b> is initializing...
</jsp:useBean>
The main page follows…
</body>
</html>

Initializing beans from the request
A key feature of the <jsp:setProperty> tag is its ability to set a bean’s properties
dynamically at run time using information retrieved from the page request. This
allows us to dynamically configure our beans based on user input or other events by
embedding the configuration information into the page request itself. The request



152 CHAPTER 7

Using JSP components
information typically comes from an HTML form, or from request parameters hard
coded into the URL. It can also be populated with values—and even entire beans—
from a servlet. HTML forms provide a natural way to get input from users, fitting
well into the name/value pairs associated with JavaBean properties. Like a CGI pro-
gram, a JSP page can be used as a form handler by specifying its URL in the form
tag’s action attribute. Any data in the form will be accessible to the JSP page and
can be used to provide information to the bean.

Example: a compound interest calculator
Listing 7.1 shows how to build a simple application that can calculate the value of
compounded interest for an investment. We’ll first create an HTML page with a
form that will collect the necessary information to perform our calculation:

<html>
<body>
<form action="CompoundInterestResults.jsp">
Principal: <input type="text" name="principal">
Interest Rate: <input type="text" name="interestRate">
Years: <input type="text" name="years">
<input type="submit" value="Calculate Future Value">
</form>
</body>
</html>

We can then create a handler for our form called CompoundInterestResults.jsp,
which will use the values specified in the form fields to configure a bean that can
calculate compounded interest. We’ll actually create this bean in the next chapter,
but for now let’s concentrate on using this bean as a service for our page. Let’s see
the CompoundInterestBean’s property sheet, shown in table 7.3.

Listing 7.1 CompoundInterest.htm

Table 7.3 CompoundInterestBean property sheet 

Name Access Java Type Example

principal read/write double 100.50

interestRate read/write double .10

years read/write int 10

futureValue read-only String 155.21



JSP bean tags 153
The futureValue property is linked to the other properties. Its value is calculated
using the values of the principal, interestRate, and years properties. To use
this bean we must therefore first set the values of these three properties, then read
the results from the futureValue property. Let’s look at the JSP that will be the
form’s handler. First we must create a reference to the CompoundInterestBean.

<jsp:useBean id="calculator" 
           class="com.taglib.wdjsp.components.CompoundInterestBean"/>

<jsp:useBean id="calculator" class="com.manning.jsp.CompoundInterestBean"/>

In the body of our <jsp:useBean> tag we need to map each of the bean’s configu-
ration properties to the appropriate data from the form field. The <jsp:setProp-
erty> tag looks for an incoming request parameter matching the value specified in
the param attribute of the tag. If it finds one, it tells the bean to set the correspond-
ing property, specified via the property attribute, to that value, performing any
necessary type conversion. We’ll add the following three lines to the body of our
<jsp:useBean> tag:

<jsp:setProperty name="calculator" property="principal" param="principal"/>
<jsp:setProperty name="calculator" property="interestRate" 
  param="interestRate"/>
<jsp:setProperty name="calculator" property="years" param="years"/>

The param attribute of the <jsp:setProperty> tag is the equivalent of the JSP
scriptlet <% request.getParameter(“something”) %>. So, the above block of code
is functionally equivalent to the following, which uses scriptlets instead of the param
attribute to initialize the bean’s values:

<jsp:setProperty name="calculator" property="principal"
  value='<%= request.getParameter("principal") %>'/>
<jsp:setProperty name="calculator" property="interestRate"
  value='<%= request.getParameter("interestRate") %>'/>
<jsp:setProperty name="calculator" property="years"
  value='<%= request.getParameter("years") %>'/>

When the request comes in from the form, the bean’s properties will be set to the
form values specified by the user. Since this is such a common way of configuring
beans in JSP, a shortcut has been provided. If a property name is the same as the
name of the parameter passed in through the form, we can omit the param
attribute. Therefore the body of our <jsp:useBean> tag could be simplified to:

<jsp:setProperty name="calculator" property="principal"/>
<jsp:setProperty name="calculator" property="interestRate"/>
<jsp:setProperty name="calculator" property="years"/>



154 CHAPTER 7

Using JSP components
When multiple form field names map directly to bean properties you can also use
the special wild card character “*” in the place of a property name. Using a wild
card indicates that you wish to set the value of any bean property whose name cor-
responds to the name of a request parameter. The names must match exactly as
there is no way to map parameters to properties with different names when the wild
card is used. For each property of the bean, a matching request parameter is looked
for. Extra request parameters are ignored, though they can be accessed through
scriptlets and the implicit request object. You can, of course, issue additional
<jsp:setProperty> commands to pick up any request parameters whose names do
not map directly to bean properties. There is no way to determine or specify the
order in which the bean’s properties are changed. If there are interdependencies,
one property depending on another, you will want to explicitly set them by specify-
ing a <jsp:setProperty> tag for each one. If we are careful to match up all of the
form field names with our bean’s property names, we can configure all of the bean’s
properties with a single statement. Using the wild card, our bean could be config-
ured with a single line, like this:

<jsp:setProperty name="calculator" property="*"/>

Now that the bean has been configured, we can read the results of the bean’s calcu-
lation in the futureValue property. We can also verify the input by reading the val-
ues of the properties that we just configured.

If you invest $<jsp:getProperty name="calculator" property="principal"/>
for <jsp:getProperty name="calculator" property="years"/> years
at an interest rate of 
<jsp:getProperty name="calculator" property="interestRate"/>%
compounding monthly, you will have
$<jsp:getProperty name="calculator" property="futureValue"/>

The output of our JSP form handler will produce results like this:

If you invest $1000 for 30 years at an interest rate of 15% compounding 
monthly, you will have $87,541.99

The JSP page is shown in its entirety in listing 7.2.

<jsp:useBean id="calculator" 
           class="com.taglib.wdjsp.components.CompoundInterestBean"/>

<jsp:useBean id="calculator" class="CompoundInterestBean"/>
  <jsp:setProperty name="calculator" property="principal"/>
  <jsp:setProperty name="calculator" property="years"/>
  <jsp:setProperty name="calculator" property="interestRate"/>

Listing 7.2 CompoundInterestResults.jsp



JSP bean tags 155
</jsp:useBean>
<html>
<body>
If you invest $<jsp:getProperty name="calculator" property="principal"/>
for <jsp:getProperty name="calculator" property="years"/> years
at an interest rate of 
<jsp:getProperty name="calculator" property="interestRate"/>%
compounding monthly, you will have
$<jsp:getProperty name="calculator" property="futureValue"/>

</body>
</html>

JSP does not care if you are using GET or POST requests for form submission. If
desired, you can also use hidden form elements to add configuration information to
a form without requiring the user to enter it. You can also encode directives into the
request URL directly by following standard URL encoding conventions. For exam-
ple the following URL will calculate interest for us, no form needed:

http://host/InterestCalculator.jsp?interestRate=0.10&years=15&principal=1000

The properties in the URL are exactly the same as if they came from a form using
the GET method of data delivery. You will need to escape any special characters of
course, but you will not need to decode them in the JSP, because the JSP container
handles this automatically. A word of warning on form values: do not rely on hid-
den fields for the storage of sensitive information like database passwords. Any form
data fields in your HTML, hidden or otherwise, can be viewed quite easily by any-
one viewing the source of the HTML page that contains the form data. It is all right
to store sensitive information inside your JSP however, provided it is part of a bean
tag or JSP scriptlets, because this data will be processed on the server and will never
be seen by the client code.

WARNING You cannot use request parameters that begin with jsp, jsp_, java., jav-
ax., sun. and com.sun. They are reserved for the JSP container’s own use
and may conflict with request parameters assigned to the request by the con-
tainer itself. One example of a reserved request parameter is jsp_pre-
compile, used to control compilation in JSP 1.2. You can read about this
precompilation feature in chapter 14.

Specifying default initialization values
If you are attempting to initialize a bean property from a request parameter that
does not exist or is defined as an empty value then the <jsp:setProperty>



156 CHAPTER 7

Using JSP components
command has no effect. The property does not get set to a null value, the
<jsp:setProperty> tag is just ignored. You can provide a default value for a prop-
erty by first setting it explicitly, then attempting to set it from the request as shown:

<jsp:setProperty name="calculator" property="interestRate" value="0.10"/>
<jsp:setProperty name="calculator" property="interestRate" param="interestRate"/>

In this example, the interestRate property is set to 10 percent, but can be over-
written by the value of the interestRate request parameter if it exists. This allows
you to supply appropriate default values for critical properties and to create flexible
pages that might be accessed through several means.

A security consideration
The wild card notation introduced earlier, <jsp:setProperty property="*">, is a
very powerful shortcut for initializing bean properties from a request. It is particu-
larly convenient for mapping the input values from a form into a set of bean proper-
ties that perform some computation. Because it is very easy for a user to construct
his or her own requests, you need to be careful about using this shorthand notation
when the properties of the bean control sensitive information.

 For example, consider an online banking application that represents account
information via a JavaBean class named AccountBean. The AccountBean class pro-
vides properties for accessing information about the account, such as accountNum-
ber and balance, as well as properties corresponding to account transactions, such
as withdrawalAmount and transferAmount. Given a form that allows a user to
specify a withdrawal amount, this form might then point to a JSP page such as the
following that actually performs the transaction (as a side effect of setting the prop-
erty values) and reports the result:

<jsp:useBean id="myAccount" class="AccountBean">
  <jsp:setProperty name="myAccount" property="*"/>
</jsp:useBean>
<html>
<head><title>Cash Withdrawal</title></head>
<body>
<p>
$<jsp:getProperty name="myAccount" property="withdrawalAmount"/>
has been withdrawn from Account
#<jsp:getProperty name="myAccount" property="accountNumber"/>.
Your new balance is $<jsp:getProperty name="myAccount" property="balance"/>.
Thank you for patronizing us at the First Bank of Orange.

At first glance, the code seems benign. Assuming, however, that both getters and
setters are available for the bean’s properties, the potential is very real. If the URL
for this page were withdraw.jsp, consider the effect of a user submitting a request for:



JSP bean tags 157
http://server/account/withdraw.jsp?accountNumber=PH1L31N&balance=1000000

Normally, this page would be accessed as the target of a form, but there is nothing to
prevent a user from manually constructing his or her own request. No withdrawal
amount is specified in this URL, which presumably is not a problem, but the pres-
ence of a request parameter named balance seems a bit troublesome. When process-
ing the page’s <jsp:setProperty> tag, the JSP container will map this parameter to
the bean’s like-named balance property, and attempt to set it to $1,000,000!

 One must hope the Java developer responsible for the AccountBean implemen-
tation will have put safeguards in place to prevent this sort of tampering, but the
bottom line is that care must be taken when using the <jsp:setProperty> wild
card. If the bean whose properties are to be set contains properties whose access
must be carefully controlled (such as a bank account balance), then the bean must
enforce that access control itself. Otherwise, the bean will be subject to the sort of
request spoofing described here if it is ever used in conjunction with a <jsp:set-
Property> tag employing the wildcard shortcut.

7.3.4 Controlling a bean’s scope

Up to now we’ve been talking about using beans as ways to encapsulate data or
behavior over the life span of a single page. Each time the page is requested, a new
instance of a bean is created and possibly modified via <jsp:setProperty> tags.
However JSP has a very powerful feature that allows you to specify that a bean
should continue to exist beyond the scope of a single page request. Such beans are
stored in the server environment and reused on multiple pages, or across multiple
requests for the same page. This allows us to create a bean once and then access it
throughout a user’s visit to our site. Any properties that we set will remain set
throughout the lifetime of the bean.

Bean accessibility and life span
A bean’s accessibility and life span are controlled through the scope attribute of the
<jsp:useBean> tag. The scope attribute can have a value of page, request, ses-
sion, or application. The accessibility of a bean determines which pages or parts
of a web application can access the bean and its properties. A bean’s life span deter-
mines how long a particular bean exists before it is no longer accessible to any page.
A summary of how each scope value affects the accessibility and life span of a bean is
shown in table 7.4.



158 CHAPTER 7

Using JSP components
When a bean is created on the server for reuse between pages it is identified by the
name specified by the id attribute of its <jsp:useBean> tag. Any time you attempt
to create a bean with the <jsp:useBean> tag, the server searches for an existing
instance of the bean with the same id as specified in the tag, in the scope specified
by the tag. If one is found that instance of the bean is used instead of creating one. If
any configuration commands have been specified in the body of the <jsp:useBean>
tag, they will be ignored because the bean has already been initialized. The syntax of
the scope attribute is shown below. A bean can have only one scope value. You can-
not combine them in any fashion; they are by definition mutually exclusive.

<jsp:useBean id="beanName" class="class"
scope="page|request|session|application"/>

Page beans
If you do not specify a scope for a bean at the time it is created through the
<jsp:useBean> tag, it is assigned the default scope value of page. A bean with a
page-level scope is the least accessible and shortest lived of all JSP beans. Each time
the page is requested, either from a new visitor or a return visitor, an instance of the
bean is created. If there are any initialization tags or scriptlets in the body of the
<jsp:useBean> tag, these will be executed each time.

 Essentially, beans with a page-level scope are transient—they are not persistent
between requests. For that matter, such beans are not accessible outside of the page
itself. If you use the <jsp:include> or <jsp:forward> tags, any beans with only
page-level scope will not be available within the new or included page. If a page ref-
erenced by one of these tags contains <jsp:useBean> tags specifying a bean with
the same id as a bean created on the parent page, they will ignore the original bean
because it is out of scope, and will be forced to create their own new instance of the

Table 7.4 Possible bean scopes 

Scope Accessibility Life span

page current page only until page is displayed or control is for-
warded to a new page

request current page and any included or for-
warded pages

until the request has been completely pro-
cessed and the response has been sent 
back to the user

session the current request and any subsequent 
request from the same browser

life of the user’s session

application the current and any future request that is 
part of the same web application 

life of the application



JSP bean tags 159
bean instead. Since the default scope of the <jsp:useBean> tag is page-level, there
is no difference between these two tags:

<jsp:useBean id="bean1" class="com.manning.jsp.ClockBean"/>
<jsp:useBean id="bean2" class="com.manning.jsp.ClockBean scope="page"/>

If a bean does not need to persist between requests, or its information is of no use
after the request has been completed, it’s probably a good candidate for page-level
scope. For example, if our ClockBean is initialized to the current time and date the
first time it is created then it probably doesn’t do any good to keep it around for
very long. If you are using the <jsp:include> or <jsp:forward> tags however,
you may need to set the scope of your bean to request-level so it can be accessed
from within these supplemental pages. 

Request beans
If you specify a value of request for the scope attribute of a <jsp:useBean> tag the
JSP container will attempt to retrieve the bean from the request itself. Since the
HTTP protocol does not provide a mechanism that would allow a web browser to
store anything other than simple name value pairs into the request, a bean can only
be stored in the request by a servlet or another JSP page on the local server. Beans
are stored in the request as request attributes, a feature added to Java Servlets in the
2.2 API which we cover in chapter 8. If the bean is not initially found in the request
it will be created and placed there.

 The life span for a bean with request-level scope is essentially the same as one
with page scope except that the bean’s accessibility will be extended to pages refer-
enced with the <jsp:include> and <jsp:forward> tags. This gives the request
scope a dual purpose. First, it allows you to use Java servlets to create a bean and
forward it to your JSP page. Second, it gives you a way to extend the reach of bean
to pages that are included in or forwarded from the original page.

 For example, consider the situation where you include a footer at the bottom of
each page via the <jsp:include> tag, and want to include page specific data. If you
place the data into the page scope however, it will not be accessible by the included
footer. The desired effect can be accomplished by storing your information in a
bean with request scope, assuring that if present it will be seen by the footer, as well
as the current page. In this example, we associate a contact name with each page,
which appears in the footer.

<jsp:useBean id="contact" class="jsp.ContactBean" scope="request">
  <jsp:setProperty name="contact" property="name" value="Kris DeHart"/>
</jsp:useBean>
<html>



160 CHAPTER 7

Using JSP components
<body>
Welcome to our web site!
<jsp:include file="/footers/standardFooter.jsp" flush="true"/>
</body>
</html>

In this example, contact will be accessible from both the current page and stan-
dardFooter.jsp, which is an HTML excerpt which looks like this:

<HR>
To request changes to this page contact
<jsp:getProperty name="contact" property="name"/>

This example of building up a page by including smaller, component pages to build
a larger composite one is a useful technique for designing complex pages. It will be
discussed in detail in chapter 8.

Session beans
The session scope introduces component persistence to JSP, and is one of its most
powerful constructs. Unlike the request and page scopes, a bean with a scope
attribute value of session exists beyond the life of a single request because it is
placed into the user’s session object. Recall from our discussion of JSP session man-
agement in chapter 4 that the JSP container maintains a unique session object for
each user visiting the site. Placing a bean into session scope stores it in this session
object, using the value of the id attribute as its identifier.

 A bean does not have to do anything special to support such persistence; the JSP
container itself will handle the necessary state maintenance whenever you place a
bean into the session through the scope attribute. Once the bean is stored in a
user’s session it will be available to any other JSP on the server. If you call up a bean
with the <jsp:useBean> tag that already exists in the session, the identifier that you
specify will refer to the existing instance of the bean, rather then creating a new one.

 Since it is the JSP container that determines the length of time a session bean
exists, its lifetime might be minutes, hours, or days. Some JSP containers, like IBM’s
WebSphere, can write session data to disk when the server is shut down, and restore
the sessions upon restart. A container with such a capability effectively gives the
beans an infinite life span. Not all containers exhibit this behavior so it’s not cur-
rently a feature you can rely on. If you need to store information for an indefinite
length of time, or the session will be used to store critical data, you should consider
storing your information in a database instead. Typically, most containers will let
session data expire after it hasn’t been accessed for a few hours.



JSP bean tags 161
TIP If you have used the <%@ page session=”false” %> to indicate that your
page does not require session support you will be unable to add beans to or
fetch them from the current session! The default value of the session attribute
is true, enabling session support. If you have no need for session support
however, you set this attribute to false to prevent the servlet container from
creating needless, wasteful session objects in memory. The session implicit
object will not be available to pages where the session attribute has been set
to false and will result in a run-time exception.

 Sessions are useful for storing information collected through a user’s visit to the
site and for caching information that is frequently needed at the page level. Sessions
can be used to pass information from page to page without each one needing to
include the logic or additional processing time required to access information
stored in a database or external resource. A shopping cart is a good example of
session-oriented data. A user would like a shopping cart’s contents to be accessible
throughout the JSP application, so we create a ShoppingCartBean and store it in
the user’s session. At each page we can include a reference to the shopping cart,
allowing us to display a running total if we wish. There is an example of how to
build your own JSP shopping cart in chapter 14.

 As a simple example, let’s look at how we would use a TimerBean to report to us
how long a user’s session has been active. We can use such a bean to log the person
out after a period of inactivity or to record time-sensitive visits like completing an
online survey or exam. Our TimerBean has one basic function: to report the differ-
ence between its creation time and the current time. This bean, which we’ll develop
in chapter 8, has the properties shown in its property sheet, table 7.5.

The startTime property is intended to provide a way to affect the bean’s start time
by either setting it to a particular time (expressed in milliseconds since the epoch),
or the current time by passing it a zero or negative value.

Table 7.5 TimerBean properties

Name Access Java Type Example

elapsedMillis read-only long 180000

elapsedSeconds read-only long 180

elapsedMinutes read-only long 3

startTime read/write long 857374234



162 CHAPTER 7

Using JSP components
 Here’s a simple use of the bean that on the first load will start the clock, and dis-
play the elapsed time every subsequent load—providing of course that the time
between visits does not exceed the JSP container’s session timeout value.

<jsp:useBean id="timer" class="com.manning.jsp.TimerBean" scope="session"/>
<html>
<body>
Elapsed Time:
<jsp:getProperty name="timer" property="elapsedMinutes"/> minutes
</body>
</html>

If we wanted to add this functionality to a whole series of pages, we could include
the appropriate bean tags in their own file, which we then call with the
<jsp:include> tag. This example, taken from a web-based quiz application, uses
the TimerBean through an included file to display the elapsed time in the footer of
each page:

<html>
<body>
<form action="/servlet/processQuestions/6">
<b>Question 6</b><br>
What is the airspeed velocity of an unlaiden European swallow?
<br> <input type="text" name="answer">
<br> <input type="submit" value="Submit Answer">
</form>
<jsp:include page="/footers/ElapsedTimeFooter.html" flush="true"/>
</body>
</html>

Here are the contents of the ElapsedTimedFooter.html file:

<jsp:useBean id="timer" class="com.manning.jsp.TimerBean" scope="session"/>
<hr>
Remember, speed is a factor in this exam!<BR>
Time Used: <jsp:getProperty name="timer" property="elapsedSeconds"/> seconds

We can even have several different instances of TimerBean running at once, as long
as they have different identifiers. It is the id attribute of the <jsp:useBean> tag
that is important in distinguishing between different instances of a bean, whether
referencing it from within the page or searching for it in the session.



JSP bean tags 163
TIP The default lifetime of a session is determined by the JSP container (or
more accurately, the servlet container). Beginning with the Servlet API 2.2,
the HttpSession interfaces’s getMaxInactiveInterval() and setMax-
InactiveInterval() methods can be used to view or set the timeout
variables. The getLastAccessedTime() method of this interface can tell
you how long it has been since the data in the session was last accessed.

Application beans
A bean with a scope value of application has an even broader life cycle and further
reaching availability than a session bean. Beans with application scope are associ-
ated with a given JSP application on the server. A JSP application is a collection of
JSP pages, HTML pages, images, applets, and other resources that are bundled
together under a particular URL hierarchy. Application beans exist throughout the
life of the JSP container itself, meaning that they are not reclaimed until the server is
shut down—they do not expire after a few hours or days. Unlike session beans that
are available only to subsequent requests from a given user, application beans are
shared by all users of the application with which they are associated. Any JSP page
that is part of an application can access application beans created by other pages
within that application. We will explain how to create the packaged JSP applications
themselves in chapter 14.

 The application scope is used to store information that is useful throughout the
application and not specific to the individual page requesting access to the bean.
Once a bean is placed into application scope it will be used by pages throughout the
site. If the bean requires any configuration information it must be page indepen-
dent. If you expect configuration information to change between page requests or
between users, it is probably not a good candidate for application scope.

 When a bean is stored in application scope there is only one instance of the bean
per server. You should be very cautious about changing an application bean’s prop-
erty once it has been stored in the application because any changes you make to the
properties will instantly affect all of the JSP pages which reference the bean.

 Another good use of the application scope is the ability to cache application
information that would be too computationally expensive to generate for each indi-
vidual page request. For example, say that all of the pages of your online catalog
needed access to a table of shipping rates. This information can be encapsulated
into a bean and placed into the application scope. This would mean that the data
would have to be collected from the database only once, conserving not only data-
base access time but server memory as well. In each page you simply reference the



164 CHAPTER 7

Using JSP components
bean as normal, if it has not yet been instantiated and placed into the application,
the server will handle it:

<jsp:useBean id="ship" class="com.manning.ShipRateBean" scope="application"/>
<html>
<body>
Current shipping charges are:
<jsp:getProperty name="ship" property="baseCharge"/>
per shipment plus
<jsp:getProperty name="ship" property="perItemCharge"/>
per each item shipped.
</body>
</html>

If the bean requires any configuration you should use the body of the <jsp:use-
Bean> tag to set your initial property values. Since you would have to do this on
each and every page users might enter, you will probably want to seek alternatives
in this situation. First, you could use application-specific beans which require no
special configuration or whose constructor’s collect configuration information from
another source (such as a property file). Second, you could take steps to assure that
the necessary bean is placed into the application scope prior to the time any of the
dependent pages would need to access the bean. Or, you can serialize your precon-
figured beans off to disk, and restore them as needed.

Scope and the type attribute
The type attribute of the <jsp:useBean> tag is generally only used when dealing
with beans that are expected to be in scope and that are subclasses of some higher
base class. If the bean exists in the current scope (say in the request or session), but
you have no way of knowing its exact type, you can simply specify its base class
through the type attribute. For example, a servlet or other JSP page placed a collec-
tion of objects into your session. You know that the objects are in some derivative
of Java’s Collection interface, but have no way of knowing if the other pages used
a List, a Set, a ListArray, or anything else. In this case you simply reference the
common Collection interface as the bean’s type; there is no need to specify a class
in this case. For example:

<jsp:useBean id="elements" type="java.util.Collection" scope="session"/>



 8Developing JSP component
s

This chapter covers
� The JavaBeans API

� Developing your own JSP components

� Mixing scriptlets and beans
165



166 CHAPTER 8

Developing JSP components
This chapter will help developers create their own JavaBeans for use as JSP compo-
nents, and teach web designers how they are implemented behind the scenes. For-
tunately, it is not necessary to understand all of the details of JavaBeans
development to work with JSP. As component architectures go, the interface
between JavaServer Pages and JavaBeans is quite simple, as we will see.

8.1 What makes a bean a bean?

So what makes a bean so special? A bean is simply a Java class that follows a set of
simple naming and design conventions outlined by the JavaBeans specification.
Beans are not required to extend a specific base class or implement a particular
interface. If a class follows these bean conventions, and you treat it like a bean—
then it is a bean. A particularly good thing about the bean conventions is that they
are rooted in sound programming practices that you may already be following to
some extent.

8.1.1 Bean conventions

The JavaBean conventions are what enable us to develop beans because they allow a
bean container to analyze a Java class file and interpret its methods as properties,
designating the class as a JavaBean. The conventions dictate rules for defining a
bean’s constructor and the methods that will define its properties.

The JavaBeans API
Following the conventions specified by the JavaBeans API allows the JSP container
to interact with beans at a programmatic level, even though the containing applica-
tion has no real understanding of what the bean does or how it works. For JSP we
are primarily concerned with the aspects of the API that dictate the method signa-
tures for a bean’s constructors and property access methods.

Beans are just objects
Like any other Java class, instances of bean classes are simply Java objects. As a result,
you always have the option of referencing beans and their methods directly through
Java code in other classes or through JSP scripting elements. Because they follow the
JavaBeans conventions, we can work with them a lot easier than by writing Java
code. Bean containers, such as a JSP container, can provide easy access to beans and
their properties. Following the JavaBeans API coding conventions, as we will see,
means creating methods that control access to each property we wish to define for
our bean. Beans can also have regular methods like any other Java object. However,



What makes a bean a bean? 167
JSP developers will have to use scriptlets, expressions, or custom tags to access them
since a bean container can manipulate a bean only through its properties.

Class naming conventions
You might have noticed that in most of our examples bean classes often include the
word bean in their name, such as UserBean, AlarmClockBean, DataAccessBean,
and so forth. While this is a common approach that lets other developers immedi-
ately understand the intended role of the class, it is not a requirement for a bean to
be used inside a JSP page or any other bean container. Beans follow the same class-
naming rules as other Java classes: they must start with an alphabetic character, con-
tain only alphanumeric and underscore characters, and be case sensitive. Addition-
ally, like other Java classes it is common, but not required, to start the name of a
bean class with a capital letter.

The magic of introspection
How can the JSP container interact with any bean object without the benefit of a
common interface or base class to fall back on? Java manages this little miracle
through a process called introspection that allows a class to expose its methods and
capabilities on request. The introspection process happens at run time, and is
controlled by the bean container. It is introspection that allows us to rely on con-
ventions to establish properties.

 Introspection occurs through a mechanism known as reflection, which allows the
bean container to examine any class at run time to determine its method signatures.
The bean container determines what properties a bean supports by analyzing its
public methods for the presence of methods that meet criteria defined by the Java-
Beans API. For a property to exist, its bean class must define an access method to
return the value of the property, change the value of the property, or both. It is the
presence of these specially named access methods alone that determine the proper-
ties of a bean class, as we will soon see.

8.1.2 The bean constructor

The first rule of JSP bean building is that you must implement a constructor that
takes no arguments. It is this constructor that the JSP container will use to instanti-
ate your bean through the <jsp:useBean> tag. Every Java class has a constructor
method that is used to create instances of the class. If a class does not explicitly
specify any constructors, then a default zero-argument constructor is assumed.
Because of this default constructor rule the following Java class is perfectly valid,
and technically satisfies the bean conventions: 



168 CHAPTER 8

Developing JSP components
public class DoNothingBean { }

This bean has no properties and can’t do or report anything useful, but it is a bean
nonetheless. We can create new instances of it, reference it from scriptlets, and con-
trol its scope. Here is a better example of a class suitable for bean usage, a bean
which knows the time. This class has a zero-argument constructor that records the
time of its instantiation:

package com.taglib.wdjsp.components;
import java.util.*;

public class CurrentTimeBean {
  private int hours;
  private int minutes;
  
  public CurrentTimeBean() {
    Calendar now = Calendar.getInstance();
    this.hours = now.get(Calendar.HOUR_OF_DAY);
    this.minutes = now.get(Calendar.MINUTE);
  }
}

We’ve used the constructor to initialize the bean’s instance variables hours and
minutes to reflect the current time at instantiation. The constructor of a bean is the
appropriate place to initialize instance variables and prepare the instance of the class
for use. Of course to be useful within a JSP page we will need to define some prop-
erties for the bean and create the appropriate access methods to control them.

8.1.3 Defining a bean’s properties

As we’ve mentioned, a bean’s properties are defined simply by creating appropriate
access methods for them. Access methods are used either to retrieve a property’s
value or make changes to it. A method used to retrieve a property’s value is called a
getter method, while a method that modifies its value is called a setter method.
Together these methods are generally referred to as access methods—they provide
access to values stored in the bean’s properties.

 To define properties for a bean simply create a public method with the name of
the property you wish to define, prefixed with the word get or set as appropriate.
Getter methods should return the appropriate data type, while the corresponding
setter method should be declared void and accept one argument of the appropriate
type. It is the get or set prefix that is Java’s clue that you are defining a property.
The signature for property access methods, then, is:

public void setPropertyName(PropertyType value);
public PropertyType getPropertyName();



What makes a bean a bean? 169
For example, to define a property called rank, which can be used to store text, and is
both readable and writable, we would need to create methods with these signatures:

public void setRank(String rank);
public String getRank();

Likewise, to create a property called age that stores numbers:

public void setAge(int age);
public int getAge();

NOTE Making your property access methods public is more than a good idea, it’s
the law! Exposing your bean’s access methods by declaring them public is
the only way that JSP pages will be able to call them. The JSP container will
not recognize properties without public access methods.

Conversely, if the actual data being reflected by the component’s properties
is stored in instance variables it should be purposely hidden from other class-
es. Such instance variables should be declared private or at least protect-
ed. This helps ensure that developers restrict their interaction with the class
to its access methods and not its internal workings. Otherwise, a change to
the implementation might negatively impact code dependent on the older
version of the component. 

Let’s revisit our previous example and make it more useful. We will add a couple of
properties to our CurrentTimeBean called hours and minutes, that will allow us to
reference the current time in the page. These properties must meet the getter
method signatures defined by the JavaBeans design patterns. They therefore should
look like this:

public int getHours();
public int getMinutes();

In our constructor we store the current time’s hours and minutes into instance vari-
ables. We can have our properties reference these variables and return their value
where appropriate. The source for this bean is shown in listing 8.1.

package com.taglib.wdjsp.components;
import java.util.*;

public class CurrentTimeBean {
  private int hours;

Listing 8.1 CurrentTimeBean.java



170 CHAPTER 8

Developing JSP components
  private int minutes;

  public CurrentTimeBean() {
    Calendar now = Calendar.getInstance();
    this.hours = now.get(Calendar.HOUR_OF_DAY);
    this.minutes = now.get(Calendar.MINUTE);
  }

  public int getHours() {
    return hours;
  }

  public int getMinutes() {
    return minutes;
  }
}

That’s all there is to it. These two methods simply return the appropriate values as
stored in the instance variables. Since they meet the JavaBean rules for naming
access methods, we have just defined two properties that we can access through JSP
Bean tags. For example:

<jsp:useBean id="time" class="CurrentTimeBean"/>
<html><body>
It is now <jsp:getProperty name="time" property="minutes"/>
minutes past the hour.
</body></html>

Properties should not be confused with instance variables, even though instance
variables are often mapped directly to property names but properties of a bean are
not required to correspond directly with instance variables. A bean’s properties are
defined by the method names themselves, not the variables or implementation
behind them. This leaves the bean designer free to alter the inner workings of the
bean without altering the interface and collection of properties that you expose to
users of the bean.

 As an example of dynamically generating property values, here is a bean that cre-
ates random numbers in its property access methods rather than simply returning a
copy of an instance variable. Its code is shown in listing 8.2.

package com.taglib.wdjsp.components;
import java.util.*;

public class DiceBean {
  private Random rand;
  public DiceBean() {

Listing 8.2 DiceBean.java



What makes a bean a bean? 171
    rand = new Random();
  }

  public int getDieRoll() {
    // return a number between 1 and 6
    return rand.nextInt(6) + 1;
  }

  public int getDiceRoll() {
    // return a number between 2 and 12
    return getDieRoll() + getDieRoll();
  }
}

In this example, our dieRoll and diceRoll properties are not managed by instance
variables. Instead, we create a java.util.Random object in the constructor and call
its random number generator from our access methods to dynamically generate
property values. In fact, nowhere in the bean are any static values stored for these
properties—their values are recomputed each time the properties are requested.

 You are not required to create both getter and setter methods for each property
you wish to provide for a bean. If you wish to make a property read-only then
define a getter method without providing a corresponding setter method. Con-
versely creating only a setter method specifies a write-only property. The latter
might be useful if the bean uses the property value internally to affect other proper-
ties but is not a property that you want clients manipulating directly.

Property name conventions
A common convention is that property names are mixed case, beginning with a
lowercase letter and uppercasing the first letter of each word in the property name.
For the properties firstName and lastName for example, the corresponding getter
methods would be getFirstName()and getLastName(). Note the case difference
between the property names and their access methods. Not to worry, the JSP con-
tainer is smart enough to convert the first letter to uppercase when constructing the
target getter method. If the first two or more letters of a property name are upper-
cased, for example URL, then the JSP container assumes that you really mean it, so its
corresponding access methods would be getURL() and setURL().

TIP Naming Properties—One situation that often leads to confusing property
names is acronyms. For example consider a property representing an identi-
fication number. It could be getId or getID, making the bean property id
or ID. This leads to more confusion (and ugly method names) when you
combine acronyms with additional words using capatilization of their own.



172 CHAPTER 8

Developing JSP components
For example something like an accessor for an XML document, is that
getXMLDocument or getXmlDocument? Is the property name xmlDocu-
ment, XMLDocument, or XmlDocument? To keep down confusion and im-
prove consistency, you should only capitalize the first letter of acronyms.
Without this rule teams tend to end up with several variations for the same
basic property throughout their code base. It is first and foremost consis-
tent and predictable and also clearly deliniates multiple word property
names through capitalization. So a property method representing a Social
Security number is immediately understood to be getUserSsn with a prop-
erty name of userSsn. It may look funny, but you’ll be amazed how much
confusion it avoids.

8.1.4 Indexed properties

Bean properties are not limited to single values. Beans can also contain multivalued
properties. For example, you might have a property named contacts that is used to
store a list of objects of type Contact, containing phone and address information.
Such a property would be used in conjunction with scriptlets or a custom iteration
tag to step through the individual values. Each value must be of the same type; a
single indexed property cannot contain both string and integer elements, for example.

 To define an indexed valued property you have two options. The first style is
creating an access method that returns the entire set of properties as a single array.
In this case, a JSP page author or iterative custom tag can determine the size of the
set and iterate through it. For example:

public PropertyType[] getProperty()

In the second option, you can access elements of the set by using an index value.
This allows you additional flexibility. For example you might want to access only
particular contacts from the collection.

public PropertyType getProperty(int index)

While not specifically required by JavaBean conventions, it is useful to implement
both styles for a multivalued property. It’s not much more work and it adds a good
deal more flexibility in using the bean.

 To set multivalue properties there are setter method signatures analogous to the
getter method naming styles described earlier. The syntax for these methods is:

public void setProperty(int index, PropertyType value)
public void setProperty(PropertyType[] values)



What makes a bean a bean? 173
Another type of method commonly implemented and recognized by bean contain-
ers is the size() method that can be used to determine the size of an indexed prop-
erty. A typical implementation would be:

public int getPropertySize()

This is another method that is not required but increases the flexibility of the design
to  give page developers more options with which to work.

Example: a bean with indexed properties
In this example we will build a component that can perform statistical calculations
on a series of numbers. The numbers themselves are stored in a single, indexed
property. Other properties of the bean hold the value of statistical calculations like
the average or the sum. This StatBean’s source code is shown in listing 8.3:

package com.taglib.wdjsp.components;
import java.util.*;

public class StatBean {
  private double[] numbers;

  public StatBean() {
    numbers = new double[2];
    numbers[0] = 1;
    numbers[1] = 2;
  }

  public double getAverage() {
    double sum = 0;
    for (int i=0; i < numbers.length; i++)
      sum += numbers[i];
    return sum/numbers.length;
  }

  public double[] getNumbers() {
    return numbers;
  }

  public double getNumbers(int index) {
    return numbers[index];
  }

  public void setNumbers(double[] numbers) {
    this.numbers = numbers;
  }

  public void setNumbers(int index, double value) {
    numbers[index] = value;

Listing 8.3 StatBean.java



174 CHAPTER 8

Developing JSP components
  }

  public int getNumbersSize() {
    return numbers.length;
  }
}

Since the JSP bean tags deal exclusively with scalar properties, the only way to inter-
act with indexed properties such as these is through JSP scriptlets and expressions.
In this JSP page we’ll use a JSP scriptlet in the body of the <jsp:useBean> tag to
pass an array of integers to the bean’s numbers property. We’ll have to use a scriptlet
to display back the numbers themselves, but we can use a <jsp:getProperty> tag
to display the average. The page is shown in listing 8.4:

<jsp:useBean id="stat" class="com.taglib.wdjsp.StatBean">
  <%
  double[] mynums = {100, 250, 150, 50, 450};
  stat.setNumbers(mynums);
  %>
</jsp:useBean>
<html>
<body>
The average of 
<%
double[] numbers = stat.getNumbers();
for (int i=0; i < numbers.length; i++) {
  if (i != numbers.length)
    out.print(numbers[i] + ",");
  else
    out.println(“" + numbers[i]);
}
%> 
is equal to
<jsp:getProperty name="stat" property="average"/>
</body>
</html>

The use of custom tags, a technique that we will discuss in chapters 18 and 19, can
greatly aid in working with indexed properties by eliminating the need for inline
code by encapsulating common functionality into simple tag elements. With cus-
tom tags, we could eliminate the need for Java code in this example. We can also
move this code inside the bean, which is what we’ll do for now.

Listing 8.4  stats.jsp



What makes a bean a bean? 175
Accessing indexed values through JSP bean tags
We might also want to include a method that will enable us to pass in the array of
numbers through a standard bean tag. Since bean tags deal exclusively with single
values, we will have to perform the conversion ourselves in the property access
methods. We’ll create another pair of access methods that treat the array as a list of
numbers stored in a comma delimited string. To differentiate between these two
approaches, we will map the String versions of our new access methods to a new
property we will call numbersList. Note that even though we are using a different
property name, it is still modifying the same internal data, and will cause changes in
the average and numbers properties. (Another example of this technique can be
found in the Whois example of chapter 17.)

public void setNumbersList(String values) {
  Vector n = new Vector();
  StringTokenizer tok = new StringTokenizer(values, “,");
  while (tok.hasMoreTokens())
    n.addElement(tok.nextToken());
  numbers = new double[n.size()];
  for (int i=0; i < numbers.length; i++)
     numbers[i] = Double.parseDouble((String) n.elementAt(i));
}

public String getNumbersList() {
  String list = new String();
  for (int i=0; i < numbers.length; i++) {
    if (i != (numbers.length -1))
      list += numbers[i] + “,";
    else
      list += “" + numbers[i];
  }
  return list;
}   

Now we can access this bean through JSP tags alone, as shown in listing 8.5.

<jsp:useBean id="stat" class="com.taglib.wdjsp.components.StatBean">
  <jsp:setProperty name="stat" property="numbersList" value="100,250,150,50,450" />
</jsp:useBean>
<html>
<body>
The average of <jsp:getProperty name="stat" property="numbersList" />
is equal to
<jsp:getProperty name="stat" property="average" />
</body>
</html> 

Listing 8.5  stats2.jsp



176 CHAPTER 8

Developing JSP components
The resulting display is shown in figure 8.1.

8.1.5 Implementing bean properties as cursors

Another technique for exposing the indexed properties of beans is creating a cursor.
If you are familiar with JDBC’s ResultSet class, or the CachedRowSet class of
JDBC 2.0, then you can probably guess where we’re headed. The idea here is to
move the index inside the bean class as an instance variable, allowing us to access
each indexed property though the <jsp:getProperty> tags by simply iterating the
index. We provide a next() method which increments the index, returning false
when the index counter has gone past the end of the list. This greatly reduces the
amount of scriptlet code in the page, without introducing the complexity of custom
tags. An example of a page using this technique is shown in listing 8.6. The
PlanetBean referenced in the page is shown in listing 8.7 and the resulting display
is shown in figure 8.2.

<html>
<body bgcolor="white">
<jsp:useBean id="planet" class="wdjsp.PlanetBean"/>
<table border="1">
<tr><th>Planet</th> <th>Number of Moons</th></tr>
<% while (planet.next()) { %>
<tr><td><jsp:getProperty name="planet" property="name"/></td>

Listing 8.6 planets.jsp

Figure 8.1 The ShowStat’s page in action



What makes a bean a bean? 177
<td align="center"><jsp:getProperty name="planet" property="moons"/></td></tr>
<% } %>
</table>
</body>
</html>

package wdjsp;

public class PlanetBean {
  private static final int numPlanets = 9;
  private static final String[] names = {
    "Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus",
    "Neptune", "Pluto" };
  private static final int[] moons =
    { 0, 0, 1, 2, 16, 18, 20, 8, 1 };

  private int index;

  public PlanetBean() {
    index = -1;
  }

  public void first() {
    index = -1;
  }

  public boolean next() {
    index++;
    if (index >= numPlanets) {
      index--;
      return false;
    }
    else {
      return true;
    }
  }

  public String getName() {
    return names[index];
  }

  public int getMoons() {
    return moons[index];
  }
}

The while loop continues calling next(), incrementing the index, until it reaches
the end of  the list. Each time through, the index is pointing at a different planet’s

Listing 8.7 PlanetBean.java



178 CHAPTER 8

Developing JSP components
data. We can then use our JSP bean tags to retrieve the corresponding properties.
Although we didn’t use it in this example, we provided a first() method to roll-
back the index to just prior to first element. This lets us rewind if we need to display
the list again. As this is a simple example, we’ve not implemented bounds checking
on the properties.

8.1.6 Boolean properties

For boolean properties that hold only true or false values, you can elect to use
another bean convention for getter methods. This convention is to prefix the prop-
erty name with the word is and return a boolean result. For example, consider
these method signatures:

public boolean isProperty();
public boolean isEnabled();
public boolean isAuthorized();

The container will automatically look for this form of method if it cannot find a
property access method matching the getter syntax discussed earlier. Setting the

Figure 8.2 Output of planet.jsp



What makes a bean a bean? 179
value of a boolean property is no different then the setter methods for other
properties.

public void setProperty(boolean b);
public void setEnabled(boolean b);
public void setAuthorized(boolean b);

8.1.7 JSP type conversion

A JSP component’s properties are not limited to String values, but it is important
to understand that all property values accessed through the <jsp:getProperty>
tag will be converted into a String. A getter method need not return a String
explicitly, however, as the JSP container will automatically convert the return value
into a String. For the Java primitive types, conversion is handled by the methods
shown in table 8.1

Likewise, all property setter methods accessed with a <jsp:setProperty> tag will
be automatically converted from a String to the appropriate native type by the JSP
container. This is accomplished via methods of Java’s wrapper classes as shown in
table 8.2.

Table 8.1 Type conversions for <jsp:getProperty>

Property Type Conversion to String

boolean java.lang.Boolean.toString(boolean)

byte java.lang.Byte.toString(byte)

char java.lang.Character.toString(char)

double java.lang.Double.toString(double)

int java.lang.Integer.toString(int)

float java.lang.Float.toString(float)

long java.lang.Long.toString(long)

object calls the Object’s toString() method

Table 8.2 Type conversions for <jsp:setProperty> 

Property Type Conversion from String

boolean or Boolean java.lang.Boolean.valueOf(String)

byte or Byte java.lang.Byte.valueOf(String)

char or Character java.lang.Character.valueOf(String)

double or Double java.lang.Double.valueOf(String)



180 CHAPTER 8

Developing JSP components
Properties are not restricted to primitive types. For objects, the JSP container will
invoke the object's toString() method, which, unless you have overloaded it, will
probably not be very representative of the data stored in the object. For properties
holding objects rather than a String or native Java type you can set the property indi-
rectly, for example allowing the user to set the hours and minutes separately through
a pair of write-only properties and having a single read-only property called time.

Handling properties with null values
Property getter methods for Java’s primitive types such as int and double cannot
return a null value, which is only valid for methods that return objects. Sometimes
however, a property really is undefined. For example, if a property represents a
user’s age, and a call to the database reveals that we don’t know their age, what do
we return? While not that critical in many applications, it may be important to
some. In this case, we can simply establish a convention for this property, which says
if the age is a negative number then we don’t have any idea what the age is—it is
undefined. It is up to the JSP developer in this case to understand the convention
and react to such a situation accordingly.

 Unfortunately, it’s not always that easy. How would we handle a temperature
reading, where negative numbers are perfectly valid? We could still pick an unrea-
sonable number, like -999, as an indicator that this particular value is unknown.
However, such an approach is not only messy—requiring too much in-depth under-
standing by the JSP designer—it is also dangerous. Who knows what will be a rea-
sonable value for this application (or its decedents) ten years from now? A better
approach to this problem is to add a boolean property which can verify the legiti-
macy of the property in question. In that case, it doesn’t matter what the property
is actually set to. For example we would define both a getTempReading() and
isValidTempReading() methods.

int or Integer java.lang.Integer.valueOf(String)

float or Float java.lang.Float.valueOf(String)

long or Long java.lang.Long.valueOf(String)

object as if new String(String)

Table 8.2 Type conversions for <jsp:setProperty>  (continued)

Property Type Conversion from String



What makes a bean a bean? 181
8.1.8 Configuring beans

Many times a bean will require run-time configuration by the page initializing it
before it can properly perform its tasks. Since we can’t pass information into the
bean’s constructor we have to use the bean’s properties to hold configuration infor-
mation. We do this by setting the appropriate property values immediately after the
container instantiates the bean in the body of the <jsp:useBean> tag or anywhere
in the page before the bean’s properties are accessed. It can be useful to set a flag in
your class to indicate whether or not an instance is in a useful state, toggling the flag
when all of the necessary properties have been set.

 Even though the bean tags do not allow you to pass any arguments into a bean’s
constructor, you can still define constructors that take arguments. You will not
however, be able to call them through bean tags. You can only instantiate an object
requiring arguments in its constructor through a JSP scriptlet. For example:

<% Thermostat t = new Thermostat(78); %>
The thermostat was set at a temperature
of <%= t.getTemp() %> degrees.

One technique we have found useful is to provide a single method that handles all
configuration steps. This method can be called by your constructors that take argu-
ments, for use outside of bean tags, as well as by your property access methods once
all the necessary properties have been configured. In this example we’ll provide two
constructors for this Thermostat class, as well as an init() method which would
handle any necessary internal configuration. The zero argument constructor is pro-
vided for bean compatibility, calling the constructor which takes an initial tempera-
ture argument with a default value. Our init() method is then called through this
alternate constructor.

public class Thermostat {
  private int temp;
  private int maxTemp;
  private int minTemp;
  private int fuelType;

  public Thermostat() {
    // no argument constructor for Bean use
    this(75);
  }

  public Thermostat(int temp) {
    this.temp = temp;
    init();
  }

  public void setTemp(int temp) {
    this.temp = temp;



182 CHAPTER 8

Developing JSP components
    // initialize settings with this temp
    init();
  }

  public int getTemp() {
    return temp;
  }

  private void init() {
    maxTemp = this.temp + 10;
    minTemp = this.temp - 15;
    if (maxTemp > 150)
      fuelType = Fuels.DILITHIUM;
    else
      fuelType = Fuels.NATURALGAS;
  }
}

8.2 Some examples

In this section we will present a number of more detailed examples of creating Java-
Beans for use in JSP. These examples are more in-depth than the ones we’ve been
looking at so far, and they will help give you the feel for developing more complex
components. For additional examples, see the beans we develop in chapters 9 and 11.

8.2.1 Example: a TimerBean

In the previous chapter we used a TimerBean to track the amount of time a user has
been active in the current browsing session. In the bean’s constructor we simply
need to record the current time, which we will use as our starting time, into an
instance variable:
private long start;

public TimerBean() {
  start = System.currentTimeMillis();
}

The elapsedMillis property should return the number of milliseconds that has
elapsed since the session began. The first time we place a TimerBean into the session
with a <jsp:useBean> tag, the JSP container will create a new instance of the bean,
starting our timer. To calculate the elapsed time we simply compute the difference
between the current time and our starting time:

public long getElapsedMillis() {
  long now = System.currentTimeMillis();
  return now - start;
}



Some examples 183
The other property access methods are simply conversions applied to the elapsed
milliseconds. We have chosen to have our minutes and seconds properties return
whole numbers rather than floating points to simplify the display of properties
within the JSP page and eliminate the issues of formatting and precision. If the
application using our bean needs a finer degree of resolution, it can access the mil-
liseconds property and perform the conversions themselves. You are often better
off reducing component complexity by limiting the properties (and corresponding
methods) you provide with the component. We have found it helpful to focus on
the core functionality we are trying to provide, rather than attempt to address every
possible use of the component.

public long getElapsedSeconds() {
  return (long)this.getElapsedMillis() / 1000;
}

public long getElapsedMinutes() {
  return (long)this.getElapsedMillis() / 60000;
}

For convenience we will add a method to restart the timer by setting our start to
the current time. We’ll then make this method accessible through the JSP bean tags
by defining the necessary access methods for a startTime property and interpreting
an illegal argument to setStartTime() as a request to reset the timer.

public void reset() {
  start = System.currentTimeMillis();
}

public long getStartTime() {
  return start;
}

public void setStartTime(long time) {
  if (time <= 0)
    reset();
  else
    start = time;
}

The complete source for the bean is shown in listing 8.8. 

package com.taglib.wdjsp.components;
public class TimerBean {
  private long start;
  public TimerBean() {
    start = System.currentTimeMillis();

Listing 8.8 TimerBean



184 CHAPTER 8

Developing JSP components
  }

  public long getElapsedMillis() {
    long now = System.currentTimeMillis();
    return now - start;
  }

  public long getElapsedSeconds() {
    return (long)this.getElapsedMillis() / 1000;
  }

  public long getElapsedMinutes() {
    return (long)this.getElapsedMillis() / 60000;
  }

  public void reset() {
    start = System.currentTimeMillis();
  }

  public long getStartTime() {
    return start;
  }

  public void setStartTime(long time) {
    if (time <= 0)
      reset();
    else
      start = time;
  }
}

Here’s an example of a JSP page that pulls a TimerBean from the user’s session (or
instantiates a new Bean, if necessary) and resets the clock, using the approach
described in listing 8.8:

<jsp:useBean id="timer" class="TimerBean" scope="session"/>
<jsp:setProperty name="timer" property="startTime" value="-1"/>
<html><body>
Your online timer has been restarted…
</body></html>

8.2.2 A bean that calculates interest

As a more complex example let’s create a JSP component that knows how to calcu-
late the future value of money that is accumulating interest. Such a bean would be
useful for an application allowing the user to compare investments. The formula for
calculating the future value of money collecting compounding interest is:

FV = principal(1 + rate/compounding periods)^(years * compounding periods)



Some examples 185
This bean will require:

� The sum of money to be invested (the principal)
� The interest rate
� The number of years for the investment

� How often interest is compounded

This gives us the list of properties that the user must be able to modify. Once all of
these properties have been initialized, the bean should be able to calculate the
future value of our principal amount. In addition, we will need to have a property
to reflect the future value of the money after the calculation has been performed.
Table 8.3 defines the bean’s properties.

Since users will probably want to display the input values in addition to configuring
them, they have been given both read and write access. The futureValue property
is designated read-only because it will reflect the results of the calculation. Retriev-
ing the value of the futureValue property uses the other properties to calculate our
results. (If you wanted to get fancy, you could write a bean that, given any four of
the properties, could calculate the remaining property value.) We’ll store our initial-
ization properties in instance variables:

public class CompoundInterestBean {
  private double interestRate;
  private int years;
  private double principal;
  private int compounds;

It is a good practice to make your instance variables private since we plan to define
access methods for them. This assures that all interaction with the class is restricted
to the access methods allowing us to modify the implementation without affecting
code that makes use of our class. Following the bean conventions, we must define a

Table 8.3 Properties of a bean that calculates interest 

Property Name Mode Type

principal read/write double

years read/write int

compounds read/write int

interestRate read/write double

futureValue read-only double



186 CHAPTER 8

Developing JSP components
constructor that has no arguments. In our constructor we should set our initializa-
tion properties to some default values that will leave our bean property initialized.
We cannot calculate the future value without our initialization properties being set
to appropriate, legal values.

public CompoundInterestBean() {
  this.compounds = 12;
  this.interestRate = 8.0;
  this.years = 1;
  this.principal = 1000.0;
}

Since investments are generally compounded monthly (that is twelve times a year) it
might be handy to provide a shortcut that allows the bean user to not specify the
compounds property and instead use the default. It would also be nice if we could
provide other clients of the bean with a more robust constructor that would allow
them to do all their initialization through the constructor. This can be accom-
plished by creating a constructor that takes a full set of arguments and calling it
from the zero-argument constructor with the default values we have selected for
our bean’s properties:

public CompoundInterestBean() {
  this(12, 8.0, 1, 1000.0);
}

public CompoundInterestBean(int compounds, double interestRate,
  int years, double principal) {
  this.compounds = compounds;
  this.interestRate = interestRate;
  this.years = years;
  this.principal = principal;
}

This is a good compromise in the design. The bean is now useful to both traditional
Java developers as well as JSP authors. We must now define access methods for our
initialization properties. For each one we will verify that they have been passed valid
information. For example, money cannot be invested into the past, so the year
property’s value must be a positive number. Since the access methods are all similar,
we’ll just look at those for the interestRate property.

public void setInterestRate(double rate) {
  if (rate > 0)
    this.interestRate = rate;
  else
    this.interestRate = 0;
}



Some examples 187
public double getInterestRate() {
  return this.interestRate;
}

When we catch illegal arguments, such as negative interest rates, we have to decide
the appropriate way of handling it. We can pick a reasonable default value, as we did
here for example, or take a stricter approach and throw an exception.

 We chose to initialize our properties with a set of legitimate, but hard-coded val-
ues to keep our bean in a legal state. Of course, this approach might not be appro-
priate in every situation. Another technique for handling uninitialized data is setting
up boolean flags for each property which has no legal value until it is initialized, and
tripping them as each setter method is called. Another method could then be used
to check the status of the flags to determine if the component had been initialized
yet or not. For example, we could have defined our futureValue access method
like this:

public double getFutureValue() {
  if (isInitialized())
    return principal * Math.pow(1 + interestRate/compounds,
      years * compounds);
  else
    throw new RuntimeException(“Bean requires configuration!");
}

private boolean isInitialized() {
  return (compoundsSet && interestRateSet && yearsSet && principalSet);
}

In such a case, the bean is considered initialized if and only if the flags for each
property are set to true. We would initialize each flag to false in our constructor
and then define our setter methods as:

public void setYears(int years) {
  yearsSet = true;    
  if (years >=1 )
    this.years = years;
  else
    this.years = 1;
}

The complete code is shown in listing 8.9:

package com.taglib.wdjsp.components;
public class CompoundInterestBean {

Listing 8.9 CompoundInterestBean.java



188 CHAPTER 8

Developing JSP components
  private double interestRate;
  private int years;
  private double principal;
  private int compounds;

  public CompoundInterestBean() {
    this(12);
  }

  public CompoundInterestBean(int compounds) {
    this.compounds = compounds;
    this.interestRate = -1;
    this.years = -1;
    this.principal = -1;
  }

  public double getFutureValue() {
    if ((compounds != -1) &&
       (interestRate != -1 ) &&
       (years != -1))
       return principal * Math.pow(1+interestRate/compounds, compounds*12);
    else
      throw new RuntimeException(“Bean requires configuration!");
  }

  public void setInterestRate(double rate) {
    if (rate > 0)
      this.interestRate = rate;
    else
      this.interestRate = 0;
  }

  public double getInterestRate() {
    return this.interestRate;
  }

  public void setYears(int years) {
    if (years >=1 )
      this.years = years;
    else
      this.years = 1;
  }

  public int getYears() {
    return this.years;
  }

  public void setPrincipal(double principal) {
    this.principal = principal;
  }

  public double getPrincipal() {
    return this.principal;



Bean interfaces 189
  }

  public static void main(String[] args) {
    CompoundInterestBean bean = new CompoundInterestBean();
    bean.setInterestRate(0.06);
    bean.setYears(30);
    bean.setPrincipal(1200.00);
    System.out.println(“FutureValue = “ + bean.getFutureValue());
  }
}

8.3 Bean interfaces

While not specifically required, there are a number of interfaces that you may
choose to implement with your beans to extend their functionality. We’ll cover
them briefly in this section.

8.3.1 The BeanInfo interface

We learned about reflection earlier, but another way that a bean class can inform the
bean container about its properties is by providing an implementation of the Bean-
Info interface. The BeanInfo interface allows you to create a companion class for
your bean that defines its properties and their corresponding levels of access. It can
be used to adapt existing Java classes for bean use without changing their published
interface. It can also be used to hide what would normally be accessible properties
from your client, since sometimes Java’s standard reflection mechanism can reveal
more information than we would like.

 To create a BeanInfo class use your bean’s class name with the suffix BeanInfo
and implement the java.beans.BeanInfo interface. This naming convention is
how the bean container locates the appropriate BeanInfo class for your bean. This
interface requires you to define methods that inform the container about your
bean’s properties. This explicit mapping eliminates the introspection step entirely.

 There is also a java.beans.SimpleBeanInfo class that provides default, do-
nothing implementations of all of the required BeanInfo methods. This often pro-
vides a good starting point when designing a BeanInfo class for a JSP bean, because
many of the bean features designed for working with visual beans are irrelevant in
the context of JSP, and are ignored by the JSP container.

 One area where the BeanInfo approach is particularly useful is in visual, or
WYSIWYG, JSP editors. JSP was designed to be machine-readable in order to sup-
port visual editors and development tools. By applying the BeanInfo interface to
existing Java classes, developers can construct their own JSP components for use in
such editors, even if the original component class does not follow the JavaBean



190 CHAPTER 8

Developing JSP components
conventions. Using BeanInfo classes you can designate which methods of an arbi-
trary class correspond to bean properties, for use with the <jsp:setPropety> and
<jsp:getProperty> tags.

8.3.2 The Serializable interface

One of the JavaBean requirements that JSP does not mandate is that beans should
implement the Serializable interface. This will allow an instance of the bean to
be serialized, turning it into a flat stream of binary data that can be stored to disk
for later reuse. When a bean is serialized to disk (or anywhere else for that matter),
its state is preserved such that its property values remained untouched. There are
several reasons why you might want to “freeze-dry” a bean for later use.

 Some servers support indefinite, long-term session persistence by writing any
session data (including beans) to disk between server shutdowns. When the server
comes back up, the serialized data is restored. This same reasoning applies to servers
that support clustering in heavy traffic environments. Many of them use serializa-
tion to replicate session data among a group of web servers. If your beans do not
implement the Serializable interface, the server will be unable to properly store
or transfer your beans (or other classes) in these situations.

 Using a similar tactic, you might choose to store serialized copies of your beans
to disk, an LDAP server, or a database for later use. You could, for example, imple-
ment a user’s shopping cart as a bean, which you store in the database between visits.

 If a bean requires particularly complicated configuration or setup it may be use-
ful to fully configure the beans’ properties as required, then serialize the configured
bean to disk. This snapshot of a bean can then be used anywhere you would nor-
mally be required to create and configure the bean by hand, including the
<jsp:useBean> tag via the beanName attribute.

 The beanName attribute of the <jsp:useBean> tag is used to instantiate
serialized beans rather than creating new instances from a class file. If the bean
doesn’t exist in the scope, then the beanName attribute is passed on to
java.beans.Bean.instantiate(), which will instantiate the bean for the class
loader. It first assumes that the name corresponds to a serialized bean file (identi-
fied by the .ser extension) in which case it will bring it to life, but if it can’t find or
invoke the serialized bean it will fall back to instantiating a new bean from its class.

8.3.3 The HttpSessionBindingListener interface

Implementing the Java Servlet API’s HttpSessionBindingListener interface in
your JavaBean’s class will enable its instances to receive notification of session
events. The interface is quite simple, defining only two methods.



Bean interfaces 191
public void valueBound(HttpSessionBindingEvent event)
public void valueUnbound(HttpSessionBindingEvent event)

The valueBound() method is called when the bean is first bound (stored into) the
user’s session. In the case of JSP, this will typically happen right after a bean is
instantiated by a <jsp:useBean> tag that specifies a session scope, thus assigning
the bean to the user’s session.

 The valueUnbound() method is called, as you would expect, when the object is
being removed from the session. There are several situations that could cause your
bean to be removed from the session. When the JSP container plans to expire a
user’s session due to inactivity, it is required to first remove each item from the ses-
sion, triggering the valueUnbound notification. The JSP container will automatically
recognize that the bean is implementing the HttpSessionBindingListener inter-
face, hence there is no need to register the bean with the container as a listener.
Alternatively, this event would be triggered if a servlet, scriptlet, or other Java code
specifically removed the bean from the session for some reason.

 Each of these events is associated with an HttpSessionBindingEvent object,
which can be used to gain access to the session object. Implementing this interface
will allow you to react to session events by, for example, closing connections that
are no longer needed, logging transactions, or performing other maintenance activ-
ities. If you are implementing your own session persistence, such as saving a shop-
ping cart, this would be where you would move your data off to disk or database.

8.3.4 Other features of the Bean API

In addition to the access methods and constructor conventions that we have exam-
ined here, the JavaBeans Specification defines several other features. When writing
beans for use with JSP we do not generally need to concern ourselves with these
remaining elements of the specification because they are more oriented toward
visual beans, such as GUI components. While most of this extra functionality is not
reflected into the bean tags, it can be useful working with beans through JSP script-
lets or as part of a larger system. For clarity and for the sake of completeness we will
quickly point out these other features. For full details on these aspects of JavaBeans,
see the JavaBeans Specification or Manning’s The Awesome Power of Java Beans.

JavaBean event model
The JavaBeans API supports Java 1.1 style event handling, a feature intended prima-
rily for visual components. Events allow visual beans to communicate with one
another in a standard way, without each bean having to be too tightly coupled to



192 CHAPTER 8

Developing JSP components
other beans. However, JSP containers do not support the JavaBeans event model
directly. Any bean-to-bean communication is the responsibility of the bean designer.

Bound properties
A bean can be designed to generate events any time changes are made to its proper-
ties. This allows users of the bean to be notified of the changes and react accord-
ingly. If, for example, a bean contained information about the status of a radio
button on a user interface which was modified by one of the bean’s users, any other
users of the bean would be notified and could update their displays accordingly.

Constrained properties
Constrained properties are properties whose values must fall within specific limits.
For example a property representing a percentage value must be greater than or
equal to zero, and less than or equal to one hundred. The only difference between
the design patterns for setting a constrained versus an unconstrained property is
that it must declare that it throws the java.beans.PropertyVetoException.
Objects that want to support constrained properties must also implement methods
that allow other objects to register with the bean so that they can play a part in the
change approval process. Constrained property functionality is not directly imple-
mented through the bean tags, although beans can still take advantage of this func-
tionality internally. If a bean throws an exception in response to an illegal property
value, the normal JSP error handling will take place.

8.4 Mixing scriptlets and bean tags

Since JSP bean tags, scriptlets, and expressions eventually are translated into the
same single Java servlet class on the server, you can combine any of the elements.
This allows you to take advantage of component-centric design while not being
bound by the limits of the built-in tag commands. Using the <jsp:useBean> tag to
create objects puts them into the scope of the page, making them available to both
scriptlets and <jsp:getProperty> and <jsp:setProperty> tags.

8.4.1 Accessing beans through scriptlets

Since the <jsp:useBean> tag creates an object reference behind the scenes, you are
free to access that object through scriptlets and expressions, using the bean’s name
as the object identifier. For example, it is perfectly valid to do either of these snip-
pets, both of which produce the same results:



Mixing scriptlets and bean tags 193
<jsp:useBean id="stocks" class="StockMarketBean" scope="page"/>
The Dow is at <jsp:getProperty name="stocks" property="dow"/> points

or

<jsp:useBean id="stocks" class="StockMarketBean" scope="page"/>
The Dow is at <%= stocks.getDow() %> points

Calling bean properties through an expression rather than the somewhat lengthy
<jsp:getProperty> tag can be a handy shortcut if you aren’t afraid of a little Java
code in your page. A word of caution however! You can’t always assume that a
bean’s property returns a String or maps directly to the method you expect. It may
return a different type of data than you expect (which is all right if you are calling
the method in an expression), or a BeanInfo class may be redirecting you to a com-
pletely different method—one for which you may not even know the name.

8.4.2 Accessing scriptlet created objects

The reverse of this operation is not true. Objects created through scriptlets are not
guaranteed to be accessible through the bean tags, because there is no guarantee
that these objects will become part of the page context. Consider the following JSP
code for example, which is not valid in most JSP containers.

<html><body>
Auto-Shop 2000<br>
<% Car car = (Car)request.getAttribute(“car"); %>
<% car.updateRecords(); %>
This car has <jsp:getProperty name="car" property="milage"/> miles on it…
</body></html>

In this example we have attempted to pull an object reference, car, out of the
request and use it in the page. However, the <jsp:getProperty> tag will not have
a reference to the object because it was not scoped into the page through a
<jsp:useBean> tag. The corrected code is:

<html><body>
Auto-Shop 2000<br>
<jsp:useBean id="car" class="Car" scope="request"/>
<% car.updateRecords(); %>
This car has <jsp:getProperty name="car" property="milage"/> miles on it…
</body></html>

Notice that we can access the object through both scriptlets and JSP tags, allowing
us to call the updateRecords() method directly. We can even change the object ref-
erenced by the named identifier specified by <jsp:useBean>—it is the identifier
that’s important, not the actual object reference. 



194 CHAPTER 8

Developing JSP components
 Alternatively, you can scope the bean into the pageContext directly using the
code:

pageContext.setAttribute("car", car);

Handling indexed properties
This technique is particularly useful in handling indexed properties, which JSP
doesn’t provide any easier way to deal with (other than custom tags, as we’ll learn in
chapters 18 and 19). We apply the same principles as before, creating objects with
the <jsp:useBean> tag and referencing them through scriptlets and expressions.
For example, to loop through an indexed property we write code similar to that
which follows. The exact syntax will depend on your bean’s properties and associ-
ated methods. In this example, MusicCollectionBean contains an array of Album
objects, nested in its albums property. Each Album object in turn has a number of
bean properties. Note however, that we must declare the Album object reference
through a bean tag as a placeholder, or it will not be available to our page context
and therefore inaccessible through the bean tags.

<jsp:useBean id="music" class="MusicCollectionBean"/>
<jsp:useBean id="album" class="Album"/>
<%
Album[] albums = music.getAlbums();
for (int j=0; j < albums.length; j++) {
  album = albums[j];
%>
Title: <jsp:getProperty name="album" property="title"/><BR>
Artist: <jsp:getProperty name="album" property="artist"/><BR>
Year: <jsp:getProperty name="album" property="year"/><BR>
<% } %>

This code will loop through each of the albums in the array returned by the get-
Albums() method of MusicCollectionBean, assigning each to the variable album
in turn. We can then treat album as a bean, accessing it through the <jsp:getProp-
erty> tags. You can use this technique to create tables, lists, and other sequences of
indexed properties.

Other bean methods
Since beans are just objects, they may also have methods that are accessible through
JSP scripting elements. While it is desirable to create beans that can be used entirely
through the tags, sometimes it is useful to create beans with two levels of complex-
ity. These extra methods are not bean-related, but allow you to treat the bean as any
other Java object for more benefits or advanced functionality.



Mixing scriptlets and bean tags 195
 Not all of your methods need to follow the bean conventions, although only
those methods that can be found by introspection will be made available through
the bean container. It is sometimes useful to provide basic functionality accessible
through the bean container, such as JSP tags, and more advanced functionality only
accessible through scriptlets or direct programmer intervention.

Removing a bean when done with it
At the end of a bean’s life span, which is determined by its scope, all references to
the bean will be removed and it will become eligible for garbage collection. Beans
in the page or request scopes are automatically reclaimed at the end of the HTTP
request, but session and application beans can live on. The life of a session bean is,
as discussed, dependent on the JSP container while the application scope is tied to
the life of the server. There are several situations where you might want to prema-
turely end the life of a bean. The first involves removing it from memory for perfor-
mance reasons. When you have no more use for the bean, especially one in session
or application scope, it’s a good idea to get rid of it. Eliminating unused bean
objects will improve the performance of your server-side applications by freeing as
many of the JVM’s resources as soon as possible.

 Another reason you want to remove a bean is to eliminate it from the user’s ses-
sion for security reasons. A good example of this would be removing a user’s login
information from the session when the user has specifically advised that they are
logging off. A typical approach to user authentication with JSP is to place the user’s
login credentials into the session following a successful login. The presence of these
credentials in the session satisfies the login requirements for future visits to pro-
tected pages until the session expires. For security reasons however it is desirable to
offer the visitor the ability to eliminate their login information from the session
when they have completed their visit. We can accomplish this by simply removing
their credentials from the session, returning them to their unauthenticated state.
The methods available to you are summarized in table 8.4.

Table 8.4 Discarding a used bean from various scopes

Scope Scriptlet Servlet

session session.removeAttribute(name) HttpSession.removeAttribute(name)

request/page pageContext.remove-
Attribute(name)

ServletRequest.remove-
Attribute(name)

application application.remove-
Attribute(name)

ServletContext.remove-
Attribute(name)



196 CHAPTER 8

Developing JSP components
The request bean
As discussed in previous chapters, JSP defines a number of implicit objects that
reflect information about the environment. The request object encapsulates infor-
mation about the request and has several properties that are accessible through the
bean tags. Like other beans, we can access the properties of the request objects
through <jsp:getProperty>. The id value assigned to the implicit request object
is, as you probably guessed, request. For example, we can display the remote user
name as follows:

<jsp:getProperty name="request" property="remoteUser"/>

Table 8.5 summarizes some of the more useful methods of the request object,
which can be exposed as properties to the bean tags.

Table 8.5 Properties of the request bean 

Name Access Use

authType read Gets the authentication scheme of this request or null if 
unknown. Same as the CGI variable AUTH_TYPE

method read Gets the HTTP method (for example, GET, POST, PUT) with 
which this request was made. Same as the CGI variable 
REQUEST_METHOD

pathInfo read Gets any optional extra path information following the servlet 
path of this request’s URI, but immediately preceding its query 
string. Same as the CGI variable PATH_INFO

pathTranslated read Gets any optional extra path information following the servlet 
path of this request’s URI, but immediately preceding its query 
string, and translates it to a real path. Same as the CGI vari-
able PATH_TRANSLATED

queryString read Gets any query string that is part of the HTTP request URI 
Same as the CGI variable QUERY_STRING

remoteUser read Gets the name of the user making this request. The user name 
is set with HTTP authentication. Whether the user name will 
continue to be sent with each subsequent communication is 
browser-dependent. Same as the CGI variable REMOTE_USER

requestURI read Gets the URI corresponding to the original request

characterEncoding read Gets the character set encoding for the input of this request

contentType read Gets the Internet media type of the request entity data, or null 
if not known. Same as the CGI variable CONTENT_TYPE

protocol read Gets the protocol and version of the request as a string of the 
form <protocol>/<major version>.<minor version>. Same as 
the CGI variable SERVER_PROTOCOL



Mixing scriptlets and bean tags 197
remoteAddr read Gets the IP address of the agent that sent the request. Same 
as the CGI variable REMOTE_ADDR

serverName read Gets the host name of the server that received the request. 
Same as the CGI variable SERVER_NAME

serverPort read Gets the port number on which this request was received. 
Same as the CGI variable SERVER_PORT

scheme read Gets the scheme of the URL used in this request, for example 
“http,” “https,” or “ftp”

remoteHost read Gets the fully qualified host name of the agent that sent the 
request. Same as the CGI variable REMOTE_HOST

Table 8.5 Properties of the request bean  (continued)

Name Access Use



 9Working with databa
ses

This chapter covers
� The link  between Java’s JDBC API and JSP

� Storing and retrieving JSP Beans with 
an RDBMS system

� Displaying database results with JSP

� Maintaining persistent connections
198



JSP and JDBC 199
While long a bastion of large, well-funded enterprises, databases have found their
way into a much wider range of web sites in recent years. Along with their tradi-
tional role as back office data sources, most large-scale web sites employ databases
for at least some portion of the content. Ad management, users registration infor-
mation, community services, and contact lists are just some of the features com-
monly managed through a database. JSPs and relational databases make a good
combination. The relational database gives us the organizational capabilities and the
performance necessary to manage large amounts of dynamic data, while JSP gives us
a convenient way to present it. By combining the power of a relational database
with the flexibility of JSP for content presentation and front-end design you can
quickly develop rich, interactive web applications.

9.1 JSP and JDBC

Unlike other web scripting languages such as ColdFusion, Server Side JavaScript,
and PHP, JSP does not define its own set of tags for database access. Rather than
develop yet another mechanism for database access, the designers of JSP chose to
leverage Java’s powerful, popular, database API—JDBC. 

 When a JSP application needs to communicate with a database, it does so
through a vendor-provided driver class written to the JDBC API. Accessing a data-
base in JSP then is nothing new; it sticks to this tried and true workhorse from Sun.
In practice, as we’ll learn in chapter 10, we’ll often isolate database access inside a
servlet or a Bean, keeping the details hidden from the presentation aspects of the
JSP page. Both of these approaches are illustrated in figure 9.1

 Learning JDBC is beyond the scope of this book, and a wealth of valuable infor-
mation already exists on the topic. If you aren’t familiar with Java’s JDBC API, a
number of online tutorials can be found on Sun’s JDBC web site, http://
java.sun.com/products/jdbc. Check online or at your favorite bookstore if you
need more information. In this chapter we’ll focus instead on the relationship
between JSP and JDBC. 

NOTE The JDBC classes are part of the java.sql package, which must be im-
ported into any Java class from which you wish to access JDBC, including
your JSP pages. Additional, optional extensions for the 2.0 version of the
JDBC API can be found in the javax.sql package, if it is installed on your
system. If your JDBC driver is not in your JSP container’s class path, you
will have to either import it into your page or refer to it through its fully
qualified class name.



200 CHAPTER 9

Working with databases
9.1.1 JNDI and data sources

In ColdFusion and other template/scripting systems you access a database through
a single identifier that corresponds to a preconfigured database connection (or con-
nection pool) assigned by the system’s administrator. This allows you to eliminate
database connection information from your code, referring to your database
sources by a logical name such as EmployeeDB or SalesDatabase. The details of
connecting to the database are not exposed to your code. If a new driver class
becomes available, the database server moves, or the login information changes,
only the resource description needs to be reconfigured. Any components or code
referencing this named resource will not have to be touched.

 JSP does not define its own database resource management system; instead you
can rely on JDBC 2.0’s Datasource interface and Java Naming and Directory Inter-
face (JNDI) technology for naming and location services. JNDI can be used to
shield your application code from the database details such as the driver class, the
username, password, and connection URI. To create a database connection with
JNDI, specify a resource name which corresponds to an entry in a database or nam-
ing service, and receive the information necessary to establish a connection with
your database. This shields your JSP code and supporting components from
changes to the database’s configuration. More information on using JNDI is avail-
able from Sun, at http://java.sun.com/products/jndi. Here’s an example of creat-
ing a connection from a data source defined in the JNDI registry:

Request Request

JSP JSPServlet

Database access 
directly from 
a JSP page

Database access handled 
by a servlet; results 
passed to JSP page

JDBC driver

JDBC API

Database

Figure 9.1 Database access options in JSP



JSP and JDBC 201
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/SalesDB");
Connection con = ds.getConnection("username", "password"); 

We can further improve upon this abstraction, and further simplify database access,
through custom tags, which use JNDI to allow simple access to named database
resources in a manner familiar to ColdFusion and other tag-style languages.

9.1.2 Prepared statements

Prepared statements allow us to develop a Structured Query Language (SQL) query
template that we can reuse to handle similar requests with different values between
each execution. Essentially we create the query, which can be any sort of SQL state-
ment, leaving any variable values undefined. We can then specify values for our
undefined elements before executing the query, and repeat as necessary. Prepared
statements are created from a Connection object, just like regular Statement
objects. In the SQL, replace any variable values with a question mark.

String query = "SELECT * FROM GAME_RECORDS WHERE SCORE > ? AND TEAM = ?";
PreparedStatement statement = connection.prepareStatement(query);

Before we can execute the statement we must specify a value for all of our missing
parameters. The PreparedStatement object supports a number of methods, each
tied to setting a value of a specific type—int, long, String, and so forth. Each
method takes two arguments, an index value indicating which missing parameter
you are specifying, and the value itself. The first parameter has an index value of 1
(not 0) so to specify a query that selects all high scores > 10,000 for the “Gold”
team we use the following statements to set the values and execute the query:

statement.setInt(1, 10000);     // Score
statement.setString(2, "Gold"); // Team
ResultSet results = statement.executeQuery();

Once you have defined a prepared statement you can reuse it simply by changing
parameters, as needed. There is no need to create a new prepared statement
instance as long as the basic query is unchanged. So, we can execute several queries
without having to create a statement object. We can even share a single prepared
statement among an application’s components or a servlet’s users. When using pre-
pared statements, the RDBMS engine has to parse the SQL statement only once,
rather than again and again with each new request. This results in more efficient
database operations.

 Not only is this more efficient in terms of database access, object creation, and
memory allocation but the resulting code is cleaner and more easily understood.



202 CHAPTER 9

Working with databases
Consider this example again, but this time the queries are not hard coded, but
come from a bean, userBean, which has been initialized from an input form.

statement.setInt(1, userBean.getScore());  // Score
statement.setString(2, userBean.getTeam()); // Team
ResultSet results = statement.execute();

The alternative is to build each SQL statement from strings, which can quickly get
confusing, especially with complex queries. Consider the following example again,
this time without the benefit of a prepared statement:

Statement statement = connection.getStatement();
String query = "SELECT * FROM GAME_RECORDS WHERE SCORE > " +
userBean.getScore() + " AND TEAM = ‘" + 
userBean.getTeam() + "’"; 
ResultSet results = Statement.executeQuery(query);

Another, perhaps even more important, benefit of using prepared statements is evi-
denced here. When you insert a value into a prepared statement with one of its set-
ter methods you do not have to worry about proper quoting of strings, escaping of
special characters, and conversions of dates and other values into the proper format
for your particular database. This is particularly important for JSPs that are likely to
be collecting search terms input directly from users through form elements and are
particularly vulnerable to special characters and unpredictable input. Since each
database might have its own formatting peculiarities, especially for dates, using pre-
pared statements can help further distance your code from dealing with any one
particular database.

9.2 Database driven JSPs

There are a number of ways to develop database driven applications through JSP.
In this chapter, we’re concentrating on the database interaction itself, and less on
program architecture. JSP application design will be covered in chapter 10 and
again in chapter 11 which will feature a walk-through example of a database
driven JSP project. 

9.2.1 Creating JSP components from table data

You may have recognized a similarity between the tables of a relational database and
simple JavaBean components. When building your applications think of tables as
being analogous to JavaBeans. While JavaBeans have properties, data from a table
has columns. A table’s schema is like the class that defines a JavaBean—defining the
names and types data that instances will hold. Like Java classes, tables are templates



Database driven JSPs 203
for storing a specific set of information like the data from a purchase order or details
about inventory items and by themselves are not particularly useful.

 It is only when we create instances of a JavaBean class or add rows to a table that
we have something worthwhile. Each row is an instance of what the table repre-
sents, just as a bean is an instance of its class. Both classes and tables then serve as
data models, a useful container for managing information about some real world
object or event. Keep this relationship in mind as we learn about JSP database devel-
opment. It will form the basis for many of our applications.

 One of the most common areas for utilizing databases with JSP applications is to
retrieve data stored in a table to create a bean for use within the page. The configu-
ration of JSP components from information in the database is pretty straightforward
if your table schema (or the results of a join between tables) closely corresponds to
your bean’s properties. We simply use the row access methods of the ResultSet
class to configure the bean’s properties with the values in the table’s corresponding
columns. If there is more than a single row in the result set we must create a collec-
tion of beans, one for each row of the results.

Database beans from scriptlets
You can use JSP scriptlets to configure a bean’s properties when it is created. After
establishing the connection, set its properties as appropriate through the data car-
ried in the ResultSet. Don’t forget to import the java.sql package into the page
with the <%@ page import=”java.sql.*” %> directive.

 In this example we will use an ItemBean class used to represent a particular item
from inventory, taking the item number from the request object.

<%@ page import="java.sql.*" %>
<jsp:useBean id="item" class="ItemBean">
<%
Connection connection = null;
Statement statement = null;
ResultSet results = null;
ItemBean item = new ItemBean();
try {
  Class.forName("oracle.jdbc.driver.OracleDriver");
  String url = "jdbc:oracle:oci8@dbserver";
  String id = request.getParameter(id);
  String query = "SELECT * FROM PRODUCTS_TABLE WHERE ITEM_ID = " + id;
  connection = DriverManager.getConnection(url, "scott", "tiger");
  statement = connection.createStatement();
  results = statement.executeQuery(query);
  if (results.next()) {
    item.setId(results.getInt("ITEM_ID"));
    item.setDesc(results.getString("DESCRIPTION"));



204 CHAPTER 9

Working with databases
    item.setPrice(results.getDouble("PRICE"));
    item.setStock(results.getInt("QTY_AVAILABLE"));
  }
  connection.close();
}
catch (ClassNotFoundException e) {
  System.err.println("Could not load database driver!");
}
catch (SQLException e) {
  System.err.println("Could not connect to the database!");
}
finally {
  try { if (connection != null) connection.close(); }
  catch (SQLException e) { }
}
%>
</jsp:useBean>
<html>
<body>
<table>
<tr><td>Item Number</td><td>
<jsp:getProperty name="item" property="id"/></td></tr>
<tr><td>Description</td><td>
<jsp:getProperty name="item" property="desc"/></td></tr>
<tr><td>Price $</td><td>
<jsp:getProperty name="item" property="price"/></td></tr>
<tr><td>On hand</td><td>
<jsp:getProperty name="item" property="stock"/></td></tr>
</table>
</body>
</html>

When this code finishes we will have an ItemBean that is either empty (if the SELECT
found no matches) or is populated with data from the PRODUCTS_TABLE. After creat-
ing our bean and using the database to populate it we then display its properties. In
this approach we’ve ended up with a lot of Java code, supporting a small amount of
HTML presentation. If we have several pages with similar needs, we’ll end up
rewriting (or using the cut and pasting operation, then maintaining) all of this code
again. In chapter 10, we’ll learn about architectures that help eliminate these prob-
lems. In the meantime, we could wrap the code into the bean, creating one that is
self-populating.

Self-populating beans
You can use a similar technique to that used in the JSP page example earlier to cre-
ate beans that populate themselves. In the bean’s constructor, you can establish the
database connection, perform the query, set your property values, close the



Database driven JSPs 205
connection, and be ready for business. You can also define some of your bean’s
properties as triggers that cause the bean to retrieve data from the database by
including the database access code inside your property method. For example,
changing the ID property of our ItemBean could cause it to fetch that row of data
from the database and build up the other properties.

Outside influence
As we will learn in chapter 10, it is often desirable to keep the actual Java code in
the JSP page to a minimum. Instead we can rely on servlets to package data from
the database into the beans needed by the JSP page. The same approach that applies
to database access still applies, but with a servlet we can share and reuse our data-
base connection. We can move the management of database connections and the
collection of data out of the page, and into a servlet.

9.2.2 JSPs and JDBC data types

Each database supports its own set of internal data types, which vary significantly
among vendors. JDBC provides a layer of abstraction between Java’s data types and
those of the database. The JDBC layer frees a Java developer from having to worry
about subtle type distinctions and proper formatting. JDBC deals with the differ-
ence in data types in two ways. It defines a set of SQL types that logically map back
to native database types and it maps Java data types to the SQL types, and vice versa.

 When dealing with the database directly, such as setting up a table’s schema, you
must deal with SQL types. However, when retrieving or storing data through JDBC,
you work in Java’s type system—the JDBC method calls you make determine how
to convert the data into the appropriate SQL type. When building JSP components
that interact with the database it is important to understand how such data is han-
dled. The following information will give you a good feel for some of the more
important SQL types and their handling by JDBC.

Integer data
JDBC defines four SQL types for handling integer data, but the major database ven-
dors commonly support only two. The SMALLINT type represents 16-bit signed inte-
gers and is treated as a Java short. The INTEGER type is mapped to Java’s int type
and holds a 32-bit signed integer value. The remaining two types, TINYINT and
BIGINT, represent 8-bit and 64-bit integers and are not commonly supported.

Floating-point numbers
There are two floating-point data types specified by JDBC, DOUBLE and FLOAT. For
all practical purposes they are essentially the same, the latter being included for



206 CHAPTER 9

Working with databases
consistency with ODBC. Sun recommends that programmers generally stick with
the DOUBLE type, which is analogous to Java’s double type.

Textual data
JDBC defines two primary SQL types for handling text: CHAR and VARCHAR. Each is
treated as a String object by JDBC. CHAR is widely supported by most databases,
and holds text of a fixed length. VARCHAR, on the other hand, holds variable length
text, up to a maximum specified width.  Because CHAR is a fixed length data type, if
the data placed into a CHAR column contains fewer characters than the specified
width it will be padded with spaces by JDBC. While HTML browsers will ignore
extra spaces in JSP output data, you can call String’s trim() method before acting
on the data to remove trailing spaces. A third text type defined by JDBC is LONG-
VARCHAR, which holds especially large amounts of text. Because vendor support for
LONGVARCHAR differs wildly, you probably won’t use it much.

Dates and times
To handle date and time information JDBC defines three distinct types: DATE, TIME,
and TIMESTAMP. DATE holds day, month, and year values only. TIME holds hours,
minutes, and seconds. TIMESTAMP combines the information held in DATE and TIME,
and adds a nanoseconds field. Unfortunately, none of these corresponds exactly to
java.util.Date, which falls somewhere between each of these, due to its lack of a
nanoseconds field.

 All of these SQL types are handled in Java by one of three subclasses of
java.util.Date: java.sql.Date, java.sql.Time, and java.sql.Timestamp.
Since they are subclasses of java.util.Date, they can be used anywhere a
java.util.Date type is expected. This allows you to treat them as you might nor-
mally treat date and time values, while retaining compatibility with the database.
Understanding how each of these specialized subclasses differs from its common
base class is important. For example, the java.sql.Date class zeros out the time
values, while java.sql.Time zeros out the date values. Don’t forget about these
important distinctions when exchanging data between the database and your JSP
components. If you need to convert a java.sql.Timestamp object into its closest
approximate java.util.Date object, you can use the following code:

Timestamp t = results.getTimestamp("MODIFIED");
java.util.Date d;
d = new java.util.Date(t.getTime() + (t.getNanos()/1000000));

Some of the most common data type mappings you will encounter are listed in
table 9.1, along with the recommended ResultSet access method for retrieving
data of that type.



Database driven JSPs 207
Handling undefined column data
If a column in the database is not assigned a value it will be set to null. The problem
is that there is no good way to represent an empty value with Java’s primitive types
like int and double, which are not objects and cannot be set to null. For example,
a call to getInt() might return 0 or –1 to indicate null, but those are both valid
values. The problem exists for Strings as well. Some drivers return an empty string
(“”), some return null, and still others return the string value null. The solution,
which isn’t particularly elegant but does work, is the ResultSet’s wasNull()
method. This method returns true or false, depending on whether or not the last
row access method called should have returned an actual null value.

 We have this same problem when creating JSP components from JavaBeans. The
interpretation of a null value by the <jsp:getProperty> tag is not consistent
among vendors, so if we can’t use a literal value to represent null we have to design
an approach similar to that of JDBC. What we can do is define a boolean property
that will indicate the validity of the property value in question. When we encounter
a null value in the database, we set the property to some non-null value, then make
certain the validity check will return false. In the following code we set the value of
our quantity property using the QTY_AVAILABLE column of our ResultSet. We also
set a flag to indicate whether or not the value was actually valid.

init() {
. . .  

  myQuantity = results.getInt("QTY_AVAILABLE");
  if (results.wasNull()) {
    myQuantity = 0;
    validQuantity = false;
  }
  else {

Table 9.1 Common Java-to-JDBC type mappings 

Java type JDBC type Recommended JDBC access method

short SMALLINT getShort()

int INTEGER getInt()

double DOUBLE getDouble()

java.lang.String CHAR getString()

java.lang.String VARCHAR getString()

java.util.Date DATE getDate()

java.sql.Time TIME getTime()

java.sql.Timestamp TIMESTAMP getTimestamp()



208 CHAPTER 9

Working with databases
    validQuantity = true;
  }

. . .
}

  isValidQuality() {
    return validQuantity;
}

Of course, that means that in our JSP code we will have to check the validity of the
value before using it. We have to call our boolean check method:

Quantity Available:
<% if (item.isValidQuantity()) %>
<jsp:getProperty name="item" property="quantity"/> units
<% else %>
Unknown

An alternative, if the value were being used by the JSP only for display, would be to
define a String property that would return an appropriate value, no matter the
state of the property. While this approach would limit the flexibility of the bean, it
might be worth it to gain simplicity in your JSP code.

getQuantityString() {
  if (validQuantity)
    return new Integer(quantity).toString();
  else
    return "Unknown";
  }

The most popular way to avoid this irritating problem is to not allow null values in
the database. Most databases even allow you to enforce this at the schema level by
flagging a column as not being allowed to have null values.

9.2.3 Maintaining persistent connections

Sometimes you may want to keep your database connection across several requests
by the same client. You must be careful when you do this because the number of
database connections that a single server can support is limited. While continuing
the connection is all right for a few simultaneous users, if you have high traffic you
will not want each request to have its own connection to the database. Unfortu-
nately, establishing a connection to a database is probably one of the slowest parts
of your application, so it is something to be avoided where possible.

 There are a number of solutions to this. Connection pools—implemented either
by the database driver or through connection pool classes—maintain a fixed num-
ber of live connections, and loan them as requested by your JSP pages or beans. A



Database driven JSPs 209
connection pool is a good compromise between having too many open connections
and paying the penalty for frequent connections and disconnections.

 Listing 9.1 creates a bean which encapsulates a database connection. Using this
ConnectionBean allows us to easily shield our JSP page from database connection
details, as well as enables us to keep our connection across several pages by storing it
in the session. That way we needn’t reconnect to the database each time. We’ve also
included some convenience methods that call the corresponding methods on the
wrapped connection object. (Note: To keep things simple here, we’ve hard coded our
database access parameters. You would probably want to make these configurable.) 

package com.taglib.wdjsp.databases;

import java.sql.*;
import javax.servlet.http.*;

public class ConnectionBean implements HttpSessionBindingListener {
  private Connection connection;
  private Statement statement;

  private static final String driver="postgresql.Driver";
  private static final String dbURL="jdbc:postgresql://slide/test";
  private static final String login="guest";
  private static final String password="guest";

  public ConnectionBean() {

    try {
      Class.forName(driver);
      connection=DriverManager.getConnection(dbURL,login,password);
      statement=connection.createStatement();
    }
    catch (ClassNotFoundException e) {
      System.err.println("ConnectionBean: driver unavailable");
      connection = null;
    }
    catch (SQLException e) {
      System.err.println("ConnectionBean: driver not loaded");
      connection = null;
    }
  }

  public Connection getConnection() {
    return connection;
  }

  public void commit() throws SQLException {
    connection.commit();

Listing 9.1 ConnectionBean.java



210 CHAPTER 9

Working with databases
  }

  public void rollback() throws SQLException {
    connection.rollback();
  }

  public void setAutoCommit(boolean autoCommit)
    throws SQLException {
    connection.setAutoCommit(autoCommit );
  }

  public ResultSet executeQuery(String sql) throws SQLException {
    return statement.executeQuery(sql);
  }

  public int executeUpdate(String sql) throws SQLException {
    return statement.executeUpdate(sql);
  }

  public void valueBound(HttpSessionBindingEvent event) {
    System.err.println("ConnectionBean: in the valueBound method");
    try {
      if (connection == null || connection.isClosed()) {
        connection =
          DriverManager.getConnection(dbURL,login,password);
        statement = connection.createStatement();
      }
    }
    catch (SQLException e) { connection = null; }
  }

  public void valueUnbound(HttpSessionBindingEvent event) {
    try {
      connection.close();
    }
    catch (SQLException e) { }
    finally {
      connection = null;
    }
  }

  protected void finalize() {
    try {
      connection.close();
    }
    catch (SQLException e) { }
  }
}

This ConnectionBean class implements HttpSessionBindingListener, discon-
necting itself from the database if the bean is removed from the session. This keeps



Database driven JSPs 211
the connection from living too long after we are done with it, and before it actually
gets garbage collected.

 This bean has been designed to shield our application from the database connec-
tion details, but we could also create a more generic bean which accepts the neces-
sary configuration values (url, username, password, and driver) as properties
that the JSP page would have to set to activate the connection.

9.2.4 Handling large sets of results

If your query to the database returns a large number of rows, you probably don’t
want to display all of them at once. A 15,000-row table is hard to read and the
HTML resulting from your JSP can take a considerable amount of time to download
and display. If your application design allows, enforce a limit on the amount of rows
a query can return. Asking the user to restrict his or her search further can be the
quickest way to eliminate this problem.

 A better solution is to present results a page at a time. There are a number of
approaches to solving this problem with JSPs. The RowSet interface was introduced
in JDBC 2.0 to define a standard way to access cached data through a JavaBeans
component, or across distributed systems.

Creating a persistent ResultSet
When you retrieve a ResultSet object from a query, not all of the results are
stored in memory. The database actually maintains a connection to the database
and doles out rows as needed. This result buffering behavior keeps traffic and
memory requirements low, but means you will remain connected to the database
longer—which might be an issue in high traffic environments where you want to
recycle database connections quickly. The database driver will determine the opti-
mum number of rows to fetch at a time, or, in JDBC 2.0, you can offer your own
suggestion to the driver. Fetching a new set of rows occurs automatically as you
advance through the ResultSet; you don’t have to keep track of state yourself.

 One strategy then is to page through the ResultSet a page at a time, say twenty
rows per page. We simply loop through twenty rows, then stick the ResultSet into
our session, and visit twenty more. The cursor position internal to the ResultSet
won’t change between requests; we’ll pick up right where we left off when we pull
it out of the user’s session. You don’t need to explicitly keep a reference to the orig-
inal Connection object, the ResultSet itself does that. When your ResultSet goes
out of scope and is garbage collected your Connection will be shut down. You
might want to wrap your ResultSet in a bean and implement HttpSessionBind-
ingListener to shut down your database connections as soon as they are no longer



212 CHAPTER 9

Working with databases
needed, or expose a cleanup method and call it at the bottom of your JSP page. One
problem with this approach is you’re keeping the database connection open for so
long. We’ll look at a couple of approaches that don’t hold the connection open
while the user browses from page to page.

Performing the query multiple times
In this technique we re-execute the search for each page of results we wish to show,
storing our current window position in the user’s session. At each step, we reissue
the original query, then use the ResultSet’s next() method (or JDBC 2.0’s abso-
lute() method) to skip forward in order to start our listing at the appropriate posi-
tion. We then display the next, say, twenty rows and stop. We skip ahead twenty
rows the second time the JSP is loaded, forty rows on the third, and so on. If we
wish to provide additional feedback as to where the user is in the ResultSet, simply
note its size. Now that you know the number of rows, you can display the appro-
priate status information such as “page 1 of 5.” One potential drawback to this
technique is that each page represents a new look at the database. Should the data
be modified between requests, the user’s view could change from page to page.

Use a self-limiting query
This technique is less general then the others we’ve looked at, and can’t be used in
every situation. The strategy here is to show a page of data, then record the primary
key of the last item you displayed. Then for each page you issue a new query, but
fine-tune the search through your query’s WHERE clause to limit the results of the
search to those you have not shown the user.

 This method works great in situations where your data is listed in sequence,
say a series of product IDs. If the last product ID shown was 8375, store that
number in the session, and modify your next query to use this number in the
WHERE clause. For example:

SELECT * FROM PRODUCTS WHERE ID > 8375

The CachedRowSet Bean
An alternative way of handling more manageable query results—those that are big-
ger than a screen full, but not so big as to be a memory hog—is through Cached-
RowSet. Sun is working on an early implementation of the JDBC 2.0 RowSet
interface, which encapsulates a database connection and associated query results
into a JavaBean component, called the CachedRowSet. This bean provides a discon-
nected, scrollable container for accessing result set style data in your JSP page, or
other JavaBean container. This is a very useful tool for working with database



Database driven JSPs 213
information from within JSP. Sun may eventually add this class to the JDBC 2.0
optional extensions; you can find out more at Sun’s JDBC web page, http://
java.sun.com/products/jdbc. Unlike ResultSet, CachedRowSet is an offline con-
nection that caches all of the rows in your query into the object. No active connec-
tion is required because all of the data has been fetched from the database. While
convenient, if the results of your database query are so large that memory usage is a
problem, you will probably want to stick to a persistent result set.

 CachedRowSet is very easy to use. Simply configure the appropriate properties—
such as username, password, and the URL of your database—then set the command
property to your SQL query. Doing so populates the rowset with results you can
then browse through. You can also populate CachedRowSet using a RowSet object,
created from another query.

Example: paging through results with a CachedRowSet
Let’s build an example of paging through a series of results using Sun’s Cached-
RowSet Bean and JSP. We’ll pull in the data, then allow the user to browse through
it five rows at a time, or jump back to the first row if desired. The same technique
applies to using a persistent ResultSet, although we’d have to resort to JSP script-
lets or wrap our live ResultSet object into our own bean. In this example we’ll
page through a set of results five rows at a time. In figure 9.2 you can see a screen
shot of our example in action.

 And here in listing 9.2 is the source code: 

<%@ page import="java.sql.*,javax.sql.*,sun.jdbc.rowset.*" %>
<jsp:useBean id="crs" class="CachedRowSet" scope="session">
  <%
  try { Class.forName("postgresql.Driver"); }
  catch (ClassNotFoundException e) {
    System.err.println("Error" + e);
  }
  %>
  <jsp:setProperty name="crs" property="url"
     value="jdbc:postgresql://slide/test" />
  <jsp:setProperty name="crs" property="username" value="guest" />
  <jsp:setProperty name="crs" property="password" value="apple" />
  <jsp:setProperty name="crs" property="command"
     value="select * from shuttles order by id" />
  <%
    try { crs.execute(); }
     catch (SQLException e) { out.println("SQL Error: " + e); }
  %>

Listing 9.2 CachedResults.jsp



214 CHAPTER 9

Working with databases
</jsp:useBean>

<html>
<body>
<center>
<h2>Cached Query Results</h2>
<P>
<table border="2">
<tr bgcolor="tan">
<th>id</th><th>Airport</th><th>Departure</th><th>Seats</th></tr>
<%
try {
  if ("first".equals(request.getParameter("action")))
    crs.beforeFirst();
  for (int i=0; (i < 5) && crs.next(); i++) {
%>
<tr>
<td><%= crs.getString("id") %></td>
<td><%= crs.getString("airport") %></td>
<td><%= crs.getString("time") %></td>
<td><%= crs.getString("seats") %></td>
</tr>
<% } %>
</table>
</p>
<%

Figure 9.2 Browsing through data with a CachedRowSet



Database driven JSPs 215
if (crs.isAfterLast()) {
  crs.beforeFirst(); %>
<br>At the end of the result set<br>
<% } }
catch (SQLException e) { out.println("SQL Error" + e); }
%>

<a href="<%= HttpUtils.getRequestURL(request) %>?action=first">
[First 5]</a>&nbsp;
<a href="<%= HttpUtils.getRequestURL(request) %>?action=next">
[Next 5]</a>&nbsp;
</center>
</body>
</html>

NOTE The HttpUtils class has been deprecated as of Java Servlet API 2.3. These
methods in that class were only useful with the default encoding and have
been moved to the request interfaces. The call to the HttpUtils.getRe-
questURL method can be replaced by calling the getRequestURL()method
of the request object directly.

In this example, we create a session scoped CachedRowSet in our <jsp:useBean>
tag, and use the body of that tag to configure it and execute our query. It is impor-
tant to note that we must call attention to the database driver before we set the url
property of our bean. If we don’t, the database DriverManager class will not recog-
nize the URL as being associated with our driver, resulting in an error.

 If the user clicks either link at the bottom of the page, a request parameter is set
to indicate the desired action. So if the user clicks the “First 5” link, we move the
cursor back to its starting position just before the first row of the CashedRowSet.

 If the user selects the next five, the default, we don’t have to do anything special.
Since the CashedRowSet set is stored inside our session the cursor position will not
change, and we’ll simply pick up where we left off at the end of the previous view-
ing. We loop through the result with a for loop.

 If more than five rows are left in the CachedRowSet the loop iterates through
them. In each step we are advancing the cursor one position and making sure we
don’t go off the end of the results. The loop stops after five iterations or when
crs.next() returns false—whichever occurs first. Inside the loop we simply dis-
play the data from the database. After the loop, we must move the cursor back to
the beginning as if we had run out of data, essentially looping back through the
data. Note the following code, near the end of the example:

<a href="<%= HttpUtils.getRequestURL(request) %>?action=next">



216 CHAPTER 9

Working with databases
The getRequestURL() method of HttpUtils (part of javax.servlet, which is
automatically imported by the JSP page) creates a link back to the current page,
rather than hard coding our own URL. We include the action request necessary to
indicate the user’s selection by tacking it onto the end of the request in GET encod-
ing syntax.

9.2.5 Transaction processing

Most of the JSP/database interactions we’ve been studying involve single step
actions. That is, one SQL statement is executed and we are done. Oftentimes how-
ever, a single action is actually composed of a series of interrelated SQL statements
that should succeed or fail together. For example, transferring money between two
accounts is a two-step process. You have to debit one account and credit the other.
By default, the database will process each statement immediately, an irrevocable
action. In our funds transfer example, if the credit action went through but the
debit one didn’t, we would be left with accounts that don’t balance.

 Databases provide a mechanism known as transactions that help avoid such prob-
lems. A transaction is a block of related SQL statements treated as a single action,
and subsequently recalled in the event that any one of the individual statements fails
or encounters unexpected results. It is important to understand that to each state-
ment in the transaction, the database will show any changes made by the previous
statements in the same transaction. Anyone looking at the database outside the
scope of the transaction will either not see the changes until the entire transaction
has completed, or will be blocked from using the database until it is done. The
behavior of the database during the transaction is configurable, but limited to the
capabilities of the database with which you are working. This ability to block access
to data you are working with lets you develop transactions composed of a complex
series of steps without having to worry about leaving the database in an invalid state.

 When you are satisfied with the results of your database statements, signal the
database to accept the changes as final through the commit() method of your Con-
nection object. Likewise, to revoke any changes made since the start of the transac-
tion simply call your Connection object’s rollback() method, which returns the
database to the state it was after the last transaction was committed.

 By default, JDBC assumes that you want to treat each SQL statement as its own
transaction. This feature is known as autocommit, where each statement is committed
automatically as soon as it is issued. To begin a block of statements under transaction
control, you have to turn off the autocommit feature, as shown in the example which
follows—a transaction where we’ll swap funds between Bob’s and Sue’s accounts.



Example: JSP conference booking tool 217
When we’ve completed all of the steps in our transaction, we’ll re-enable the auto-
commit feature.

connection.setAutoCommit(false);
try {
  Statement st = connection.createStatement();
  st.executeUpdate(
    "UPDATE ACCTS SET BALANCE=(BALANCE-100) WHERE OWNER = "Bob");
  st.executeUpdate(
    "UPDATE ACCTS SET BALANCE=(BALANCE + 100) WHERE OWNER = "Sue");
  connection.commit();
}
catch (SQLException e) { connection.rollback(); }
finally { connection.setAutoCommit(true); }

In the example we roll back the transaction if a problem occurs, and there are a
number of reasons one could. Bob and Sue might not exist, or their account may
not be accessible to our program, Bob’s account may not have enough funds to
cover the transaction, the database could explode between the first and second
statements. Wrapping them into a transaction ensures that the entire process either
completes, or the whole thing fails—not something in between.

9.3 Example: JSP conference booking tool

We’ll wrap up this chapter with an example that ties together much of what we’ve
learned about JSP database access: data retrieval, persistent connections, and multi-
page transaction processing. Here we’ll concentrate on the database code rather
than the application architecture, which is covered in chapter 10. 

9.3.1 Project overview

In this project we must build an application to support an upcoming JSP confer-
ence, which is being held in several major cities across the U.S. First, we must deter-
mine which conference (city) the user plans to attend and reserve a slot for him or
her, as seating is very limited. Secondly, we must also reserve a seat for the user on
one of the several shuttle buses which will transport participants from the airport to
the conference. The tricky part is making sure that once the user has secured a
ticket to the conference he or she doesn’t lose it to other users while picking a shut-
tle option. This becomes a very real possibility when you consider thousands of
users registering across the globe simultaneously.



218 CHAPTER 9

Working with databases
9.3.2 Our database

Our database back end already exists and is populated with the relevant data in two
tables, Conferences (table 9.2) and Shuttles (table 9.3). The tables are related
through their respective Airport column, which holds the three-character identifier
for each airport associated with each conference city. Once the user has selected a
city, we can use the airport identifier to locate appropriate shuttle service. 

9.3.3 Design overview

There are four basic steps in this process: picking a city, choosing a shuttle, review-
ing selections, and confirming the transaction. A user will be presented a list of
cities where the conference will be held and may select any one of them where space
is available. Doing so should hold his or her seat in the database by starting a trans-
action. This will ensure that the user doesn’t lose his or her seat while selecting the
shuttle in the second step. The third and fourth steps in the process are to have the
user review his or her selections and confirm them—committing the changes to the
database—or abort the process, rolling back the selections to free them for other,
less fickle attendees.

Table 9.2 Schema for the Conferences table

Column Type

ID int

CITY varchar(80)

AIRPORT char(3)

SEATS int

Table 9.3 Schema for the Shuttles table 

Column Type

ID int

AIRPORT char(3)

TIME time

SEATS int



Example: JSP conference booking tool 219
 To maintain a transaction across
several pages like this we’ll need to use
JSP’s session management capabilities
to store our connection to the data-
base, which we’ll wrap in the Connec-
tionBean we built earlier in this
chapter. This will allow our transac-
tion to span each page in the process.
The pages, in order of application
flow, are shown in figure 9.3. As you
can see, we’ve also created a separate
error page we can use to report any
problem with the database or other element of the application.  

Step 1: conference.jsp
The responsibilities of the conference selection page (figure 9.4) are to present the
user with a list of conference cities, pulled from the database, and allow him/her to
select any of them which have openings. The source code is shown in listing 9.3. 

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*" errorPage="error.jsp" %>
<jsp:useBean id="connection" class="ConnectionBean" scope="session"/>
<html>
<body>
<center>
<font size="+2" face="arial"><b>Conference Registration</b></font>
<form action="shuttle.jsp" method="post">
<table border=1 bgcolor="tan" width="50%" align="center">
<tr><td>
<table border="0" bgcolor="white" cellspacing=0 width="100%">
<tr bgcolor="tan">
<th>&nbsp;</th><th>City</th><th>Tickets Remaining</th></tr>
<%
String sql = "SELECT * FROM CONFERENCES";
ResultSet results = connection.executeQuery(sql);
while (results.next()) {
  if (results.getInt("seats") > 0) {
%>
<td>
<input type="radio" name="show"
value="<%= results.getString("id") %>">
</td>
<% } else { %>

Listing 9.3 conference.jsp

co
coco

conference.jsp

shuttle.jsp

confirm.jsp

finish.jsp error.jsp

Figure 9.3 The JSP pages of our 
registration application



220 CHAPTER 9

Working with databases
<td>&nbsp;</td>
<% } %>
<td><%= results.getString("city") %></td>
<td align="center"><%= results.getString("seats") %></td>
</tr>
<% } %>
</table>
</td></tr></table>

<p>
<input type="submit" value="Next (Choose Shuttle)">
</form>
</center>

</body>
</html>

This is the entry point into our application, but because our simple Connection-
Bean shields the database information from the page, we needn’t do anything spe-
cial to configure it. In fact, each page in our application starts with a block of code
to import our database classes and reference the ConnectionBean from the session,
or—in this case—create a ConnectionBean and place it into the session.

 Once we have a connection to the database we can simply build our form using
data from the Conference table by executing the appropriate query and looping

Figure 9.4 The conference selection page



Example: JSP conference booking tool 221
through it with a while loop. For each row in the table, we verify that there are
seats available before adding a radio button for this city, ensuring that we don’t
allow the user to pick a conference that is full. We use the ID of each conference as
the value of the radio button, to which we have given the name show. We’ll use that
in the next page to hold their seat at the conference. The rest of the code is pretty
straightforward HTML. Clicking Next directs the user to the next page of the appli-
cation, shuttle.jsp (figure 9.5).

Step 2: shuttle.jsp
The shuttle selection page has a double duty. First it has to act on the information
gathered on the conference selection page. We have to reserve the user a seat at the
selected conference. Secondly, we have to allow the user to pick a conference shuttle
selection based on which conference city he/she will be visiting. The source appears
in listing 9.4. 

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
errorPage="error.jsp" %>
<jsp:useBean id="connection" class="ConnectionBean"
scope="session"/>

Listing 9.4 shuttle.jsp

Figure 9.5 The shuttle selection page



222 CHAPTER 9

Working with databases
<%
String showID = request.getParameter("show");
connection.setAutoCommit(false);
String sql;
sql = "UPDATE conferences set seats=seats-1 where id=" + showID;
connection.executeUpdate(sql);
%>

<html>
<body>
<center>
<font size="+2" face="arial"><b>Shuttle Reservation</b></font>
<form action="confirm.jsp" method="post">
<table border=1 bgcolor="tan" width="50%" align="center">
<tr><td>
<table border="0" bgcolor="white" cellspacing=0 width="100%">
<tr bgcolor="tan"><th>&nbsp;</th>
<th>Airport</th><th>Time</th><th>Seats Available</th></tr>
<%
sql = "SELECT s.* from shuttles s, conferences c where c.id=" +
showID + " and s.airport = c.airport";
ResultSet results = connection.executeQuery(sql);
while (results.next()) {
  if (results.getInt("seats") > 0) {
%>
<td>
<input type="radio" name="shuttle"
value="<%= results.getString("id") %>">
</td>
<% } else { %>
<td>&nbsp;</td>
<% } %>
<td><%= results.getString("airport") %></td>
<td><%= results.getTime("time") %></td>
<td align="center"><%= results.getString("seats") %></td>
</tr>
<% } %>
</table>
</td></tr></table>
<p>
<input type="hidden" name="show" value="<%= showID %>">
<input type="submit" value="Next (Review Reservations)">
</form>
</center>

</body>
</html>



Example: JSP conference booking tool 223
Now, after grabbing a reference to the ConnectionBean from the session, we grab
the selected show ID from the request and stash it in a local variable. We’ll need it
to update the database, plus we’ll pass it on to the pages that follow so we can sum-
marize the user’s selections on the last page.

String showID = request.getParameter("show");

We now actually reserve the user a seat at his or her selected conference, by reduc-
ing the open seat count by one. Before we do this however, we turn off the auto-
commit feature of the database, thereby starting a transaction. 

 Generating our input form is no different than on the first page of the applica-
tion, although the database query is more complicated.

"SELECT s.* from shuttles s, conferences c WHERE c.id=" +
showID + " and s.airport = c.airport"

That translates into a statement something like this:

SELECT s.* from shuttles s, conferences c
WHERE c.id=12 and s.airport = c.airport

Which, in English, means “perform a join on the table’s shuttles and conferences,
keeping only the shuttle table’s columns, and select only those rows where the con-
ference ID is 12 and the conference and shuttle are associated with the same air-
port.” This gives us a subset of the available shuttles, showing only those available
for our selected city. (Note that we can specify a table alias after each table’s name
(the s and c values) which keeps us from having to spell out the full table name
each time we use it in the application.)

 We then loop through the result set as before, again not allowing the user to
select an entry that is already full. We’ll still need the showID selected in the original
page later in the application, so we’ll carry that on through a hidden form field.

<INPUT TYPE="HIDDEN" NAME="show" VALUE="<%= showID %>">

We could have placed it into the session, but this is just as easy for now and involves
fewer steps. Figure 9.6 shows how the user confirms his/her reservation. 

Step 3: confirm.jsp
On this page we must reserve the user’s seat on the selected shuttle, display a sum-
mary of his/her selections from the first two screens, and then ask the user to either
commit or cancel the reservation. Listing 9.5 is the source code for the page:



224 CHAPTER 9

Working with databases
<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*" errorPage="error.jsp" %>
<jsp:useBean id="connection" class="ConnectionBean" scope="session"/>
<%
String sql;
String shuttleID = request.getParameter("shuttle");
String showID = request.getParameter("show");
sql = "UPDATE shuttles set seats=seats-1 where id=" + shuttleID;
connection.executeUpdate(sql);
sql = "SELECT c.city, c.airport, s.time from conferences c, " +
  "shuttles s where c.id=" + showID + " and s.id=" + shuttleID;
ResultSet results = connection.executeQuery(sql);
results.next();  
%>
<html>
<body>
<center>
<font size="+2" face="arial"><B>Reservation Confirmation</b></font>
<form action="finish.jsp" method=post>
<table border=1 bgcolor="tan" width="50%" align="center">
<tr><td>
<table border="0" bgcolor="white" cellspacing=0 width="100%">
<tr bgcolor="tan"><th>Summary</th></tr>

Listing 9.5 confirm.jsp 

Figure 9.6 The confirmation request page



Example: JSP conference booking tool 225
<tr><td>
Reservations have been requested for
the <b><%= results.getString("city") %></b>
show, with a complimentary shuttle from
the <b><%= results.getString("airport") %></b> airport
departing at <b><%= results.getTime("time") %></b>.
<p>
To confirm your reservations select commit below.
</td></tr>
</table>
</td></tr></table>

<p>
<input type="submit" name="commit" value="Commit Reservation">
<input type="submit" name="rollback" value="Cancel Reservations">
</body>
</html>

Again, there’s not much new here. We decrement the appropriate shuttle seat
count, just as we did earlier with the conference. We’ve now made all the changes
we plan to make to the database, but remember we are still under transaction con-
trol since we turned off autocommit earlier. We have to disable autocommit only
once, because it is a property of our connection, which we have stored in our ses-
sion via the ConnectionBean.

sql = "UPDATE shuttles set seats = seats - 1 where id = " + shuttleID;
connection.executeUpdate(sql);

The query to get the summary information is a little complicated; we could have
broken it into a couple of separate queries, extracting the appropriate data from
each. However, it’s not necessary.

sql = "SELECT c.city, c.airport, s.time from conferences c, shuttles s where 
c.id=" + showID + " and s.id=" + shuttleID;

This selects the columns we are interested in from the intersection of the CONFER-
ENCE and SHUTTLES table where the corresponding ID values match the two selec-
tions the user already made. At that point, we are ready to move on to the final page
(figure 9.7), which, depending on which button the user clicks, will commit the
transaction or roll it back.

Step 4: finish.jsp
Listing 9.6 is the final segment of our application.



226 CHAPTER 9

Working with databases
<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
errorPage="error.jsp" %>
<html>
<body>
<%
ConnectionBean connection =
(ConnectionBean)session.getValue("connection");
if (request.getParameter("commit") != null)
  connection.commit();
else
  connection.rollback();
session.removeAttribute("connection");
%>
<center>
<% if (request.getParameter("commit") != null) { %>
<font size="+2" face="arial"><b>Reservations Confirmed</b></font>
<p>
Your Reservations confirmed, thanks...
<% } else { %>
<font size="+2" face="arial"><b>Reservations Canceled</b></font>
<p>
Your reservations have been canceled.

Listing 9.6 finish.jsp

Figure 9.7 The final page



Example: JSP conference booking tool 227
<% } %>

<p>
<a href="conference.jsp">Book Another Reservation</a>

</body>
</html>

If the user selected Commit, it will show up as a request parameter. If we detect this
we’ll commit the transaction. Otherwise, we’ll call rollback:

if (request.getParameter("commit") != null)
  connection.commit();
else
  connection.rollback();

After saving our changes, we must get rid of that ConnectionBean to free its
resources, including the database we’ve been holding. So, we simply remove the
connection object from the session.

session.removeAttribute("connection");

The last step is to give the user feedback, with an if block, based on his/her deci-
sion. All in all the flow through this example is straightforward and linear. To wrap
this example up, let’s look at the error page.

The error.jsp page
This page (listing 9.7) is referenced as an error handler for each page in the applica-
tion. If any exception occurs in the course of communicating with the database, it
will be forwarded to this page.

<%@ page import="java.sql.*,com.taglib.wdjsp.databases.*"
isErrorPage="true" %>
<html>
<body>
<%
if (exception instanceof SQLException) {
  try {
    ConnectionBean connection = (ConnectionBean)session.getAttribute("connection");
    connection.getConnection().rollback();
    session.removeAttribute("connection");
  }
  catch (SQLException e) { }
}

Listing 9.7 error.jsp



228 CHAPTER 9

Working with databases
%>
<center>
<font size="+2" face="arial"><b>Application Error</b></font>
<p>
An error has occurred: <tt><%= exception %></tt>
<p>
<a href="conference.jsp">Book Another Reservation</a>
</center>
</body>
</html>

On this page we try to clean up some things and let the user know what has hap-
pened. In the code we abort our transactions and remove the connection object
from our session when an error occurs. We’ll see more detailed discussion on creat-
ing error pages in chapter 14.



 10Architecting JSP application
s

This chapter covers
� Building applications with JSP alone

� Learning to combine servlets and JSP pages

� Understanding architectural tradeoffs
229



230 CHAPTER 10

Architecting JSP applications
Now that we have covered the better portion of material on how to use JSP to build
dynamic web pages, we will look at how we can construct complete web applica-
tions with this technology. In this chapter we will discuss several architectural mod-
els useful for developing JSP applications. We will examine architectural options
available to us when we combine JSP pages with servlets, EJBs, HTML, and other
software elements to create web-based applications.

10.1 Web applications

When designing a web application of any complexity, it helps to think of its high-
level architecture in terms of three logical areas: 

� The presentation layer, the front end which controls the look and feel and
delivers results, also known as the view

� The control layer, which controls application flow, also known as the controller
� The application logic layer, which manages application data, performs calcula-

tions and communicates with back-end resources, also known as the model

The three layers (figure 10.1) aren’t necessarily separate software elements or com-
ponents (though as we shall see they can be), but rather they are useful constructs
to help us understand our application’s requirements. If you are familiar with design
patterns, a collection of common strategies used in software development, you
might recognize this three-part architecture as an implementation of the Model-
View-Controller, or MVC, pattern. The MVC pattern is concerned with separating
the information (the model) from its presentation (the view), which maps nicely
into our strategy.

 Each  layer  p lays  an
important role in an applica-
tion’s architecture and will
be discussed briefly in the
sections which follow. It is
often advantageous to treat
each tier as an independent
portion of your application. Isolating the logical portions of the application helps
ensure that you’ve covered all the bases in the design, focuses attention on creating a
robust architecture, and lays the groundwork for the implementation.

 Do not confuse logical separation of responsibilities with actual separation of com-
ponents. Each tier does not necessarily need to be implemented by separate

Presentation
layer

Control
layer

Application
logic

Database

Back-end
resources

Figure 10.1 Web application layers



Web applications 231
components. Some or all of the tiers can be combined into single components to
reduce application complexity, at the expense of modularity and high-level abstraction.

The presentation layer
This tier includes the client-side display elements, such as HTML, XML, or Java
applets. The presentation layout tier can be thought of as the user interface for the
application because it is used to get input from the end user and display the applica-
tion’s results. In the MVC paradigm, the presentation layout tier fills the role of the
view. It is an application specific presentation of the information owned by the
application logic, or model in MVC terms.

 The presentation layout tier is not concerned with how the information was
obtained, or from where. Its responsibilities lie only in displaying the information
itself, while delegating any other activity up the chain to other tiers. For example, in
an application which involves submitting a search query through a web form only
the form itself and the corresponding results are the responsibility of the presenta-
tion layer. What happens in between, the processing of the request and the retrieval
of the results, is not.

Application logic
The application logic layer is  the heart of the application, responsible for actually
doing whatever it is the application is supposed to do. It is responsible for perform-
ing queries against a database, calculating sales tax, or processing orders. This layer
models the data and behavior behind the business process for which we are devel-
oping the application. It is an encapsulation of data and behavior that is indepen-
dent of its presentation.

 Unlike the presentation layer, this tier cares only about storing, manipulating,
and generating data, not displaying it. For this reason, components designed to
work as application logic can be relocated outside web-based applications, since the
behavior they encapsulate isn’t web-centric.

Control layer
The control layer determines the application’s flow, serving as an intermediary
between the presentation layer and the application logic. This tier serves as the log-
ical connection between the user’s interaction with the front-end and business
services on the back end. In the MVC pattern this tier is acting as the controller. It
delivers the model to the view and regulates communication between the two.

 This tier is also responsible for making decisions among multiple presentations,
when available. If a user’s language, locale, or access level dictates a different



232 CHAPTER 10

Architecting JSP applications
presentation, this decision is made in the control layer. For example, an administra-
tor might see all of the data from a database query, while an end user might see an
alternate, more restrictive results page.

 Each request enters the application through the control layer, which decides
how the request should be handled and what information should be returned. Sev-
eral things could happen at this point, depending on the circumstances of the
request and the application.

 For example, the control layer might determine that the requested URL is pro-
tected by access control, in which case it would forward the request to a logon page
if the user has not yet been authenticated. This is an example of presentation logic
controlling the application’s flow from screen to screen. If any application work
needs to be done, the application’s presentation logic will collect data from the
request, if necessary, and deliver it to the application logic tier for processing. When
the application logic has completed its operation, the controller directs the request
back to the user via the presentation layer.

10.1.1 Web application flow

Applications, no matter the platform, are designed with a particular flow in mind.
Operations are expected to unfold in a series of steps, each with a specific purpose
and each in an order anticipated by the application’s designer. For example, to edit
a user’s profile you might prompt for a username whose profile you wish to edit,
display that user’s current profile information, ask for changes, process those
changes, and then display or confirm the results of the operation. As programmers,
we expect the user—indeed require the user—to proceed through each part of the
application in a certain, predetermined order. We can’t, for example, display user
profile details without first selecting the username. The nature of the web however,
can disrupt the rigid flow we’ve come to expect from applications.

 Unlike traditional applications, web-based programs are forced to deal with
strange interruptions that may occur in the expected flow of a program due to the
inherent stateless request/response behavior of the HTTP protocol. The user can
hit the Back button on the browser, hit reload, prematurely abort an in-process
request, or open new browser windows at any time. In an application involving
transactions, the application may require that certain activities happen under very
specific circumstances or after certain prerequisites have been met. For example,
you can’t save a modified entry until you have first retrieved the original from the
database; you can’t delete an item until you have confirmed your selection; you
can’t submit an order twice, and so forth. 



Page-centric design 233
 In a traditional, off-line application, the developer has full control over the pro-
gram flow. Each step in the application’s process logically flows through the
program. A JSP application is a different story all together. Web applications are vul-
nerable to irregularities in the program flow. We’re not talking malicious intent; it’s a
perfectly innocent action on the part of users, conditioned to browsing traditional
web pages. They may bookmark the application halfway through the process, or may
click the Back in an attempt to go back to a step in the application. Or, they may
abort the request prematurely or attempt to reload the page. In any case, they break
the program flow we might normally expect. It is the responsibility of the JSP appli-
cation to ensure that proper program state and application flow is maintained.

10.1.2 Architectural approaches

Possibly the biggest choice you face in designing a JSP application is determining
how to separate the responsibilities of presentation, control, and application logic.
There are two basic approaches to take when architecting a JSP application: page-
centric and servlet-centric.

 In the first approach, control and application logic responsibilities are handled
by the JSP pages themselves; in the second, an intermediate servlet (or servlets) are
used. Cleanly separating a JSP application into presentation, control, and applica-
tion logic subsystems makes it easier to develop, understand, and maintain. 

10.2 Page-centric design

In the page-centric approach an application is composed solely of a series of interre-
lated JSP pages that handle all aspects—the presentation, control, and the applica-
tion logic. In this approach client requests are handled directly by JSP pages that
perform whatever tasks are necessary, including communicating with back-end data
sources, performing operations, and generating dynamic content elements.

 All of the application logic and control decisions about which page to visit next
will be hard coded into the page itself or expressed through its beans, scriptlets, and
expressions at run time. Commonly, the next page visited would be determined by a
user clicking on a hyperlink anchor, for example <A HREF="checkout.jsp">, or
through the action of submitting a form, <FORM ACTION="processSearch.jsp">.

10.2.1 Role-based pages

In the page-centric design model, each JSP page has a very specific role to play in
the application. One page might display a menu of options, another might provide
a form for selecting items from the catalog, and another would be needed to



234 CHAPTER 10

Architecting JSP applications
complete the shopping process. How a typical application might flow between these
different pages is illustrated in figure 10.2.

 We’ve combined the application logic and program flow layers of our applica-
tions at the page level. This doesn’t mean that we lose our separation of presenta-

 tion and content. We can still use the
dynamic nature of JSP and its support
for JavaBeans components to keep
things squared away. We’ve just elected
to use the JSP pages as containers for
the application’s control and logic,
which ideally would still be encapsu-
lated into discrete components wher-
ever possible.

A simple page-centric application
Here’s a simple example of a trivial, two-page application using scriptlets for the
application logic. In this application (and we are using the term very loosely) we are
creating a system for rebel command to help sign up new recruits for Jedi training.
Perhaps the most important part of the process is determining the Jedi name given
to new recruits. This highly scientific calculation involves manipulating the letters of
the user’s first and last names with that of the hometown and mother’s maiden name.
This is a pretty typical two-step form application. The first page, jediform.html,
contains an HTML form, which collects the information needed to perform process-
ing, while the second screen, jediname.jsp, calculates and displays the recruit’s new
name (figure 10.3). The source codes for the operations are in listings 10.1 and 10.2.  

<html>
<body>
<b>Jedi Registration Center</b>
<form action="jediname.jsp" method="post">
<input type="text" name="firstName"> First Name<BR>
<input type="text" name="lastName"> Last Name<BR>
<input type="text" name="mother"> Mother's Maiden Name<BR>
<input type="text" name="hometown"> Hometown<BR>
<p>
<input type="submit" value="Signup Now!">
</form>
</body>
</html> 

Listing 10.1 jediform.html 

menu.jsp catalog.jsp checkout.jsp

Database

Figure 10.2 Page-centric program flow



Page-centric design 235
<html>
<body>
<%
  String firstName = request.getParameter("firstName");
  String lastName = request.getParameter("lastName");
  String mother = request.getParameter("mother");
  String hometown = request.getParameter("hometown");
  
  String newFirst = lastName.substring(0,3) + "-" +
    firstName.substring(0,2);
  String newLast = mother.substring(0,2) +
    hometown.substring(0,3).toLowerCase();
  String jediname = newFirst + " " + newLast;
%>
<b>Jedi Registration Center</b>
<p>
<blockquote>
<%= firstName %> <%= lastName %> of <%= hometown %>,
house of <%= mother %>, your Jedi name is <i><%= jediname %></i>.
<p>
Thank you for signing up to fight the empire.
Your training will begin soon. May the force be with you...

Listing 10.2 jediname.jsp 

Figure 10.3 A page-centric application



236 CHAPTER 10

Architecting JSP applications
</blockquote>
<a href="jediform.html">Sign up another recruit</a>
</body>
</html>

Application flow is maintained through the form action in the first page, and
through the anchor tab on the results page. The pages are tightly coupled in this
case. Not only do they need to sync up request parameters, but they must be aware
of each other’s URLs.

10.2.2 Managing page flow with action targets

One benefit of the page-centric application is the straightforward approach to page
flow. It is immediately obvious to someone working on the application or web site
what the intended flow is between pages because every page is explicitly referenced
through form actions and anchor links. With a servlet-centric application the devel-
oper must examine the web application’s deployment descriptor and servlet source
code to determine how the application is processed. If your application logic is not
hidden behind custom tags, then this approach tends to do a poor job of separating
application and presentation logic. A compromise exists however, allowing you to
keep an obvious and straightforward application flow while minimizing the mixing
of application code and presentation. This approach, which we call action targets,
isolates your application code into JSP pages whose only responsibility is processing
a request and then forwarding the request on to another HTML or JSP page respon-
sible for the presentation.

 In this approach, which works particularlly well with form driven applications,
the JSP page targeted by a form submission contains a JSP scriptlet which processes
the request. This page is the action target. After processing, and possibly dependent
on the outcome of the processing, the request is directed to the next page in the
application.

 The redict may be either a server-side redirect via a request dispatcher, or more
commonly, a client-side redirect courtesy of HttpServletResponse.sendRedi-
rect(). A client-side redirect actually sends a response header back to the client,
redirecting it to another URL. No content is returned from the action target in
either case. If you make use of the request dispatcher’s forward() method, the
original request is preserved and accessible by the presentation page. In the case of
a client-side redirect, the request received by the presentation page is not the same
request delivered to the action target. It does not contain request parameters, or
attributes. It is possible to pass the request parameters to the presentation page by
dynamically constructing the redirect URL to contain the appropriate parameters, in



Page-centric design 237
typically GET request fashion. You may also encode request parameters onto the
URL to pass information from the action target. Take for example this action target
for handling a bank account transfer. If the transfer succeeds, there is a single success
page to visit. If it fails however, you want to include a brief error message. We could
code this as shown in the following action target, taken from a banking application.
In it, it receives information from an HTML form used to initiate a funds transfer.

<%
String src = request.getParameter(“srcAccount”);
String dest = request.getParameter(“destAccount”);
String amount = request.getParameter(“amount”);

int result = BankManager.instance().transfer(src, dest, amount);
if (result == 0) {
  response.sendRedirect(“transferSuccessful.jsp?amount=” + amount);
}
else {
  String msg;
  if (result == 100)
    msg = “Insufficient Funds”;
  else if (result == 200)
    msg = “Destination Account Invalid”;
  else if (result == 300)
    msg = “Source Account Invalid”;
  else
    msg = “Unknown Error: Transfer Failed”;
  // encode the msg for for use as a request parameter
  response.sendRedirect(“transferFailed.jsp?msg=” + msg);
}
%>

In the example, the hypothetical BankManager class actually attempts to perform
the transfer, returning a result code to indicate the success or failure. In this case, a
code of 0 indicates that everything went okay, while other codes are used to report
error conditions. After processing, the client is redirected to either transferSuccess-
ful.jsp or transferFailed.jsp for presentation, which would presumbably give the user
appropriate feedback. We’d like to show the amount of the transfer on the success
page, but with a client-side redirect the original request parameters are lost. There-
fore, we pass the value of the amount parameter to the success page through a GET
parameter. Moreover, the failure page is passsed a request parameter, msg, which
contains the reason for the failure as determined by the result code returned from
the BankManager’s transfer method.



238 CHAPTER 10

Architecting JSP applications
WARNING Unlike the request dispatcher and the <jsp:include> tag, the path refer-
enced in the response.sendRedirect() method is absolute to the docu-
ment root of the server, not the servlet context. If you want to redirect the
client to another document within your web application, you must prepend
the servlet context to the path, as you must do with HTML references. For
example:

<%
response.sendRedirect(request.getContextPath() + “
       /destination.jsp”);
%>

Another fact that may influence the type of redirect to use (server or client) is how
you want the browser to react. Using a request dispatcher preserves the original
action URL in the browser, while a client redirect actually sends the browser to
another URL.

 The code in the action target could just as easily have been placed into a servlet
(see the section of this chapter on developing servlet-centric applications), to create
an additional layer of abstraction between the presentation and logic aspects.
Whether this is a benefit or a hinderence to your project depends on a number of
factors, including your comfort level with servlets and WAR files, as well as who will
be working with the code most often and their familiarity with the application as a
whole. One situation where the action target technique can be particularly helpful is
during testing and debugging. If there is a problem with a particular form on the
web site or application it is trivial for someone unfamiliar with the code to determine
the source of the problem, even without access to the source code. If a form submis-
sion is going through a servlet reference specified in a web application, the tester
may be unable to determine where the request started and where it is going without
a good understanding of servlets, WAR files, and your application’s architecture.

10.2.3 Building composite pages

The idea of creating composite pages expands on the single page approach illus-
trated earlier but doesn’t change the fact that application presentation, logic, and
control systems are confined to a series of JSP pages. However in this design style
we combine a collection of small component pages, containing either HTML or JSP,
to create each screen in the application. This is accomplished through the use of the
<jsp:include> action and the <%@ include> directive.



Page-centric design 239
Reducing complexity through decomposition
The composite page structure is a good approach
when the pages that make up your application (or
web site) are composed of a number of complex
dynamic elements. For example, to display details
of a catalog item we might break the page into
several elements—a site standard header contain-
ing navigational elements and branding, the
details of the item itself, and a footer to close the
page. Each of these elements can be either static,
such as a snippet of HTML code, or dynamic—
another JSP file. We can take this strategy a step
further by building our composite page of ele-
ments which are also composite pages themselves—iteratively breaking down each
element into more manageable structures. Each portion of the page comes from a
separate JSP or HTML file, as shown in figure 10.4.

 As illustrated, the header and footer files might be static HTML elements. We
would then use the <%@ include %> directive to load the contents of the files in at
run time. The item we wish to display however, might apply a boilerplate approach,
by creating a JSP template, which we reuse throughout the site. This gives us the
ability to isolate the presentation of an item’s details (which might involve complex
HTML code) from the higher-level layout of its containing page. The page designer
could choose to include the item information anywhere on the page, and in any
context desired.

 At run time, the primary page and any of its dynamic elements will not have to
be recompiled by the JSP engine unless they themselves have changed—static con-
tent is included dynamically and not through the compilation process. For example,
a change to the header file will show up at run time, but will not compile a new ver-
sion of its containing JSP page each time. An excerpt from such a compound catalog
page code might look like this:

<html>
<body>
<jsp:include page=”/headers/support_section.jsp” flush=”true”/>
<center><h2>Catalog Item 7423</h2></center>
<jsp:include page=”/catalog/item7423.jsp” flush=”true”/>
<hr>
<jsp:include page=”/footers/standard.html” flush=”true”/>
</html>
</body>

Commodore 1541
Capacity 180K
Cost: $200
Aligned?: Sometimes

[Main] [Logoff]

ITEM DETAILS

header.jsp

details.jsp

footer.jsp

Figure 10.4 Component page 



240 CHAPTER 10

Architecting JSP applications
We can concentrate on the design of each portion of the page independently of the
system as a whole. This also gives us the ability to change the design at any time,
from a single point.

Constructing dynamic page components
Let’s not overlook the fact that you can pass information to your composite page ele-
ments through the request to provide page-specific or dynamic behaviors. For exam-
ple, when we call the page we specify the title through a request parameter:

<jsp:include page=”/headers/basic.jsp” flush=”true”>
  <jsp:param name=”title” value=”About Our Company”/>
  <jsp:param name=”bgcolor” value=”#FFFFFF”/>
</jsp:include>

And then in the /headers/basic.jsp file we retrieve the request parameters, and use
JSP expressions to include their contents as part of the content we return through
the include tag:

<html>
<head><title><%= request.getParameter(“title”) %></title></head>
<body bgcolor=”<%= request.getParameter(“bgcolor”) %>”>
<HR>

Or, revisiting our catalog item example, we might provide a more complex page
component that allows you to pass in parameters to determine which catalog item
to display.

<jsp:include page=”/catalog/fetchItem.jsp” flush=”true”>
  <jsp:param name=”item” value=”7423”/>
</jsp:include> 

We could of course configure the item parameter at run time, based on input
parameters, giving us an even more useful dynamic page.

<jsp:param name=”item” value=”<%= request.getParameter(“item”) %>”/>

Any beans or other objects that have been loaded into request or application level
scope will be available to pages included through the <jsp:include> action.
Objects created in the default page level scope will not be available.

Component architecture, revisited
In many ways, the composite page view pattern mirrors the component architec-
tural strategies we discussed in the chapter 7. We have broken out various content
elements from our page design in order to improve the reusability and ease the pro-
cess of presentation design and development. The approach we have used here,



Page-centric design 241
factoring out the dynamic portions of the page, is a good way to build up a com-
posite page and reduce the complexity of any given JSP page.

 The composite page approach provides excellent benefits among collections of
pages that can share common elements. By factoring out reusable, redundant infor-
mation and isolating it to its own files, we get two advantages. First, we reduce the
number of files involved by reusing common code. Second, we improve our ability
to manage site and application design by gaining the ability to delegate engineering
and design resources to discrete subsections of the application—without the poten-
tial for stepping on each other’s toes.

10.2.4 Limitations of the page-centric approach

A page-centric design is very simple from an architectural perspective. Because there
are few moving parts, little abstraction, and a minimum of layers it can be a good
approach for individuals and small teams of developers savvy in both HTML design
and Java development to quickly create dynamic web pages and simple JSP applica-
tions. Because a page-centric approach requires less overall code it may also be a
good choice for developing prototypes. However, for an application of any com-
plexity, the page-centric approach suffers from a number of problems. 

Maintainability
Because the JSP pages that compose the application contain both presentation and
logic/control code, the application can be difficult to maintain. Significant min-
gling between HTML and JSP code blurs the distinction between web page designer
and Java coder, often requiring a high degree of interaction between developers.

Flow contol
The inherent flow control issues of web applications can lead to a number of prob-
lems unless you take the proper steps, coding your JSP pages defensively to be pre-
pared for receiving requests out of sequence. Since each segment of a page-centric
JSP application is its own page represented by its own URL, there is really nothing
to stop a user from executing the pages out of order. Each page of your application
must check for valid request parameters, verify open connections, watch for chang-
ing conditions, and generally take an assume-nothing approach with regard to the
order of operations of your pages. As you can imagine, this quickly becomes
unmanageable for all but the simplest applications. A servlet-centric approach,
which we discuss next, helps centralize flow control and reduce the complexity of
the individual pages.



242 CHAPTER 10

Architecting JSP applications
10.3 Servlet-centric design

Another, often more manageable approach to application design with JSPs is to use
its pages only for presentation, with the control and application logic aspects of the
application handled by a servlet, or group of servlets, on the back end. In this
approach, requests are indirectly routed to the JSP front-end pages via a servlet,
which performs whatever actions are needed by the application. A servlet can do
any or all of three things for the application:

� Perform actions on behalf of the JSP, such as submitting an order
� Deliver data for display, such as a database record, to a JSP

� Control flow between related JSP pages in an application

After performing the task the servlet forwards the request on to the appropriate JSP,
or, for that matter, a static HTML page. This approach is illustrated in figure 10.5.

 If you are familiar with the mediator design pattern, this is the same approach
only applied to the JSP pages and other components of our application rather than
Java objects. In the mediator pattern we create a centralized component, in this case
a servlet, whose job it is to control how the other components of the application
interact with each other and the application’s data resources. This approach loosens
the coupling between the pages—allowing them to interact without having to be
directly aware of each other, and improves the abstraction between presentation
and application logic.

 The goal in this approach to application design is to minimize the amount of
work being done in the pages themselves, relying instead on application dedicated
servlets to handle such aspects. This approach eliminates complexity from the front-
end JSP code, reducing them to pure data display and input collection activities.
Likewise,  we e liminate the
need for embedding presenta-
tion information inside the
ser vlets. The ser vlets in this
case should be concerned only
with application flow and gen-
erating the data needed by the
JSP pages for presentation to
the user.

Client Servlet

JSP

Database

Figure 10.5 Program flow in a servlet-centric 
application



Servlet-centric design 243
10.3.1 Hello, World—with servlets

Like any good programming book we started this one off with a couple of “Hello,
World” examples—using JSPs with scriptlets and beans. We’ll now add another one,
using a servlet-centric approach. The request will actually come in to the servlet,
which will in turn forward it on to this JSP page (helloFromservlet.jsp):

<% String msg = (String)request.getAttribute(“message”); %>
<html>
<body>
<%= msg %>
</body
</html>

As you’ll notice we aren’t creating any beans here. The getAttribute() method of
the request here is the key. It’s similar to getParameter()—it pulls information
from the request—but deals with any object rather than just simple Strings. Later
in this chapter we’ll learn more about how we can use getAttribute() (and its
companion the setAttribute() method) to pass beans from servlets to JSP pages.
For now though, just understand that it’s looking for an object with an identifer of
message and retrieving it from the request. How did it get there? The servlet put it
there! Remember that this page is not designed to be called directly, but rather pass
through our servlet first. The code for our servlet is: 

package com.taglib.wdjsp.arch;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {
  public void service(HttpServletRequest req,

      HttpServletResponse res)
    throws ServletException, IOException {
    String theMessage = "Hello, World";
    String target = "helloFromServlet.jsp";
    req.setAttribute("message", theMessage);
    RequestDispatcher rd;
    rd = getServletContext().getRequestDispatcher(target);
    rd.forward(req, res);
  }
}

When this servlet is called, it creates a “Hello, World” String object, places it into
the request with the identifier of "message", creates a RequestDispatcher (a
mechanism for finding servlets and JSP pages) for our JSP page, and forwards the
request to it. Notice that the servlet hasn’t done any presentation. There is not a



244 CHAPTER 10

Architecting JSP applications
single out.println() in there! The dynamic information is generated by the serv-
let, but it’s the JSP page that is in charge of displaying it. We’ve taken all of the
application logic from the JSP and moved it to the servlet. While you should be
familiar with the basics of Java servlets for this section, don’t worry if you aren’t
familiar with the new Servlet API features that JSP uses.  We will cover those next.

10.3.2 JSP and the servlet API

There are a number of additions to the Servlet API with releases 2.1, 2.2, and 2.3
that enable the combination of JSPs and servlets. We’ll quickly cover the relevant
additions to the Java Servlet API and explain how they enable a servlet-centric
approach to JSP application design. Visit Sun’s site (http://java.sun.com/products/
servlets) for more details. 

Controlling flow: the RequestDispatcher
We’ve talked about passing control from the servlet to the JSP, but we haven’t
explained how to do this. Servlet API 2.1 introduced the RequestDispatcher
interface that allows you to forward processing of a request to a JSP or another
servlet, or call and include the output from a local document (a JSP, a servlet, an
HTML page) into the existing output stream. A RequestDispatcher object is cre-
ated by passing the URI of either the JSP page or the destination servlet to the
getRequestDispatcher() method of either the incoming request object, or the
servlet’s ServletContext. The ServletContext’s method requires an absolute
URI, while the request object’s method allows you to use relative paths. The path
is assumed relative to the servlet’s request object. If the servlet that calls the
methods in the following bit of code is mapped to the URI /store/fetchOrder-
Servlet, then the following methods are equivalent.

req.getRequestDispatcher("showOrders.jsp")
getServletContext().getRequestDispatcher("/store/showOrders.jsp");

Why go through a RequestDispatcher if you already have the URI? Many things
could affect the actual destination of the request—a web application, servlet map-
pings, and other server configuration settings. For example, the absolute path is
rooted at the application level (which we will learn more about in chapter 14),
which is not necessarily the same as your web server’s document root. Once you
have a RequestDispatcher object you can forward the request on, or include the
output of the specified servlet JSP page in the output of the current servlet.

 Once you have created a RequestDispatcher object corresponding to your JSP
page (or another servlet for that matter) you have two choices. You can either hand
control of processing the current request over to the page associated with the



Servlet-centric design 245
RequestDispatcher with the forward() method, or you can include its contents in
your servlet’s response via the include() method. The include() method can be
called at any time, but if you have done anything in your servlet to generate output,
such as written to the output stream, trying to call forward() will generate an
exception. Both methods need a reference to the current request and response
object. The signatures of these two methods of the RequestDispatcher class are:

public void include(HttpServletRequest, HttpServletResponse)
public void forward(HttpServletRequest, HttpServletResponse)

As we will soon see, it is the RequestDispatcher that allows us to use servlets in
the role of application controller. If the servlet code needs to perform any sort of
output at all, it simply does its job, then forwards the request for handling by the
JSP page. This is not a browser redirect—the browser’s view of the URL will not
change. The processing of the page is handled entirely by the server and the user
will not experience a page reload or even see the URL of the JSP page. Note that a
call to RequestDispatcher.forward() does not exit the doGet or doPost once the
destination page has been executed. Any code that follows your forward statement
will be processed once the request has been handled. Therefore it is important to
include an empty return statement following your forward call to prevent the
unwanted execution of additional call.

Passing data: request attributes
Request attributes are objects that are associated with a given request. Unlike String
values, which can be expressed through request parameters, request attributes can
be any Java object. They are placed into the request by the servlet container—usu-
ally to pass information between the servlet and another servlet or JSP page.

WARNING Attribute names beginning with java., javax., sun., and com.sun. are
reserved for internal usage by the servlet container and should not be used in
your application. A good way to avoid attribute collisions between applica-
tions running on the same server is to use your package identifier as a prefix
to your attribute name. The same approach applies for storing attributes in
the session as well. If you need to maintain a consistent set of attribute
names throughout a number of classes, consider defining them in a common
interface that can be implemented by your servlets or other classes which
need to refer to them.



246 CHAPTER 10

Architecting JSP applications
Setting and getting request attributes is quite straightforward; simply use these two
methods of the ServletRequest object, and remember that when retrieving an
object stored as a request attribute, you’ll have to cast it to the appropriate class.

public void setAttribute(String name, Object o)
public Object getAttribute(String name)

It is request attributes that enable servlets to handle application logic by providing a
portable mechanism to exchange data between servlets and JSP pages. The data
resulting from an operation, such as a database lookup, can be packaged into a bean
or other object and placed directly into the request, where the JSP page can retrieve
it for presentation. We’ll discuss this concept in more detail later.

Effects of dispatching on the request
It is important to understand that when the RequestDispatcher transfers the
request to a JSP page it modifies the path information in the request object to
reflect the URL of the destination page. If you attempt to read the path information
(such as with HttpUtils.getRequestURL() or getServletPath()) you will see
only the JSP page URL, not the servlet URL as originally requested. There are a few
exceptions to this rule. If you use the include() method rather than the for-
ward() method, the servlet container will create the following request attributes to
reflect the original path requested:

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

You can retrieve these request attributes if you need to determine the original
request. For this reason, if your JSP pages need to connect back to the original
servlet targeted request, and you want to determine the servlet’s path at run time,
you will have to use RequestDispatcher.include() in your servlet, rather than
forwarding control on to the JSP directly.

 There is another type of RequestDispatcher called the NamedRequestDis-
patcher that allows you to reference servlets by a logical name assigned to them at
deployment time. A NamedRequestDispatcher can be obtained by calling the get-
NamedRequestDispatcher() method of the ServletContext. When using the
NamedRequestDispatcher the request information is left intact, and is not modified
to map to the new servlet. Servlets are named for these purposes as part of the Serv-
let API’s web application packaging process—which we’ll introduce in chapter 14.



Servlet-centric design 247
10.3.3 Servlets for application control

One important role servlets in this architecture can play is to proxy transactions
between the individual JSP pages that compose the front end of the application. By
making certain that each HTTP request is first handled by a centralized controlling
servlet, we can better tie the pages together by performing tasks that span the scope
of any single page, such as authentication, and ensure that the application maintains
proper state and expected flow between components.

Enforcing application level requirements
For example, we could use our con-
trolling servlet to enforce proper
authentication for accessing any
portion of our application. Unau-
thenticated users would be detoured
through a logon subsystem, which
must be successfully completed,
before arriving at their destination.
Rather than try to build this com-
plexity into each JSP page making
up our application, we handle each
request that comes in through the mediation servlet.

 In this architecture the servlet is managing flow through the application, rather
than the flow being driven by HTML anchor links and forms hard coded into each
JSP page. This eliminates some of the flow control problems inherent to HTTP-
based communications as we find in a page-centric application. The page-centric
application design we built earlier could be redesigned with a servlet-centric
approach to JSP application development as shown in figure 10.6.

Directing application flow
Directing application requests through a servlet shields JSP presentation code from
the complexities of application flow. We can use a servlet to provide a single URL
that will serve as our application’s entry point and encode the logical program flow
into the servlet. After being called, the servlet determines the appropriate action to
take, then uses a RequestDispatcher to route data to the appropriate JSP page. A
submitFeedback.jsp page delivers its data to our controlling servlet, and doesn’t
have to know that the next step is to send the user back to the main web page.
Compare this to one JSP page calling another. This approach not only leaves our
pages free of application logic, but allows us to reuse them for several purposes,

menu.jsp

Servlet

catalog.jsp checkout.jsp

Database

Figure 10.6 A servlet-centric catalog 



248 CHAPTER 10

Architecting JSP applications
even across applications, because they have been reduced to their essence—as pre-
sentation devices.

 One technique for managing this flow is by employing a screen mapper, a data
structure that can associate a logical name with each of the screens that make up
your application. Then, your servlet deals with application flow as a series of logical
screen names, rather than actual file names. For example, a page featuring an input
form asking for information for a new employee, might be logically mapped to the
ID NewEmployeeForm and might refer to the URL /forms/employees/new.jsp. If
you place your mappings into a property file, or even a database, you can make
changes to the program’s configuration without having to edit your servlet code.
Although centralized storage permits sharing between applications, even something
as simple as a hash table, initialized in your servlet’s init() method, will help better
manage your logical to physical file mapping.

10.3.4 Servlets for handling application logic

Servlets provide an excellent mechanism for creating reusable services for your JSP
pages. Provided with the inputs (such as a purchase order number or customer ID)
it can deliver your page the data it needs, via request attributes. You can create as
many servlets for your application as needed: one that fetches purchase orders, one
that grabs customer data, and so forth. Alternatively, you can wrap up all of your
application’s functionality into a single servlet, and use request parameters to direct
the action to be taken.

Servlets provide services
In the case of an application displaying an item’s detail information from the database,
the servlet might get the item’s ID from the request, perform the lookup, and pack-
age the item information into a bean. This bean could then be added to the request
before forwarding control on to the JSP page containing the item presentation
HTML. In the JSP page, we would be able to retrieve the bean from the request, and
display its information accordingly. For example, we’ll grab a PurchaseOrderBean
and place it into the request object under the name po. In this example assume that
getPurchaseOrder() uses the ID passed in from the JSP form to retrieve a record
from the database. The service() method of our servlet would look like this:

String id = request.getParameter(“id”);
PurchaseOrderBean bean = getPurchaseOrder(id);
request.setAttribute(“po”, bean);
RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher(“/DisplayOrder.jsp”);
rd.forward(req, res);



Servlet-centric design 249
To get a reference to the PurchaseOrderBean we can either use the <jsp:useBean>
tag, specifying request scope, or the getAttribute() method of the request object to
reference the object in a scriptlet, casting it to the appropriate type.

<jsp:useBean name=”po” class=”PurchaseOrderBean” scope=”request”/>
Purchase Order Number: <jsp:getProperty name=”po” property=”number”/>

or

<jsp:useBean name="po" class="PurchaseOrderBean"/>
<% po = (PurchaseOrderBean)request.getAttribute(“po”); %>
Purchase Order Number: <jsp:getProperty name=”po” property=”number”/>

The servlet in this case is acting as a service for the JSP page. 

10.3.5 Servlets as single entry points

If we send all of our requests through a single servlet we must encode action infor-
mation into the request to declare our intentions—such as adding an item to the
database or retrieving an existing one. We can do this through request parameters,
using hidden form elements, URL encoding, or appending extra information after
the base servlet path. For example, if the URI for the servlet controlling your appli-
cation were /servlet/catalog, you could signal the desire to look up item 123 as
follows by encoding request parameters:

/servlet/catalog?action=lookup&item=123

Another way to accomplish the same thing is by tacking additional information
onto the end of the URI, which the servlet can pick up through the getPathInfo()
method of its request object.

/servlet/catalog/lookup/123

The scheme by which you choose to communicate your progress is irrelevant, as
long as you can easily retrieve the request information. Using request parameters
makes it easy, since the servlet has built-in support for processing them. On the
servlet side, we use these request parameters to determine where we are next
headed in the application and to pass along any relevant information (such as the
item code in the previous two examples). Once the desired action has been deter-
mined in the servlet, it can decide what needs to happen next.

Utilizing the command pattern
Many servlet-centric JSP applications involve command-oriented architecture.
Requests from each JSP page include some sort of command identifier, which trig-
gers behavior in the servlet or otherwise directs program flow. The command



250 CHAPTER 10

Architecting JSP applications
pattern, a design pattern (a commonly understood programming technique) famil-
iar to GUI programmers, can help us better structure our servlet by reducing com-
plexity and improving the separation between control and application logic.

 Using this design pattern, we encapsulate each command our servlet can handle
into its own class—allowing us to break their functionality out of the main servlet
code. When a request comes in from the JSP page, the servlet dispatches the request
to the particular object associated with performing that command. The knowledge
of how that command corresponds to application logic is the domain of the com-
mand object only; the servlet merely mediates the request between the JSP and the
command object. Consider this simple excerpt from a servlet’s service() method
which can dispatch a command request to our command class based on the com-
mand identified through the request.

String cmd = req.getParameter(“cmd”);
if (cmd.equals(“save”)) {
  SaveCommand saver = new SaveCommand();
  saver.save(); // do its thing
}
if (cmd.equals(“edit”)) {
  EditCommand editor = new EditCommand();
  editor.edit(); // do its thing
}
if (cmd.equals(“remove”)) {
  RemoveCommand remover = new RemoveCommand();
  remover.remove(); // do its thing
}

Without utilizing the command pattern, each if block of our servlet would have to
contain all of the logic necessary to perform the command as requested. Instead, we
now have a reusable, encapsulated set of behavior that makes our code clearer and
more easily understood and has the added benefit of being able to be developed
and tested independently of the web application itself. While the example code is an
incremental improvement, what if our application has dozens of commands? We’ll
end up with a huge cascading group of  if/then/else blocks.

 We can improve on the example by eliminating the servlet’s need to understand
the exact relationship between a request command and the command object itself.
If we create a common way to handle all command objects, the servlet can treat
them all the same, in a single command-processing loop. Through an interface we
can create a common way to perform each command, without having to under-
stand its specifics. We treat the request command string as a unique identifier to
obtain the particular type of command object we require. Once we get a reference
to the appropriate command, we can call the methods defined in its interface to



Servlet-centric design 251
actually perform the command. Consider the following code excerpt, where Com-
mand is a common interface implemented by all command objects, and the Com-
mandFactory class maps command identifiers to specific command objects,
returning the appropriate object as type Command.

Command cmd = CommandFactory.getCommand(request.getParameter("command"));
cmd.execute();

This code is the heart of our servlet, and can handle any command with just those
few lines. In the event that an unknown command comes through, we can have
CommandFactory return a valid command object that doesn’t actually do anything
but throw an exception, or perform default behavior. There are a number of strate-
gies for mapping command identifiers to Command classes. We can employ a simple
HashMap for example. Another useful technique is utilizing the Class.forName()
method to create a Command instance dynamically using the command identifier
itself. Consider the following code snippet:

String cmdID = request.getParameter(“command”));
Command cmd = Class.forName(cmdID + “Command”).newInstance();

In the example we combine the command identifier in the request with the string Com-
mand, and attempt to locate the appropriate class. For example, if the command passed
in were GetUser then we would try to create an instance of the GetUserCommand class.
This technique requires you to establish a naming convention among your command
handlers, and can get more complicated if you need to support several different types
of constructors. The command pattern is an excellent way to simplify JSP/servlet inter-
action. In chapter 11 we will use the command pattern in a full length JSP application.

Ensuring transaction integrity
As we discussed earlier, web applications suffer somewhat from the stateless
request/response nature of the HTTP protocol. Reloading a page or clicking Back
can reissue requests or call them out of sequence—something we want to be sure to
catch in a mission-critical application.

 One way to solve this continuity problem is by recording a token in the user’s
session upon completion of activity prerequisites and requiring this token in the
second step. When a request comes in to perform the second step of the transac-
tion, the servlet can first verify that the prerequisite has been met by retrieving the
token from the session. Once completed, the token is removed from the session. A
token then gives the servlet the ability to perform an action, but only once. Second-
ary requests will find no matching token and can raise an exception. Depending on
your application’s requirements you can maintain either a list of tokens—which



252 CHAPTER 10

Architecting JSP applications
would simultaneously support multiple browser windows from the same user—or a
single token, which is overwritten each time.

 Let’s say your transaction is purchasing an item from your store. The final steps
of your checkout process are handled by checkout.jsp, a page that contains a form
requesting the selections and asks for final confirmation. Clicking Confirm places an
order for each item on the page, and then shows thankyou.jsp which thanks the
visitor for the order. What happens if the user hits Reload at this point, or Back?
Remember that as far as the browser is concerned it is submitting the contents of a
form. It doesn’t matter if a servlet or another JSP is receiving the action, the
browser will remember the request parameter contained in the form and deliver it
to its handler. Clicking Reload essentially repeats the process—resulting in the
placement of a duplicate order.

 To add our transaction token scheme to this example, we have to have both
pages fall under the control of servlets (or the same servlet). When the user goes to
check out, the servlet should first generate a single-use token and store it in the ses-
sion before directing the request to checkout.jsp where we include the token as a
hidden form element. When the form is submitted, the servlet verifies that the
token in the form and the token on the server match. It then performs the action,
and revokes the token before proceeding on to thankyou.jsp.

 If the user were to click Reload on the thank-you page, the form action would
be resubmitted, but this time there would be no corresponding token indicating to
the servlet that it was all right to proceed with the transaction. The servlet could
then decide to just ignore the duplicate request
and reload thankyou.jsp. This process is illus-
trated in figure 10.7.

 One technique for generating a simple trans-
action token that is both unique to each session
and nonrepeatable throughout the application is
by computing a message digest from the user’s
unique session ID and the current system time.
In chapter 11 we will apply this technique as part
of our example application.

10.3.6 Handling errors in the servlet

If in the course of normal application events your servlet encounters an unexpected
error, you have the option of passing the error on to a JSP error page. This keeps all
of your exception handling and error processing consistent throughout the applica-
tion, regardless of whether errors crop up in the JSP pages themselves or your

checkout.jps

thankyou.jsp

Servlet Session

Token

Issue token Submit form

Issue token

Figure 10.7 Transaction 



Servlet-centric design 253
servlets. Simply catch the exception (which can be any subclass of Throwable) and
put it into the request object under the name javax.servlet.jsp.jspException.
Next use an instance of RequestDispatcher to forward your request on to your
error handling page. For example:

String username = req.getParameter(“user”);
if (username == null)
  req.setAttribute(“javax.servlet.jsp.jspException”, new Exception(“no user-

name!”));
RequestDispatcher rd = getServletContext().getRequestDispatcher(“/error.jsp”);
rd.forward(req, res);

The error.jsp page in this example should be defined as a JSP error page as nor-
mal. When we stuff an exception object into the request with that attribute name
(javax.servlet.jsp.jspException) the error page will automatically create the
implicit exception object, and error handling can proceed. There is no difference
between an exception created by our servlet in this example and one being gener-
ated by an error in another JSP page.

10.3.7 Example: servlet-centric employee browser

In this example we will develop an application that browses through personnel
records of an existing database (figure 10.8). To keep things simple the user will not
be allowed to modify or add records to the database, which will be treated as read-
only. We’ll build a more complex database application later in this book.

Figure 10.8 An employee’s ID card



254 CHAPTER 10

Architecting JSP applications
Design considerations
The employee database we are accessing may also be used by the payroll depart-
ment, the logon security system, and who knows what—or who—else. It is a good
idea therefore to design the components of this application to be as independent
from the application as possible.

 We’ll need two main interfaces
in this example, one to list all of the
available employees, and another
that can view the details about the
employee selected from the list.
The core component of our appli-
cation will be a bean, Employee-
Bean, which will encapsulate the
information we are interested in. It
will be the job of our central servlet
to handle all of the database inter-
action. The application model can be seen in figure 10.9.

The database
We will be accessing an existing database that is accessible through JDBC. Thanks to
the JDBC API, the Java code itself is database independent and should apply to
whatever particular database you favor. The information we wish to access,
employee records, is contained in a single table called PEOPLE_TABLE. While this was
done for simplicity’s sake in this example, spreading employee information across
several tables would only complicate the discussion and the SQL query required to
collect an individual’s information, but not our Java code. The schema for
PEOPLE_TABLE is shown in table 10.1:

Table 10.1 The PEOPLE_TABLE scheme

Column Purpose Type

ID Unique Employee ID int

FNAME First Name varchar(80)

LNAME Last Name varchar(80)

DEPARTMENT Department varchar(80)

EMAIL Email Address varchar(80)

IMAGE URL of personal photo varchar(80)

list.jsp

Servlet

employee.jsp

Database

Figure 10.9 The employee database application



Servlet-centric design 255
To access a particular employee’s record, say employee #1000, we can use the fol-
lowing SQL query, which should return a single record since each ID number is
unique to a single employee.

SELECT * FROM PEOPLE_TABLE WHERE ID = 1000

We can wrap the results of this query into an EmployeeBean that encapsulates all of
the information we have about an employee. We can then use this Bean inside a JSP
page to display the information, but we will also have a reusable component that we
can apply to other applications that deal with employees and our database. Rather
than including the code for accessing information from the database inside the
functionality of our EmployeeBean or the JSP pages composing the front end, we
have chosen to create a servlet that is responsible for dealing with the database and
controlling the application.

10.3.8 EmployeeBean

The first thing we need to do is to define the JavaBean that will represent the
employee data contained in each record of the table. To do this we simply map each
column of the table to a bean property of the appropriate type. The property sheet
for a bean designed to hold a record from our PEOPLE_TABLE is shown in
table 10.2. 

The decision on what level of access to afford each property depends on how you
expect the bean to be used in the application. The id property for example is
unique to each record and will generally not be changed, even if we are editing an
employee’s details, so we will make it read-only to emphasize this fact. We still need
to be able to specify the id value at some point however—as it needs to be reflected
through the read-only property. To do so we will pass it in through the constructor.

Table 10.2 An EmployeeBean 

Name Access Java Type Example

id read-only int 1000

firstName read/write String Arlon

lastName read/write String Fields

department read/write String Engineering

email read/write String afields@headquarters

image read/write String http://server/1000.gif



256 CHAPTER 10

Architecting JSP applications
The constructor will also set all of the instance variables, which are used to store
property data, to empty strings.

public EmployeeBean(int id) {
  this.id = id;
  firstName = "";
  lastName = "";
  image = "";
  email = "";
  department = "";
}

Of course a JSP page will not be able to pass arguments to a constructor, and
indeed won’t be able to instantiate a bean without a zero argument constructor.
We’ll provide one that simply passes a dummy, impossible id value to the primary
constructor. In this application however, we shouldn’t need to create a bean in
our JSP page anyway.

public EmployeeBean() {
  this(0);
}

This way we can create the bean and leave it in a state that tells us that we don’t
have a valid identifier for this bean yet, such as when we are creating a record. If we
needed to construct a new database record from the data contained in the bean we
will need to create a valid identifier, usually by asking the database for the next
unique identifier. The EmployeeBean code (listing 10.3) is straightforward: 

package com.taglib.wdjsp.arch;

public class EmployeeBean {
  private int id;
  private String firstName;
  private String lastName;
  private String image;
  private String email;
  private String department;

  public EmployeeBean(int id) {
    this.id = id;
    firstName = "";
    lastName = "";
    image = "";
    email = "";
    department = "";
  }

Listing 10.3 EmployeeBean 



Servlet-centric design 257
  public EmployeeBean() {
    this(0);
  }

  public int getId() {
    return this.id;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public String getFirstName() {
    return this.firstName;
  }

  public void setLastName(String lastName) {
    this.lastName = lastName;
  }

  public String getLastName() {
    return this.lastName;
  }

  public void setImage(String image) {
    this.image = image;
  }

  public String getImage() {
    return this.image;
  }

  public void setEmail(String email) {
    this.email = email;
  }

  public String getEmail() {
    return this.email;
  }

  public void setDepartment(String department) {
    this.department = department;
  }

  public String getDepartment() {
    return this.department;
  }
}



258 CHAPTER 10

Architecting JSP applications
10.3.9 FetchEmployeeServlet

FetchEmployeeServlet knows how to do only two things. It can, given an
employee ID number, retrieve that employee’s information from the database and
forward it to the employee.jsp page for display, or return a Vector containing a
Bean representing each employee in the database to the list.jsp page. The coding
is in listing 10.4. 

package com.taglib.wdjsp.arch;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
import java.util.*;

public class FetchEmployeeServlet extends HttpServlet {
  private final static String driver = "postgresql.Driver";
  private final static String url =
    "jdbc:postgresql://slide.dev/emp";
  private final static String user = "guest";
  private final static String password = "guest";
  private final static String sql =
    "select * from people_table where id = ?";
  private Connection connection = null;
  private PreparedStatement statement = null;
  private ServletContext context;

   public void init(ServletConfig config) throws ServletException {
    super.init(config);
    context = config.getServletContext();
    try {
      Class.forName(driver);
      connection = DriverManager.getConnection(url, user, password);
      statement = connection.prepareStatement(sql);
    }
    catch (ClassNotFoundException e) {
      System.err.println("Unable to load database driver");
      throw new ServletException("Unable to load database driver");
    }
    catch (SQLException e) {
      System.err.println("Unable to connect to database");
      throw new ServletException("Unable to connect to database");
    }
  }

  public void service(HttpServletRequest req,
      HttpServletResponse res)

Listing 10.4 FetchEmployeeServlet.java



Servlet-centric design 259
    throws ServletException, IOException {
    String jsp;
    String cmd = req.getParameter("cmd");
    String idString = req.getParameter("id");
    int id;
    try { id = Integer.parseInt(idString); }
    catch(NumberFormatException e) { id=0; }

    if ("get".equals(cmd)) {
      EmployeeBean bean = fetchEmployee(id);
      req.setAttribute("employee", bean);
      jsp = "/employee.jsp";
    }
    else {
      Vector list = fetchAll();
      req.setAttribute("list", list);
      jsp = "/list.jsp";
    }
    RequestDispatcher dispatcher;
    dispatcher = context.getRequestDispatcher(jsp);
    dispatcher.forward(req, res);
  }

  public EmployeeBean makeBean(ResultSet results)
    throws SQLException {
    EmployeeBean bean = new EmployeeBean(results.getInt("id"));
    bean.setFirstName(results.getString("fname"));
    bean.setLastName(results.getString("lname"));
    bean.setEmail(results.getString("email"));
    bean.setDepartment(results.getString("department"));
    bean.setImage(results.getString("image"));
    return bean;
  }

  public EmployeeBean fetchEmployee(int id) {
    try {
      ResultSet results;
      synchronized (statement) {

     statement.clearParameters();
     statement.setInt(1, id);
     results = statement.executeQuery();

     }
      EmployeeBean bean = null;
      if (results.next()) {

     bean = makeBean(results);
      }
      if (results != null)

     results.close();
      return bean;
    }
    catch (SQLException se) { return null; }



260 CHAPTER 10

Architecting JSP applications
  }

  public Vector fetchAll() {
    try {
      Vector list = new Vector();
      ResultSet results;
      Statement st = connection.createStatement();
      results = st.executeQuery("select * from people_table");
      while (results.next())

     list.add(makeBean(results));
      return list;
    }
    catch (SQLException se) { return null; }
  }

  public void destroy() {
    try {
      if (connection != null)

     connection.close();
    }
    catch (SQLException e) { }
  }
}

In the init() method of our servlet we establish a connection to the database that
will remain throughout the life of the servlet. In the destroy() method, which will
be called by the servlet container just prior to shutdown, we close this connection.
Each time the servlet is requested, service()will be called. It is here that we
encode our application’s logic and flow control. We basically support two com-
mands, get to fetch a specific employee, or anything else to create a Vector con-
taining all possible employees.

String cmd = req.getParameter("cmd");
if ("get".equals(cmd)) {
  EmployeeBean bean = fetchEmployee(id);
  req.setAttribute("employee", bean);
  jsp = "employee.jsp";
}
else {
  Vector list = fetchAll();
  req.setAttribute("list", list);
  jsp = "list.jsp";
}

After processing, we’ve set the variable jsp to the URI of the JSP page which should
be visited next by the application. We use a RequestDispatcher to transfer control
to that page.



Servlet-centric design 261
RequestDispatcher dispatcher = context.getRequestDispatcher(jsp);
dispatcher.forward(req, res);

Both fetchEmployee() and fetchAll() rely on the makeBean() method, which
takes the current row of the ResultSet sent to it and extracts the appropriate col-
umns to populate a newly created EmployeeBean.

  public EmployeeBean makeBean(ResultSet results) throws SQLException {
    EmployeeBean bean = new EmployeeBean(results.getInt("id"));
    bean.setFirstName(results.getString("fname"));
    bean.setLastName(results.getString("lname"));
    bean.setEmail(results.getString("email"));
    bean.setDepartment(results.getString("department"));
    bean.setImage(results.getString("image"));
    return bean;
  }

10.3.10 JSP employee list

This page receives the list of employees from the servlet in the form of a Vector
filled with EmployeeBean objects. It simply uses scriptlets to extract each one, then
builds a link back to the servlet to provide the user with a detail view of each entry.
We pass each employee’s ID number in through the link, which will allow our serv-
let to pick the proper one. The source code is in listing 10.5.   

<%@ page import="java.util.*,com.taglib.wdjsp.arch.EmployeeBean" %>
<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean"/>
<html>
<body>
<b>Current Employees</b>
<ul>
<%
  Vector v = (Vector)request.getAttribute("list");
  Iterator i= v.iterator();
  while (i.hasNext()) {
     employee = (EmployeeBean)i.next();
%>
<li>
<a href="/servlet/FetchEmployeeServlet?cmd=get&id=
<jsp:getProperty name="employee" property="id"/>">
<jsp:getProperty name="employee" property="lastName"/>,
<jsp:getProperty name="employee" property="firstName"/></a>
<% } %>
</ul>
</body>
</html>

Listing 10.5 list.jsp 



262 CHAPTER 10

Architecting JSP applications
10.3.11 JSP page viewer

The JSP code needed to view the information stored inside the bean is fairly
straightforward. After we have a reference to the bean we simply display the values
of the appropriate properties needed for our interface. To grab the bean, which has
been placed into the request by our servlet, we specify a scope value of request and
an ID with the same identifier value used by the servlet.

<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean" 
scope="request"/>

If the id value that we specify is not the same identifier used by the servlet when
placing the bean into the request, or if the page is requested directly rather than
through the servlet, the bean will not be found. If the bean is not found, the
<jsp:useBean> tag will, of course, create an empty EmployeeBean and place it into
the request. Once we have a reference to the bean we can use it to display the fields
extracted from the database, as we do with any other bean.

<B>Department:</B> <jsp:getProperty name="employee" property="department"/>

We have in essence encapsulated a database record into a JSP accessible bean with-
out muddying our page with database code. This solution also provides a high
degree of abstraction for the page designer. As far as the JSP code is concerned it
doesn’t matter where the data came from—flat file, database, input form, or an
LDAP server—the page still displays the record’s fields. This not only allows the
back-end implementation to change over time without affecting the front end, it
allows this front-end code (listing 10.6) to be reused throughout the system.

<:%@ page import="com.taglib.wdjsp.arch.EmployeeBean"%>
<jsp:useBean id="employee" class="com.taglib.wdjsp.arch.EmployeeBean" 

scope="request"/>
<html>
<head><title>employee record</title></head>
<body>
<table border="1" align="center">
<tr bgcolor="tan"><td colspan=2><font size=+3 face=arial><b>
<jsp:getProperty name="employee" property="lastname"/>,
<jsp:getProperty name="employee" property="firstname"/>
</b></font></td></tr>
<tr><td align=left valign=top>
<img height="150"
src="<jsp:getProperty name="employee" property="image"/>"></td>
<td align=left valign=top>
<table border=0>

Listing 10.6 employee.jsp



Enterprise JavaBeans 263
<tr><td><b>full name:</b></td><td>
<jsp:getProperty name="employee" property="firstname"/>
<jsp:getProperty name="employee" property="lastname"/>
</td></tr>
<tr><td><b>employee id:</b></td><td>
<jsp:getProperty name="employee" property="id"/>
</td></tr>
<tr><td><b>department:</b></td><td>
<jsp:getProperty name="employee" property="department"/>
</td></tr>
<tr><td><b>e-mail:</b></td><td>
<jsp:getProperty name="employee" property="email"/>
</td></tr>
</table>
</td>
</tr>
</table>
</body>
</html>

10.4 Enterprise JavaBeans

The previous two JSP architectures we’ve discussed do not directly support compli-
cated transaction management and distributed architectures. The introduction of
the EJBs specification by Sun Microsystems and its adoption by major application
server companies like Netscape and IBM promises to ease and speed the develop-
ment of mission-critical applications. EJBs are positioned to play an increasingly
important role in Java applications and pair up excellently with JSPs and servlets.
However, teaching you the details of EJBs is beyond the scope of this book. We can
only hope to introduce them to you, and leave you with an understanding of how
they fit into JSP application design. 

10.4.1 What are Enterprise JavaBeans?

EJBs are reusable business logic components for use in distributed, multitier appli-
cation architectures. You can get up and running quickly by building applications
around EJBs you have created or by leveraging the growing number of off-the-shelf
components. The EJB framework provides functionality that traditionally has repre-
sented the biggest challenge to creating web-based applications.

 For example, if you were developing a high-end e-commerce application, you
might purchase one EJB component that performed real-time credit card approval,
another that managed your customers, and another that calculated shipping costs.
You would then tie these together within your application server by customizing the
run-time properties of the EJBs, and there you would have it—an order processing



264 CHAPTER 10

Architecting JSP applications
system. The application server would automatically handle sticky issues such as bal-
ancing loads, maintaining security, monitoring transaction processes, sharing
resources, ensuring data integrity, and so on.

10.4.2 JavaBeans vs. EJBs

How do EJBs and JavaBeans relate? They actually don’t have much in common
from a technical perspective, even if the philosophy behind them—enabling devel-
opers to take advantage of reusable components in their applications—is the same.

 Like the beans we have been studying, EJBs are a Java-based software compo-
nent. However these beans follow a completely different set of conventions and
interfaces and are not accessible directly through bean containers or JSP tags (at least
the standard tags). The purpose of EJBs is to encapsulate business logic (for example,
the steps involved in depositing money into an account, calculating income tax, or
selecting which warehouse to ship an order from) into reusable server-side compo-
nents. In the EJB paradigm, an application is implemented as a set of business-logic-
controlling components that have been configured in application-specific ways
inside an EJB container such as an application server. Clients are then written to
communicate with the EJB components and handle the results. The standardized
interfaces exist to allow the EJB container to manage security and transactional
aspects of the bean. We can use EJBs to create JavaBeans for use in our JSP page.

10.4.3 Application servers and EJB containers

Like JSPs, EJBs are designed to work in concert with a container, typically inte-
grated into an application server such as Netscape Application Server (NAS) or
IBM’s WebSphere. An EJB container and a JSP container are different things, but
many application servers offer support for both. EJB containers must support Sun’s
EJB specification, which details the interface between application server elements.
EJBs can be used with any application server or other system providing an EJB con-
tainer that implements these interfaces. EJB containers can also exist as part of other
systems such as transaction monitors or database systems.

 Application servers in particular are excellent environments to host EJB contain-
ers because they automate the more complex features of multitier computing.
Application servers manage scarce resources on behalf of the components involved
in the design. They also provide infrastructure services such as naming, directory
services, and security. And they provide bean-based applications with the benefit of
scalability—most application server environments will let you scale your application
through the addition of new clusters of machines.



Enterprise JavaBeans 265
 EJB containers transparently provide their EJBs with a number of important ser-
vices. While you may not deal with these services directly since they’re conveniently
kept under the covers, EJBs couldn’t function without them. These services are:

� Life cycle management: Enables initialization and shutdown of EJBs.
� Load management: Automatically distributes EJB objects across a cluster of

servers.
� Security management: Enables EJBs to work with a variety of authentication

schemes and approval processes. 
� Transaction support: Manages such things as rolling back transactions that

didn’t fully complete and handling final commitment of transactions, plus
transactions across multiple databases. 

� Persistence and state management: Enables EJBs to keep information
between sessions and individual requests, even if the container’s server must
be rebooted. 

The EJB container also provides a communications channel to and from its beans, and
it will handle all of its EJBs multithreading issues. In fact, the EJB specification explic-
itly forbids an EJB from creating its own threads. This ensures thread-safe operation
and frees the developer from often-complicated thread management concerns.

10.4.4 Application design with EJBs

Now let’s examine how we would build a JSP application employing EJBs. Because
the role of an EJB is to handle only the core business logic of your application, you
will still need JSPs to deal with presentation issues such as generating web pages to
communicate results and servlets for control. While you can build your application
from JSPs and EJBs alone, either through scriptlets or JSP JavaBeans, we don’t gener-
ally recommend it. An application complex enough to benefit from EJBs would
almost certainly employ a servlet-centric design. Similar to the use of the command
pattern we described ealier, EJBs handle processing command requests or other appli-
cation logic, freeing the servlet from direct responsibility over command execution.

 For example, in a banking application a servlet might use the services of an EJB
component to determine whether users are business or consumer customers and use
a servlet to direct them to an appropriate JSP-controlled web page to show them
their account balance. The application logic has been moved out of the servlet, in
favor of the EJB, which might be better able to handle it (figure 10.10).



266 CHAPTER 10

Architecting JSP applications
 In such an approach, we’d
want to shield the JSP pages them-
selves from the EJB’s inner work-
ings as much as possible. If the
servlet’s calls to the EJB server
re turn  par t i cu lar l y  complex
objects, we might be better off
wrapping the results of the call
into simpler data beans, which contain a view of the data relevant to the JSP page.
For example, consider this excerpt from a servlet where we extract account informa-
tion from an EJB and place it into a JavaBean before forwarding control on to our
presentation page:

Context initial = new InitialContext();
Object objref = initial.lookup("AccountStatus");
AcctHome home;
home = (AcctHome)PortableRemoteObject.narrow(objref, AcctHome.class);
AccountStatus accountStatus = home.create();
AccountViewBean bean = new AccountViewBean();
bean.setBalance(accountStatus.getBalance());
bean.setLastUpdate(accountStatus.getLastModifiedTimeStamp());
request.setAttribute(“accountview”, bean);
RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher(“/AccountStatus.jsp”);
rd.forward(req, res);

10.5 Choosing an appropriate architecture

So when is it appropriate to use each of these different architectures for your JSP
application? Like most architectural decisions, it depends. It depends on a number
of factors, including your own team’s skills, experiences, personal preferences, and
biases. Sophisticated, multitier architectures provide a larger degree of abstraction
and modularity, but only at the cost of complexity and increased development time.
In practice, large multifaceted JSP applications tend to make use of more than one
single architectural model, using different models to fill different sets of require-
ments for each aspect of the application. When making your architectural selection
there are several important aspects to consider, each with its own advantages, disad-
vantages, and tradeoffs.

JSP

Client Servlet EJB

Database

Figure 10.10 An EJB handling application logic



Choosing an appropriate architecture 267
10.5.1 Application environment

A JSP application’s environment plays an important role in determining the best-fit
architecture for a project. Every environment is different, but each places its own
unique pressures on JSP application design and deployment.

Firewalls and the DMZ
Today’s enterprise networks are pretty complicated places. Combined with the fact
that many applications cross the firewall we must be aware of the different zones of
accessibility in most enterprise situations. There are three basic access zones inside
most enterprises: intranet (the networks inside the inner firewall); DMZ or no man’s
land (the area between the intranet firewall and the public web); and the public web
or Internet (the network outside all firewalls).

 Firewalls divide the corporate network
into a series of distinct zones (figure 10.11),
each of which is afforded a different level of
accessibility. Of course in practice there are
generally several different levels of accessibil-
ity within each zone, but for purposes of dis-
cussion these definitions will suffice.

The public web
Machines on the public web, with the excep-
tion of corporate public web servers, are gen-
erally restricted from any access to internal
networks, including the DMZ. You can think
of the public web as “the rest of the world,”
since it literally includes everyone on the Internet. This is the area that will host the
web servers and JSP containers that the general public will connect to. While sys-
tems in this zone may include various levels of authentication designed to restrict
access to information on the server, the important thing to remember is that the
general public is given direct network connectivity to these systems, at least to some
degree. Applications running in this segment of the network generally experience
more traffic, and are more concerned with scalability and performance.

 If a company runs an extranet for its business partners, it will generally be
deployed from this network zone. While we often think of an extranet as being pri-
vate, from a network connectivity point of view it still falls into the domain of public
access, at least for the front end. On the other hand, virtual private networks
(VPNs) created by corporations for their partners, employees, or field offices do not

Public web

DMZ

Intranet

Outer firewall

Outer firewall

Figure 10.11 A typical enterprise 
network



268 CHAPTER 10

Architecting JSP applications
fall into this category. Although they carry information across the Internet they
have been designed to map into the company’s network in a transparent matter. For
this reason, we treat VPNs as simply another segment of our intranet, or internal
corporate network.

The intranet
The intranet is composed of internal networks and systems. Traditionally, systems
on the intranet can access machines inside the DMZ and on the public web. JSP
applications designed to run in the intranet can be entirely self-contained internal
applications, relying totally on resources local to the intranet they run on. Or, JSP
applications on the intranet may be acting on back-end data sources located in the
DMZ or the public web. For example, a JSP application might let a content manager
modify information ultimately displayed on the corporate web server, which lives in
the public web.

The DMZ
The DMZ is the name commonly given to the area between public and private net-
works and is given some level of access to machines on both the intranet and the
public web. It is a carefully restricted network zone. For this reason the DMZ can be
used to host back-end databases and support services for front-end JSP services.
The purpose of the DMZ is to provide the connectivity to communicate between
public and private network zones, while establishing a buffer zone where you can
better control access to information. Generally, the firewall is designed to let only
web traffic into the DMZ.

Back-end resources
Back-end resources (also known as enterprise information systems) are databases,
LDAP servers, legacy applications, and other sources of information that we will
need to access through our JSP application. Projects for the enterprise generally
require access to some sort of information system on the back end. Where are your
databases located? What sort of access is granted between your JSP container and
your information systems?

10.5.2 Enterprise software requirements

If you are building JSP applications for the enterprise, your choice of JSP application
architecture is largely influenced by the requirements placed on it by the very
nature and requirements of the enterprise itself. While every project is different, of



Choosing an appropriate architecture 269
course, any JSP application we might develop for use in the enterprise shares some
common characteristics that are worth exploring. 

10.5.3 Performance, scalability, and availability

Enterprise applications are particularly sensitive to performance and availability
issues, especially in mission-critical situations and heavily loaded web servers. One
strategy commonly employed to address scalability issues is web server clustering,
using groups of machines to distribute the load across a single web site. If you will
be deploying JSP applications into a clustered environment you must understand
how your web servers, JSP containers, and application servers (if present) will han-
dle requests. Distributed transactions, sessions, and object persistence will vary dif-
ferently by vendor and program design. Some configurations will place restrictions
on your JSP components, such as support for object serialization, while others may
limit your use of persistence. If you are using JSP’s session management services you
must understand how your environment manages sessions across cluster nodes.

Maintenance and updates
Unlike retail software, which is developed around fixed schedules of release, appli-
cations designed for use within an enterprise are typically evolving constantly. If an
application is critical to the success of the business it will certainly be the target of
frequent bug fixes, improvements, and enhancements. In such a situation, modular-
ity and design flexibility will be critical to the ongoing success of the project. One of
JSP’s big strengths is its ability to separate the presentation aspects of your applica-
tion, allowing you to alter it independently of the application logic itself.

Understand risk factors
What task is your application performing? How much time should you spend ensur-
ing transaction integrity and bulletproofing each step of the process? If you are build-
ing mission-critical applications, count on spending more time designing transaction-
processing code and developing an architecture that reduces the risk of interruptions
in the program flow, as this can often be the most complicated and time-consuming
aspect of application design and testing.

10.5.4 Technical considerations

The technical nature of a JSP project will play a large role in determining the best
architectural approach. The complexity and number of moving parts should, in a
very real way, affect the project direction. 



270 CHAPTER 10

Architecting JSP applications
Complexity and scope  
How complex and interrelated are the activities surrounding your application? If
your application must deal with multiple data sources, resource pooling, or complex
transaction management, a fairly sophisticated architecture will certainly be in
order. It is very likely that you will want to employ servlets, and possibly EJBs to
shield your JSP front-end from a complicated back end. On the other hand, if there
are very few steps involved, placing all of your application logic directly into JSP
pages in a page-centric approach eliminates complexity and will likely reduce the
amount of development time required to complete the project

Potential for reuse  
Could your application make use of components that already exist or would be use-
ful in other applications? If the JSP application you are developing is part of a larger
series of projects, the extra time involved in focusing on the development of
components may pay off in the long run. If you can develop JavaBeans to model
your domain objects you can reuse them throughout related applications—even if
they are not JSP based.

Expected lifetime and propensity for change  
How likely is it that requirements will change over the life of the application? A
long life with an expectation for frequent change points to the need for a more
modular architecture with a higher degree of flexibility. However, an application
that you expect to use briefly and then discard would probably not benefit from the
increased complexity of a loosely coupled component-based architecture.

10.5.5 Organizational considerations

Every organization's situation is different. What worked for you in your last job
won’t necessarily work in this one. The talents of your team and your organization’s
work style will play a big role in determining the most appropriate JSP architecture.

Team size and capabilities  
How big is your team? Is it just you or are you lucky enough to have a large corpo-
rate development team at your command? Is your Java development team com-
posed of beginners or seasoned veterans? Is there a high degree of variance in skill
levels? Larger teams with a range of complementary skill sets tend to favor the more
distributed models incorporating servlets and EJBs.

 The ability to divide your application into discrete components promotes divi-
sion of labor, developer specialization, and better manageability in the team. Less



Choosing an appropriate architecture 271
experienced developers can work on data beans and other less complicated aspects
while your senior members can worry about the more complicated aspects of the
architecture and application logic. If necessary you can even hire contractors to
develop individual components beyond the area of expertise of your own develop-
ers, then integrate them into your project. Such a modular approach becomes less
important if a single small team will handle the JSP project alone.

 Removing the Java from the front-end code frees your design team to concen-
trate on the application interface rather than its implementation. On the other
hand, if you are a lone wolf coding commando, then you will probably benefit from
the simplicity of single source, JSP-only style applications. The makeup of your team
will, in part play a role in determining the best architecture for your application.

Time and money  
How much time and money has been allocated to your project? Increased levels of
complexity generally mean more time and, in the case of EJBs, more money. Com-
plexity and time are trade-offs, but you have to consider maintenance expenses as
well. It doesn’t do much good to create a rigid, hard to maintain design in an effort
to save time and money up front if you are continually forced to devote develop-
ment resources to maintaining the project in the future.

Control of assets and resources  
How much control do you have over corporate resources that are important to
your project? If your application will be accessing databases or other information
sources that already exist or are beyond your control, you will probably want to select
an architecture with the additional layers of abstraction necessary to shield your devel-
opers from a disparate and possibly variant interface.



 11An example JSP projec
t

This chapter covers
� Building a servlet-centric application

� Component-based JSP development

� JSP/Database interaction

� Utilizing the command pattern

� Maintaining transaction integrity
272



An FAQ system 273
Now we will apply the JSP programming techniques covered in previous chapters
toward the design and development of a real-world enterprise application more
complex than would be allowed as part of another chapter. We will develop a data-
base driven system for creating, managing, and displaying a list of frequently asked
questions (FAQs) and making them available through a web site. We hope it will
help tie together all the concepts we have discussed so far.

11.1 An FAQ system

We selected an FAQ system as the example for this chapter for several reasons. It is a
nontrivial application that illustrates many of the principals of JSP application design
such as command handling, form element processing, database interaction, and
transaction management. It was also important to present an application simple
enough that it could be constrained to a readable number of pages.

 Lastly, we wanted to end up with a web application that could be useful in its
own right. While we will approach this project from an FAQ perspective, the project
itself is applicable to maintaining and displaying any collection of information man-
aged by a database through a browser with JSP. Just to show you where we are
heading, a screen shot of the finished application in action is shown in figure 11.1.

11.1.1 Project motivations

A recent client of ours has been maintaining a list of FAQs to address common cus-
tomer product issues. As the list has grown over the years it had became increasingly
difficult to maintain and it had become necessary to maintain several different ver-
sions—a table of contents view, the whole list view, a list of new entries sorted by date,
and so forth. Each version was maintained by hand from the master list. The web
content team was responsible for updating the HTML based on the input of product
management, technical support, the documentation team, and a host of others.

 The combination of frequent updates and the need to maintain multiple views of
the list was the driving force behind the desire to automate the FAQ administration
process. This chapter-length example is based on this project, which we recently
completed with the help of JSP technology.

11.1.2 Application requirements

The FAQ system we will build in this example is designed to allow the company’s
internal content owners (product managers, technical support, etc.) to add, update,
and delete entries from the list without needing to enlist the help of the content
team, and without having to edit individual HTML files. We’ll use a simple



274 CHAPTER 11

An example JSP project
web-based interface to allow them to manipulate the FAQ entries. FAQ information
created by this process will be stored inside a database, and will be viewable in several
forms and contexts through the company web site in place of the old, static pages.

 After devising the concept and establishing our basic application goals, we must
devise a list of specific features we expect the application to support. The goal here
is not to dive into the details of the implementation behind each feature of the
application, but rather to list activities and events that the application will be
required to support:

� Each entry in the list will have a question, and an answer
� When an entry is modified we need to record the modification date
� FAQ entries should have a unique identifier that does not change, even if the

wording of the question itself changes, so that it is possible to link a user to a
particular FAQ

� FAQs must be visible in a variety of formats on the web—by title, by modifi-
cation date, and so forth

Figure 11.1 Viewing FAQs through our JSP application



An FAQ system 275
� The FAQ lists on the web site should be generated dynamically, without the
need for content engineers to perform production work

� Users need to view single FAQ or multiple FAQs as presentation dictates

Another important requirement was to fit into the client’s network architecture. In
this case, they had database servers in the DMZ accessible from both the public web
servers and the intranet. We therefore decided that the most logical deployment
scheme would be to let intranet users manage FAQs stored on the DMZ databases,
and have the web servers access those same databases in order to display the FAQs.

11.1.3 Application modules

In order to start coding on this project we’ll first separate the application into dis-
crete modules which can then be built individually, without being burdened by the
details of the implementation of the others. To accomplish this we looked for com-
mon areas of functionality that we could separate from the project as a whole. An
important goal in this process was to create modules that were more or less inde-
pendent of each other. After studying the different areas, functions, and require-
ments we had identified we defined three modules:

� Storage—stores and retrieves FAQs in the database
� Administration—lets administrators create and edit entries
� Web access—displays the FAQs on the public web site

Decomposing our FAQ system into three modules gave us a number of benefits—
before, during, and after development. First, it allowed us to divide development
tasks among our development team resources. As long as the requirements for
interaction between modules were clear it was possible for each team to work more
or less independently—at least until we were ready to integrate the modules.

 This approach also tends to encourage abstraction and promotes looser coupling
between modules and gives the ability to make changes to the implementation of
one module without having to rewrite the supporting ones. In other words, future
enhancements to one module can be made without involving the design teams of
the others.

Storage module
The storage module manages access to the database where each FAQ entry is
stored. We created it to shield the administration and web access modules from the
complexities of dealing with the database, and provide a layer of abstraction in case
we decided to make changes to the underlying storage mechanism as requirements



276 CHAPTER 11

An example JSP project
changed. In this case we are using a relational database, but may in the future need
to move to an object database or perhaps a simple flat file format.

Administration module
The administration module is the tool that product managers, support staff, and
other internal users would use to create and maintain the database of FAQs. It
includes a JSP-based user interface allowing them to add, delete, and update FAQs
in the database. This module is designed to be used within the enterprise exclu-
sively, and will not be exposed to the public web.

Web access module
This module is pretty much the reason we started this project. It allows us to
retrieve FAQs from the database and display them on the web dynamically. The pur-
pose of this module is to give our content team the JSP components and Java classes
they need to easily include individual or whole collections of FAQs into web pages
without having to constantly update them. It turns out that this module is pretty
simple; building off of components created for use in the other modules, but is infi-
nitely flexible in its capabilities. It essentially becomes a new service (fetching an
FAQ from the database) available to the content designers.

11.1.4 Building an FAQ component

It is clear that each module will need to exchange data at some point. To do so,
we’ll create a class to represent each FAQ. This class will be the building block from
each of our related modules, since, after all, it’s the FAQs we are building this whole
thing for in the first place. Since servlets and JSPs can both deal in terms of objects,
a FaqBean object gives a common unit of exchange that will greatly simplify interac-
tion between components. The FaqBean class defines a simple set of properties, as
shown in table 11.1.

Table 11.1 FaqBean properties

Property Java Type

ID int

question String

answer String

lastModified java.util.Date



An FAQ system 277
Creating the bean is straightforward; we simply provide the getter and setter meth-
ods for each of the Bean’s properties as shown in chapter 8. The source code is
shown in listing 11.1.

package com.taglib.wdjsp.faqtool;

import java.util.Date;

public class FaqBean {
  private int id;
  private String question;
  private String answer;
  private Date lastModified;

  public FaqBean() {
    this.id = 0;
    this.question = "";
    this.answer = "";
    this.lastModified = new Date();
  }

  public void setQuestion(String question) {
    this.question = question;
    this.lastModified = new Date();
  }

  public String getQuestion() {
    return this.question;
  }

  public void setAnswer(String answer) {
    this.answer = answer;
    this.lastModified = new Date();
  }

  public String getAnswer() {
    return this.answer;
  }

  public void setID(int id) {
    this.id = id;
  }

  public int getID() {
    return this.id;
  }

  public Date getLastModified() {
    return this.lastModified;
  }

Listing 11.1 FaqBean



278 CHAPTER 11

An example JSP project
  public void setLastModified(Date modified) {
    this.lastModified = modified;
  }

  public String toString() {
    return "[" + id + "] " + "Q: " + question + "; A: " +
      answer + "\n";
  }
}

Modifying any property of the bean through a setter method triggers an update in
the value of the lastModified property, which was initialized in the constructor to
match its creation date. You may be wondering why we created setter properties for
properties you might not expect the user to manipulate, such as lastModified and
ID. Since we’ll be constructing beans out of data from the database (and using them
in our JSPs), we need to be able to manipulate all the properties of our bean in order
to completely mirror their state in the database. The ID property for new beans is
assigned by the storage module, rather than the bean itself, as we’ll soon learn.

11.2 The storage module

The storage module must be accessible by several application components. We
wanted to isolate all database activity into a single module—hiding database code
behind a series of access methods that dependent components could use to add,
remove, and update FAQ objects in the database.

 The goal is to provide a single point of access into and out of the database. In
fact, we decided that the other modules should not even need to know that there is
a database; they simply request or deliver FAQs to the storage module, which magi-
cally handles the transaction. Likewise, we wanted the storage module to be appli-
cation independent. It does not need to be concerned about how the information it
manages is used by the other two modules, or any future modules for that matter.

 The design we came up with was to create a Java class designed to handle any
requests for access to FAQs stored in the database. This code is independent of the
other modules in our database, but its interface would provide the necessary meth-
ods to manage FAQs. By isolating database specific code in this manner, we are able
to pursue development of this module independently of the other two. It also
restricts database or schema specific operations to a single module.



The storage module 279
11.2.1 Database schema

For this application we created a single table, FAQS, with four columns. The table is
used to store data for our FAQ objects. Each row of the table represents an FAQ
(and its answer) and is identified by a unique ID value. The schema is summarized
in table 11.2.

Most of these mappings between database columns and FaqBean properties are
fairly straightforward. The modified column is used to store the date the FAQ was
last modified. The ID of each FAQ will be kept unique by maintaining a sequence
on the database, which is incremented automatically with each new Bean we add to
the table.

11.2.2 The FaqRepository class

The FaqRepository class is an example of the singleton pattern, a class which
allows only one instance of itself to be created and provides clients with a means to
access that instance. In this case, the singleton object provides a number of methods
for manipulating FAQs stored in the database. All of the methods in this class deal
with FaqBean objects, not strings or SQL data, improving the abstraction between
this and its companion classes which will use it. We can build and debug this class
independently of the other modules because, while the repository lets us manipu-
late Beans in the database, it does so with no direct ties to the main application. The
FaqRepository class is shown in listing 11.2.

package com.taglib.wdjsp.faqtool;

import java.util.*;
import java.sql.*;

public class FaqRepository {
  private static FaqRepository instance;

Table 11.2  The FAQ database schema

Column SQL Type

id int

question varchar(255)

answer varchar(4096)

modified timestamp

Listing 11.2 FaqRepository



280 CHAPTER 11

An example JSP project
  private static final String driver = "postgresql.Driver";
  private static final String user= "guest";
  private static final String pass = "guest";
  private static final String dbURL =
    "jdbc:postgresql://slide/test";

  private Connection connection;
  private PreparedStatement getStmt;
  private PreparedStatement putStmt;
  private PreparedStatement remStmt;
  private PreparedStatement getAllStmt;
  private PreparedStatement updStmt;

  public static FaqRepository getInstance()
    throws FaqRepositoryException {
    if (instance == null)
      instance = new FaqRepository();
    return instance;
  }

  private FaqRepository() throws FaqRepositoryException {
    String get="SELECT * FROM FAQS WHERE ID=?";
    String put=
      "INSERT INTO FAQS VALUES (NEXTVAL('faqid_seq'), ?, ?, ?)";
    String rem="DELETE FROM FAQS WHERE ID=?";
    String upd=
      "UPDATE FAQS SET QUESTION=?, ANSWER=?, MODIFIED=? WHERE ID=?";
    String all="SELECT * FROM FAQS ORDER BY ID";

    try {
      Class.forName(driver);
      connection = DriverManager.getConnection(dbURL, user, pass);
      getStmt = connection.prepareStatement(get);
      putStmt = connection.prepareStatement(put);
      remStmt = connection.prepareStatement(rem);
      getAllStmt = connection.prepareStatement(all);
      updStmt = connection.prepareStatement(upd);
    }
    catch (ClassNotFoundException e) {
      throw new FaqRepositoryException("No Driver Available!");
    }
    catch (SQLException se) {
      throw new FaqRepositoryException(se.getMessage());
    }
  }

  private FaqBean makeFaq(ResultSet results)
    throws FaqRepositoryException {
    try {
      FaqBean faq = new FaqBean();
      faq.setID(results.getInt("ID"));
      faq.setQuestion(results.getString("QUESTION"));



The storage module 281
      faq.setAnswer(results.getString("ANSWER"));
      Timestamp t = results.getTimestamp("MODIFIED");
      java.util.Date d;
      d = new java.util.Date(t.getTime() + (t.getNanos()/1000000));
      faq.setLastModified(d);
      return faq;
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
  }

  public FaqBean getFaq(int id)
    throws UnknownFaqException, FaqRepositoryException {
    try {
      ResultSet results;
      synchronized (getStmt) {
        getStmt.clearParameters();
        getStmt.setInt(1, id);
        results = getStmt.executeQuery();
      }
      if (results.next())

    return makeFaq(results);
      else

    throw new UnknownFaqException("Could not find FAQ# " + id);
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
  }

  public FaqBean[] getFaqs()
    throws FaqRepositoryException {
    try {
      ResultSet results;
      Collection faqs = new ArrayList();
      synchronized(getAllStmt) {
        results = getAllStmt.executeQuery();
      }
      FaqBean faq;
      while (results.next()) {
        faqs.add(makeFaq(results));
      }
      return (FaqBean[])faqs.toArray(new FaqBean[0]);
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
  }



282 CHAPTER 11

An example JSP project
  public void update(FaqBean faq)
    throws UnknownFaqException, FaqRepositoryException {
    try {
      synchronized(updStmt) {
        updStmt.clearParameters();
        updStmt.setString(1, faq.getQuestion());
        updStmt.setString(2, faq.getAnswer());
        Timestamp now;
        now = new Timestamp(faq.getLastModified().getTime());
        updStmt.setTimestamp(3, now);
        updStmt.setInt(4, faq.getID());
        int rowsChanged = updStmt.executeUpdate();
        if (rowsChanged < 1)
          throw new UnknownFaqException("Could not find FAQ# " +
        faq.getID());
      }
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
  }

  public void put(FaqBean faq) throws
    FaqRepositoryException {
    try {
      synchronized(putStmt) {
        putStmt.clearParameters();
        putStmt.setString(1, faq.getQuestion());
        putStmt.setString(2, faq.getAnswer());
        Timestamp now;
        now = new Timestamp(faq.getLastModified().getTime());
        putStmt.setTimestamp(3, now);
        putStmt.executeUpdate();
      }
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
      
  }

  public void removeFaq(int id)
    throws FaqRepositoryException {
    try {
      synchronized(remStmt) {
        remStmt.clearParameters();
        remStmt.setInt(1, id);
        int rowsChanged = remStmt.executeUpdate();
        if (rowsChanged < 1)
          throw new UnknownFaqException("Can’t delete FAQ# "+ id);



The storage module 283
      }
    }
    catch (SQLException e) {
      throw new FaqRepositoryException(e.getMessage());
    }
  }

  public void destroy() {
    if (connection != null) {
      try { connection.close(); }
      catch (Exception e) { }
    }
  }

}

The constructor
The constructor for a singleton class like this one is private to prevent outside
classes from instantiating it. The only way to obtain an instance of the FaqReposi-
tory class then is through a static method of the FaqRepository itself. In the
constructor we establish a connection to the database. For brevity, we’ve hard
coded all of our database connection information, but in practice we would employ
a ResourceBundle, a properties file, JNDI, or some other means of externally con-
figuring this information. In the constructor we also create a number of prepared
statements to support the various operations we require—adding FAQs, removing
FAQs, and so forth.

 Using prepared statements not only improves the performance, it keeps our
database access particulars in one place. While we’ve hard coded the database con-
nection and the SQL code for simplicity, we could pull database access and schema
related statements out of the code, retrieving them from a properties file at run
time, allowing us some more flexibility. Remember, we’ll only have to go through
this prepared statement setup process once, since the constructor will be called only
once, when we create the sole instance of the class.

Referencing the instance
A static member of the class itself maintains a reference (instance) to a single
instance of the class that will be passed to anyone calling the getInstance()
method. The getInstance() method also takes care of creating the instance the
first time it is called. Note that if there is a problem, we throw a FaqRepository-
Exception in the constructor and rethrow it here. This way we can alert the calling
class that, for whatever reason, we are unable to create a FaqRepository.



284 CHAPTER 11

An example JSP project
 To use the FaqRepository then, the calling class just calls getInstance()
(within a try block of course), and then calls the appropriate public methods. For
example, to get an FAQ from the database, we would use code such as this:

try {

  FaqRepository faqDatabase = FaqRepository.getInstance();
  FaqBean faq = faqDatabase.getFaq(10005);
  System.out.println(“The Question Is: “ + faq.getQuestion()”);
}
catch (UnknownFaqException e1) {
  System.out.println(“Could not find Faq 10005”);
}
catch (FaqRepositoryException e2) {
  System.out.println(“Could not get access to Faqs!”);
}

We can use the code to write a test harness for this module and test each method of
our FaqRepository class, even though the other modules may still be in develop-
ment. Very handy.

Prepared statements
Note that our access methods all contain synchronized blocks around the prepared
statements. This is necessary because we are reusing PreparedStatement objects.
Because there is only a single instance of this class, there may be several threads exe-
cuting these methods simultaneously. Without synchronization, one thread could
be manipulating elements of the PreparedStatement object while another is
attempting to use it. Not a good thing.

 Each prepared statement handles a different type of operation and each works
with the data stored inside the FAQS table of the database. As a typical example,
notice the prepared statement we are using to add FAQs to the database:

String put="INSERT INTO FAQS VALUES (NEXTVAL('faqid_seq'), ?, ?, ?)";

This statement says that the first value (which maps to the ID of the FAQ) is deter-
mined by incrementing a sequence, faqid_seq, on the database. The operation
nextval() is a built-in method of our database server. This keeps us from having to
manage id allocation ourselves. Most, but not all, databases provide some sort of
managed sequences. If necessary you can create your own table of sequence values
and manage them yourself.

Access methods
Our FAQ access methods getFaq() and getFaqs()have a common operational
requirement. Given a ResultSet as output from executing the appropriate prepared



The storage module 285
statement they need to turn each row into a FaqBean object. This is accomplished by
creating an empty FaqBean object, and populating it with data from the appropriate
columns of the current row of the result set. Take a look at the getFaq() method in
the previous section. As you can see, we simplify things by delegating this common
task off to a utility method, makeFaq(), which takes the ResultSet as its argument,
and builds a bean mirroring the data in the ResultSet. Also note the conversion
from the database Timestamp to the bean’s java.util.Date type.

11.2.3 Storage module exceptions

In our methods that need to execute JDBC calls, we trap any SQLExceptions that
arise and rewrap them into FaqRepositoryExceptions. We could have simply
thrown them back, but since the decision was made to make the interface to FaqRe-
pository independent of its implementation—meaning that calling classes
shouldn’t have to know that FaqRepository is accessing a database, and thus
shouldn’t have to deal with SQLExceptions. Besides, if they can’t access the Faq-
Repository, there’s not much the calling class can do about it, other than reporting
it. Failure in this case is fatal. We do pass the message along in any case, to make
things easier to debug.

 We’ve created two simple exceptions classes to handle various error conditions
that may arise inside the storage module. The first, FaqRepositoryException, is
the base class. The second, UnknownFaqException, is a more specific exception that
is thrown when a requested FAQ cannot be located. They are very simple classes.
Their source code is shown in listings 11.3 and 11.4. 

package com.taglib.wdjsp.faqtool;

public class FaqRepositoryException extends Exception {
  
  public FaqRepositoryException() {
    super();
  }

  public FaqRepositoryException(String msg) {
    super(msg);
  }
}

Listing 11.3 FaqRepositoryException



286 CHAPTER 11

An example JSP project
package com.taglib.wdjsp.faqtool;

public class UnknownFaqException extends FaqRepositoryException {
  
  public UnknownFaqException() {
    super();
  }

  public UnknownFaqException(String msg) {
    super(msg);
  }
}

11.3 The administration module

The administration module is a tool allowing administrators to add, delete, and
update FAQs in the system. It is composed of a series of interconnected screens that
form the user interface to our application. The application’s screens are a function
of the various steps the user can take along the way. Transitioning between each
step causes activity—such as adding an FAQ to the database or deleting an existing
one—and results in different outcomes that lead us to new screens.

 At each screen, we’ll want to give the user a
chance to go back to the main menu (aborting the
current step), as well as perform the appropriate
activity for that page. Therefore, from each screen in
our application different choices take the user to dif-
ferent parts of the program. This is a typical tree-
style application flow (figure 11.2). (For brevity and
clarity in the diagram, we’ve left out the abort path
which just takes the user back to the main menu
from each screen.) Each path through the applica-
tion adds another branch to the tree.

 In developing the administration portion of our
FAQ management system we decided to create one
central servlet, FaqAdminServlet, to handle the
application logic and direct each request to the
appropriate screen, depending on the state of the
application and information specified in the request.
The screens themselves are a series of JSP pages, which make use of data provided
by the servlet. The servlet will be a mediator between the various pages that make

Listing 11.4 UnknownFaqException

Menu

Save

Save

Delete

Update
menu

Update

Delete
menu

Save

Add
screen

Figure 11.2 Flow through the 
administration application



The administration module 287
up the user interface screens, and will direct requests to the appropriate application
logic, which deals with the FAQ data itself.

11.3.1 The administration servlet

A servlet is at the heart of our application. We will direct each request to this serv-
let, and have it determine the actions to take and the next appropriate page to dis-
play. Our goal here is to use the JSPs for display and presentation purposes only, and
have the servlet managing flow through the application and handling the applica-
tion logic. We created an implementation of the command pattern approach dis-
cussed in chapter 10 to help better separate the application logic from the program
control aspects of our servlet.

Utilizing the command pattern
In the command pattern, we associate application activities (such as adding an FAQ
or editing an entry) with instances of classes that know how to perform the
requested function. Each activity will be represented by a specific command. The
implementation we elected to use for this project packages the application logic
into a collection of independent command handler classes, all of which implement
a common interface called Command. The Command interface specifies a single
method, execute():

package com.taglib.wdjsp.faqtool;
import javax.servlet.*;
import javax.servlet.http.*;

public interface Command {
  public String execute(HttpServletRequest req)
    throws CommandException;
}

The execute() method of each command handler takes an HttpServletRequest,
allowing it to pull out from the request any parameters it needs to perform its oper-
ation. When complete, the command handler can then store its results as a request
attribute before returning control to the servlet. The results of the operation can
then be retrieved from the request by the JSP page ultimately handling the request.
If anything goes wrong, an instance of CommandException, (listing 11.5), is thrown
to alert the servlet to the problem. The big idea here is that we have created an
interface which allows the servlet to delegate the handling of a command to a han-
dler class, without having to know any details about the handler class itself, even its
specific class name.



288 CHAPTER 11

An example JSP project
package com.taglib.wdjsp.faqtool;

public class CommandException extends Exception {

  public CommandException() {
    super();
  }

  public CommandException(String msg) {
    super(msg);
  }
}

Mapping actions to commands
Each JSP screen will indicate the user’s desired action to the servlet by passing in a
value through the request parameter cmd. The value of cmd serves as a command
identifier, telling us what to do next. So to delete an FAQ, the JSP page would sim-
ply pass in the appropriate identifier, say delete, signaling the servlet to hand the
request off to the command handler for deletion. Each action we want to support
in our application needs its own unique identifier that the JSP pages can use to
request different actions to be performed.

  However, processing a command is more than just calling the appropriate com-
mand handler’s execute() method. We must also direct the request to the appro-
priate JSP page following successful completion of the action. We didn’t want the
pages themselves to have to be bound to specific pages or understand flow control
issues. Therefore we’ve designed each of our command handlers to accept a String
value in its constructor to specify the next page in the process. This String value is
passed back to the controlling servlet from the execute() method as a return value,
identifying the JSP page that should now receive the request.

 In our servlet, we associate each command identifier with a separate instance of
one of our command classes (each of which we’ll discuss in a bit), which has been
preconfigured with the file name of the destination screen we should visit next. We
store each command class instance in a HashMap, using the command identifier used
by our JSP pages as the key. We’ll do this in the init() method of the servlet, which
is run only the first time the servlet is started by the server. This operation is per-
formed in the initCommands() utility method:

  private void initCommands() {
    commands = new HashMap();
    commands.put("main-menu", new NullCommand("menu.jsp"));
    commands.put("abort", new AbortCommand("menu.jsp"));

Listing 11.5 CommandException



The administration module 289
    commands.put("add", new NullCommand("add.jsp"));
    commands.put("do-add", new AddCommand("menu.jsp"));
    commands.put("update-menu", new GetAllCommand("upd_menu.jsp"));
    commands.put("update", new GetCommand("update.jsp"));
    commands.put("do-update", new UpdateCommand("menu.jsp"));
    commands.put("delete-menu", new GetAllCommand("del_menu.jsp"));
    commands.put("delete", new GetCommand("delete.jsp"));
    commands.put("do-delete", new DeleteCommand("menu.jsp"));
  }

As you can see we’ve created ten different commands, each with its own unique
identifier, which form the keys to our HashMap. Each command activity involves
more than just mapping a command identifier to a command handler; it’s a combi-
nation of command identifier, command handler class, and destination screen.
Some command handlers can be used to handle several different command identifi-
ers, by being configured with different destination pages. For example, both the
update menu and delete menu JSP pages will need a list of the FAQs in the database
to allow the user to make their selection. Collecting all of the FAQs for retrieval by
the JSP page is the job of the GetAllCommand class. Creating two different instances
of the GetAllCommand class with different destinations allows us to reuse the appli-
cation logic isolated inside the command handler. We aren’t required to create a
unique class for each identifier, since only the destination screens are different in
this case.

Processing commands
The implementation behind each command handler is, as we’ll see, independent of
the operations inside the servlet itself. We’ll discuss each of these in turn. The ser-
vice() method of our servlet is extremely simple in this design. We simply fetch the
appropriate command handler from our list, call its execute() method, then redi-
rect the request to the appropriate page. The lookupCommand() method simply
pulls the appropriate object from the HashMap and provides sane defaults—sort of a
factory method. The CommandToken.set() method creates a special token to help
maintain transaction integrity, which will be explained soon.

public void service(HttpServletRequest req, HttpServletResponse res)
  throws ServletException, IOException {
  String next;
  try {
    Command cmd = lookupCommand(req.getParameter("cmd"));
    next = cmd.execute(req);
    CommandToken.set(req);
  }
  catch (CommandException e) {
    req.setAttribute("javax.servlet.jsp.jspException", e);



290 CHAPTER 11

An example JSP project
    next = error;
  }
  RequestDispatcher rd;
  rd = getServletContext().getRequestDispatcher(jspdir + next);
  rd.forward(req, res);
}

If executing the command throws an exception, we catch it and store it as a request
attribute before forwarding the request on to our error-handling page. This allows
us to handle both servlet originated exceptions and JSP exceptions in the same
place. The complete source code for the servlet is shown in listing 11.6. 

package com.taglib.wdjsp.faqtool;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class FaqAdminServlet extends HttpServlet {
  private HashMap commands;
  private String error = "error.jsp";
  private String jspdir = "/jsp/";

  public void init(ServletConfig config) throws ServletException {
    super.init(config);
    initCommands();
  }

  
  public void service(HttpServletRequest req,

      HttpServletResponse res)
    throws ServletException, IOException {
    String next;
    try {
      Command cmd = lookupCommand(req.getParameter("cmd")); 
      next = cmd.execute(req);
      CommandToken.set(req);
    }
    catch (CommandException e) {
      req.setAttribute("javax.servlet.jsp.jspException", e);
      next = error;
    }
    RequestDispatcher rd;
    rd = getServletContext().getRequestDispatcher(jspdir + next);
    rd.forward(req, res);
  }

Listing 11.6 FaqAdministrationServlet



The administration module 291
  private Command lookupCommand(String cmd)
    throws CommandException {
    if (cmd == null)
      cmd = "main-menu";
    if (commands.containsKey(cmd.toLowerCase()))
      return (Command)commands.get(cmd.toLowerCase());
    else
      throw new CommandException("Invalid Command Identifier");
  }

  private void initCommands() {
    commands = new HashMap();
    commands.put("main-menu", new NullCommand("menu.jsp"));
    commands.put("abort", new AbortCommand("menu.jsp"));
    commands.put("add", new NullCommand("add.jsp"));
    commands.put("do-add", new AddCommand("menu.jsp"));
    commands.put("update-menu", new GetAllCommand("upd_menu.jsp"));
    commands.put("update", new GetCommand("update.jsp"));
    commands.put("do-update", new UpdateCommand("menu.jsp"));
    commands.put("delete-menu", new GetAllCommand("del_menu.jsp"));
    commands.put("delete", new GetCommand("delete.jsp"));
    commands.put("do-delete", new DeleteCommand("menu.jsp"));
  }
}

Transaction integrity
Now to explain the meaning of that CommandToken.set() call following a success-
ful command execution. As explained in chapter 10, some actions in a JSP applica-
tion are vulnerable to accidental re-execution due to the user reloading a page or
clicking Back. 

 Take for example the steps involved in adding a new FAQ to the database. In the
first step, we collect information for the new FAQ through a form. In the second
step it takes the question and answer from the request, and instructs the FaqRepos-
itory to process it, adding it to the database. The FAQ is added and the user ends
up back at the main menu. However, the URL that the browser has stored in mem-
ory for the current page request now includes the add request and the appropriate
question and answer variables. If the user clicks Reload, the request is resubmitted,
all the request parameters are resent, and another instance is added to the database.
A similar problem can also happen with Delete and Update. We need to trap each of
these cases and act accordingly. Something has to alert the servlet to the fact that
we’ve already performed this operation once and that we should not do it a second
or third time.



292 CHAPTER 11

An example JSP project
 In our servlet we will apply the command token technique discussed in
chapter 10 to assure that sensitive commands are performed only once. To issue and
manage our tokens we’ll use an application independent utility class we’ve designed
called CommandToken, which has two public methods, both of which are static:

public static void set(HttpServletRequest req)
public static boolean isValid(HttpServletRequest req)

The first method, set(), creates a unique transaction token and stores it (as a string
of hex characters) in the user’s session and in the request as an attribute. The sec-
ond method, isValid(), can be used to validate a request, and will search for the
existence of a token in the request and the session and compare them for equality. If
they are equal, it returns true—otherwise it returns false indicating that there is
either a missing or mismatched token. The token itself is an MD5 message digest (a
kind of checksum) generated from the combination of the user’s session ID and the
current system time. This assures that each token is unique to the user and will not
be repeated. The code for the CommandToken class is in listing 11.7: 

package com.taglib.wdjsp.faqtool;

import javax.servlet.http.*;
import java.security.*;

public class CommandToken {
  public static void set(HttpServletRequest req) {
    HttpSession session = req.getSession(true);
    long systime = System.currentTimeMillis();
    byte[] time  = new Long(systime).toString().getBytes();
    byte[] id = session.getId().getBytes();
    try {
      MessageDigest md5 = MessageDigest.getInstance("MD5");
      md5.update(id);
      md5.update(time);
      String token = toHex(md5.digest());
      req.setAttribute("token", token);
      session.setAttribute("token", token);
    }
    catch (Exception e) {
      System.err.println("Unable to calculate MD5 Digests");
    }
  }

  public static boolean isValid(HttpServletRequest req) {
    HttpSession session = req.getSession(true);
    String requestToken = req.getParameter("token");

Listing 11.7 CommandToken



The administration module 293
    String sessionToken = (String)session.getAttribute("token");
    if (requestToken == null || sessionToken == null)
      return false;
    else
      return requestToken.equals(sessionToken);
  }

  private static String toHex(byte[] digest) {
    StringBuffer buf = new StringBuffer();
    for (int i=0; i < digest.length; i++)
      buf.append(Integer.toHexString((int)digest[i] & 0x00ff));
    return buf.toString();
  }
}

To make use of this class, we need to set a new token after the successful completion
of each command. That’s the reason for the call to CommandToken.set() in our
servlet’s service() method. We are essentially creating a single-use token each
time to help regulate flow between pages. On pages that precede flow-critical com-
mands we must include the token as a hidden element of our form data by retriev-
ing it from the request. Then, we’ll have each sensitive command pass the request
object to the isValid() method to verify that this is a valid request before handling
it. We’ll see this in practice in the AddCommand, UpdateCommand, and DeleteCom-
mand classes and their respective front-end JSP pages.

11.3.2 The main menu

This screen is the main interface for managing the FAQ list. Here the user can select
to add, modify, or delete an entry. Selecting an action for an FAQ will lead to other
screens. The user will be returned to this screen after completing any operations
from the other screens, and should have a status message area that can be used to
report the results of each operation.

 You are taken to the main menu via the main-menu command. Visiting the main
menu is also the default activity if no command identifier is specified. In either case,
no action is required, and the command is handled by a very simple implementation
of the Command interface called NullCommand. 

The NullCommand class
The simplest of our commands, as you might expect, is the NullCommand class
(listing 11.8). It simply returns its next URL value, performing no operation. This
class is used for commands that are simply requests to visit a particular page, such
as visiting the main menu and collecting the information necessary to add an FAQ
to the database. 



294 CHAPTER 11

An example JSP project
package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class NullCommand implements Command {
  private String next;

  public NullCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    return next;
  }
}

The AbortCommand class
We also created an AbortCommand class to handle the case where the user wants to
abort the current operation and return to the main menu from any page. Abort-
Command differs from NullCommand in only one way: it adds a message to the request
in the form of a request attribute—creating a simple page-to-page communication
system. This message is retrieved by the main menu JSP page, and used to update
the status area of the main menu interface (figure 11.3.) This is a way to give feed-
back to the user about the status of the last operation. We’ll use this technique in sev-
eral other commands as well. The AbortComand code is shown in listing 11.9.

package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class AbortCommand implements Command {
  private String next;

  public AbortCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    req.setAttribute("faqtool.msg", "Operation Aborted");
    return next;
  }

Listing 11.8 NullCommand

Listing 11.9 AbortCommand



The administration module 295
The main menu JSP page
The operation of this page is straightforward. The main menu page allows the user
to add, update, or delete an FAQ from the database. That is the page’s only job.
The source code for the main menu page, menu.jsp is shown in listing 11.10. 

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<html>
<head>
<title>Main Menu</title>
<script language="JavaScript">
function setCmd(value) {
  document.menu.cmd.value = value;
}
</script>
</head>
<body bgcolor="white">
<form name="menu" action="/faqtool" method="post">

Listing 11.10 menu.jsp 

Figure 11.3 A status message on the main menu



296 CHAPTER 11

An example JSP project
<input type="hidden" name="cmd" value="">
<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th>FAQ Administration: Main Menu</th></tr>
<tr><td align="center">
<input type="submit" value="Create New FAQ"
onClick="setCmd('add')"></td></tr>
<tr><td align="center">
<input type="submit" value="Update An Existing FAQ"
onClick="setCmd('update-menu')"></td></tr>
<tr><td align="center">
<input type="submit" value="Delete An Existing FAQ"
onClick="setCmd('delete-menu')"></td></tr>
<tr><td bgcolor="white"><font size="-1">
<% if (request.getAttribute("faqtool.msg") != null) { %>
<i><%= request.getAttribute("faqtool.msg") %></i>
<% } %>
</font></td></tr>
</table>
</form>
</body>
</html>

We’ve created a simple form, which, upon submittal, posts the form data back to
the URL /faqtool, which we’ve mapped to the FaqAdminServlet in our JSP con-
tainer. The command action will be specified through the request parameter cmd,
which must be set by our form. There are a number of ways to include this request
parameter into our form submission. We could have three separate forms on the
page each with its own appropriate values assigned to the hidden element called
cmd, and the three selection buttons would be the submit buttons for each form.
We could also have named our submit buttons cmd, and set the value of each to the
appropriate command identifiers. We could have even used anchor tags with URLs
such as the following, which encode the cmd identifier into the URL as a parameter:

<a href=”/faqtool?cmd=add”>Create New FAQ</a>
<a href=”/faqtool?cmd=update-menu”>Create New FAQ</a>
<a href=”/faqtool?cmd=delete-menu”>Create New FAQ</a>

The servlet and application logic classes don’t care how the front-end code works,
as long as it sets the appropriate request parameters. We chose to set the command
identifier through a hidden element (cmd) by using JavaScript to change the value
depending on the user’s selection. Each button on the page is a submit button—all
for the same, single form. However, each has its own JavaScript onClick event han-
dler which sets the value of our cmd element to the appropriate value upon the user
selecting the button. This approach gives us more flexibility in how we describe
each button, and lets us stick to POST style form processing rather than mucking up



The administration module 297
our URLs by tacking on parameters as we did in the hypothetical example. If you
change the form handler’s method type to GET it will still work, and you will see
that the resulting request looks exactly like those shown. We are just setting the
same request parameters after all. The POST approach keeps our URLs nice and
clean and avoids tempting the user to bookmark deep into the application.

 At the bottom of our little interface we check for the presence of a status mes-
sage, and display it if necessary. As we talked about in the discussion of the Abort-
Command, feedback messages may be placed into the request by our other
commands to update us as to the status of things.

11.3.3 Adding an FAQ

Adding an FAQ to the database involves two steps, but only one screen. The users
first choose to create an FAQ from the main menu. We don’t need to do anything
database related at this point, so in our servlet we use the NullCommand (which does
nothing, remember) to handle this activity, forwarding us to the add.jsp page,
which collects the question and the answer information that make up an FAQ. From
this form the user selects to either abort the action, which simply takes them back
to the main menu courtesy of the AbortCommand class, or commit the new FAQ to
the database via a do-add request, which calls the AddCommand class to add the FAQ
to the database, ending back at the main menu once it has been added successfully.

The add page
We must remember our earlier discussion on transaction integrity for sensitive,
flow-dependent commands which we do not want to inadvertently process multiple
times. Adding an FAQ to the database definitely qualifies as a sensitive command,
and it will be looking for a token in the request it receives which matches the one
stored in the session. We therefore need to include the single use token, which was
stored as a request attribute following the successful completion of the command
that brought us to this page. This is simple enough to include in our form.

<input type="hidden" name="token"
value="<%= request.getAttribute("token") %>">

which turns into something like this at request processing time:

<input type=”hidden” name=”token” value=”485a4b73c03ef8149e6a438b6aa749e3”>

This value, along with input from the user detailing the new question and answer
will be sent to FaqAdminServlet for processing by an instance of the AddCommand
class, which we will discuss in a moment. The source code for add.jsp is shown in
listing 11.11 and the page shown in figure 11.4



298 CHAPTER 11

An example JSP project
<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<html>
<head><title>Add FAQ</title></head>
<body bgcolor="white">
<form name="menu" action="/faqtool" method="post">
<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Add FAQ</th></tr>
<tr><td><b>Question:</b></td>
<td><input type="text" name="question" size="41" value="">
</td></tr>
<tr><td><b>Answer:</b></td>
<td>
<textarea name="answer" cols="35" rows="5">
</textarea>
</td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Abort Addition">
<input type="submit" value="Add This FAQ" 

onClick="document.menu.cmd.value='do-add'">
</td></tr>
</table>
<input type="hidden" name="token"
value="<%= request.getAttribute("token") %>">
<input type="hidden" name="cmd" value="abort">
</form>
</body>
</html>

As with the main menu, we use JavaScript to manipulate the value of the hidden
form field cmd, which directs our action within the controller servlet, which defaults
to the abort directive, changing its value to do-add if the user indicates he or she
wishes to add the FAQ to the database. If you refer to the FaqAdminServlet’s
initCommands() method you will see that the do-add directive is handled by an
instance of the AddCommand class.

The AddCommand class
The source for the AddCommand class is relatively straightforward, because most of
the hard work is done inside the FaqRepository class we described earlier. We
merely have to use the information placed into the request through the JSP form to
build an FaqBean object to pass to the put method of FaqRepository, and carry
out a few sanity checks. The code is shown in listing 11.12:

Listing 11.11 add.jsp



The administration module 299
package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class AddCommand implements Command {
  private String next;

  public AddCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    try {
      if (CommandToken.isValid(req)) {
        FaqRepository faqs = FaqRepository.getInstance();
        FaqBean faq = new FaqBean();
        faq.setQuestion(req.getParameter("question"));
        faq.setAnswer(req.getParameter("answer"));
        faqs.put(faq);

Listing 11.12 AddCommand

Figure 11.4 Adding an FAQ



300 CHAPTER 11

An example JSP project
        req.setAttribute("faqtool.msg", "FAQ Added Successfully");
      }
      else {
        req.setAttribute("faqtool.msg", "Invalid Reload Attempted");
      }
      return next;
    }
    catch (FaqRepositoryException fe) {
      throw new CommandException("AddCommand: " + fe.getMessage());
    }    
  }
}

Before we process the request, we must check that we received a valid token in the
request by passing the request to the CommandToken.isValid() method. This
command validator will expect to find a token in the user’s session that matches the
token passed in through the JSP form’s hidden token field. If it does, we can add
the FAQ to the database. If there is an error, we catch the appropriate exception and
rethrow it as an exception of type CommandException. This allows the servlet that
called the command to handle it—in this case FaqAdminServlet bundles it up as a
request attribute and forwards the whole request to our error page. If it succeeds, it
inserts an appropriate status message in the form of a request attribute to indicate
what happened before returning the user to the main menu.

11.3.4 Deleting an FAQ

Deleting an FAQ takes three steps spread over two screens. After selecting delete
from the main menu, the user is given a list of FAQs to select for removal. Before
anything is deleted however, the FAQ’s information is displayed and the user is
asked for confirmation and given a final chance to abort the process and return to
the main menu. Like adding an FAQ, deleting one is considered a sensitive opera-
tion, so we’ll be checking that token again.

The GetAllCommand class
The first step in the deletion process, as you can see from the command mapping
for the delete directive, is handled by the GetAllCommand class whose job is to
retrieve the entire collection of FAQs from the database, wrap them into an array,
and store them as a request attribute under the attribute name faqs. This allows the
JSP page following this command to display a listing of all of the FAQs in the data-
base. As before, most of the work is done inside the already covered FaqReposi-
tory. The source for this class is shown in listing 11.13.



The administration module 301
package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class GetAllCommand implements Command {
  private String next;

  public GetAllCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    try {
      FaqRepository faqs = FaqRepository.getInstance();
      FaqBean[] faqList = faqs.getFaqs();
      req.setAttribute("faqs", faqList);
      return next;
    }
    catch (FaqRepositoryException fe) {
      throw new CommandException("GetCommand: " + fe.getMessage());
    }
  }

}

The deletion selection screen
The del_menu.jsp page is responsible for displaying the available FAQs and allow-
ing the user to select one for deletion. It is delivered after GetAllCommand has
retrieved the FAQs from the database and stored them as an array in request. We
simply have to pull them out one by one, and build up our form. The end result is
shown in figure 11.5, the source code is in listing 11.14. There are a few tricky
parts, which we’ll discuss.       

<%@ page import="com.taglib.wdjsp.faqtool.*"
 errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean"/>
<%
  FaqBean[] faqs = (FaqBean[])request.getAttribute("faqs");
%>
<html>
<head><title>Delete Menu</title></head>
<form name="menu" action="/faqtool" method="post">

Listing 11.13 GetAllCommand

Listing 11.14 del_menu.jsp



302 CHAPTER 11

An example JSP project
<table bgcolor="tan" border="1" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Delete Menu</th></tr>
<%
for (int i=0; i < faqs.length; i++) {
  faq = faqs[i];
%>
<tr>
<td><input type="radio" name="id"
value="<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="ID"/></td>
<td><jsp:getProperty name="faq" property="question"/></td>
</tr>
<% } %>
<tr><td colspan=2>
<input type="submit" value="Abort Delete">
<input type="submit" value="Delete Selected FAQ" 

onClick="document.menu.cmd.value='delete'">
<input type="hidden" name="cmd" value="abort">
</td></tr>
</table>
</form>
</html>

Figure 11.5 The deletion selection screen



The administration module 303
Looping through the array of FaqBean objects we pulled from the request seems
straightforward, but there’s a tricky part here. We wanted to use the Bean tags
inside our loop, but remember that there are no standard tags for handling indexed
properties or elements of an array like this. Therefore, we have to pull each item out
of the array and create a reference to it accessible by the PageContext object, most
importantly for the bean tag <jsp:getProperty>. We simply declare the reference,
faq, at the top of the page via <jsp:useBean>, even though we actually assign a
FaqBean object to the reference through a scriptlet. Leaving out the <jsp:use-
Bean> tag would cause an error when the page tried to use <jsp:getProperty> on
the faq variable.

 The form itself is straightforward. We need to obtain the ID number of the FAQ
that is to be deleted, as well as give the user the abort option. The submit buttons
are handled as before, through JavaScript, and radio buttons give us an easy way to
pick up the selected ID. If the user chooses to continue on to the second of the
three steps, we set the cmd identifier to the delete action, which is handled by the
GetCommand class to ask for confirmation.

The GetCommand class
The GetCommand class can retrieve a single FAQ from the database by its ID value. It
looks in the request for the id parameter, then uses the FaqRepository class we
created in our storage module to retrieve the matching FAQ from the database. We
use the id value pulled from the request to call the getFaq() method of our FaqRe-
pository. If we are successful fetching the FAQ from the database, we store it in the
request under the attribute name faq. This allows the destination screen, in this
case delete.jsp, to retrieve it from the request to make sure the user really wants
to delete this FAQ.  The only thing new here is that we have to catch several differ-
ent exceptions and react accordingly. When we’re done we return the next screen to
the servlet. The source for the GetCommand class is shown in listing 11.15.

package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class GetCommand implements Command {
  private String next;

  public GetCommand(String next) {
    this.next = next;
  }

Listing 11.15 GetCommand



304 CHAPTER 11

An example JSP project
  public String execute(HttpServletRequest req)
    throws CommandException {
    try {
      FaqRepository faqs = FaqRepository.getInstance();
      int id = Integer.parseInt(req.getParameter("id"));
      FaqBean faq = faqs.getFaq(id);
      req.setAttribute("faq", faq);
      return next;
    }
    catch (NumberFormatException e) {
      throw new CommandException("GetCommand: invalid ID");
    }
    catch (UnknownFaqException uf) {
      throw new CommandException("GetCommand: " + uf.getMessage());
    }
    catch (FaqRepositoryException fe) {
      throw new CommandException("GetCommand: " + fe.getMessage());
    }
  }

}

The delete confirmation screen
This page allows the user to confirm the selection and triggers the deletion on the
server. We simply need to retrieve the FAQ from the request, display its properties,
and get the user’s decision. Because the handler class for the do-delete action,
DeleteCommand, is vulnerable we must include the current command token in our
request, just as we did on the screen where we were creating an FAQ entry. The
source for this page is shown in listing 11.16 and a screen is shown in figure 11.6

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean" scope="request"/

>
<html>
<head><title>Delete FAQ</title></head>
<form name="menu" action="/faqtool" method="post">
<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Delete FAQ</th></tr>
<tr><td><b>ID:</b></td>
<td><jsp:getProperty name="faq" property="ID"/></td>
</tr>
<tr><td><b>Question:</b></td>
<td><jsp:getProperty name="faq" property="question"/></td>
</tr>

Listing 11.16 delete.jsp



The administration module 305
<tr><td><b>Answer:</b></td>
<td><jsp:getProperty name="faq" property="answer"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Abort Deletion">
<input type="submit" value="Delete This FAQ"
onClick="document.menu.cmd.value='do-delete'">
</td></tr>
</table>
<input type="hidden" name="token"
value="<%= request.getAttribute("token") %>">
<input type="hidden" name="id"
value="<jsp:getProperty name="faq" property="id"/>">
<input type="hidden" name="cmd" value="abort">
</form>
</html>

Figure 11.6 The deletion confirmation screen



306 CHAPTER 11

An example JSP project
The DeleteCommand class
Another straightforward command handler, DeleteCommand, requires an FAQ ID,
which it obtains from the request. It calls the appropriate FaqRepository method,
catching exceptions where appropriate. This is a sensitive command, so we check
the token before proceeding. 

package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class DeleteCommand implements Command {
  private String next;

  public DeleteCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    try {
      if (CommandToken.isValid(req)) {
        FaqRepository faqs = FaqRepository.getInstance();
        int id = Integer.parseInt(req.getParameter("id"));
        faqs.removeFaq(id);
        req.setAttribute("faqtool.msg", "FAQ Deleted Successfully");
      }
      else {
        req.setAttribute("faqtool.msg", "Invalid Reload Attempted");
      }
      return next;
    }
    catch (NumberFormatException e) {
      throw new CommandException("DeleteCommand: invalid ID");
    }
    catch (UnknownFaqException u) {
      throw new CommandException("DeleteCommand: "+u.getMessage());
    }
    catch (FaqRepositoryException fe) {
      throw new CommandException("DeleteCommand: "+fe.getMessage());
    }
  }

}

11.3.5 Updating an FAQ

Updating an FAQ—that is, editing its question and answer values—is a three-step
process. In the first step, just as with deleting an FAQ, the user picks an FAQ from
the list in the database. The next step is a screen which looks like the add screen we



The administration module 307
built earlier, but this time has default values equal to the current values for the
selected FAQ in the database. Committing changes on this screen updates the data-
base with the new values.

Update selection screen
This screen is nearly identical to the one we created for the Delete menu. Its source
is shown in listing 11.17 and its screen shot in figure 11.7. Submitting the form on
the page causes the servlet to execute the GetCommand on the selected servlet, in
preparation for the update screen.

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean"/>
<%
  FaqBean[] faqs = (FaqBean[])request.getAttribute("faqs");
%>
<html>
<head><title>Update Menu</title></head>
<form name="menu" action="/faqtool" method="post">
<table bgcolor="tan" border="1" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Update Menu</th></tr>
<%
for (int i=0; i < faqs.length; i++) {
  faq = faqs[i];
%>
<tr>
<td><input type="radio" name="id"
value="<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="ID"/></td>
<td><jsp:getProperty name="faq" property="question"/></td>
</tr>
<% } %>
<tr><td colspan=2>
<input type="submit" value="Abort Updating">
<input type="submit" value="Update Selected FAQ" 

onClick="document.menu.cmd.value='update'">
<input type="hidden" name="cmd" value="abort">
</td></tr>
</table>
</form>
</html>

Listing 11.17 upd_menu.jsp



308 CHAPTER 11

An example JSP project
Update screen
This page operates nearly identically to the page for adding FAQs. The only differ-
ence (other than passing a different command identifier) is that we have to prepop-
ulate the form fields with the current values for the selected FAQ. The GetCommand
has placed a FaqBean corresponding with the selection into the request, so all we
have to do is retrieve its values and place them into the form fields. More detailed
information on populating forms—including radio buttons, select lists, and other
elements—with JSP can be found in chapter 14. The listing for this page is shown in
listing 11.18, and the screenshot in figure 11.8.  

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean" scope="request"/

>
<html>
<head><title>Update FAQ</title></head>
<body bgcolor="white">

Listing 11.18 update.jsp

Figure 11.7 The Update menu



The administration module 309
<form name="menu" action="/faqtool" method="post">
<table bgcolor="tan" border="0" align="center" cellpadding="10">
<tr><th colspan="2">FAQ Administration: Update FAQ</th></tr>
<tr><td><b>Question:</b></td>
<td><input type="text" name="question" size="41"
value="<jsp:getProperty name="faq" property="question"/>">
</td></tr>
<tr><td><b>Answer:</b></td>
<td>
<textarea name="answer" cols="35" rows="5">
<jsp:getProperty name="faq" property="answer"/>
</textarea>
</td></tr>
<tr><td colspan="2" align="center">
<input type="submit" value="Abort Update">
<input type="submit" value="Update This FAQ"
onClick="document.menu.cmd.value='do-update'">
</td></tr>
</table>
<input type="hidden" name="cmd" value="abort">
<input type="hidden" name="token"
value="<%= request.getAttribute("token") %>">
<input type="hidden" name="id"

Figure 11.8 The update screen



310 CHAPTER 11

An example JSP project
value="<jsp:getProperty name="faq" property="ID"/>">
</form>
</body>
</html>

The UpdateCommand class
The operation of this command is very similar to that of AddCommand discussed ear-
lier. We take elements of the request to populate a FaqBean object which is passed
to the update() method of the FaqRepository class. Again, we catch the appropri-
ate exceptions. The source is shown in listing 11.19.

package com.taglib.wdjsp.faqtool;

import javax.servlet.*;
import javax.servlet.http.*;

public class UpdateCommand implements Command {
  private String next;

  public UpdateCommand(String next) {
    this.next = next;
  }

  public String execute(HttpServletRequest req)
    throws CommandException {
    try {
      if (CommandToken.isValid(req)) {
        FaqRepository faqs = FaqRepository.getInstance();
        FaqBean faq = new FaqBean();
        faq.setID(Integer.parseInt(req.getParameter("id")));
        faq.setQuestion(req.getParameter("question"));
        faq.setAnswer(req.getParameter("answer"));
        faqs.update(faq);
        req.setAttribute("faqtool.msg", "FAQ Updated Successfully");
      }
      else {
        req.setAttribute("faqtool.msg", "Invalid Reload Attempted");
      }
      return next;
    }
    catch (NumberFormatException e) {
      throw new CommandException("UpdateCommand: invalid ID");
    }
    catch (UnknownFaqException uf) {
      throw new CommandException("UpdateCommand: "+uf.getMessage());
    }

Listing 11.19 UpdateCommand



The web access module 311
    catch (FaqRepositoryException fe) {
      throw new CommandException("UpdateCommand: "+fe.getMessage());
    }    
  }
}

Error screen
This application has a single, very simple error screen, as shown in listing 11.20.

<%@ page isErrorPage="true" %>
<html>
<body>
The ERROR : <%= exception.getMessage() %>
<% exception.printStackTrace(); %>
</body>
</html>

11.4 The web access module

When we started thinking about how the FAQs would be represented on the web,
we realized that with a JSP solution, it was less important to know how they would
look (which would be determined by our content team), and more important to
know what type of information they would need to convey. From talking with the
content team we knew that they would need a way to access the information per-
taining to a single FAQ in the database as well as a way to access the entire list of
FAQs at once. With these capabilities, they could use JSP to design any number of
displays. The decision then was to concentrate on providing them these necessary
components (through JavaBeans), and leaving the details of the page design up to
them. We also wanted to allow them to create pages in additional styles of formats
without the development team having to modify any servlets.

 An important consideration that went into the design of this module is that the
exact requirements of how the FAQs will be displayed on the web will never be
nailed down. We have some basic ideas, but in implementation it is limited only by
the creativity of the design team and will certainly change over time and with each
site redesign. The goal was to provide the content team with a collection of flexible
JSP components that would allow them to fill just about whatever content needs
might arise now, or in the future. We’ll implement several possible FAQ presenta-
tions that work with the components we create.

Listing 11.20 error.jsp



312 CHAPTER 11

An example JSP project
11.4.1 The FaqServlet

For the web access module we created FaqServlet which can be used to retrieve
either a single FAQ or all of the FAQs from the database. Its operation depends on
the information passed into the servlet through request parameters. The servlet
stores the FAQ (or FAQs) as a request attribute before forwarding it to the
front-end JSP page, which, unlike our administration servlet, is also specified by the
user through the request at run time. The source code for this servlet is shown in
listing 11.21.

package com.taglib.wdjsp.faqtool;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class FaqServlet extends HttpServlet {
  private String jspdir = "/jsp/";
  private String error = "error.jsp";

  public void service(HttpServletRequest req, HttpServletResponse res)
    throws ServletException, IOException {
    String next;
    Command cmd;
    try {
      next = req.getParameter("page");
      if (next == null)
        throw new CommandException("Page not specified");
      if (req.getParameter("id") != null)
        cmd = new GetCommand(next);
      else
        cmd = new GetAllCommand(next);
      cmd.execute(req);
    }
    catch (CommandException e) {
      req.setAttribute("javax.servlet.jsp.jspException", e);
      next = error;
    }
    RequestDispatcher rd;
    rd = getServletContext().getRequestDispatcher(jspdir + next);
    rd.forward(req, res);
  }

}

Listing 11.21 FaqServlet



The web access module 313
We were able to reuse the GetCommand and GetAllCommand classes that were devel-
oped for the administration module in this servlet. However, since there are only a
couple of possible actions in this servlet, we eliminated the command identifiers and
instead base our actions on what parameters were present in the request. If a single
FAQ is to be retrieved, its ID values should be passed in through the id request
parameter. If this parameter doesn’t exist, we’ll default to fetching all of the FAQs.
In either case, we need to know which JSP page will be ultimately handling the
request, and this should be indicated through the page request parameter. If this
parameter is missing we have no choice but to throw an exception and visit the
error page. We mapped the servlet to /faqs/ on the external web server. So, for
example, to retrieve FAQ number 1437 and display it in the JSP page showfaq.jsp
we would use a URL such as this:

/faqs?page=showfaq.jsp&id=1437

This simple servlet is quite flexible; it is basically an FAQ lookup service for JSP
pages. It allows the web team to develop many different pages that display FAQs in
a variety of formats and styles without having to modify the application or control
logic. They can have a hundred different versions if they want to.  This simple core
service can serve them all. Let’s look at a couple of examples of how this service can
be used to display FAQs.

11.4.2 Viewing a single FAQ

To view a single FAQ we simply pass in the page name, in this case single.jsp, and
the ID number of the FAQ we want to display. We then retrieve the FAQ from the
request and display its properties. The source for the page is shown in listing 11.22
and a screen shot in figure 11.9.       

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean" scope="request"/

>
<html>
<head>
<title>FAQ <jsp:getProperty name="faq" property="ID"/></title>
</head>
<body bgcolor="white">
<b>Question:</b> <jsp:getProperty name="faq" property="question"/>
<br>
<b>Answer:</b> <jsp:getProperty name="faq" property="answer"/>
<p>

Listing 11.22 single.jsp



314 CHAPTER 11

An example JSP project
<font size=-1>Last Modified:
<i><jsp:getProperty name="faq" property="lastModified"/></i>
</font>
</body>
</html>

11.4.3 Viewing all the FAQs

Showing the contents of all of the FAQs on a single page is not much different. We
use the same looping constructs we developed for the delete and update menus in
the Administration module to cycle through the FAQs. The source code is shown in
listing 11.23, and a screen shot is shown in figure 11.10.

<%@ page import="com.taglib.wdjsp.faqtool.*"
 errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class=" FaqBean"/>
<% FaqBean[] faqs = (FaqBean[])request.getAttribute("faqs"); %>
<html>
<head><title>FAQ List</title></head>
<body bgcolor="white">
<h2>FAQ List</h2>
<%
for (int i=0; i < faqs.length; i++) {
  faq = faqs[i];
%>
<b>Question:</b> <jsp:getProperty name="faq" property="question"/>
<br>

Listing 11.23 all.jsp

Figure 11.9 Viewing a single FAQ



The web access module 315
<b>Answer:</b> <jsp:getProperty name="faq" property="answer"/>
<p>
<% } %>
</body>
</html>

11.4.4 A table of contents view

A more imaginative use of the FAQ lookup servlet is to create a table of contents
view of the FAQs in the database. To do this we need to reference all of the FAQs,
just as we did when we wanted to view all of them. This time, however, we only dis-
play the questions as a link to our single FAQ view. This dynamically generates links
to each individual FAQ. The source for this page is shown in listing 11.24, and a
screen shot in figure 11.11.   

Figure 11.10 All the FAQs



316 CHAPTER 11

An example JSP project
 <%@ page import="com.taglib.wdjsp.faqtool.*"
 errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class="com.taglib.wdjsp.faqtool.FaqBean"/>
<% FaqBean[] faqs = (FaqBean[])request.getAttribute("faqs"); %>
<html>
<head><title>FAQ Index</title></head>
<body bgcolor="white">
<h2>FAQ Index</h2>
<%
for (int i=0; i < faqs.length; i++) {
  faq = faqs[i];
%>
<b>Q:</b>
<a href="/faqs?page=single.jsp&id=
<jsp:getProperty name="faq" property="ID"/>">
<jsp:getProperty name="faq" property="question"/></a>
<p>
<% } %>
</body>
</html>

Listing 11.24 toc.jsp

Figure 11.11 The FAQ index page



The web access module 317
11.4.5 Plain text view

As an alternative view of the FAQs we create a plain text version of the list by simply
changing the content type and omitting HTML code. This view is shown in
listing 11.25 and can be seen in action (loaded into a text viewer) in figure 11.12.

<%@ page import="com.taglib.wdjsp.faqtool.*" errorPage="/jsp/error.jsp" %>
<jsp:useBean id="faq" class=" FaqBean"/>
<% FaqBean[] faqs = (FaqBean[])request.getAttribute("faqs"); %>
FAQs List:
<%
for (int i=0; i < faqs.length; i++) {
  faq = faqs[i];
%>
Question: <jsp:getProperty name="faq" property="question"/>
Answer: <jsp:getProperty name="faq" property="answer"/>
<% } %>

Listing 11.25 plain.jsp

Figure 11.12 A plain text view



 12 Introducing filters
and listeners
This chapter covers
� Life-cycle event listeners

� Filtering application resources

� Request and response wrappers
318



Life-cycle event listeners 319
As described in previous chapters, JSP is an extension of Java servlets. The text of a
JSP page is automatically translated into Java source code for a servlet that produces
the content, both static and dynamic, designated by the original page. As such, each
version of JSP is tied to an associated version of the Servlet specification. JSP 1.2, for
example, is based on version 2.3 of the Servlet specification.

 As a result, features added to the Servlet specification also become new features
of the dependent JSP specification. In chapter 6, for example, we saw that JSP 1.2
supports both true and false values for the flush attribute of the <jsp:include>
action, whereas JSP 1.1 requires this attribute to be true always. This enhanced
functionality of JSP 1.2 is a result of improvements in Servlet 2.3.

 Filters and life-cycle event listeners are two additional Servlet 2.3 features that
can likewise be taken advantage of in JSP 1.2 applications. Filters allow developers
to layer new functionality on top of existing web-based resources (e.g., servlets, JSP
pages, and static content), by intercepting requests and responses and performing
new operations on them, in addition to—or even instead of—those associated with
the original resource. Listeners allow developers to hook into the operations of the
container itself, running custom code in response to events associated with applica-
tions and HTTP sessions.

12.1 Life-cycle event listeners

Listeners allow web application developers to monitor certain types of operations
performed by the container, and take appropriate application-specific actions in
response to those operations. As of Servlet 2.3 and JSP 1.2, there are six such life-
cycle event listeners, all taking the form of Java interfaces which define methods for
receiving notifications of container activities. Four of these may be used to monitor
session activity, and two are focused on application-level life-cycle events.

12.1.1 Session listeners

We have seen one example of a life-cycle event listener, the javax.serv-
let.http.HttpSessionBindingListener interface, described in chapter 8. By
implementing this interface, objects that expect to be interacting with an end user’s
HTTP session can be notified whenever they are added to or removed from a ses-
sion, via the methods summarized in table 12.1. An example of its use was pre-
sented in chapter 9, where the HttpSessionBindingListener interface is
implemented by the ConnectionBean class.



320 CHAPTER 12

Introducing filters and listeners
This particular listener interface predates JSP 1.0. Five new listener interfaces have
been added with Servlet 2.3, and are therefore only available with JSP containers
supporting JSP 1.2 and higher. 

 The first, the javax.servlet.http.HttpSessionActivationListener inter-
face, works very similarly to HttpSessionBindingListener. Objects that are added
to the session whose classes implement the HttpSessionActivationListener
interface will automatically be notified whenever the session is activated or passi-
vated, using the methods listed in table 12.2. Activation and passivation are features
of advanced application servers that supported distributed processing. Such servers
implement load balancing by transferring sessions between different JVMs, running
either on the same machine or on multiple machines across a network.

When a session is being stored for transfer to another JVM, it is said to be passi-
vated. Any objects currently stored as attributes of that session which happen to
implement the HttpSessionActivationListener interface will be notified by call-
ing their sessionWillPassivate() method. After the session has been migrated to
the other JVM, it is said to be activated. When this happens, all session attributes
implementing HttpSessionActivationListener will have their sessionDidActi-
vate() methods called. In both cases, the method is passed an instance of the
javax.servlet.http.HttpSessionEvent, from which the HttpSession object
may be retrieved via the event’s getSession() method.

Table 12.1 Methods of the javax.servlet.http.HttpSessionBindingListener interface

Method Description

valueBound(event) Notifies the listening object that it is being added to a session.

valueUnbound(event) Notifies the listening object that it is being removed from a session.

Table 12.2  Methods of the javax.servlet.http.HttpSessionActivationListener interface

Method Description

sessionDidActivate(event) Notifies the listening object that its session has been acti-
vated.

sessionWillPassivate(event) Notifies the listening object that its session is about to be 
passivated.



Life-cycle event listeners 321
NOTE Since HttpSessionBindingListener and HttpSessionActivationLis-
tener are interfaces, they are not subject to Java’s restrictions regarding
multiple inheritance of classes. Objects that expect to be placed in a session
are therefore free to implement both HttpSessionBindingListener and
HttpSessionActivationListener, allowing them to respond appropriate-
ly to both sets of events.

The other new life-cycle event handlers operate rather differently.  The HttpSes-
sionBindingListener and HttpSessionActivationListener interfaces must be
implemented directly by the objects that are involved in session-related activity, and
it is these objects that will receive, and must therefore respond to, the event notifi-
cations associated with the individual interactions with the session. Also, there is no
need to register such listeners with the container; the association is automatic. If an
object implementing HttpSessionBindingListener is added to a session, its val-
ueBound() method is automatically called, just as its valueUnbound() method is
automatically called when the object is removed from the session. For an object
implementing HttpSessionActivationListener, its sessionWillPassivate()
and sessionDidActivate() methods are automatically called when the session to
which the object belongs is either passivated or activated.

 In contrast to HttpSessionBindingListener and HttpSessionActivation-
Listener, then, the other new listener interfaces are typically implemented via ded-
icated classes, rather than adding them to a class that is already performing some
other application functionality. As a result, these listeners need to be explicitly regis-
tered with the application, since there is no way for the application to detect them
automatically. This is accomplished via the application’s deployment descriptor file,
an XML document containing configuration information about the application. As
an application is being loaded and initialized, it reads the configuration information
in the deployment descriptor, including the set of listener classes registered there.
The container then creates an instance of each such class, and begins sending it the
appropriate events as they occur. Deployment descriptors are described in detail in
chapter 14.

 In addition, these other new interfaces are designed to receive all events associ-
ated with a particular category of container activity, rather than just those events
affecting a single object. An object implementing HttpSessionBindingListener
or HttpSessionActivationListener only receives events regarding its own inter-
actions with the application. An object implementing one or more of the new life-
cycle event listener interfaces receives all application events of the corresponding



322 CHAPTER 12

Introducing filters and listeners
types, independent of the specific objects involved in the event. Of these remaining
four listener interfaces, two are concerned with session-related activity and two are
for monitoring activity of the applications.

 Notification of events indicating the creation and destruction of sessions is
provided by the javax.servlet.http.HttpSessionListener interface. As indi-
cated in table 12.3, listeners implementing this interface are informed when new
sessions are created by means of the interface’s sessionCreated() method.
When a session is destroyed, either because it has expired or because application
code has called its invalidate() method, the container will notify the applica-
tion’s HttpSessionListener instances by calling their sessionDestroyed()
methods. Both methods are passed an instance of the aforementioned HttpSes-
sionEvent class as their sole parameter.

Events related to session attributes are handled by the javax.servlet.http.Http-
SessionAttributeListener interface. Its methods, summarized in table 12.4, allow
the developer to monitor the creation, setting, and deletion of session attributes. 

Whenever an attribute is added to a session—for example, by calling the session’s
setAttribute() method or via a <jsp:useBean> action with its scope attribute set
to ”session”—it will call the attributeAdded() method of all registered instances
of the HttpSessionAttributeListener  interface. A single parameter will be pro-
vided, in the form of an instance of the javax.servlet.http.HttpSession-

Table 12.3 Methods of the javax.servlet.http.HttpSessionListener interface

Method Description

sessionCreated(event) Notifies the listening object that the session has been loaded 
and initialized.

sessionDestroyed(event) Notifies the listening object that the session has been unloaded.

Table 12.4 Methods of the javax.servlet.http.HttpSessionAttributeListener interface

Method Description

attributeAdded(event) Notifies the listening object that a value has been assigned to a 
new session attribute.

attributeReplaced(event) Notifies the listening object that a new value has been assigned 
to an existing session attribute.

attributeRemoved(event) Notifies the listening object that an session attribute has been 
removed.



Life-cycle event listeners 323
BindingEvent class. This event class is actually a subclass of the HttpSessionEvent
class introduced previously, and supports two additional methods, getName() and
getValue(), for recovering the name of the attribute being added and its initial
value, respectively.

 If a new value is subsequently assigned to such an attribute, the application will
post a new event by calling these listeners’ attributeReplaced() methods. The
event will again be an instance of HttpSessionBindingEvent. In this case, how-
ever, the event instance’s getValue() method will return the attribute’s former
value, not its new value. If the attribute is removed from the session, each HttpSes-
sionAttributeListener will have its attributeRemoved() method called, again
with an instance of HttpSessionBindingEvent as its sole argument. The event
object’s getName() method will return the name of the attribute that has been
removed, while its getValue() method will return the last value assigned to that
attribute before it was removed.

 The HttpSessionAttributeListener thus provides very similar functionality
to HttpSessionBindingListener. As already suggested, the primary difference is
that HttpSessionBindingListener must be implemented directly by objects
being added to the session, whereas classes implementing HttpSession-
AttributeListener are not direct participants in session activity. The Http-
SessionAttributeListener interface can thus be considered noninvasive,
because it allows session activity to be monitored without needing to modify the
objects involved in that session activity. Implementing HttpSessionBindingLis-
tener, however, requires access to the source code for the object whose session
activity is to be monitored.

NOTE Direct access to the source code of a class to which you wish to add Http-
SessionBindingListener support is not strictly required. You can always
create a subclass of the original class that inherits the methods of the original
and also implements the HttpSessionBindingListener interface. Alterna-
tively, the delegation design pattern can be used to create a class implement-
ing HttpSessionBindingListener, which incorporates an instance of the
original class as one of its instance variables. The methods of HttpSession-
BindingListener are implemented directly by this new class, while those of
the original class are forwarded (i.e., delegated) to the object stored in this
instance variable.

The choice of which listener to use is application-dependent. If a given object is
generic and intended for use in a wide range of applications (i.e., not necessarily



324 CHAPTER 12

Introducing filters and listeners
web-related) then HttpSessionAttributeListener may be more appropriate. By
doing so, the session-related functionality can be isolated in a separate class that
need only be included when the object is used in a web-based application. If the
object is specifically geared toward deployment with servlets and JSP pages, then
having its class also implement HttpSessionBindingListener may be preferred.
This approach is particularly appropriate if the object needs to track session activa-
tion and passivation as well, since this will require it to also implement HttpSes-
sionActivationListener.

12.1.2 Application listeners

The final pair of new life-cycle event listeners are concerned with the activity of the
web application itself. As described in chapter 6, a set of interrelated servlets, JSP
pages, and other resources are grouped as a web application. One feature of such an
application is that all of its resources have URLs which share the same top-level
directory name. The application’s resources also share an associated instance of the
javax.servlet.ServletContext class. This instance, which is made available to its
JSP pages as the application implicit object, provides access to the application’s
global attributes and initialization parameters.

 A given servlet or JSP container can be simultaneously running any number of
web applications. Each such application is assumed to be self-contained, with no
dependencies upon or detailed knowledge of the inner workings of any of the other
applications running in the container. Based on this assumption, the container is
allowed to load and unload individual applications as it sees fit. If, for example, a
particular application’s resources have not been accessed recently, the container is
allowed to unload the application in order to free memory for the other applica-
tions it is running. As soon as it receives a new request for that resource, however, it
must reload it in order to handle that request.

 Because it is shared among all of its servlets and JSP pages, an application’s
ServletContext instance is often a convenient place to store long-lived global
resources such as database connection pools or large in-memory data structures
intended to be accessed by multiple users. When doing so, however, it is often nec-
essary to take special action to manage these resources any time the application is
loaded or unloaded. Keeping track of the loading and unloading of an application is
the role of the javax.servlet.ServletContextListener interface, the methods
of which are summarized in table 12.5.



Life-cycle event listeners 325
When a container loads an application that includes listeners implementing the
ServletContextListener interface, all such listeners are sent a corresponding
javax.servlet.ServletContextEvent instance via their contextInitialized()
methods, indicating that the application is now ready to receive requests. The appli-
cation’s ServletContext instance can be retrieved from this event via its getServ-
letContext() method. When the application is unloaded by the container, those
listeners are then sent another ServletContextEvent event via their contextDe-
stroyed() methods.

 As indicated in chapter 6, an application’s ServletContext instance—like its
sessions—may also be  used to store and retrieve attributes. A second listener has
been provided in Servlet 2.3 for monitoring access to such application-level
attributes. The methods of this interface, javax.servlet.ServletContextAt-
tributeListener, are summarized in table 12.6.

As indicated in table 12.6, ServletContextAttributeListener’s methods have the
same names as those of the HttpSessionAttributeListener interface, and perform
similar roles. The most significant difference between these methods and those of
HttpSessionAttributeListener is the class of the event object serving as the meth-
ods’ parameter. Where the HttpSessionAttributeListener methods are passed
HttpSessionBindingEvent objects, the ServletContextAttributeListener’s
methods are passed instances of the ServletContextAttributeEvent class.

Table 12.5 Methods of the javax.servlet.ServletContextListener interface

Method Description

contextInitialized(event) Notifies the listening object that the application has been loaded 
and initialized.

contextDestroyed(event) Notifies the listening object that the application has been 
unloaded.

Table 12.6 Methods of the javax.servlet.ServletContextAttributeListener interface

Method Description

attributeAdded(event) Notifies the listening object that a value has been assigned to a 
new application attribute.

attributeReplaced(event) Notifies the listening object that a new value has been assigned 
to an existing application attribute.

attributeRemoved(event) Notifies the listening object that an application attribute has been 
removed.



326 CHAPTER 12

Introducing filters and listeners
ServletContextAttributeEvent is a subclass of ServletContextEvent, and there-
fore inherits its getServletContext() method. The ServletContextAttribute-
Event class defines two additional methods, getName() and getValue(). getName()
is used to retrieve the name of the attribute that was added, removed, or had its value
replaced. For events associated with the attributeAdded() method, the getValue()
method returns the value to be assigned to the new attribute. For those associated
with the attributeRemoved() method, getValue()returns the last value assigned to
the attribute prior to its removal. And for events associated with the attributeRe-
placed() method, the getValue() method will return the attribute’s old value (i.e.,
the value that had been assigned to attribute just before it was set to its new, replace-
ment value).

NOTE Listener classes to be added to a web application can implement any combi-
nation of one or more of these last four interfaces. An example listener to be
presented in the next chapter implements both of the session life-cycle
event listener interfaces, HttpSessionListener and HttpSessionAttri-
buteListener.

12.2 Filters

For maximum modularity, servlets and JSP pages that are focused on delivering spe-
cific web-based content or resources are preferred. In a complex application, how-
ever, multiple layers of functionality may need to be added on top of the underlying
content in order to satisfy overall system requirements. For example, access to
resources may need to be restricted to properly authenticated users, or responses
may need to be transformed before they are returned to the end user. Compression
and encryption are common examples of response transformations, but more com-
plex data manipulation, such as dithering of color images, is also possible. Or per-
haps the application content takes the form of XML documents which must be
translated (via a set of XSLT stylesheets, say) into platform-specific formats based on
the origin of the request: requests from a browser are translated into HTML, while
those from a WAP cell phone are translated into WML.

 Prior to Servlet 2.3 and JSP 1.2, functionality such as this had to be built into
any servlet or JSP page needing it, reducing the modularity of the resulting code.
Early implementations of servlet technology (prior to the standardization efforts
that led to Servlet 2.0) included a feature known as servlet chaining which allowed a
sequence of servlets to be applied to a single request, each performing one step in
the generation of a response. One servlet in the chain, for example, might supply
the basic content, another performs user authentication, and a third performs data



Filters 327
compression. Using this approach, multiple layers of application functionality could
be implemented as individual servlets, and then combined in a modular fashion
through servlet chaining.

 Ultimately, the details of servlet chaining proved to be too idiosyncratic to be
included in the formal servlet specification. Servlets intended to take part in servlet
chaining needed to be implemented differently from servlets that were meant to be
stand-alone. The resulting dual nature of servlets was not conducive to the technol-
ogy standardization effort, so support for servlet chaining was dropped from the
Servlet 2.0 specification.

12.2.1 How filters work

The functionality provided by servlet chaining is highly useful, however, and efforts
to restore such capabilities to the servlet standard have materialized in Servlet 2.3 in
the form of filters. Rather than the use of a sequence of servlets to layer functional-
ity, a sequence of filters is used, each handing off control to the next as a request is
being handled, until the resource that was originally requested is reached. This
resource may be a servlet, a JSP page, an image file, or any other content to be
delivered by the container. After the response representing this resource is con-
structed, control is handed back to the sequence of filters, this time in the reverse
order, for further processing. At any point in the process, a filter can transfer control
to another resource, by means of a RequestDispatcher or by calling the sendRe-
direct() or sendError() methods of the response object.

 Filters are created as Java classes implementing the javax.servlet.Filter
interface. In deference to their servlet-chaining heritage, when the container is
building up the sequence of filters to be applied to a particular request, the resulting
data structure is a container-specific Java object that implements the javax.serv-
let.FilterChain interface. Chain, however, may be a bit misleading in this case,
because the relationship between the elements of the chain is more than just
sequential. As indicated in figure 12.1, each filter is nested inside its predecessor,
with the originally requested resource at the center of the nesting hierarchy,
wrapped inside all of the filters comprising the chain.

 A closer analogy would be Matryoshka dolls, the wooden dolls from Russia, in
which each one fits inside the next. Like Matryoshka dolls, each filter in a chain is a
shell around the next filter to be called. Inside the last filter is the resource being
delivered, analogous to the true doll hidden inside all of the doll shells of a Matry-
oshka toy.

 When a request is received, the container determines which resource the request
is mapped to, as well as the set of applicable filters. This is akin to selecting a



328 CHAPTER 12

Introducing filters and listeners
particular set of Matryoshka dolls. The request is handled by first passing it to the
outermost filter, which can allow processing to continue or can opt to dispatch or
redirect the request to some other resource, or even return an error condition. If all
of the filters allow processing to continue, the request will ultimately make its way
to the resource (servlet, JSP page, static document, etc.) that was requested. Once
that resource has generated its response, control passes back to the filters once
more. Now that the response has been generated, each filter is given another
opportunity to either continue or interrupt the handling of the request. The filter
can dispatch to another resource via a RequestDispatcher, or transfer control back
to the user’s browser by calling the response’s sendRedirect() or sendError()
messages. Because the filters are called in a nested manner, control passes among
the filters in the opposite order after the requested resource is processed as it was
before. Control passes back to the innermost filter first, and then back up the filter
chain to the outermost filter.

NOTE If a filter interrupts the handling of a request by creating a RequestDis-
patcher and calling its forward() or include() methods, the dispatched
request will not be subject to filtering. Recall that when the sendRedirect()
method of the HttpServletResponse class is called, it has the effect of caus-
ing the end user’s browser to issue a new request for the resource indicated by
the method’s parameter. The bottom line, then, is that if you want to bypass
further filtering, you should use a RequestDispatcher. If your filter wants to

Requested
resource

Dispatch
or

redirect

Request Response

Filter

Filter

Filter

Figure 12.1 Nested processing of requests by a filter chain



Filters 329
transfer control but requires the new request to also be filtered, then sendRe-
direct() is the right strategy to follow. Keep in mind, as well, that this
choice also affects whether or not a new URL is displayed by the browser.

To continue the analogy, then, each doll is opened in turn, and given a chance to
say whether or not the doll that was inside it should be opened. Ultimately, the
innermost, solid doll—which represents the requested resource—is reached. Then
the process of putting the dolls back together begins. The dolls must be assembled
in the reverse order of their disassembly, just as the nested filters are processed in
inverse order after the requested resource is reached. And as the dolls are put back
together, each decides whether or not the reassembly should continue or halt.

 Filters also have the opportunity to manipulate the request and/or the response
being handled by the filter chain. By wrapping the request in an instance of the
javax.servlet.ServletRequestWrapper or javax.servlet.http.HttpServlet-
RequestWrapper class, request headers or other request data can be modified by a
filter before passing control to the next item in the chain. Responses can likewise be
wrapped via the javax.servlet.ServletResponseWrapper and javax.serv-
let.http.HttpServletResponseWrapper classes, allowing the filter to modify
response header, content, and other data.

 These wrapper classes implement the corresponding request and response inter-
faces, so no other elements in the chain—either another filter or the requested
resource—can distinguish between the original request or response and a wrapped
request or response. Each filter receives a request and a response, which it can
optionally wrap and pass to the next item in the filter chain. It may in fact be the
case, however, that the request and/or the response it received may already have
been wrapped by a previous filter in the chain. As far as the filter is concerned, it is
working with a standard request/response pair. There is no way, short of Java’s
instanceof operator, for the filter to determine whether or not it is working with a
wrapped request or response.

 To stretch the Matryoshka doll analogy nearly to its breaking point, request and
response wrappers are like gloves that must be worn while taking the dolls apart and
putting them back together. The wrapping of the request and/or response by a fil-
ter is analogous to a given doll requiring the owner to put on a pair of gloves before
opening the next doll. In this case, the gloves must be kept on until the same doll is
put back together again. Also, no doll is aware of any other doll’s gloves. The toy’s
owner may already be wearing one or more pairs of gloves before the current doll
adds another pair.



330 CHAPTER 12

Introducing filters and listeners
12.2.2 Filter classes

As indicated, filters classes must implement the javax.servlet.Filter interface.
This interface defines three methods; any concrete filter class must provide imple-
mentations for all three. The first of these is the init() method which, as its name
suggests, is used to run any initialization code required by the filter. This method
takes a single parameter, an instance of the javax.servlet.FilterConfig inter-
face, which may be used by the filter to access initialization parameters set in the
application’s deployment descriptor. A filter instance will not be called upon to pro-
cess any requests until it has finished running its init() method.

 The methods of the FilterConfig interface are presented in table 12.7. 

The filter’s destroy() method is called by the container to indicate that a filter
instance is no longer needed (e.g., when the web application to which the filter
belongs is being shut down, or the container needs to reclaim some memory).This
method allows the developer to deallocate any long-term resources used by the fil-
ter while processing requests.

 The actual handling of requests is the focus of the Filter interface’s third and
final method, whose signature is as follows:

void doFilter (ServletRequest request, ServletResponse response,
            FilterChain chain)

  throws ServletException, java.io.IOException

If this looks familiar, it is because it is very similar to the signatures of the ser-
vice(), doGet(), and doPut() methods of the Servlet and HttpServlet classes,
introduced in chapter 2. This method’s only significant departure from its servlet
counterparts is in its third parameter, which will be an instance of the javax.serv-
let.FilterChain interface.

Table 12.7 Methods of the javax.servlet.FilterConfig interface

Method Description

getFilterName() Returns the name of the filter, as specified in the deployment descrip-
tor.

getServletContext() Retrieves the servlet context for the application for which the filter is 
being created.

getInitParameterNames() Constructs an enumeration of the names of the filter’s initialization 
parameters.

getInitParameter(name) Returns the value of the named initialization parameter.



Filters 331
 The FilterChain instance represents the sequence of filters to be applied to the
request. Surprisingly, it only exposes a single public method, also called doFil-
ter(), with the following signature: 

void doFilter (ServletRequest request, ServletResponse response)
  throws ServletException, java.io.IOException

This method, when applied to the chain passed to the filter’s doFilter() method,
causes the next item in the chain to be called upon to process the request and its
response. In the course of running its own doFilter() method, then, the filter calls
the chain’s doFilter() method in order to hand off processing to the next filter or—
if the end of the chain has been reached—the resource that was originally requested.

 This call need not be the first or the final operation performed by the filter’s
doFilter() method. In order to allow for both pre- and post-processing of both
requests and responses, the doFilter() method of a filter generally follows this
structure: 

void doFilter (ServletRequest request, ServletResponse response,
            FilterChain chain)

    throws ServletException, java.io.IOException {

  Pre-process request and/or response…
  Optionally wrap request and/or response…

  chain.doFilter(request or wrapped request, response or wrapped response);

  Post-process (optionally wrapped) request and/or response…

}

As this pseudocode indicates, if the filter introduces wrapped requests or responses,
these are propagated down the chain by providing them, rather than the original
request and/or response, as the arguments to the chain’s doFilter() method.
After the remaining elements of the chain have finished their processing, control
returns back to the filter’s doFilter() method, which can then postprocess the
chain’s results.

 Note that, using this programming model, the filter has no information about
where it is being called in the chain. It does not have access to any of the other fil-
ters in the chain, and in fact does not know whether the request and response
objects passed as arguments to its doFilter() method are the genuine article, or
just wrappers provided by some other filter that preceded it in the filter chain.

 In fact, the only filter that is aware of the presence of request and response wrap-
pers is the filter that created them and passed them down the chain via its doFilter()
method. Any extraction of information or transformation of data to be performed via
such wrappers must be performed by the filter that added them in the first place.



332 CHAPTER 12

Introducing filters and listeners
 The programming model for filters thus requires them to be stand-alone, inde-
pendent constructs that can be combined and reused in a modular fashion. Use of
filters promotes separation of application functionality into small, targeted units
that can be integrated with existing resources (servlets, JSP pages, image files, etc.)
to add features as well as increase the maintainability of the overall application.

12.2.3 Wrapper classes

Four classes are provided in the Servlet 2.3 specification for wrapping requests
and responses. For generic servlet applications, the javax.servlet.Servlet-
RequestWrapper and javax.servlet.ServletResponseWrapper classes are pro-
vided. For applications based on the HTTP protocol, wrappers that support the
additional functionality of HTTP requests and responses are also available, via the
javax.servlet.http.HttpServletRequestWrapper and javax.servlet.http.Http-
ServletResponseWrapper classes.

 The constructor for the ServletRequestWrapper class takes an instance of the
ServletRequest interface as its sole argument, which may then be retrieved or
replaced via the getter and setter methods listed in table 12.8. The ServletRe-
questWrapper class implements the ServletRequest interface, so it includes imple-
mentations of all of the methods associated with that interface. The default
implementations of these interface methods simply forward the calls to the corre-
sponding methods of the wrapped ServletRequest instance, so it is usually neces-
sary to subclass the ServletRequestWrapper class in order to provide any required
custom behavior. It is because ServletRequestWrapper implements the Servlet-
Request interface, of course, that it can stand in for a request in any method requir-
ing one. This includes the service() method of a servlet, the doFilter() method
of a filter or filter chain, and even the constructor and setRequest() methods of
the ServletRequestWrapper class itself.

 The HttpServletRequestWrapper class is a subclass of ServletRequestWrap-
per, and has the same relationship with the HttpServletRequest interface as Serv-
letRequestWrapper has with the ServletRequest interface.

In a similar manner, the constructor the ServletResponseWrapper class takes an
instance of the ServletResponse interface as its sole parameter, with corresponding

Table 12.8 Wrapper-specific methods of the javax.servlet.ServletRequest class

Method Description

getRequest() Retrieves the request being wrapped.

setRequest(request) Sets the request being wrapped.



Using filters and listeners 333
getter and setter methods as listed in table 12.9. It also implements that interface,
providing definitions for the interface’s methods which delegate to this wrapped
ServletResponse instance. Filters that employ response wrappers must therefore
define their own subclasses of ServletResponseWrapper in order to implement fil-
ter-specific wrapper functionality. By implementing the ServletResponse interface,
instances of the ServletResponseWrapper class are indistinguishable from actual
response objects. 

 Like their request counterparts, the HttpServletResponseWrapper class is a
subclass of ServletResponseWrapper, and has the same relationship with the
HttpServletResponse interface as ServletResponseWrapper has with the Serv-
letResponse interface.

12.3 Using filters and listeners

There are two primary steps in the application of filters and listeners. First, the Java
classes that implement the required filter and/or listener behavior must be defined.
In the case of filters, support for any associated initialization parameters must also
be included in the class definition.

 After these classes have been created, the second step is to incorporate the filters
and listeners into the web application. For listeners, this is done by simply specifying
the listeners classes which must be instantiated and registered with the application.
Deployment of filters is slightly more complex. Like listeners, the filter classes to be
instantiated must be specified, along with the values for their initialization parame-
ters. In addition, the resources within the application to which each filter is to be
applied must be specified. Filters can be mapped to individual resources (e.g., a serv-
let, a JSP page, or a static document such as an image or HTML file), or they can be
applied to a collection of resources (such as those sharing the same directory or file
extension). Filters can also be configured to cover all of an application’s resources.

 The implementation of filter and life-cycle event listener classes is demonstrated
in chapter 13, in the context of an example web application to which both filter and
listener classes will be added. The deployment of filters and listeners—as well as
other web application resources—will be covered in chapter 14, with examples
drawn from the sample application introduced in chapter 13.

Table 12.9 Wrapper-specific methods of the javax.servlet.ServletResponse class

Method Description

getResponse() Retrieves the response being wrapped.

setResponse(response) Sets the response being wrapped.



 13Applying filters and listeners
This chapter covers
� An intranet example application

� Filters for access control

� A logging listener

� String replacement filter
334



Application description 335
Recall from chapter 12 that filters and life-cycle event listeners may be layered on
top of existing applications in a modular fashion to provide enhanced functionality.
To demonstrate this advantage, however, it is first necessary to have an application
to which filters and listeners may be added. To that end, this chapter presents an
example web application, a simple web-based intranet for the fictitious Encom Cor-
poration, to which three filters and a listener will be applied to incrementally add
new capabilities.

13.1 Application description

Before adding any filters and listeners, the
original intranet application—as depicted
in figure 13.1—consists of six JSP pages
located in two directories. The top-level
directory, named filters, contains a single
page, representing the “front door” of the
application. All of the content is stored in
a subdirectory named departments, which
has a welcome page for all users and three
departmental home pages: one for man-
agement, one for the development team,
and one for system administrators. The
departments subdirectory also contains a
fifth JSP page which contains navigational
elements shared by all of the pages in this
subdirectory. This header page is refer-
enced by  the  o the r  p age s  v i a  the
<jsp:include> action.

 The primar y enhancement to be
added to the intranet is user authentica-
tion. The company would like to personalize all content, as well as ensure that the
information contained in these pages is accessed by authorized personnel only. All
users will be required to log on to the intranet with a username and password.
Individual access will be logged for auditing purposes. Furthermore, Encom man-
agement will restrict access to the various departmental pages to the employees of
those departments.

 To achieve maximum modularity, these requirements will be fulfilled using a
combination of two filters and one listener. The first filter will be used to manage

Filters

Departments

Index
page

Welcome
page

Header
page

Developer
home
page

Manager
home
page

Sysadmin
home
page

Figure 13.1 Site map for the original intranet 
application



336 CHAPTER 13

Applying filters and listeners
the login requirement, and enforce global access control. The second will provide
local access control, implementing the departmental access restrictions using role-
based security. The listener will implement the required logging functionality.

 To support these new features,
several modifications must be made
to the contents of the site, as indi-
cated in figure 13.2. First, the
department’s subdirectory has been
renamed secure. This is strictly a
cosmetic change, but it serves as a
useful indication that all content in
that subdirectory will be protected
against unauthorized access.

 Next, two new documents have
been added to the top-level filters
directory. The first is a login page,
which will contain the form used
for entering the employee’s user-
name and password. The second is
the good-bye page, which will be
displayed after a user has logged
out. Since both pages must be able
to be viewed by users who are not
logged in, they cannot be located
in the secure subdirectory. (As indi-
cated in figure 13.2, access to all of
the pages in the secure subdirectory is controlled by the authentication filter.) The
filter’s directory, which is not subject to the authentication filter, provides a conve-
nient location for insecure content such as this.

 Two new pages have been added to the secure subdirectory. The logout page
presents a form that enables users to log out. Since this action only makes sense for
users who are already logged in, placing this page in the secure subdirectory ensures
that it can only be viewed by users who have already been authenticated. The role-
based security filter will be used to restrict access to the three departmental home
pages. The other new page in this subdirectory, the denied page, contains content
that will be displayed whenever a user attempts to access a departmental home page
for which that user does not have the corresponding role.

Filters

Secure

Index
page

Welcome
page

Header
page

Developer
home
page

Manager
home
page

Sysadmin
home
page

Login
page

Goodbye
page

Logout
page

Denied
page

Developer
role

Manager
role

Sysadmin
role

Authentication Filter

Figure 13.2 Site map for the revised intranet 
application, with filters



User authentication 337
 Although it is not depicted in figure 13.2, we will also be adding two new serv-
lets to the intranet application. These will be mapped to the /filters/login and
/filters/logout application URLs and, as their names suggest, will be used to per-
form the actual login and logout operations for users visiting the site.

13.2 User authentication

Although our primary interest in this example application lies in its filters and lis-
tener, very little of the code that implements the underlying functionality is con-
tained in the filter and listener classes themselves. As we will see later in the chapter,
these particular classes are quite compact. Instead, most of the Java code is located
in the auxiliary classes that implement the security mechanisms for user and role-
based authentication.

13.2.1 User account representation

There are two key classes with respect to user authentication in this example appli-
cation. The first is the com.taglib.wdjsp.filters.UserBean class, presented in
listing 13.1. This JavaBean represents a user’s login account information, including
the username, first and last name, and assigned roles. Note that this bean is
designed to be incorporated into a JSP page in order to personalize its content; for
security reasons it does not include a property representing the user’s password.

package com.taglib.wdjsp.filters;
import java.util.List;
import java.util.ArrayList;

public class UserBean {
  private String username, firstName, lastName;
  List roles;

  public UserBean () {
    this("", "", "");
  }
  public UserBean (String username, String firstName, String lastName) {
    this.username = username;
    this.firstName = firstName;
    this.lastName = lastName;
    this.roles = new ArrayList();
  }

  public String getUsername () { return username; }
  public String getFirstName () { return firstName; }

Listing 13.1 UserBean class



338 CHAPTER 13

Applying filters and listeners
  public String getLastName () { return lastName; }

  public void setUsername (String username) { this.username = username; }
  public void setFirstName (String firstName) { this.firstName = firstName; }
  public void setLastName (String lastName) { this.lastName = lastName; }

  public void addRole (String role) {
    if (! roles.contains(role)) roles.add(role);
  }
  public void removeRole (String role) {
    int index = roles.indexOf(role);
    if (index >= 0) roles.remove(index);
  }
  public boolean hasRole (String role) {
      return roles.contains(role);
  }
}

Like other JavaBeans we have seen in previous chapters, UserBean includes a default
constructor and getter and setter methods for its username, first name, and last
name properties. It also includes a second constructor for setting those three prop-
erties during initialization, as well as a set of methods for managing and querying its
roles, which are stored via an instance of the java.util.ArrayList class.

13.2.2 User management interface

The second key class is actually an interface, com.taglib.wdjsp.filters.User-
DataManager. This interface, presented in listing 13.2, provides an abstraction layer
intended to hide the details of the underlying authentication system. As the listing
indicates, it defines only two methods, validate() and lookupUserData(). The
validate() method returns a boolean value indicating whether or not the user-
name and password provided as its parameters represent valid login credentials,
while the lookupUserData() method is used to populate an instance of the User-
Bean class with the account information corresponding to the provided username.

package com.taglib.wdjsp.filters;

public interface UserDataManager {
  public boolean validate (String username, String password);
  public UserBean lookupUserData (String username);
}

Listing 13.2 UserDataManager interface



User authentication 339
By using this interface, the other components of the application, such as the login
servlet, do not need to be exposed to the mechanics of authenticating users. If the
web components only interact with the authentication code via this interface, it
becomes possible to plug in a variety of authentication schemes without having to
alter those components in order to accommodate them. The same login servlet, for
example, could be used with an authentication system based on a configuration file,
an LDAP repository, or a complex database system, without modification. 

NOTE Because this is example code, the UserDataManager interface, as presented
here, is incomplete. At the very least, methods for modifying a user’s password
and other account information would be required in a production system.
Methods for adding and removing accounts would likely also prove useful.

13.2.3 User management implementation

To keep things simple, our authentication system will rely on hard-coded usernames
and passwords. This is not terribly practical, but hopefully possesses the virtue of
being easy to understand and therefore not prone to distracting us from the topic at
hand. With this in mind, the source code for the com.taglib.wdjsp.filters.Sim-
pleUserBase class is presented in listing 13.3.

package com.taglib.wdjsp.filters;
import java.util.StringTokenizer;

public class SimpleUserBase {

  static public boolean validate (String username, String password) {
    int count = USER_DATA.length;
    for (int i = 0; i < count; ++i) {
      String[] entry = USER_DATA[i];
      if (username.equals(entry[0])) return password.equals(entry[1]);
    }
    return false;
  }
  static public void populate (UserBean bean, String username) {
    int count = USER_DATA.length;
    for (int i = 0; i < count; ++i) {
      String[] entry = USER_DATA[i];
      if (username.equals(entry[0])) populate(bean, entry);
    }
  }
  static private void populate (UserBean bean, String[] entry) {
    bean.setUsername(entry[0]);

Listing 13.3 SimpleUserBase class



340 CHAPTER 13

Applying filters and listeners
    bean.setFirstName(entry[2]);
    bean.setLastName(entry[3]);
    StringTokenizer tokens = new StringTokenizer(entry[4], ":");
    while (tokens.hasMoreTokens()) {
      bean.addRole(tokens.nextToken());
    }
  }

  static private String[][] USER_DATA =
  {
    { "clu", "starman", "Kevin", "Flynn", "user:dev:admin" },
    { "tron", "scarecrow", "Alan", "Bradley", "user:dev" },
    { "yori", "galaxis", "Lora", "Morgan", "user:dev" },
    { "dumont", "doc", "Walter", "Gibbs", "user:mgr" },
    { "sark", "gorkon", "Ed", "Dillinger", "user:mgr:admin" },
  };
}

This class is simply a combination of static methods and a data structure, named
USER_DATA, which stores the account information for a handful of employees. This
data structure takes the form of a two-dimensional array of character strings, each
row of which represents a single account. For each account, the username and pass-
word are listed, followed by the user’s first name and last name. Finally, the roles
assigned to the user are listed as a single text string in which multiple roles are
delimited by colon characters.

 The three static methods defined by this class perform authentication against the
data in this array. The validate() method checks the array for the specified user-
name/password combination, while the two populate() methods set the proper-
ties of a UserBean instance based on a provided username.

 The methods of the SimpleUserBase class do not correspond to those required
by the UserDataManager interface, so one more class is required to complete our
user authentication system. The sole task of the com.taglib.wdjsp.filters.Sim-
pleUserDataManager class is to provide a mapping between the SimpleUserBase
class’s methods and those of UserDataManager. Its source code is provided in
listing 13.4. This class’s validate() method simply calls the static validate()
method of SimpleUserBase, while its lookupUserData() method creates a User-
Bean instance and then calls the populate() method of SimpleUserBase to set the
new bean’s properties.



Web authentication 341
package com.taglib.wdjsp.filters;

public class SimpleUserDataManager implements UserDataManager {
  public boolean validate (String username, String password) {
    return SimpleUserBase.validate(username, password);
  }
  public UserBean lookupUserData (String username) {
    UserBean data = new UserBean();
    SimpleUserBase.populate(data, username);
    return data;
  }
}

13.3 Web authentication

The objects described in the previous section for implementing user authentication,
including the UserBean class, are not web-specific. These classes and interfaces
could provide user authentication for other types of software requiring access con-
trol, such as desktop or client/server applications. From this point forward, how-
ever, our focus will be on applying this functionality to web-based settings in
general, and our intranet example application in particular.

13.3.1 Session interactions

Since the only way to keep track of a user’s ongoing interactions with a web site is
via his or her session, this is an appropriate place to indicate whether or not the user
has logged in. Since we will want to be able to customize content with a user’s
account information, a simple way to indicate login status is the presence or absence
of a UserBean instance in the user’s session. If the user has UserBean instance as the
value of a designated session attribute, this is taken as an indication that the user has
been authenticated. Furthermore, the properties of that UserBean can be assumed
to reflect the session owner’s account information.

 To manage this interaction with the session, the com.taglib.wdjsp.fil-
ters.UserSessionManager class is introduced. This class has three static variables,
one of which is used to implement the singleton pattern (introduced in chapter 11),
as follows:

public class UserSessionManager {
  final static public String SESSION_USER_ATTRIBUTE = "user";
  final static public String SESSION_LOGINTARGET_ATTRIBUTE = "loginTarget";

  static private UserSessionManager INSTANCE = new UserSessionManager();

Listing 13.4 SimpleUserDataManager class



342 CHAPTER 13

Applying filters and listeners
  private UserSessionManager () {}

  static public UserSessionManager getInstance () {
    return INSTANCE;
  }
  ...
}

The first two static variables are used to store attribute names for a pair of attributes
to be stored in the session. The third static variable, INSTANCE, stores the singleton
instance of this class, which may be retrieved via the getInstance() static method.
Note that the constructor method is private, thereby preventing any other class
from creating additional instances of UserSessionManager.

 Instances of the UserBean class are stored in the session by means of the set-
SessionUser() method, defined as follows:

public void setSessionUser (HttpSession session, UserBean user) {
  session.setAttribute(SESSION_USER_ATTRIBUTE, user);
  if (user.hasRole("admin")) {
    session.setMaxInactiveInterval(60 * 60 * 8);
  } else {
    session.setMaxInactiveInterval(60 * 15);
  }
}

Given a session and a UserBean, this method stores the bean in the session using
the attribute name specified in the class’s SESSION_USER_ATTRIBUTE static variable.
The UserBean instance is then checked to see whether or not the corresponding
user has the admin role, in which case the session is set to expire after eight hours of
inactivity, rather than the default fifteen minutes. The bean can subsequently be
retrieved or removed from the session via the getSessionUser() and removeSes-
sionUser() methods:

public UserBean getSessionUser (HttpSession session) {
  return (UserBean) session.getAttribute(SESSION_USER_ATTRIBUTE);
}
public void removeSessionUser (HttpSession session) {
  session.removeAttribute(SESSION_USER_ATTRIBUTE);
}

Like setSessionUser(), these methods take advantage of the SESSION_
USER_ATTRIBUTE static variable to abstract the name of the session attribute.

 In addition to managing the session attribute for storing the UserBean instance,
this class is used to manage a second session attribute related to the user login pro-
cess. The job of the authentication filter is to prevent access to content in the appli-
cation’s secure subdirectory by users who have not yet logged in. Once a user has



Web authentication 343
successfully logged in, however, there is nothing preventing a user from creating a
bookmark containing the URL for that secured content. If the user attempts to fol-
low that bookmark at a later date without first logging in, the authentication filter
will redirect them to the login page to be authenticated.

 As a convenience, it is preferable to automatically take the user to the page they
were originally trying to access, once the login has been authenticated (i.e., rather
than sending them to a generic welcome page). In order to facilitate this behavior,
store the URL for the page that was originally requested—referred to as the “login
target”—in the user’s session. This is accomplished by means of the UserSession-
Manager class’s setSessionLoginTarget() method:

public void setSessionLoginTarget (HttpSession session, String loginTarget) {
  session.setAttribute(SESSION_LOGINTARGET_ATTRIBUTE, loginTarget);
}

The login target can subsequently be retrieved via the class’s getSessionLoginTar-
get() method, which provides a second parameter for indicating whether or not
the attribute should be removed from the session after it has been retrieved:

public String getSessionLoginTarget (HttpSession session, boolean clear) {
  String target = (String) session.getAttribute(SESSION_LOGINTARGET_ATTRIBUTE);
  if (clear) session.removeAttribute(SESSION_LOGINTARGET_ATTRIBUTE);
  return target;
}

Both methods make use of the SESSION_LOGINTARGET_ATTRIBUTE static variable
for specifying the name of the attribute used to store the login target.

 The final element of the UserSessionManager class is a static method named
doRedirect(). As mentioned, the authentication filter will redirect unauthenti-
cated users to the login page when they attempt to access restricted content. Redi-
rection is also used to forward the user to the login target after they have been
authenticated. The doRedirect() utility method allows the various steps required
to perform this redirection to be defined once and reused throughout the applica-
tion. It is defined as follows:

static public void doRedirect (HttpServletRequest request,
                               HttpServletResponse response, String url)
    throws IOException {
  String redirect = response.encodeRedirectURL(request.getContextPath() + url);
  response.sendRedirect(redirect);
}

The first step in this method is to call the request’s getContextPath() method to
retrieve the top-level directory name under which the application has been



344 CHAPTER 13

Applying filters and listeners
deployed (see chapter 14). This is prepended to the URL passed in as the method’s
third parameter, to result in an absolute URL as required by the response’s send-
Redirect() method. Before the sendRedirect() method can be called, however,
the response’s encodeRedirectURL() method must be called. This method will
ensure that the user’s session ID is encoded into the URL, should the user not have
cookies enabled in the browser. Given the important role played by the session in
our access control system, it is critical that the association between the user and
their session not be lost. Finally, by defining this as a static method, it can easily be
leveraged by the application’s other classes.

 The source code for the UserSessionManager class, in abbreviated form,
appears in listing 13.5.

package com.taglib.wdjsp.filters;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

public class UserSessionManager {
  final static public String SESSION_USER_ATTRIBUTE = "user";
  final static public String SESSION_LOGINTARGET_ATTRIBUTE = "loginTarget";

  static private UserSessionManager INSTANCE = new UserSessionManager();
  private UserSessionManager () {}

  static public UserSessionManager getInstance () { ... }

  public void setSessionUser (HttpSession session, UserBean user) { ... }
  public UserBean getSessionUser (HttpSession session) { ... }
  public void removeSessionUser (HttpSession session) { ... }

  public void setSessionLoginTarget (HttpSession session, String loginTarget) { 
... }

  public String getSessionLoginTarget (HttpSession session, boolean clear) { ... 
}

  static public void doRedirect (HttpServletRequest request,
                                 HttpServletResponse response, String url)
    throws IOException { ... }
}

13.3.2 Login servlet 

The process of logging in is implemented via the com.taglib.wdjsp.fil-
ters.LoginServlet class.  This servlet validates login credentials and, when valid,

Listing 13.5 UserSessionManager class



Web authentication 345
adds a corresponding UserBean instance to the session. If the provided username
and password are not valid, an error message is displayed and the user is given
another opportunity to log in. If they are valid, the servlet will display the user’s
login target, if specified, or a generic welcome page, if it is not.

 The LoginServlet class defines several instance variables, as well as a pair of
static class variables:

public class LoginServlet extends HttpServlet {
  final private static String USERNAME_REQPARM = "username";
  final private static String PASSWORD_REQPARM = "password";

  private String loginPage;
  private String welcomePage; 
  private UserDataManager userMgr;
  private UserSessionManager sessionMgr = UserSessionManager.getInstance();
  ...
}

The two class variables store the names of the request parameters that will be passed
in by the form on the login page. The values of the loginPage and welcomePage
instance variables will be passed in as initialization parameters, and will store URLs
for the login form and for the default page to be displayed after a successful user
authentication (i.e., in the absence of a login target). The userMgr instance variable
stores an object implementing the UserDataManager interface, described earlier in
the chapter, and is also set by means of an initialization parameter. The sessionMgr
instance variable stores a pointer to the singleton UserSessionManager instance.

 Initialization parameters are processed via the servlet’s init() method, defined
as follows: 

public void init (ServletConfig config) throws ServletException {
  welcomePage = config.getInitParameter("welcomePage");
  if (welcomePage == null)
    throw new ServletException("The welcomePage init parameter"
                              + " must be specified.");
  loginPage = config.getInitParameter("loginPage");
  if (loginPage == null)
    throw new ServletException("The loginPage init parameter" 

                          + " must be specified.");
  String userDataMgrClassname = config.getInitParameter("userDataManager");
  if (userDataMgrClassname == null)
    throw new ServletException("The userDataManager init parameter"
                              + " must be specified.");
  userMgr = (UserDataManager) makeInstance(userDataMgrClassname,
                                          UserDataManager.class, "user data manager");
}



346 CHAPTER 13

Applying filters and listeners
The values of the welcomePage and loginPage initialization parameters are
assigned directly to the instance variables of the same names, and an exception is
raised if either of the two initialization parameters was not specified. An initializa-
tion parameter named userDataManager must also be specified, the value of which
should be a fully qualified class name for a Java class that implements the UserData-
Manager interface. The specified class is instantiated by means of an auxiliary
method named makeInstance().  This approach of specifying a class name, pro-
vided in the form of an initialization parameter, is a manifestation of the plug-in
approach to user authentication enabled by our introduction of the UserDataMan-
ager interface.

 The makeInstance() auxiliary method takes advantage of several methods
defined by the java.lang.Class class to instantiate the class named by the user-
DataManager initialization parameter:

private Object makeInstance (String classname,
                             Class interfaceClass, String description)
  throws ServletException {
  try {
    Class klass = Class.forName(classname);
    if (! interfaceClass.isAssignableFrom(klass)) {
      throw new ServletException(classname + " does not implement required"
                                + " interface" + interfaceClass.getName()
                                + " for " + description + ".");
    }
    return klass.newInstance();
  }
  catch (ClassNotFoundException e) {
    throw new ServletException("Unable to instantiate" + description + ".", e);
  }
  catch (InstantiationException e) {
    throw new ServletException("Unable to instantiate" + description + ".", e);
  }
  catch (IllegalAccessException e) {
    throw new ServletException("Unable to instantiate" + description + ".", e);
  }
}

The forName() static method retrieves the Class object corresponding to a fully
qualified class name. Once the class is retrieved, the isAssignableFrom() method
(also defined by the Class class) is used to make sure that the named class imple-
ments the required interface. If so, the Class object’s newInstance() method is
called to create the required instance. Since the class of the instance cannot be
known in advance, this method returns the result as an instance of the root Object



Web authentication 347
class. The calling method (in this case, the servlet’s init() method) must cast the
result to the desired class (or, in this case, the desired interface).

 Trying to construct an object from an arbitrary character string presumed to
name a defined class is something of a risky proposition. The methods called upon
to perform this task may throw a number of exceptions, which makeInstance()
handles by rethrowing them as instances of the ServletException class.

 For security reasons, it is recommended that request parameters corresponding
to login passwords be submitted only via the HTTP POST method. Because the
GET method passes request parameters as part of the URL, the values of those
parameters are much more visible. On the client side, they will appear in the
browser’s history list of visited pages. They may also be stored in the activity logs of
the web server hosting the login form. Based on this consideration, the LoginServ-
let class defines a doPost() method, but not a a doGet() method.

 This doPost() method has three primary tasks: retrieve the request parameters
for the username and password, validate them, and take appropriate action. The
method is defined as follows:

public void doPost (HttpServletRequest request,
                    HttpServletResponse response)
  throws ServletException, IOException {
  String username = request.getParameter(USERNAME_REQPARM);
  if (username == null)
    throw new ServletException("No username specified.");
  String password = request.getParameter(PASSWORD_REQPARM);
  if (password == null)
    throw new ServletException("No password specified.");
  if (userMgr.validate(username, password)) {
    doLoginSuccess(request, response, username);
  } else {
    doLoginFailure(request, response, username);
  }
}

The request parameters are retrieved by calling the getParameter() method of the
request object provided as the method’s first argument. The static variables discussed
earlier are used to reference the names of the two parameters, and an exception is
raised if either is missing. Authentication of the username and password is accom-
plished by calling the validate() method of the UserDataManager object created in
the servlet’s init() method. Based on the results of this validation, one of two util-
ity methods is called to indicate the success or failure of the login attempt.

 If user authentication is successful, doPost() calls the servlet’s doLoginSuc-
cess() method:



348 CHAPTER 13

Applying filters and listeners
private void doLoginSuccess (HttpServletRequest request,
                             HttpServletResponse response,
                             String username)
  throws IOException {
  UserBean user = userMgr.lookupUserData(username);
  HttpSession session = request.getSession(true);
  sessionMgr.setSessionUser(session, user);
  String targetPage = sessionMgr.getSessionLoginTarget(session, true);
  if (targetPage == null) {
    UserSessionManager.doRedirect(request, response, welcomePage);
  } else {
    targetPage = response.encodeRedirectURL(targetPage);
    response.sendRedirect(targetPage);
  }
}

This method’s first step is to fetch a UserBean  instance representing the user’s
account information from the servlet’s UserDataManager object (stored in the
userMgr instance variable). This bean is then stored in the user’s session via the
setSessionUser() method of the UserSessionManager singleton (referenced by
the servlet’s sessionMgr instance variable). The UserSessionManager object is
then used to determine whether or not a login target has been stored in the user’s
session. If so, that class’s doRedirect() static method is used to instruct the user’s
browser to issue a new request for the login target. If not, the doRedi-
rect()method is used to send the user to the application’s welcome page.

 If the login validation fails, the servlet’s doPost() method instead calls its
doLoginFailure() method:
private void doLoginFailure (HttpServletRequest request,
                             HttpServletResponse response,
                             String username)
  throws IOException {
  String loginURL = loginPage + "?retry=true&username=" + username;
  UserSessionManager.doRedirect(request, response, loginURL);
}

This method also relies on the doRedirect() method of the UserSessionManager
class, but instead sends the user back to the page with the login form. In addition, it
appends two request parameters to the URL for the login page. The retry request
parameter is a signal to the login page that a previous attempt at logging in failed,
so that an appropriate error message may be displayed. The username request
parameter is used to prefill the corresponding form field, presuming that the user is
more likely to have mistyped the password (whose characters will have been masked
during entry) than the username. (Also, the redirect operation will use the more
vulnerable HTTP GET method, providing another good reason for not attempting
to prefill the password field.) 



Web authentication 349
 This completes the methods of the LoginServlet class. The source code for the
class is presented in abbreviated form in listing 13.6.

package com.taglib.wdjsp.filters;
import javax.servlet.ServletConfig;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class LoginServlet extends HttpServlet {
  final private static String USERNAME_REQPARM = "username";
  final private static String PASSWORD_REQPARM = "password";

  private String welcomePage;
  private String loginPage;
  private UserSessionManager sessionMgr = UserSessionManager.getInstance();
  private UserDataManager userMgr;

  public void init (ServletConfig config) throws ServletException { ... }
  private Object makeInstance (String classname,
                               Class interfaceClass, String description)
    throws ServletException {
    ...
  }
  public void doPost (HttpServletRequest request,
                      HttpServletResponse response)
    throws ServletException, IOException {
    ...
  }
  private void doLoginSuccess (HttpServletRequest request,
                               HttpServletResponse response,
                               String username)
    throws IOException {
    ...
  }
  private void doLoginFailure (HttpServletRequest request,
                               HttpServletResponse response,
                               String username)
    throws IOException {
    ...
  }
}

Listing 13.6 LoginServlet class



350 CHAPTER 13

Applying filters and listeners
13.3.3 Login pages

Given this description of the operation of the login servlet, a look at the JSP pages
supporting this servlet is in order. The first of these three pages is the index.jsp
page for the filters directory, which displays a warning notice and provides a link to
the login form. Its source code appears in listing 13.7. The only JSP element in this
page is an expression which modifies the link to the login form by calling the
encodeURL() method of the response implicit object. Like the encode-
RedirectURL() method discussed previously, this method ensures that the user’s
session ID is encoded into the HTML link, for those users who have disabled cookies
in their browser.

<html>
<head><title>Encom Intranet</title></head>
<body>
<h1>Encom Intranet</h1>
<p>
This is the Encom intranet. Unauthorized use is prohibited.
</p>
<p>
Click <a href='<%= response.encodeURL("login.jsp") %>'>here</a> to log in.
</p>
</body>
</html>

The source code for the login form, login.jsp, is presented in listing 13.8. The
first JSP elements on this page are two scriptlets that conditionally include an error
message in the presence of a request parameter named retry. As indicated in the
previous section, this request parameter is set by the login servlet as an indicator
that a previous login attempt has failed. The third scriptlet attempts to assign the
value of a request parameter named username to a local variable of the same name,
setting the local variable to an empty character string if the request parameter is not
present.

<html>
<head><title>Please log in...</title></head>

<body>
<h1>Please log in...</h1>

<% if (request.getParameter("retry") != null) { %>
<p align=center><font color="red">

Listing 13.7 index.jsp

Listing 13.8 login.jsp



Web authentication 351
Invalid username/password combination.
</font></p>
<% } %>

<% String username = request.getParameter("username");
   if (username == null) username = ""; %>

<center>
<form action='<%= response.encodeURL(request.getContextPath() 
                                      + "/filters/login") %>'
      method="POST">
<table>
<tr>
  <td align="right">Username:</td>
    <td align="left">
      <input type="text" name="username" size="16" value="<%= username %>">
    </td>
</tr>
<tr>
  <td align="right">Password:</td>
    <td align="left">
      <input type="password" name="password" size="20">
    </td>
</tr>
</table>

<input type="submit" value="Log In">
</form>
</center>

</body>
</html>

The remaining two JSP elements are expressions. The simpler is the second one,
which inserts the value of the username local variable as the default value for the
form field of the same name. The first expression is a bit more complex. Its task is to
set the URL for the logon servlet as the action handler for the form. Once again,
the encodeURL() method of the response object is employed to embed the session
ID in the URL (if necessary). In addition, the getContextPath() method of the
request implicit object is prepended to the URL for the logon servlet. This allows
us to construct an absolute URL for the servlet, which includes the name of the top-
level directory under which the application has been deployed. (For further discus-
sion of application deployment issues, see chapter 14.) The page’s static content
implements the HTML layout of the form itself.

 Figure 13.3 shows the logon form. Figure 13.4 shows the results of an unsuc-
cessful logon attempt.  



352 CHAPTER 13

Applying filters and listeners
 The third JSP page associated with the logon process is the welcome page, to
which users whose session does not contain a logon target are directed after they

Figure 13.3 The logon form

Figure 13.4 The logon form after an unsuccessful logon attempt



Web authentication 353
log on. The welcome.jsp page is located in the secure subdirectory of the fil-
ters directory, and its source code is presented in listing 13.9. 

<html>
<head><title>Welcome</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>Welcome</h1>

<p>
...to the Encom intranet.
</p>

</body>
</html>

This JSP page has only one scripting element, used to include the navigational
header for the content pages. (See listing 13.10.)

13.3.4 Content pages

The application has three content pages, corresponding to the three departmental
home pages. Like the welcome page presented in the previous section, all are located
in the secure subdirectory of the filters directory and use the <jsp:include> action
to incorporate the content of the header page located in that subdirectory.

 The source code for the header page appears in listing 13.10. As indicated in
figure 13.2, all pages in the secure subdirectory will be subject to access control via
the authentication filter. Anyone viewing these pages can therefore be presumed to
be logged on. As indicated earlier in the chapter, this means that all users viewing
content in the secure subdirectory will have an instance of the UserBean class in
their session. 

<center>

<jsp:useBean id="user" scope="session"
             class="com.taglib.wdjsp.filters.UserBean">
  <font color="red" size="+2">Illegal User Access!</font>
</jsp:useBean>

<font color="white">
<table bgcolor="grey">

Listing 13.9 welcome.jsp

Listing 13.10 header.jsp



354 CHAPTER 13

Applying filters and listeners
<tr>
<td><b><jsp:getProperty name="user" property="username"/>@Encom:</b></td>
<td>&nbsp;</td>
<td><a href='<%= response.encodeURL("welcome.jsp") %>'>Home</a></td>
<td>|</td>
<td><a href='<%= response.encodeURL("development.jsp") %>'>Development</a></td>
<td>|</td>
<td><a href='<%= response.encodeURL("management.jsp") %>'>Management</a></td>
<td>|</td>
<td><a href='<%= response.encodeURL("admin.jsp") %>'>System
     Administration</a></td>
<td>|</td>
<td><a href='<%= response.encodeURL("logout.jsp") %>'>Log Out</a></td>
</tr> 
</table>
</font>
</center>

The first JSP element in the header page, then, is a <jsp:useBean> action for making
this bean available within the page. Note that, as a debugging aid, body content has
been added to the action to print out a warning message if the <jsp:useBean> action
does not find the bean already in the session and ends up instantiating a new one.

 The remainder of the page implements an HTML table that provides a naviga-
tion banner for accessing each of the JSP pages in the secure subdirectory. As with
previous links, the response object’s encodeURL() method is called up to preserve
the association between the user and the session if cookies have been disabled. In
addition, the <jsp:getProperty> action is applied to display the username for the
current user within the navigational banner. A screenshot of the welcome page
described in the previous section, which incorporates the header.jsp page via the
<jsp:include> action, is presented in figure 13.5.

 The incorporation of the UserBean instance into the page by the included
header can be taken advantage of by the other pages that use it. Each of the three
departmental home pages, for example, displays one of the properties of this bean
using the <jsp:getProperty> action. The development home page, presented in
listing 13.11, uses this action to retrieve the user’s first name, while the manage-
ment home page, presented in listing 13.12, uses it to retrieve the user’s last name.
A screen shot of the management home page is depicted in figure 13.6.   



Web authentication 355
<html>
<head><title>Development News</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>Development News for
     <jsp:getProperty name="user" property="firstName"/></h1>

<ul>
<li>The development team meeting for Space Paranoids II will be next Tuesday
at 11 am.
<br>Bring your laptop.
<li>The Encom quarterly meeting will be next Friday at 9am.
<br>Bring your pillow.
</ul>

</body>
</html>

Listing 13.11 development.jsp

Figure 13.5 The welcome page, including the navigational header



356 CHAPTER 13

Applying filters and listeners
<html>
<head><title>Corporate News</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>Corporate News for Manager
     <jsp:getProperty name="user" property="lastName"/></h1>

<h2>Important Announcement</h2>

<p>
As you are well aware, the Encom quarterly meeting will be
next Friday at 9am. Please inform your staff that attendance is mandatory
as we are preparing to make several key announcements regarding the upcoming
product releases.
</p>

<p>
Please make sure that all MCP audit logs for your department are submitted by
5pm on Wednesdays until further notice.
</p>

</body>
</html>

Listing 13.12 management.jsp

Figure 13.6 The management home page



Web authentication 357
The third and final departmental home page is presented in listing 13.13. Like the
first two, it uses the <jsp:getProperty> action to retrieve a property from the
UserBean stored in the user’s session. An even more noteworthy characteristic of all
three of these pages is what they do not include: nowhere within these pages do you
see any code related to access control. The header page’s <jsp:useBean> tag is an
indirect dependence on the user authentication code, but there are no explicit
checks in any of these JSP pages that the user is logged in or has been assigned the
required role. 

 Instead, all of the code required to enforce the system’s access control require-
ments will be provided by the filters to be introduced later in the chapter. No
changes will need to be made to the pages themselves. As described in the previous
chapter, this ability to add functionality to an application in a modular fashion,
without having to modify existing resources, is one of the key advantages of both
filters and listeners.

<html>
<head><title>SysAdmin News</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>SysAdmin News for user
     <jsp:getProperty name="user" property="username"/></h1>

<ul>
<li>Network status: The game grid is <b>up</b>.
</ul>

</body>
</html>

13.3.5 Logout servlet

The counterpart to the logon servlet is the logout servlet, which allows a user to
cleanly exit the intranet application. It defines only two methods, an init()
method and a doPost() method, as indicated in listing 13.14. 

package com.taglib.wdjsp.filters;
import javax.servlet.ServletConfig;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;

Listing 13.13 admin.jsp

Listing 13.14 LogoutServlet class



358 CHAPTER 13

Applying filters and listeners
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class LogoutServlet extends HttpServlet {

  private String goodbyePage;
  private UserSessionManager sessionMgr = UserSessionManager.getInstance();

  public void init (ServletConfig config) throws ServletException {
    goodbyePage = config.getInitParameter("goodbyePage");
    if (goodbyePage == null)
      throw new ServletException("The goodbyePage init parameter"
                                 + " must be specified.");
  }

  public void doPost (HttpServletRequest request,
                      HttpServletResponse response)
    throws ServletException, IOException {
    HttpSession session = request.getSession(true);
    sessionMgr.removeSessionUser(session);
    UserSessionManager.doRedirect(request, response, goodbyePage);
  }
}

The com.taglib.wdjsp.filters.LogoutServlet class also defines two instance
variables. The first, goodbyePage, will hold the URL for the page to be displayed
after a user has successfully logged out. Initializing this instance variable is the sole
task of the servlet’s init() method, which sets its value from an initialization
parameter of the same name, throwing an exception if that initialization parameter
is not found.

 The servlet’s second instance variable, sessionMgr, holds a reference to the
UserSessionManager singleton, just like the sessionMgr instance variable of the
LoginServlet class. This reference is used by the servlet’s doPost() method to
remove the UserBean instance from the user’s session when logging them out. It
then calls the UserSessionManager class’s doRedirect() utility method to forward
the user to the page specified by the servlet’s goodbyePage instance variable.

13.3.6 Logout pages

There are two JSP pages in the application supporting the logout operation. The
logout form is in a file named logout.jsp, which is in the secure subdirectory of the
application’s filters directory. After logging out, users are directed to goodbye.jsp,
which resides in the filters directory itself.



Web authentication 359
 The contents of the logout page are provided in listing 13.15. Like the content
pages, it includes the header page containing navigational elements for the applica-
tion, and it also uses the <jsp:getProperty> action to print the username of the
account currently logged in. As was the case for the logon form, an expression
using the encodeURL() method of the response object and the getContextPath()
method of the request object is used to construct an absolute URL for the form
handler (i.e., the logout servlet).

<html>
<head><title>Log Out</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>Logout</h1>

<p>
Select the button to log out account
<b><jsp:getProperty name="user" property="username"/></b>
from the Encom intranet.
</p>

<center>
<form action='<%= response.encodeURL(request.getContextPath()
                                      + "/filters/logout") %>' method="POST">
<input type="submit" value="Log Out">
<form>
</center>

</body>
</html>

The good-bye page, presented in listing 13.16, is noteworthy in that it does not
include any actual JSP elements. All of its content is static HTML. In particular, it
does not use the response object’s encodeURL() method to ensure that the user’s
session ID is preserved. This is because, having logged out, the user’s connection to
a particular session is no longer relevant.

<html>
<head><title>Thank You</title></head>

<body>
<h1>Thank You</h1>

Listing 13.15 logout.jsp

Listing 13.16 goodbye.jsp



360 CHAPTER 13

Applying filters and listeners
<p>
...for using the Encom intranet.<br>
Click <a href="login.jsp">here</a> to log back in.
</p>

</body>
</html>

Screen shots of the logout form and good-bye page appear in figures 13.7 and 13.8.   

13.4 Access control filters

Now, with all the content and infrastructure in place, we are ready to return to the
topics introduced in chapter 12. In this section, we will examine the two filters used
to enforce the required access control policies on the intranet’s JSP pages. The
authentication filter restricts access to secure content to users who have successfully
logged in. The role filter imposes an additional layer of access control, further
restricting access to certain resources to users who have been assigned the corre-
sponding role.

Figure 13.7 The logout form



Access control filters 361
13.4.1 Authentication filter

The authentication filter is implemented via the com.taglib.wdjsp.fil-
ters.AuthenticationFilter class. Its task is to ensure that a user is logged in
before it will permit access to the resources to which it has been mapped. It does
this by checking the user’s session for the presence of a UserBean instance, which
will only be present if the user has been authenticated via the login servlet. If the
bean is present, access is permitted. If not, the user is redirected to the login form.

 The AuthenticationFilter class defines two instance variables, one of which is
set via a filter initialization parameter, and one of which is set by the class’s con-
structor. The instance variables and constructors are defined as follows:

public class AuthenticationFilter implements Filter {
  private String loginPage;
  private UserSessionManager sessionMgr;

  public AuthenticationFilter () { 
    sessionMgr = UserSessionManager.getInstance(); }
  ...
}

Figure 13.8 The goodbye page



362 CHAPTER 13

Applying filters and listeners
Like the logon and logout servlets, AuthenticationFilter also stores a reference
to the UserSessionManager singleton in an instance variable named sessionMgr.
The value of the loginPage instance variable—which will store the location of the
application’s logon form—is obtained from a filter initialization parameter of the
same name, via the filter’s init() method:

  public void init (FilterConfig config) throws ServletException {
    loginPage = config.getInitParameter("loginPage");
    if (loginPage == null)
      throw new ServletException("The loginPage init parameter"
                                + " must be specified.");
  }

Recall from the discussion in chapter 12 that filter initialization parameters are
exposed to the filter via a corresponding FilterConfig object. The value of the
loginPage parameter is obtained by calling this object’s getInitParameter()
method. If not found, an exception is raised. (Filter initialization parameter values
are specified via the application deployment descriptor, an XML document for con-
figuring the components of a web application. For further details, see chapter 14.)

 Enforcement of the filter’s access control responsibilities is provided by the
doFilter() method. As indicated in the previous chapter, the signature of this
method (as defined by the Filter interface) requires it to accept generic requests
and responses. Because this filter must interact with the user’s session, which is
only applicable in the context of HTTP requests and responses, this method first
ensures that its request and response parameters are actually instances of the
HttpServletRequest and HttpServletResponse interfaces, respectively:

  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    if (request instanceof HttpServletRequest
        && response instanceof HttpServletResponse) {
      HttpServletRequest req = (HttpServletRequest) request;
      HttpSession session = req.getSession(true);
      UserBean user = sessionMgr.getSessionUser(session);
      if (user == null) {
        requireLogin(req, (HttpServletResponse) response, session);
      } else {
        chain.doFilter(request, response);
      }
    } else {
      throw new ServletException("Filter only applicable"
                                 + " to HTTP and HTTPS requests.");
    }
  }



Access control filters 363
If they are not, an exception is raised. If they are, then they are cast to the required
interfaces, and the user’s HttpSession object is retrieved from the request. The
getSessionUser() method of the UserSessionManager singleton is then called
upon to retrieve the user’s corresponding UserBean instance for that session. If a
UserBean object is present, then access to the requested resource is granted by call-
ing the FilterChain parameter’s doFilter()  method, passing it the request and
response objects originally passed to the filter itself. Control then passes to the next
item in the chain, which will either be another filter or the resource that was origi-
nally requested.

 If the required UserBean instance is not present in the user’s session, the filter
will instead call its requireLogin() method, defined as follows:
  private void requireLogin (HttpServletRequest request,

                             HttpServletResponse response,
                             HttpSession session)
    throws IOException {
    StringBuffer buffer = request.getRequestURL();
    String query = request.getQueryString();
    if (query != null) {
      buffer.append('?');
      buffer.append(query);
    }
    sessionMgr.setSessionLoginTarget(session, buffer.toString());
    UserSessionManager.doRedirect(request, response, loginPage);
  }

The requireLogin() method has three tasks. First, it reconstructs the URL which
the user was trying to reach, including any query parameters (i.e., any request
parameters passed in as part of the URL, via the HTTP GET method). This URL is
then stored in the user’s session as the logon target, via the UserSessionManager
singleton’s setSessionLoginTarget() method. That class’s doRedirect() static
method is then called upon to cause the user’s browser to display the application’s
login form.

 The full source code for the AuthenticationFilter class is presented in
listing 13.17. As indicated there, the class also includes a definition of the destroy()
method, as required by the Filter interface. Since this filter does not need to allo-
cate any long-term resources, the body of its destroy() method is empty.

package com.taglib.wdjsp.filters;
import javax.servlet. Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;

Listing 13.17 AuthenticationFilter class



364 CHAPTER 13

Applying filters and listeners
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class AuthenticationFilter implements Filter {
  private String loginPage;
  private UserSessionManager sessionMgr;

  public AuthenticationFilter () { ... }
  public void init (FilterConfig config) throws ServletException { ... }
  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    ...
  }
  private void requireLogin (HttpServletRequest request,
                             HttpServletResponse response,
                             HttpSession session)
    throws IOException {
    ...
  }
  public void destroy () {}
}

Just as the content pages have no direct knowledge of the filter that will be applied
to them in order to implement access control, the filter itself has no direct knowl-
edge of the resources to which it will be applied. The only JSP page it knows any-
thing about is the login page, and even then the location of this page is provided via
an initialization parameter to provide maximum flexibility. The ability to keep the
functionality of the filter completely separate from the functionality of the applica-
tion’s other resources improves the reusability of both, and leads to greater main-
tainability and more flexible deployment of applications that leverage this approach.

13.4.2 Role filter

The implementation of the role filter is very similar to that of the authentication fil-
ter. One minor difference is that its class, com.taglib.wdjsp.filters.RoleFil-
ter, has three instance variables rather than just two:

public class RoleFilter implements Filter {
  private String role, denyPage;
  private UserSessionManager sessionMgr;



Access control filters 365
  public RoleFilter () { sessionMgr = UserSessionManager.getInstance(); }
  ...
}

As was the case for the AuthenticationFilter class, this class’s sessionMgr
instance variable holds a reference to the UserSessionManager singleton and is ini-
tialized in the filter’s constructor. The other two instance variables, role and
denyPage, get their values from like-named initialization parameters, via the class’s
init() method:

  public void init (FilterConfig config) throws ServletException {
    role = config.getInitParameter("role");
    if (role == null)
      throw new ServletException("The role init parameter"
                                 + " must be specified.");
    denyPage = config.getInitParameter("denyPage");
    if (denyPage == null)
      throw new ServletException("The denyPage init parameter"
                                 + " must be specified.");
  }

The role instance variable stores the name of the role which the filter is to restrict
access to, while the denyPage instance variable stores the location of the resource to
be displayed to users who attempt to access a resource protected by this filter but do
not have the required role. An exception is thrown if either of the corresponding
initialization parameters is not specified.

 Enforcement of role-based security is performed by the filter’s doFilter()
method, defined as follows:

  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    if (request instanceof HttpServletRequest
        && response instanceof HttpServletResponse) {
      HttpServletRequest req = (HttpServletRequest) request;
      HttpSession session = req.getSession(true);
      UserBean user = sessionMgr.getSessionUser(session);
      if ((user != null) && user.hasRole(role)) {
        chain.doFilter(request, response);
      } else {
        HttpServletResponse resp = (HttpServletResponse) response;
        UserSessionManager.doRedirect(req, resp, denyPage);
      }
    } else {
      throw new ServletException("Filter only applicable"
                                 + " to HTTP and HTTPS requests.");
    }
  }



366 CHAPTER 13

Applying filters and listeners
Like its counterpart in the AuthenticationFilter class, this method’s interaction
with the user’s session requires that the filter only be applied to HTTP requests and
responses. This method’s first step, then, is to make sure that the request and
response instances passed in as its first two parameters are of the appropriate types.
If not, an exception is raised.

 If the request and response objects are of the required types, the cast operator is
applied to allow the user’s session to be retrieved from the request. The getSes-
sionUser() method of the UserSessionManager singleton is then called to retrieve
the UserBean instance for the user. If a UserBean object is present, its hasRole()
method is called to determine whether or not the user has been assigned the role
named in the filter’s role instance variable. If so, the doFilter() method of the
FilterChain object provided as the method’s third parameter is called in order to
continue processing the request. If not, the user is redirected to the location speci-
fied by the filter’s denyPage instance variable, using the doRedirect() method of
the UserSessionManager class.

 The filter class’s remaining method is destroy(). It is required to implement
this method by the Filter interface, but because it allocates no long-term
resources, this method performs no operations. This method, as well as abbreviated
versions of the RoleFilter class’s other methods, is presented in listing 13.18.

package com.taglib.wdjsp.filters;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import javax.servlet.ServletException;
import java.io.IOException;

public class RoleFilter implements Filter {
  private String role, denyPage;
  private UserSessionManager sessionMgr;

  public RoleFilter () { ... }
  public void init (FilterConfig config) throws ServletException { ... }
  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    ...

Listing 13.18 RoleFilter class



Access control filters 367
  }
  public void destroy () {}
}

Note that, since there are three different resources (i.e., the departmental home
pages) to be restricted to three different roles, the application will have to create
three different instances of the RoleFilter class. This allows each instance to have
a different value for its role instance variable, and to be mapped to a different
resource. (The mapping of filters to application resources is covered in the next
chapter.) In contrast, only a single instance of the AuthenticationFilter class is
required, since only one setting is needed for its loginPage instance variable.

 The final element in the implementation of the role-based security requirement
is the application’s access denial page, the denied.jsp page located in the secure
subdirectory of the filters directory. This is the resource that will be displayed when
a user who has not been assigned the required role attempts to access a resource
protected by the role filter. The source code for this JSP page, which leverages the
navigational header page introduced earlier in the chapter, is presented in
listing 13.19, and a representative screen shot appears in figure 13.9. Although
each of the required RoleFilter instances has its own value for the role instance
variable, each can share this single access denial page as the value for each of their
denyPage instance variables.  

<html>
<head><title>Access Denied</title></head>

<body>
<jsp:include page="header.jsp" flush="false"/>

<h1>Access Denied</h1>

<font color="red">
<p>
The <b><jsp:getProperty name="user" property="username"/></b> account
is not authorized to access the requested resource.<br>
Please make another selection.
</p>

</body>
</html>

Listing 13.19 denied.jsp



368 CHAPTER 13

Applying filters and listeners
13.5 Logging listener

The authentication and role filters, when applied to the application’s resources as
illustrated in 13.2, implement all of the access control requirements described ear-
lier in the chapter. The last of the desired enhancements to the original application
is the addition of logging features. As was the case for the implementation of access
control via the two filter classes, this will be accomplished without making any
changes to the existing code, including that of the two filters.

 The logging functionality will be implemented by means of a life-cycle event lis-
tener named com.taglib.wdjsp.filters.LoginSessionListener. Given that a
user’s logon status is represented by the presence or absence of a session attribute
named user holding an instance of the UserBean class, monitoring that status is most
easily accomplished by implementing the HttpSessionAttributeListener interface.
(This monitoring could also be accomplished using the HttpSessionBinding-
Listener interface, but that would necessitate modifications to the UserBean class,
which we would prefer to avoid. The HttpSessionAttributeListener interface
allows us to accomplish our goals without adding web-specific code to that class.) As

Figure 13.9 The access denial page



Logging listener 369
a debugging aid, we will also have our new listener class implement the HttpSes-
sionListener interface, so that we can monitor session creation and destruction.

13.5.1 HttpSessionListener methods

For this HttpSessionListener interface, two methods must be defined: The first,
sessionCreated(), is defined as follows:

  public void sessionCreated (HttpSessionEvent event) {
    HttpSession session = event.getSession();
    System.out.println(new Date().toString() + ": session created"
                       + " (" + session.getId() + ")");
  }

This method retrieves the newly created session from the event passed in as the
method’s sole parameter, and then prints a log message containing a timestamp and
the ID of the new session. (To keep things simple for this example, all logging mes-
sages are printed to the System.out output stream. In practice, a dedicated log file
for all messages related to access control would be preferable.)

 The other method required by this interface, sessionDestroyed(), is defined
similarly:

  public void sessionDestroyed (HttpSessionEvent event) {
    HttpSession session = event.getSession();
    System.out.println(new Date().toString() + ": session destroyed"
                       + " (" + session.getId() + ")");
  }

This method’s only significant difference from the sessionCreated() method is
the wording of its log message.

13.5.2 HttpSessionAttributeListener methods

Three methods must be defined in order to implement the HttpSessionAt-
tributeListener: interface: attributeAdded(), attributeReplaced(), and
attributeRemoved().  The first of these is defined as follows:

  public void attributeAdded (HttpSessionBindingEvent event) {
    if (event.getName().equals(UserSessionManager.SESSION_USER_ATTRIBUTE)) {
      UserBean user = (UserBean) event.getValue();
      HttpSession session = event.getSession();
      System.out.println(new Date().toString()
                         + ": session login for " + user.getUsername()
                         + " (" + session.getId() + ")");
    }
  }



370 CHAPTER 13

Applying filters and listeners
First, the name of the newly added attribute is extracted from the event via its
getName() method. If the attribute’s name matches that used by the UserSession-
Manager singleton for storing the UserBean instance, then that instance is retrieved
from the session and used to print a logon message that includes a timestamp, the
username associated with that UserBean, and the session ID. Since this specific
attribute is only added to the session by the logon servlet, the logging message will
only be produced while the user  is in the process of logging on. Of course, this is
exactly when we want the message to be produced.

 An individual user’s UserBean object is never replaced within a session (the user
only logs in once), so no method body is required for the LoginSessionListener
class’s attributeReplaced() method (see listing 13.20).

 The listener’s attributeRemoved() method is very similar in structure to its
attributeAdded() method:

  public void attributeRemoved (HttpSessionBindingEvent event) {
    if (event.getName().equals(UserSessionManager.SESSION_USER_ATTRIBUTE)) {
      UserBean user = (UserBean) event.getValue();
      HttpSession session = event.getSession();
      System.out.println(new Date().toString()
                         + ": session "
                         + (isTimedOut(session) ? "timeout" : "logout")
                         + " for " + user.getUsername()
                         + " (" + session.getId() + ")");
    }
  }

Again, the name of the removed attribute is retrieved from the event, and checked
against the attribute name used to store the UserBean object in the user’s session. If
they match, an appropriate log message is generated.

 In this case, however, two different circumstances may be responsible for the
attribute removal event. If the user logs out of the application via the logout form,
the logout servlet will call the removeSessionUser() method of the UserSession-
Manager singleton, thereby explicitly removing the attribute holding the UserBean
instance. If the user neglects to log out, eventually the session will expire. As part of
the session expiration process, the container will automatically remove all of the
attributes stored in the session.

 In order to distinguish between these two possible causes, the attributeRe-
moved() method calls a utility method named isTimedOut().  This method’s task is
to determine whether the session has expired (i.e., timed out) or the user logged
out, and is defined as follows:
  private boolean isTimedOut (HttpSession session) {
    try {



Logging listener 371
      long idle = new Date().getTime() - session.getLastAccessedTime();
      return idle > (session.getMaxInactiveInterval() * 1000);
    }
    catch (IllegalStateException e) { return true; }
  }

First, this method determines how long the session provided as its sole parameter
has been idle, by subtracting the time it was last accessed from the current time.
This value, in milliseconds, is compared against the session’s expiration period, as
retrieved via its getMaxInactiveInterval() method, which must be multiplied by
1,000 in order to convert from seconds to milliseconds. If the idle period is greater
than the expiration period, then the session must have timed out. If not, the user
must have explicitly logged out.

 Upon expiring a session, however, the container may refuse to allow methods
such as getLastAccessedTime() and getMaxInactiveInterval() to be called. If
so, attempts to call those methods will result in an IllegalStateException. For
this reason, the isTimedOut() method includes a try/catch block for intercepting
these exceptions. If such an exception is caught, the session can be presumed to
have timed out, and the method will therefore return a value of true.

package com.taglib.wdjsp.filters;
import javax.servlet.http.HttpSession;
import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionBindingEvent;
import javax.servlet.http.HttpSessionAttributeListener;
import java.util.Date;

public class LoginSessionListener
  implements HttpSessionListener, HttpSessionAttributeListener {

  public void sessionCreated (HttpSessionEvent event) { ... }
  public void sessionDestroyed (HttpSessionEvent event) { ... }

  public void attributeAdded (HttpSessionBindingEvent event) { ... }
  public void attributeReplaced (HttpSessionBindingEvent event) {}
  public void attributeRemoved (HttpSessionBindingEvent event) { ... }

  private boolean isTimedOut (HttpSession session) { ... }
}

The resulting source code of the LoginSessionListener class (in abbreviated
form) is presented in listing 13.20. A transcript of representative output from the
listener appears in listing 13.21.

Listing 13.20 LoginSessionListener class



372 CHAPTER 13

Applying filters and listeners
package com.taglib.wdjsp.filters;
Mon Jul 02 23:45:37 CDT 2001: session created (9910339382D7D242C44545C0357)
Mon Jul 02 23:45:53 CDT 2001: session login for sark 

(9910339382D7D242C44545C0357)
Mon Jul 02 23:46:16 CDT 2001: session logout for sark 

(9910339382D7D242C44545C0357)
Mon Jul 02 23:46:22 CDT 2001: session created (39D1C293B7D5D2D751F5D417826)
Mon Jul 02 23:46:38 CDT 2001: session login for dumont 

(39D1C293B7D5D2D751F5D417826)
Mon Jul 02 23:48:55 CDT 2001: session created (A4611187A5F480C4B121C477F14)
Mon Jul 02 23:49:07 CDT 2001: session login for yori 

(A4611187A5F480C4B121C477F14)
Mon Jul 02 23:49:16 CDT 2001: session logout for yori 

(A4611187A5F480C4B121C477F14)
Tue Jul 03 00:01:41 CDT 2001: session destroyed (9910339382D7D242C44545C0357)
Tue Jul 03 00:01:41 CDT 2001: session timeout for dumont 

(39D1C293B7D5D2D751F5D417826)
Tue Jul 03 00:01:41 CDT 2001: session destroyed (39D1C293B7D5D2D751F5D417826)
Tue Jul 03 00:04:41 CDT 2001: session destroyed (A4611187A5F480C4B121C477F14)

13.6 Content filter

The two filters presented earlier in this chapter are focused on access control. Access
to specific resources is filtered according to the credentials (or lack thereof) associ-
ated with the user submitting the request.

 As indicated in chapter 12, however, filters can also be used to manipulate the
content provided by a resource. This is typically accomplished by means of request
and/or response wrappers, for which the examples presented thus far have not had
any need. In order to demonstrate this second type of filter, as well as the use of
wrapper classes, we will close the chapter with the presentation of one final filter,
embodied in the com.taglib.wdjsp.filters.StringReplaceFilter class.

 As its name suggests, this filter may be used to replace one string with another in
the content associated with a response. Without making any changes to the original
documents of the application, occurrences of a specified string within the body of a
response will be translated into occurrences of the specified replacement text. If, for
example, the Encom Corporation were to change its name, the string replacement
filter could be used to immediately replace all occurrences of the original name with
the new corporate moniker. Such an effect could readily be achieved by mapping an
instance of the StringReplaceFilter class to all of the resources comprising the
application, as indicated in figure 13.10.

Listing 13.21 LoginSessionListener output



Content filter 373
 The string replacement filter operates by placing a wrapper around the response
it passes down the filter chain. This wrapper introduces a second, temporary output
stream to which the remaining items in the chain, including the resource originally
requested, will write their content. When control returns to the filter after the
response has been written, the contents of this temporary output stream are copied
in the output stream of the response originally passed to the result, substituting all
occurrences of a given string with the specified replacement string. The response
wrapper and its temporary output stream are implemented via a pair of inner classes
named StringReplaceResponse and TmpServletOutputStream, respectively.

13.6.1 Filter methods

Two instance variables are defined for the StringReplaceFilter class, both of
whose values are set in the class’s init() method.

public class StringReplaceFilter implements Filter {
  private String from, to;

Filters

Secure

Index
page

Welcome
page

Header
page

Developer
home
page

Manager
home
page

Sysadmin
home
page

Login
page

Goodbye
page

Logout
page

Denied
page

Developer
role

Manager
role

Sysadmin
role

Authentication filter

String replacement filter

Figure 13.10 Final site map, including the string replacement filter



374 CHAPTER 13

Applying filters and listeners
  public void init (FilterConfig config) throws ServletException {
    from = config.getInitParameter("from");
    if (from == null)
      throw new ServletException("The from init parameter"
                                 + " must be specified.");
    to = config.getInitParameter("to");
    if (to == null)
      throw new ServletException("The to init parameter"
                                 + " must be specified.");
  }
  ...
}

The from instance variable specifies the character string, occurrences of which are to
be replaced. The to instance variable specifies the character string to be substituted
in place of those occurrences. The values for both instance variables are provided by
filter initialization parameters with corresponding names. Initialization parameter
values are set in the application’s deployment descriptor (see chapter 14), and are
made available to the filter via the FilterConfig instance passed as the sole param-
eter to its init() method. A new ServletException is raised if a value for either of
the initialization parameters has not been specified.

 The filtering of response content is performed by the class’s doFilter()
method. As already described, this filter works by creating a wrapped response that
diverts the output of the remaining items in the filter to a temporary output stream.
The output is then copied to the output stream associated with the real response,
performing the specified string replacement in the process.

 For compatability with the other filters defined for this application, however, the
filter must be careful to wrap HTTP responses via the HttpResponseWrapper class,
rather than the more generic ResponseWrapper class. Rather than trying to handle
both cases, this filter—like its predecessors—will restrict itself to working with only
HTTP requests and responses. The first step in the doFilter() method, then, is to
check the types of the request and response objects passed in as the method’s first
two parameters:

  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    if (request instanceof HttpServletRequest
        && response instanceof HttpServletResponse) {
      HttpServletResponse resp = (HttpServletResponse) response;
      StringReplaceResponse wrappedResponse = new StringReplaceResponse(resp);
      chain.doFilter(request, wrappedResponse);
      transferData(wrappedResponse, resp);
    } else {



Content filter 375
      throw new ServletException("Filter only applicable"
                                + " to HTTP and HTTPS requests.");
    }
  }

An exception is raised if the request and response are not of the required types.
Otherwise, the response is cast to the required class and then provided as the sole
parameter for the wrapped response’s constructor.

 The original request and the wrapped response are then passed to the filter
chain’s doFilter() method, to allow the remaining items in the chain to handle
the request. After these items have finished processing the request/response pair,
control will be returned to the string replacement filter’s doFilter() method,
which then calls its transferData() private method to copy the output stored by
the wrapped response to the output stream of the original response.

NOTE As pointed out in chapter 12, the original response passed in as the second
parameter to the filter’s doFilter() method may itself have been wrapped
by another filter that preceded it in the chain. A response wrapper can wrap
another response wrapper, just as easily as it can wrap a true response.

The inner workings of the transferData() method are dependent upon the two
inner classes used to implement the wrapped response and its output stream. For
this reason, we will first examine the details of those inner classes before reviewing
the remaining methods of the StringReplaceFilter class.

13.6.2 Response wrapper inner class

The response wrapper used by the StringReplaceFilter class is implemented as
an inner class named StringReplaceResponse as follows:

  private class StringReplaceResponse extends HttpServletResponseWrapper {
    TmpServletOutputStream surrogate = new TmpServletOutputStream();

    private StringReplaceResponse (HttpServletResponse response) {
      super(response);
    }
    public ServletOutputStream getOutputStream ()
      throws java.io.IOException {
      return surrogate;
    }
    public PrintWriter getWriter ()
      throws java.io.IOException {
      return new PrintWriter(new OutputStreamWriter(surrogate));
    }
  }



376 CHAPTER 13

Applying filters and listeners
The wrapper class extends the HttpServletResponseWrapper base class present in
chapter 12, and defines one instance variable and three methods.

 The surrogate instance variable holds an instance of the filter’s other inner
class, TmpServletOutputStream. The response wrapper overrides the getOutput-
Stream() and getWriter() methods of the javax.servlet.ServletResponse
class to return this surrogate output stream (wrapped in a java.io.PrintWriter
instance in the case of the latter method) to all items that follow the StringRe-
placeFilter in the filter chain. By overriding these two methods, all response out-
put generated by those items will be written to this surrogate stream, rather than
the output stream associated with the response object originally passed to the filter.

 The other method defined by this class is its constructor, which takes that origi-
nal response object as its parameter and passes it to the constructor of its HttpServ-
letResponseWrapper superclass. As a result, all HttpServletResponse methods
except for getOutputStream() and getWriter() will automatically be delegated to
the original response.

13.6.3 Output stream inner class 

The TmpServletOutputStream inner class implements the temporary stream to
which subsequent filters and resources in the filter chain will write their output. For
compatibility with the ServletResponse class’s getOutputStream() method, this
class is a subclass of the javax.servlet.ServletOutputStream class, and is defined
as follows:

  private class TmpServletOutputStream extends ServletOutputStream {
    private ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);

    public void write (int b) { baos.write(b); }
    public void write (byte[] b, int off, int len) {
      baos.write(b, off, len);
    }

    private ByteArrayInputStream getInputStream () {
      return new ByteArrayInputStream(baos.toByteArray());
    }
  }

Implementing an output stream is basically a matter of providing definitions for the
two write() methods indicated in the definition of the TmpServletOutputStream
class. The default implementations for all of the other output methods defined by
the java.io.OutputStream base class ultimately call one of these two methods, so
a subclass that defines both—and provides some place for the output to go—will
have sufficient functionality to act as a Java output stream.



Content filter 377
 In the case of TmpServletOutputStream,  an instance of the java.io.ByteAr-
rayOutputStream class  serves as the destination for all output, and the inner class’s
two write() methods delegate to this ByteArrayOutputStream instance. This
instance provides an in-memory byte array (set in its constructor to an initial size of
1 KB) for storing all data written to the TmpServletOutputStream object.

 Such data can be subsequently read from that byte array via the java.io.Byte-
ArrayInputStream instance returned by the inner class’s getInputStream()
method. This method first retrieves the output written to the ByteArrayOutput-
Stream by calling the output stream’s toByteArray() method, and then creates an
input stream for reading the data directly from the resulting byte array.

13.6.4 More filter methods

We are now ready to return to the methods of the top-level filter class, StringRe-
placeFilter. As indicated in the discussion of the filter’s doFilter() method,
transferData() is a private method defined by the filter that copies the data stored
in a wrapped response to the output stream of another response:

  private void transferData (StringReplaceResponse fromResponse,
                             HttpServletResponse toResponse)
    throws IOException {
    ByteArrayInputStream bais = fromResponse.surrogate.getInputStream();
    BufferedReader reader =
      new BufferedReader(new InputStreamReader(bais));
    ServletOutputStream original = toResponse.getOutputStream();
    PrintWriter writer =
      new PrintWriter(new OutputStreamWriter(original));
    String line;
    while ((line = reader.readLine()) != null) {
      writer.println(doReplacement(line));
    }
    writer.close();
    reader.close();
  }

Since the call to transferData() occurs after the filter chain’s doFilter() method
is called, the output generated by the requested resource and any intervening filters
will have already been written to the temporary output stream associated with the
response wrapper. The first action taken by the transferData() method, then, is
to call the getInputStream() method of the wrapper’s surrogate output stream so
that the data that has been written to it can be read. In order to read this data one
line at a time, the ByteArrayInputStream returned by the getInputStream()
method is wrapped in an instance of the java.io.BufferedReader class. (This is
accomplished by means of an intermediate java.io.InputStreamReader class to



378 CHAPTER 13

Applying filters and listeners
bridge the gap between Java’s byte-oriented input stream classes and its character-
oriented reader classes.) For similar reasons, the ServletOutputStream instance
associated with the original request object is wrapped in an instance of the
java.io.PrintWriter class.

 The method then reads from the BufferedReader, one line at a time, until all of
the data is consumed (i.e., until the reader’s readLine() method returns null).
Each line is then written to the PrintWriter representing the original request
object’s output stream, after being processed by the filter’s doReplacement() utility
method. The reader and writer are then closed.

 The job of the doReplacement() utility method is to perform text substituion
for the filter on a single String object, passed in as a parameter to the method.
Within that String instance, all occurrences of the character string stored in the fil-
ter’s from instance variable are replaced by the character string stored in the filter’s
to instance variable. The method is defined as follows:

private String doReplacement (String s) {
    int start = s.indexOf(from);
    if (start < 0) {
      return s;
    } else {
      return s.substring(0, start) + to
        + doReplacement(s.substring(start + from.length()));
    }
  }

The method operates by locating the first occurrence of from in the string passed in
as the method’s parameter. If none is found, the string parameter is returned
unmodified. If an occurrence of from is found, a new string in constructed to serve
as the return value of the doReplacement() method. This return value is created by
appending the replacement text in the to instance variable to the portion of the
string that precedes the occurrence of from. Finally, the result of applying the
doReplacement() method to the remainder of the string is also appended to the
return value. This recursive call to doReplacement() ensures that any additional
occurrences of from are also replaced.

 In addition to the four methods already presented, the filter class defines a default
constructor and a destroy() method, as indicated in listing 13.22. Because this fil-
ter allocates no long-term resources, however, both of these methods do nothing.



Content filter 379
package com.taglib.wdjsp.filters;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServletResponseWrapper;
import javax.servlet.ServletOutputStream;

import java.io.OutputStream;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import java.io.IOException;

public class StringReplaceFilter implements Filter {
  private String from, to;

  public StringReplaceFilter () {}
  public void init (FilterConfig config) throws ServletException { ... }
  public void doFilter (ServletRequest request, ServletResponse response,
                        FilterChain chain)
    throws IOException, ServletException {
    ...
  }
  public void destroy () {}
  private void transferData (StringReplaceResponse fromResponse,
                             HttpServletResponse toResponse)
    throws IOException {
    ...
  }
  private String doReplacement (String s) { ... }

  private class StringReplaceResponse extends
    HttpServletResponseWrapper { 
    ... 
  }

  private class TmpServletOutputStream extends ServletOutputStream { ... }
}

Listing 13.22 StringReplaceFilter class



380 CHAPTER 13

Applying filters and listeners
13.6.5 Filter results

Upon adding this filter to the other two being used by the intranet application, the
overall flow of requests and responses for resources to which all three filters have
been mapped is as depicted in figure 13.11. First, requests are passed to the authen-
tication filter to check whether or not the user has logged on. Users who have not
been authenticated are redirected to the logon page, login.jsp.

 If the user is logged on, the request is then passed to the role filter. This filter
examines the roles that have been assigned to the user, attempting to find a match
for the filter’s own role. Note that roles can only be checked after the user has
logged on and thus been identified. It is therefore criticial that the role filter follow
the authentication filter in the filter chain. If the current user has been assigned the
required role, the request is passed to the next item in the filter chain. If not, the
user is redirected to the access denial page, denied.jsp.

 Since additional resources (in the form of a ByteArrayOutputStream) must be
allocated in order to run the string replacement filter, it is best to place this filter last
in the filter chain. In this way, the overhead associated with allocating the ByteAr-
rayOutputStream can be avoided until it is clear that those resources will be
required. When run, this filter passes a wrapped response to the next item in the fil-
ter chain which, in this case, will be the resource that was originally requested. This

Requested
resource

Request Response

String replacement filter

Role filter

Authentication filter

login.jsp denied.jsp

Wrapped
response

Figure 13.11  Default page for the filters directory, after string replacement



Content filter 381
resource writes its content to the wrapped response, and control is passed back to
the string replacement filter.

 The filter then unwraps the response, performing the string substitution in the
process. The other two filters need take no special action during this phase of the
processing, so the unwrapped response is ultimately returned to the user.

 Representative results of applying this filter to the intranet sample application,
replacing all occurrences of the name Encom with the alternative name Flynncom,
are depicted in figures 13.12–13.14. As indicated in figures 13.13 and 13.14, note
that the contents of the header page, incorporated via the <jsp:include> action,
are also subject to string replacement.      

13.6.6 Other content filters

The same basic approach used to implement StringReplaceFilter can also be
applied to other filters for manipulating content. The actions taken by this class’s
doFilter() method can be summarized as follows:

1 Creates a response wrapper which provides temporary storage for all output
intended for the original response.

Figure 13.12 Default page for the filters directory, after string replacement



382 CHAPTER 13

Applying filters and listeners
2 Passes the wrapped response to the filter chain for further processing.

3 When control returns to the filter, extracts the chain's output from tempo-
rary storage, transforms it, and writes the transformed output to the output
stream associated with the original response.

The only aspect which will vary from one filter to the next is the type of transforma-
tion to be applied. For StringReplaceFilter, this transformation is content
substitution.

 A wide range of other transformations can be imagined. For example, a filter
could be used to transform dynamically generated XML (such as a Simple Object
Access Protocol [SOAP] or XML-RPC [remote procedure call] response) into a
more user-friendly presentation format. For example, the filter could examine the
User-Agent: or Accept: header  of a request in order to select an appropriate XSLT
style sheet for displaying the dynamic content. If the header indicates a web
browser, a style sheet for rendering HTML might be selected. If the header indicates
a Wireless Application Protocol (WAP) browser, a style sheet for rendering WML
would be chosen instead. The filter would apply the selected XSLT stylesheet to the

Figure 13.13 The welcome page, after string replacement



Content filter 383
generated XML stored by the response wrapper, and write the results to the output
stream associated with the original response.

 Similarly, consider the case of a PNG image generated dynamically by a servlet
(for example, a bar chart depicting the current load on the server). As browser sup-
port for the PNG image format is relatively new, a filter could be wrapped around
this servlet to determine which image formats (GIF, JPEG, etc.) are supported by
the browser making the request, by examining the Accept: header supplied with
that request. For browsers that don’t support the PNG format, the filter could
translate the image into an alternate, supported format on the fly. In this case,
binary streams would be required rather than the character-oriented streams more
common in JSP applications (i.e., the java.io.Reader and java.io.Writer sub-
classes, such as used in the transferData() method), but the underlying approach
is the same.

 

Figure 13.14 The development home page, after string replacement



 14Deploying JSP application
s

This chapter  covers
� Web application archives

� Components of WAR files

� Application deployment descriptors

� Developing for deployment
384



This means WAR 385
Regardless of the components or architecture you have selected for your JSP devel-
opment, a web-based application can’t be used until it has been successfully
deployed on a web server. Whereas desktop applications are often packaged with
customized installation programs that walk the user through the required configu-
ration and deployment steps, the installation of applications targeted toward the
server environment has historically been somewhat less user-friendly.

 In an effort to remedy this situation, at least for Java-based web applications, the
Servlet and JSP specifications support the bundling of an application’s files into a
single web archive, which can be deployed as is to a Java-enabled web server. All of
the resources required for a given web application—JSP files and servlets, as well as
associated content such as HTML documents, images, applets, and JavaBeans—are
deposited in a web archive, along with an XML-based configuration file. This
archive can then be placed into a designated directory on the web server and, after
customizing the included configuration file as necessary, the associated application
is run straight from the archive file. When requests are received for URLs corre-
sponding to the contents of the archive, the JSP container extracts those resources
as needed. Processing then resumes as if the extracted resources were part of the
server’s normal document hierarchy.

14.1 This means WAR

Web archives take the form of JAR files, the standard file archive format for the Java
platform. Each web archive also contains a special descriptor file describing how the
files in the archive are used to implement a web-based application. So that tools can
easily distinguish between web archives and other JAR files, web archives are assigned
the extension .war, and for this reason are commonly referred to as WAR files.

 As mentioned in chapters 5 and 6, a Java web application is mapped to a direc-
tory hierarchy, rooted in a single top-level directory. The URLs for all of the ele-
ments of the application will therefore all begin with the same initial directory, the
name of which also serves as the name of the application. In an application named
clu, for example, its resources are all accessed in or below a top-level directory
named clu, using URLs such as http://server/clu/index.jsp, http://server/clu/
servlet/dashboard, and http://server/clu/images/reticle.gif.

 As also described in chapter 6, all Java-based resources in an application (i.e., serv-
lets and JSPs) share the same javax.servlet.ServletContext instance, which is
made available to the application’s JSP pages via the application implicit object.
This object, by means of the standard attribute methods outlined in table 6.2,



386 CHAPTER 14

Deploying JSP applications
provides a simple data-sharing mechanism for use within an application, which serves
as the foundation for storing objects (e.g., beans) with application scope.

 WAR files are designed to store the contents of a single application. The hypo-
thetical clu application introduced previously would therefore be stored in a web
archive named clu.war. By registering the WAR file with the JSP container, all of the
resources stored in that file become available for use by the container and, by exten-
sion, end users accessing the associated HTTP server.

NOTE The process by which WAR files are registered is currently container-specific.
Some containers provide graphical tools for dragging and dropping new web
applications, while others have designated directories into which WAR files
must be copied in order to be automatically deployed. Still others rely on the
editing of a container-specific configuration file, and many support a combi-
nation of these approaches.

14.1.1 WAR is XML

In addition to its web application content, a WAR file also contains a deployment
descriptor file—formally referred to as the Web Application Descriptor file—that
specifies how that content is used to provide the corresponding application func-
tionality. For example, the descriptor file itemizes the servlets contained in an appli-
cation, providing any associated initialization parameters or URL mappings. A web
application can also contain JSP pages that have already been compiled into servlets,
and the descriptor file is where the JSP container looks to find the original URLs for
such pages.

TIP By deploying JSP pages as precompiled servlets, you can avoid the run-time
overhead of compiling a page the first time it is requested by an end user. It
also eliminates the need to include a Java compiler on the production web
server, thereby reducing the memory footprint for the server’s JVM. Tech-
niques for JSP precompilation are described later in this chapter.

The descriptor file is named web.xml, and resides in a special top-level directory of the
WAR file named WEB-INF. This subdirectory is an analog of the META-INF subdirec-
tory found in all JAR files, containing metainformation about the archive itself. An
archive serves as a repository of information; the data it stores about itself is therefore
considered metainformation, in the sense that it is information about information. In a
similar vein, the WEB-INF subdirectory contains information about how the contents of



This means WAR 387
the repository are deployed via the Web, with the web.xml file serving as the central
configuration file for the archive.

 As its file extension suggests, the markup language for the data in the web.xml file is
XML. For example, the contents of a basic deployment descriptor file for the intranet
example presented in the previous chapter would take the following form:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC
          ”-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”

  ”http://java.sun.com/j2ee/dtds/web-app_2.3.dtd”>
<web-app>
  <display-name>Encom Intranet</display-name>
  <filter>
    <filter-name>authentication</filter-name>
    <filter-class>
      com.taglib.wdjsp.filters.AuthenticationFilter</filter-class>
    <init-param>
      <param-name>loginPage</param-name>
      <param-value>/filters/login.jsp</param-value>
    </init-param>
  </filter>
  <filter>
    <filter-name>devRole</filter-name>
    <filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>
    <init-param>
      <param-name>role</param-name>
      <param-value>dev</param-value>
    </init-param>
    <init-param>
      <param-name>denyPage</param-name>
      <param-value>/filters/secure/denied.jsp</param-value>
    </init-param>
  </filter>
  <filter>
    <filter-name>mgrRole</filter-name>
    <filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>
    <init-param>
      <param-name>role</param-name>
      <param-value>mgr</param-value>
    </init-param>
    <init-param>
      <param-name>denyPage</param-name>
      <param-value>/filters/secure/denied.jsp</param-value>
    </init-param>
  </filter>
  <filter>
    <filter-name>adminRole</filter-name>
    <filter-class>com.taglib.wdjsp.filters.RoleFilter</filter-class>



388 CHAPTER 14

Deploying JSP applications
    <init-param>
      <param-name>role</param-name>
      <param-value>admin</param-value>
    </init-param>
    <init-param>
      <param-name>denyPage</param-name>
      <param-value>/filters/secure/denied.jsp</param-value>
    </init-param>
  </filter>
  <filter-mapping>
    <filter-name>authentication</filter-name>
    <url-pattern>/filters/secure/*</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>devRole</filter-name>
    <url-pattern>/filters/secure/development.jsp</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>mgrRole</filter-name>
    <url-pattern>/filters/secure/management.jsp</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>adminRole</filter-name>
    <url-pattern>/filters/secure/admin.jsp</url-pattern>
  </filter-mapping>
  <listener>
  <listener-class>com.taglib.wdjsp.filters.LoginSessionListener</listener-class>
  </listener>
  <servlet>
    <servlet-name>login</servlet-name>
    <servlet-class>com.taglib.wdjsp.filters.LoginServlet</servlet-class>
    <init-param>
      <param-name>userDataManager</param-name>
      <param-value>
        com.taglib.wdjsp.filters.SimpleUserDataManager
      <param-value>
    </init-param>
    <init-param>
      <param-name>loginPage</param-name>
      <param-value>/filters/login.jsp</param-value>
    </init-param>
    <init-param>
      <param-name>welcomePage</param-name>
      <param-value>/filters/secure/welcome.jsp</param-value>
    </init-param>
  </servlet>
  <servlet>
    <servlet-name>logout</servlet-name>
    <servlet-class>com.taglib.wdjsp.filters.LogoutServlet</servlet-class>
    <init-param>



This means WAR 389
      <param-name>goodbyePage</param-name>
      <param-value>/filters/goodbye.jsp</param-value>
    </init-param>
  </servlet>
  <servlet-mapping>
    <servlet-name>login</servlet-name>
    <url-pattern>/filters/login</url-pattern>
  </servlet-mapping>
  <servlet-mapping>
    <servlet-name>logout</servlet-name>
    <url-pattern>/filters/logout</url-pattern>
  </servlet-mapping>
</web-app>

The details of the entries in a web.xml file will be presented later in the chapter. This
particular example indicates that the intranet web application contains four filters and
two servlets, all of which are mapped to corresponding URL patterns, and one listener. 

 Note that this deployment descriptor says nothing about the JSP pages used by
this application. One might infer that the application does not make use of JSP, but
as we saw in chapter 13, this is definitely not the case. Instead, because JSP servlets
are generated as needed and are automatically mapped to URLs based on their orig-
inal file names, there is no need to specify configuration information for them in the
web.xml file. As a result, the JSP container is able to gather all of the information it
typically requires about an application’s JSP pages by simply scanning the contents
of its WAR file.

14.1.2 Waging WAR

Like most configuration files, even though it uses a human-readable format, the
web.xml file is a bit awkward to work with. For this reason, most of the commercial
application servers that include graphical tools for installing web applications usu-
ally include user-friendly tools for creating and maintaining them as well. In addi-
tion to allowing developers to graphically select class files and web content (JSP
pages, HTML documents, image files, etc.) for inclusion in the application, such
tools typically provide forms for specifying URL mappings and other configuration
settings in order to construct the corresponding web.xml file automatically.

 If your budget doesn’t support investing in feature-rich application servers,
however, you may find your platform of choice does not include any bundled “wiz-
ards” for constructing and deploying web applications. If this is the case, you will
likely find it necessary to package your web application by hand, including the man-
ual construction and editing of deployment descriptors. And even if you are using a
JSP container that does have all the bells and whistles, you may choose not to use



390 CHAPTER 14

Deploying JSP applications
them. Integrating a graphical web application deployment tool into your existing
source code control and build processes, for example, may prove not to be the right
approach for your development organization.For these and other reasons, then,
understanding the contents of a web.xml file and knowing how to construct WAR
files manually are useful skills to have. To that end, the next section of this chapter
focuses on the structure of WAR files and the entries which comprise an archive’s
web.xml deployment descriptor.

14.2 The art of WAR

Deploying a Java-based application, then,
has two phases. First, all of the files used by
an application are bundled, along with a
web.xml deployment descriptor, into a
WAR file. The packaging of an application
is the responsibility of the development
team. The second phase is the installation
of the packaged application on the web
server.

 Because installation is a server-specific
operation, our focus here will be on con-
structing the web archive. WAR files are
meant to be portable between JSP contain-
ers. As such, their contents and those of
the deployment descriptor are well-
defined by the ser vlet and JSP specifi-
cations. In the sections to follow we will
provide an overview of the WAR file for-
mat, and then describe the web.xml entries
required to specify an application’s servlets
and JSP pages.

14.2.1 WAR materiel

As already described, a WAR (figure 14.1) file is essentially a JAR file that contains
extra information allowing its contents to be deployed in a servlet or JSP container.
This extra information is stored in the WAR file’s top-level WEB-INF directory,
which contains the archive’s web.xml deployment descriptor, as well as two special
subdirectories for storing Java classes.

Web archive

WEB-INF

Classes

lib

Content
directories

Package
directories

JSP pages,  
HTML documents,  
image files

JSP pages,  
HTML documents, 
image files

web.xml

Class files

Class files

JAR files

TLD filestlds

Figure 14.1 Contents of a WAR file for web 
application deployment



The art of WAR 391
 The web-based content for an application can appear at the top-level of a web
archive, or in arbitrary content directories and subdirectories. As indicated in
figure 14.1, this content typically consists of JSP pages, HTML documents, and
image files, but any file type that may be delivered over the web—including sound
files, animations, portable documents, and Java applets—can be placed in a WAR
file. That file will then be accessible from the web server to which the WAR file is
deployed. Listing 14.1 is the source code for contents of an example WAR file.

index.jsp
commontasks/error.jsp
filters/goodbye.jsp
filters/login.jsp
filters/index.jsp
filters/secure/admin.jsp 
filters/secure/denied.jsp 
filters/secure/development.jsp 
filters/secure/header.jsp 
filters/secure/logout.jsp 
filters/secure/management.jsp 
filters/secure/welcome.jsp 
filters/secure/admin.jsp
images/logo.gif
images/icons/security.gif
images/icons/role.gif
images/edillinger.jsp
WEB-INF/web.xml 
WEB-INF/classes/com/taglib/wdjsp/filters/AuthenticationFilter.class 
WEB-INF/classes/com/taglib/wdjsp/filters/LoginServlet.class 
WEB-INF/classes/com/taglib/wdjsp/filters/LoginSessionListener.class 
WEB-INF/classes/com/taglib/wdjsp/filters/LogoutServlet.class 
WEB-INF/classes/com/taglib/wdjsp/filters/RoleFilter.class 
WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserBase.class 
WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserDataManager.class 
WEB-INF/classes/com/taglib/wdjsp/filters/UserBean.class 
WEB-INF/classes/com/taglib/wdjsp/filters/UserDataManager.class 
WEB-INF/classes/com/taglib/wdjsp/filters/UserSessionManager.class 
WEB-INF/lib/mail.jar
WEB-INF/lib/activation.jar
WEB-INF/lib/mut.jar
WEB-INF/tlds/mut.tld

Content in a Java-based web application is accessed via a URL that begins with the
name of the application. Consider, for example, an application named webdev that
is packaged in a web archive named webdev.war with the contents in listing 14.1.

Listing 14.1 Contents of an example WAR file, webdev.war



392 CHAPTER 14

Deploying JSP applications
An end user accessing this application’s index.jsp file would use a URL of the form
http://server/webdev/index.jsp, in which the name of the application, webdev,
provides the top-level directory for all URLs that reference the application’s con-
tent. Directories and subdirectories are treated similarly. The URL for retrieving the
image named security.gif, for instance, would be http://server/webdev/images/
icons/security.gif.

On the front
Note from listing 14.1 that the WAR file itself contains no references to a top-level
directory named webdev. This directory name is automatically recognized by the
JSP container once the application has been registered with the container. Applica-
tion names are arbitrary, and are assigned at the time of installation. The name of an
application is completely independent of the name of the corresponding WAR file. It
is common, but not mandatory for them to be the same. If the local server adminis-
trator wished to install the webdev.war file as an application named intranet, the JSP
container will be happy to translate URLs such as http://server/intranet/filters/
login.jsp into the corresponding content from the webdev.war archive.

 This top-level URL directory, then, is completely under the control of the con-
tainer. The directory name is mapped to an application, and is removed from the
URL behind the scenes when translating it into a file name for retrieving content
from the WAR file. Given that the application name is not built into the application,
you may be wondering how the pages within an application can refer to one
another via URLs. Relative URLs function as expected, but if the first directory in an
absolute URL cannot be known until the application is installed, it would appear
that absolute URLs must be avoided within an application’s documents.

 To address this deficiency, JSP containers are required to automatically account
for this top-level directory when processing elements that use absolute URLs. Spe-
cifically, when a JSP page that is part of an application calls the include directive, the
<jsp:include> action, or the <jsp:forward> action with an absolute URL, the con-
tainer is required to map that URL into the page’s application. In effect, the applica-
tion name is transparently added to the beginning of such absolute URLs so that
references within the application are properly maintained. For example, the login.jsp
file for the sample application in listing 14.1 might wish to forward control to the
welcome.jsp file in the secure directory, using an absolute URL as follows:

<jsp:forward page=”/filters/secure/welcome.jsp” />

If the application has been named webdev, then when the JSP container processes
this action it will automatically map the page reference to /webdev/filters/secure/



The art of WAR 393
welcome.jsp. If intranet was chosen as the application name, it would instead map
this absolute URL to /intranet/filters/secure/welcome.jsp.

 References to URLs from standard HTML tags, however, are not automatically
mapped. A relative URL appearing in the SRC attribute of an <IMG> tag or the HREF
attribute of an <A> tag would be resolved correctly, but when an absolute URL is
more convenient, an alternate approach is warranted. The most direct approach to
using absolute URLs is to mandate a specific name under which the application
must be installed on the server.

 A more flexible approach is to take advantage of HTML’s <BASE> tag. When this
tag is specified in the <HEAD> section of an HTML document, all relative URLs in
the document are resolved relative to the value specified for this tag’s HREF
attribute. In a JSP page, then, the following construct can be used to set this base
URL to that of the application, as in the following page fragment:

<HTML>
<HEAD>
<BASE HREF="<%= request.getScheme() %>://<%= request.getServerName()%>:<%= 

request.getServerPort() %><%= request.getContextPath() %>/">
...
<HEAD>
<BODY>
...
<A HREF=”filters/index.jsp”><IMG SRC=”images/logo.gif”></A>
...
</BODY>
</HTML>

The getContextPath() method of the javax.servlet.http.HttpServlet-
Request class is used to retrieve the top-level directory of the URL associated with
the request, which will correspond to the name assigned to the application on the
server. Note that the result returned by this method will start with an initial forward
slash character, but will not end with one. The closing directory delimiter is there-
fore added explicitly by specifying it as static text in the <BASE> tag (i.e., immedi-
ately following the final JSP expression). 

 If the application has been assigned the name webdev, the result of calling the
getContextPath() method will be ”/webdev”. When the JSP page is processed, the
resulting <BASE> tag sent back to the end user’s browser will therefore be some-
thing like the following:

<BASE HREF=”http://www.example.com:80/webdev/”>

In the example page, the two relative URLs will be resolved by the browser relative
to this base URL, resulting in an effective URL of /webdev/filters/index.jsp for the



394 CHAPTER 14

Deploying JSP applications
link and /webdev/images/logo.gif for the image. In this way, it becomes possible
to reference other resources within the application using URLs that behave very
similarly to absolute URLs, without having to know in advance the name (and
therefore the top-level URL directory) of the installed application.

The fog of WAR
The translation by the JSP container of URLs into WAR file contents applies to all
files and directories in the archive except those appearing within the WEB-INF
directory. More specifically, the contents of the directory and its subdirectories can-
not be accessed via URLs at all. Instead, these files are reserved for use by the JSP
container, and fall into four major categories.

NOTE The ServletContext object associated with an application, accessible from its
JSP pages via the application implicit object, is able to programmatically access
the contents of the WAR file’s WEB-INF directory, using its getResource()
and getResourceAsStream() methods. In this way, developers can use the
WEB-INF directory for storing additional application-specific data that can be
accessed via Java code, but is not directly exposed to end users via URLs.

The first type of file found in the WEB-INF directory, the web.xml deployment
descriptor, has already been mentioned. This file provides configuration informa-
tion for the JSP container to use when running the application contained in the
archive, the details of which are provided later in this chapter.

 The second type are compiled Java class files. As illustrated in figure 14.1, Java
class files appear in the classes subdirectory of the WEB-INF directory. Classes
which are part of the default Java package should be placed directly in the classes
directory, while those with explicitly named packages should be placed in subdirec-
tories whose names correspond to the various elements of the package’s name. For
example, the LoginServlet and UserBean classes were defined in the previous
chapter as being part of the com.taglib.wdjsp.filters package. Their class files
thus appear in listing 14.1 within the com/taglib/wdjsp/filters subdirectory of
the classes directory. 

 The classes appearing in the WAR file in the WEB-INF/classes directory and its
subdirectories are automatically added to the class path used by the JSP container’s
JVM whenever it is accessing the application associated with the archive. As such, it is
intended to provide a convenient location for storing the Java classes used by the
application’s servlets and JSP pages. The classes implementing the servlets themselves
can appear here, as well as any auxiliary classes used by those servlets. JavaBeans,



The art of WAR 395
filters, listeners, and other Java classes referenced by the application’s JSP pages can
also be stored here.

 The third type are JAR files, stored in the lib subdirectory of the WEB-INF direc-
tory.  Like the individual class files found in the WEB-INF/classes directory, all of
the classes found in the JAR files located here are automatically added to the JVM’s
class path whenever the JSP container is accessing the corresponding application.
For the web archive presented in listing 14.1, classes stored in mail.jar would auto-
matically be available when responding to requests for the webdev application’s
servlets and JSP pages.

 The fourth type of file often found in the  WEB-INF directory are Tag Library
Descriptor (TLD) files for custom tag libraries. By convention, these are placed in a
subdirectory named tlds. The deployment of custom tag libraries and TLDs will be
discussed later in this chapter, but for the complete details see chapters 18–20.

 In the absence of custom deployment tools, a common means for creating WAR
files is Java’s standard application for creating archive files, the jar command-line
tool. The jar command can be used to create archives and to extract their contents.
It can also be used to list the contents of an existing JAR file. When creating an
archive, jar takes a list of files to be archived, as well as a file name for the archive.
To create a WAR file, simply provide the jar command with a list of all of the files to
be placed in the archive—web content files as well as those appearing in the WEB-
INF directory—and specify a file name with a .war extension as the destination for
the new archive.

NOTE When creating an archive, the jar command automatically inserts a top-level
directory named META-INF, to which is added a file named MANIFEST.MF.
This manifest file contains a listing of the contents of the archive, and may
optionally be augmented with additional information about the archive’s
files. When the jar command is used to create a WAR file, the resulting web
archive will also contain a META-INF/MANIFEST.MF file. Like the contents
of the archive’s WEB-INF directory, the JSP container will not make a mani-
fest file accessible over the web via a URL.

For further details on the use of jar, including descriptions of the command line
options that control its behavior, consult the documentation that accompanies the
Java Development Kit (JDK), available from Sun Microsystems.



396 CHAPTER 14

Deploying JSP applications
14.2.2 Drafting deployment descriptors

We next set our sights on a single file within the archive, the web.xml deployment
descriptor. As discussed previously, this file contains entries describing the configu-
ration of the application’s Java-based assets. In the sections to follow, we will out-
line the format of this file and describe the XML directives used in the deployment
descriptor to manage an application’s servlets and, where appropriate, its JSP pages.

A prelude to WAR
As an XML document, the deployment descriptor must begin with the standard
XML header material. Typically, a tag declaring the XML version number and the
document’s character encoding appear first, followed by a specification of the DTD
for the document. As its name implies, it describes the valid tags for a given docu-
ment type, and may thus be used to validate the syntax of an XML document.

 For a Web Application Descriptor file, the DTD is provided by Sun Microsys-
tems, at a published URL associated with the J2EE specification. A typical header for
a web.xml file targeting a JSP 1.1 container would therefore be as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC
          ”-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
          ”http://java.sun.com/j2ee/dtds/web-app_2.2”>

For applications that take advantage of JSP 1.2 and/or Servlet 2.3 features, the fol-
lowing header is required: 

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC
          ”-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
          ”http://java.sun.com/j2ee/dtds/web-app_2.3.dtd”>

The root element for deployment descriptors in either case is the <web-app> tag. All
of the elements of a web.xml file, except for the header items just described, must
appear within the body content of a single <web-app> tag, as in the intranet exam-
ple presented earlier in this chapter.

 Several subelements of the <web-app> tag are available for specifying properties
of the application itself, as illustrated in the following web.xml fragment:

<web-app>
<icon>

<large-icon>/icons/encom32x32.gif</large-icon>
<small-icon>/icons/encom16x16.gif</small-icon>

</icon>
<display-name>Encom Intranet</display-name>
<description>



The art of WAR 397
Provides departmental information to authorized users.
</description>
<distributable/>
...
<welcome-file-list>

<welcome-file>default.html</welcome-file>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>
...

</web-app>

 All of these subelements are optional, and should appear at most once within the
parent <web-app> element. The <description> tag is used to document the appli-
cation, while the <icon> tag and its subelements, <large-icon> and <small-
icon>, are provided for use with graphical configuration tools, as is the  <display-
name> tag.

 The <welcome-file-list> element is used to specify which file within an appli-
cation directory should be displayed to the end user when a URL is requested that
contains only a directory. Each such file name is specified via the <welcome-file>
tag, and order is significant. When a directory URL is requested, the JSP container
will search the corresponding directory in the application for the files in this list, in
the order in which they appear in the deployment descriptor. The first one found
generates the response to that request. If none is found, the response will contain
an appropriate error message.

 The remaining element in this example is the <distributable> tag. Unlike the
others, this tag has no body content, but simply signals whether or not the applica-
tion is distributable by its presence or absence. If this tag is included in the deploy-
ment descriptor, it serves as an indicator that the application has been written in such
a way as to support distributing the application across multiple JSP containers. If the
tag is not present, it must be assumed that distributed processing is not supported.

DEFINITION A distributed web application runs in multiple JSP containers simultaneously,
typically on multiple web servers, while sharing some common resources
and/or functionality. As discussed in chapter 4, the capacity for a web-based
application to be distributed is an important consideration for scalability.

Targeting servlets
A web application’s servlets are specified in the deployment descriptor via the
<servlet> tag and its subelements, as in the following example:



398 CHAPTER 14

Deploying JSP applications
<web-app>
...
<servlet>

<icon>
<small-icon>/images/icons/security.gif</small-icon>

</icon>
<servlet-name>logout</servlet-name>
<display-name>Logout Handler</display-name>
<description>

Logs a user out of the application.
</description>
<servlet-class>

com.taglib.wdjsp.filters.LogoutServlet
</servlet-class>

<init-param>
<param-name>goodbyePage</param-name>
<param-value>/filters/goodbye.jsp</param-value>
<description>

The page to which users are sent after a successful logout.
</description>

</init-param>
<load-on-startup>3</load-on-startup>

</servlet>
...

</web-app>

Within the body of the <servlet> tag, the <description>, <display-name>, and
<icon> tags play an analogous role to those they play when appearing at the top
level in the body of the <web-app> tag. The functionality of the other tags is specific
to servlets. Only the <servlet-name> and <servlet-class> tags are mandatory.

 The <servlet-name> tag, as you might expect, provides a name for the servlet.
The value provided in the body of this tag can be used to request the servlet via a
URL composed of the application name, a subdirectory named servlet, and the
specified servlet name. For example, if the servlet specified here were part of an
application named webdev, the URL for accessing this servlet would be http://
server/webdev/servlet/login. Note, therefore, that servlet names must be unique.
No two servlet specifications within a single application deployment descriptor can
have the same values for their <servlet-name> elements

 The <servlet-class> tag specifies the Java class that implements the servlet.
The JSP container instantiates this class in order to respond to requests handled by
the servlet.

 After instantiating the servlet class, but before servicing any requests, the con-
tainer will call the class’s init() method. Initialization parameters, which are



The art of WAR 399
passed to the servlet’s init() method via an instance of javax.servlet.Servlet-
Config, are specified via the <init-param> tag. This tag has three subelements,
<param-name>, <param-value>, and <description>, the last of which is optional.
There should be one <init-param> tag for each initialization parameter to be
passed to the init() method.

 As their names suggest, the body of the <param-name> tag corresponds to the
parameter name, while the body of the <param-value> tag supplies its value. In the
example above, an initialization parameter named goodbyePage has been assigned a
value of /filters/goodbyePage. Note that parameter names and values are both
passed to the servlet as String objects. If the parameter value is intended to repre-
sent some other type of data (e.g., a numeric value), it is up to the servlet’s init()
method to parse the value appropriately. As has been the case elsewhere, the
<description> tag is provided for documentation purposes.

 The remaining <servlet> subelement is the <load-on-startup> tag.  The
presence of this tag indicates to the JSP container that this servlet should be loaded
into the container’s JVM (and initialized via its init() method) during the JSP con-
tainer’s startup process. If this tag is not present, the container is free to wait until a
request is received for the servlet before loading it.

 The <load-on-startup> tag can be specified either as an empty tag (i.e.,
<load-on-startup/>), or with body content specifying an integer value. This tag’s
body content is used to indicate when the servlet should be loaded, relative to oth-
ers which are also designated as being loaded on startup. If the tag is empty, the JSP
container is free to load the servlet whenever it wishes during startup. If the body
content specifies an integer value, that value is used to order the loading of all serv-
lets that specify integer values for this tag. Lower values are loaded first, followed by
servlets specifying higher values. If more than one servlet specifies the same value
for <load-on-startup>, the ordering of the servlets within that group is arbitrary.
The effect is that all servlets which specify a value of 1 for this tag will be loaded first
(in an unspecified order), followed by all servlets which specified a value of 2, then
all servlets specifying a value of 3, and so on.

 Typically, the servlets within one application are not dependent upon those in
another. As long as you specify unique values for the <load-on-startup> tags
within a single application, you can be assured that the servlets within that applica-
tion will be loaded in the specified order. Servlets from other applications may also
be loaded within that sequence, but you can at least be certain that any order
dependencies within an individual application will be maintained.



400 CHAPTER 14

Deploying JSP applications
Mapping the terrain
It is often desirable to specify an alternate URL for a servlet. It is good program-
ming practice to hide the implementation details of a given set of functionality, and
URLs that contain the word “servlet” are pretty much a dead giveaway that the
underlying implementation of an application is based on servlets. This is not to sug-
gest that you shouldn’t be proud of selecting servlets as your implementation
technology—indeed, the authors would wholeheartedly endorse that decision—but
studies have shown that memorable URLs improve the usability of a web site and,
frankly, end users don’t care about what makes it work.

 Given that the default URL for an application’s servlets, as described in the pre-
vious section, includes a subdirectory component named servlet, those wishing to
follow this advice need a mechanism for specifying alternate URLs. This is accom-
plished in the web.xml file via use of the <servlet-mapping> tag, as in the follow-
ing example:

<web-app>
...
<servlet-mapping>

<servlet-name>logout</servlet-name>
<url-pattern>/filters/logout</url-pattern>

</servlet-mapping>
...

</web-app>

Here, the <servlet-name> tag identifies the servlet for which the alternate URL is
being specified, and should correspond to a servlet defined elsewhere in the deploy-
ment descriptor via the <servlet> tag. The body of the <url-pattern> tag speci-
fies a URL pattern, such that requests whose URLs match the specified pattern will
be handled by the indicated servlet. Both subelements are required.

 Like all URLs associated with an application, any URL specified in this manner
must be preceded by the name of the application when it is requested by an end
user. For the example shown here then, the alternate URL for the logout servlet,
again assuming webdev is the name assigned to the application, will be http://
server/webdev/filters/logout.

 Although the URL pattern in the example shown here is an alphabetic string
specifying a directory and a file name, more complex patterns are also supported.
The number of directory levels is completely arbitrary. There can be none, as in
<url-pattern>/control</url-pattern>, or there can be many. If even the file
name portion is left out, as in <url-pattern>/</url-pattern>, then the servlet
becomes the default resource for the web application. If a request is received that
specifies no directory or file name components beyond that of the application, this



The art of WAR 401
default servlet will handle the request. (In fact, it will even override the functionality
specified via the <welcome-file-list> element, if present.)

 In addition, an asterisk can take the place of the final element in such map-
pings—for example, /filters/access/group7/*— indicating that all URLs that
start with the specified directory pattern (plus the application name, of course),
should be mapped to the corresponding servlet. As a special case, a URL pattern of
/* indicates that all requests associated with the application should be mapped to
the associated servlet. In either case, the additional directory and file name compo-
nents of the actual URL used to access such a servlet will be available via the get-
PathInfo() method of javax.servlet.http.HttpServletRequest.

 This tag can also be used to map requests for specific file types—based on their
file name extensions—to a servlet. In this case the body of the <url-pattern> tag
should take the form of an asterisk followed by a period and the extension to be
mapped. For example, a URL pattern of *.user would map all requests within an
application that have an extension of .user to the corresponding servlet.

NOTE In fact, this is how JSP itself works: all requests for files ending with the .jsp
extension are mapped to a special servlet—historically referred to as the page
compiler servlet—that maps requests for JSP pages into calls to the compiled
servlets implementing those pages. This servlet will also take care of compil-
ing the JSP page into a servlet if this is the first time it has been requested, or
if its contents have changed since the last time it was compiled.

While a given servlet may be mapped to multiple URL patterns, the reverse is not
true. A given URL pattern can be mapped to only one servlet, otherwise the servlet
container would not be able to determine which servlet should be applied to
requests that match the overloaded pattern.

 There is still the potential for ambiguity, however, since even though two URL
patterns are not identical, it is possible to imagine requests that match both pat-
terns. Imagine, for example, three servlets mapped to three different URL patterns,
/*, /filters/*, and *.jsp. A request for the URL http://server/filters/index.jsp
would match all three of these patterns, so which servlet should the container actu-
ally call upon to handle the request?

 To resolve situations such as this, a set of precedence rules have been specified.
First, if a URL pattern is an exact match for the path in the request, the servlet asso-
ciated with that pattern is to be called. If there is no exact match, then the direc-
tory-style patterns—those specifying one or more directory names followed by an
asterisk—are next compared against the request path. Following these, servlets



402 CHAPTER 14

Deploying JSP applications
corresponding to URL patterns based on file name extensions (i.e., *.jsp and the
like) are matched. If the path in the request does not match any of the URL patterns
following these forms, then the servlet mapped to the default path, /*, is called. If
there is no such default servlet, then an HTTP status code of 404, indicating the
requested resource was not found, is returned.

WAR and JSPs
Since this is a JSP book, why has so much space been devoted here to the configura-
tion of servlets. The first reason, as indicated in chapter 10, is that servlets and JSPs
are natural companions in the construction of complex web applications. If you will
be deploying an application that uses JSP pages, there’s a strong chance the applica-
tion also includes servlets.

 In addition, recall that JSP pages are implemented as servlets. As a result, the
deployment descriptor elements provided for configuring an application’s servlets
are also, in most cases, applicable to the configuration of its JSP pages. As already
mentioned in this chapter, it is usually not necessary to mention an application’s JSP
pages in the web.xml file. When it is necessary, however, the servlet-related tags
again come into play.

 In the discussion of the <servlet> tag earlier in this chapter, it was pointed out
that the only required subelements are the <servlet-name> and <servlet-class>
tags. This is not completely true. When referencing JSP pages, the <servlet-
class> tag is replaced by, appropriately enough, the <jsp-file> tag. In the inter-
est of full disclosure then, the only required subelement of the <servlet> tag is the
<servlet-name> tag. In addition, either the <servlet-class> tag or the <jsp-
file> tag must be present.

 In this way, the initialization parameters and startup behavior of the servlet cor-
responding to a JSP file can be configured using the same techniques described ear-
lier for configuring servlets. The body of the <jsp-file> tag is used to specify the
full path to the JSP page within the application, as in the following example:

<web-app>
...
<servlet>

<servlet-name>developmentHome</servlet-name>
<jsp-file>/filters/secure/development.jsp</jsp-file>
<description>Home page of the development group.</description>
<init-param>

<param-name>conferenceRoom</param-name>
<param-value>Klaatu</param-value>
<description>

Current location for the weekly development meeting.



The art of WAR 403
</description>
</init-param>
<load-on-startup>4</load-on-startup>

</servlet>
...

</web-app>

As with other application-specific paths, the body of the <jsp-file> tag does not
include the top-level directory named after the application. Note also that when the
<load-on-startup> tag is specified in the <servlet> tag for a JSP page, it is an
indication to the JSP container that the page should be compiled as well as loaded
during container startup.

 Instead of precompiling the JSP servlet during container startup, however, it
might be desirable under certain circumstances to deploy the fully compiled servlet
rather than the original JSP page. This can also be accomplished via the web.xml
deployment descriptor. After writing the JSP file and deploying it in a JSP container,
a copy can be made of the compiled JSP servlet constructed by the container. Sup-
pose, for example, that the /filters/secure/development.jsp page from our
example intranet application has been compiled into a servlet class named
_jsp_filters_secure_development_JspImpl. A copy of the generated class file,
_jsp_filters_secure_development_JspImpl.class, can be added to the application’s
WAR file, in place of the original /filters/secure/development.jsp file. Appropriate
<servlet> and <servlet-mapping> tags must then be added to the deployment
descriptor to mimic the original JSP behavior, as in the following web.xml fragment:

<web-app>
...
<servlet>

<servlet-name>developmentHome</servlet-name>
<servlet-class>_jsp_filters_secure_development_JspImpl</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>developmentHome</servlet-name>
<servlet-mapping>/filters/secure/development.jsp</servlet-mapping>

</servlet-mapping>
...

</web-app>

As a result of this mapping, the URL associated with the original JSP page is explic-
itly mapped to the corresponding servlet, rather than relying on the aforemen-
tioned page compiler servlet to make this association automatically. In fact, when
responding to requests for a JSP page mapped in this fashion, the page compiler
servlet is bypassed altogether, and requests are routed directly to the precompiled
page servlet.



404 CHAPTER 14

Deploying JSP applications
WARNING Recall from chapter 5 that the requirement imposed by the JSP specification
on servlets generated from JSP pages is that they implement the
javax.servlet.jsp.JspPage interface. The concrete superclass for gener-
ated JSP pages is therefore implementation-specific. Keep in mind, then, that
if you use the technique described here for deploying JSP pages as pre-
compiled servlets, the resulting WAR file will not be portable. By virtue of its
reliance on an implementation-specific servlet class, the WAR file will be
compatible only with the JSP container originally used to generate the
precompiled servlet.

In addition to the <load-on-startup> element, JSP provides a second mechanism
for triggering the precompilation of deployed pages, by means of a special request
parameter. When a request that includes a jsp_precompile is sent to a JSP page,
this will be interpreted by the JSP container as a signal to compile that page without
executing it. The request parameter should have a value of true, or no value, as in
the following examples:

http://server/filters/secure/development.jsp?jsp_precompile
http://server/filters/secure/admin.jsp?jsp_precompile=true

A value of false is also acceptable, but this will result in the normal behavior when
a request is sent to a JSP page: it is compiled if necessary, and then the request is
delivered to the corresponding servlet for processing. Other values for this request
parameter are invalid.

 A successful precompilation request will cause the JSP container to compile the
page into a servlet and send back a container-specific response, which is typically
either a simple “compilation successful” message or a list of compilation errors. This
simple precompilation protocol makes it easy to test the syntax of your JSP pages
without an elaborate setup, and also has the advantage of being vendor-neutral. It is
fairly easy, for example, to put together a small program or shell script which visits
each page of your application immediately after deployment to trigger precompila-
tion. Keep in mind that this is just a compilation test, however. Like any Java code,
just because it compiles, that doesn’t mean it works. This test won’t detect potential
run-time errors.



The art of WAR 405
NOTE Some JSP containers also support other, nonstandard mechanisms for pre-
compiling pages. The Tomcat reference implementation, for example, in-
cludes a command-line utility named jspc that can be run to precompile JSP
pages without requiring them to first be deployed to a server.

Mobilizing custom tag libraries
In previous chapters, custom tag libraries have been described as a powerful feature
for adding functionality to JSP pages. As indicated in chapter 5, tag libraries are
loaded into a JSP page by means of the taglib directive, which locates a tag library
based on a URL. Until now, however, we haven’t been in a position to discuss
where this URL comes from.

 A custom tag library has two basic components: a set of Java classes implement-
ing the custom actions provided by the tag library and a TLD file which provides a
mapping between the library’s tags and those implementation classes.

 A tag library’s classes are typically bundled into a JAR file, for storage in an appli-
cation’s WEB-INF/lib directory. Alternatively, the individual class files may be
placed in the appropriate package-specific subdirectories of the application’s WEB-
INF/classes directory. As already mentioned, TLD files are typically stored in the
WEB-INF/tlds directory.

 The taglib directive loads a custom tag library by referencing the library’s TLD
file in its uri attribute. Because the contents of the WEB-INF directory are not nor-
mally accessible via URLs, it is usually necessary to provide a mapping for the TLD
file in the application’s deployment descriptor. This is accomplished via the
<taglib> tag, as in the following web.xml fragment:

<web-app>
...
<taglib>

<taglib-uri>/mutlib</taglib-uri>
<taglib-location>/WEB-INF/tlds/mut.tld</taglib-location>

</taglib>
...

</web-app>

As illustrated in this example, the <taglib> tag has two subelements, <taglib-
uri> and <taglib-location>, both of which are required. The <taglib-uri> tag
is used to specify the URI by which taglib directives in the application’s JSP pages
can access the TLD. The <taglib-location> tag specifies the actual location of that
TLD within the application’s file hierarchy. Multiple <taglib> elements may appear
in a single web.xml file, one for each custom tag library used by the application.



406 CHAPTER 14

Deploying JSP applications
NOTE When referencing the URI of a TLD in a taglib directive, the top-level direc-
tory corresponding to the application name should not be specified. To ac-
cess the TLD in the example presented here, then, the appropriate directive
would be of the form <%@ taglib uri="/mutlib" prefix="mut" %>.

Note that in JSP 1.2, the tag library itself can specify the URI of its TLD, obviating
the need for deployment descriptor <taglib> elements under some circumstances.
For further details, see chapter 20.

Infiltrating the supply lines
For containers supporting Servlet 2.3 and JSP 1.2, filters are specified using the
<filter> and <filter-mapping> tags. The <filter> tag supports six subele-
ments, as in this example:

<filter>
  <icon>
    <small-icon>/images/icons/replace16x16.gif</small-icon>
    <small-icon>/images/icons/replace32x32.gif</small-icon>
  </icon>
  <filter-name>stringReplace</filter-name>
  <display-name>String Replacement Filter</display-name>
  <description>
    Replaces all occurrences of the &quot;from&quot; string
    with the contents of the &quot;to&quot; string.
  </description>
  <filter-class>
    com.taglib.wdjsp.filters.StringReplaceFilter
  </filter-class>
  <init-param>
    <param-name>from</param-name>
    <param-value>Encom</param-value>
  </init-param>
  <init-param>
    <param-name>to</param-name>
    <param-value>FlynnCom</param-value>
  </init-param>
</filter>

By now, the <icon>, <display-name>, and <description> subelements should be
quite familiar. The <description> tag is used to specify a documentation string for
the filter, while the other two are used to support graphical tools.

 The  <init-param> subelement is also familiar, and plays the same role for filters
as it does for servlets: specifying the names and values of its initialization parame-
ters. As you will recall from chapter 12, all filters are required to implement an



The art of WAR 407
init() method which takes an instance of the javax.servlet.FilterConfig class
as its sole argument. This FilterConfig instance in turn provides methods that
enable the filter to access the initialization parameters specified in the deployment
descriptor via the <init-param> tag and its <param-name> and <param-value>
subelements.

 The final two elements, however, are unique to filters, and are the only two
<filter> subelements which are not optional. The first is the <filter-name> tag,
which is used to provide a unique name for the filter within the application. The
second is the <filter-class> tag, which specifies the Java class to be instantiated
when constructing the filter. These elements are thus analogous to the <servlet>
tag’s <servlet-name> and <servlet-class> elements.

 The similarities between filter specification and servlet specification don’t end
there. Just as the URLs to which servlets are mapped are specified via the <servlet-
mapping> tag, the <filter-mapping> tag is used to specify the resources to which
filters are to be applied. The <filter-mapping> element takes two forms. First, a
filter can be mapped to a specific servlet, by specifying them both by name: 

<filter-mapping>
  <filter-name>stringReplace</filter-name>
  <servlet-name>login</url-pattern>
</filter-mapping>

The filter to be mapped is indicated via the <filter-name> tag, the body of which
must match a filter name that is also specified via the <filter-name> element of a
corresponding <filter> tag. The servlet to which the filter is to be applied is spec-
ified via the <servlet-name> tag, which must similarly match a servlet name speci-
fied via the <servlet-name> element of a corresponding <servlet> tag.

 Alternatively, a filter can be mapped to a set of resources matching a given URL
pattern, as in this example:

<filter-mapping>
  <filter-name>stringReplace</filter-name>
  <url-pattern>/filters/*</url-pattern>
 </filter-mapping>

Here, the <filter-name> tag once again identifies which filter is being mapped,
and must match the name of a filter specified elsewhere in the deployment descrip-
tor via the <filter> element. The <url-pattern> element indicates to which
requests the filter should be applied. The named filter will be applied to all requests
whose path matches the specified pattern. All of the different forms of URL patterns
supported by the <url-pattern> subelement of the <servlet-mapping> tag may
also be used within the <url-pattern> subelement of the <filter-mapping> tag.



408 CHAPTER 14

Deploying JSP applications
 As with servlets, a given filter may be mapped to multiple URL patterns or serv-
let names. Unlike servlets, however, you are also permitted to map more than one
filter to the same URL pattern or servlet name. This is because, as described in
chapter 12, all of the filters applicable to a given request will be chained together,
each handing off the request to the next filter in the chain for further processing,
receiving the resulting response as it is passed back up the chain.

 For filters, then, there is no need for rules to determine which filter to apply
when a request path matches multiple servlet names and/or URL patterns: all of the
matching filters are applied. Instead, the issue is in what order those matching filters
should be applied.

 Consider, for example, the three example filters presented in the previous chap-
ter. It does not make sense to check the user’s role until after they have logged in
and you know who they are. Requests should therefore be validated by the Authen-
ticationFilter before being passed on to the RoleFilter.  For efficiency rea-
sons, it would also be preferable to avoid the overhead of instantiating the
java.io.ByteArrayOutputStream object associated with the StringReplace-
Filter until you’re certain you’re going to be using it. Since the login and role val-
idation filters can cause a request to be redirected, it would be preferable to place
the string replacement filter at the end of the chain. That way, if the original request
is redirected by either of the other two filters, the doFilterMethod() of StringRe-
placeFilter will never be called, and the overhead of wrapping its response and
creating the ByteArrayOutputStream will never be incurred.

 The ability to control the order in which filters are applied to requests is thus
very important. To that end, Servlet 2.3 containers are required to follow two basic
rules for determining the order in which filters are to be applied, both of which are
based on the order in which <filter-mapping> elements appear within an applica-
tion’s deployment descriptor. For a given request, first all of the matching filters
which have been mapped via URL patterns are applied. These filters must be applied
in the order in which the corresponding <filter-mapping> elements occur within
the web.xml file. Next all of the matching filters which have been mapped via
explicit servlet names are applied, again in the order in which their <filter-
mapping> elements appear.

 For this reason, it is generally a good rule of thumb to keep the <filter-
mapping> elements separated within the deployment descriptors. First specify all of
the <filter-mapping> tags which include <url-pattern> subelements, and then
specify all of the <filter-mapping> tags which include <servlet-name> subele-
ments. By following this practice, the ordering that will be imposed on the applica-
tion’s filters by the container will exactly match the ordering within the web.xml



The art of WAR 409
file. A quick visual examination of that file will then suffice to remind you how the
container will be handling any given request: simply examine each of the <filter-
mapping> elements in order, and each filter which is mapped to the resource speci-
fied in that request will become part of the FilterChain created for handling that
request, in exactly the same order as they are encountered in the file.

 The proper sequence of <filter-mapping> elements for the filters introduced
in the previous chapter, then, is as follows:

  <filter-mapping>
    <filter-name>authentication</filter-name>
    <url-pattern>/filters/secure/*</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>devRole</filter-name>
    <url-pattern>/filters/secure/development.jsp</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>mgrRole</filter-name>
    <url-pattern>/filters/secure/management.jsp</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>adminRole</filter-name>
    <url-pattern>/filters/secure/admin.jsp</url-pattern>
  </filter-mapping>
  <filter-mapping>
    <filter-name>stringReplace</filter-name>
    <url-pattern>/filters/*</url-pattern>
  </filter-mapping>

where the filter names are as specified in the example <filter> tags presented previ-
ously in this chapter. This sequence ensures that the login authentication filter is
applied first, and the string replacement filter is applied last, with the  role authentica-
tion filters running in between. Note that the login authentication and string replace-
ment filters use directory-style URL patterns, while the role authentication filters are
only applied to specific URLs (in this case, three different individual JSP pages).

Developing listening posts
Like filters, listeners are a new feature introduced by the Servlet 2.3 specification,
and are therefore available in JSP 1.2. Listeners are added to a web application via the
intuitively named <listener> element, which has a single, required subelement. For
the LoginSessionListener introduced in chapter 13, the corresponding <lis-
tener> element for incorporating that listener into a web application is as follows:

<listener>
  <listener-class>



410 CHAPTER 14

Deploying JSP applications
    com.taglib.wdjsp.filters.LoginSessionListener
  </listener-class>
</listener>

For each such <listener> element appearing in the deployment descriptor, the
container will create one instance of the Java class specified in the body of its <lis-
tener-class> subelement. The instance will then be registered with the container
according to which of the five life-cycle event handler interfaces it implements, and
will automatically begin receiving the events specified by those interfaces as they
occur. The class specified via the <listener-class> tag must implement at least
one of these five interfaces: 

� javax.servlet.ServletContextListener

� javax.servlet.ServletContextAttributeListener

� javax.servlet.http.HttpSessionListener

� javax.servlet.http.HttpSessionAttributeListener

� javax.servlet.http.HttpSessionActivationListener

The LoginSessionListener, defined in chapter 13, implements both HttpSes-
sionListener and HttpSessionAttributeListener.

Special forces
In addition to standard web file types, such as HTML and JSP documents and GIF
and JPEG images, it is often desirable to provide access to other types of informa-
tion via a web server. For this reason, whenever the server sends a document to a
web browser, it includes a specification of the type of document it is sending,
referred to as the document’s MIME type. MIME was originally developed for
identifying documents sent as electronic mail attachments. It is now used for many
applications, including the identification of document types on the Web.

 Most web servers are configured to associate MIME types with specific file name
extensions. For instance, file names ending with .html are typically associated with
the text/html MIME type, while those whose extension is .doc might be assigned
the application/msword MIME type, identifying them as Word documents. By
examining the MIME type returned by the server for a given request, the browser
can determine how to handle the data contained in the response. If the MIME type
of the response is text/html, the browser will render that data as an HTML docu-
ment. If the MIME type is application/msword, the browser might instead attempt
to open Word in order to view the document contents. 



The art of WAR 411
TIP The official registry of Internet MIME types is managed by the IANA, and is
available from its website at http://www.iana.org.

For web applications running in a JSP container, the web server will forward all URLs
associated with the application (i.e., all URLs whose top-level directory corresponds
to the name of the application) to the application itself for processing. The applica-
tion is therefore responsible for assigning a MIME type to the generated response.
Most JSP containers will automatically recognize the standard extensions for HTML,
GIF, and JPEG files, and return the correct MIME type. The default MIME type for
responses generated by servlets and JSP files is text/html, but this can be overridden.
In a servlet, the setContentType() method of javax.servlet.ServletResponse
may be used to set the MIME type of the response. The contentType attribute of the
page directive provides the same functionality in a JSP page.

 If you are deploying a web application that includes other document types, you
must configure the application to recognize the extensions used by those docu-
ments and assign the appropriate MIME type. The <mime-mapping> tag is provided
for this purpose, as demonstrated in this web.xml fragment:

<web-app>
...
<mime-mapping>

<extension>pdf</extension>
<mime-type>application/pdf</mime-type>

</mime-mapping>
...

</web-app>

The <mime-mapping> tag has two subelements, <extension> and <mime-type>.
The <extension> element is used to specify the file name extension to be mapped
to a particular MIME type, while the <mime-type> element identifies the MIME
type to which it should be mapped. In our example, the pdf extension is mapped to
the application/pdf MIME type, indicating that file names ending with .pdf are to
be identified as being in Adobe’s Portable Document Format.

 A web.xml file can contain an arbitrary number of <mime-mapping> elements.
While each individual extension should be mapped to only a single MIME type, the
reverse is not necessarily the case: multiple extensions can be mapped to the same
MIME type. For example, web servers commonly map both the .jpg and .jpeg file
extensions to the same image/jpeg MIME type.



412 CHAPTER 14

Deploying JSP applications
Controlling the theater of operations
In addition to its capabilities for configuring servlets and JSP pages, the deployment
descriptor provides applications with the ability to control certain aspects of the JSP
container in which it is running. For example, security restrictions may be specified
for controlling access to an application’s resources. If the JSP container also happens
to be an EJB container, the web.xml file can be used to specify means for referenc-
ing EJBs.

 While we will not cover topics such as these in-depth, there are three more
deployment descriptor tags we will discuss. First, we will see how the <session-
config> tag may be used to control the behavior of sessions created by an applica-
tion. Second is the use of the <context-param> tag to specify initialization
parameters for the application as a whole. Finally, it is the <error-page> tag, which
can be used to indicate specific URLs to which control should be transferred when
various types of errors occur.

 The <session-config> tag is used to specify a default time-out value for ses-
sions created by the application’s servlets and JSP pages, via its single required
subelement, the <session-timeout> tag. The body of <session-timeout> should
be an integral value indicating how many minutes of inactivity are required before a
session is considered to have expired, as in the following example:

<web-app>
...
<session-config>

<session-timeout>30</session-timeout>
</session-config>
...

</web-app>

In this case, the application’s sessions are set to expire, by default, after half an hour
of inactivity. This default value can be explicitly overridden for individual sessions by
means of the setMaxInactiveInterval() method of the javax.serv-
let.http.HttpSession interface. At most one <session-config> element may
appear in a web.xml application descriptor. Note that a value of zero or less in the
body of the <session-timeout> tag indicates to the JSP container that, by default,
sessions should never time-out. In such a case, the setMaxInactiveInterval()
method should be used to set the expiration period programmatically, or the appli-
cation should itself take care of keeping track of and invalidating sessions. Other-
wise, the container will keep accumulating sessions that never expire until it runs
out of memory.



The art of WAR 413
NOTE As the language here suggests, sessions are application-specific. A session ob-
ject created by one application running in a JSP container cannot be accessed
from another application running in that same container. As a result, objects
stored in the session as attributes by one application cannot be retrieved from
the session by code running in another. The <session-timeout> tag, there-
fore, only controls the expiration of sessions associated with the application
defined in the web.xml file in which that tag appears.

As described earlier, the <init-param> tag specifies values for a servlet’s or filter’s
initialization parameters. In a similar manner, the <context-param> tag specifies
initialization parameter values for an entire application or, more specifically, the
ServletContext object associated with an application. The <context-param> tag
supports the same three subelements as the <init-param> tag, serving analogous
roles, as in this web.xml fragment:

<web-app>
...
<context-param>

<param-name>dbUsername</param-name>
<param-value>sark</param-value>
<description>Username for the employee database.</description>

</context-param>
<context-param>

<param-name>dbPassword</param-name>
<param-value>gorgon</param-value>
<description>Password for the employee database.</description>

</context-param>
...

</web-app>

Here, two application initialization parameters, dbUsername and dbPassword, are
specified. Their values are automatically set when the container first loads the appli-
cation, and can be retrieved from the ServletContext object associated with the
application by means of its getInitParameter() method. Within the JSP pages of
the application, this ServletContext object is available via the application
implicit object. Because this object is accessible from all of an application’s servlets
and JSP pages, it provides a convenient mechanism for specifying configuration data
that is applicable across multiple resources within the same application.

 The <error-page> element is used to configure the behavior of the container
when exceptional circumstances occur, and takes two different forms. The first is
used to specify the behavior of the container when it detects an HTTP status code
indicating an error, as in this example:



414 CHAPTER 14

Deploying JSP applications
<error-page>
  <error-code>404</error-code>
  <location>/errors/fileNotFound.jsp</location>
</error-page>

If a servlet or JSP page chooses to return an HTTP status code to indicate an error
(via the setStatus() method of the javax.servlet.http.HttpServletResponse
class, for example), the container will typically send this response back to the
browser and allow it to display an appropriate error message. Using the <error-
page> element, however, it is possible to provide a custom error message. This
example tells the container to display one of the application’s JSP pages, located at
/errors/fileNotFound.jsp, whenever a response whose status code is 404 is
encountered. The <error-code> subelement specifies the value of the status code,
while the <location> subelement indicates the URL within the application whose
contents are to be returned in responses having that status code value.

 The second form of the <error-page> element allows the application deployer
to specify content to be returned whenever an uncaught exception of a particular
class is encountered. In this example, the container is instructed to forward to the
/errors/brokenDB.jsp page whenever an uncaught SQLException is raised:

<error-page>
  <exception-type>java.sql.SQLException</exception-type>
  <location>/errors/brokenDB.jsp</location>
</error-page>

In this case, the <exception-type> element specifies the fully qualified class name
of the exception with which the error response is to be associated. Once again, the
<location> element indicates the application-specific URL whose contents are to
be presented when the error condition occurs.

 A deployment descriptor can include as many <error-page> elements as
desired. Each <error-page> element must include exactly one <location> subele-
ment, as well as either an <error-code> or an <exception-type> element.

Marching orders
As an XML file, the application deployment descriptor must conform to the DTD
specified in its XML header (described earlier in this chapter). DTDs tend to be
rather strict about the order in which elements appear in the XML file, a consider-
ation we  have so far ignored in the interest of presenting the web.xml elements in
logical groupings. If you are interested in constructing deployment descriptors by
hand, or need to debug a web.xml file generated by a deployment tool, knowing
the order in which the various elements must appear is crucial. Containers will
reject deployment descriptors that do not conform to the official DTD. The



Maintaining a WAR footing 415
required ordering for the subelements of the <web-app> root element is presented
in listing 14.2. 

<web-app>
  <icon>...</icon>
  <display-name>...</display-name>
  <description>...</description>
  <distributable/>
  <context-param>...</context-param> entries
  <filter>...</filter> entries
  <filter-mapping>...</filter-mapping> entries
  <listener>...</listener> entries
  <servlet>...</servlet> entries
  <servlet-mapping>...</servlet-mapping> entries
  <session-config>...</session-config>
  <mime-mapping>...</mime-mapping> entries
  <welcome-file-list>...</welcome-file-list>
  <error-page>...</error-page> entries
  <taglib>...</taglib> entries
  ...
</web-app>

With respect to the ordering of elements within the bodies of the various <web-
app> subelements, the examples shown in this chapter are accurate. For example,
the subelements of the example <filter> tag for the StringReplaceFilter, pre-
sented earlier  in this chapter, conform to the ordering requirements of the web
application deployment descriptor DTD.

14.3 Maintaining a WAR footing

WAR files, then, establish directory conventions for organizing the components of a
web application, as well as a standard configuration file for managing its resources.
In return, they simplify the deployment of web applications from development to
production web servers, and do so in a portable manner. Web applications packaged
as WAR files are compatible with all JSP containers that comply with version 1.1 and
higher of the JSP specification.

 One aspect of WAR files that has not been discussed thus far, is the ability of many
JSP containers to work with web applications that have been expanded from their
WAR files—that is, web archives whose contents have been extracted into the corre-
sponding individual files. Such applications employ the same file hierarchy as WAR

Listing 14.2 Required ordering of <web-app> subelements in the application 
deployment descriptor



416 CHAPTER 14

Deploying JSP applications
files, including the WEB-INF directory, but use actual directories and files instead of
consolidating resources into a single archive file. By way of example, the file hierarchy
for an expanded application based on the WAR file presented in listing 14.1 is depicted
in listing 14.3. Once again, webdev has been selected as the application name.

/webdev/index.jsp
/webdev/commontasks/error.jsp
/webdev/filters/goodbye.jsp
/webdev/filters/login.jsp
/webdev/filters/index.jsp
/webdev/filters/secure/admin.jsp 
/webdev/filters/secure/denied.jsp 
/webdev/filters/secure/development.jsp 
/webdev/filters/secure/header.jsp 
/webdev/filters/secure/logout.jsp 
/webdev/filters/secure/management.jsp 
/webdev/filters/secure/welcome.jsp 
/webdev/filters/secure/admin.jsp
/webdev/images/logo.gif
/webdev/images/icons/security.gif
/webdev/images/icons/role.gif
/webdev/images/edillinger.jsp
/webdev/WEB-INF/web.xml 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/AuthenticationFilter.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/LoginServlet.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/LoginSessionListener.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/LogoutServlet.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/RoleFilter.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserBase.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/SimpleUserDataManager.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/UserBean.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/UserDataManager.class 
/webdev/WEB-INF/classes/com/taglib/wdjsp/filters/UserSessionManager.class 
/webdev/WEB-INF/lib/mail.jar
/webdev/WEB-INF/lib/activation.jar\
/webdev/WEB-INF/lib/mut.jar
/webdev/WEB-INF/tlds/mut.tld

The advantage of this approach is that modifying the application is simpler. To
change a JSP page, you edit the file and save the new version in place of the old. To
change the value of an initialization parameter, edit and save the web.xml file (and,
typically, restart the JSP container). For applications stored in WAR files, modifica-
tions such as these first require you to extract the file to be changed, make the
changes, then update the archive to include the modified file. Clearly, expanded

Listing 14.3 File hierarchy for the expanded webdev application



Maintaining a WAR footing 417
applications are much easier to work with when many changes must be made to
their contents, while WAR files are preferable when it comes time to deploy them.

 For this reason, it is good practice to use expanded applications for development,
and WAR files for deployment. This allows for rapid turnaround of changes while
developing an application, and convenient packaging when deploying it. Because
both application forms share the same directory structure, it is a simple task to trans-
form the expanded application used for development into a web archive: simply cre-
ate a JAR file rooted in the top-level directory of the expanded application,
containing the latest versions of all of the development application’s files. Assign this
JAR file an extension of .war, and it’s ready to be deployed. Vive la guerre!

 



 15Performing
common JSP tasks
This chapter covers
� Storing and retrieving cookies

� JSP error pages

� Managing and validating forms

� Building a shopping cart
418



Handling cookies 419
In this chapter we will illustrate common tasks associated with web-based applica-
tions, and how they may be performed using JSP. For example, the primary means
for interacting with end users over the web is via forms. To that end, we include
here multiple sections on managing and validating forms. Data associated with end
users is often stored in cookies, so JSP techniques for storing and retrieving cookies,
among other topics, are also discussed. All of the examples presented here take the
form of building blocks that can serve as basic ingredients in the construction of
full-fledged web applications. 

15.1 Handling cookies

Cookies are the standard mechanism provided by the HTTP protocol for a web
server (or a group of web servers sharing the same Internet domain) to store small
amounts of persistent data in a user’s web browser for later retrieval. By default,
cookies expire as soon as the user exits the browser application. Alternatively, they
may be configured to persist across browser sessions until a specified expiration date.

 The data stored in a cookie is set by the web server, and therefore can contain
only information known to the server. For security reasons, a cookie may be
retrieved only by the server that supplied it. Optionally, a cookie can be made acces-
sible to other servers in the same domain as the originating server. A cookie can also
be restricted to a specific URL directory hierarchy on the server or servers from
which it is accessible. In addition to the data it stores, a cookie is assigned a name; a
server can then set multiple cookies and distinguish between them via their names.

15.1.1 Managing cookies

Cookies are set by a web server via HTTP response headers. When a browser
requests a URL whose server and directory match those of one or more of its stored
cookies, the corresponding cookies are sent back to the server in the form of
request headers. If that URL is for a JSP page, the page can access those cookies via
the getCookies() method of the request implicit object (an instance of the
javax.servlet.http.HttpServletRequest class). In a similar manner, cookies are
set by a JSP page via the addCookie() method of the response implicit object
(which is an instance of the javax.servlet.http.HttpServletResponse class).
These methods are summarized in table 15.1.

 For both methods, HTTP cookies are represented as instances of the
javax.servlet.http.Cookie class. The getCookies() method of the request
object returns an array of Cookie instances, while the addCookie() method of the
response object takes an instance of this class as its sole argument.



420 CHAPTER 15

Performing common JSP tasks
15.1.2 The Cookie class

Interacting with cookies in a JSP page, therefore, is accomplished by manipulating
instances of the javax.servlet.http.Cookie class. A single constructor is provided
for creating instances, which takes two String arguments representing the name of
the cookie and the corresponding value, as in the following example statement:

Cookie cookie = new Cookie("Favorite", "chocolate chip");

Here, the first argument represents the name of the cookie (i.e., “Favorite”) and
the second its value (i.e., ”chocolate chip”).

 As summarized in table 15.2, accessors are provided for storing and retrieving
the properties of a cookie. Note that the text data stored in a cookie value can be
modified after its construction using the setValue() method, but a cookie’s name
can only be set using the constructor.

Table 15.1 Methods of the JSP implicit objects for managing cookies

Implicit Object Method Description

request getCookies() Returns an array of the cookies accessible from the page.

response addCookie(cookie) Sends a cookie to the browser for storage/modification.

Table 15.2 Common methods of the javax.servlet.http.Cookie class 

Method Description

getName() Returns the name of the cookie.

getValue() Returns the value stored in the cookie.

getDomain() Returns the server or domain from which the cookie may be 
accessed.

getPath() Returns the URL path from which the cookie may be accessed.

getMaxAge() Returns the time remaining (in seconds) before the cookie 
expires.

getSecure() Indicates whether the cookie is restricted to HTTPS requests.

setValue() Assigns a new value for the cookie.

setDomain() Sets the server or domain from which the cookie may be 
accessed.

setPath(uri) Sets the URL path from which the cookie may be accessed.

setMaxAge(sec) Sets the time remaining (in seconds) before the cookie expires.

setSecure(flag) Indicates whether the cookie should be restricted to HTTPS 
requests.



Handling cookies 421
When using this class, remember that instances of javax.servlet.http.Cookie
reside in the JSP container. After constructing a new instance, or modifying one
retrieved via getCookies(), you must use the addCookie() method of the
response object in order to update the cookie data stored in the browser. 

TIP Although it may seem counterintuitive, this approach is also required to
delete a cookie. First, call setMaxAge() of the cookie instance with a value
of zero (indicating that the cookie is to be deleted). Then—and here’s the
unintuitive part—call addCookie() to inform the browser that the cookie
is to be deleted (i.e., by replacing it with a cookie that has been set to ex-
pire immediately).

Cookie data is communicated from the server to the browser via response headers.
Recall from earlier chapters that all headers must be set before any body content is
sent to the browser. As such, in order for the addCookie() method to succeed in a
JSP page, it must be called before the page’s output buffer is flushed. This can occur
when the buffer becomes full (depending upon the setting of the autoflush
attribute of the page directive). The output buffer is also flushed any time the
<jsp:include> action is encountered. The status of output buffering is obviously
an important consideration when constructing JSP pages that set cookies.

15.1.3 Example 1: setting a cookie

The first step, then, in using a cookie within a JSP page is to set it. This is accom-
plished by creating an instance of the javax.servlet.http.Cookie class and call-
ing addCookie() of the response implicit object. Listing 15.1 presents a JSP page,
/webdev/red-cookie.jsp, which accomplishes these tasks via a scriptlet:

<html>
<head>
<title>The Red Cookie Page</title>
</head>
<%@ page import="java.util.Date" %>
<%@ page import="java.net.*" %>
<% String cookieName = "RedCookie";
   Date now = new Date();
   String timestamp = now.toString();
   Cookie cookie = new Cookie(cookieName,

                                 URLEncoder.encode(timestamp));
   cookie.setDomain(".taglib.com");

Listing 15.1 A JSP page called /webdev/red-cookie.jsp



422 CHAPTER 15

Performing common JSP tasks
   cookie.setPath("/webdev");
   cookie.setMaxAge(7 * 24 * 60 * 60);  // One week
   cookie.setVersion(0);
   cookie.setSecure(false);
   cookie.setComment("Timestamp for red cookie.");
   response.addCookie(cookie);
%>
<body>
<font color="red">
<h1>The Red Cookie Page</h1>
<p>
This is the <i>red</i> cookie page.<br>
The blue cookie page is <a href="blue-cookie.jsp">here</a>.
</p>
</font>
</body>
</html>

In this case, the cookie is identified by the string "RedCookie", and is assigned a
value containing a string representation of the time at which the request was
received by the JSP page. The HTTP protocol imposes certain restrictions on the
types of characters that may appear in a cookie’s value, so it is generally good prac-
tice, as is done here, to URL-encode cookie values via the java.net.URLEn-
coder.encode() static method. 

 In addition, the domain and path (i.e., base URL directory) are set for the
cookie to ensure that it is accessible from related pages on other servers in the host
domain. It is set to expire within one week. For maximum browser compatibility, it
is set to adhere to version 0 of the cookie specification. Secure cookies can only be
sent using the HTTPS protocol, which encrypts requests and responses. Here, the
argument to the new cookie’s setSecure() method is false, indicating the cookie
should be transferred via the standard unencrypted HTTP protocol. After supplying
a comment for the cookie, it is marked for transmission back to the browser via the
addCookie() method.

 The response sent to the browser from this JSP page is depicted in figure 15.1. For
this page, there is no dynamic content in the rendered output. Instead, all of the
dynamic content is in the headers, where the request-specific cookie value is supplied.

15.1.4 Example 2: retrieving a cookie

The effect of the JSP page presented in the previous example is to update a time
stamp whenever the user visits the page. This time stamp is stored in a cookie, and
may be retrieved by other JSP pages which share the domain and path originally
assigned to the cookie.



Handling cookies 423
 Cookies are retrieved via the getCookies() method of the request implicit
object. Here is a sample JSP page, /webdev/blue-cookie.jsp, which attempts to
retrieve the cookie set by the page in the previous example:

<html>
<head>
<title>The Blue Cookie Page</title>
</head>
<%@ page import="java.net.*" %>
<% String cookieName = "RedCookie";
   Cookie cookies[] = request.getCookies();
   Cookie redCookie = null;
   if (cookies != null) {
     for (int i = 0; i < cookies.length; ++i) {
       if (cookies[i].getName().equals(cookieName)) {
         redCookie = cookies[i];
         break;
       }
     }
   }
%>
<body>
<font color="blue">
<h1>The Blue Cookie Page</h1>
<p>
This is the <i>blue</i> cookie page.<br>
You last visited the <a href="red-cookie.jsp">red cookie page</a>
<% if (redCookie == null) { %>
    over a week ago.
<% } else { %>

Figure 15.1 Output of JSP page that sets a cookie 



424 CHAPTER 15

Performing common JSP tasks
    on <%= URLDecoder.decode(redCookie.getValue()) %>.
<% } %>
</p>
</font>
</body>
</html>

The first scriptlet on this page iterates through the array of cookies returned by
getCookies() until it finds one named "RedCookie". The dynamic content dis-
played by this page is then based on whether or not this cookie was found.

 If no such cookie were found, then the conditional scriptlet near the end of the
page will cause the page to display the text indicated in figure 15.2. The presumption
here is that if the cookie is not found, it must have expired. Another possibility is that
the cookie has not been set in the first place, which would be the case if the user had
never visited the page which sets the cookie. The important point here is it is not pos-
sible to tell the difference between the expiration of a cookie and its absence.

 If, on the other hand, the cookie is present, the iterative search through the
array returned by the getCookies() method will succeed and the redCookie vari-
able will not be null. In this case, the second clause of the conditional scriptlet will
be exercised, resulting in the output depicted in figure 15.3. Here, the
java.net.URLDecoder.decode() static method is used to decode the value stored
in the cookie so that it may be displayed in its original form.

WARNING The java.net.URLDecoder class was added in Java 2. Earlier versions of the
Java specification do not include this class. The java.net.URLEncoder class,
however, is present in the 1.0 and 1.1 releases.

Figure 15.2 Output of JSP page that retrieves a cookie when it has not been set



Creating error pages 425
When taking advantage of HTTP cookies, a number of restrictions on their use
should be kept in mind. First, the data stored in a cookie (i.e., its name and value)
can occupy at most 4 KB of storage. Also, while it is possible for a given server or
domain to set multiple cookies, the browser is only required to store up to twenty
cookies per domain setting. At the same time, the browser need only store up to
300 cookies. If either limit is exhausted, the browser is expected to delete cookies,
beginning with those which have been used least recently.

 The domain assigned to a cookie must have at least two periods in its name. This
will automatically be the case if a fully qualified server name is used, such as
www.example.com. If the domain is used instead, it should take the form
.example.com in order to satisfy the two-period requirement. This rule is in place to
prevent the specification of cookies which can be read across an entire top-level
domain (i.e., .com, .org, .net, etc.). Note that if no domain is specified for a cookie,
it may only be read by the host which originally set it.

15.2 Creating error pages

As mentioned in chapter 6, the typical behavior when an error occurs while process-
ing a JSP page is to display an error message—possibly including a stack trace—within
or in place of the output from that page. Figure 15.4 displays the results generated by
one JSP container when processing a page that attempts to divide a number by zero.
The result is not particularly user-friendly, nor does it provide much information that
the development team could use to track down the problem.

Figure 15.3 Output of JSP page that retrieves a cookie which has been set



426 CHAPTER 15

Performing common JSP tasks
 Fortunately, JSP provides a means for addressing both of these issues via the
errorPage attribute of the page directive, introduced in chapter 5. This feature
allows you to designate an alternate JSP page to which control will be forwarded
whenever the processing of a page causes an error. Furthermore, the exception that
is thrown when the error occurs will be accessible from the selected error page via
the exception implicit object. By taking advantage of this capability, you can
ensure the user is clearly informed that a problem has occurred, and reassured that
it will be fixed. At the same time, the full circumstances surrounding the error can
be captured for use by the developers in resolving it.

 JSP error pages can also be used for handling servlet errors. As mentioned in
chapter 10, a JSP error page expects to find the Throwable object representing the
error in an attribute of the request implicit object associated with the name
"javax.servlet.jsp.jspException". Servlet code that has the potential of
throwing an exception can use a try/catch block to catch the exception, store it as
a request attribute, then forward it to a JSP error page. The error page is then
responsible for displaying an error message to the user and recording the circum-
stances under which the error occurred. 

 In this section, an error page will be presented that displays a brief summary and
apology to the end user, while constructing a detailed error message behind the
scenes which is then sent to the webmaster via email. Sun’s JavaMail API is used to
deliver the electronic mail message.

15.2.1 An erroneous page

In order to test this error page, we first need a page that will generate errors. Here, for
example, is a small JSP page, /webdev/div-error.jsp, which is guaranteed to throw an
exception every time it is requested because it attempts to divide a number by zero:

Figure 15.4 Output from a JSP page that generates a run-time error



Creating error pages 427
<html>
<head>
<%@ page errorPage="error.jsp" session="false" %>
<title>Arithmetic Error</title>
</head>
<body bgcolor="white">
<h1>Arithmetic Error</h1>
<% int x = 5; %>
<P>
In Java, dividing by zero raises an exception:
<tt>25/0 = <%= 25/(5-x) %></tt>
</P>
</body>
</html>

Note that, because the compiler recognizes that an explicit divide-by-zero expres-
sion is invalid, the local variable x is introduced to make page compilation succeed.
When a request is received for this page, however, the arithmetic expression will
generate a run-time error when the division by zero is detected.

 In the absence of the JSP page directive near the beginning of this file, a request
for this page will generate results such as those depicted in figure 15.4. By incorpo-
rating this directive, however, more graceful and more thorough handling of the
error is possible.

15.2.2 Data collection methods

Before examining the error page itself, we will first consider a set of utility methods
it will use to collect information about the error. Note that control will be trans-
ferred to the error page as if the <jsp:forward> action had been used, meaning
that the error page will have access to the request implicit object corresponding to
the original page request, as well as an exception implicit object representing the
error that occurred there.

 The first of these utility methods is makeErrorReport(), which takes values cor-
responding to both of these implicit objects as its arguments:

public String makeErrorReport (HttpServletRequest req, Throwable e) {
  StringBuffer buffer = new StringBuffer();
  reportException(buffer, e);
  reportRequest(buffer, req);
  reportParameters(buffer, req);
  reportHeaders(buffer, req);
  reportCookies(buffer, req);
  return buffer.toString();
}



428 CHAPTER 15

Performing common JSP tasks
This method serves as the control routine for collecting information about the
request and the resulting error. An instance of java.lang.StringBuffer is con-
structed for storing this information, which is then passed to a series of other meth-
ods that store various categories of data into this StringBuffer. Once all of the
data has been collected, the contents of the buffer are used to generate a full-
fledged String object.

 The first of these methods that add data to the StringBuffer is reportExcep-
tion(), which collects information about the error itself: 

public void reportException (StringBuffer buffer, Throwable e) {
  StringWriter writer = new StringWriter();
  e.printStackTrace(new PrintWriter(writer));
  buffer.append(writer.getBuffer());
  buffer.append('\n');
}

More specifically, this method wraps a java.io.PrintWriter around a
java.io.StringWriter, into which the exception’s stack trace is written. The con-
tents of the StringWriter are then added to the StringBuffer passed in as an
argument to this method.

 The stack trace contains all of the information available about the error that
occurred, including its type, a brief explanatory message, and the stack of method
calls that were in effect when the exception was thrown. As a result, the remaining
data collection methods are focused not on the error, but on the context in which
the error occurred, as embodied in the request.

 Basic information about the request is collected via the reportRequest()
method. This method reconstructs the URL used to request the original page, as
well as information about the user’s session (if applicable), and is defined as follows:

public void reportRequest (StringBuffer buffer, HttpServletRequest req) {
  buffer.append("Request: ");
  buffer.append(req.getMethod());
  buffer.append(' ');
  buffer.append(HttpUtils.getRequestURL(req));
  String queryString = req.getQueryString();
  if (queryString != null) {
    buffer.append('?');
    buffer.append(queryString);
  }
  buffer.append("\nSession ID: ");
  String sessionId = req.getRequestedSessionId();
  if (sessionId == null) {
    buffer.append("none");
  } else if (req.isRequestedSessionIdValid()) {
    buffer.append(sessionId);



Creating error pages 429
    buffer.append(" (from ");
    if (req.isRequestedSessionIdFromCookie())
      buffer.append("cookie)\n");
    else if (req.isRequestedSessionIdFromURL())
      buffer.append("url)\n");
    else
      buffer.append("unknown)\n");
  } else {
    buffer.append("invalid\n");
  }
}

To reconstruct the URL, the HTTP method (e.g., GET, POST, etc.) and query string
are retrieved from the javax.servlet.http.HttpServletRequest object passed in
via the req argument. The protocol, host name, and port number are not directly
accessible from this object, however; instead one of the utility methods provided by
the javax.servlet.http.HttpUtils class, getRequestURL(), is used to recreate
the base URL.

 The methods of the javax.servlet.http.HttpUtils class are summarized in
table 15.3. This class has been deprecated in version 2.3 of the Servlet specification,
upon which JSP 1.2 is based. Instead, an analogous getRequestURL() method has
been added to the HttpServletRequest class itself. 

 The session information reported by this method is likewise retrieved from the
request. If session information is present and valid, this information will include the
user-specific session identification code, and an indication of how the session infor-
mation is being transferred between the server and the browser (i.e., via either
cookies or URL rewriting). This is accomplished via standard methods provided by
the javax.servlet.http.HttpServletRequest class, first described in chapter 4.

 The next data collection method, reportParameters(), lists the request param-
eters that accompanied the original page request. Note that the HttpServlet-
Request class does not distinguish between parameters supplied in the URL via a
query string and those provided in the body of an HTTP POST request. In fact, both

Table 15.3 Methods of the javax.servlet.http.HttpUtils class

Method Description

getRequestURL(request) Recreates the URL used by the browser to make the request.

parsePostData(length, stream) Parses HTML form data submitted via a POST request.

parseQueryString(string) Parses the query string of a requested URL into a hash table of 
parameters and values.



430 CHAPTER 15

Performing common JSP tasks
may be present in the same request, and will be combined into one overall set of
parameters. If values for the same parameter are provided multiple times, all of the
values are stored. In such a case, the first value supplied for a parameter takes prece-
dence, and parameter values set in the URL take precedence over those set in the
body of the request. The code for this method is as follows:

public void reportParameters (StringBuffer buffer, HttpServletRequest req) {
  Enumeration names = req.getParameterNames();
  if (names.hasMoreElements()) {
    buffer.append("Parameters:\n");
    while (names.hasMoreElements()) {
      String name = (String) names.nextElement();
      String[] values = req.getParameterValues(name);
      for (int i = 0; i < values.length; ++i) {
        buffer.append("    ");
        buffer.append(name);
        buffer.append(" = ");
        buffer.append(values[i]);
        buffer.append('\n');
      }
    }
  }
}

Here, the getParameterNames() method is called to obtain an enumeration of all
of the parameters known to the request. If there is at least one parameter present,
the next step is to print the name of each parameter, and its values. Since one
parameter may have multiple values, a nested iteration loop is required to iterate
over all of the values returned by the getParameterValues() method.

 After listing the request parameters, the next step is to list the request headers,
using the following reportHeaders() method:

public void reportHeaders (StringBuffer buffer, HttpServletRequest req) {
  Enumeration names = req.getHeaderNames();
  if (names.hasMoreElements()) {
    buffer.append("Headers:\n");
    while (names.hasMoreElements()) {
      String name = (String) names.nextElement();
      String value = (String) req.getHeader(name);
      buffer.append("    ");
      buffer.append(name);
      buffer.append(": ");
      buffer.append(value);
      buffer.append('\n');
    }
  }
}



Creating error pages 431
Headers contain information about the browser that made the request, as well as
any cookies the browser is submitting with the request. The code for this method is
similar to that of reportParameters(). Here, the getHeaderNames() method of
the HttpServletRequest instance is called to generate an enumeration of the
names of the headers present in the request. We then iterate through this result,
adding the name of the header and its corresponding value—retrieved via the
getHeader() method of HttpServletRequest—to the StringBuffer object being
used to accumulate our error report.

 Unfortunately, even though the HTTP protocol allows requests to specify multi-
ple headers with the same name, the HttpServletRequest class only provides
methods for fetching one header of a given name. In practice, most headers are only
ever specified once, but there are a few which regularly appear multiple times in a
single request. In particular, when a request includes multiple cookies, each cookie
is generally specified by its own header. For a request containing multiple cookies,
only one of the cookie headers will be listed by the reportHeaders() method
described previously. 

 For this reason, the reportCookies() method is provided to ensure that all of
the cookies that are relevant to the request are included in the error report. The
code for this method is as follows:

public void reportCookies (StringBuffer buffer, HttpServletRequest req) {
  Cookie[] cookies = req.getCookies();
  int l = cookies.length;
  if (l > 0) {
    buffer.append("Cookies:\n");
    for (int i = 0; i < l; ++i) {
      Cookie cookie = cookies[i];
      buffer.append("    ");
      buffer.append(cookie.getName());
      buffer.append(" = ");
      buffer.append(cookie.getValue());
      buffer.append('\n');
    }
  }
}

This function relies on several of the cookie-related methods discussed earlier in
this chapter in order to iterate through the request’s cookies and list their names
and values.



432 CHAPTER 15

Performing common JSP tasks
15.2.3 Sending electronic mail

Given all of these methods for constructing a description of an error and the
request that generated it, we next need a mechanism for delivering this text to
someone who can fix the underlying problem. For this example, that mechanism
will be an electronic mail message. The methods described previously will be used
to generate the body of this mail message, which is then sent to one or more recipi-
ents by means of the JavaMail API. This specification defines a set of Java classes for
interacting with mail servers in order to send and receive electronic mail messages.

 While a complete description of the JavaMail API is beyond the scope of this
book, we will discuss a small subset of this specification in the context of a simple
utility method, sendEmail(), which encapsulates all of the JavaMail calls needed to
connect to an SMTP server and send a simple text-based mail message. (The full
functionality provided by the JavaMail API extends well beyond the straightforward
task presented here. For example, JavaMail includes support for retrieving messages
from both POP and IMAP servers, as well as for sending messages incorporating
styled text and/or attachments.)

 For use in a JSP error page, however, sending a plain text message is sufficient.
To this end, the sendEmail() method is defined as follows:

public void sendEmail (String mailServer, String subject,
                       String to[], String from, String messageText)
  throws AddressException, MessagingException {
  // Create session
  Properties mailProps = new Properties();
  mailProps.put("mail.smtp.host", mailServer);
  Session mailSession = Session.getDefaultInstance(mailProps, null);
  // Construct addresses
  int toCount = to.length;
  InternetAddress[] toAddrs = new InternetAddress[toCount];
  for (int i = 0; i < toCount; ++i) {
    toAddrs[i] = new InternetAddress(to[i]);
  }
  InternetAddress fromAddr = new InternetAddress(from);
  // Create and initialize message
  Message message = new MimeMessage(mailSession);
  message.setFrom(fromAddr);
  message.setRecipients(Message.RecipientType.TO, toAddrs);
  message.setSubject(subject);
  message.setContent(messageText.toString(), "text/plain");
  // Send message
  Transport.send(message);
}



Creating error pages 433
All of the arguments to this method are instances of the Java String class, with the
exception of the to argument, representing the intended recipients, which is an
array of strings. The mailServer parameter is the name of a network host running
an SMTP server that will handle the actual sending of the message. The subject
argument represents the subject line for the message. The from parameter identifies
the email address from which the message is being sent. The validity of this return
address may or may not be confirmed, depending upon how the SMTP server has
been configured. The final argument, messageText, should be a string containing
the text to be sent as the body of the email message.

 A central concept of the JavaMail API is that of a mail session, representing a set
of interactions with a mail server. Mail sessions are represented by an instance of the
javax.mail.Session class, which is initialized from an instance of the
java.util.Properties class. For our purposes here, the only information that
needs to be in the property list for this mail session is the identity of the SMTP host,
as indicated by a property named mail.smtp.host. The next step is to convert the
email addresses passed in as String values via the to and from arguments into
instances of the javax.mail.internet.InternetAddress class. Next, an instance
of the javax.mail.Message class is constructed. This is an abstract class, however,
so the actual object created is an instance of the javax.mail.internet.MimeMes-
sage class, whose constructor takes a MailSession instance as its sole argument.
The properties of this message are then set to identify the sender, subject, recipi-
ents, and body. Note that in the call to setContent() the MIME type of the mes-
sage body is set to ”text/plain”, indicating that the text of the message is standard
ASCII text. Finally, the static send() method of the javax.mail.Transport class is
called to actually deliver the message.

 Within the body of this method, several of the JavaMail method calls have the
potential to throw exceptions. As we will see in the next section, for the current appli-
cation within a JSP error page it is more convenient to pass these exceptions to callers
of the sendEmail() method, rather than attempt to handle them locally. For this rea-
son, sendEmail() is declared as throwing two exception classes, javax.mail.inter-
net.AddressException and javax.mail.MessagingException.

15.2.4 The error page

These utility methods for collecting data and sending electronic mail can be com-
bined in a JSP error page that serves both end users and developers. Here is the
content of such a page, /webdev/error.jsp, where the method bodies have been
removed for brevity’s sake:



434 CHAPTER 15

Performing common JSP tasks
<html>
<head>
<%@ page isErrorPage="true" %>
<%@ page import="java.util.*, java.io.*" %>
<%@ page import="javax.mail.*, javax.mail.internet.*" %>
<title>Oops!</title>
</head>
<body bgcolor="white">
<p>
Sorry, an error has occurred:<br>
<center> <b><%= exception %></b> </center>
</p>
<% try {
   String mailServer = "mail.taglib.com";
   String subject = "JSP Error Notification";
   String [] to = { "webmaster@taglib.com" };
   String from = "JSP Container <webmaster@taglib.com>";
   sendEmail(mailServer, subject, to, from,
             makeErrorReport(request, exception)); %>
<p>Not to worry, though! The guilty parties have been notified.</p>
<% }
   catch (AddressException e) { %>
<p>Invalid e-mail address(es) for error notification.</p>
<% }
   catch (MessagingException e) { %>
<p>Unable to send e-mail for error notification.</p>
<% } %>
</body>
</html>
<%! 
  public String makeErrorReport (HttpServletRequest req, Throwable e) { 
    ...
  }
  public void reportException (StringBuffer buffer, Throwable e) {
    ...
  }
  public void reportRequest (StringBuffer buffer, HttpServletRequest req) {
    ...
  }
  public void reportParameters (StringBuffer buffer, 
                                HttpServletRequest req) {
    ...
  }
  public void reportHeaders (StringBuffer buffer, HttpServletRequest req) {
    ...
  }
  public void reportCookies (StringBuffer buffer, HttpServletRequest req) {
    ...
  }
  public void sendEmail (String mailServer, String subject,



Creating error pages 435
                        String to[], String from, String messageText) 
    throws AddressException, MessagingException {
    ...
  }
%>

The first JSP element on this page is the page directive, which uses isErrorPage to
indicate that this page serves as an error page for one or more other JSP pages. As a
result, the exception implicit object will be available for use by other JSP elements
on the page.

 The two additional page directives which follow are used to import classes from
multiple Java packages. These classes are used in the utility methods which appear in
a JSP declaration at the end of the page. By using the import attribute of the page
directive in this manner, it is unnecessary to prefix the class names with their corre-
sponding package names when they are referred to in the method bodies.

 The page directives are followed by a combination of HTML and JSP elements
that present the error message to the user, as depicted in Figure 15.5. A JSP expres-
sion is used to print a brief description of the error, by taking advantage of the
toString() method provided by the java.lang.Throwable class. The final line in
the browser output is determined by the success (or lack thereof) of the code that
submits the error report to the development team.

 This last step is accomplished by means of a set of JSP scriptlets implementing a
try/catch block. Within the try clause, the first step is to configure the site-
specific mail parameters. These parameters are then supplied as arguments to the
sendEmail() method, along with body text generated via the makeErrorReport()

Figure 15.5 Output sent to the browser by the example error page



436 CHAPTER 15

Performing common JSP tasks
method. If any exceptions are thrown by the underlying JavaMail code, an indica-
tion to this effect will appear in the JSP output.

 When the configuration parameters are set properly and the mail server is acces-
sible, execution of these methods should succeed and no exceptions will be thrown
within the error page itself. Under these circumstances, the “guilty parties” message
will appear in the JSP output and a report such as the following will be sent to the
designated recipients:

From: JSP Container <webmaster@taglib.com>
To: webmaster@taglib.com
Subject: JSP Error Notification

java.lang.ArithmeticException: / by zero
    at home.server.user.web-

dev.div_error_jsp_1._jspService(div_error_jsp_1.java:72)
    at com.sun.jsp.runtime.HttpJspBase.service(HttpJspBase.java:87)
    at javax.servlet.http.HttpServlet.service(HttpServlet.java:840)
    at com.sun.jsp.runtime.JspServlet$JspServletWrapper.service(JspServ-

let.java:88)
    at com.sun.jsp.runtime.JspServlet.serviceJspFile(JspServlet.java:218)
    at com.sun.jsp.runtime.JspServlet.service(JspServlet.java:294)
    at javax.servlet.http.HttpServlet.service(HttpServlet.java:840)
    at com.sun.web.core.ServletWrapper.handleRequest(ServletWrapper.java:155)
    at com.sun.web.core.Context.handleRequest(Context.java:414)
    at com.sun.web.server.ConnectionHandler.run(ConnectionHandler.java:139)

Request: GET http://localhost:8080/webdev/div-error.jsp
Session ID: To1010mC8608781812051488At (from cookie)
Headers:
    Connection: Keep-Alive
    User-Agent: Mozilla/4.5 [en] (WinNT; U)
    Pragma: no-cache
    Host: localhost:8080
    Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
    Accept-Encoding: gzip
    Accept-Language: en
    Accept-Charset: iso-8859-1,*,utf-8
    Cookie: RedCookie=Mon+Oct+18+16%3A35%3A40+CDT+1999;SESSIONID=To1010m…
Cookies:
    RedCookie = Mon+Oct+18+16%3A35%3A40+CDT+1999
    SESSIONID = To1010mC8608781812051488At

This particular request did not include any parameters, but all of the other report ele-
ments are present here. The stack trace from the exception appears, and the descrip-
tion of the request indicates that the exception was generated by the /webdev/div-
error.jsp page. The session ID code appears, with an indication that it is being stored
in a cookie. This is followed by listings of nine request headers and two cookies.



Mixing JSP and JavaScript 437
 These headers indicate, among other things, that the request originated from
version 4.5 of Netscape’s browser (nicknamed Mozilla), running on the Windows
platform. The cookies correspond to the session ID code and the time stamp cookie
associated with the JSP cookie example presented earlier in this chapter. Note that,
as mentioned in the earlier discussion of the reportHeaders() method, only one of
the two cookie headers appears among the header listings.

15.3 Mixing JSP and JavaScript

JSP can work in conjunction with JavaScript (and other client-side technologies) to
add server-side processing to operations typically limited to client-side activities. As
an example, we’ll build a simple form for reporting system problems. As an addi-
tional requirement, we’ve decided that we want to verify the validity of the host
name specified by the user before allowing it to submit the problem. We also
require that the problem host be identified by its IP address, rather than its host
name. The resulting form is shown in figure 15.6.

 When the user inputs a host name into the Affected System field of our form, it
is changed into the corresponding IP address when they tab over to the next field.
(If an actual IP address is supplied, it is not changed.) Furthermore, if the user
inputs an invalid host name, an alert window will notify him or her of this fact and
he or she will not be allowed to submit the form until the problem is corrected. All

Figure 15.6 Problem submission form



438 CHAPTER 15

Performing common JSP tasks
of this happens on the client before submitting the form, and without the user hav-
ing to manually reload the page. As a matter of fact, the form page, shown in
listing 15.2, is not even a JSP page, it’s just standard HTML, with a little JavaScript
thrown in. How, then, do we perform this little trick? We cheat.

<html>
<head>
<script language="javascript">
resolved=false;

function resolve(element) {
  top.resolver.document.location = "resolver.jsp?host=" + element.value;
}

function isResolved() {
  alert(resolved);
  return resolved;
}
</script>
</head>
<body>
<b>System Problem Report:</b>
<P>
<form name="info" action="/servlet/problem" onSubmit='return isResolved()'>
<TT>
Affected System: <input type="text" name="host" onChange='resolve(this)'> <BR>
System Operator: <input type="text" name="user"> <BR>
System Problems: <input type="text" name="problem"> <BR>
</TT>
<P>
<input type="submit" value="submit problem">
</form>
</body>
</html> 

If you closely examine the HTML in the listing, you will notice that we are making
references to another frame called resolver, which we direct to load the page
resolver.jsp. It is this second page—which is a JSP page—that performs the host
name resolution for us. It appears at the bottom of the page in a hidden frame,
using the frameset code shown in listing 15.3.

Listing 15.2 HTML source for the JavaScript example form 



Mixing JSP and JavaScript 439
<html>
<head><title>Problem Submission Form</title></head>
<frameset rows="100%, 0%" border=0 frameborder="no">
<frame src="form.html" name="theform">
<frame name="resolver">
</frameset>
</html> 

When the user makes a change to the Affected System field, the onChange() han-
dler in the field’s <input> tag calls the resolve() function—a client-side JavaScript
function—to load our JSP into the hidden frame. This function also appends the
value of the field to the request, giving our JSP page the host name it needs to ver-
ify. In the JSP page, we attempt to resolve the host name. If we are successful we
have two tasks to do. We have to change the value of the Affected System field to
the verified IP address, and we have to alert the document that a valid host name
has been entered. We do this with cross-frame JavaScript:

<script>
top.theform.document.info.host.value="<%= ip %>";
top.theform.resolved=true;
</script>

If the host name turns out to be invalid, we alert the user to its evil ways, flip the
resolved flag to false, and clear the offending value from the form field:

<script>
alert("Invalid Hostname: <%= host %>");
top.theform.document.info.host.value="";
top.theform.resolved=false;
top.theform.document.info.host.focus();
</script>

Note that we can embed JSP commands into the midst of our JavaScript code here.
This may seem strange at first, but keep in mind how a JSP page is processed. After
all the JSP code is handled, what you are left with is the HTML, JavaScript, or other
data containing your JSP elements. In this case, we are conditionally inserting
blocks of JavaScript into our output. The full source to the resolver.jsp page is pre-
sented in listing 15.4.

Listing 15.3 HTML source for the JavaScript example frameset



440 CHAPTER 15

Performing common JSP tasks
<%@ page import="java.net.*" %>
<html>
<body>
<%
String host = request.getParameter("host");
String ip = host;
if (host != null) {
   try {
     ip = java.net.InetAddress.getByName(host).getHostAddress();
%>
<script>
top.theform.document.info.host.value="<%= ip %>";
top.theform.resolved=true;
</script>
<%
   }
   catch (UnknownHostException e) {
%>
<script>
alert("Invalid Hostname: <%= host %>");
top.theform.document.info.host.value="";
top.theform.resolved=false;
top.theform.document.info.host.focus();
</script>
<% }
}
%>
</body>
</html> 

Note that the getHostAddress() method throws an UnknownHostException if it is
unable to resolve the name correctly. Therefore, we execute it in a try/catch block,
which has the side effect of determining which block of JavaScript we end up calling.

Autocompleting form fields
This same technique can be used for other client/server cooperative activities. One
good example of this is simulating fields with automatic completion through the
use of an onKeyPress() handler. This JavaScript handler is triggered with each key
press, not just when tabbing out of a field or hitting return. With each press, you
pass the current value of the field to your hidden JSP, which searches the database
for a match, based on what the user has typed so far. So in our example above, as
soon as the user typed "John W" into the System Operator field, our JSP could
search the user database and automatically fill in the rest of the name.

Listing 15.4 The resolver.jsp page



Building interactive interfaces 441
15.4 Building interactive interfaces

Using JSP we can create web-based applications which look and feel more like tradi-
tional desktop programs. Even though we must cope with the transient nature of
web requests, it is possible to build interfaces whose elements have a more interactive
feel, preserving their state between actions. While dynamic HTML and JavaScript
have begun to allow such behavior for client-side operations, we can also achieve
similar results with applications based on server-side operations. To do this, we com-
bine the data collection form and its handler into a single JSP page whose form ele-
ments provide an application interface that retains its state across multiple requests.

15.4.1 Sticky widgets

Java developers creating applications or applets with Swing or AWT build their
interface around input elements such as text fields, check boxes, and buttons. These
elements allow the developer to collect information and direction from the user.
When a user clicks a button, the developer uses information from the input ele-
ments to perform the corresponding function. When we develop an application
using JSP we use HTML form elements in this same role. One important difference,
however, is that the stateless nature of HTTP forces us to do more work ourselves in
order to maintain the state of the user interface.

 When an HTML page containing a form is loaded into the browser the state of
its elements is encoded into the HTML. If you fill out a form once and then revisit
it, the state and contents of all of the elements on the page are lost and the form
reverts to its original condition as specified in the HTML. HTTP requests, unless
cookies (which have limited storage capacity) are being used, have no memory. The
only way that form elements on a page can appear to maintain state between
requests is by dynamically generating the HTML that controls the layout and con-
tents of the form to represent the state you wish to present.

 The approach we will follow is to create a JSP page that collects information from
its form elements and then targets itself as its own form handler. This HTML inter-
face should emulate the behavior of traditional applications. When the JSP lays out
its form on subsequent requests it should reflect the form’s most recent state and
content. If a user selected a check box or radio button before submitting the form, it
should be selected again when the form is redisplayed. If a text field had text in it
then it should again contain that same text. 

 While it is easy to combine the form and the results into a single page, creating
this interactive interface requires us to understand how each form element can be
configured through JSP’s dynamic HTML generation capabilities. Each input



442 CHAPTER 15

Performing common JSP tasks
element’s state is preserved through the data in the form submission. For each ele-
ment of our interface we have a value that represents its state just prior to clicking
Submit. The values of the form elements are then submitted as request parameters,
from which they may be extracted when the next form request—initiated by the
form submission itself—is processed.

15.4.2 Utility methods

To aid in extracting parameter values from requests, we first introduce a set of util-
ity methods that will be used throughout this form-handling example. The first,
getParam(), is defined as:

public String getParam (HttpServletRequest request, String param) {
  if (request.getParameter(param) == null)
    return "";
  else
    return request.getParameter(param);
}

This method retrieves the value of the named parameter from the indicated request.
As a convenience, if the parameter is not present in the request, an empty String is
returned. (For the request object’s own getParameter() method, a null value is
returned for parameters that have not been specified.)

 For those parameters which may have multiple values assigned to them, a get-
ParamValues() method is provided. Here is the code for this method:

public String getParamValues (HttpServletRequest request, String param) {
  String values[] = request.getParameterValues(param);
  if (values == null) return "";
  int count = values.length;
  switch (count) {
    case 1:
        return values[0];
    default:
        StringBuffer result = new StringBuffer(values[0]);
        int stop = count - 1;
        if (stop > 1) result.append(", ");
        for (int i = 1; i < stop; ++i) {
          result.append(values[i]);
          result.append(", ");
        }
        result.append(" and ");
        result.append(values[stop]);
        return result.toString();
  }
}



Building interactive interfaces 443
Like getParam(), this method returns an empty String when the parameter has not
been specified. When one or more values are specified, however, getParamVal-
ues() will combine them into one String, adding comma separators and the word
"and" where appropriate.

 This next method, requestContains(), is used to determine whether or not a
specific value has been specified for a request parameter, and is defined as follows:

public boolean requestContains (HttpServletRequest request,
                                String param, String testValue) {
  String rp[] = request.getParameterValues(param);
  if (rp == null)
    return false;
  for (int i=0; i < rp.length; i++)
    if (rp[i].equals(testValue))
      return true;
  return false;

}

In this method, all of the values specified for a parameter are compared to the spec-
ified testValue. This method only returns true if there is a match.

 The last two utility methods extend the functionality of the requestContains()
method to return specific String values when a matching value is detected. Here
are the definitions for isChecked() and isSelected():

public String isChecked (HttpServletRequest request,
                         String param, String testValue) {
  return (requestContains(request, param, testValue)) ? "checked" : "";
}
public String isSelected (HttpServletRequest request,
                          String param, String testValue) {
  return (requestContains(request, param, testValue)) ? "selected" : "";
}

As we will see, these last two methods will be particularly useful in the initialization
of radio buttons, check boxes, and select boxes.

15.4.3 The example form

The form we will use to motivate this example is depicted in figures 15.7 and 15.8.
As illustrated in figure 15.7, various form elements are used to collect input data
from the user:

� A text field, for entering a name
� A select box, for choosing a device
� A set of check boxes, for selecting one or more colors



444 CHAPTER 15

Performing common JSP tasks
� Radio buttons, for selecting a gender

� A text area, for entering a multiline message
� Two form submission buttons

When either of the form submission buttons is clicked, the form calls itself to pro-
cess the form data and redisplay the form. The result of processing the form—in
this case, a sentence constructed from the values selected for the form elements—is
displayed at the bottom of the page (figure 15.8). The form widgets are sticky: each
time the form is displayed, the default values for all of the input fields are based on
the final input values from the last time the form was submitted.

 Based on this description of the form, then, let’s examine how this behavior is
implemented as a JSP page. 

Figure 15.7 The example form, prior to submission



Building interactive interfaces 445
15.4.4 Setting up the form

We can use the following JSP expression to create a form that targets itself no matter
what URL it was called from. This will allow us to move our application to any loca-
tion without having to modify any code.

<FORM action="<%= HttpUtils.getRequestURL(request) %>" method="POST">

This JSP expression will insert the full URL to the form as its action target. Submit-
ting the form, then, will call back to the same URL to handle the form as was used
to bring up the form in the first place.

Figure 15.8 The example form, after submission 



446 CHAPTER 15

Performing common JSP tasks
WARNING This technique of querying the request to determine the URL necessary to
reach the current page will work only in situations where the JSP was accessed
directly. If, for example, the JSP was loaded through a servlet using the for-
ward() method of the RequestDispatcher class, the path information may
be incorrect, since RequestDispatcher automatically changes the path in-
formation in the request object to reflect its new destination address. This
can be a problem if your original request was intentionally directed to a serv-
let, since subsequent requests will likely need to go back through that servlet.
In this case, it is possible to obtain a local URL (without the host name, pro-
tocol, or port number) for the current page by calling the getServlet-
Path() method of the request object.

15.4.5 Text and hidden fields

The initial content of a text field is stored in the value attribute of the <input> tag
defining that field. Hidden fields are initialized in the same manner, but their con-
tents are not displayed and therefore cannot be edited by the end user. To make one
of these element types reflect the state of a request parameter, we use a JSP expres-
sion containing a call to the getParam() method inside the value attribute’s
quotes. In our interface the Name field is specified using a text field. When the
form is recreated after processing the request it should retain the original query. We
do this as shown here:

<input type="text" name="character"
       value="<%= getParam(request, "character") %>">

The identifier for the Name input field is specified as "character", using the name
attribute of the <input> tag. If, then, the value submitted for this field was the
character string "Lora", when the JSP page is processed as a result of the form sub-
mission, it will generate the following output for this tag: 

<input type="text" name="character" value="Lora">

As a result, the default value for this input field—specified via the value attribute—
will be ”Lora”. We have thus rewritten the input tag to contain a default value equal
to the last value entered into the form. This is how we maintain the form’s state
between each request.

WARNING You must escape any quotes in the string you are using to populate the value
attribute of a text field. If you don’t, then any quotes in the value will cause a
premature end to the value attribute, resulting in invalid HTML.



Building interactive interfaces 447
15.4.6 Text areas

In our example form, we provide a text area for entering the message to be included
in our output result. Setting the initial contents of the text area from the request
data is even more straightforward than initializing a text field: a pair of starting and
ending <textarea> tags defines a text area, and the body enclosed by these tags
defines its initial contents. The Message field and its initial value can therefore be
specified as follows:

<textarea cols="40" rows="5" name="message">
<%= getParam(request, "message") %>
</textarea>

Again, the getParam() method is used to obtain the value of the request parameter,
which in this case is named message. (As with all form elements, the name of the
request parameter corresponds to the identifier specified for the form element via
the name attribute.)

 The text area itself can contain any text whatsoever. HTML tags will not be
afforded special treatment—they will come through as plain text. Any HTML enti-
ties, such as &quot; or &amp;, will be converted into their character equivalents, the
double quote and the ampersand. The only exception to this rule is the text area’s
closing tag. If the contents of your text area might contain a literal </textarea>
tag, you will want to protect the form field from this value by converting its angle
braces into their HTML entity equivalents, &lt; and &gt;. 

15.4.7 Radio buttons

Unlike text fields and text areas whose values are determined by the user, radio but-
tons have a fixed set of possible values. A user’s interaction with these elements does
not affect these values, it only determines which of the provided options has been
selected. Typically you will have a group of multiple radio buttons with the same
name, forming a group. To specify that one of these form elements should be
enabled when the page loads, you must include the keyword checked inside its
<input> tag. Only one input element in the button group should be marked as
checked. In our example form we are using radio buttons to allow the user to select
the corresponding gender-specific pronoun for the value supplied in the Name
field. When we load the page after servicing a request we want to ensure that the
user’s choice is reflected in our interface by enabling the radio button that corre-
sponds to the current selection. This involves comparing the value attribute of each
radio button with the user’s selection, via the isChecked() method:



448 CHAPTER 15

Performing common JSP tasks
<input type="radio" name="gender" value="his"
       <%= isChecked(request, "gender", "his") %>><i>male</i><BR>
<input type="radio" name="gender" value="her"
       <%= isChecked(request, "gender", "her") %>><i>female</i><BR>

We use this utility method to compare the value assigned to each radio button with
that stored in the request parameter. If there is a match, then this was the selected
radio button and we insert the checked keyword into the input tag. Otherwise, we
insert an empty String, which has no effect on the form element.

TIP Note that the values for these radio button form elements—the pronoun
strings "his" and "her"—are different from the labels that appear on the
form itself. HTML does not require that the values and labels match. JSP ele-
ments, however, only have access to the values of request parameters, and
have no knowledge of the labels displayed for the form elements. The third
argument to the isChecked() method, therefore, must indicate the value to
be checked, not the label.

15.4.8 Select boxes 

While certainly visually different, select boxes are quite similar in many respects to a
group of radio buttons. They allow the user to make a selection from a set of
choices. The initial selection for the group is indicated by the keyword selected
inside the <option> tag defining the selection. We can therefore apply a similar
technique to that used for radio buttons:

<select name="device">
<option value="tank" <%= isSelected(request, "device", "tank") %>>Tank
<option value="disk" <%= isSelected(request, "device", "disk") %>>Disk
<option value="light cycle"
  <%= isSelected(request, "device", "light cycle") %>>Light Cycle
</select>

With respect to the JSP elements, the only difference from the radio button exam-
ple is the replacement of the request parameter names and values, and the use of the
isSelected() utility method in place of isChecked(). The change in methods
merely reflects the change in keywords between radio buttons and select boxes.

15.4.9 Check boxes

Check boxes can be used to select multiple choices from a set of possible values for
a request parameter. Whether or not a check box should be enabled is determined
by the presence of the checked keyword, as was the case for radio buttons. In the



Building interactive interfaces 449
case of check boxes, however, it is not a problem if more than one check box is
marked as enabled. In the example form, check boxes are used to select one or
more colors, and are specified as follows:

<input type="checkbox" name="colors" value="red"
       <%= isChecked(request, "colors", "red") %>><i>red</i><BR>
<input type="checkbox" name="colors" value="yellow"
       <%= isChecked(request, "colors", "yellow") %>><i>yellow</i><BR>
<input type="checkbox" name="colors" value="blue"
       <%= isChecked(request, "colors", "blue") %>><i>blue</i><BR>

Note that the same identifier, colors, is specified for all three check boxes via the name
attribute of the <input> tag. As a result, any and all values selected will be assigned as
multiple values to the corresponding request parameter (also named colors).

15.4.10 Form source 

The form depicted in figures 15.7 and 15.8 is constructed by combining these form
elements into a JSP page. An HTML table is used to control the layout of the form,
and a JSP declaration element is used to define the utility methods introduced ear-
lier. The complete contents of the JSP file are presented in listing 15.5 (the method
definitions have been abbreviated to conserve space).

 For the form itself, two Submit buttons have been provided. The JSP code at the
bottom of the page, which implements the form handler, can distinguish between
these buttons by checking the value of a request parameter named submittedVia,
which corresponds to the identifier assigned to these two Submit buttons via the
name attribute of the corresponding <input> tags. Furthermore, the form handling
code can deduce from the absence of this request parameter that the form has yet to
be submitted, as indicated by the scriptlet which checks the result of the get-
Param() call for this parameter to see if it is empty.

<html>
<body>
<%!
public String getParam (HttpServletRequest request, String param) { ... }
public String getParamValues (HttpServletRequest request, String param) { ... }
public boolean requestContains (HttpServletRequest request,
                                String param, String testValue) { ... }
public String isChecked (HttpServletRequest request,
                         String param, String testValue) { ... }
public String isSelected (HttpServletRequest request,
                          String param, String testValue) { ... }
%>

Listing 15.5 JSP source code for the example form



450 CHAPTER 15

Performing common JSP tasks
<form action="<%= HttpUtils.getRequestURL(request) %>" method="post">
<table bgcolor="lightgrey" align="center" border="1" cellpadding="5">
<tr align="left" valign="top">
<td valign="top" rowspan="2">
<b>Name</b>&nbsp;
<input type="text" name="character"
       value="<%= getParam(request, "character") %>">
<P>
<b>Select Box</b>
<select name="device">
<option value="tank" <%= isSelected(request, "device", "tank") %>>Tank
<option value="disk" <%= isSelected(request, "device", "disk") %>>Disk
<option value="light cycle"
        <%= isSelected(request, "device", "light cycle") %>>Light Cycle
</select>
</td>
<td><b>Gender</b></td>
<td><b>Color</b></td></tr>
<tr>
<td>
<input type="radio" name="gender" value="his"
       <%= isChecked(request, "gender", "his") %>><i>male</i><BR>
<input type="radio" name="gender" value="her"
       <%= isChecked(request, "gender", "her") %>><i>female</i><BR>
</td>
<td>
<input type="checkbox" name="colors" value="red"
       <%= isChecked(request, "colors", "red") %>><i>red</i><BR>
<input type="checkbox" name="colors" value="yellow"
       <%= isChecked(request, "colors", "yellow") %>><i>yellow</i><BR>
<input type="checkbox" name="colors" value="blue"
       <%= isChecked(request, "colors", "blue") %>><i>blue</i><BR>
</td>
</tr>
<tr>
<td colspan="3" align="center" valign="center">
<b>Message</b><br>
<textarea cols="40" rows="5" name="message">
<%= getParam(request, "message") %>
</textarea>
</td>
</tr>
</table>
<P>
<center>
<input type="submit" name="submittedVia" value="Declare">
&nbsp;
<input type="submit" name="submittedVia" value="Taunt">
</center>
</P>



Validating form data 451
<hr width="75%">
<%-- FORM HANDLING CODE --%>
<h2>Result</h2>
<% String submission = getParam(request, "submittedVia");
   if (submission.equals("")) { %>
        The form has not yet been submitted.
<% } else {
      String verb = (submission.equals("Taunt")) ? "taunts" : "declares";
%>

<%= getParam(request, "character") %>, manning
<%= getParam(request, "gender") %>
<%= getParamValues(request, "colors") %>
<%= getParam(request, "device") %>,
<%= verb %> "<b><%= getParam(request, "message") %></b>"

<% } %>
</form>
</body>
</html>

Thus, if the form has not yet been submitted, a message to that effect is displayed at
the bottom of the page. If it has, the values of the request parameters are combined
via a set of JSP scriptlets and expressions to generate a sentence based on the user’s
selections.

15.5 Validating form data

When we are collecting information for processing on the server through an HTML
input form we often need to validate the data we get from the client browser to make
sure it is in the format we expect before passing it off to a JSP or servlet. If we ask for a
year, we might want to verify that the user typed in a four-digit year rather than a
two-digit one. Indeed we’d want to make sure he/she entered numbers in the
year field and not letters! Or, we may require that certain fields not be left blank.
In any case, there are two choices for how we perform our validation—on the cli-
ent or the server.

15.5.1 Client- and server-side validation

Client-side input field validation is performed with JavaScript. The general
approach is to add an onSubmit handler to our form and use JavaScript methods to
check each form field for whatever constraints we wish to enforce on the data. The
user is prevented from submitting the form until the data in the input fields meets
our requirements. Of course, since it is client-controlled there is nothing to enforce
this but the browser—and who said the user is running a browser? The truth is



452 CHAPTER 15

Performing common JSP tasks
users can submit anything they want by building their own form, creating their own
client software, or connecting to the HTTP server directly. If your JSP or servlet
isn’t prepared to handle illegal or unexpected data you could have a problem. Bot-
tom line: never trust the client to perform important tasks on its own.

 Server-side validation on the other hand is com-
pletely under your control as the application developer.
Server-side validation can be performed in the servlet
or JSP which receives the form action and is responsible
for processing the information. The server is able to
validate the form data only after it has been submitted
by the client. At that point it must verify that the data is
within limits and either accept it, display an error mes-
sage, or return the user to the form and give some indi-
cation of what needs to be done to correct the
problem. This cycle is repeated until the user enters
valid data, or gives up and goes home. This is also a
good time to massage the data into your preferred
form; for example, you want something in all lower
case or want to strip out dashes and spaces. Once valid data is received, the form
handler servlet or JSP can proceed with populating the database, sending email, or
whatever it is we had set out to do. This process is illustrated in figure 15.9.

 When you send the user back to the form following an error, we don’t want
him/her to have to fill in all of the fields again; we want to preserve the form data.
This is where JSP comes in. If we make our input forms JSP-based, then the servlet
can pass the current form field values back to the JSP, which can update the form’s
values. We used a similar technique earlier in this chapter to build interactive inter-
faces, but the approach works equally well with plain old forms.

 Server-side validation has the downside of the user having to resubmit requests
for validation each time. The delay between updates on the client side and the extra
load on your server may be unacceptable in some situations. A good compromise is
to do both types of validation on the form. Build in client-side validation to catch
what you can, but double-check it once the data is submitted to the server. This
gives you the performance you would like while preserving the security of server-
validated data.

15.5.2 Example: server-side validation

In this example we will collect information from a JSP form and validate it through
the servlet serving as our form handler. We’ve got three simple fields in our form:

Form handler servlet

FORM Thanks!

form.jsp thanks.jsp

Errors

Figure 15.9 Server-side 
form validation



Validating form data 453
Name, Email, and Social Security number (a unique nine-digit number assigned to
U.S. citizens). Since this is only an example, we’ll perform extremely simple valida-
tion on the data. We want to make sure that the user enters his/her name in the for-
mat “Last, First,” that the email address appears to really be an email address, and
that he/she has entered enough digits for the Social Security number. If an error
occurs, we’ll send them back to the form to try again, as illustrated in figure 15.10.

 We’ll build the servlet—which for this example doesn’t do anything other than
validate the data, the form page, and the results page—where we’ll acknowledge
our acceptance of the data and redisplay it to show the user what we accepted.

The FormBean
Encapsulating our form data into a JavaBean makes it easy to repopulate the form
fields with the user’s data following an invalid submission. As you’ll see shortly, we
can populate the bean directly from the request parameters and use the bean tags to
update each form field (listing 15.6). 

Figure 15.10 Form validation in  progress



454 CHAPTER 15

Performing common JSP tasks
package com.taglib.wdjsp.commontasks;

public class FormBean {

  private String name;
  private String email;
  private String ssn;

  public FormBean() {
    name = "";
    email = "";
    ssn = "";
  }

  public void setName(String name) {
    this.name = name;
  }

  public String getName() {
    return name;
  }

  public void setEmail(String email) {
    this.email = email;
  }

  public String getEmail() {
    return email;
  }

  public void setSsn(String ssn) {
    this.ssn = ssn;
  }

  public String getSsn() {

    return ssn;
  }
}

The JSP form
The JSP form we use in this example has several jobs. First, it must populate a Form-
Bean object using any data present in the request. If there is a problem validating
the data following submission, the request will be redirected back to this page, pop-
ulating the bean with the data. Each time the page is accessed directly a new Form-
Bean will be created, with its default empty values. Empty bean or not, we use the
<jsp:getProperty> tags to populate the default values of our form fields, giving us
sticky form fields. If any errors were detected from a previous submittal attempt,

Listing 15.6 FormBean.java



Validating form data 455
the page must display them above the form data. We’ll talk about each of these tasks
in detail shortly. The source is shown in listing 15.7.

<jsp:useBean id="form" class="com.taglib.wdjsp.commontasks.FormBean">
  <jsp:setProperty name="form" property="*"/>
</jsp:useBean>
<html>
<body bgcolor="white">
<%
  String[] errors = (String[])request.getAttribute("errors");
  if (errors != null && errors.length > 0) {
%>
<b>Please Correct the Following Errors</b>
<ul>
<% for (int i=0; i < errors.length; i++) { %>
<li> <%= errors[i] %>
<% } %>
</ul>
<% } %>

<form action="/servlet/FormHandlerServlet" method="post">
<input type="text" name="name"
value="<jsp:getProperty name="form" property="name"/>">
<b>Name</b> (Last, First)<br>

<input type="text" name="email"
value="<jsp:getProperty name="form" property="email"/>">
<b>E-Mail</b> (user@host)<br>

<input type="text" name="ssn"
value="<jsp:getProperty name="form" property="ssn"/>">
<b>SSN</b> (123456789)<br>
<p>
<input type="submit" value="Submit Form">
</form>
</body>
</html>

The form handler
Before we can talk about the aspects of the code in the JSP form we must under-
stand how it relates to our servlet. The servlet is responsible in this case for validat-
ing the code, performing whatever operation is required by the application, and
directing the user to the next page in the process. Take a look at the source in
listing 15.8, and then we’ll explain the process in detail.

Listing 15.7 form.jsp



456 CHAPTER 15

Performing common JSP tasks
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class FormHandlerServlet extends HttpServlet {

  public void service(HttpServletRequest req,
      HttpServletResponse res)

    throws ServletException, IOException {
    Vector errors = new Vector();

    String name = req.getParameter("name");
    String ssn = req.getParameter("ssn");
    String email = req.getParameter("email");

    if (! isValidName(name))
      errors.add("Please specify the name as Last, First");
    if (! isValidEmail(email))
      errors.add("Email address must contain an @ symbol");
    if (! isValidSSN(ssn))
      errors.add("Please specify a valid SSN number, no dashes");

    String next;
    if (errors.size() == 0) {
      // data is OK, do whatever
      // dispatch to wherever
      next = "thanks.jsp";
    }
    else {
      // data has errors, try again
      String[] errorArray = (String[])errors.toArray(new String[0]);
      req.setAttribute("errors", errorArray);
      next = "form.jsp";
    }

    String base = "/validate/";
    RequestDispatcher rd;
    rd = getServletContext().getRequestDispatcher(base + next);
    rd.forward(req, res);
  }

  private boolean isValidSSN(String ssn) {
    // check for 9 characters, no dashes
    return (ssn.length() == 9 && ssn.indexOf("-") == -1);
  }

  private boolean isValidEmail(String email) {
    // check an "@" somewhere after the 1st character
    return (email.indexOf("@") > 0);
  }

Listing 15.8 FormHandlerServlet.java



Validating form data 457
  private boolean isValidName(String name) {
    // should be Last, First - check for the comma
    return (name.indexOf(",") != -1);
  }
}

Handling validation errors
Regardless of what type of data the user enters into the form fields of form.jsp, the
data will be sent to the server, as we are not doing any client-side validation in this
case. Also keep in mind that the bean we created on that page disappears as soon as the
page is finished displaying. The form submission is a straight HTTP request, and can-
not deliver anything other than name/value pairs to the servlet.

 When the request comes in to the servlet, it extracts from the request the three
parameters in which we are interested and validates them using three very simplistic
checks. For each one of these validations that fails, the servlet adds a new message
to the errors array, a list of all errors detected during validation. If no errors were
found, the servlet dispatches the request to the thank you page, thanks.jsp.

 When errors are encountered, they are packaged as a request attribute before
dispatching back to form.jsp, from whence it came. When this request is processed
by the JSP, both the original request parameters and the list of error messages are
present. The <jsp:useBean> tag creates an instance of FormBean and uses a wild
card to populate it from this new request with the original form data. Just prior to
displaying the form, we must check for the presence of the error list, looping
through and displaying each one as a bullet in an unordered list:

<%
  String[] errors = (String[])request.getAttribute("errors");
  if (errors != null && errors.length > 0) {
%>
<b>Please Correct the Following Errors</b>
<ul>
<% for (int i=0; i < errors.length; i++) { %>
<li> <%= errors[i] %>
<% } %>
</ul>
<% } %>

The thank you page
When the form is successfully submitted, we again populate a fresh bean with data
from the successful request. This allows us to display the data to the user, with a
message that the form was accurately processed (listing 15.9 and figure 15.11).   



458 CHAPTER 15

Performing common JSP tasks
<jsp:useBean id="form" class="validate.FormBean">
  <jsp:setProperty name="form" property="*"/>
</jsp:useBean>
<html>
<body bgcolor="white">
<b>Thanks! Your form as been received.</b>
<ul>
<b>Name:</b> <jsp:getProperty name="form" property="name"/><br>
<b>Email:</b> <jsp:getProperty name="form" property="email"/><br>
<b>SSN:</b> <jsp:getProperty name="form" property="ssn"/><br>
</ul>
</body>
</html>

15.6 Building a shopping cart

One of the questions we were most frequently asked after the first edition of this
book is “How do I build a shopping cart?” Every e-commerce site on the net makes
use of such a component, allowing shoppers to browse the site accumulating items
for eventual purchase. This example shows one way to build a simple, session-based
shopping cart. It is not meant to be a commercial-ready software component, but
should put you well on your way to building your own component that meets the
unique needs of your site.

Listing 15.9 thanks.jsp

Figure 15.11 Form successfully processed



Building a shopping cart 459
15.6.1 Overview

The basic operation of a shopping cart is centered around a JavaBean placed into
the user’s session when they first visit the site. This bean, ShoppingCart, must be
able to store a collection of items, each with its own description, part number, price
and other properties. Each time the user selects an item to add to the cart, the
ShoppingCartBean is called up and the item added to it. Each time the user adds an
item, or when the user is ready to check out, we’ll want to give the option of look-
ing at the items in the cart to view the total and modify the selections. There are
dozens of different shopping cart interfaces, but ours will  give the option of
removing items one at a time. We’ll also want to keep subtotals as well as a grand
total for the contents of the cart. The resulting full shopping cart is shown in
figure 15.12.

 The JSP file which displays the contents of the cart will only need to lay out the
table and invoke the bean from the session. The subtotals and currency formatting
will all come from the bean itself. I’m sure you can probably make a nicer looking
cart then we did. We’ll get to the actual implementation shortly, but let’s look at the
catalog page.

Figure 15.12 The shopping cart in action



460 CHAPTER 15

Performing common JSP tasks
15.6.2 The catalog page

The catalog page shows a list of items for sale and allows the users to add one of
them to their cart. Each item could, of course, be on a separate page. Since descrip-
tions change and would be unwieldy, we’ll key item selections off of a unique part
number. Almost all e-commerce applications operate on such a concept, such as the
UPC code you find on items in the grocery store. The shopping cart page will be
responsible for not only displaying the cart’s contents, but adding and removing
items as well. So, we’ll make each item link to the shopping cart and pass in its part
number as a request parameter. We need to be able to remove items as well, so we’ll
have two different request parameters:

shoppingcart.jsp?addItem=partnumber
shoppingcart.jsp?removeItem=partnumber

How the shopping cart responds to these parameters we’ll soon see. The finished
catalog page is shown in figure 15.13 and the code shown in listing 15.10. Notice
that the catalog page in this example is straight HTML. In real life however, you
would probably generate your product listing dynamically, so we went ahead and
made it a JSP.

<html>
<body bgcolor="white">
<h2>Catalog Items</h2>
<p>Select an item to add to your shopping cart:
<ul>
<li> <a href="shoppingcart.jsp?addItem=T7535">Light Cycle
<li> <a href="shoppingcart.jsp?addItem=T9515">Grid Bug Repellent
<li> <a href="shoppingcart.jsp?addItem=T8875">Digital Tank Grease
<li> <a href="shoppingcart.jsp?addItem=T6684">Input/Output Hat
</ul>
</p>
<p>
<a href="shoppingcart.jsp">View Shopping Cart</a>
</p>
</body>
</html>

15.6.3 ShoppingCartItem and InventoryManager

Since each item in our cart will have multiple properties, we’ll need a supporting
bean to represent each item. For our shopping cart we’ve elected to also store a

Listing 15.10 catalog.jsp



Building a shopping cart 461
quantity for each item, making it easier to deal with multiple items of the same type.
We’ve also added methods for calculating and displaying the price of the item, and
the extended price (the subtotal for items of that type, the price x the quantity).
The pricing and other information comes from a class called InventoryManager. In
our example, InventoryManager contains a hard-coded list of parts and their
prices. In a real application, this is where you would pull the item information from
the database. If different types of items had different business rules (like quantity
discounts) you might want to make ShoppingCartItem an interface or base class,
extending the functionality as necessary to support unique business requirements.

 One tricky aspect of shopping carts that we don’t address in this example is how
to deal with price changes and availability of goods. If I place an item in my shop-
ping cart when it is priced at $5, then the price is raised to $10, what am I billed at
checkout? Am I grandfathered in at the old price? Are items removed from inven-
tory when they go into the cart, or is availability verified at checkout? There are a
lot of business issues that must be determined when building your own.

Figure 15.13 The Catalog Page



462 CHAPTER 15

Performing common JSP tasks
 The code for ShoppingCartItem and InventoryManager is shown in listings
15.11 and 15.12. Note that for some accessors, we just delegate to the Inventory-
Manager, but this approach simplifies the shopping cart display as you’ll see later.
We’ve also implemented the equals() method, allowing us to use the items in a
HashTable or other Collection class. The class has been made serializable in case we
want the server to be able to persist the items (as part of our ShoppingCart).

package wdjsp;

import java.text.*;
import java.io.*;

public class ShoppingCartItem implements Serializable {
  private String itemNumber;
  private int count;
  private NumberFormat currencyFormat;

  public ShoppingCartItem(String itemNumber) {
    this.itemNumber = itemNumber;
    this.count = 1;
    currencyFormat = NumberFormat.getCurrencyInstance();
  }

  public int getCount() {
    return count;
  }

  public String getItemNumber() {
    return itemNumber;
  }

  public String getDescription() {
    return InventoryManager.instance().getDescription(itemNumber);
  }

  public String getUnitPriceString() {
    double price = getUnitPrice();
    return currencyFormat.format(price);
  }

  public double getUnitPrice() {
    double price = InventoryManager.instance().getPrice(itemNumber);
    return price;
  }

  public String getExtendedPriceString() {
    double price = getExtendedPrice();
    return currencyFormat.format(price);
  }

Listing 15.11 ShoppingCartItem.java



Building a shopping cart 463
  public double getExtendedPrice() {
    double price = InventoryManager.instance().getPrice(itemNumber);
    return price * count;
  }

  public void incrementCount(int delta) {
    count = count + delta;
  }

  public boolean equals(Object o) {
    if (! (o instanceof ShoppingCartItem)) {
      return false;
    }
    else {
      ShoppingCartItem item = (ShoppingCartItem)o;
      return item.getItemNumber().equals(this.itemNumber);
    }
  }

  public int hashCode {
    return item.hashCode();
  }

}

package wdjsp;

import java.util.*;

public class InventoryManager {
  private static InventoryManager instance;
  private Map descriptions;
  private Map prices;

  public static InventoryManager instance() {
    if (instance == null) {
      instance = new InventoryManager();
    }
    return instance;
  }

  private InventoryManager() {
    // load up some hard coded descriptions
    descriptions = new HashMap();
    descriptions.put("T7535", "Light Cycle");
    descriptions.put("T9515", "Grid Bug Repellent");
    descriptions.put("T8875", "Digital Tank Grease");
    descriptions.put("T6684", "Input/Output Hat");
    // and some prices
    prices  = new HashMap();
    prices.put("T7535", new Double(1003.10));

Listing 15.12 InventoryManager.java



464 CHAPTER 15

Performing common JSP tasks
    prices.put("T9515", new Double(20.12));
    prices.put("T8875", new Double(10.50));
    prices.put("T6684", new Double(19.95));
  }

  public double getPrice(String sku) {
    if (prices.containsKey(sku)) {
      return ((Double)prices.get(sku)).doubleValue();
    }
    else {
      return 0D;
    }
  }

  public String getDescription(String sku) {
    if (descriptions.containsKey(sku)) {
      return (String) descriptions.get(sku);
    }
    else {
      return "No Description Available";
    }
  }
}

15.6.4 The ShoppingCart bean

Finally, we are ready to discuss the ShoppingCart bean itself. The ShoppingCart
bean is built around an item list (an ArrayList, which is like a Vector) which will
hold the ShoppingCartItems we built earlier, as each is added to the cart. Since
items have a quanity property (count) we only need to store one copy of each one,
incrementing that copy’s count if we already have one in our cart. To add and
remove items from the cart we’ve implemented the private changeItemCount
method which accepts an increment (positive or negative). This allows us some flex-
ibility and keeps the list management logic in a single place. A convenience method
was added to total all the items in the cart as well, and the class has been made seri-
alizable to support container persistence (listing 15.13).

package wdjsp;

import java.util.*;
import java.text.*;
import java.io.*;

public class ShoppingCart implements Serializable {
  private List items;

Listing 15.13 ShoppingCart.java



Building a shopping cart 465
  private NumberFormat currencyFormat;

  public ShoppingCart() {
    items = new ArrayList();
    currencyFormat = NumberFormat.getCurrencyInstance();
  }

  public void setAddItem(String itemNumber) {
    changeItemCount(itemNumber, 1);
  }

  public void setRemoveItem(String itemNumber) {
    changeItemCount(itemNumber, -1);
  }

  public ShoppingCartItem getItem(int i) {
    return (ShoppingCartItem)items.get(i);
  }

  public int getItemSize() {
    return items.size();
  }

  public String getTotalPrice() {
    Iterator i = items.iterator();
    double price = 0.00;
    while (i.hasNext()) {
      ShoppingCartItem item = (ShoppingCartItem)i.next();
      price += item.getExtendedPrice();
    }
    return currencyFormat.format(price);
  }

  private void changeItemCount(String itemNumber, int delta) {
    ShoppingCartItem item = new ShoppingCartItem(itemNumber);
    if (items.contains(item)) {
      // change the count for this item
      ShoppingCartItem existingItem;
      existingItem = (ShoppingCartItem)items.get(items.indexOf(item));
      existingItem.incrementCount(delta);
      if (existingItem.getCount() <= 0) {
        items.remove(existingItem);
      }
    }
    else {
      // new item, store it if positive change
      if (delta > 0) {
        items.add(item);
      }
    }
  }
}



466 CHAPTER 15

Performing common JSP tasks
15.6.5 Displaying the shopping cart

This page has three functions. First and foremost, it displays the contents of the
user’s shopping cart. It also handles additions and removals from the cart. Don’t
worry, we’ve done the hard parts already. Actually displaying the contents of the
shopping cart, and hooking up the ability to add and remove items is pretty easy.
We’ve cheated a bit, and used a custom tag from chapter 18 to loop through the
items in the cart. For now, just understand that the <mut:forProperty>…</
mut:forProperty> creates a loop similar to the scriptlet:

<%
for (int i=0; i < cart.getItemSize(); i++) {
  ShoppingCartItem item = cart.getItem(i);
%>
// jsp code here
<% } %>

Aren’t the custom tags prettier? Just thought we would tweak your interest in
things to come a bit. Inside the loop we just access the item’s properties to display
the price, description, and so forth. We use each item’s part number to build the
removal links as we loop through the cart. The interesting lines are at the top:

<jsp:useBean id="cart" class="wdjsp.ShoppingCart" scope="session"/>
<jsp:setProperty name="cart" property="addItem" param="addItem"/>
<jsp:setProperty name="cart" property="removeItem" param="removeItem"/>

The <jsp:useBean> tag pulls the cart from the user’s session (or creates one if it
doesn’t exist) while the <jsp:setProperty> tags take care of adding and removing
items. While this doesn’t exactly follow the typical setPropertyName naming
scheme, it works the same. Behind the scenes the setRemoveItem method gets
called, with the item number as the argument. Maybe a better property name might
be itemForRemoval with the method setItemForRemoval. Regardless of which
you prefer they work the same. If either of the request parameters is not set (and in
our case only one of them should be in each case) the <jsp:setProperty> tag is
ignored. Notice that we don’t try to instantiate ShoppingCartItem objects and pass
them into the ShoppingCart; all we need is the part number. The ShoppingCart
will create the item if necessary. The listing is shown in listing 15.14.

<html>
<body bgcolor="white">
<%@ taglib uri="/mutlib" prefix="mut" %>
<jsp:useBean id="cart" class="wdjsp.ShoppingCart" scope="session"/>

Listing 15.14 shoppingcart.jsp



Miscellaneous tasks 467
<jsp:setProperty name="cart" property="addItem" param="addItem"/>
<jsp:setProperty name="cart" property="removeItem" param="removeItem"/>

<h2>Your Shopping Cart</h2>
<table border="1">
<tr><th>Item #</th><th>Description</th><th>Qty.</th>
<th>Unit Price</th><th>Extended Price</th><th>&nbsp;</th></tr>
<mut:forProperty name="cart" property="item" id="item"
className="wdjsp.ShoppingCartItem">
<tr>
<td><jsp:getProperty name="item" property="itemNumber"/></td>
<td><jsp:getProperty name="item" property="description"/></td>
<td><jsp:getProperty name="item" property="count"/></td>
<td><jsp:getProperty name="item" property="unitPriceString"/></td>
<td><jsp:getProperty name="item" property="extendedPriceString"/></td>
<td><a href="shoppingcart.jsp?removeItem=<jsp:getProperty name="item"
property="itemNumber"/>">remove</a></td>
</tr>
</mut:forProperty>
<tr>
<td align="right" colspan="4"><b>Total:</b></td>
<td><jsp:getProperty name="cart" property="totalPrice"/></td>
<td>&nbsp;</td>
</tr>
</table>

<p>
<a href="catalog.jsp">Return To Catalog</a>
</body>
</html>

15.7 Miscellaneous tasks

We conclude this chapter with a set of short examples that demonstrate three addi-
tional common tasks. Rather than demonstrate broad principles, however, these
examples are focused on implementing very specific functionality. As such, only
brief discussions are provided to clarify the accompanying code.

15.7.1 Determining the last modification date

Having a JSP page display its last modification date turns out to be trickier than you
might think. We first have to map the page’s path to a physical file on disk. We can
use the getServletPath() method of the request implicit object to determine its
path relative to the application, then use the application implicit object (an
instance of ServletContext) to determine the real path to the underlying JSP file.
This in turn allows us to create a Date object, based on the last modification time of
the JSP file itself: 



468 CHAPTER 15

Performing common JSP tasks
    <%@ page import="java.io.*,java.util.*" %>
    <% File f =
         new File(application.getRealPath(request.getServletPath())); 
    %>
    <% Date modified = new Date(f.LastModified()); %>
    <HTML>
    <BODY>
    This page last modified on: <%= modified %>
    </BODY>
    </HTML>

Based on the brevity of this code and its general utility, one might consider packag-
ing this functionality so that it may be easily reused. One mechanism for doing this
is to create a small JSP page that can be incorporated into other JSP pages via the
include directive. (Note that the <jsp:include> tag is not an option here, as it
would end up computing the last modification date of the included file.)
Alternatively, a custom tag could be created which uses similar code to compute
and insert the last modification date.

15.7.2 Executing system commands

Just like other Java programs, you can use JSPs to execute external commands. You
can even use the Java Native Interface to execute native code stored inside libraries
or DLLs. (Remember, of course, that we are talking about code native to the plat-
form of the server, not the client, since JSP pages are executed on the server.) If you
are converting your CGI scripts to JSPs and servlets, or building front ends to sys-
tem administration tasks, the following code example shows how you can display
the results of executing a command on the server. This example displays the current
uptime and load average for a UNIX server, as reported by the server’s /usr/bin/
uptime command.

<%@ page import="java.io.*" %>
<%!
public String runCmd(String cmd) {
  try {
    Runtime rt = Runtime.getRuntime();
    Process p = rt.exec(cmd);
    InputStreamReader in = new InputStreamReader(p.getInputStream());
    BufferedReader reader = new BufferedReader(in);
    StringBuffer buf = new StringBuffer();
    String line;
    String newline = "\n";
    while ((line = reader.readLine()) != null) {
      buf.append(line);
      buf.append(newline);
    }



Miscellaneous tasks 469
    reader.close();
    p.getInputStream().close();
    p.getOutputStream().close();
    p.getErrorStream().close();
    p.waitFor();
    return buf.toString(); 
  }
  catch (Exception e) {
    return (e.getMessage());
  }
}
%>
<html>
<body>
The system uptime is currently: <%= runCmd("/usr/bin/uptime") %>
</body>
</html>

Note that we are using an instance of java.io.BufferedReader in this example,
reading output one line at a time. This is the most efficient method—especially for
large amounts of data (unlike our example). Additionally, recall that, by default, JSP
pages have an 8 KB buffer. As a result, we won’t see the results of long-running
commands immediately, but rather in 8 KB bursts. If your application demands that
buffering be turned off, you will need to modify the loop of the runCmd() method
to grab each character from the input stream, rather than buffered lines, and you’ll
also need to disable buffering on the page. In this case, replace the initial lines of
the previous example with:

<%@ page buffer="none" import="java.io.*" %>
<%!
public String runCmd(String cmd) {
  try {
    Runtime rt = Runtime.getRuntime();
    Process p = rt.exec(cmd);…
      InputStreamReader in = new InputStreamReader(p.getInputStream());
      int c;
      StringBuffer buf = new StringBuffer();
      while ((c = in.read()) != -1) {

    buf.append((char)c);
      }
    ...



 16Generating
non-HTML content
This chapter covers
� How JSP generates different content formats

� The relationship between the browser and a 
document’s MIME type

� How to create text, XML, and even 
spreadsheets with JSP
470



Working with non-HTML content 471
16.1 Working with non-HTML content

The most popular use of JSP is to generate dynamic HTML in support of web appli-
cations. Because of this, one of the misconceptions many developers have about JSP
is that it is exclusively geared toward generating dynamic HTML. In fact, JSP can
generate just about any type of textual data required. On the web this capability can
be used to display a single piece of information in a variety of formats, supporting a
variety of clients or end user applications. For example, JSPs can be used to display
database records as XML, HTML, WML, or even an Excel spread sheet.

 To generate other forms of content with JSP it is important to understand that
JSP is simply a dynamic content creation language and not an HTML generator. The
JSP language doesn’t contain any HTML specific tags—it only generates what you
tell it to. There isn’t a JSP tag that results in bold text or an HTML table. All of this
is specified by the page designer, forming a template into which JSP generates
dynamic data.

 In this chapter you will see some of the often-overlooked flexibility that JSP pro-
vides for generating different types of dynamic content, for the browser or other-
wise. Once you grasp the simple elegance of the JSP architecture, realizing that it’s
about content not format, the sky’s the limit.

16.1.1 The importance of MIME

The key to generating different types of dynamic content is understanding the rela-
tionship between web content, the browser, and MIME types. When a web server
returns data to the browser it must identify the type of information it is delivering
by setting the document’s content type. This content type identifier is expressed as
a text code known as the MIME type, a value contained in the HTTP response
header behind the scenes. The MIME system itself was originally created for
expressing the nature of email attachments (hence M.I.M.E—the Multipurpose
Internet Mail Extensions) but has now expanded to identify content for everything
from helper applications to browser plug-ins.

 The MIME type of a document is used by the browser to determine exactly how
the information should be interpreted and displayed. For example, image files have
a content type of image/gif or image/jpg, while HTML is identified through the
type text/html. When the server returns a static file, it typically uses the file’s exten-
sion to determine the appropriate content type for the data. This mapping between
file extension and MIME type is specified in the server’s configuration, or for J2EE
web applications in the web.xml deployment descriptor.



472 CHAPTER 16

Generating non-HTML content
16.1.2 Controlling the content type

For JSP pages you can specify the content type of any page through the content-
Type attribute of the page directive. This attribute sets the MIME type and if
unspecified, defaults to the familiar text/html response code. Most of the time this
is appropriate, but as we’ll see it is sometimes necessary to specify an alternate con-
tent type in order to generate non-HTML data. Here’s an example of setting the
MIME type to force a plain text display:

<%@ page contentType=”text/plain” %>

The page directive’s contentType attribute can also be used to specify an alternate
character set for the JSP page, enabling the display of localized content using the
language encoding most appropriate for the text. The character set is specified after
the MIME type, as part of the contentType attribute. For example, the following
directive specifies an HTML response using the ISO-8859-1 character set, which is
as it turns out the default:

<%@ page contentType=”text/html; charset=ISO-8859-1” %>

Of course setting the MIME type only tells the browser what to expect, and has no
effect on the actual data being sent. It is up to the page designer to create content
which corresponds to the desired content type and then it is up to the browser to
interpret that data appropriately. The browser bases its decision on not only the
content type, but in some cases the extension of the requested file as well. This is
another important point, as we will see later.

16.1.3 Detecting your client

To determine what type of content to return, the first step is analyzing the client
browser to determine the most appropriate format for it. For example, a Netscape
browser might best be sent HTML, while you may wish to send a plain text version
of your document for text only browsers such as Lynx, or a WML optimized page
for cell phone users.

Keying off of the user-agent
The most obvious way to determine the type of browser you are dealing with is by
reading the User-Agent header. Every HTTP request includes this header to identify
the browser. For example, Internet Explorer sets the header’s value to: Mozilla/4.0
(compatible; MSIE 4.01; Windows NT). (If you are wondering about the Mozilla
business, that’s IE trying to look like Netscape—an artifact of the browsers wars.)
The User-Agent generally identifies the browser’s developer, version, and platform.
Unfortunately there’s no set format for the structure of the User-Agent string,



Working with non-HTML content 473
making them difficult to parse. For just Netscape and IE alone there are over a hun-
dred variations between all of the versions and platforms. A number of commercial
products, such as BrowserHawk from cyScape, specialize in detecting the browser
type and translating it to a list of capabilities. Generally, this is good for getting a
general idea that you are talking to a PC-based web browser. The header is easy to
get to, just use the getHeader method of the request object. For example:

<% if ((request.getHeader(“User-Agent”).indexOf(“MSIE”) != -1) { %>
Welcome Internet Explorer User!
<% } else { %>
Welcome patriot!
<% } %>

This method of detecting your client can be a good way to fine-tune your content
to meet the quirks of the browsers’ makers varying support for standards. It is also a
good way to address support for very narrow sets of clients. Say for example your
field sales force uses a web-enabled phone to access the corporate intranet. By
detecting the phone’s unique User-Agent string, you can tailor your content appro-
priately. For a more generic approach, there’s another way.

Keying off of the accept header
Many modern web clients, especially those with particularly restrictive vocabularies
set the Accept header to indicate the formats of content that they understand. This
can be a great way to negotiate with the browser to determine the appropriate type
of content to return. Not only does it specify the types of content it is willing to
accept, but it ranks them in terms of preference, and for some formats quality level.
This header’s content can change from request to request, depending on the con-
text in which the browser is operating. When the browser requests an image for
example (in response to an <IMG> tag) it informs the server that it will only accept
image data in return. Cell phones looking for WAP content would generally include
the following in the Accept header: text/vnd.wap.wml. Such content of the Accept
header is usually a sure sign of support, and generally the best way to separate one
type of client from another.

16.1.4 Designing multiformat applications

The modern web, if you can call it that, is a complex place. Not only are there dozens
of browser versions and software platforms, but now we have Palm Pilots, Windows
CE devices, cell phones, voice browsers, robots and who knows what else. Often
these devices support significantly different types of content. For instance cell phones
make use of WML, while the Palm Pilot uses its own special HTML extensions for its
wireless web clipping applications. Supporting multiple types of content can provide



474 CHAPTER 16

Generating non-HTML content
its own set of challenges. If your application will be accessible from a variety of clients
you have several options on how to organize your content effectively.

 There are a number of strategies for actually organizing your content and rout-
ing it appropriately. The best choice for your application depends on a number of
factors, including your own personal tastes. Like any architectural decision there are
tradeoffs at every corner.

 The most straightforward approach would be to maintain separate hierarchies of
content, one for each type of client you plan to support. For example, your WML ver-
sion of the site could live under /wml, and more traditional content gets stored under
/html. Either have your clients direct themselves to the appropriate path, or use one of
the client detection techniques we discussed earlier to enact the routing automatically.

 Another useful technique can be to ask the user which type of content they pre-
fer. This eliminates the need for browser detection, at the expense of requiring user
input. After selection is made, you can set a cookie to make their choice stick.

16.1.5 Controlling the file extension

Often the MIME type indicates a content type that can’t be displayed directly in the
browser. When this happens the browser passes the file off to a helper application or
a plug-in. This is often the case with media files, spread-sheets, and the like. Once
the document is passed to one of these helper applications, it uses the file extension
to determine the type of data it is loading. If the document was generated through
JSP and downloaded from the web, it typically ends in .jsp, an extension that means
nothing to the helper application. What we want to do is create a JSP file that
appears (at least to the browser and helper application) to have an extension appro-
priate for the content type in question. Of course changing the name of our file
directly doesn’t work because our web server needs the .jsp extension to recognize
the file as a JSP source file that should be rendered before delivery. Since we can’t
change the file name, we have to create an alias to it with the desired extension.
This can be done through the web.xml file, the deployment descriptor used when
deploying J2EE applications.

 Using the <servlet> container tag we name a new servlet, using the JSP file that
generates our document data, as shown in the following excerpt. Note that as far as
the deployment descriptor is concerned JSPs are just servlets. The name we choose is
arbitrary, but must be unique to the application, as it is used as a label for identifying
the servlet  throughout the deployment descriptor. In this case, we’ll call it myPage.

<servlet>
  <servlet-name>myPage</servlet-name>
  <jsp-file>/myPage.jsp</jsp-file>
</servlet>



Text content formats 475
Now that we have named the servlet (masquerading behind our JSP file) we can
assign that servlet to any URL we’d like through the <servlet-mapping> container
tag, again in our web.xml deployment descriptor. In this example, we’ll map the file
to a .txt extension, indicating a plain text file.

<servlet-mapping>
  <servlet-name>myPage</servlet-name>
  <url-pattern>/myPage.txt</url-pattern>
</servlet-mapping>

Changing the file name and/or extension can also be useful if you want to hide the
fact that you are using JSP or want to create URLs that are the same for both static and
dynamic content. See chapter 14 for more information on the deployment descriptor.

16.2 Text content formats

While it has special meaning to an Internet browser, HTML is in essence plain text.
By extension, JSPs can be used to create a variety of other text-based formats, from
plain ASCII text to complicated XML formats.

16.2.1 Plain text output

Now that we understand how to control the content type specification of a page,
let’s learn how to control the page content itself. Let’s start with something simple,
straight ASCII text. Listings 16.1 and 16.2 show two examples of a classic Hello,
World style JSP program, one that generates formatted HTML as output and another
resulting in plain text.

<%@ page contentType=”text/html” %>
<html>
<body>
<h1>Hello World</h1>
Greetings world, the date is <%= new java.util.Date() %>.
</body>
</html>

<%@ page contentType=”text/plain” %>
Hello World
Greetings world, the date is <%= new java.util.Date() %>.

Listing 16.1 HelloWorldHTML.jsp

Listing 16.2 HelloWorldASCII.jsp



476 CHAPTER 16

Generating non-HTML content
Both programs produce similar output, but if you try them out you’ll see that the
first example has full HTML layout while the second is shown as plain text, includ-
ing fixed width font and hard formatting, similar to output you might see using
HTML’s <pre> tag. Unfortunately, browsers don’t always interpret the content as
you might expect. Internet Explorer for example tends to ignore the text/plain
content type for any content that contains valid HTML tags, interpreting and dis-
playing the content as HTML instead. One can only guess that Microsoft is trying
to be helpful in displaying pages with what it assumes must be an incorrectly set
MIME type. So much for standards.

16.2.2 WYGIWYG output (what you generate is what you get)

One thing to watch for when using JSP to create non-HTML content is the han-
dling of white space. When JSP pages are parsed by the servlet engine white space
(tabs, spaces, carriage returns, and new lines) is handled according to XML conven-
tions; it is considered insignificant but is nonetheless preserved. Translation—if you
don’t want white space in your output you can’t include it in the JSP source page.
When dealing with HTML it’s usually acceptable to have extraneous white space
hanging around because the browser crunches it all together, wrapping the text as
necessary. Not so for plain text. What you generate is what you get. For example
look at the following text. It displays as a single line when interpreted as HTML by
the browser, but as three distinct lines of text when viewed as plain text.

This is line 1.
This is line 2.
This is line 3.

While HTML is certainly more forgiving about extra line feeds and white space,
there are circumstances where it becomes important to be aware of what’s happen-
ing, namely when specifying attribute values. Take for example the following
excerpt of JSP code that creates an <img> tag from a file name stored as a String
property of a JavaBean:

<img src=”
<jsp:getProperty name=”branding” property=”logoURL”/>
”>

The resulting page shows a broken image placeholder where our logo should have
been, even though we verified that the bean contains the property URL. What
could be happening? We can use the browser’s ability to view the HTML source to
find out. After parsing by the servlet engine, the following HTML code is returned
to the browser:



XML documents 477
<img src=”
/images/logo.gif
”>

Aha! The extra line feed was retained, creating a bogus file name reference. This is
not a bug, it’s doing exactly as it is supposed to, preserving white space. To correct
the problem we have to modify the JSP code to make sure that no extra white space
ends up in the value of the image tag’s src attribute.

<img src=”<jsp:getProperty name=”branding” property=”logoURL”/>”>

There’s no rule that requires everything to be on a single line, but we must avoid
introducing spaces where things will cause problems. Remember that HTML and
XML ignore white space between attributes and tags, making this a good place to
break the line. Alternatively therefore we could write:

<img
src=”<jsp:getProperty name=”branding” property=”logoURL”/>”
>

16.3 XML documents

Generating XML data from a JSP page is not very different from generating HTML
or plain text. Instead of our page containing HTML tags however, we are creating
an XML template and using JSP to insert the data. Generating dynamic XML is eas-
ier to maintain through JSP files over using servlets directly. If something changes,
you can simply apply the edits to the JSP page, rather than recompiling. Typically,
you will generate XML in conjunction with a servlet or EJB, which delivers the
actual content to the JSP page via a JavaBean stored in a request attribute. Here’s a
simple example that follows this pattern and displays an employee record, presum-
ably pulled from a backend database:

<%@ page contentType=”text/xml” %><?xml version=”1.0”?>
<jsp:useBean id=”employee” class=”Employee” scope=”request”/>
<employee>
  <name>
    <jsp:getProperty name=”employee” property=”name”/>
  </name>
  <salary>
    <jsp:getProperty name=”employee” property=”salary”/>
  </salary>
</employee>

Listing 16.3 EmployeeXML.jsp



478 CHAPTER 16

Generating non-HTML content
There is an important WYGIWYG gotcha to watch out for when generating XML
like this. While generally forgiving, XML is particularly picky about extraneous
spaces in one specific circumstance, the opening <?xml> tag. It requires no leading
spaces; therefore we must place it flush against our opening page directive to assure
it is the first line of the resulting XML content. Other than that, we are free to
indent and space the elements of the code however we feel is the most readable and
maintainable, but remember that the space will be included in the final output.
Once rendered, the output produced by the above example would look something
like this:

<?xml version=”1.0”>
<employee>
  <name>
    Duane Fields
  </name>
  <salary>
    350K
  </salary>
</employee>

There’s really not much difference between XML and HTML generation, the audi-
ence is just different. Humans and browsers typically prefer HTML, while machines
and servlets better understand data represented as XML. Often we’ll need to use
both types of content in the course of an application. For instance the code above
might be used by an internal process to generate paychecks, while an HTML repre-
sentation might be needed for a manager reviewing his employee’s pay levels. We
can reuse existing backend code, and display the same data with the following
HTML JSP:

<%@ page contentType=”text/html” %>
<jsp:useBean id=”employee” class=”Employee” scope=”request”/>
<html>
<body>
<h1>Employee Record</h1>
<b>Name:</b> <jsp:getProperty name=”employee” property=”name”/>
<b>Salary:</b> <jsp:getProperty name=”employee” property=”salary”/>
</body>
</html>

Listing 16.4 EmployeeHTML.jsp



XML documents 479
16.3.1 Creating voice XML documents

More and more new types of data are being managed through XML. One particu-
larly interesting new format is voice XML, or VXML. VXML is an XML document
format for building interactive voice response systems featuring text-to-speech and
voice recognition. Systems such as telephone banking use interactive voice response
(IVR) to provide automated account access. With VXML, it is easy to build phone
systems that interact with existing enterprise data systems using your existing web
services. A VXML application is composed of VXML documents that specify menus
(“Press 1 for your current balance”) and forms (“Please enter your account num-
ber”). The specification allows the documents to submit the form values back to an
address on the server, much like HTML documents. VXML therefore is an excellent
candidate for generation with dynamic content generation systems such as JSP.

 Without going into the details of the VXML command set, it is enough to
understand that it is simply an XML document that follows the VXML DTD. VXML
can direct systems to prompt users for input (using speech recognition or touch
tones), play audio messages for feedback, and direct the caller to additional infor-
mation. Given that, we treat VXML just like the XML documents we looked at ear-
lier with the one exception. Most VXML phone systems expect a content type of
text/vxml or application/x-vxml to identify that it is indeed a VXML document
and not just any old XML document. Listing 16.5 is an example of a simple VXML
application that validates a user’s logon. The first document, login.vxml, collects
the user’s account number and PIN (personal identification number) and submits
that data to the second page, validateLogin.jsp (listing 16.6). The account is vali-
dated (or invalidated) and an appropriate response is generated.

<?xml version="1.0"?>
<vxml version="1.0">

  <!-- keep track of login attempts -->
  <var name="attempts" expr="1"/>

  <!-- the login form -->
  <form id="login">
    <field name="account" type="digits">
      <prompt>
         <audio src="">
         Welcome to MegaBank. Please say or enter your account number.
         </audio>
      </prompt>
    </field>

Listing 16.5 login.vxml



480 CHAPTER 16

Generating non-HTML content
    <field name="pin" type="digits">
      <prompt>
        <audio src="">
        Please say or enter your PIN.
        </audio>
      </prompt>
    </field>

    <block>
      <audio src="">
      Please wait while we access your account.
      </audio>
    </block>

    <subdialog src="validateLogin.jsp" namelist="account pin" caching=”safe”>
      <catch event="event.login.success">
        <goto next="welcome.vxml"/>
      </catch>
      <catch event="event.login.failure">
        <assign name="attempts" expr="attempts + 1"/>
        <if cond="attempts > 3">
          <goto next="#tooManyAttempts"/>
        </if>
        <audio src="">
        Invalid login. Please try again.
        </audio>
        <goto next="#login"/>
      </catch>
    </subdialog>    
  </form>

   <!-- too many invalid login attempts -->
  <form id="tooManyAttempts">            
    <block>
      <audio src="">
      Too many invalid login attempts. Goodbye.
      </audio>
      <goto next="#goodbye"/>
    </block>
  </form>

   <!-- hangup -->
  <form id="goodbye">
    <block>
      <exit/>
    </block>
  </form>
 </vxml>



XML documents 481
<?xml version="1.0"?>

<%@ page contentType="text/vxml" %>

<%
String account = request.getParameter("account");
String pin = request.getParameter("pin");
String event = null;

ValidatePhoneUserCommand validator =
  new ValidatePhoneUserCommand(account, pin);
SystemEngine.instance().executeCommand(validator);
if (validator.isValidAndActive()) {
  ObjectID userId = validator.getUserId();
  StartSessionCommand sessionCmd = new StartSessionCommand(userId);
  SystemEngine.instance().executeCommand(sessionCmd);
  String sessionId = sessionCmd.getSessionID().toString();
  Cookie cookie = new Cookie("session", sessionId);
  cookie.setPath("/phone");
  cookie.setMaxAge(-1);
  response.addCookie(cookie);
  event = "event.login.success";
}
else {
  event = "event.login.failure";
}
%>

<vxml version="1.0">
  <form>
    <block>
      <return event="<%= event %>"/>
   </block>
  </form>
</vxml>

As you can see the validateLogin.jsp page delivers a valid VXML document which
returns an event that the main page reacts to. When we call the page through the
<subdialog> tag, note that we are careful to use the caching="safe" attribute to
assure that the VXML browser (the phone) doesn’t cache the results of our valida-
tion by mistake. Safe caching tells the phone browser to always go back to the
server to ensure that it has the latest content. Another way to use JSP with VXML is
to simply generate the forms themselves. However, by keeping the main application
as VXML files you can achieve a more flexible deployment.

Listing 16.6 validateLogin.jsp



482 CHAPTER 16

Generating non-HTML content
16.4 External content

We learned earlier how JSP can include JSP or HTML content at request time
through the <jsp:include> action and the <%@ include %> directive. Beyond this,
HTML itself allows for several forms of embedded content that cause data included
by the browser at request time. Images, style sheets, JavaScript libraries, applet
code, media files are all considered forms of external content that is referenced
through the requested document and not actually contained within it. An <img>
tag for example, has a src attribute which specifies a remote image document to be
included in the context of the page.

 External content is imported into the document by the browser, not the server,
and thus happens subsequent to the original request. What happens is this: the ini-
tial request is made, either to a JSP page, a servlet, or a static HTML document. The
source is scanned for references to external content (such as the <img> tag) which
are then retrieved (usually two or three at a time in parallel) and made available to
the original content. You can think of this process as a “client-side include” mecha-
nism, even if it’s not necessarily a literal cut-and-paste like server-side includes. 

 These subsequent requests for content are unique requests against the server
generated by the browser itself and do not share the properties of the original
request, such as request parameters. Likewise, these subsequent requests do not
share the request scope of the original request and therefore cannot access request
attributes such as JavaBeans available to the original request. However, because
these requests originate from the same browser session as the original request, they
share the same session and contain cookies, authentication headers, user agent
information, and the like. This means that they can take advantage of user specific
information stored in the session or application contexts. Additionally, these
requests will include a reference to their referrer, the URL of the page that originally
requested them.

TIP If you need to pass request parameters to the external content requests, you
can do so by dynamically appending the request parameters to the remote
document via URL rewriting.

The most common example of this is the HTML <img> tag, which allows the
browser to issue follow-on requests for image data. While JSP is probably not appro-
priate for generating dynamic images (although a servlet certainly is), there are two
other forms of embedded content that can be quite easily controlled through JSP:
style sheets and JavaScript. One advantage is that because this is a client-side



External content 483
technique, it allows static HTML pages to include some form of dynamic content,
even if the local server does not support a technology such as JSP.

WARNING One downside is that older browsers don’t support external style sheets or
JavaScript source, however the 4.0 and 5.0 browsers do, as do some of the
3.0 browsers. If you plan to rely on these features in your site, make certain
that your audience can take advantage of them. 

16.4.1 JSP style sheets

The most common use for style sheets in web publishing is to provide a standard-
ized look and feel for all of the pages on the site, without having to stylize the col-
ors, fonts, and layout of each page separately. To this end browsers can make use of
the <link> tag to embed references to external style sheet documents into their
HTML. Typically, the link tag looks like this:

<link rel="stylesheet" type="text/css" href="style.css">

It is important to understand that the href attribute that defines the external style
sheet is pointing to the URL of a document somewhere out on the network. The
document doesn’t have to be local to the current server, and it doesn’t even have to
have a .css extension. After loading the initial page, the browser will spawn an addi-
tional request to download the style sheet. Regardless of the location or file exten-
sion, the browser will expect what comes back from the server to be only a list of
CSS style directives. No HTML is allowed. A typical style sheet then might contain
something like the following:

P { color: red; font-size=14pt;  margin-left: 2em; }
P.hilite { background-color: yellow; }

Since this style information is just text, we are free to create our own style sheet
through JSP, allowing us to customize the style on a per-request, or per-session basis.
We’re not going to go into the details of how style sheets work. If you aren’t familiar
with them all you need to know is that they tell the browser how different content
elements (such as tables, paragraphs, etc.) should look and be laid out. In this simple
example (listing 16.7) we’ll create a style sheet that creates a random color scheme
by selecting a new combination of background, text, and anchor colors for each
page request.



484 CHAPTER 16

Generating non-HTML content
<%@ page contentType="text/css" %>
<%!
String[] colors = { "red", "green", "blue", "yellow", "black", "white" };

private String getRandomColor() {
  return colors[(int)(Math.random() * colors.length)];
}
%>

BODY { background-color: <%= getRandomColor() %> }
P { color: <%= getRandomColor() %> }
A:link { color: <%= getRandomColor() %> }
A:active { color: <%= getRandomColor() %> }
A:visited { color: <%= getRandomColor() %> }

You can load this page into your browser directly to see the results. Notice how it
changes with each reload. (If it doesn’t, you’ll probably need to modify your brows-
ers caching behavior to assure it reloads the style sheet from the network each time,
or see the caching section in this chapter for information on how to have the page
direct the browser’s caching behavior itself). Here’s a typical result:

BODY { background-color: green }
P { color: black }
A:link { color: yellow }
A:active { color: red }
A:visited { color: blue }

To reference this style sheet in our documents (table 16.8), we make use of the link
tag, substituting the URL of the dynamic style sheet we just created:

<html>
<head>
<link rel="stylesheet" type="text/css" href="random-css.jsp">
</head>

<body>
<p>
Welcome to a page with a random style.
</p>
</body>
</html>

Listing 16.7 random-css.jsp

Listing 16.8 random.html



External content 485
This style sheet can be referenced by any HTML document, including static HTML
and JSP files. It is now accessible from other servers as well. Dynamic style sheets are
a useful way to modify the look and feel of your existing pages without having to
convert the entire site’s web pages to JSP. There are layout effects that can’t be done
without style sheets, like carefully controlling the font size, margins, and borders of
the content. We could take advantage of this technique to allow the user to control
the style of the page recording their choices in their session, and by retrieving this
information to construct our dynamic style sheet. Another useful technique is
adapting the style sheet based on the platform or the vendor of the client’s browser.
For example, we might need to bump up the default font size for UNIX browsers,
or modify a table style to achieve parity between Netscape and Internet Explorer.

16.4.2 JavaScript

Like style sheets, JavaScript can be either included directly in the HTML page, or
imported by the browser at request time. The src attribute of the <script> tag can
be used to specify an external file that contains JavaScript functions, variables, or
commands that should be made available to the page. Typically, this capability is
used to create libraries of JavaScript functions that are available to multiple pages on
the site. A typical reference looks like this:

<script src=”loans.js”>
</script>

And the file loans.js (which could be anywhere on the network) would contain func-
tions to calculate loan payments, interest rates, and so forth. As with style sheets this
file could be a JSP that modified the commands or functions based on the current
users, their browsers, and so on. For example, the functions for calculating loans
might take the user’s local interest or tax rates into account. This provides a way of
centralizing application logic in a single-client side module, by introducing server-
side dependencies.

 A more interesting technique is using dynamic imported JavaScript to pass infor-
mation between the client and the server. In this example we’ll pretend that we run
an online bookstore and we are looking for a way to provide a “book of the month”
that our associates and partners can promote through their own web sites. It’s sim-
ple enough to select a book each month, but we want a way that the partners can
promote it without having to manually change the book’s information each month
and would like to display the current number available for purchase. We also can’t
assume that every affiliate site is running a JSP capable server or has access to serv-
lets. What we can do is provide a dynamic JavaScript library on our server that can



486 CHAPTER 16

Generating non-HTML content
be referenced by HTML on the associate’s server to display information about the
currently selected book. That gives our associates a 100 percent client-side solution,
backed up by our JSP generated JavaScript library. Listing 16.9 is a simplified exam-
ple of the JSP that will form this JavaScript library.

<%
//
// In real-life this information would come from a backend database
// and stored in a bean, rather than through a scriptlet as shown here
String isbn = "1884777996";
String title = "Web Development With JavaServer Pages";
String price = "$44.95";
// We'll fake an every changing inventory
int inventory = (int) (Math.random() * 200);
%>
<!-- JavaScript Variables -->
var isbn = "<%= isbn %>";
var title = "<%= title %>";
var inventory = "<%= inventory %>";
var price = "<%= price %>";

When a request comes in, the information about the current book of the month is
looked up (or in this case made up) and reflected into a series of JavaScript vari-
ables. If you were to request and view this page directly it would look something
like figure 16.1:

Listing 16.9 bookOfTheMonth-js.jsp

Figure 16.1 The fully rendered Book Of The Month selection



Advanced content formats 487
var isbn = "1884777996";
var title = "Web Development With JavaServer Pages";
var inventory = "34";
var price = "$44.95";

When an HTML document requests external JavaScript it interprets all of the
returned data as JavaScript. It shouldn’t be wrapped in <script> or other HTML
tags. In this case, we aren’t defining functions but are declaring global variables that
will be available throughout the page. The associate would reference this external
JavaScript with a page such as listing 16.10, which then uses document.write meth-
ods to display the values stored in the variables.       

<html>

<head>
<script src="http://partner.example.com/jsp/bookOfTheMonth-js.jsp">
</script>
</head>

<body>
Our partner's book of the month:<p>

<b>Title:</b>
<script>document.write(title);</script>
<br>

<b>ISBN:</b>
<script>document.write(isbn);</script>
<br>

<b>Price:</b>
<script>document.write(price);</script>
<br>

<b>Copies Available:</b>
<script>document.write(inventory);</script>
<br>

</body>
</html>

16.5 Advanced content formats

Leaving the world of plain text behind, let us now explore something a little differ-
ent. While not as straightforward, JSP can also be quite helpful in creating more
interesting types of content that you might not expect it capable of at first.

Listing 16.10 bookOfTheMonth.html



488 CHAPTER 16

Generating non-HTML content
16.5.1 Excel spread sheets

In the previous two examples we’ve generated content not targeted at any particu-
lar application; we’ve simply specified the content type and let nature take its
course. In this example (listing 16.11) we’ll create a page that opens directly into
Microsoft Excel. To accomplish this we’ll have to control not only the content type,
but the file extension as well. Remember that despite all of our best efforts, the
server can’t force the client to do something it doesn’t want to do. If the client’s file
associations are different than expected, or for that matter doesn’t have Excel
installed, you’re out of luck. However, if you control the client at least we know it
can be set up to do what we require.

 The content type we’ll want to use in this case is application/x-msexcel, an
application specific association recognized by Excel. Setting this content type will
cause the page to be passed on to Excel, which will rely on the file extension to
determine how to best handle the file. To generate our spread sheet data, we’ll cre-
ate a simple page that displays Java’s system properties as a table of comma sepa-
rated values.

<%@ page contentType="application/x-msexcel" import="java.util.*" %>
"Property Name","Property Value"
<%
Properties sysprops = System.getProperties();
Enumeration keys = sysprops.propertyNames();
while (keys.hasMoreElements()) {
  String name = (String)keys.nextElement();
  String value = sysprops.getProperty(name);
%><%= name %>,<%= value %>
<% } %>

If you were to view this page you’d see that it displays the system properties inside
an Excel spread sheet, assuming your system is configured to handle the applica-
tion/x-msexcel content type. But we’re not done yet. When loading this page into
Excel, it displays both the property name and value fields together in the first col-
umn. Why hasn’t it correctly parsed our data into two columns? The answer lies in
the file extension.

 Excel, like other applications, uses the file extension to determine the type of
data it is loading. In our case the document loaded from the web ends in .jsp, an
extension that means nothing to Excel. What we want to do is create a page with
the extension .csv, which tells Excel that these are comma-separated values, a

Listing 16.11 SystemProperties.jsp



Advanced content formats 489
common way of importing data into a spread sheet. As explained earlier, this can be
accomplished by setting up our own servlet-mapping in the deployment descriptor.

<servlet>
  <servlet-name>SysProps</servlet-name>
  <jsp-file>/SystemProperties.jsp</jsp-file>
</servlet>

<servlet-mapping>
  <servlet-name>SysProps</servlet-name>
  <url-pattern>/SystemProperties.csv</url-pattern>
</servlet-mapping>

Now we can direct the browser to /SystemProperties.csv (relative to the applica-
tion context, if it’s not the default application on the server) and get exactly the
same data as before, but this time with a file extension that Excel knows how to
handle properly.

16.5.2 Code generation

Not all dynamic content is intended for publication. JSP can also be used to gener-
ate configuration files, database schema, and even source code for internal usage. A
novel use of JSP is as an easy code generator. Less typing is always better, and code
generators provide a shor t cut to producing Java code. In this example
(listing 16.12) we build a simple tool to generate JavaBean class files from a list of
properties and their types. Its benefit is obvious from the screenshots in figure 16.2.
This tool can save hours of monotonous typing while reducing errors and encour-
aging consistent style and formatting. While simple, it illustrates a powerful concept
that you can certainly take further and apply to new situations.        

 How it works is simple. A simple HTML form provides class details and a list of
property name/type pairs. The form is submitted to the beanMaker.jsp file shown
in listing 16.12. This file produces plain text as discussed earlier, substituting the
appropriate names to complete the source code. Notice again the WYGIWYG princi-
ple which causes us to pay close attention to formatting, especially line feeds. For
example, to place our package statement on the first line of our output file we have
to jut it up against our content type declaration. Once complete, you can use your
browser’s Save feature to write your generated source file to disk.



490 CHAPTER 16

Generating non-HTML content
<%@ page contentType="text/plain" %>package <%= request.getParameter("pkg") %>;

/**
 * Generated code for the <%= request.getParameter("class") %> class.
 *
 * @author BeanMaker
 */
public class <%= request.getParameter("class") %> {
<% for (int i=1; i < 5; i++) {
  if (! "".equals(request.getParameter("type" + i))) {
    String propertyName = request.getParameter("property" + i);
    String propertyType = request.getParameter("type" + i);
%>  private <%= propertyType %> <%= propertyName %>;
<% } } %>
  public <%= request.getParameter("class") %>() {
    // add constructor code here
  }
<% for (int i=1; i < 5; i++) {
  if (! "".equals(request.getParameter("type" + i))) {

Listing 16.12  A JavaBean Generator

Figure 16.2 A dynamic spread sheet, courtesy of JSP



Advanced content formats 491
    String propertyName = request.getParameter("property" + i);
    String propertyType = request.getParameter("type" + i);%>
  /**
   * Gets the <%= propertyName %> property.
   *
   * @return the <%= propertyName %> value
   */
  public <%= propertyType %> get<%= fixcase(propertyName) %>() {
    return <%= propertyName %>;
  }

  /**
   * Sets the <%= propertyName %> property.
   *
   * @param <%= propertyName %> the new value
   */

Figure 16.3 Java source code, courtesy of JSP



492 CHAPTER 16

Generating non-HTML content
  public void set<%= fixcase(propertyName) %>(<%= propertyType %> <%= proper-
tyName %>) {

    this.<%= propertyName %> = <%= propertyName %>
  }
<% } } %>
}

<%!
private String fixcase(String s) {
  return s.toUpperCase().substring(0,1) + s.substring(1);
}
%>

In this chapter we’ve looked at several HTML alternatives that can benefit from
JSP’s dynamic content generation capabilities. These are just a few of the formats we
can produce with JSP. If, for example, you need to dynamically generate richer,
more print-ready documents, try dynamic RTF or PostScript documents. Leaving
the realm of documents, you can also use JSP to generate complicated configuration
files, data files, or Perl code. Once you grasp the simple elegance of the JSP content
generation capabilities, the sky’s the limit.

Figure 16.4 The JavaBean generator



 17JSP by example
This chapter covers
� Rotating an ad banner

� Generating a random quote

� Mailing a link to the current page

� Accessing the Whois database

� Generating an index file

� Viewing raw JSP code
493



494 CHAPTER 17

JSP by example
In this chapter we will present additional examples of JSP programming. While we
will highlight important or confusing segments of the code, our main purpose is to
add context and real world examples to the programming syntax and theory cov-
ered earlier in the book. For those of you who learn best by example, this chapter
will help tie together the concepts we’ve been discussing. 

17.1 A rotating banner ad

Banner ads are now a common fixture on web pages. Typically, these ads are com-
prised of graphical images conforming to a fixed size requirement, to be displayed
across the top of a page or some other standard location. A site will often be pre-
senting multiple banner ads on its pages at the same time, alternating which banner
is displayed as the user moves from page to page. For this reason, an automated
mechanism for selecting a banner from those available and displaying it on a page is
highly desirable. 

 This example, because it will be used from multiple pages, utilizes JSP’s Java-
Beans tags to promote reusability. The first requirement, then, is a working bean
that provides the required functionality.

17.1.1 The BannerBean

For the purposes of this example, it is assumed that the banners take the form of
image files accessible via URLs. The primary role of this bean, then, is to select one
entry from a set of such URLs to serve as the value for the src attribute of an
HTML img tag in order to display the banner. 

 This is accomplished by means of a bannerURL property, provided by the bean’s
getBannerURL() method. In addition, the bean must keep track of all of the avail-
able banner images, and rotate among them each time the bannerURL property is
retrieved. The complete source code for this bean is shown in listing 17.1:

package com.taglib.wdjsp.byexample;
import java.util.Random;

public class BannerBean {
private int index, count;
static private String[] BANNER_URLS = {

"/webdev/images/PlainBanner.gif",
"/webdev/images/StripedBanner.gif",
"/webdev/images/SpottedBanner.gif" };

public BannerBean () {
   count = BANNER_URLS.length;

Listing 17.1 BannerBean



A rotating banner ad 495
   Random r = new Random();
   index = r.nextInt(count);
}
public String getBannerURL () {
   return BANNER_URLS[nextIndex()];
}
private int nextIndex () {
   if (++index == count) index = 0;
   return index;
}

}

As you may recall from the discussion in chapter 8, the aspects of this class defini-
tion that qualify it as a bean are its constructor, which takes no arguments, and the
getBannerURL() method, which provides an abstract interface for accessing the
bean’s sole property, bannerURL.

 For simplicity’s sake, the URLs of the available banners are stored in a String
array, which is referenced by the static variable BANNER_URLS. Similarly, although a
variety of schemes might be imagined for determining the selection and/or order in
which the banners should be displayed—for example, based on which pages have
already been viewed, or on demographic information tied to a specific user—a sim-
ple iterative approach is taken here. An integer instance variable, index, indicates
which of the banners to display. A random value is used to initialize this variable,
which is incremented each time the bannerURL property is accessed via the getBan-
nerURL() method. Incrementing is performed via the nextIndex() method, which
resets the counter to zero if the number of available URLs is exceeded.

17.1.2 Using the bean

By storing an instance of this bean in the user’s session, the user is guaranteed to see
a new banner on each page which uses it. This is because each request for the ban-
nerURL property increments the instance’s index variable. When the bean is stored
in the session, it will not be necessary to create a bean each time a page which uses
the bean is encountered. Instead, the bean will be retrieved from the session and
reused. Here is the source code for a sample JSP page, /webdev/banner.jsp, that
implements this approach:

<%@page import=”com.taglib.wdjsp.byexample.*”%>
<html>
<head>
<title>Banner Page</title>
</head>
<body>



496 CHAPTER 17

JSP by example
<center>
<jsp:useBean id="banner" scope="session" class="com.taglib.wdjsp.byexample.Ban-

nerBean"/>
<img src="<jsp:getProperty name="banner" property="bannerURL"/>">
</center>
<P>Click <a href="banner.jsp">here</a> to see the next banner.</P>
</body>
</html>

Note that only two JSP elements are needed to access the banner rotation function-
ality, a <jsp:useBean> tag and a <jsp:getProperty> tag. To enhance the reusabil-
ity of this code even further, the two lines containing these JSP elements could be
placed in a separate JSP file for inclusion by multiple pages using either the include
directive or the <jsp:include> action. Alternatively, the BannerBean could provide
the basis for a custom tag.

 The output for this JSP page is depicted in figure 17.1. Here, the URL selected
for the banner was the third value in the BANNER_URLS array, /webdev/images/
SpottedBanner.gif. If the page’s link were followed, the browser would redisplay
the same page, since the link points back to /webdev/banner.jsp. Because this
would correspond to a new request for that page, however, the JSP container would
be required to process the page again. In doing so, <jsp:useBean> tag would cause
the original BannerBean instance to be retrieved from the session, after which the
<jsp:getProperty> tag would result in a new call to the bean’s getBannerURL()
method. This would cause the next image in the rotation to be displayed. In this
case, since the BANNER_URLS array only has three elements, the index variable would
loop to the beginning, so that the next image to be displayed would be /webdev/
images/PlainBanner.gif.

Figure 17.1 Output sent to the browser by the banner page



A random quote generator 497
17.2 A random quote generator

In this example, which builds on the preceding banner rotation example, we select a
random quote for the user from a list read from disk at run time. Here we’ll see
how to bring in our quotes from a file and select a random element for inclusion.
The resulting bean provides a great way to add dynamic hints and tips or fortune
cookie quotes to your pages.

17.2.1 The QuoteBean

The QuoteBean class will store all of our quotes, which are loaded from disk using a
file name supplied through the quoteFile property. Changing the quoteFile
property will cause the bean to reload its quote selections from disk. This means
that we will want the bean to stick around since it’s a relatively expensive operation
to go to disk each time. The solution here is to put the bean in the application
scope and reuse it for all users visiting our site.

 The source for QuoteBean: is shown in listing 17.2:

import java.io.*;
import java.util.*;

public class QuoteBean {
  private String[] quotes = {”No quotes today!”};
  private Random rand;

  public QuoteBean() {
    rand = new Random();
  }

  public void setQuoteFile(String path) {
    try {
      File file = new File(path);
      ArrayList quoteList = new ArrayList();
      String quote;
      FileReader stream = new FileReader(file);
      BufferedReader reader = new BufferedReader(stream);
      while ((quote = reader.readLine()) != null)

 quoteList.add(quote);
      if (quoteList.size() > 0)

quotes = (String[])quoteList.toArray(quotes);
    }
    catch (IOException e) { 

     System.err.println(“Error: “ + e.getMessage());};
  }

Listing 17.2 QuoteBean



498 CHAPTER 17

JSP by example
  public String getQuote() {
    return quotes[rand.nextInt(quotes.length)];
  }
}

In our constructor we need to create an instance of the java.util.Random class,
which provides a set of easy-to-use pseudorandom number generation methods,
and stores it in an instance variable. All of the quotes will be stored in a simple
String array called quotes. Notice that we make sure that the array always has
something in it by initializing it to a default value, and not modifying it directly
until we’ve read in our file completely. We could also elect to load in a default file
of quotes in the constructor, but we chose to keep the implementation simple for
this example.

 We use a BufferedReader to read each quote, one quote per line, from the file
specified through the argument to the quoteFile property. Note that this file’s
path is not assumed to be relative to your web server’s document root directory—it
can be anywhere on your system. The initial working directory location will be
determined by the process that starts your JVM, but in practice this can be difficult
to determine and you will likely find it easiest to stick to absolute paths.

 Each time you access the quote property of this Bean, a new quote is selected by
choosing a random array index value, and returning the corresponding String.
Because we process the entire file in the setQuoteFile() method, we don’t have to
go back to the disk for a new quote each time—only when we change the quote file
from which we are selecting.

17.2.2 Using the bean

As we mentioned, this bean was designed to be reused between requests, and would
typically be placed into application scope, as shown here. We use the body of the
<jsp:useBean> tag to initialize the bean by setting the path to our quote file.

<jsp:useBean id=”quotes” class="com.taglib.wdjsp.byexample.QuoteBean" 
scope=”application”>

<jsp:setProperty name=”quotes” property=”quoteFile”
 value=”/games/fortunes.txt”/>
</jsp:useBean>
<html>
<body>
Tip of the day: <jsp:getProperty name=”quotes” property=”quote”/>
</body>
</html>



The Tell a Friend! sticker 499
Another way you could use this bean is at the session scope level, with the selection
of quote file based on other parameters such as the user’s native language, status, or
other dynamic attributes which you can determine at run time. Here’s an example
of selecting the quote file dynamically on a per-user basis, based on the authenti-
cated username—we’ll assume that we’ve created a quote file based on each user’s
name, in the /quotes/ directory. So for example, user cwalton would correspond
to /quotes/cwalton.txt.

<jsp:useBean id=”quotes” class="com.taglib.wdjsp.byexample.QuoteBean" 
scope=”session”>

<jsp:setProperty name=”quotes” property=”quoteFile”
  value=”<%= ”/quotes/” + request.getRemoteUser() + ”.txt” %>”/>
</jsp:useBean>
<html>
<body>
Greetings <%= request.getRemoteUser() %>, our advice to you is:
<jsp:getProperty name=”quotes” property=”quote”/>
</body>
</html>

17.3 The Tell a Friend! sticker

In this example we’ll build a JSP component that will provide the capability of mail-
ing the current page to a friend or colleague. This feature is found on many of the
popular news sites because it is an easy way to get your users to promote your site
and attract new users. We’ll create a Tell a Friend! module that can easily be added
to any page on the site to provide this new capability. The module adds a sticker (so
called because it’s a reusable element that we can stick onto any page) to the page
from which it is called (figure 17.2). Clicking the sticker activates the module, ask-
ing the user for the friend’s email address before sending the mail and returning the
user to the original page.

 There are several parts to this example. There’s the sticker itself, a page that gets
the information required to send the email, and the page or servlet that actually
sends the email. The flow between them is illustrated in figure 17.3. The sticker
may be included on any page. Clicking the sticker activates this process, directing
the user to a page that asks for the information required to send the mail, such as
the intended recipient’s email address. This form then submits its information to
another page (or a servlet) to send the mail, and the user is redirected back to the
original page. It’s all simpler than it looks.

 You could apply this same principal in other ways, skipping the second step if
you didn’t need any additional information from the user before sending the mail.



500 CHAPTER 17

JSP by example
17.3.1 The sticker

The sticker is the little icon, table, form, or link that we want to appear on pages
throughout our site. Clicking it is what initiates the mailing process. We’ll use a lit-
tle form button in this example, but an image link would work just as well. The
beauty of this approach is that the design of the sticker itself is independent of its
usage and its HTML source code is isolated to its own file. Because the sticker will
be added to each page at run time, you are free to alter its look at any time and it
will be instantly updated throughout the site.

Figure 17.2 The Tell a Friend! sticker in action



The Tell a Friend! sticker 501
Creating the sticker
The Tell a Friend! sticker itself isn’t neces-
sarily a JSP. Its specific contents are unim-
portant. Its only job is to create a link from
the current page to our MailForm page so
we can get the information we need to send
the email message. The real work is done
once we get to the MailForm page. Here’s a
simple example sticker which creates a small
tan table with a Submit button to create the
linkage we need: 

<table bgcolor="tan" border="1">
<form action="MailForm.jsp" method="post">
<tr><td align="Center">
<input type="Submit" value="Tell a Friend!">
</td></tr>
</form>
</table>

Since the mail sticker page will be included in another page, we don’t need this to
be a complete HTML document (in fact it should not be). Therefore we don’t
need <HTML> or <BODY> tags here. Here’s another example sticker that uses an
image and an anchor to create the link. Note that it’s not necessary to have a form
on this page.

<a href=”MailForm.jsp”>
<img src=”/images/mailsticker.gif”>
</a>

Again, the reason we have a separate page is to componentize our sticker, so that its
look and feel can be managed separately from that of the pages on which it will
appear. You could even create several different stickers for different areas of the site.

Using the sticker
Using the sticker is very easy; simply include it in the page with the include action:

<html>
<body>
Now is the time!
<div align=”right”>
<jsp:include page="MailSticker.jsp" />
</div>
</body>
</html>

Page with sticker Send the mail

Mail details  
formMail 

sticker

Figure 17.3 Page interactions for 
implementing the mail this page sticker



502 CHAPTER 17

JSP by example
The contents will be added to the page at run time, and will automatically pick up
any changes to the MailSticker.jsp page.

17.3.2 The MailForm page

This is where most of the action takes place, but as you’ll see it’s still easy to under-
stand. What we have to do here is to grab the contents of the REFERER header, a
hidden bit of information enclosed in the HTTP request from the user’s browser
that tells us the URL of the page from which the request originated, which in our
case should be the page the sticker was on (figure 17.4).

 Note that it is not the URL of the sticker itself: recall that we included its con-
tents directly into our page. This is the URL that we mail to the address specified by
the user, and is the URL that we will send the user back to when we are finished
with the whole process. We need to pass the referrer information, along with some
mail-related details, to our servlet or JSP page that will handle the actual sending of
the mail. The contents of the MailForm.jsp page are shown in listing 17.3.

Figure 17.4 Passing along the referrer information via email



The Tell a Friend! sticker 503
<html>
<body>
<form action="SendMail.jsp" method="post">
<table border="0" align="center" bgcolor="tan">
<tr><td><b>To:</b></td><td>
<input type="TEXT" name="to"></td></tr>
<tr><td><b>From:</b></td><td>
<input type="TEXT" name="from"></td></tr>
<tr><td><b>URL:</b></td><td>
<%= request.getHeader("REFERER") %></td></tr>
<tr><td><b>Subject:</b></td><td>
<input type="TEXT" name="subject" value="Check this out"></td></tr>
<tr><td colspan="2"><textarea name="body" rows=10 cols=45>
Check out this site, it is really cool!
</textarea>
</td></tr>
</table>
<p>
<input type="HIDDEN" name="destination"
value="<%= request.getHeader("referer") %>">
<center><input type="SUBMIT" value="Send Mail"></center>
</form>
</body>
</html>

There is only one JSP element on this page, which we use to grab the value of the
referrer and store it in a hidden form element called destination. The form han-
dler will use this information, and the to and from fields, to know what to send and
where to send it.

17.3.3 Sending the mail

The form handler SendMail.jsp is responsible for taking the input data from the
form, sending the corresponding email message, and returning the user to the orig-
inal page. The code for our example is shown in listing 17.4, but there are, of
course, a number of ways to process the request. We’ve omitted the JavaMail code
that sends the email, as it’s the same as discussed in chapter 14.

Listing 17.3 MailForm.jsp page



504 CHAPTER 17

JSP by example
<html>
<%@ page import="javax.mail.*, javax.mail.internet.*" %>
<%
  try {
    String mailServer = "devmail.dev.tivoli.com";
    String subject = request.getParameter("subject");
    String[] to = { request.getParameter("to" };
    String from = request.getParameter("from");
    String body = request.getParameter("destination") +
      "\n\n" + request.getParameter("body");
    sendEmail(mailServer, subject, to, from, body);
 %>
<body>
<P> Mail has been sent! </P>
<% }
  catch (AddressException e) { %>
<P>Invalid e-mail address(es) for forwarding</P>
<% }
  catch (MessagingException e) { %>
<P>Unable to send e-mail notification</P>
<% } %>
Return to
<a href="<%= request.getParameter("destination") %>">
Original Page</a>
</body>
</html>

This JSP page uses a scriptlet and a pair of method declarations to implement the
form handler. The getParameter() method of the request object is used to retrieve
the form inputs, which are then used with the sendEmail() method, introduced in
chapter 11, to deliver the electronic mail message.

 Instead of mailing the interesting URL to the user we could have directed the
request to a servlet which would read in the contents of the URL (perhaps even
converting it to plain text) and then send the whole thing off to the indicated user
as an email attachment.

 Also, rather than redirecting the user to the original page, we could have the
sticker create a separate pop-up window, which would ask for the mail details. This
would keep the user’s main browser on the same page the entire time. When com-
plete, we could simply close the pop-up window.

Listing 17.4 Sending email and returning user to the page



A JSP Whois client 505
17.4 A JSP Whois client

The Whois database is an Internet directory service that stores contact information
for Internet domains and the administrators responsible for running them. A Whois
client can search the contents of this database to find out the owner of a particular
domain name, the contact information, and when the name was  registered. In this
example we will use JSP to design a Whois client with a web interface (figure 17.5).

17.4.1 The Whois protocol

In order to build this application we must understand a little bit about the Whois
protocol, which is defined by RFC954, and decide what features we will support.
The Whois protocol is a simple query/response service that is hosted by the

Figure 17.5 User interface for the JSP-based Whois client



506 CHAPTER 17

JSP by example
companies authorized by the Internet Corporation for Assigned Names and Num-
bers (ICANN) to handle Internet domain name registration. Searching the Whois
database with a client application involves: 

1 Establishing a socket connection to port 43 of a Whois server

2 Sending a search query terminated with a line feed

3 Retrieving results from the Whois server, which will then close the connection

The format of a Whois search query is fairly basic: simply pass the name of the per-
son or domain in which you are interested. If you do not specify any search key-
words, the default action is to conduct a very broad search, looking for matches to
your query in any field of any type of record in the database. You can prefix your
query with a special set of keywords, which can be used to restrict the search to par-
ticular record types or fields. While there are many keywords and search control
parameters supported by the Whois service, the most useful ones are summarized in
table 17.1.

Prior to the explosive growth of the Internet, a single company was responsible for
registering top-level Internet domain names. This meant that by searching a single
Whois server you could retrieve information about any .com, .net, or .org site on
the Internet. In October 1998, the U.S. government developed a shared registra-
tion System that permits multiple registrars to provide registration services for the
Internet, and appointed ICANN to oversee this system. Several new registrars have
been approved, and more are planned. This makes searching for registration infor-
mation a somewhat more challenging task because records for new domain name
registrations are now spread across a growing number of individual Whois data-
bases. It is uncertain whether or not anyone plans to consolidate information from
each of the registrars into a single database.

Table 17.1 Common search keywords for the Whois protocol

Keyword Function

DO Restrict searches to domain records only

HO Restrict searches to host records only

GA Restrict searches to gateway records only

Full Gives a long display for each record

SUM Return only summaries



A JSP Whois client 507
NOTE Information on the implementation of NSI’s Shared Registration System is
available at http://www.nsiregistry.com, while information about ICANN’s
registrar accreditation process is available at http://www.icann.org. 

17.4.2 Requirements and design considerations

What we are building is a Whois client that can be accessed through a web browser,
making it accessible to anyone on our network, no matter what type of computer
he/she has. While the primary interface will be designed in HTML, this project
involves remote network connections, so some server-side code will be required.

 Unlike the Whois clients that are built into UNIX or bundled with most network-
ing packages, our client will need to be able to search multiple Whois databases
simultaneously, so that we can locate records regardless of which registrar’s database
they happen to be on. We should also expect that new registrars will be approved in
the future, and be prepared to handle these new servers as they become available.

 Our client should also include options that allow the user to restrict searches to
certain sets of records or fields. While we could simply require the user to encode
the query with the appropriate keywords and modifiers, it is preferable to assume
that not all of our users are quite so familiar with the Whois protocol.

 From an architectural perspective it makes sense to divide our development tasks
into two parts: a front-end user interface and a back-end network service. The capa-
bility to look up records in a Whois server will be encapsulated into a JavaBean
running on the server. We can develop this component independently from our
front-end interface, which might change over time.

17.4.3 The WhoisBean

All of the code required to perform searches against a Whois database will be encap-
sulated into our server-side component for this application, the WhoisBean. The
WhoisBean can provide Whois lookup services to any application capable of access-
ing its properties. In this case we are building an HTML interface through JSP, but a
servlet, applet, or Java application could just as easily use the bean’s services. By
packaging our service into a JavaBean like this, we don’t have to worry about how
or when it will be used, and we won’t need to rewrite it for every project or new
user interface that comes up.

 To perform the lookup, we first create a socket connection to port 43 of the
server. Once connected, we issue our query to the socket’s OutputStream and read
the results from its InputStream. The following code will establish a connection to



508 CHAPTER 17

JSP by example
the Whois server at Networks Solutions, Inc. (whois.internic.net), which will search
for the domain manning.com and print the response to the screen.

Socket connection = new Socket(”whois.internic.net”, 43);
out = new PrintStream(connection.getOutputStream());
in = new BufferedReader(new InputStreamReader(connection.getInputStream()));
out.println(”DO manning.com”);
while ((line = reader.readLine()) != null)
  System.out.println(line + "\n");

Code like this will form the core of our WhoisBean class, as it performs the primary
service we are interested in delivering. The rest of the code for this class will be con-
cerned with supporting our bean’s properties, which will form the interface
required to access the bean through JSP.

Bean properties
The first step in designing our bean is to determine what properties it will support.
We know that at minimum the front-end interface will need to set a query and view
the results of the search, so there are two properties right there: query and
results. How should we handle the search keywords and options? One choice
would be to implement properties and corresponding access methods for each
search option supported by the Whois protocol. While this might seem to be the
most exacting approach, it would create a needlessly complex interface that could
be eliminated by simply accepting all search modifiers through a single property,
options. We’ll make the query and options properties read/write, since the front-
end code might need to view their state as well as modify it. The results property
however, will be read-only because instead of reflecting the state of an instance vari-
able it will actually be used to return the response from the Whois server. Since the
value of the results property will be computed dynamically each time it is
requested, it requires only a getter method, not a setter.

 It would also be a good idea to allow the front-end code to specify which Whois
servers we wish to search. Because the growth of the Internet is creating the need
for additional registrars and Whois databases, we can expect that we will need to
update our code to include support for additional Whois server addresses in the
future. That being said, we should try to isolate that portion of the code to the
front-end, which is easier to revise. It also gives us a more flexible solution. The
front-end code can decide what servers are searched and give the user as many or as
few options as desired. Otherwise, we would be restricted to a rigid, bean-enforced
selection of servers each time, or end up with an overly complex interface between
the Bean and the front-end code. We’ve therefore added an indexed property,
servers, which holds the names of the Whois servers we wish to search. We’ve also



A JSP Whois client 509
included a convenience property that allows the JSP page to treat the servers
property as a single String value by separating each server name with a comma. In
the absence of custom JSP tags for handling indexed properties, this will make the
front-end JSP code much cleaner.

 The property sheet for this bean is presented in table 17.2.

Instance variables and constructor
In order to maintain its state, our WhoisBean class will need instance variables for
the query, the search options, and the list of servers.

public class WhoisBean {
  private String query;
  private String options;
  private String[] servers;
}

In the constructor we will initialize our state variables with empty data.

public WhoisBean() {
  query = "";
  options = "";
  servers = new String[0];
}

Access methods
The access methods for our query and options properties are relatively straightfor-
ward. Each can map directly to an instance variable, with getters and setters that
access these instance variables to manage the bean’s state.

public String getQuery() {
  return query;
}
public void setQuery(String query) {
  this.query = query;

Table 17.2 Property sheet for com.taglib.wdjsp.byexample.WhoisBean 

Name Access Java Type Use

query read/write java.lang.String Specifies the query data

options read/write java.lang.String Searches keywords and modifiers

results read only java.lang.String Results from whois

servers read/write java.lang.String[] Whois servers to search through

serverList read/write java.lang.String Convenience property for setting servers, 
accepts a comma separated list of servers



510 CHAPTER 17

JSP by example
}
public String getOptions() {
  return options;
}
public void setOptions(String options) {
  this.options = options;
}

Designing the access methods for the servers and serverList properties is a little
more complex. Internally, we can store our list of Whois servers as an array of
String objects. This will let us easily loop through the list of servers to perform our
searches. In order to better support JSP access to this bean, we decided that our list
of servers could be modified by the user through two different properties, servers
and serverList. This means that we need to create methods to read and write the
array through both properties. Servers is an indexed property that deals with
arrays directly, and its access methods are fairly straightforward.  Don’t forget how-
ever, that while not entirely necessary, it’s a good idea to go ahead and add addi-
tional access methods that can be used to access the entire contents of the list at
once as an array:

public String getServers(int index) {
  return servers[index];
}
public void setServers(String server, int index) {
  servers[index] = server;
}
public String[] getServers() {
  return servers;
}
public void setServers(String[] servers) {
  this.servers = servers;
}

Writing the serverList property access methods requires us to do more work. We
must convert the servers array to and from a comma-delimited list. It is important
to preserve the ordering of the list of servers so that the front-end code will get con-
sistent results back from the property. We have used the java.util.Vector class to
assure that we preserve the order of the elements in the list.

public void setServerList(String values) {
  Vector v = new Vector();
  StringTokenizer tok = new StringTokenizer(values, ", ");
  while (tok.hasMoreTokens())
    v.addElement(tok.nextToken());
  servers = new String[v.size()];
  for (int i=0; i < servers.length; i++)



A JSP Whois client 511
    servers[i] = (String)v.elementAt(i);
}

public String getServerList() {
  String values = "";
  for (int i=0; i < servers.length; i++) {
    values += servers[i];
    if (i < (servers.length - 1))
      values += ", ";
  }
  return values;
}

The results property access method will be read-only, so we only need to create
the method getResults(). As indicated, this getter method will perform the speci-
fied query. The first step is to create the query string that we will send to each
Whois server. Recall from our discussion of the Whois protocol, we build our query
string by prepending our search options to the string for which we wish to search.
We’ll also need to test for the possibility that there aren’t any options, in which case
we will use the query property as the search string, as follows:

String queryString;
if (options.length() > 0)
  queryString = options + " " + query;
else
  queryString = query;

We’ll use the networking code we looked at earlier as the core of this method. To
simplify the implementation, we’ll collect the search results from all of the servers
we’re interested in by looping through the array of servers, conducting a search
against each one, and appending the results of each search to a String variable that
will by returned by the getResults() method.

String output = ””;
for (int i=0; (i < servers.length) && (query.length() > 0); i++) {
  try {
    String line = "";
    Socket connection = new Socket(servers[i], 43);
    InputStream sock = connection.getInputStream();
    PrintStream out = new PrintStream(connection.getOutputStream());
    BufferedReader in = new BufferedReader(

new InputStreamReader(sock));
    output += "Results from " + servers[i] + " for \"" +

query + "\"\n\n";
    out.println(query);
    while ((line = in.readLine()) != null)
      output += line + "\n";
  }



512 CHAPTER 17

JSP by example
  catch(Exception e) {
    output += "Could not contact Whois server on "+servers[i]+ "\n";
  }
  output += "\n\n\n";
}
return output;

As far as handling error conditions, we’ve decided here to keep things simple.
Attempting to access the results property without properly setting the query or
servers properties is an error condition, but rather then throw an exception we will
simply return an empty string from getResults(). This approach will keep the
front-end code simple and will allow it to display the results property, which eval-
uates to an empty String in such cases, without having to test for error states or
valid properties. Likewise, if we encounter an error contacting or reading data from
the Whois server we will simply include the error message in our results. If one par-
ticular server did not respond, we would still like to receive results from the others
in the list. This seems reasonable for this particular bean: if you haven’t set the
query or servers properties, the results property will be empty. Other beans
might require more sophisticated error-handling capabilities.

 The complete source for the WhoisBean class is provided in listing 17.5.

package com.taglib.wdjsp.byexample;

import java.io.*;
import java.net.*;
import java.util.*;

public class WhoisBean {
  private String query;
  private String options;
  private String[] servers;
  private String serverList;

  public WhoisBean() {
    this.query = "";
    this.options = "";
    this.servers = new String[0];
  }

  public void setOptions(String options) {
    this.options = options;
  }

  public String getOptions() {
    return this.options;
  }

Listing 17.5 com.taglib.wdjsp.byexample.WhoisBean class



A JSP Whois client 513
  public String getQuery() {
    return query;
  }

  public void setQuery(String query) {
    this.query = query;
  }

  public String getServers(int index) {
    return servers[index];
  }

  public String[] getServers() {
    return servers;
  }

  public void setServers(String server, int index) {
    servers[index] = server;
  }

  public void setServers(String[] servers) {
    this.servers = servers;
  }

  public void setServerList(String values) {
    Vector v = new Vector();
    StringTokenizer tok = new StringTokenizer(values, ",");
    while (tok.hasMoreTokens())
      v.addElement(tok.nextToken());
    servers = new String[v.size()];
    for (int i=0; i < servers.length; i++)
      servers[i] = (String)v.elementAt(i);
  }

  public String getServerList() {
    String values = "";
    for (int i=0; i < servers.length; i++) {
      values += servers[i];
      if (i < (servers.length - 1))
        values += ",";
    }
    return values;
  }

  public String getResults() {
    String queryString;
    if (options.length() > 0)
      queryString = options + " " + query;
    else
      queryString = query;
    String output = "";
    for (int i=0; (i< servers.length) && (query.length()>0); i++) {
      try {



514 CHAPTER 17

JSP by example
        String line = "";
        Socket connection = new Socket(servers[i], 43);
        InputStream sock = connection.getInputStream();
        PrintStream out =
          new PrintStream(connection.getOutputStream());
        BufferedReader in =
          new BufferedReader(new InputStreamReader(sock));
        output += "Results from " + servers[i] +
          " for \"" + queryString + "\"\n\n";
        out.println(queryString);
        while ((line = in.readLine()) != null)
          output += line + "\n";
      }
      catch(Exception e) {
        output += "Could not contact Whois server at " +
          servers[i] + "\n";
      }
      output += "\n\n\n";
    }
    return output;
  }

  public static void main(String[] args) {
    WhoisBean bean = new WhoisBean();
    bean.setServerList("whois.internic.net");
    bean.setQuery("manning.com");
    System.out.println(bean.getResults());
    bean.setQuery("metafirm.com");
    System.out.println(bean.getResults());
  }
}

Improving the design of the bean
If instances of this bean were handling lots of requests or performing a critical ser-
vice, we might want to make a few minor improvements to its design. We could, for
example, only perform a new Whois lookup when one of the input parameters—the
contents of the query and options properties—has changed. To do this we would
create an internal boolean cache variable that would be flipped to true in the
getResults() method, and back to false in any of the setter methods for our
properties. Of course when we use this bean in conjunction with JSP, such a change
would provide no benefits unless the bean instances were reused across multiple
requests. To do so, the JSP developer would need to place user-specific instances of
the WhoisBean into the session scope.

 Another minor improvement we could introduce would be better handling of
the error conditions that might arise. We could, for example, remove Whois servers



A JSP Whois client 515
that aren’t responding from our server list, throw more meaningful exceptions,
and/or validate property values in our setter methods.

17.4.4 Building the front end

Now that we have completed the WhoisBean implementation, we need to design
the JSP page that will form the user interface of our application. Various approaches
are possible for implementing the front end. The traditional approach to web appli-
cations such as this is to implement a form in HTML, which then calls a CGI pro-
gram to perform the specified query. In light of the form-handling example
presented in chapter 11, however, a form that incorporates sticky widgets via JSP
elements would seem to provide a more user-friendly interface. When coupled with
the functionality available in the WhoisBean, however, the JSP approach is a natural
fit, the results of which are presented in figure 17.5.

 Coupling the use of a bean with the sticky widgets approach provides two addi-
tional benefits. First, initialization of the bean properties is greatly simplified by
supplying identifiers for the form elements that map directly to those properties.
This allows us to use the wild card setting for the property attribute (i.e., prop-
erty=”*”) of the <jsp:setProperty> tag. As a result, we can create and initialize
our bean with just two tags:

<% @page import=”com.taglib.wdjsp.byexample” %>
<jsp:useBean id=”whois” class="com.taglib.wdjsp.byexample.WhoisBean" 

scope=”request”/>
<jsp:setProperty name=”whois” property=”*”/>

Recall that the input values from the form elements are translated into request
parameters when the form is submitted. The effect of the wild card value in the
<jsp:setProperty> tag is to create a mapping from request parameters to bean
properties, meaning that we can now access all of the data from the form inputs via
the bean instance. 

NOTE In the JSP code for this form, as presented in listing 17.6, we use four tags to
create and initialize the WhoisBean instance. Two additional tags are re-
quired to add a body to the <useBean> tag in which we provide a default val-
ue for the bean’s serverList property. 

This in turn means that, rather than embedding scripting elements into our page for
interacting with request parameters, we can use JSP’s built-in JavaBeans tags to
manipulate these request parameters via the corresponding bean properties. For
example, the text field corresponding to the Whois query can be initialized via the



516 CHAPTER 17

JSP by example
<jsp:getProperty> tag, rather than via a JSP expression as in the earlier example,
as follows:

<INPUT type="text" name="query" SIZE="20"
 value="<jsp:getProperty name="whois" property="query"/>"> 

Note that the identifier specified for the <input> tag, query, has the same name as
the bean property. This ability to replace scripting elements with bean tags is the
second added benefit implementing form-handling with JavaBeans: eliminating
Java code from the JSP page in order to promote greater separation of presentation
and implementation.

 Rather than relying extensively on scripting elements containing raw Java code
to initialize form fields and handle requests, the Whois client has little Java code in
the page itself. What Java code remains in the page is focused entirely on the pre-
sentation: setting the action attribute for the <form> tag, and determining which
of the select box options and radio buttons should be enabled. All of the applica-
tion-specific code (i.e., contacting the Whois servers and collecting the results)
resides in the implementation of the WhoisBean class.

 Another noteworthy aspect of this example is the use of a text area for displaying
the results of the Whois lookup. In this case, the text area form element is used for
output rather than input. This was done primarily for stylistic reasons, so that the
form as a whole resembles a self-contained window from a conventional desktop
application. By presenting the query results in a text area with a fixed size and its
own scroll bar, the form itself maintains a fixed size that is more consistent with the
behavior of desktop application windows (listing 17.6).

<%@page import=”com.taglib.wdjsp.byexample.*” %>
<jsp:useBean id="whois" class="com.taglib.wdjsp.byexample.WhoisBean" 

scope="session">
  <jsp:setProperty name="whois" property="serverList"
    value="whois.internic.net,whois.register.com"/>
</jsp:useBean>
<jsp:setProperty name="whois" property="*"/>
<HTML>
<HEAD><TITLE>Whois Client</TITLE></HEAD>
<BODY BGCOLOR="white">
<TABLE bgcolor="tan" align="center" border="1" cellpadding="10">
<FORM action="<%= HttpUtils.getRequestURL(request) %>" method="GET">
<TR><TD>
<INPUT type="submit" value="Whois">
<INPUT type="text" name="query" SIZE="20"
 value="<jsp:getProperty name="whois" property="query"/>">

Listing 17.6 The JSP Whois form



An index generator 517
&nbsp;
<B>Record Types:</B>
<SELECT name="options" SIZE="1">
<OPTION <%= whois.getOptions().equals("")?"selected":"" %>
  VALUE="">All
<OPTION <%= whois.getOptions().equals("Do")?"selected":"" %>
VALUE="Do">Domain Only
<OPTION <%= whois.getOptions().equals("Person")?"selected":"" %>
VALUE="Person">People Only
<OPTION <%= whois.getOptions().equals("Organization")?"selected":"" %>
 VALUE="Organization">Organizations Only
</SELECT>
<P></P>
<B>Whois Server:</B>
<INPUT TYPE="RADIO" NAME="serverList"
<%= whois.getServerList().equals("whois.internic.net,whois.register.com")
    ?"checked":"" %> VALUE="whois.internic.net,whois.register.com">
Both&nbsp;&nbsp;
<INPUT TYPE="RADIO" NAME="serverList"
<%= whois.getServerList().equals("whois.register.com")
    ?"checked":"" %>
VALUE="whois.register.com">
Register.com&nbsp;&nbsp;
<INPUT TYPE="RADIO" NAME="serverList"
<%= whois.getServerList().equals("whois.internic.net")?"checked":"" %>
VALUE="whois.internic.net">
Network Solutions
<P></P>
<TEXTAREA rows="24" cols="80">
<jsp:getProperty name="whois" property="results"/>
</TEXTAREA>
</TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

17.5 An index generator

In this example we’ll build a JSP page which generates an index of the files in its direc-
tory. It is typical for a web server to look for a welcome file, a default file name to dis-
play if a browser requests a directory, rather than a specific file. Typically this file is
called index.html, but JSP web servers can be configured to look for the presence of
an index.jsp file, and load that instead. Most web servers have some built-in mecha-
nism to generate a file listing for directories that do not have an appropriate welcome
file. Typically, these look like a raw directory listing, with anchors to each file, allow-
ing you to browse the file tree without having to create your own index pages.



518 CHAPTER 17

JSP by example
 In this example, we’ll create our own index.jsp page which can be used as a
replacement to your web server’s built-in directory listing mechanism. We’ll add a
number of new features over the average web server, including icons that are sensi-
tive to the type of items in the directory, and alphabetical sorting. Now even if
you’re happy with the directory listings created by your web server, there are a
number of advantages to rolling your own. First, you have complete control of the
look and feel of your page—you can make it look as fancy as you’d like. You can
also add your own security, filtering, or other options to your index page. An exam-
ple of the page we created is shown in figure 17.6.

17.5.1 A basic implementation

First, let’s create a very basic index which provides an equivalent bare-bones imple-
mentation like that provided by most web servers by default. This will help us under-
stand the concepts without being overburdened by the decorative details for now.

Figure 17.6 Our new and improved index in action



An index generator 519
Directory independence
One of the initially tricky things about this example is achieving directory indepen-
dence. We didn’t want to have to hard code the directory path, the document root,
or other directory location dependent information into the page, modifying them
for each directory we wanted to enable with our index generator. Ideally, we can
have one copy of the index page, shared by all of our directories.

 To use our autoindexing JSP page, we’ll configure the web server to look for
index.jsp (or whatever we would like to call this welcome page). We’ll store the
index page in a shared directory as /utils/index.jsp. We will then create a link or
copy of the page called index.jsp pointing to this index file from every directory we
want to use it. Some web servers will let you specify an absolute path to your
welcome file, allowing you to use the same file for all directories, eliminating the
need for the link.

 We therefore have to make the page itself determine both the logical path that
the user sees, as well as the physical path to the directory in order to access details
about its files. The first thing then, is to determine the logical path to the current
directory. This can be done by examining the request:

String cd = new File(request.getRequestURI()).getParent();

The request will return something like /projects/stuff/index.jsp. We’ll tempo-
rarily convert this string into a File object, so we can utilize its getParent()
method, which chops off the last bit of the path to yield /projects/stuff. (The
File object’s constructor doesn’t care if the file exists, it can still manipulate the file
names in a platform-independent manner). We then use the getRealPath()
method of the application object to locate the physical directory beneath the
server’s document root.

File realPath = new File(application.getRealPath(cd));

Now we’re home free. We use the listFiles() method of the File object (a
method new to Java 2) to retrieve an array of File objects corresponding to each
file in that directory. We can then loop through this list, and interrogate each file for
its information, displaying them in a table.

File[] files = realPath.listFiles();
for (int i=0; i < files.length; i++) {
  // display file info
}

The complete source code for this simple indexer is shown in listing 17.7 and a
screen shot in figure 17.7. 



520 CHAPTER 17

JSP by example
<%@ page import="java.io.*,java.util.*" %>
<%
  String cd = new File(request.getRequestURI()).getParent();
  File realPath = new File(application.getRealPath(cd));
%>
<html>
<body>
Index of: <%= cd %><p>
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tr><td>Name</td><td>Size</td><td>Modified</td></tr>
<tr><td colspan="3"><hr></td></tr>
<%
  File[] files = realPath.listFiles();
  for (int i=0; i < files.length; i++) {
%>
<tr>
<td><a href="<%= files[i].getName() %>">
<%= files[i].getName() %></a></td>
<td><%= files[i].length() %></td>
<td><i><%= new Date(files[i].lastModified()) %></i></td>
</tr>
<% } %>
</table>
</body>
</html>

As you can see, implementing the basic functionality was easy.  Now we’ll get fancy
and add improvements over most built-in indexes.

17.5.2 An improved version

The source code for the final page is shown in listing 17.8; the screen shot in
figure 17.6 was generated from this source, which is greatly enhanced over the sim-
ple example in listing 17.7. Other than basic HTML formatting, most of the work
to make our index more useful comes from better interpreting information about
each file. The raw dates, file sizes, and ordering returned from the underlying oper-
ating system are not necessarily the most convenient way to display that data.
Therefore, as you can see, we’ve created a number of utility methods.

Listing 17.7 simpleindex.jsp



An index generator 521
<%@ page import="java.io.*,java.util.*,java.text.*" %>
<%
  String cd = new File(request.getRequestURI()).getParent();
  File realPath = new File(application.getRealPath(cd));
%>
<html>
<head><title>Index of <%= cd %></title></head>
<body bgcolor="White">
<% if (! cd.equals("/")) { %>
<a href=".."><img src="/icons/back.gif" border="0"></a>&nbsp;
<% } %>
<font face="arial" size="+3"><b>Index of: <%= cd %></b></font><p>

<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tr>
<td><font size="+1" face="arial"><b>Name</b></font></td>
<td><font size="+1" face="arial"><b>Size</b></font></td>
<td><font size="+1" face="arial"><b>Type</b></font></td>
<td><font size="+1" face="arial"><b>Modified</b></font></td>
</tr>

Listing 17.8 autoindex.jsp

Figure 17.7 A simple index



522 CHAPTER 17

JSP by example
<tr><td colspan="4"><hr></td></tr>
<%
  File[] files = sort(realPath.listFiles());
  String[] colors = { "white", "#cccccc" };
  for (int i=0; i < files.length; i++) {
%>
<tr bgcolor="<%= colors[i % 2] %>"><td>
<a href="<%= getName(files[i]) %>">
<img src="<%= getIcon(files[i]) %>" border="0">
<font face="arial"><b><%= getName(files[i]) %></b></font></a></td>
<td><%= getSize(files[i]) %></td>
<td><%= getType(files[i]) %></td>
<td><i><%= getDate(files[i]) %></i></td>
</tr>
<% } %>
</table>

</body>
</html>

<%!

private File[] sort(File[] files) {
  Arrays.sort(files);
  List dirs  = new ArrayList(files.length);
  List other = new ArrayList(files.length);
  for (int i=0; i < files.length; i++) {
    if (files[i].isDirectory())
      dirs.add(files[i]);
    else
      other.add(files[i]);
  }
  dirs.addAll(other);
  return (File[])dirs.toArray(files);
}

private String getName(File file) {
  return file.getName();
}

private String getIcon(File file) {
  if (file.isDirectory()) return "/icons/folder.gif";
  if (file.toString().endsWith(".jsp")) return "/icons/html.gif";
  String type = getServletContext().getMimeType(file.toString());
  if (type == null) return "/icons/unknown.gif";
  if (type.equals("text/html")) return "/icons/html.gif";
  if (type.startsWith("text/")) return "/icons/text.gif";
  if (type.startsWith("image/")) return "/icons/image2.gif";
  return "/icons/generic.gif";
}

private String getType(File file) {



An index generator 523
  if (file.isDirectory()) return "Directory";
  if (file.toString().endsWith(".jsp")) return "JSP File";
  String type = getServletContext().getMimeType(file.toString());
  if (type == null) return "Unknown";
  if (type.equals("text/html")) return "HTML";
  if (type.startsWith("text/")) return "Text File";
  if (type.startsWith("image/")) return "Image File";
  return type;
}

private String getSize(File file) {
  if (file.isDirectory()) return ("-");
  long size = file.length();
  if (size > 1024)
    return ((size / 1024) + " KB");
  return size + " bytes"; 
}

private String getDate(File file) {
  String pattern = "";
  Calendar now = Calendar.getInstance();
  now.roll(Calendar.DATE, true);
  now.add(Calendar.DATE, -7);
  Date fileDate = new Date(file.lastModified());
  if (fileDate.before(now.getTime()))
     pattern = "MM/dd/yyyy hh:mm a";
  else
     pattern = "EEEE hh:mm a";
  SimpleDateFormat formatter;
  formatter = new SimpleDateFormat(pattern);
  return formatter.format(fileDate);
}
%>

Creating color bars
We made each row easier to see by alternating the background color of our table
rows with each time through the loop. This is a useful technique that can be applied
to any iterative situation. We do this by selecting one color for the odd rows, and
another for the even rows. We first create a two-element array, the first color will be
used on even-numbered rows (those divisible by 2) and the second will be used by
odd-numbered rows. Since we’ll be using these values inside HTML, any valid HTML
color value can be used, for example, to get white and gray bars we would use this:

String[] colors = { "white", "#cccccc" };

To display a color, we simply take the remainder (using the modulo operator) of the
index counter divided by 2. Even numbered rows will have a remainder of 0,



524 CHAPTER 17

JSP by example
corresponding to the first element of our colors array while the odd numbered
ones will have a remainder of 1.

<tr bgcolor="<%= colors[i % 2] %>"><td>

Sorting the files
One annoying aspect about our first implementation of this application is that all of
the directories and files are displayed in a jumbled order. We’ll fix that by sorting
the files by name, with directories listed first. This operation is performed in the
sort() method. We simply sort the entire array of files first, then extract directories
and files to separate arrays. This gives us a sorted set of files, and a sorted set of
directories; we simply put the two arrays together, directories first.

Determining the file type and selecting an icon
We can use the application.getMimeType() method to determine the type of file
with which we are dealing. This method relies on the file’s extension and the
server’s configuration to assign a MIME type. In the getType() method, we deter-
mine the MIME type directly, and in the getIcon() method we choose an appropri-
ate icon. If we wanted to get fancy, we could easily group like files together in the
listing by sorting on their respective types.

WARNING From scriptlets in the page we can use the application implicit object to
gain reference to the current servlet context. However, inside a page’s de-
clared methods (such as our getType() method in this example) the implicit
objects are not defined, and we can only use the methods provided by the
Servlet and JSP APIs. The current PageContext instance, obtainable through
the getPageContext() method, can be used to access any of the implicit
objects available to the page.

A more flexible modification date
To make our dates a little more relevant, we decided that any date younger than a
week would be shown simply as being modified on the day of the week, rather than
the full date. Therefore, something modified on Monday of this week at 4 P.M. says
“Mon 4:00pm” instead of “Monday, January 10, 2000 4:00:00 pm.” 

Cleaning up file size
We also wanted to convert file size information from a confusing byte format, to
terms of kilobytes and megabytes. We simply divide by the appropriate numbers to
convert bytes to the appropriate format. This is done in the getSize() method.



A button to view JSP source 525
17.5.3 Going further

There are a number of ways to expand on this example. Instead of creating a
generic index, you could create a more topical one, using the JSP to automatically
generate a table of contents for a particular directory to save you the hassle of
updating it, for example. You could also add more features to the listing, such as the
ability to view, delete, or edit the files in the listing. You could use native methods
to retrieve ownership information (if supported by your OS) and other details.

17.6 A button to view JSP source

One thing about JSP development that can be a bit confusing at first is that if you
attempt to use the browser’s view source feature to look at the HTML behind the
JSP page you are visiting you will see the rendered HTML, rather than the JSP code
you might first expect. This, of course, is because the JSP code is processed by the
server into HTML—the browser never sees the original JSP code. In this example,
we’ll build a button and a bookmark that allow you to view the original JSP source
that lies behind the current HTML page. This restores our ability to look at source
code on the fly, without having to have direct access to the web server. Figure 17.8
shows our source code viewer in action.

17.6.1 Displaying the source

This isn’t, as it turns out, very complicated—but unfortunately it’s more compli-
cated than it should be. All we have to do in theory is calculate the URL of the page
we are looking at, and then use the application.getRealPath() method to deter-
mine the path to the actual file on the server. Knowing the location of the original
JSP page, we simply load the contents of the file, set the contentType attribute of
the page to a value of text/plain (so that the page doesn’t render HTML tags),
and display the contents of the file to the screen. However, some browsers  blatantly
ignore the server-specified content type of the page, instead attempting to guess the
format. The presence of any HTML tags in the contents of the page will cause such
browsers to go ahead and render it as HTML, regardless of the server’s insistence
that it should be shown as text.

 So we have to eliminate the HTML tags from the file, but, of course, deleting
them would defeat the purpose of this project, so that won’t work. What we do
then is bend to the browser and display everything in HTML, but convert the angle
brackets of HTML tags (and the ampersands of existing entity tags) into their
HTML entity forms: &lt;, &gt;, and &amp;. Wrapping the file contents between
<pre> tags and converting the angle brackets like this gives us the source code.



526 CHAPTER 17

JSP by example
We’ll create a page which takes a URL as a request argument, locates the file, con-
verts its contents into HTML friendly text, and displays the results (listing 17.9). 

<%@ page import="java.io.*" %>
<%
String url = request.getParameter("url");
if (url.indexOf("..") > -1)
  throw new java.io.IOException("Relative paths are not allowed");
File realPath = new File(application.getRealPath(url));
%>
<html><head><title>Source: <%= url %></title></head><body><pre>
<%
FileInputStream fis = null;
try {
  fis = new FileInputStream(realPath);
  BufferedReader reader;
  reader = new BufferedReader(new InputStreamReader(fis));
  String line;
  while ((line = reader.readLine()) != null) {
    line = replace(line, "&", "&amp;");

Listing 17.9 viewsource.jsp

Figure 17.8 Viewing JSP source from a browser



A button to view JSP source 527
    line = replace(line, "<", "&lt;");
    line = replace(line, ">", "&gt;");
    out.println(line);
  }
}
catch (IOException e) {
  out.println("IOException: " + e.getMessage());
}
finally { if (fis != null) fis.close(); }
%>
</pre></body></html>
<%!
public String replace(String s, String old, String replacement) {
   int i = s.indexOf(old);
   StringBuffer r = new StringBuffer();
   if (i == -1) return s;
   r.append(s.substring(0,i) + replacement);
   if (i + old.length() < s.length())
     r.append(replace(s.substring(i + old.length(), s.length()),
      old, replacement));
   return r.toString();
}
%>

17.6.2 Limitations of the view source program

There are limitations to this approach however. Since we are relying on the applica-
tion object’s ability to determine the actual path to our JSP file, the application will
only be able to handle JSP pages on the same server as itself. In fact, it will only be
able to handle JSPs in the same application as itself. If you are using multiple servers
or your server has multiple JSP applications installed, you will have to have multiple
copies of the JSP page.

17.6.3 Adding a view source button to a page

As you can see, this code must be passed to the URL of the page for which we are
interested in seeing the source, through the url request parameter. To make it as
easy as possible, we’ll create another JSP page, vsbutton.jsp, which contains the
necessary form elements and JSP code to add an HTML form button to the page
(listing 17.10).



528 CHAPTER 17

JSP by example
<%@ page import="java.io.*,java.util.*,java.text.*" %>
<% String me = request.getRequestURI(); %>
<script language="JavaScript">
function show(url) {
  opts="height=400,width=600,scrollbars=yes,resizable=yes"
  window.open("viewsource.jsp?url=" + escape(url), "src", opts);
}
</script>
<form><div align="right">
<input type="button" value="View Source"
onClick="show('<%= me %>')"></div>
</form>

We can then include this page into any other page to which we wish to add the but-
ton. It will appear wherever we like on the page, and clicking it will display the
source code for the page in its own little window, thanks to JavaScript.

<jsp:include page="vsbutton.jsp" flush=”true”/>

This is cool, but it requires us to add a line of code to each and every page for
which we would like to view source. That’s not real handy, and we can do better.

17.6.4 Viewing source through a bookmark

To avoid adding code to each page, we can encapsulate our request into a JavaScript
URL which we can add to our browser’s bookmark list. Clicking the bookmark will
pop up a window displaying the source code of the current page, just as our button
did. This works because a JavaScript URL in a bookmark is executed in the context
of the current document, meaning it can determine the document location, which
it passes to the original viewsource.jsp page through the url parameter
(listing 17.11).

<html>
<body>Right Click and add to Boomarks/Favorites:
<a href="javascript:void
window.open('/utils/viewsource.jsp?url='+escape(location.pathname),
'src','height=400,width=600,scrollbars=yes,resizable=yes');">
View JSP Source</a>
</body>
</html>

Listing 17.10 vsbutton.jsp

Listing 17.11 jsvvs.html



 18Creating custom tag
s

This chapter covers
� How custom tags work

� Constructing tag libraries and tag library 
descriptors

� Java classes for implementing custom tags

� Custom tag examples for content substitution 
and content translation
529



530 CHAPTER 18

Creating custom tags
Custom tags are the standard extension mechanism for JSP, and are among its newest
features. While the taglib directive was introduced in version 1.0 of the JSP specifi-
cation, the Java classes that could be used to implement custom tags in a portable
fashion were not added until version 1.1. Furthermore, many of the new features
introduced in JSP 1.2 are related to custom tags. In this chapter, we discuss both the
use and implementation of custom tags for JSP. We start by examining their role and
capabilities, and provide an overview of how they work. We next take a look at the
set of Java classes and interfaces provided by JSP for developing custom tags, and
then demonstrate their features by applying them to the implementation of basic
custom tags. These, in combination with the advanced custom tags to be presented
in chapter 19 and the custom tag validators to be covered in chapter 20, will form
the basis of a small library for demonstrating their use in a series of example pages.

18.1 Role of custom tags

As discussed in chapter 3, a key advantage of JSP over many of the other commonly
used dynamic content systems is its ability to separate presentation from implemen-
tation through the use of HTML-like tags. By avoiding the use of JSP elements that
embed scripting language code in the page, maintenance of JSP pages is greatly sim-
plified, and the opportunity to reuse the Java code that provides the underlying
functionality is preserved. 

 Unfortunately, JSP provides only three built-in actions for interacting with Java-
Beans objects: <jsp:useBean>, <jsp:getProperty>, and <jsp:setProperty>.
With the exception of these three bean tags, the only standard means provided by
JSP for accessing arbitrary Java code are the scripting elements (i.e., scriptlets and
expressions). If the needs of your application cannot be met via the standard bean
tags, it would appear that the need to embed Java code in the page is unavoidable.

 Fortunately, JSP provides custom tags as an extension mechanism for adding
new action tags. As such, custom tag libraries can be written to provide added func-
tionality for a JSP application without having to resort to the use of Java code
within your JSP pages.

 Similarly, as pointed out in chapter 3, it is undesirable to implement dynamic
HTML generation via JavaBeans properties, because beans are intended to be stand-
alone components that are independent of the type of application within which they
are used. Dynamic HTML generation is a fairly uncommon requirement outside of
the context of JSP, suggesting that beans which generate HTML may be too closely
tied to a specific application.



How tag libraries work 531
 On the other hand, custom tags are explicitly designed to add functionality to
JSP pages, including the dynamic generation of page content such as HTML. If you
need to generate HTML content programmatically via Java, custom tags are an ideal
implementation technique. Custom tags can be used to insert text into the page,
and also to implement flow of control. Attributes can be specified for custom tags,
as parameters that influence their behavior. Custom tags can be empty or have bod-
ies, which contain either nested JSP elements (including other custom tags) or tag-
specific content to be processed by the tag itself. Custom tags can also interact with
each other, either by requesting information through the hierarchy of nested tags,
or by introducing new scripting variables which may be accessed by subsequent cus-
tom tags, as well as by the standard JSP scripting elements.

 As with all other JSP features, custom tags are implemented via Java objects.
Developers who are creating their own custom tags do so by creating Java classes
that produce the desired functionality. As such, custom tags can access the full range
of Java APIs. For example, custom tags can employ the JDBC classes to make data-
base calls, or use the JavaMail API to send or receive electronic mail. 

 Of course, embedding too much functionality into custom tags has its disadvan-
tages. In particular, since custom tags are only meant to be accessed from JSP pages,
any operations built into the implementation of these tags can be used only from
JSP. To promote reusability, it is preferable to implement the underlying functional-
ity via JavaBeans, EJBs, or generic Java classes, and use custom tags for controlling
presentation and translating between bean properties and class methods and the
page markup language. 

 The implication, then, is that there are no limits on the types of behavior that
can be implemented via custom tags. If you have need for a specific computational
task to be accomplished on a JSP page, an implementation based on a combination
of custom tags and other Java code can be developed which maintains a strong sep-
aration between presentation and implementation.

18.2 How tag libraries work

As described in chapter 5, a JSP page that uses custom tags must first load the librar-
ies containing those custom tags by means of the taglib directive. Two attributes
must be specified with this directive, a URL indicating the location of the TLD file
for the library, described next, and a string specifying a page-specific XML
namespace for the library’s tags. 

 When the JSP container is compiling a page that uses a custom tag library, its
first response to the taglib directive is to determine whether or not it needs to load



532 CHAPTER 18

Creating custom tags
the corresponding TLD (figure 18.1). If this is the first time the specified library has
been requested by a page, the JSP container will read the TLD from the indicated
URI. If, however, the specified library has been encountered before, such as during
compilation of another page that uses the same library, the TLD will not be loaded a
second time.

 A tag library is typically packaged as a JAR
file, which in turn contains the class files that
implement the library’s tags. If you are famil-
iar with the JAR format, then you know that,
in addition to Java class files, a JAR file
includes a top-level directory named META-
INF that stores information about the archive
itself. For example, standard JAR files include
a file named MANIFEST.MF in this META-
INF directory that contains a listing of all of
the files in the archive, along with authentica-
tion data that may be used to verify the
archive’s integrity. JAR files representing JSP
tag libraries must also include a file named
taglib.tld in this directory, which holds a copy of the library’s TLD (figure 18.2). The
TLD is an XML document that identifies and describes the custom tags provided by
the library.

 You may recall from chapter 14 that a copy of the TLD also typically resides in the
WEB- INF/tlds directory associated with the application making use of the tag
library. The name used for this copy is arbitrary. The application’s web.xml deploy-
ment descriptor is used to designate a URI for this copy of the TLD, and it is this URI
that is referenced in the uri attribute of the taglib directive within the application’s
JSP pages.

Page
compiler

taglib directive � New TLD?          � Load TLD

custom tag? � Validate attribute syntax
� Helper class? � Identify scripting variables

� Associate variable names and classes

� Validator class?  � Get instance
� Validate XML representation

Figure 18.1 Page compilation steps for custom tags

Tag
library
JAR

Directories 
containing

tag handler 
packages

META-INF
MANIFEST.MF

taglib.tld

Figure 18.2 JAR  file structure for custom 
tag libraries 



How tag libraries work 533
NOTE When naming the TLD stored in the WEB-INF/tlds subdirectory, the con-
vention is to use the name of the library, the current version number, and the
same .tld extension as the copy in the library’s JAR file. For version 1.7 of a li-
brary named EncomTags, for example, this TLD would typically be named
EncomTags_1_7.tld.

While compiling a page, the JSP container need only examine the TLD in order to
validate most of the page’s custom tags. This is because the TLD fully specifies each
tag’s attributes, including which are required and which are optional, as well as
whether or not the tag supports body content (and what the body may contain).
Each custom tag encountered while the page is being compiled can be compared
against the corresponding specification in the TLD to make sure that the syntax of
the tag call is correct. Thus, there is no need to unpack and load the implementa-
tion class for the tag just to check its syntax.

 If a custom tag is used to introduce new scripting variables, however, some addi-
tional work must be done. In this case, the TLD specifies a helper class that can be
loaded by the JSP container to identify the names and types of the scripting variables
introduced by a specific occurrence of the custom tag. This helper class can also be
used to perform additional validation of the custom tag, beyond the simple syntax
checks described earlier. For example, if the attributes of a custom tag have mutual
dependencies between them, the helper class can be used to check the values speci-
fied for those attributes to ensure those dependencies are satisfied.

 These helper classes, because they have limited functionality, are often much
smaller than the tag implementation classes with which they are associated. In fact,
their small size—and the resulting efficiency in their use—is their primary reason for
existence. Since the page compilation servlet can get much of the information it
needs about a page’s custom tags from a combination of the TLD and the helper
classes identified by the TLD, it can compile a page much more efficiently than if it
had to load the classes which actually implement the custom tags.

 Neither the TLD nor the helper classes provide any capabilities for validating the
global properties of a JSP page. For example, relationships between tags such as
ordering or nesting requirements cannot be enforced via either helper classes or the
TLD. To address this deficiency, JSP 1.2 has introduced a third validation mecha-
nism, the tag library validator class. If a library specifies such a validator class in its
TLD, this class will be instantiated and given the opportunity to examine the entire
contents of the page before it is compiled. This step actually takes place between the
two steps described previously: first the page’s custom tags are compared against



534 CHAPTER 18

Creating custom tags
the syntax information in the TLD, then any validator classes for the page’s tag
libraries are applied, and finally the helper classes are consulted.

 Thus, by using the result of the TLD syntax validation, along with the informa-
tion provided by any validator or helper classes associated with a page’s custom tags,
the JSP container is able to compile the page into a servlet. As with other JSP pages,
this servlet is then run whenever a request is received for the corresponding JSP
page. It is when the servlet is run, as depicted in figure 18.3, that the tag implemen-
tation classes—commonly referred to as tag handlers—are unpacked from their
library’s JAR file, loaded into the container’s JVM, and executed.

 As another concession to run-time efficiency, custom tag handlers are stored in a
shared resource pool. As a result, instances of the tag handler classes are reused by
the JSP container as it processes pages, rather than creating an instance each time
the corresponding tag is encountered on a page. Because object instantiation is one
of the most expensive operations performed by the JVM, the reuse of tag handlers
afforded by using such a resource pool can result in significant run-time efficiency
when processing pages that make heavy use of custom tags. 

 Implementing a custom JSP tag, then, requires two major components: the class
that implements its handler, and a corresponding entry for the TLD of the library
that includes the tag. In the case of tags that define new scripting variables, or
which need additional validation beyond the standard syntax checking, validator
and/or helper classes must also be defined. The classes, along with the completed
TLD, are then packaged into a JAR file for deployment to JSP containers.

Response

taglib directive � No action required

custom tag? � New tag � Unpack tag handler
� Add instance(s) to resource pool

� Obtain handler from pool
� Initialize handler for tag
� Execute handler
� Return handler to pool

Request

Figure 18.3 Request-time processing of custom tags



Tag library descriptors 535
18.3 Tag library descriptors

The TLD is an XML document, and, as such, it must include the standard XML
header information, including specification of its DTD. The appropriate header for a
JSP 1.2 tag library descriptor is as follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC 
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd">

As you can see from its URL, the standard DTD for TLD files is maintained by Sun
Microsystems and stored with the other J2EE DTDs on the java.sun.com webserver.
If compatibility with JSP 1.1 is desired, the following header should be used:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC 
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

When using this TLD header, the tag library itself should not rely on any JSP 1.2
features.

 The root element for a TLD is the <taglib> element, which supports several
subelements. Three of these, the <validator-class> element, the <listener> ele-
ment, and the <tag> element, support their own subelements and are used to spec-
ify the library’s validators, listeners, and tags, respectively. The other subelements
specify properties of the library itself.

18.3.1 Library elements

Eight <taglib> subelements are provided for describing the library, as in the
following TLD fragment:

<taglib>
    <tlib-version>1.0</tlib-version>
    <jsp-version>1.2</jsp-version>
    <short-name>mut</short-name>
    <uri>/mut</uri>
    <display-name>Manning Utility Tags</display-name>
    <small-icon>/WEB-INF/icons/mut_small.gif</small-icon>
    <large-icon>/WEB-INF/icons/mut_large.gif</large-icon>
    <description>Utility tags for JSP.</description>

...
</taglib>



536 CHAPTER 18

Creating custom tags
None of these elements has attributes. Their values are specified only through the
element bodies. Of these eight, only the <tlib-version> and <short-name> ele-
ments are required. 

NOTE The <display-name>, <small-icon>, and <large-icon> elements were
introduced in JSP 1.2. In addition, the <tlib-version>, <jsp-version>,
<short-name>, and <description> elements instead went by the names
<tlibversion>, <jspversion>, <shortname> and <info>, respectively, in
JSP 1.1. The motivation for these JSP 1.2 changes is greater consistency with
the XML-based  descriptor files utilized by other J2EE technologies (such as
the Web Application Descriptor presented in chapter 14).

The <tlib-version> element is used to provide a version number for the tag
library. As new versions of a tag library are released, the version number should be
increased so that pages and tools which interact with the tag library can be aware of
version information and any related compatibility issues. The full format for version
numbers is N.N.N.N, where each N is a single-digit integer. In the case where N=0
and all subsequent Ns are zero, they may be omitted, but under no circumstances
may the major version number (i.e., the N preceding the first period) be omitted.

  The <jsp-version> element indicates the version of the JSP specification with
which the tag library is compatible. The default value is 1.1, the first version of the
specification that fully supports custom tag libraries.

 The <short-name> tag is used to specify an abbreviated name for the tag library.
Because it will be made available to the JSP container and JSP development tools for
the creation of variable names, it is required to begin with an alphabetic character and
contain no white space characters. It may also serve as the default namespace prefix
for the tag library when used by JSP development tools in the authoring of pages.

 The optional <uri> element, as of JSP 1.2, allows tag library developers to pro-
vide a default value for the URI by which the TLD is accessed from pages using its
custom tags (i.e., the value specified for the uri attribute of the taglib directive).
For a demonstration of this functionality, see the discussion on packaging custom
tag libraries at the end of chapter 20. This element had a somewhat vaguer meaning
in JSP 1.1, which has been superseded by this new role.

 The <display-name>, <small-icon>, and <large-icon> elements  are pro-
vided to support graphical configuration tools. The <display-name> element is
used to provide a short name for display by tools, while the icon elements are for
specifying icons to graphically represent the tag library. Each  should specify a rela-
tive path within the tag library to a GIF or JPEG image. The small icon should be
16 × 16 pixels in size, while the large icon should be 32 × 32.



Tag library descriptors 537
 The <description> element is used to supply a documentation string for the
custom tag library. The default value is the empty string.

18.3.2 Validator elements

Tag library validator classes are specified via the <validator> element, which has
two subelements, <validator-class> and <init-param>, as in the following
TLD fragment:

<taglib>
...

  <validator>
    <validator-class>com.taglib.wdjsp.mut.NestingTLV</validator-class>
    <init-param>

<param-name>inner</param-name>
<param-value>index</param-value>
<description>Name of the inner tag.</description>

    </init-param>
    <init-param>

<param-name>outer</param-name>
<param-value>forProperty</param-value>
<description>Name of the outer tag.</description>

    </init-param>
    <description>Validates nesting of inner and outer tags.</description>
  </validator>

...
</taglib>

The <validator-class> subelement is required and can only occur once, while the
optional <init-param> subelement can appear multiple times. The <validator>
tag and its subelements are JSP 1.2 features.

 The body of the <validator-class> subelement indicates the name of the Java
class implementing the library’s validator, which must be a subclass of javax.serv-
let.jsp.tagext.TagLibraryValidator.

 The <init-param> subelement is used to specify one or more initialization
parameters, whose values are to be passed to the validator instance before validating
a page that uses the tag library. This tag supports three subelements of its own, of
which the <param-name> and <param-value> subelements are required. The
<param-name> subelement names an initialization parameter, while the <param-
value> tag provides its corresponding value. The optional <description> tag  is
used to document the initialization parameter.

 The <description> tag may also be provided as a subelement of the
<validator> tag to support documentation of the validator itself.



538 CHAPTER 18

Creating custom tags
 For further details on the use, definition, and initialization of tag library valida-
tors, see chapter 20.

18.3.3 Listener elements

As discussed in chapters 12 and 13, Servlet 2.3 and JSP 1.2 web applications can
define event listeners which respond to various life-cycle events within the applica-
tion. In much the same way, custom tag libraries can also specify event listeners that
will be applied to any web application that uses the tag library. This is accomplished
by means of the optional TLD <listener> element.

 Multiple <listener> elements may appear within a TLD. Each requires a single
<listener-class> subelement, as in the following example: 

<taglib>
...

  <listener>
    <listener-class>com.taglib.wdjsp.mut.AccountListener</listener-class>
  </listener>

...
</taglib>

The <listener-class>  tag specifies the class of the listener, an instance of which is
to be registered with the web application. Listener classes must implement one of
the four interfaces provided by the Servlet 2.3 API for handling web application
life-cycle events:

� javax.servlet.ServletContextListener

� javax.servlet.ServletContextAttributeListener

� javax.servlet.http.HttpSessionListener

� javax.servlet.http.HttpSessionAttributeListener

18.3.4 Tag elements

The <taglib> element of a TLD is also required to specify one or more <tag> sub-
elements. There will be one <tag> specification for each custom tag defined in the
library. The <tag> element itself supports eight subelements for specifying the
properties of the tag, as well as two additional subelements for specifying the tag’s
scripting variables and attributes, if any. The tag property subelements are demon-
strated in the following TLD fragment:

<tag>
    <name>forProperty</name>
    <tag-class>com.taglib.wdjsp.mut.ForPropertyTag</tag-class>
    <tei-class>com.taglib.wdjsp.mut.ForPropertyTEI</tei-class>



Tag library descriptors 539
    <body-content>JSP</body-content>
    <display-name>Indexed Property Iteration Tag</display-name>
    <small-icon>/WEB-INF/icons/for_property_small.gif</small-icon>
    <large-icon>/WEB-INF/icons/for_property_large.gif</large-icon>
    <description>Loop through an indexed property.</description>

...
</tag>

Of these eight subelements, only the <name> and <tagclass> elements are required. 

NOTE The <display-name>, <small-icon>, and <large-icon> elements were
introduced in JSP 1.2. In addition, the <tag-class>, <tei-class>,
<body-content>, and <description> tags were instead called <tag-
class>, <teiclass>, <bodycontent>, and <info> in JSP 1.1. The moti-
vation for these JSP 1.2 changes is greater consistency with the XML-based
descriptor files utilized by other J2EE technologies (such as the Web Appli-
cation Descriptor presented in chapter 14).

The <name> element is used to specify an identifier for the tag, which will be used in
combination with the library’s namespace prefix to name the tag when it is used on
a JSP page. For the example shown here, then, a JSP page using this tag’s library
with a prefix of mut would call this tag using the name <mut:forProperty>.

 The <tag-class> element is used to specify the class that implements the han-
dler for this tag, fully qualified with its package name. The <tei-class> element is
used to specify the helper class for this tag, if any. The name of this element is
derived from the javax.servlet.jsp.tagext.TagExtraInfo class, which is the
base class that all tag handler helper classes must extend.

 The next <tag> subelement, <body-content>, is used to indicate the type of
body content that may appear between opening and closing tags of the current type.
The three valid values for this element are empty, JSP, and tagdependent. The empty
value indicates that no body content is supported by the tag, while the JSP value indi-
cates that additional JSP elements (including other custom tags) may appear within
the body of the tag. In both cases, the JSP container will perform syntax validation on
the body of the tag when it is encountered during normal page compilation. 

 If the value of the <body-content> element is tagdependent, the body of the
tag is expected to be interpreted by the tag itself. For example, a custom tag for
executing database queries might specify the query as its body content, as follows:

<db:query connection=”conn”>
SELECT ID, SALARY FROM EMPLOYEES WHERE SALARY > 50000

</db:query>



540 CHAPTER 18

Creating custom tags
As formulated here, the body of this tag is an SQL statement. Since the query is to
be interpreted by the tag (presumably by means of JDBC), the TLD specification for
this tag should specify a value of tagdependent for its <body-content> element. 

 The <display-name>, <small-icon>, and <large-icon> elements  are pro-
vided to support graphical configuration tools, and play a similar role for individual
tags as they do for the tag library itself when appearing as subelements of the
<taglib> element. The final element, <description>, may be used to specify a
documentation string for the custom tag. Its default value is the empty string.

18.3.5 Variable elements

The <variable> subelement (added in JSP 1.2) is only for custom tags that may be
used to introduce scripting variables, and takes two different forms, depending
upon how the scripting variable is to be named. If a fixed name is to be used, the
<variable> tag takes the following form: 
<tag>

...
    <variable>
      <name-given>account</name-given>
      <variable-class>com.taglib.wdjsp.filters.UserBean</variable-class>
      <declare>true</declare>
      <scope>AT_END</scope>
      <description>
        Exposes the user’s account bean as a scripting variable. 
      </description>
    </variable>

...
</tag>

Of the four subelements, only <name-given> is required.
 The <name-given> tag is used to specify the name for the scripting variable, while

the optional <variable-class> tag is used to specify the type of the scripting vari-
able, in the form of a Java class. The default value for the <variable-class> element
is java.lang.String. The example presented here indicates that the Java object
implementing the associated custom tag will cause a scripting variable named account
to be assigned an instance of the com.taglib.wdjsp.filters.UserBean class.

 The <declare> element is used to indicate whether or not the scripting variable
introduced by the custom tag needs to be declared, and defaults to true. The
<scope> element indicates over what extent of the JSP page’s content the scripting
variable should be considered valid. The permitted values are NESTED, AT_BEGIN,
and AT_END, of which NESTED is the default. Further details on declaring and
scoping custom tag scripting variables is presented in the discussion of helper classes
later in this chapter.



Tag library descriptors 541
 The <description> element, a JSP 1.2 addition, is provided to enable docu-
mentation of the scripting variable.

 The <variable> tag can also be used to specify scripting variables whose names
are to be obtained from the value of one of a custom tag’s attributes. In this case, a
second form is used: 

<tag>
...

    <variable>
      <name-from-attribute>accountVar</name-from-attribute>
      <variable-class>com.taglib.wdjsp.filters.UserBean</variable-class>
      <declare>true</declare>
      <scope>AT_END</scope>
      <description>
        Exposes the user’s account bean as a scripting variable. 
      </description>
    </variable>

...
</tag>

When this form is used, only the <name-from-attribute> subelement is required.
 The body of the <name-from-attribute> tag must be the name of one of the

custom tag’s attributes. The value assigned to this attribute when the tag appears on
a JSP page will be used as the name for the scripting variable introduced by that spe-
cific occurence of the tag. The other three subelements have the same semantics as
in the first case. For this second <variable> example, then, each appearance of the
associated custom tag in a JSP must specify a variable name via its accountVar
attribute. A scripting variable using this name will then be made available on the
page and assigned an instance of the com.taglib.wdjsp.filters.UserBean class
by the associated tag handler.

18.3.6 Attribute elements

If a custom tag takes attributes, these are specified using the <attribute> element,
which is the tenth subelement supported by the <tag> element. The <attribute>
element itself has four subelements, as in the following TLD fragment: 

<tag>
...

    <attribute>
      <name>id</name>
      <required>true</required>
      <rtexprvalue>false</rtexprvalue>
      <type>int</type>
      <description>Names the scripting variable.</description>
    </attribute>



542 CHAPTER 18

Creating custom tags
...
</tag>

There will be one <attribute> element for each of the tag’s attributes. Only the
<name> subelement is required; the other three are optional.

 The <name> element, used to identify the attribute, represents the string that
will be used to name the attribute when it appears in a tag. For the example shown
here, if it were associated with the example tag presented in the previous section,
the attribute and its value would be specified as:

<mut:forProperty id="loopVar">

Because it will be used in this manner, the attribute name should begin with an
alphabetic character, and should not contain any white space characters. 

 The <required> element indicates whether the attribute is required or optional.
Required attributes must be explicitly specified whenever the associated tag appears.
The permitted values for this element are true and false. The default value is
false, indicating that the attribute is optional.

 The <rtexprvalue> element indicates whether or not a request-time attribute
value may be used to specify the attribute’s value when it appears in the tag. As with
the <required> element, the permitted values for this element are true and false.
When this element is set to false (the default), only fixed, static values may be
specified for the attribute, as for the id attribute in the previous example. When this
element is set to true, a JSP expression may be used to specify the value to be
assigned to the attribute, as in the following example tag:

<mut:item text="<%= cookies[i].getName() %>"/>

As indicated in chapters 6 and 7, several of JSP’s built-in actions support request-
time attribute values, including the value attribute of the <jsp:setProperty> and
<jsp:param> actions and the page attribute of the <jsp:forward> and
<jsp:include> actions. In all of these cases save one, the value of the expression
providing the request-time attribute value is required to be a character string. The
exception to this requirement is the value attribute of <jsp:setProperty>. For
this specific attribute, an expression whose value is the same type as the correspond-
ing bean property is also permitted. For example, the FaqBean introduced in
chapter 11 has a property named lastModified whose value is an instance of the
java.util.Date class. For an instance of this bean class named faq, the value of
this property could be set within a JSP page using the following action: 

<jsp:setProperty name=”faq” property=”lastModified”
value="<%= new java.util.Date() %>"/>



Tag library descriptors 543
When used in this fashion, there is no need to coerce the result of the expression
into a character string, and then parse the string to construct a value of the required
type. These two steps are bypassed altogether, and the original value of the expres-
sion is passed directly to the bean’s corresponding setter method. 

 As of JSP 1.2, custom actions are also able to take advantage of this behavior.
This is accomplished via the  <attribute>  subelement, <type>, a JSP 1.2 addition
to the TLD specification. The <type> tag is used by the custom tag developer to
declare to the JSP container the Java type of an attribute value, so that the container
can recognize when an expression of the appropriate type has been provided for the
attribute, in the form of a request-time attribute value. When such an expression is
encountered, conversion to and from a character string can be skipped; instead, the
corresponding setter method of the underlying tag handler is called directly. The
<type> element is optional, and need only be specified when the value of the
<rtexprvalue> element is true. The default value for the <type> element is
java.lang.String.

 The final subelement, <description>, allows the developer to provide an optional
documentation string for the attribute. This element is also a a JSP 1.2 addition.

18.3.7 Example element

As of JSP 1.2, the <tag> element also supports a new subelement named <exam-
ple>. This subelement can be used to provide additional documentation of the
tag’s use including, as its name suggests, one or more examples of the tag’s applica-
tion. Its use is demonstrated in the following TLD fragment: 

<tag>
...

    <example><![CDATA[
      To iterate over the indexed property “program” of a Bean named
      “flynn”, use this tag as follows:
          <forProperty name=”flynn” property=”program”
                       id=”prog” class=”com.encom.Program”>
              body content
          </forProperty>
       Within the body of the tag, a scripting variable named “prog”
       will be bound to various instances of the com.encom.Program class,
       representing the successive elements of the “program” indexed
       property. The specified class must be compatible with the type
       of the indexed property.
    ]]></example>

...
</tag>



544 CHAPTER 18

Creating custom tags
Because custom tags follow XML syntax conventions, the appearance of example
uses in the body content of this element has the potential to violate the well-
formedness of the TLD as an XML document. If the TLD is not well-formed, then
the JSP container is likely to throw an exception when it tries to read it.

 As a result, it is typically necessary to wrap the body content of the <example>
element in an XML CDATA (character data) element, as illustrated. This marks the
body content as literal text, not meant to be interpreted as XML.

18.4 API overview

All of the classes and interfaces provided by JSP for implementing tag handlers and
helper classes are in the javax.servlet.jsp.tagext package. This package also has
four auxiliary classes used by the JSP container in interpreting the contents of a TLD.

18.4.1 Tag handlers

Tag handlers are the Java objects that perform the action associated with a custom
tag. When a request is received by the JSP container for a page containing custom
tags, each time a custom tag is encountered, an instance of the corresponding tag
handler is obtained. The tag handler is initialized according to any attribute values
explicitly set by the tag on the page, then methods of the tag handler are called to
perform the corresponding action. Once the action has been performed, the tag
handler is returned to a resource pool for reuse.

 The methods that the tag handler must support in order to perform the custom
action are prescribed by the javax.servlet.jsp.tagext package’s Tag, Itera-
tionTag, and BodyTag interfaces. By specifying tag handlers in terms of interfaces,
JSP allows developers to turn existing classes, which may already have a well-
defined inheritance hierarchy, into tag handlers. If you will be developing tag han-
dlers from scratch, however, your task will be simplified by using one of the two tag
handler base classes also available in the javax.servlet.jsp.tagext package,
named TagSupport and BodyTagSupport. These classes provide default implemen-
tations for all of the methods in the corresponding interfaces, so that you will only
have to redefine those methods that require custom behavior in order to implement
the desired action.

 You may be wondering why there are three tag handler interfaces. In practice,
tags which manipulate their body content tend to be more complicated than tags
which are either empty or just pass the contents of the tag body straight through to
the page. In recognition of this, the BodyTag interface and the corresponding
BodyTagSupport class are geared toward the implementation of tags that need to



API overview 545
process their body content in some manner, while the Tag and IterationTag inter-
faces and the TagSupport class are geared toward the simpler case. Fewer methods
are required by the Tag and IterationTag interfaces. Of course, both types of tag
handlers must provide the same base functionality. As a result of this underlying com-
monality, BodyTag is implemented as an extension of the IterationTag interface,
which is itself an extension of the Tag interface. The BodyTagSupport class is like-
wise a subclass of TagSupport.

 The application of a tag handler implementing the Tag interface is depicted in
figure 18.4. The first step is to obtain an instance of the appropriate class, either
from the tag handler resource pool or, if no instances are currently available, by cre-
ating one. Next, tag handler properties are set. First, the handler’s setPageCon-
text() method is called by the JSP container to assign it the appropriate
PageContext object (see chapter 6 for a description of the PageContext class).
Next, the handler’s setParent() method is called. This provides access to the tag
handler instance, if any, within whose body the current handler appears.

 After these properties have been set, the attribute values specified by the tag, if
any, are set. Tag attributes are handled like JavaBeans properties, via accessor

 Obtain 
handler

Set
properties

Set attribute
values

doStartTag()

SKIP_BODY

EVAL_BODY_INCLUDE

doEndTag()

EVAL_PAGESKIP_PAGE

Stop Continue

setPageContext()
SetParent()

Process body

Figure 18.4 Flow of control for handlers 
implementing the Tag interface



546 CHAPTER 18

Creating custom tags
methods defined by the tag handler class. A custom tag attribute named id, for
instance, should have corresponding getter and setter methods: getId() and
setId(), or equivalents specified via an associated BeanInfo class. These setter
methods are called by the JSP container to assign the attribute values specified in the
tag to the corresponding tag handler instance.

 The JSP container next calls the tag handler’s doStartTag() method. At this
point, all of the contextual information needed to execute the tag handler will have
been provided by the JSP container (i.e., the tag handler properties and attribute
values), so doStartTag() can begin performing the action associated with its cus-
tom tag. This should return one of two integer values indicating how processing is
to proceed. Tag.SKIP_BODY indicates that any body content of the tag should be
ignored. Tag.EVAL_BODY_INCLUDE indicates that the body content should be pro-
cessed normally.

 In either case, the next step is to call the handler’s doEndTag() method. As with
doStartTag(), the actions performed are tag-specific. The method is expected to
return one of two integer values indicating how processing is to proceed. A return
value of Tag.SKIP_PAGE from doEndTag() indicates to the JSP container that pro-
cessing of the page should be halted immediately. Any further content on the page
should be ignored and any output generated thus far should be returned to the
user’s browser. A return value of Tag.EVAL_PAGE indicates that page processing
should continue normally.

 Regardless of the result returned by doEndTag(), the tag handler instance is
made available for reuse. If there are other calls to the same custom tag on the page,
the JSP container may, under certain circumstances, reuse the handler  within the
same page. If the handler can’t be reused on the current page, it will ultimately be
returned to the resource pool for reuse during subsequent JSP page requests.

 The IterationTag interface, as its name suggests, adds provisions for process-
ing the custom tag’s body iteratively. As indicated in figure 18.5, the flow of control
for tag handlers implementing the IterationTag interface incorporates a simple
extension to the flow of control supported by the Tag interface to enable repeated
application of the custom tag’s body content. As before, the first step is to obtain an
instance of the tag handler. Properties and attributes are then set, followed by a call
to doStartTag(). If this returns Tag.SKIP_BODY, then the body content is ignored
and control passes to the doEndTag() method. If doStartTag() returns
Tag.EVAL_BODY_INCLUDE, the body content is processed and control passes to the
doAfterBody() method. This method can also return one of two possible values:
Tag.SKIP_BODY or IterationTag.EVAL_BODY_AGAIN.  A return value of
Tag.SKIP_BODY will transfer control to doEndTag(). A return value of Iteration-



API overview 547
Tag.EVAL_BODY_AGAIN will cause the body content to be processed once again, fol-
lowed by another call to doAfterBody(). This subsequent call to doAfterBody()
can once again return either Tag.SKIP_BODY or IterationTag.EVAL_BODY_AGAIN,
either terminating the iteration or initiating yet another application of the tag’s
body content. The primary role of doAfterBody() then, is to control this looping
over the body content.

 Once control is passed to doEndTag(), it is that method’s role to determine
whether or not processing of the page itself should continue. If doEndTag() returns
Tag.SKIP_PAGE, further processing of the JSP page will be aborted. If doEndTag()
returns Tag.EVAL_PAGE, processing of the JSP page will continue normally. In either
case, the custom tag handler then becomes available for reuse.

 The BodyTag interface generalizes the tag handler flow of control even further.
As indicated in figure 18.6, this interface supports a third return value for the
doStartTag() method that allows the tag handler to access and manipulate the
results of processing its body content. If the call to doStartTag() returns either

 Obtain 
handler

Set
properties

Set attribute
values

doStartTag()

doEndTag()

EVAL_PAGESKIP_PAGE

Stop Continue

setPageContext()
setParent()

Process body

doAfterBody()

EVAL_BODY_AGAINSKIP_BODY

EVAL_BODY_INCLUDE

SKIP_BODY

Figure 18.5 Flow of control for handlers implementing the IterationTag interface



548 CHAPTER 18

Creating custom tags
Tag.SKIP_BODY or Tag.EVAL_BODY_INCLUDE, the behavior is identical to that of the
IterationTag interface. A return value of BodyTag.EVAL_BODY_BUFFERED, how-
ever, indicates to the JSP container that, not only should the tag’s body content be
processed, but that the results of that processing must be stored for manipulation
by the tag handler itself.

 The results of processing the body content are stored by means of the Body-
Content class. BodyContent is a subclass of JspWriter, an instance of which is used
to represent the output stream for the content generated by a JSP page (chapter 6).
Rather than buffer its output for eventual submission to the user’s browser, as is the
case with JspWriter, the BodyContent class stores its output for use by the tag han-
dler. It is then up to the tag handler to decide whether that output should be dis-
carded or sent to the browser in either its current or some modified form.

 In order to process the body content, then, the first step is to create (or obtain
from a resource pool) an instance of the BodyContent class. This is assigned to the
tag handler by means of its setBodyContent() method. The JSP container then

 Obtain 
handler

Set
properties

Set attribute
values

doStartTag()

SKIP_BODY

doEndTag()

EVAL_PAGESKIP_PAGE

Stop Continue

setPageContext()
setParent()

Initialize
body content

Process body

doAfterBody()

Process body

doAfterBody()

EVAL_BODY_AGAIN

setBodyContent()
doInitBody()

SKIP_BODYSKIP_BODY

EVAL_BODY_BUFFERED

EVAL_BODY_TAG

EVAL_BODY_INCLUDE

Figure 18.6 Flow of control for handlers implementing the BodyTag interface



API overview 549
calls the tag handler’s doInitBody(), in order to give the tag handler an opportu-
nity to perform additional initialization steps after the BodyContent instance has
been assigned. The body is then processed, with all of its output going to the Body-
Content instance.

WARNING While processing the body content of a custom tag which implements the
BodyTag interface, the out implicit object, accessible as a scripting variable
via the JSP scripting elements, will reference the tag handler’s BodyContent
instance. After processing of the custom tag is completed, the out implicit
object will reference its previous value.

After processing of the body content, the JSP container calls the tag handler’s doAf-
terBody() method. The action performed by this method is typically tag-
dependent, and often includes interactions with the tag’s BodyContent instance. As
was the case  for the  IterationTag interface, this method is expected to return
either Tag.SKIP_BODY or IterationTag.EVAL_BODY_AGAIN. If the latter value is
returned, then the tag’s body content will be processed a second time, after which
doAfterBody() will be called once again. Repeated processing of the body content
will continue until the doAfterBody() method returns Tag.SKIP_BODY. This  path
can thus also be used to implement custom tags which process their body  content
iteratively.

 Once processing of the body content has been skipped (either by doStartTag()
or doAfterBody()), control is passed to the tag handler’s doEndTag() method.
From this point, processing is identical to that of a tag handlers implementing
either the Tag or the IterationTag interface. 

NOTE In addition to the introduction of the IterationTag interface, modifications
were also made to the invocation protocol for the BodyTag interface as part
of the JSP 1.2 specification. In particular, the static variables representing the
values to be returned by two of the interface’s invocation methods were
changed. As described, JSP 1.2 expects the doStartTag() method of the
BodyTag interface to return BodyTag.EVAL_BODY_BUFFERED to indicate that
the tag’s body content should be processed and stored, and a return value of
IterationTag.EVAL_BODY_AGAIN from the doAfterBody() method to in-
dicate that processing of the body content should be repeated. In JSP 1.1, a
return value of BodyTag.EVAL_BODY_TAG fulfilled both roles. 



550 CHAPTER 18

Creating custom tags
18.4.2 Tag handler life-cycle

As indicated in the previous section, after a tag handler is instantiated, the JSP con-
tainer is permitted to reuse it over and over again, both within a single page request
and across multiple page requests by multiple users. We now turn our attention to
the specifics of tag  handler reuse,  in the context of understanding how the overall
life cycle of a tag handler instance affects its class design.

 Like any other Java class, tag handlers are instantiated via the new operator,
which has the side effect of calling one of its constructors. Tag handlers are auto-
matically instantiated by the JSP container, and since no constructor arguments are
provided by the container, the class’s default constructor will be used. After the
constructor is called, the tag handler is added to a resource pool managed by the
JSP container.

 As indicated in figure 18.7, the tag handler instance remains in the resource
pool until it is needed by the container to handle a request for a JSP page that calls

 Add to 
handler pool

Instantiate
handler

Page 
request

Remove
from pool

Invoke
handler release()

Exception 
thrown?

Reuse
handler?

default constructor

Yes

Yes

No

No

Figure 18.7 Default life cycle of a custom tag handler



API overview 551
the corresponding custom tag. It is then removed from the resource pool, to keep
other request threads from using it at the same time.

 The tag handler instance is then invoked by the container to implement a specific
custom tag occurrence within the page. The tag handler methods called within that
single invocation are as described in the previous section, and thus are dependent
upon which tag handler interface it implements. Regardless of its interface, however,
there is a chance that the invocation will fail. In particular, the signatures for all of
the tag handler methods that are typically written by the custom tag implementer—
doStartTag(), doEndTag(), doInitBody(), and doAfterBody()—provide for
throwing an instance of javax.servlet.jsp.JspException.

 If no exceptions are raised during the invocation, the container is permitted to
reuse the handler  within the current page request.  The circumstances under which
a handler is reused within a page are somewhat restrictive, however: a tag handler
instance can only be used multiple times during a given page request when subse-
quent custom tags specify the same set of attributes as the custom tag to which the
handler was originally applied.

 Consider a custom tag named ifProperty, which has required attributes named
name and property and one optional attribute named action. Consider also a JSP
page fragment in which this tag appears three times:

<mut:ifProperty name="timeOfDay" property="morning" action=”include”>
<p>Good Morning!</p>

</mut:ifProperty>
<mut:ifProperty name="timeOfDay" property="afternoon">

<p>Good Afternoon!</p>
</mut:ifProperty>
<mut:ifProperty name="timeOfDay" property="daytime" action="exclude">

<p>Good Night!</p>
</mut:ifProperty>

In this fragment, the second use of the ifProperty tag sets only the required
attributes, while the first and third also set the optional action attribute. As a
result, at least two instances of the ifProperty tag handler will be required when-
ever the page containing this fragment is requested, one for the first and third
occurrences of the tag, and another for the second. The tag handler used for the
first ifProperty tag can be reused for the third, but because the second ifProp-
erty tag employs a different set of attributes from the other two, it requires its own
instance of the ifProperty tag handler.

 This restriction on reuse is a result of the way custom tag attributes are modeled
as JavaBeans properties of the corresponding tag handler objects. When a tag
handler is applied to a specific occurrence of a custom tag, the tag handler setter



552 CHAPTER 18

Creating custom tags
methods corresponding to the attributes appearing in the custom tag are called.
There are no “unsetter” methods, however, that might be called for attributes that
are not specified by the custom tag. If a tag handler that has been applied to a cus-
tom tag that does include a specific attribute (such as the action attribute in our
example) were to be applied to a custom tag that does not include a value for that
attribute, then the tag handler would still have the value for that attribute that was
set by the original custom tag. Because the setter would not be called when the sec-
ond tag is encountered, the tag handler property corresponding to that attribute
would still have the value set by the first custom tag. This would make the results of
a custom tag dependent upon the attribute settings of previous occurrences of cus-
tom tags within the page.  Such nonintuitive behavior would make custom tags
much more difficult for page designers to use; hence, the restrictions on how cus-
tom tags may be reused within a single page request.

 As one final twist on the reuse of tag handlers within a single JSP page, consider
the following page fragment:

<mut:ifProperty name="timeOfDay" property="morning" action=”include”>
<p>Good Morning!</p>

</mut:ifProperty>
<mut:ifProperty name="timeOfDay" property="afternoon" action=”include”>

<p>Good Afternoon!</p>
</mut:ifProperty>
<mut:ifProperty name="timeOfDay" property="daytime" action="exclude">

<p>Good Night!</p>
</mut:ifProperty>

The only difference between this fragment and the previous one is the specification
of the action attribute in the second ifProperty tag. One effect of this change is
that only a single tag handler instance is required to handle all three occurrences of
the custom tag, since all three specify values for the same attribute set.

 Notice, however, that the values of the action attributes are the same for the
first two tags, and that the values of the name attributes are the same for all three. As
a concession to efficiency, the JSP container is permitted to forego calling the setter
method for the attribute property when reusing a tag handler and setting the
attribute to the same value to which it was most recently set.

 For the example above, then, in which the same handler instance can be applied
to all three occurrences of the ifProperty tag, the sequence of setter operations is
as follows:

� For the first occurrence, the setName(), setProperty(), and setAction()
methods are called to set the values of each of the three specified attributes.
(This assumes this is the first occurrence of the ifProperty tag on the page.)



API overview 553
� For the second occurrence, only the tag handler’s setProperty() method is
called, since the values of the other two attributes are unchanged.

� For the third occurrence, the setProperty() and setAction() methods are
called.

An important implication of this behavior is that attribute property setter methods
should be free from side effects. As the example shows, there is no guarantee that
the setter methods will be called for each application of the tag handler; hence, any
associated side effects might not be performed for each application. Typically, such
side effects should be performed in the handler’s doStartTag() method (which the
JSP container is not permitted to skip), since all of the attribute values will have
been set (or preserved from the previous invocation) before it is called. 

 Once the page request is completed, and all opportunities for tag handler reuse
within the page have been exhausted, the release() method of each tag handler is
called, and the tag handler instance is returned to the container’s resource pool.
The intent of the release() method is to free any resources allocated by the tag
handler  during the page request. If, say, the tag handler opened a database or net-
work connection, the release() method  provides an assured means for closing
that connection, since it is guaranteed that the method will be called before the tag
handler is returned to the resource pool. The release() method should also set
the values of any tag handler instance variables—particularly those representing tag
attribute values—back to their initial, default values. In this way, it plays an analo-
gous role within the context of tag handler reuse that Java’s finalize() method
does in the context of garbage collection.

 In the case where an exception is raised by a tag handler method, or a result of
processing the corresponding body content, the standard JSP error-handling mech-
anism is invoked: uncaught exceptions cause control to be forwarded to an error
page, and processing of the current page request is aborted. In that case, the
release() method for all of the tag handlers in use by the page are called, includ-
ing that of the tag handler which caused the exception. These tag handler instances
are then returned to the JSP container’s resource pool.

 The default life cycle for tag handler instances thus provides for limited reuse of
tag handlers at both a local (page-specific) and global (container-wide) scale. In
addition, global reuse of tag handlers is robust to exceptions raised at the local level.
The default life cycle, however, does not support local handling of exceptions. More
specifically, tag handlers cannot intercept exceptions raised while processing their
body content. In addition, while the release() method provides a mechanism for
freeing resources at the page request level, there is no corresponding mechanism for
freeing resources at the level of an individual custom tag invocation.



554 CHAPTER 18

Creating custom tags
 In response to these two deficiencies, a new interface class, javax.serv-
let.jsp.tagext.TryCatchFinally, has been introduced in JSP 1.2. This interface
is intended to be implemented by any custom tag handler that needs additional
control over its life cycle, as a supplement to the standard Tag, IterationTag, and
BodyTag interfaces. 

The TryCatchFinally interface (table 18.1) has two methods. For tag handlers
that implement this interface, if an exception is raised while processing the corre-
sponding tag’s body content, or by its doStartTag(), doEndTag(), doAfter-
Body(), or doInitBody() method, the instance’s doCatch() method will be called,
with the exception itself as its sole parameter. The doCatch() method can then
attempt to handle the exception, as if control had been passed to a standard Java
catch clause. As in a standard catch clause, doCatch() also has the option of
rethrowing the exception, or of throwing a new one.

 In the case of nested custom tags, if both have tag handlers that implement Try-
CatchFinally and the inner tag’s doCatch() method chooses to throw (or
rethrow) an exception, then control will be transferred to the doCatch() method of
the tag handler for the outer tag. Exceptions that propagate all the way up the chain
of eligible doCatch() methods cause control to be forwarded to an error page. If
any of the eligible doCatch() methods intercepts the exception and opts not to
throw its own exception, processing of the page will resume with the page content
following the end tag of the corresponding custom tag.

 After the tag handler’s doCatch() method is called, doFinally() is called, regard-
less of whether doCatch() elects to throw an exception itself. Note that if doCatch()
throws an exception, then doFinally() will be called before any outer tag’s
doCatch() method is called.

 Even if no exceptions are raised by the body content or the invocation methods,
the doFinally()  method of a tag handler implementing TryCatchFinally will
always be called. In the case where no exceptions are raised (and, therefore,
doCatch() is not called), the doFinally() method will be called immediately after
the tag handler’s doEndTag() method is called. The doFinally() method, then,
can be relied upon to perform any cleanup code required after each application of

Table 18.1 Methods of the TryCatchFinally interface. 

Method Description

doCatch(throwable) Handles an exception raised in the body content or invocation methods 
of a tag handler.

doFinally() Called after all invocation methods or in the event of an exception.



API overview 555
the tag handler. Note that this method should not try to reset the handler’s
attributes, given the container’s ability, as previously described, to reuse attribute
state by not calling attribute setters when values are not changed.

 The net effect of these life-cycle methods is that only two methods are guaran-
teed to be called when a tag handler  is invoked: doStartTag() and release().
The doStartTag() method will be called when the tag is first applied to an
occurrence of the corresponding custom tag within the JSP page, and release()
will be called when the tag handler is returned to the container’s resource pool. For

 Add to 
handler pool

Instantiate
handler

Page 
request

Remove
from pool

doFinally()

Invoke
handler release()

Exception 
thrown?

Reuse
handler?

default constructor

Yes

Yes

No

No

No

doCatch()

doFinally()

Yes

Exception 
thrown?

Figure 18.8 Life cycle of a custom tag  handler implementing the TryCatchFinally interface



556 CHAPTER 18

Creating custom tags
all of the other methods presented here, an exception thrown during the invocation
of the handler or while processing its body content can abort further processing and
prevent the method from being called.

 For tag handlers that implement the TryCatchFinally inter face, the
doFinally() method is also guaranteed to be called. For this reason, programmers
who are implementing custom tags are advised to restrict tag handler resource man-
agement to these three methods. The doStartTag() method is well-suited to per-
forming request-time attribute validation, side effects based on attribute values, and
resource allocation. In contrast, doFinally()is ideal for deallocation of per-invoca-
tion resources, while release() is intended for resetting attribute state and deallo-
cating per-request resources.

18.4.3 Helper classes

As mentioned earlier, all tag handler helper classes are subclasses of the
javax.servlet.jsp.tagext.TagExtraInfo class. When the JSP container is com-
piling a page that includes a custom tag whose TLD specification includes a <tei-
class> entry, the container will create (or obtain from a resource pool) an instance
of the indicated helper class. The role of this helper class is twofold: to provide
information about any scripting variables introduced by the tag and/or to perform
tag-level validation beyond the automatic syntax validation and any library-level val-
idation performed by the page compiler.

 To accomplish this, the TagExtraInfo base class specifies two methods that sub-
classes are expected to override as necessary. The getVariableInfo() method is
called to obtain information about scripting variables, while the isValid() method
is called to allow the subclass to perform tag-specific validation.

 Both of these methods take a single argument, which is an instance of the Tag-
Data class. This instance will contain a representation of all of the attribute/value
pairs specified in the custom tag being examined. Consider, for example, the follow-
ing custom tag:

<mut:timeOfDay id="tod" timezone="EST"/>

When calling the helper class associated with this tag (assuming one exists), the
TagData object would have entries for both of the specified attributes. The meth-
ods defined by the TagData class allow the developer to obtain the value asso-
ciated with a given attribute name. In the particular case of an attribute whose
value is specified via a request-time attribute value, these methods will return
TagData.REQUEST_TIME_VALUE to indicate that no static value is available for use
during page compilation. In this way, getVariableInfo() and isValid() can obtain
information about tag attributes in order to perform their required tasks.



API overview 557
 The contract of isValid() is quite straightforward. Given access to the data
stored in the supplied TagData object, if the custom tag is considered valid, the
method should return true. Otherwise, the method should return false. The
default implementation of this method in the TagExtraInfo base class simply
returns true.

 This method allows the developer to perform additional checks on the attributes
and their values beyond those performed by the page compiler based on the infor-
mation in the TLD. For example, the TLD can only indicate whether an individual
attribute is optional or required. Your tag might have an attribute that is normally
optional, but must always appear whenever some other attribute is specified. The
TLD does not provide a mechanism for specifying relationships between attributes,
so dependencies such as this can only be verified by means of the isValid()
method, or by using a tag library validator as described in chapter 20.

 The getVariableInfo() method is a bit more involved. Its task is to return an
array of VariableInfo instances that specify the scripting variables to be introduced
by the corresponding tag. There should be one element in this array for each script-
ing variable. The default implementation of getVariableInfo() returns an empty
array, indicating that no scripting variables are being introduced.

 Four pieces of information are required for each scripting variable, all of which
must be specified as arguments to the VariableInfo constructor. First, the name of
the scripting variable must be specified, as well as the object class for the variable’s
value. This information is used by the page compiler to resolve variable references
appearing later on the page. The variable name is also used by the JSP container
when processing requests to find the value of the scripting variable at run time. Val-
ues of scripting variables are expected to be stored as attributes of the PageContext
object associated with the page. The tag handler should set this attribute, from
which the JSP container will extract the value of the scripting variable. The con-
tainer can then make the appropriate assignment and continue processing the
request, resolving references to the variable name with the retrieved value.

 The next argument to the VariableInfo constructor is a boolean flag—
referred to as the declare flag—that indicates whether the tag is introducing a new
variable, or simply assigning a new value to an existing variable. (This is used to
determine whether or not the scripting language needs to specify a declaration for
the variable.) The fourth and final argument specifies the scope of the scripting
variable. In the context of custom tag scripting variables, scope—also referred to as
visibility—indicates the range of page content over which the variable remains
valid, and is specified relative to the locations of the custom tag’s start and end tags



558 CHAPTER 18

Creating custom tags
within the page. Three static variables are provided for specifying scripting variable
scope, as follows:

� VariableInfo.AT_BEGIN—Indicates that the scripting variable is in scope
immediately after the start tag.

� VariableInfo.AT_END—Indicates that the scripting variable is not in scope
until after the end tag.

� VariableInfo.NESTED—Indicates that the scripting variable is in scope only
between the start and end tags (i.e., within the body of the tag).

For the <mut:timeOfDay> example tag presented previously, then, the corre-
sponding call to the VariableInfo constructor for the indicated attribute values
might take the following form:

new VariableInfo("tod", "com.taglib.wdjsp.mut.TimeOfDayBean",
                 true, VariableInfo.AT_BEGIN);

The resulting VariableInfo instance thus specifies a scripting variable named tod,
whose value will be an instance of the com.taglib.wdjsp.advtags.TimeOfDay-
Bean class. The declare flag is set to true, indicating that this will be a new variable.
Finally, its scope is set to VariableInfo.AT_BEGIN, indicating that the tod scripting
variable will be available immediately following the associated <mut:timeOfDay/>
tag, and will remain in scope until the end of the page.

 As indicated earlier in the chapter, JSP 1.2 has added the capability to specify infor-
mation about scripting variables in the TLD itself, obviating the need for TagEx-
traInfo classes  in many circumstances. The subelements of the TLD’s <variable>
tag, in fact, correspond directly to the parameters of the described VariableInfo
constructor. The <name-given> and <name-from-attribute> tags correspond to the
constructor’s first argument, while the <variable-class> and <declare> tags corre-
spond to its second and third, respectively. The <scope> tag maps to its fourth param-
eter, and the values supported by this tag take their names from the corresponding
static variables of the TagExtraInfo class, and have the same meanings.

 For our <mut:timeOfDay> example tag, then, the developer could avoid having
to create a TagExtraInfo helper class for the tag handler by adding the following
<variable> subelement to its TLD entry:

<variable>
<name-from-attribute>id</name-from-attribute>
<variable-class>com.taglib.wdjsp.mut.TimeOfDayBean</variable-class>
<declare>true</declare>
<scope>AT_BEGIN</scope>

</variable>



Example tag library 559
As in the VariableInfo constructor call presented previously, this <variable>
entr y indicates  that  the  scr ipt ing var iable wi l l  be an ins tance of  the
com.taglib.wdjsp.advtags.TimeOfDayBean class, that it must be declared, and
that it will be in scope from the location of the tag through the end of the page.
Unlike the constructor call, however, which must explicitly specify the name of the
scripting variable, the <variable> tag can take advantage of the <name-from-
attribute> subelement to indicate that the name of the scripting variable will be
obtained from the value of the tag’s id attribute.

18.4.4 Auxiliary classes

There are four auxiliary classes provided by the javax.servlet.jsp.tagext pack-
age for use by the JSP container to represent the contents of a TLD file. These are
TagLibraryInfo, TagInfo, TagAttributeInfo, and TagVariableInfo. Because
these classes are intended for use by the JSP container, their use by web developers
and library implementers is rare.

 The TagLibraryInfo class stores information on the library as a whole, and pro-
vides accessors for retrieving its properties. Among them is a listing of the tags pro-
vided by the library, which are represented by instances of the TagInfo class. These
instances in turn store the set of attributes and scripting variables associated with
each tag, which are represented by instances of the TagAttributeInfo and Tag-
VariableInfo classes, respectively. For further details, see appendix F.

18.5 Example tag library

To take this discussion of custom tags from the abstract to the concrete, the remain-
der of this chapter will focus on examples, as will chapter 19. We will examine in
detail the implementation of several custom tags, and demonstrate their use within
corresponding JSP pages. As discussed earlier in this chapter, use of custom tags
within a JSP page first requires the construction of a tag library containing the tag
handler classes and the associated TLD. To this end, we will also be packaging up
our example tags into a custom tag library at the end of chapter 20. 

 A well-designed custom tag library will typically contain a focused set of interre-
lated tags that provide common or integrated functionality. For example, one
library might contain a set of debugging tags for use during page development,
while another might provide extensions to the standard JSP bean tags for improved
flow control. Alternatively, a set of application-specific tags—for example, custom
tags for interacting with the FAQ tool presented in chapter 11—would be a good
candidate for a stand-alone tag library.

 In order to give the reader exposure to a variety of custom tag examples, the
library we will be constructing here will not be quite so unified in purpose. While



560 CHAPTER 18

Creating custom tags
this library will focus on general-purpose rather than application-specific tags, its
tags cover a broad range of functionality, such as debugging, flow control, and
extended HTML support. Any one of these areas would be an appropriate domain
for a tag library of its own. Combining a few tags from each category into a single
library is less than ideal, but hopefully acceptable in a pedagogical context such as
this. In recognition of the rather mongrel nature of the tag library presented here, it
will be referred to as the Manning Utility Tags library, fittingly abbreviated by the
namespace prefix mut.

 The TLD for this library is outlined in listing 18.1. The TLD entries for the tags
will  follow and must be inserted into the TLD in the indicated location in order to
provide a complete specification of the tag library. 

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC 
"-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglib_1_2.dtd">
<taglib>
    <tlib-version>1.0</tlib-version>
    <jsp-version>1.2</jsp-version>
    <short-name>mut</short-name>
    <uri>/mutlib</uri>
    <info>
      Manning Utility Tags from
      Web Development with JavaServer Pages.
    </info>

    <validator></validator> entries 
    <listener></listener> entries 
    <tag></tag> entries 

</taglib>

18.6 Content substitution

The most basic type of custom JSP action simply substitutes some text—often
dynamically generated—in place of the custom tag. The first example tag for our
library is of this sort, and is a debugging tag for displaying the status of a page’s
output buffer. This tag will be named debugBuffer, and will take no attributes, so
its TLD entry is fairly straightforward:

<tag>
    <name>debugBuffer</name>
    <tag-class>com.taglib.wdjsp.mut.DebugBufferTag</tag-class>

Listing 18.1 Skeleton TLD for the custom tag library



Content substitution 561
    <body-content>empty</body-content>
    <description>

Report the current status of output buffering. 
    </description>
</tag>

As indicated in this TLD fragment, the class name for debugBuffer’s tag handler is
com.taglib.wdjsp.mut.DebugBufferTag. A documentation string is provided via
the <description> element, which will be available for use by JSP page develop-
ment tools that wish to use this library. In addition, this tag’s <body-content>
entry indicates that there is no body content associated with this tag. If the page
compiler encounters usage of this custom tag with associated body content, a com-
pilation error will occur.

NOTE It is standard practice to name the tag handler class after the tag, with an add-
ed Tag suffix. This class, as with all of the tag handler classes in the mut li-
brary, is defined in the com.taglib.wdjsp.mut package.

Because there is no body content associated with this tag, it needs only to imple-
ment the Tag interface, rather than the more complicated BodyTag interface. Fur-
thermore, since we will be developing this custom tag from scratch, we can take
advantage of the TagSupport class to simplify the implementation. As a result, the
only method that needs to be implemented by the DebugBufferTag class is
doStartTag(). The full source code for the tag handler appears in listing 18.2.

package com.taglib.wdjsp.mut;

import java.io.IOException;
import java.io.PrintStream;
import java.text.NumberFormat;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class DebugBufferTag extends TagSupport {
public int doStartTag () throws JspException {

JspWriter out = pageContext.getOut();
int total = out.getBufferSize();
int available = out.getRemaining();
int used = total - available;

Listing 18.2 DebugBufferTag tag handler



562 CHAPTER 18

Creating custom tags
try {
out.print("Buffer Status: ");
out.print(Integer.toString(used));
out.print('/');
out.print(Integer.toString(total));
out.print(" = ");
NumberFormat percentFmt = NumberFormat.getInstance();
percentFmt.setMinimumFractionDigits(1);
percentFmt.setMaximumFractionDigits(3);
out.print(percentFmt.format((100D * used)/total));
out.println("%");

}
catch(IOException e) {

throw new JspTagException("I/O exception "
   + e.getMessage());

}
return SKIP_BODY;

}
}

The first tag handler property set by the JSP container when applying a tag handler
is its PageContext object. As indicated in chapter 6, the methods of the Page-
Context class provide programmatic access to all of the implicit objects available to
the JSP scripting elements (table 6.16), as well as to all of the standard attribute
scopes (table 6.19). Because tag handlers are passed a reference to the local Page-
Context instance during their initialization, they in turn will have access to all of
these objects and attributes through that instance. Indeed, the PageContext object
is the tag handler’s primary window into the workings of the JSP container.

 For tag handler classes that extend either TagSupport or BodyTagSupport, the
local PageContext instance will be available through an instance variable named
pageContext. This instance variable is set when the JSP container calls the handler’s
setPageContext() method which, as indicated in figures 18.4, 18.5, and 18.6, is one
of the first steps in invoking a tag handler. The DebugBufferTag class takes advantage
of this instance variable in the very first line of its doStartTag() method, in order to
retrieve the page’s JspWriter instance. It then calls methods defined by the Jsp-
Writer class to determine the current status of the output buffer, which are then dis-
played on the page by calling the same object’s output methods, with help from the
java.text.NumberFormat class to control the display of the numerical results.

 Recall that, with respect to error handling, all of the tag handler life-cycle meth-
ods are specified as potentially throwing instances of the JspException class. By
convention, however, when an error is thrown by a tag handler method it takes the
form of a JspTagException instance, to signal that the error originated in a tag



Tag attributes 563
handler rather than some other JSP entity. All of the tag handler methods presented
here and in chapter 19 follow this practice. As you might expect, JspTagException
is a subclass of JspException, so the fact that the throws clause in the method
signature only mentions JspException is not an issue.

 Finally, the default behavior of the doEndTag() method, inherited by the Debug-
BufferTag class from TagSupport, is simply to return Tag.EVAL_PAGE, indicating
that normal processing of the remainder of the page should continue.

 An example page which uses this tag, as well as the resulting output, are pre-
sented in the next section.

18.7 Tag attributes

Now we take a closer look at how tag handlers manage the attributes of a custom
tag. For this example, we will consider a second debugging tag that allows the
developer to display the cookies available on the current page. The TLD entry for
this tag is:

    <tag>
<name>debugCookies</name>
<tag-class>com.taglib.wdjsp.mut.DebugCookiesTag</tag-class>
<body-content>empty</body-content>
<description>

List the cookies accessible from this page.
</description>
<attribute><name>style</name></attribute>

    </tag>

This tag is named debugCookies, and is implemented via the DebugCookiesTag
class. As with the debugBuffer tag, it has no body content, but unlike the debug-
Buffer tag, this one supports a single attribute named style.

 Note that the <attribute> entry does not specify either the <required> or the
<rtexprvalue> subelement. As a result, the default values for those subelements
apply, implying that this is an optional attribute that may not be specified via a
request-time attribute value.

 The style attribute will be used to control how the cookie information
reported by the tag is to be displayed. Since the tag needs to be able to display
multiple cookies, the tag can present either a plain text version (as was the case
with the debugBuffer tag), or an HTML list. As such, the style attribute will accept
two different string values, either text or HTML, depending upon how the results
are to be displayed.



564 CHAPTER 18

Creating custom tags
 As mentioned earlier in the chapter, tag attributes are represented in the tag
handler class as JavaBeans properties. For the style attribute, then, the Debug-
CookiesTag class must define the appropriate instance variables and methods, as in
the following:

public class DebugCookiesTag extends TagSupport {
    private String style = "text";

    public void setStyle (String style) {
this.style = style;

    }
    public String getStyle () {

return style;
    }

...
}

When the JSP container is processing a page request and encounters the debug-
Cookies tag, the value specified for the style attribute will be passed to the corre-
sponding DebugCookiesTag instance via its setStyle() method. The default value
for this optional tag attribute is text.

 For the DebugCookiesTag class, two of the standard tag handler invocation
methods must be implemented: doStartTag() and release(). The default imple-
mentation of the doEndTag() method can be used as is. The code for this class’s
doStartTag() method is as follows:

public int doStartTag () throws JspException {
JspWriter out = pageContext.getOut();
javax.servlet.ServletRequest req = pageContext.getRequest();
if (req instanceof HttpServletRequest) {

HttpServletRequest httpReq = (HttpServletRequest)req;
Cookie[] cookies = httpReq.getCookies();
int l = cookies.length;
try {

boolean doHTML = style.equalsIgnoreCase("HTML");
if (doHTML) out.println("<ul>");
for (int i = 0; i < l; i++) {

Cookie cookie = cookies[i];
if (doHTML) out.println("<li><b>");
out.println(cookie.getName());
if (doHTML) out.println("</b>");
out.println(" = ");
out.println(cookie.getValue());
out.println('\n');

}
if (doHTML) out.println("</ul>");

}



Tag attributes 565
catch(IOException e) {
throw new JspTagException("I/O exception "

+ e.getMessage());
}

}
return SKIP_BODY;

}

Here, the pageContext instance variable is used to fetch both the output stream
and the request object for the page on which the tag appears. The request object
must first be cast to the appropriate HTTP-specific class in order to retrieve its array
of Cookie instances, after which the cookie’s names and values are written to the
output stream in accordance with the selected style. If the value of the style
instance variable is HTML, then the HTML markup for displaying an unordered list is
produced, along with some gratuitous boldfacing. Otherwise, the cookie data is
output as multiple lines of text, one per cookie.

 This class must also provide its own implementation of the release() method.
Recall that the purpose of this method is to restore the tag handler instance to its
original state before returning it to the shared resource pool, so that it may be
reused during subsequent JSP requests. For this particular tag, then, it is necessary
to reset the value of its style instance variable to text, as follows:

    public void release () {
super.release();
style = "text";

    }

This is done so that the tag handler will use its proper default value for the corre-
sponding style attribute if the next tag this handler is applied to does not explic-
itly specify a value for that attribute. If this instance variable is not reset, any tag
which does not explicitly set that attribute will simply reuse the style value from
the tag to which the handler was last applied, which may or may not be the correct
default value.

TIP Note the call to super.release() as the first operation in the tag handler’s
own release() method. When resource management is a concern, it is es-
sential to make certain that all of the classes in the inheritance hierarchy are
accounted for. 

Note that resetting the attribute property to its default value is not an issue for reuse
within the same JSP page. As previously described, the tag handler can only be
reused within a page when a later tag provides values for the same set of attributes as



566 CHAPTER 18

Creating custom tags
the original. If a DebugCookiesTag instance is first applied within a given page to a
tag that explicitly sets the style attribute, it can only be reapplied within that page
request to another debugCookies tag that also explicitly sets the style attribute.

 The final source code for this tag handler is presented in abbreviated form in
listing 18.3.

package com.taglib.wdjsp.mut;

import java.io.IOException;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.TagSupport;

public class DebugCookiesTag extends TagSupport {
    private String style = "text";

    public void setStyle (String style) {
this.style = style;

    }
    public String getStyle () {

return style;
    }
    public int doStartTag () { ... }
    public void release () { ... }
}

To see this tag handler in action, along with DebugBufferTag, the following exam-
ple JSP page is presented:

<%@ taglib uri="/mutlib" prefix="mut" %>
<html>
<head>
<title>Debugging Tags</title>
</head>
<body>
<h1>Debugging Tags</h1>

<h2>Cookies</h2>
<mut:debugCookies style="html"/>

<h2>Output Buffering</h2>
<mut:debugBuffer/>

</body>
</html>

Listing 18.3 DebugCookiesTag tag handler



Content translation 567
This page simply loads the tag library via the taglib directive and calls the two cus-
tom tags just as it might call any other JSP tags. The resulting output is presented in
figure 18.9.

18.8 Content translation

As we continue to add complexity to our tag handler implementation classes, the
next step is to demonstrate tags that interact with their body content. To that end,
we introduce tags named url and encodeHTML, which perform request-time transla-
tion on the body content enclosed by their start and end tags. The url tag performs
automatic URL rewriting in support of the session management features in the serv-
let and JSP APIs. The encodeHTML tag is a more general-purpose variant of HTML’s
built-in <pre> tag: it translates any characters in its body which are special to
HTML into their equivalent entities, in order to display that content literally, rather
than having it be interpreted by the browser.

 The TLD entries for these two tags are as follows:

    <tag>
<name>url</name>
<tag-class>com.taglib.wdjsp.mut.UrlTag</tag-class>

Figure 18.9 Output generated by the example debugging tags



568 CHAPTER 18

Creating custom tags
<body-content>tagdependent</body-content>
<description>Perform URL rewriting if required.</description>

    </tag>
    <tag>

<name>encodeHTML</name>
<tag-class>com.taglib.wdjsp.mut.EncodeHtmlTag</tag-class>
<body-content>tagdependent</body-content>
<description>Perform HTML encoding of enclosed text.</description>

    </tag>

The only new feature in these two entries is the use of the tagdependent value in
the <body-content> elements. This indicates that the content delimited by the
start and end tags for these custom actions should not be interpreted by the JSP
container, but should be stored and passed to their respective tag handlers for fur-
ther processing.

18.8.1 URL rewriting

As described in chapter 4, JSP employs two different techniques for managing user
sessions: cookies and URL rewriting. Using cookies means that no changes need to
be made to your site’s pages in order to support session management, since the
HTTP protocol supports cookies transparently and the JSP API handles session man-
agement cookies behind the scenes. Unfortunately, many users disable cookie sup-
port in their browsers due to privacy concerns. If you cannot mandate that your
users enable cookie support, then URL rewriting is your only alternative for fool-
proof session management. Unfortunately, URL rewriting has a major drawback:
every URL on every page must be rewritten dynamically in order to embed the
user’s session ID in every request.

 Using only the tags built into JSP, URL rewriting can only be accomplished via
scripting. To alleviate this burden, the url tag described here can be used to cause
any URL delimited by this tag to be rewritten each time the page it appears on is
requested, as in the following JSP page fragment:

<ul>
<li> <a href="<mut:url>bin/programs.jsp</mut:url>">Programs</a>
<li> <a href="<mut:url>employees/users.jsp</mut:url>">Users</a>
<li> <a href="<mut:url>sbin/mcp.jsp</mut:url>">Master Control</a>
</ul>

The presence of the custom url tags here ensures that each of the URLs associated
with these three links will be rewritten. Furthermore, the rewriting is applied intelli-
gently: URLs are only rewritten if the user has disabled cookie support. If cookies
are enabled, the underlying code will recognize this and refrain from adding the
session ID to the URL. And while this markup code may appear a bit crowded, it is



Content translation 569
arguably much cleaner than using three JSP expressions containing scripting code to
perform the URL rewriting (as was the case, for example in listing 13.10).

 Because the action implemented by this tag requires access to its body content,
this tag must implement the BodyTag interface, rather than the simpler Tag inter-
face. For this tag, however, all of the work takes place in its doAfterBody()
method. By extending the BodyTagSupport class and taking advantage of its default
method implementations, this tag handler can be implemented with just a single
method definition, as indicated in listing 18.4.

package com.taglib.wdjsp.mut;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.IOException;

public class UrlTag extends BodyTagSupport {
  public int doAfterBody () throws JspException {

BodyContent body = getBodyContent();
String baseURL = body.getString();
body.clearBody();
try {

HttpServletResponse response = 
(HttpServletResponse) pageContext.getResponse();

String encodedURL = response.encodeURL(baseURL);
getPreviousOut().print(encodedURL);

}
catch (IOException e) {

throw new JspTagException("I/O exception "
+ e.getMessage());

}
return SKIP_BODY;

  }
}

The first step in this handler’s doAfterBody() method is to obtain the BodyCon-
tent instance associated with processing the tag’s body content. Since this is the
doAfterBody() method, the body content will already have been processed by the
time it is called, so the next step is to retrieve the body content as a String
instance—to be stored in a local variable named baseURL—via the getString()
method of the BodyContent class. Because the <bodycontent> element of the TLD
entry for this tag was specified as tagdependent, this String will contain the origi-
nal, unmodified contents of the tag’s body. The clearBody() method is then called

Listing 18.4 UrlTag tag handler



570 CHAPTER 18

Creating custom tags
to clear out the contents of the BodyContent instance, allowing it to be safely
reused by the JSP container after this method returns.

 The next step is to encode the URL extracted from the tag’s body content. This
is most easily accomplished by taking advantage of the encodeURL() method
defined by the HttpServletResponse class. The response object is obtained from
the tag handler’s pageContext instance variable and cast to the appropriate class.
The encodeURL() method, which implements all of the logic required to deter-
mine whether or not a session ID is required and whether the user’s session is
being managed via cookies or URL rewriting, is then called to actually encode the
URL as necessary.

 The next step is to obtain an output stream for printing the transformed URL.
This is accomplished by calling the getPreviousOut() method, provided by the
BodyTagSupport base class. This method returns the JspWriter instance for the
content immediately surrounding the custom tag being processed, which is then
used to print the encoded URL. The doAfterBody() method concludes by return-
ing Tag.SKIP_BODY, since no iterative processing of the body content is required.

TIP At this point, you may be wondering why getPreviousOut() is being called
to obtain the JspWriter instance, rather than fetching it from the pageCon-
text instance variable, or from the response object. This is done to account
for custom tags which are nested inside one another. When custom tags are
nested, the output from the inner custom tag may require further processing
by the outer tag. If this is the case, we need to make sure that the output
from the inner tag is written to the BodyContent object associated with the
outer tag, rather than to the outermost JspWriter associated with the page.
(Recall that BodyContent is a subclass of JspWriter.) The getPrevious-
Out() method returns the next BodyContent or JspWriter instance cur-
rently associated with the processing of the page’s output, and is thus the
recommended method for obtaining an output stream for tag handlers which
implement the BodyTag interface.

The use of this tag is demonstrated in the following example page, which uses the
url tag to rewrite the URL of a linked page. In addition, the page also prints out
the user’s session ID.

<%@ page session="true" %>
<%@ taglib uri="/mutlib" prefix="mut" %>
<html>
<head>
<title>URL Tag</title>



Content translation 571
</head>
<body>
<h1>URL Tag</h1>
<p>
<a href="<mut:url>urlDest.jsp</mut:url>">Here</a> is a link to another page.
</p>
<p>
Your session ID is <%= session.getId() %>.
</p>
</body>
</html>

If this page is the first page requested from the server, output such as that depicted
in figure 18.10 will result. Note that the link destination displayed at the bottom of
the browser includes a request parameter specifying the session ID. If cookie sup-
port is enabled in the browser, subsequent requests for the page will generate out-
put such as that in figure 18.11, in which the session ID no longer appears in the
link destination display. If cookie support is not enabled, all requests for the page
will produce the results displayed in figure 18.10.

 Finally, note that since this tag handler doesn’t set any attribute properties or
allocate any additional resources, no handler-specific release() method is
required. Instead, it can rely on the default implementation provided by the
BodyTagSupport base class.          

Figure 18.10 Output of URL rewriting tag for the first request, and all requests 
when cookie support is disabled



572 CHAPTER 18

Creating custom tags
18.8.2 HTML encoding

Browsers interpret HTML content by applying special interpretations to certain
characters, such as the < and > characters which delimit HTML tags. In order to
cause these special characters to appear in the browsers, it is necessary to replace
them with other special HTML constructs, referred to as entities. For example, the
HTML entity for the < character is &lt; and the HTML entity for the > character is
&gt;. As you might infer from these two examples, the & character also has special
meaning in HTML. In order to display an ampersand in the browser, the HTML
entity &amp; must be used.

 When developing web content, it is occasionally desirable to apply these transla-
tions to a large block of text. It is the role of the encodeHTML custom tag to perform
such translations automatically, so that the developer can avoid having to apply
these translations manually.

 The first requirement, then, is code for translating characters into their equiva-
lent HTML entities, such as the following:

    static private Hashtable translations = makeTranslationTable();
    static private Hashtable makeTranslationTable () {

Hashtable table = new Hashtable();
table.put(new Character('<'), "&lt;");
table.put(new Character('>'), "&gt;");
table.put(new Character('&'), "&amp;"); 
table.put(new Character('"'), "&quot;");
table.put(new Character('\n'), "<BR>");
table.put(new Character('\t'), "&nbsp;&nbsp;");

Figure 18.11 Output of URL rewriting tag for subsequent requests when cookie support is enabled



Content translation 573
return table;
    }
    static public String getTranslation (char c) {

return (String) translations.get(new Character(c));
    }

Here, a Hashtable is used to store the characters to be translated and their corre-
sponding HTML entities. (Only a representative sampling of the available HTML
entities is presented here.) Also, because the translation table need only be con-
structed once and can be shared by all tag handler instances, static variables and
methods are used to implement the translation routine.

 As was the case with UrlTag, the tag handler class for the encodeHTML tag, by
taking advantage of the BodyTagSupport base class, needs only to override the defi-
nition of doAfterBody() in order to implement the desired functionality. The defi-
nition of this method for the com.taglib.wdjsp.mut.EncodeHtmlTag tag handler
class follows:

public int doAfterBody () throws JspException {
BodyContent body = getBodyContent();
String orig = body.getString();
body.clearBody();
int length = orig.length();
StringBuffer result =
    new StringBuffer(Math.round(length * 1.1f));
for (int i = 0; i < length; ++i) {
    char c = orig.charAt(i);
    String translation = getTranslation(c);
    if (translation == null) {

result.append(c);
    } else {

result.append(translation);
    }
}
try {
    getPreviousOut().print(result.toString());
}
catch (IOException e) {
    throw new JspTagException("unexpected IO error");
}
return SKIP_BODY;

}

This method follows the same general outline as the doAfterBody() method of the
UrlTag class, obtaining the tag’s body contents in the form of a String, perform-
ing a translation operation on that String, and then printing the translation results.
In this case, however, the translation is carried out on a character-by-character basis



574 CHAPTER 18

Creating custom tags
using the static getTranslation() method. For efficiency reasons, the translation
results are accumulated into an instance of StringBuffer, which is later trans-
formed into a String for output.

 The full source code for the EncodeHtmlTag class is presented in abbreviated
form in listing 18.5. An example JSP page that makes use of the encodeHTML tag
appears in listing 18.6. Note that, in order to prevent excessive translation of car-
riage return characters into <BR> tags, the <mut:encodeHTML> tags in this sample
page appear on the same line as the content being encoded. The results of process-
ing this example page are depicted in figure 18.12.       

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.IOException;
import java.util.Hashtable;

Listing 18.5 UrlTag tag handler

Figure 18.12 Output of the HTML encoding tag



Exception handling 575
public class EncodeHtmlTag extends BodyTagSupport {
    public int doAfterBody () throws JspException { ... }
    static private Hashtable translations = makeTranslationTable();
    static private Hashtable makeTranslationTable () { ... }
    static public String getTranslation (char c) { ... }
}

<%@ taglib uri="/mutlib" prefix="mut" %>
<html>
<head>
<title>HTML Encoding Tag</title>
</head>
<body>
<h1>HTML Encoding Tag</h1>

<h2>Sample Code</h2>
<tt><mut:encodeHTML>if ((x < 24) && (x > 0)) {

fact(x);
}</mut:encodeHTML></tt>

<h2>Literal HTML</h2>
<mut:encodeHTML>The entity corresponding to the < character is &lt;.
The entity corresponding to the > character is &gt;.
The entity corresponding to the & character is &amp;.
</mut:encodeHTML>

</body>
</html>

18.9 Exception handling

The final custom tag for this chapter will take advantage of the BodyTag and Try-
CatchFinally interfaces to provide an alternative to JSP’s standard exception-
handling mechanism. Instead of forwarding control to an error page when an
uncaught exception is raised, this custom tag allows the page designer to designate
sections of the page within which errors are, effectively, to be ignored.

 The syntax for this failsafe tag is as follows:

<mut:failsafe alt=”fallback text”>
...

</mut:failsafe>

Here, the body of the tag designates the content over which errors are to be ignored,
and the optional alt attribute specifies alternative text, if any, to be substituted in

Listing 18.6 EncodeHTML custom tag



576 CHAPTER 18

Creating custom tags
place of the body content should an exception be raised. The corresponding TLD
entry takes this form:

<tag>
<name>failsafe</name>
<tag-class>com.taglib.wdjsp.mut.FailsafeTag</tag-class>
<body-content>JSP</body-content>
<description>

Ignore content and optionally print out alternative text
in the event of an uncaught exception.

</description>
<attribute>

<name>alt</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag >

The FailsafeTag class which implements the tag handler has two instance vari-
ables, one for storing the value of the tag’s alt attribute, and a second, caught,
which acts as a flag indicating whether or not an exception was raised while the tag’s
body content was being processed:

public class FailsafeTag
extends BodyTagSupport implements TryCatchFinally {

private String alt = null;
private boolean caught = false;
...

}

The alt instance variable requires  appropriate getter, setter, and release() meth-
ods, as has previously been the case for instance variables representing custom tag
attributes:

public class FailsafeTag
extends BodyTagSupport implements TryCatchFinally {
...
public String getAlt () { return alt; }
public void setAlt (String alt) { this.alt = alt; }

public void release () {
super.release();
this.alt = null;

}
...

}



Exception handling 577
In order to make sure the caught instance variable is properly initialized even if it is
reused within the same page request, the tag handler provides its own definition of
doStartTag(), as follows: 

public int doStartTag () {
caught = false;
return BodyTag.EVAL_BODY_BUFFERED;

}

This method ensures that caught  is  set to false ,  then returns Body-
Tag.EVAL_BODY_BUFFERED to indicate that the results of processing the body con-
tent should be buffered for later processing.

 If no exceptions are raised while processing this body content, control will be
transferred to the handler’s doAfterBody() method, which takes the following form: 

public int doAfterBody throws JspException () {
BodyContent body = getBodyContent();
String content = body.getString();
body.clearBody();
try {

getPreviousOut().print(content);
}
catch (IOException e) {

throw new JspTagException("I/O exception " + e.getMessage());
}
return Tag.SKIP_BODY;

}

All this method does is retrieve the body content in the form of a String, and then
print it to the output stream, using the same methods as the previous two doAfter-
Body() methods. It then returns Tag.SKIP_BODY to indicate that the body content
should only be processed once.

 This may seem a bit pointless, since this is basically what the JSP container would
have done with that body content on its own. The key factor, however, is what the
JSP container would also have done if an exception were thrown by the body con-
tent. By taking over the original duties of the JSP container with respect to the body
content, we can override the default exception handling behavior and replace it
with our own.

 The final elements of this tag handler that make this possible are the two Try-
CatchFinally methods, doCatch() and doFinally(). The doCatch() method,
which is called only in the event that an exception is actually raised, is quite simple.
It just sets the caught flag and ignores the thrown exception: 



578 CHAPTER 18

Creating custom tags
public void doCatch (Throwable t) {
caught = true;

}

The doFinally() method is a bit more involved: 

public void doFinally () {
if (caught && (alt != null)) {

try {
getPreviousOut().print(alt);

}
catch (IOException e) {}

}
}

Since doFinally() will be called whether or not an exception was raised, its first
task is to check the caught flag. If no exception was raised, there is nothing for the
method to do. Similarly, it must also check whether or not any alternate content has
been specified. If so, then the final task of this method is to print that content to the
current output stream, retrieved via the tag handler’s getPreviousOut() method.
Note that doFinally() is not permitted to throw its own exceptions. As a result, if
this output operation throws any exceptions, they are silently ignored.

 The finished source code for this tag handler is presented in abbreviated form in
listing 18.7.

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.BodyTag;
import javax.servlet.jsp.tagext.BodyTagSupport;
import javax.servlet.jsp.tagext.BodyContent;
import javax.servlet.jsp.tagext.TryCatchFinally;

import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspTagException;

public class FailsafeTag
extends BodyTagSupport implements TryCatchFinally {

private String alt = null;
private boolean caught = false;

public String getAlt () { ... }
public void setAlt (String alt) { ... }

public int doStartTag () { ... }
public int doAfterBody () throws JspException { ... }
public void release () { ... }

Listing 18.7 FailsafeTag tag handler



Exception handling 579
public void doCatch (Throwable t) { ... }
public void doFinally () { ... }

}

An example page utilizing this custom tag handler is depicted in listing 18.8. Script-
lets in the body content of the page’s failsafe tag are employed to throw an
exception in the event that a value of zero is supplied for the (optional) divisor
request parameter. If a non-zero integral value is provided for the divisor parame-
ter, no exception is raised and the page output resembles that of figure 18.13.    

 If, however, a URL of the form http://server/webdev/customtags/fail-
safe.jsp?divisor =0 is used to request this page and pass in a value of zero for the
request parameter, then an ArithmeticException will be raised as a result of the
attempt to divide an integer by zero. This will cause the tag handler’s doCatch()
method to be called, which will set the value of the tag handler’s caught instance
variable to true. Because an exception was thrown, the tag handler’s doAfter-
Body() method will not be called. As a result, none of the tag’s body content will
be displayed. Instead, when the tag handler’s doFinally() method sees that
caught is set to true, it will write out the tag’s alt text, as depicted in figure 18.14.         

Figure 18.13 Output of the failsafe tag when no exception is raised by the body content



580 CHAPTER 18

Creating custom tags
<%@ taglib prefix=”mut” uri=”/mut” %>
<% int x = 30;

int divisor = 3;
String parm = request.getParameter(“divisor”);
try { if (parm != null) divisor = Integer.parseInt(parm); }
catch (NumberFormatException e) {} %>

<html>
<head><title>Failsafe Page</title></head>
<body>
<h1>Failsafe Page</h1>
<p>Dividing by <%= divisor %>...<p>
<mut:failsafe alt=”<b>Error detected!</b>”>

<p align=”center”>
<%= x>/<%= divisor %> = <%= x/divisor %>
</p>

</mut:failsafe>
</body>
</html>

18.10 To be continued

In this chapter, we have looked at how custom tags are compiled and executed by a
JSP container, and how their operation is reflected in the underlying javax.serv-
let.jsp.tagext class hierarchy. We have also described the use of TLD files and the
packaging of tag libraries into JAR files, and examined a number of example tags.

Listing 18.8 Sample page employing the failsafe custom tag 

Figure 18.14 Output of the failsafe tag when an exception is raised by the body content



To be continued 581
The examples presented thus far have focused on key custom tag functionality such
as content generation and translation. In the next chapter, we will consider tags that
take advantage of more advanced features of JSP and Java, in order to implement
paired tags that interact with one another within a single JSP page, as well as tags
that set scripting variables and interact with JavaBeans components. In chapter 20,
we will look at tag library validation and briefly revisit the topic of packaging tag
libraries, to complete our presentation of the mut tag library.



 19Implementin
advanced custom tag
g
s

This chapter covers
� Tags that introduce scripting variables

� Custom tags for flow of control

� Using introspection and reflection to access 
JavaBeans properties

� Creating families of interacting tags
582



Tag scripting variables 583
In chapter 18, we introduced the classes used to create JSP custom tags, and
described how those classes interact with the JSP container to perform custom
actions within a page. Example tags and their implementations were presented, as
was the use of JAR files and TLDs to package tags into a library. Now it is time to
build upon that foundation to develop additional tags that leverage advanced JSP
and Java APIs to provide enhanced capabilities.

 First, we will describe how tags can be used to introduce scripting variables on a
page. We will then create a pair of custom actions that provide tag-based flow of
control for JSP pages. These tags will also take advantage of Java’s introspection and
reflection facilities to access JavaBeans properties, in much the same manner as the
built-in <jsp:getProperty> and <jsp:setProperty> tags. We will then describe
how data can be transferred between the tags on a page in order to spread function-
ality across two or more interacting custom actions, to be demonstrated via a fourth
JSP custom tag. 

19.1 Tag scripting variables

JSP provides two mechanisms for specifying custom actions that introduce scripting
variables: the TLD <variable> element and TagExtraInfo helper classes. This first
example will utilize the former approach; a second tag that requires the use of an
associated TagExtraInfo class will be presented later in the chapter.

 Regardless of how the scripting variable is specified, the same process is used to
add it to a JSP page: it is assigned to an attribute with page-level scope, using the
setAttribute() method of the tag’s pageContext instance variable. The name of
the scripting variable serves as the name of the attribute. When invoking a custom
tag, the JSP container knows from its TLD entry whether or not it introduces any
scripting variables (either via its <variable> elements or by means of the helper
class specified in its <tei-class> entry). If it is expecting a scripting variable to be
set, the JSP container will automatically examine the page’s PageContext instance
for the values to which those scripting variables are to be set. The actual mechanics
of creating the scripting variable and assigning the value are handled by the con-
tainer itself; the developer needs only to create the attribute and set its value, and
leave the heavy lifting to the container.

19.1.1 Example tag

To demonstrate this functionality, we will implement a custom tag named timeOf-
Day, which is used to create a scripting variable whose value will be an instance of a



584 CHAPTER 19

Implementing advanced custom tags
JavaBean named TimeOfDayBean. This tag can thus be thought of as a special case of
the built-in <jsp:useBean> action. The syntax for the timeOfDay tag is as follows: 

<mut:timeOfDay id=”bean” timezone=”timezone”/>

Here, the id attribute is used to provide a name for the scripting variable, while the
optional timezone attribute allows the user to provide a specific time zone in which
the current time of day is sought.

 As already indicated, the TLD entry for this tag uses the <variable> tag to spec-
ify that it introduces a scripting variable:

<tag>
  <name>timeOfDay</name>
  <tag-class>com.taglib.wdjsp.mut.TimeOfDayTag</tag-class>
  <body-content>empty</body-content>
  <description>
    Sets a scripting variable to the current time of day.
  </description>
  <variable>
    <name-from-attribute>id</name-from-attribute>

<variable-class>com.taglib.wdjsp.mut.TimeOfDayBean</variable-class>
<declare>true</declare>
<scope>AT_BEGIN</scope>

  </variable>
  <attribute>
    <name>id</name><required>true</required>
  </attribute>
  <attribute>
    <name>timezone</name>
    <required>false</required>
    <rtexprvalue>true</rtexprvalue>
  </attribute>
</tag>

Fur thermore, the scripting variable is defined as being an instance of
com.taglib.wdjsp.mut.TimeOfDayBean and as taking its name from the value of
the tag’s id attribute. This TLD entry also specifies the tag’s two attributes, indicat-
ing that the timezone attribute is optional and that its value may be specified via a
request-time expression.

 The tag handler class itself is presented in listing 19.1. There are instance vari-
ables for storing the values of the two attributes, as well as corresponding getter and
setter methods. A release() method is also provided for resetting those instance
variables to their default values when returning the tag handler to the JSP con-
tainer’s resource pool.



Tag scripting variables 585
package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.TagSupport;

public class TimeOfDayTag extends TagSupport {
private String id, timezone;

public void setId (String id) { this.id = id; }
public String getId () { return id; }
public void setTimezone (String timezone) { this.timezone = timezone; }
public String getTimezone () { return timezone; }

public int doStartTag () {
TimeOfDayBean tod = (timezone == null) ?

new TimeOfDayBean() : new TimeOfDayBean(timezone);
pageContext.setAttribute(id, tod);
return Tag.SKIP_BODY;

}
public void release () { 

super.release();
this.id = null; this.timezone = null;

}
} 

As with many of the custom tags already presented, the essence of this tag handler’s
implementation is concentrated  in its doStartTag() method; the rest is just book-
keeping. This method has two main tasks: instantiate the bean, and perform the
attribute assignment. The TimeOfDayBean instance is created by calling one of its
two constructors, dependent upon whether or not the tag’s optional timezone
attribute has been set. The method’s second task, assigning the resulting bean
instance to an attribute, is accomplished by calling the setAttribute() method of
the handler’s pageContext instance variable, using the value of the tag handler’s id
property as the name of the attribute. Note that since no explicit value for the
attribute scope has been provided as a third argument to the setAttribute()
method, the default value of PageContext.PAGE_SCOPE is assumed. Finally, since
there is no body content associated with this tag, doStartTag() returns
Tag.SKIP_BODY.

19.1.2 Scripting variable JavaBean

The final ingredient in the implementation of this custom tag is the specification of
its associated JavaBean. To this end, the source code for the com.tag-
lib.wdjsp.mut.TimeOfDayBean class is presented in listing 19.2. As you can see,

Listing 19.1 TimeOfDayTag tag handler



586 CHAPTER 19

Implementing advanced custom tags
this bean implements getters for three boolean properties named morning, after-
noon, and daytime. The morning property is true between 6 A.M. and noon, while
the afternoon property is true from noon to 6 P.M. The daytime property is true
whenever either of the other two properties is true. An accessor for an integer
property named hour is also available for accessing the current time of day directly. 

 The bean itself is just a wrapper around an underlying instance of the
java.util.Calendar class, created by the bean’s constructors, which it uses to
access the current time. Note also the reliance on the java.util.TimeZone class in
the second constructor to represent the desired time zone. Its static getTimeZone()
method is used to parse the value of the supplied zone constructor argument, which
must match one of the time zone names recognized by the underlying class. (The
complete list of recognized names can be obtained by calling the Time-
Zone.getAvailableIDs() static method.)

package com.taglib.wdjsp.mut;
import java.util.Calendar;
import java.util.TimeZone;

public class TimeOfDayBean {
Calendar now;

public TimeOfDayBean () { now = Calendar.getInstance(); }
public TimeOfDayBean (String zone) {

now = Calendar.getInstance(TimeZone.getTimeZone(zone));
}

  public int getHour () { return now.get(Calendar.HOUR_OF_DAY); }

  public boolean isMorning () {
    int hour = getHour();
    return (hour >= 6) && (hour < 12);
  }
  public boolean isAfternoon () {
    int hour = getHour();
    return (hour >= 12) && (hour < 18);
  }
  public boolean isDaytime () {
    return isMorning() || isAfternoon();
  }
}

An example page which uses the timeOfDay custom tag (as well as the TimeOfDay-
Bean class, of course) will be presented in the context of demonstrating the
ifProperty tag presented later in the chapter.

Listing 19.2 TimeOfDayBean class



Flow of control 587
19.2 Flow of control

As discussed in chapter 5, the only mechanism provided by JSP for implementing
conditional or iterative presentation logic is the scriptlet. If you wish to reduce the
use of scripting language code in your JSP pages, but still need to apply such con-
structs, custom tags are your only alternative.

 To that end, we present here a pair of custom tags for implementing flow of
control. These tags are modeled after JSP’s built-in bean tags, keying off of bean
properties to control conditional content and iteration. The TLD entries for these
two tags, ifProperty and forProperty, appear in listing 19.3.

<tag>
  <name>ifProperty</name>
  <tag-class>com.taglib.wdjsp.mut.IfPropertyTag</tag-class>
  <body-content>JSP</body-content>
  <description>
    Conditionally include or exclude page content
    based on a bean property.
  </description>
  <attribute>
    <name>name</name><required>true</required>
  </attribute>
  <attribute>
    <name>property</name><required>true</required>
  </attribute>
  <attribute><name>action</name></attribute>
</tag>
<tag>
  <name>forProperty</name>
  <tag-class>com.taglib.wdjsp.mut.ForPropertyTag</tag-class>
  <tei-class>com.taglib.wdjsp.mut.ForPropertyTEI</tei-class>
  <body-content>JSP</body-content>
  <description>
    Loop through an indexed property.
  </description>
  <attribute>
    <name>name</name><required>true</required>
  </attribute>
  <attribute>
    <name>property</name><required>true</required>
  </attribute>
  <attribute>
    <name>id</name><required>true</required>
  </attribute>
  <attribute>

Listing 19.3 Tag library descriptor entries for the flow of control custom tags



588 CHAPTER 19

Implementing advanced custom tags
    <name>class</name><required>true</required>
  </attribute>
</tag>

The only feature in these TLD entries that is not present in earlier examples in this
book is the specification of a <tei-class> entry for the forProperty tag. This is
required because the forProperty tag introduces a scripting variable to represent
the current iteration element of an indexed property, the class of which is not
known in advance. (Recall that the TLD <variable> tag requires an explicit specifi-
cation of the type of the scripting variable, via its <variable-class> subelement.)
As such, a helper class is necessary to transmit information about the scripting vari-
able to the JSP container during page compilation.

19.2.1 Conditionalization

As indicated in the TLD, the ifProperty tag supports three attributes, two of
which are required. The basic syntax for the ifProperty tag is:

<mut:ifProperty name=”bean” property=”property” action=”action”>
bodyContent

</mut:ifProperty>

The name and property attributes have the same meaning as in the standard
<jsp:getProperty> and <jsp:setProperty> tags: the name attribute identifies a
JavaBean introduced earlier via <jsp:useBean>, and the property attribute names
one of that bean’s properties. In this case, however, it is expected that the bean
property thus specified has a boolean value.

 The action attribute specifies what to do with the tag’s body content when the
value of that boolean property is true. If the action attribute is set to "include",
the body content will become part of the displayed page. If the action attribute is
set to "exclude", the body content will be ignored. Furthermore, if the value of
the specified bean property is false, the opposite action will be taken. As indicated
in the TLD entry for this tag, the name and property attributes are required, while
the action attribute is optional. The default value for action is "include".

 The ifProperty tag is implemented via a tag handler class named IfProper-
tyTag. The tag’s attributes, as was the case for the previous DebugCookiesTag and
TimeOfDayTag classes, are implemented as bean properties, the code for which is in
listing  19.4. Each attribute is represented by an instance variable of class String,
with a corresponding getter and setter method.

 Although this tag has an effect on its body content, it does not need to interact
with it directly, as was the case with the content translation tags. Because it is simply



Flow of control 589
controlling whether or not the body content is processed, this tag can be imple-
mented using only the Tag interface, rather than BodyTag. More specifically, by
extending the TagSupport base class, the only tag handler invocation methods that
need to be overridden are doStartTag() and release(), the first of which is
defined as:

public int doStartTag () throws JspException {
    try {
        boolean propertyValue = evalPropertyValue();
        boolean exclude = action.equalsIgnoreCase(”exclude”);
        if (exclude) propertyValue = (! propertyValue);
        return propertyValue ? EVAL_BODY_INCLUDE : SKIP_BODY;
    }
    catch (IntrospectionException e) {
        throw new JspTagException(e.getMessage());
    }
}

The first thing this method does is retrieve the value of the bean property specified
by the tag’s name and property attributes, via a call to the auxiliary method eval-
PropertyValue(). If the tag’s action attribute is set to "exclude", then the sense
of this boolean value is reversed (content exclusion is the opposite effect to content
inclusion). Finally, based on the resulting value for the retrieved property, the
method returns either Tag.EVAL_BODY_INCLUDE or Tag.SKIP_BODY, in order to
control whether or not the tag’s body content is processed.

 Up to this point, the implementation is fairly straightforward. It’s clear, though,
that most of the real work is hidden in the evalPropertyValue() method, since it
is responsible for turning a pair of strings describing a bean property into the value
represented by those strings.

 There are three major steps by means of which this magical transformation takes
place, as outlined in the source code of the method itself:

private boolean evalPropertyValue ()
  throws IntrospectionException {
    Object bean = pageContext.getAttribute(name);
    if (bean != null) {
        Method reader = getPropertyReader(bean);
        return readProperty(bean, reader);
    }
    throw new IntrospectionException(
        "Bean \"" + name +"\" not found for <ifProperty> tag.");
}

The first step, then, is obtaining the bean instance from its name, and this is per-
formed via the pageContext object. All beans introduced via the <jsp:useBean>



590 CHAPTER 19

Implementing advanced custom tags
tag, in the course of being made available for use in scripting elements, are stored as
attributes of the page. As a result, they can be retrieved by means of the pageCon-
text object’s getAttribute() method.

 After retrieving the bean, the next step is to obtain a reference to the getter
method for accessing the desired property. This computation is encapsulated in the
call to the getPropertyReader() method, which takes advantage of Java’s intro-
spection API. The final step, represented by the call to the readProperty() method,
is to call the getter method in order to obtain the actual property value. This pro-
cess is accomplished via the Java reflection API.

Introspection
In the getPropertyReader() method, the java.beans.Introspector class
obtains information about the class of the bean being accessed by the tag. In partic-
ular, the Introspector class provides access to the BeanInfo object that describes
the bean class and its properties. For classes that conform with the standard bean
naming conventions, the corresponding BeanInfo object can be constructed auto-
matically. Remember that bean developers can also provide their own implementa-
tions of the BeanInfo interface for classes that do not strictly adhere to the bean
conventions.

 In either case, the Introspector class provides a static method named get-
BeanInfo() for obtaining the BeanInfo instance corresponding to a given class.
Calling this method is one of the first steps performed by the getProperty-
Reader() method:

private Method getPropertyReader (Object bean)
    throws IntrospectionException {
    Class beanClass = bean.getClass();
    BeanInfo beanInfo = Introspector.getBeanInfo(beanClass);
    PropertyDescriptor[] descriptors =
        beanInfo.getPropertyDescriptors();
    int stop = descriptors.length;
    for (int i = 0; i < stop; ++i) {
        PropertyDescriptor descriptor = descriptors[i];
        if (descriptor.getName().equals(property)
            && (descriptor.getPropertyType() == boolean.class)) {
            return descriptor.getReadMethod();
        }
    }
    throw new IntrospectionException(
        "Bean \"" + name + "\" has no boolean property named \""
        + property + "\" for <ifProperty> tag.");
}



Flow of control 591
Once the appropriate BeanInfo instance has been obtained, the next step is to
query its properties. This is accomplished by calling its getPropertyDescrip-
tors() method, which returns an array of instances of the class java.beans.Prop-
ertyDescriptor. Each PropertyDescriptor instance contains information about
the name and type of the corresponding bean property, and provides accessors for
retrieving the property’s getter and setter methods. The getPropertyReader()
method iterates through this array of PropertyDescriptor instances looking for a
property whose value is a boolean and whose name matches the string value sup-
plied for the tag’s property attribute. If an appropriate descriptor is found, its
getReadMethod() method is called to retrieve the corresponding getter method.
Otherwise, an error is signaled.

Reflection
Assuming the desired method is found, it is the role of the tag handler’s readProp-
erty() method to call this method in order to obtain the bean property’s current
value. This is accomplished via the Java reflection API, the classes of which are
found in the java.lang.reflect package. In this case, we are interested in the
java.lang.reflect.Method class, an instance of which should have been returned
by the tag handler’s getPropertyReader() method. The method represented by
this Method instance is called by the instance’s invoke() method:

private boolean readProperty (Object bean, Method reader)
    throws IntrospectionException {
    try {
        Object result = reader.invoke(bean, null);
        return ((Boolean) result).booleanValue();
    }
    catch (InvocationTargetException e) {
        throw new IntrospectionException(
          "Unable to access property \"" + property
          + "\" of bean \"" + name
          + "\" for <ifProperty> tag.");
    }
    catch (IllegalAccessException e) {
        throw new IntrospectionException(
          "Unable to access  property \"" + property
          + "\" of bean \"" + name
          + "\" for <ifProperty> tag.");
    }
}

The invoke() method takes two arguments: the instance for which the Method
instance’s method should be invoked, and an array of objects representing the argu-
ments with which that method should be invoked. Since the method to be invoked



592 CHAPTER 19

Implementing advanced custom tags
is the property’s getter method, the object for which it should be invoked is the
bean. Since the getter method takes no arguments, the null value is provided as the
second argument to invoke().

JARGON If this is your first exposure to introspection and reflection, you have probably
come to the conclusion that they are very powerful features, but an explana-
tion of their use makes for very convoluted sentences. Bear with us: we’re al-
most out of the woods, at least as far as the ifProperty tag is concerned.

In order to support the most general case, the result returned by invoke() takes
the form of an instance of Java’s Object class. Because the property’s getter method
returns a boolean value, it will be packaged by invoke() as an instance of the
java.lang.Boolean class. The Object returned by invoke() must therefore first
be cast to a Boolean, after which its booleanValue() method can be called to
retrieve the actual value.

 Of course, calling invoke() can be a fairly dangerous operation, since there’s no
guarantee that the method being invoked, the instance on which it is being
invoked, and the arguments supplied for invoking it are mutually compatible.
Numerous exceptions can be raised if such incompatibilities arise, as indicated by
the catch clauses in the readProperty() method. For convenience, if any of these
except ions  a re  th rown ,  they  a r e  t r an s for med in to  in s tances  o f  the
java.beans.IntrospectionException class, which is caught by our original
doStartTag() method.

Cleanup
The final step is the implementation of its release() method, which is defined as:

public void release () {
  super.release();
  name = null; property = null;
  action="include";
}

As with the release() methods presented earlier in this book, the first step is to
call the release() method of the superclass. The next step is to reset all of the
instance variables to their original values. As before, this allows the values used
while processing the current tag to be garbage collected, and ensures that the
appropriate default values are in place for the next tag.



Flow of control 593
 The full source code for the tag handler is presented in abbreviated form in
listing 19.4.

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.jsp.JspException; 
import javax.servlet.jsp.JspTagException;
import java.lang.reflect.*;
import java.beans.*;

public class IfPropertyTag extends TagSupport {
    private String name, property;
    private String action="include";

    public void setName (String name) {
        this.name = name;
    }
    public String getName () {
        return name;
    }
    public void setProperty (String property) {
        this.property = property;
    }
    public String getProperty () {
        return property;
    }
    public void setAction (String action) {
        this.action = action;
    }
    public String getAction () {
        return action;
    }
    public int doStartTag () throws JspException { … }
    private boolean evalPropertyValue ()
        throws IntrospectionException { … }
    private Method getPropertyReader (Object bean)
        throws IntrospectionException { … }
    private boolean readProperty (Object bean, Method reader)
        throws IntrospectionException { … }
    public void release () { … }
}

Listing 19.4 IfPropertyTag tag handler



594 CHAPTER 19

Implementing advanced custom tags
Application
In order to see the ifProperty tag in action, we first need a JavaBean with one or
more boolean properties, to which the tag can be applied. Fortunately, we have
already seen a bean with not just one, but three boolean properties: the
com.taglib.wdjsp.mut.TimeOfDayBean introduced in conjunction with the time-
OfDay custom tag. Taking advantage of this bean and its associated custom tag, we
can readily construct a JSP page that combines them with our forProperty tag.
Here is the source code for such a page:

<%@ taglib uri="/mutlib" prefix="mut" %>
<mut:timeOfDay id="tod" timezone="EST"/>
<html>
<head>
<title>Conditional Tag</title>
</head>
<body>
<h1>Conditional Tag</h1>

<p>The hour is now
<jsp:getProperty name="tod" property="hour"/>.</p>

<mut:ifProperty name="tod" property="morning">
<p>Good Morning!</p>
</mut:ifProperty>

<mut:ifProperty name="tod" property="afternoon">
<p>Good Afternoon!</p>
</mut:ifProperty>

<mut:ifProperty name="tod"
                property="daytime" action="exclude">
<p>Good Night!</p>
</mut:ifProperty>

</body>
</html>

Using the <mut:timeOfDay> tag, this page first creates an instance of the TimeOfDay-
Bean named tod, and then displays the value of its hour property via the <jsp:get-
Property> tag. The remainder of the page contains three uses of the ifProperty tag,
conditionalizing the content to be displayed based on the bean’s three boolean proper-
ties. The first two ifProperty tags rely on the default setting of the action attribute
to include their body content whenever the corresponding property is true, while the
third explicitly sets its action attribute to "exclude". As a result, the body content of
the third ifProperty tag is only displayed when the value of the corresponding bean
property is false.



Flow of control 595
 The results of requesting this page at different times of the day are displayed in
figures 19.1 and 19.2. 

19.2.2 Iteration

The forProperty tag performs iteration over the elements of a JavaBean’s indexed
property. In retrieving the values of that indexed property, our implementation of
this custom action will again utilize the introspection and reflection APIs. In addi-
tion, because this tag makes the current element available as a scripting variable
whose type is determined during page compilation, it will require a helper class.

 Here is the syntax for the forProperty tag:

Figure 19.1 Output of the conditional tag

Figure 19.2 Later that same day



596 CHAPTER 19

Implementing advanced custom tags
<mut:forProperty name=”bean” property=”property”
                 id=”id” class=”class”>

bodyContent
</mut:forProperty>

As was the case for the ifProperty tag, the name and property attributes of the
forProperty tag have the same meaning as their counterparts in the built-in
<jsp:getProperty> and <jsp:setProperty> tags. These two attributes identify
the bean being accessed, and the specific property over whose elements the tag will
iterate. The property identified by the property attribute should, of course, be an
indexed one.

 The body content of this tag will be processed once for each element of that
indexed property. The id attribute is used to specify the variable name by which the
element may be referenced within the body content. Finally, because the custom tag
API does not provide enough information for inferring the class of an indexed prop-
erty’s elements during page compilation, the class attribute is provided for specify-
ing it explicitly. All four attributes of the forProperty tag are required.

Tag handler
As you will recall from the discussion of the tag handler invocation diagrams in
chapter 18 (i.e., figures 18.4–18.6) only the IterationTag and BodyTag interfaces
are capable of processing body content iteratively. Since it does not need to interact
with its body content directly, the tag handler for the forProperty custom action is
implemented as a subclass of TagSupport, implementing the IterationTag inter-
face. Four instance variables are provided for storing the tag’s attribute values, with
corresponding getters and setters:

public class ForPropertyTag
  extends BodyTagSupport implements IterationTag {
  private String name, property, id;
  private Class elementClass;

  public void setName (String name) {
    this.name = name;
  }
  public String getName () {
    return name;
  }
  public void setProperty (String property) {
    this.property = property;
  }
  public String getProperty () {
    return property;
  }
  public void setId (String id) {



Flow of control 597
    this.id = id;
  }
  public String getId () {
    return id;
  }
  public void setElementClass (String className)
    throws ClassNotFoundException {
    elementClass = Class.forName(className);
  }
  public String getElementClass () {
    return elementClass.getName();
  }
  ...
}

In a slight departure from previous tag handler implementations, note that the set-
ter for the tag’s class attribute, setElementClass(), automatically performs the
translation of the String value specified for the attribute into an actual Java class
object. This is accomplished via the Class.forName() static method, the result of
which is then stored in the handler’s elementClass instance variable. Note also that
the getter and setter methods are  named getElementClass() and setElement-
Class(), rather than getClass() and setClass().

 This is because the handler already has a getClass() method, inherited from
java.lang.Object. As with all Java object classes, tag handlers are subclasses of
Java’s root Object class, which defines getClass() as a method for obtaining an
object’s class. Furthermore, this method is marked as final, which prohibits sub-
classes from overriding it. ForPropertyTag therefore cannot define its own get-
Class() method, no matter how much we might want it to. Hence, alternative
method names are required; here, they are named as if the corresponding bean
property was called elementClass. On the other hand, we are not prohibited from
using class as an attribute name, and can thereby support a syntax for the for-
Property tag which incorporates familiar elements from the built-in <jsp:use-
Bean> and <jsp:getProperty> tags. 

 In order to map the class attribute name to the alternate method names, how-
ever, a custom BeanInfo class must be created. Like its TagExtraInfo helper class,
the tag handler’s BeanInfo class will be presented later in the chapter. Returning to
the tag handler itself, there is additional data that it must keep track of, which (like
its attribute values) will also be stored via instance variables. As a result of this tag’s
iterative nature, run-time performance can be improved by maintaining references
to the bean, the method used for accessing the indexed property’s elements, the
size of the indexed property, and the current status of the iteration. These refer-
ences take the form of the following four instance variables:



598 CHAPTER 19

Implementing advanced custom tags
public class ForPropertyTag extends BodyTagSupport {
    ...
    private Object bean; 
    private Method elementMethod;
    private int size, index;
 
    public int getIndex () { return index; }
    ...
}

Note also the presence of a public getter method for the index instance variable.
While this method is not strictly required to implement the handler for the for-
Property custom tag, it will prove to be critical to the implementation of another
tag handler, presented later in the chapter. 

 It is the job of the tag handler’s doStartTag() method to initialize these
instance variables, and to prepare for the first iteration of the tag’s body content.
Here is the implementation of that method:

public int doStartTag () throws JspException {
bean = pageContext.getAttribute(name);
if (bean != null) {
    Class beanClass = bean.getClass();
    initSize(beanClass);
    if (size > 0) {

initElementMethod(beanClass);
index = 0;
assignElement(); 
return EVAL_BODY_TAG_INCLUDE;

    } else {
return Tag.SKIP_BODY;

    }
} else {
    throw new JspTagException("No bean \"" + name 

+ "\" available for <forProperty> tag.");
}

}

The first step is to initialize the bean instance variable. As was the case for the eval-
PropertyValue() method of IfPropertyTag, this is accomplished by means of the
getAttribute() method associated with the pageContext object for the current
page. If the specified bean is present, the doStartTag() method then proceeds to
retrieve its Class object. If not, an error is signaled.

 If bean initialization succeeds, doStartTag() next calls the tag handler’s init-
Size() method to initialize the size instance variable. This method is defined as
follows:



Flow of control 599
private void initSize (Class beanClass) throws JspException {
Method method =

getReader(beanClass, property + "Size", int.class);
Object sizeWrapper = invokeMethod(method, "size");
size = ((Integer) sizeWrapper).intValue();

}

The first step here is to retrieve the getter method for the indexed property’s size.
By convention, the size of an indexed property is itself exposed as an integer-valued
bean property with the same name as the indexed property, plus the suffix Size. To
obtain the size of the indexed property, then, we must first obtain the getter
method for this size property. This is accomplished by means of a utility introspec-
tion method named getReader(), to be presented later in this chapter, which
either returns the requested getter or throws a JspException.

 Once the method is found, it is invoked in order to obtain the property value
(i.e., the size property). Another utility method, invokeMethod(), is called upon
to perform this reflection operation (or throw a JspException if it can’t). The
invokeMethod() method will be described later in the chapter. The final step of the
initSize() method is to unwrap the java.lang.Integer object returned by
invokeMethod() which contains the actual integer value representing the size of
the indexed property.

 Returning to the doStartTag() method, processing then depends upon
whether or not the indexed property actually has any elements. If the indexed prop-
erty’s size is zero, then the tag’s body can be skipped. This is accomplished by
returning Tag.SKIP_BODY.

 If one or more elements are present, however, the next step for doStartTag() is
to call initElementMethod() to initialize the tag handler’s elementMethod
instance variable. This method is defined as follows:

private void initElementMethod (Class beanClass)
throws JspException {
elementMethod =

getIndexedReader(beanClass, property, elementClass);
}

Like the first line of initSize(), this method simply relies on a utility introspection
method for retrieving the getter method for the indexed property. As before, this
utility method will be presented later in the chapter.

 The remaining steps in the doStartTag() method when elements are present is
to initialize the index instance variable to zero and then call assignElement() to
initialize the tag’s scripting variable prior to the first iteration. The method then



600 CHAPTER 19

Implementing advanced custom tags
returns Tag.EVAL_BODY_INCLUDE to indicate that processing of the custom action
should continue with its body content.

 The assignElement() method is also a key element of the tag handler’s doAf-
terBody() method, which is defined as:

public int doAfterBody () throws JspException {
if (++index < size) {
    assignElement();
    return IterationTag.EVAL_BODY_AGAIN;
} else {
    return Tag.SKIP_BODY;
}

} 

Unlike the doAfterBody() methods for UrlTag and HtmlEncodeTag (chapter 18),
this method does not need to concern itself with writing the results of processing
the body content. This is taken care of automatically for tags that implement Iter-
ationTag, and is one of that interface’s chief advantages over the BodyTag interface.
The primary responsibility of ForPropertyTag’s doAfterBody() method, then, is to
decide whether or not the iteration should continue.

 To that end, its first step is to increment the index instance variable and com-
pare its new value to the stored size of the indexed property. If there are no ele-
ments left, then the method returns Tag.SKIP_BODY to indicate to the JSP container
that no further iterations are required. Otherwise, assignElement() is called to set
the value of the scripting variable for the next iteration, and Iteration-
Tag.EVAL_BODY_AGAIN is returned to indicate that the body content should be pro-
cessed again.

 The code for the assignElement() method is itself fairly straightforward:

private void assignElement () throws JspException {
Object element = 

invokeMethod(elementMethod, index, "element");
pageContext.setAttribute(id, element);

}

Once again, a utility method, invokeMethod(), is called to perform the reflection
operations required to retrieve the next element of the indexed property. Its role is
to call the getter method for the indexed property, passing it the current value of
the index instance variable as its sole argument. Then, just as the original bean was
retrieved from the pageContext object via its getAttribute() method, assignment
of the scripting variable for the element is accomplished by calling the pageContext
object’s setAttribute() method. This action, in combination with information
provided to the JSP container via this handler’s helper class, is the only step required



Flow of control 601
for a custom tag to assign a value to a scripting variable. The JSP container handles
all of the behind-the-scenes details required to subsequently access this value using
the associated page’s scripting language.

 The final element is the release() method, defined as follows:

public void release () {
  super.release();
  name = null; property = null; id = null; elementClass = null;
  bean = null; index = 0; size = 0; elementMethod = null;
}

Like the release() methods presented for previous tag handlers, the primary task
of this method is to reset the object’s instance variables, so that the tag handler
instance may be reused by the JSP container.

 The complete source for the ForPropertyTag class is presented in abbreviated
form in listing 19.5. The definitions of the introspection and reflection utility meth-
ods will be presented in the next two sections.

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.lang.reflect.*;
import java.beans.*;
import java.io.IOException;

public class ForPropertyTag extends BodyTagSupport {
    private String name, property, id;
    private Class elementClass;

    public void setName (String name) { ... }
    public String getName () { ... }
    public void setProperty (String property) { ... }
    public String getProperty () { ... }
    public void setId (String id) { ... }
    public String getId () { ... }
    public void setElementClass (String className)
      throws ClassNotFoundException { ... }
    public String getElementClass () { ... }

    private Object bean; 
    private Method elementMethod;
    private int size, index; 

    private void assignElement () throws JspException { ... }
    private void initSize (Class beanClass)

Listing 19.5 ForPropertyTag tag handler



602 CHAPTER 19

Implementing advanced custom tags
      throws JspException { ... }
    private void initElementMethod (Class beanClass) 
      throws JspException { ... }
    public int doStartTag () throws JspException { ... }
    public int doAfterBody () throws JspException { ... }
    public void release () { ... }

    private Method getReader (Class beanClass, 
                              String property, Class returnType)
       throws JspException { ... }
    private Method getIndexedReader (Class beanClass, 
                                     String property,
                                     Class returnType)
      throws JspException { ... }

    private Object invokeMethod (Method method, String label)
      throws JspException { ... }
    private Object invokeMethod (Method method, int arg,
                                 String label)
      throws JspException { ... }
    private Object invokeMethod (Method method, Object[] args,
                                 String label)
      throws JspException { ... }
}

Introspection methods
The ForPropertyTag class defines two utility methods for retrieving bean property
accessors via Java’s introspection API: getReader() fetches the getter method for a
standard JavaBean property; getIndexedReader() retrieves the getter method for
an indexed JavaBean property.

 In the implementation of ForPropertyTag, getReader() is used to obtain the
getter method for the property corresponding to the size of the indexed property
(i.e., the number of elements over which the iteration is to occur). The
getIndexedReader() method is used to obtain the getter method for accessing the
actual elements of the indexed property.

 Because each method is used only once, it may seem overkill to provide utility
methods for performing these operations. Noting that we have already performed
similar introspection operations while implementing the IfPropertyTag class,
being able to abstract these operations into a set of utility methods that could
potentially be reused by multiple tag handler classes is an attractive idea. These util-
ity methods represent a first step in that direction.

 Here is the code for implementing getReader():



Flow of control 603
private Method getReader (Class beanClass, 
                          String property, Class returnType)
  throws JspException {
  try {
    BeanInfo beanInfo = Introspector.getBeanInfo(beanClass);
    PropertyDescriptor[] descriptors =
      beanInfo.getPropertyDescriptors();
    int stop = descriptors.length;
    for (int i = 0; i < stop; ++i) {
      PropertyDescriptor descriptor = descriptors[i];
      if (descriptor.getName().equals(property)
          && (descriptor.getPropertyType() == returnType)) {
        return descriptor.getReadMethod();
      }
    }
    throw new
      JspTagException("Bean \"" + name +
                      "\" has no property named \"" + property +
                      "\" of type " + returnType.getName() +
                      " for <ifProperty> tag.");
  }
  catch (IntrospectionException e) {
    throw new JspTagException(e.getMessage());
  }
}

As might be expected, this method has much in common with the getProperty-
Reader() method of IfPropertyTag. The primary difference is that this method
has no dependencies on the class’s instance variables. Instead, the method’s param-
eters are its primary source of data.

 Like getPropertyReader(), this method starts out by retrieving the BeanInfo
object for the JavaBean class whose properties are being examined (the method’s
first argument), and then uses this object to retrieve an array of property descrip-
tors. This array is searched for a property whose name and value match those passed
in as getReader()’s second and third parameters. Once found, the descriptor’s
getReadMethod() is called to obtain and return the Method object corresponding
to the getter method for the property. If the search fails to turn up an appropriate
property descriptor, a JspTagException is thrown. For convenience— given this
utility method’s intended role in implementing custom tags—if an Introspection-
Exception is thrown, it is caught and used to initialize a new JspTagException for
notifying the caller of any introspection errors.

 The implementation of getIndexedReader() is quite similar:

private Method getIndexedReader (Class beanClass,
                                 String property,
                                 Class returnType)



604 CHAPTER 19

Implementing advanced custom tags
  throws JspException {
  try {
    BeanInfo beanInfo = Introspector.getBeanInfo(beanClass);
    PropertyDescriptor[] descriptors =
      beanInfo.getPropertyDescriptors();
    int stop = descriptors.length;
    for (int i = 0; i < stop; ++i) {
      PropertyDescriptor descriptor = descriptors[i];
      if (descriptor instanceof IndexedPropertyDescriptor
          && descriptor.getName().equals(property)) {
        IndexedPropertyDescriptor ipd =
          (IndexedPropertyDescriptor) descriptor;
        if (ipd.getIndexedPropertyType() == returnType) {
          return ipd.getIndexedReadMethod();
        }
      }
    }
    throw new
      JspTagException("Bean \"" + name +
                      "\" has no indexed property named \"" +
                      property +
                      "\" of type " + returnType.getName() +
                      " for <ifProperty> tag.");
  }
  catch (IntrospectionException e) {
    throw new JspTagException(e.getMessage());
  }
}

The primary difference between getIndexedReader() and getReader() is in the
code for checking property descriptors. The introspection API provides a special
subclass of PropertyDescriptor, named IndexedPropertyDescriptor, for repre-
senting indexed properties. For this reason, the getIndexedReader() method only
examines property descriptors that are instances of this subclass. Note also that the
IndexedPropertyDescriptor subclass renames the methods for retrieving the
property type and getter method. These methods are called getIndexedProperty-
Type() and getIndexedReadMethod() respectively.

Reflection methods
Three utility methods are implemented by the ForPropertyTag class for supporting
reflection. All three are variants of invokeMethod(), the principal version of which
is defined as follows:

private Object invokeMethod (Method method, Object[] args,
                             String label)
  throws JspException {
  try {



Flow of control 605
    return method.invoke(bean, args);
  }
  catch (IllegalAccessException e) {
    throw new JspTagException("Unable to invoke " + label
                              + " method corresponding to property \"" 
                              + property + "\" of bean \"" + name 
                              + "\" for <forProperty> tag.");
  }
  catch (InvocationTargetException e) {
    throw new JspTagException("Unable to invoke " + label
                              + " method corresponding to property \"" 
                              + property + "\" of bean \"" + name 
                              + "\" for <forProperty> tag.");
  }
 }

Obviously this method is basically a wrapper around the invoke() method of class
Method, which catches any exceptions thrown during method invocation and then
throws corresponding instances of the JspTagException class. To simplify the
argument list, this method uses some of ForPropertyTag’s instance variables (spe-
cifically, bean and property), but it would not be too difficult to eliminate this
dependency.

 To simplify the invocation of methods that take no arguments, the following
variant of invokeMethod() is provided:

private Object invokeMethod (Method method, String label)
  throws JspException {
  return invokeMethod(method, new Object[0], label);
}

This form simply provides a default, empty value for the second argument of the
original version of invokeMethod(). ForPropertyTag calls this version of
invokeMethod() in its initSize() method.

 A third form of invokeMethod() is provided for calling methods which take a
single, integer argument:

private Object invokeMethod (Method method, int arg, String label)
  throws JspException {
  Integer[] args = { new Integer(arg) };
  return invokeMethod(method, args, label);
}

Here, the integer argument is wrapped in an instance of the java.lang.Integer
class. This Integer object is itself packaged in an array, which again serves as the
va lue for  the  second argument  when ca l l ing the or igina l  vers ion  o f
invokeMethod().



606 CHAPTER 19

Implementing advanced custom tags
BeanInfo class
 As indicated previously, the default behavior of the Introspector class is to rely on
method name conventions to identify bean properties. For cases when those con-
ventions cannot be adhered to, the developer can provide an associated BeanInfo
class to provide custom control over those properties and methods.

 Providing such custom control is necessary here because the forProperty tag
handler wishes to override the default read-only class property implicitly provided
by the getClass() method of Java’s root base class, java.lang.Object. The Bean-
Info class that implements this custom tag, which must be named ForProper-
tyTagBeanInfo in order for it to be found by the Introspector class, is presented
in listing 19.6. 

package com.taglib.wdjsp.mut;
import java.util.beans.*;
import java.lang.reflect.*;
public class ForPropertyTagBeanInfo extends SimpleBeanInfo {
  public PropertyDescriptor[] getPropertyDescriptors () {

try {
PropertyDescriptor[] result = new PropertyDescriptor[4];
result[0] = new PropertyDescriptor(“name”, ForPropertyTag.class); 
result[1] = new PropertyDescriptor(“property”,

  ForPropertyTag.class); 
result[2] = new PropertyDescriptor(“id”, ForPropertyTag.class); 
result[3] = new PropertyDescriptor(“class”,

getClassGetter(),
getClassSetter());

return result;
}
catch (NoSuchMethodException e) {

System.err.println(e.toString());
}
catch (IntrospectionException e) {

System.err.println(e.toString());
}
return null;

}
private Method getClassGetter()

throws NoSuchMethodException, SecurityException {
Class klass = ForPropertyTag.class;
return klass.getMethod(“getElementClass”, new Class[0]);

}
private Method getClassSetter()

throws NoSuchMethodException, SecurityException {

Listing 19.6 ForPropertyTagBeanInfo class



Flow of control 607
Class klass = ForPropertyTag.class;
return klass.getMethod(“setElementClass”, new Class[]{String.class});

}
}

The first thing to note about the ForPropertyTagBeanInfo class is that it is a sub-
class of the java.beans.SimpleBeanInfo class. This base class provides default
implementations of all the methods required by the BeanInfo interface, simplifying
the developer’s task considerably. In this particular case, only the getPropertyDe-
scriptors() method needs to be overridden by ForPropertyTagBeanInfo.

 As we know from its use in the tag handler itself, the getPropertyDescrip-
tors() method is used to fetch an array of PropertyDescriptor objects that map
a bean’s properties to its getter and setter methods. Here, that array must be con-
structed explicitly, rather than rely on the default mapping provided by the Java-
Beans naming conventions. This is done by first allocating an array of length four,
and then populating that array by making four calls to the PropertyDescriptor
class’s constructors. The first three constructor calls pass in only the name of the
property and the bean’s class (i.e., the tag handler). This constructor will automati-
cally look up the getter and setter methods based on the standard naming conven-
tions. Since each of these first three properties have getters and setters that follow
those conventions, the simplified constructor will suffice.

 For the class property, however, its getter and setter methods are required to
use alternative names, due to a conflict with Object’s getClass() method. In this
case, the getter and setter methods themselves must also be provided as arguments
to the PropertyDescriptor constructor. A pair of auxiliary methods, getClass-
Getter() and getClassSetter(), are thus introduced to retrieve these methods.

 The same approach is taken to retrieve both the getter and setter methods. First,
a reference to the tag handler class is obtained. Next, the getMethod() method pro-
vided by java.lang.Class is called to perform the actual method lookup. This
method takes a method name as its first argument, and an array of Class objects as
its second. This second argument represents the parameter types for the method
being retrieved. The getter method has no parameters, so an array of length zero is
supplied. The setter method takes one argument, a string, so an array of length one,
containing only a reference to the String class, is provided. The selected names of
the class property’s getter and setter methods, getElementClass and set-
ElementClass, respectively, are provided as the first arguments to the correspond-
ing getMethod() calls.



608 CHAPTER 19

Implementing advanced custom tags
Helper class
As indicated earlier in the chapter, because the behavior of the forProperty tag
includes setting a scripting variable whose class cannot be specified in the TLD, a
helper class is required. This helper class will be instantiated (or fetched from a
resource pool) whenever a page using the tag is compiled, in order to enable the JSP
container to determine the variable’s name and type. In this way, references to the
scripting variable within the tag’s body content can be resolved and statically
checked during page compilation. The name of the helper class, as specified by the
TLD entry for the forPropertyTag provided in listing 19.3, is ForPropertyTEI.

NOTE It is standard practice to name the tag helper class after the tag, with an added
TEI suffix. As you recall, TEI is an acronym for TagExtraInfo, the base class
that all JSP custom tag helper classes must extend.

The source code for ForPropertyTEI is provided in listing 19.7. As required for tag
handler helper classes, ForPropertyTEI is a subclass of javax.servlet.jsp.tag-
ext.TagExtraInfo, and provides implementations for its two primary methods,
getVariableInfo() and isValid().

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.*;

public class ForPropertyTEI extends TagExtraInfo {

  public VariableInfo[] getVariableInfo (TagData data) {
    String varName = data.getId();
    String className = data.getAttributeString("class");
    VariableInfo info =
      new VariableInfo(varName, className,
                       true, VariableInfo.NESTED);
    VariableInfo[] result = { info };
    return result;
  }
  public boolean isValid (TagData data) {
    return true;
  }
}

As discussed in chapter 18, getVariableInfo() is used to pass information about
scripting variables to the JSP container. For the forProperty tag, the name of the

Listing 19.7 ForPropertyTEI helper class



Flow of control 609
scripting variable is provided by the id attribute, and its type is provided by the
class attribute. The values for these two attributes are obtained from the TagData
object passed in as the argument to this method via its getId() and getAttribute-
String() methods, respectively.

 These two attribute values are used as the first two constructor arguments in
creating an instance of the VariableInfo class. The third argument is true, indi-
cating that this is a new scripting variable, for which a corresponding declaration
may be required (depending upon the page’s scripting language). The value for the
fourth argument is VariableInfo.NESTED, indicating that the scripting variable is
only in scope within the body of the forProperty tag.

NOTE The getId() method of the TagData class is shorthand for calling the
getAttributeString() method with an argument of ”id”. It is provided
in support of the JSP convention that the id attribute is used to bind new
scripting variables, whereas the name attribute is used to reference them. This
convention is exemplified by the standard JavaBeans tags: <jsp:useBean>
has an attribute named id for adding a bean to a page, while <jsp:get-
Property> and <jsp:setProperty> have name attributes for accessing an
existing bean’s properties. The getId() convenience method is only useful in
helper classes for custom tags that follow this convention.

Since this tag creates only a single scripting variable, a VariableInfo array of length
one is then created. The VariableInfo instance that was just constructed serves as its
sole element. This array is the return value of the getVariableInfo() method.

 No special checks are performed by the isValid() method of ForPropertyTEI,
so it simply returns true, indicating that the tag described by its TagData argument
is valid. Recall that the JSP container automatically performs certain compile-time
checks based on the tag’s TLD entry, in addition to calling the isValid() method
of the tag’s helper class (if any).

 Unfortunately, the TagData object passed in as the argument to both getVari-
ableInfo() and isValid() provides access only to information about the custom tag
currently being compiled by the JSP container. In particular, there is no way for these
methods to obtain information about the context in which the custom tag appears.

 The methods of ForPropertyTEI, for example, could certainly benefit from
knowing about the beans present on the page. During the course of compiling the
page, the JSP container will determine the class of the bean specified by the for-
Property tag’s name attribute. If this information were made available to the
isValid() method, it would be possible for that method to validate the value



610 CHAPTER 19

Implementing advanced custom tags
specified for the tag’s class attribute, using introspection. Alternatively, if this
information were available from the getVariableInfo() method, use of the class
attribute could be avoided. The introspection API could be used to infer the appro-
priate class of the scripting variable, and supply it to the VariableInfo constructor
automatically. Tag library validators, described in chapter 20, expose some global
information about a page, but a complete solution to the problem of identifying the
Java objects accessible at any given point in a JSP page is not currently provided in
the specification.

Example bean
Before we can demonstrate the use of this tag, we will need a bean with an indexed
property that can be used in an example page. Actually, we will need two beans,
since the elements of the indexed property should themselves be instances of a bean
class. The two beans are presented in listings 19.8 and 19.9.

 The first class, PlotBean, represents a set of (x, y) coordinates by means of two
bean properties, data and dataSize. The first, data, is an indexed property that
stores the plot’s coordinates as an array of instances of our second example class,
DataBean. The dataSize property merely reflects the size of this array. In some-
thing of a departure from other indexed properties we have seen, however, the set-
ter for the dataSize property (i.e., setDataSize()) has an important side effect.
By calling the bean class’s makeDataPoints() method, the dataSize setter will
generate an array of data points, using the zero-argument constructor provided by
the DataBean class.

package com.taglib.wdjsp.advtags;

public class PlotBean {
  private DataBean[] dataPoints;

  public PlotBean () {
    makeDataPoints(0);
  }
  public int getDataSize () {
    return dataPoints.length;
  }
  public void setDataSize (int size) {
    makeDataPoints(size);
  }
  public DataBean getData (int index) {
    return dataPoints[index];
  }

Listing 19.8 PlotBean class



Flow of control 611
  public void setData (int index, DataBean data) {
    dataPoints[index] = data;
  }

  private void makeDataPoints (int count) {
    dataPoints = new DataBean[count];
    for (int i = 0; i < count; ++i) {
      dataPoints[i] = new DataBean();
    }
  }
}

As indicated in listing 19.9, this zero-argument DataBean constructor generates a
new bean that has random values for its x and y properties. This is accomplished by
means of randomCoordinate(), a static method defined by the DataBean class
which generates random values between 0 and 100. This method in turn relies on a
statically stored instance of the java.util.Random class, whose nextDouble()
method is used to generate random, double-precision floating-point values between
0 and 1.

 The DataBean class also provides a two-argument constructor for specifying its
coordinates explicitly, as well as the standard getter and setter methods for the prop-
erties corresponding to those coordinates.

package com.taglib.wdjsp.advtags;
import java.util.Random;
public class DataBean {
  private double x, y;

  public DataBean () {
    this(randomCoordinate(), randomCoordinate());
  }
  public DataBean (double x, double y) {
    this.x = x;
    this.y = y;
  }
  public double getX () {
    return x;
  }
  public void setX (double x) {
    this.x = x;
  }
  public double getY () {
    return y;
  }

Listing 19.9 DataBean class



612 CHAPTER 19

Implementing advanced custom tags
  public void setY (double y) {
    this.y = y;
  }
  static private Random rnd = new Random();
  static private double randomCoordinate () {
    return 100d * rnd.nextDouble();
  }
}

Sample page
A sample page demonstrating the application of the forProperty tag to an instance
of the PlotBean class is provided in listing 19.10. Note the use of the <jsp:set-
Property> tag in the body of the <jsp:useBean> tag to set the number of data
points to 12. Recall that this action has the side effect of replacing the contents of
the bean’s data indexed property with a dozen new, random data points.

 The forProperty tag appears toward the end of the page, where it is used to
iterate through the elements of this data property. In the body of the forProperty
tag, table rows are generated for displaying the coordinates of the data points. The
resulting output is depicted in figure 19.3.  

<%@ taglib uri="/mutlib" prefix="mut" %>
<jsp:useBean id="plot"
             class="com.taglib.wdjsp.advtags.PlotBean"/>
  <jsp:setProperty name="plot" property="dataSize" value="12"/>
</jsp:useBean>
<html>
<head>
<title>Iteration Tag</title>
</head>
<body>
<h1>Iteration Tag</h1>
<center><table border=1>
<tr><th>X</th><th>Y</th></tr>
<mut:forProperty name="plot" property="data"

              id="point" class="com.taglib.wdjsp.advtags.DataBean">
  <tr><td><jsp:getProperty name=”point” property=”x”/></td>
      <td><jsp:getProperty name=”point” property=”y”/></td></tr>
</mut:forProperty>
</table></center>
</body>
</html>

Listing 19.10 The forProperty tag example page



Interacting tags 613
19.3 Interacting tags 

HTML contains a number of tags whose behavior is dependent upon the context in
which they appear. For example, the <LI> tag for designating the items in a list pro-
duces bulleted content when enclosed in a <UL> tag, and numbered content when it
appears within the <OL> tag. The <TD> tag is only meaningful within the body of a
<TR> tag, which itself must appear within the body of a <TABLE> tag.

 The built-in JSP tags also include such interdependencies, for example, the rela-
tionship among the <jsp:getProperty>, <jsp:setProperty>, and <jsp:use-
Bean> tags. The page directive, with its ability to set global properties such as
imported packages, the scripting language, and participation in session manage-
ment, has the potential to influence almost every JSP element that appears in a page. 

Figure 19.3 Output of the iteration tag



614 CHAPTER 19

Implementing advanced custom tags
19.3.1 Interaction mechanisms

As you can see, the ability for tags to interact can add powerful capabilities to a
markup language. In recognition of their potency, support for interacting tags is an
important part of the JSP custom tag API. JSP provides two different mechanisms,
in addition to the general techniques supported by the Java programming language,
for enabling data transfer between tag handlers. 

Attributes
The simplest mechanism for tags to interact is the use of object attributes. Through
their access to the local PageContext instance, as described in chapter 18, a tag
handler can gain access to all four of the standard implicit objects which are capable
of storing attributes: the application object, the session object, the request object,
and the PageContext instance itself. If the data to be stored in an attribute by a cus-
tom tag has the scope associated with the corresponding implicit object, this is a
reasonable way of transmitting data from one tag to another. It is somewhat unreli-
able, however, because there is no way to prevent others from using the same
attribute name and inadvertently corrupting the data stored there. Since a given
page may include any number of arbitrary scriptlets, <jsp:useBean> tags, and cus-
tom tags from other libraries—all of which can get and set any of the attributes
accessible from that page—there is always the chance, however slim, that another
developer has chosen to use the same attribute name as you.

 If the visibility of the shared data does not match that of any of the standard
scopes, an alternate approach should be taken. This will be true, for example, if the
data to be shared should only be accessible within the body of an enclosing tag. In
cases such as this, a more direct transfer of data between tag handlers is required. In
fact, unless the data has application or session scope (which can only be stored by
means of attributes), the approach we describe next is preferable to setting
attributes with page or request scope because it does not introduce the possibility of
namespace collisions.

The custom tag hierarchy
From the discussion of how tag handlers work in the previous chapter (figures 18.4,
18.5, and 18.6), recall that one of the first methods called when a tag handler is
invoked is setParent(). The JSP container uses this method to keep track of the
context in which a tag appears by means of a parent/child hierarchy. If one custom
tag is called within the body of another, the outer tag is designated as the parent of
the inner. After the JSP container has assigned a tag’s parent—in the form of a tag
handler instance—via setParent(), that handler can later be retrieved by its child
using the corresponding getParent() method.



Interacting tags 615
NOTE While any tag handler can access its parent handler by means of the getPar-
ent() method, the custom tag API provides no methods for determining a
tag handler’s children. As a result, the parent/child hierarchy can only be tra-
versed in a bottom-up manner.

By calling its getParent() method, then, a tag can obtain a reference to its parent
tag, and thereby retrieve data by calling its parent’s methods. Because nesting of
tags is arbitrary, though, you should never make assumptions about the parenthood
of a given tag. Even if your tag library defines two tag handlers named myParentTag
and myChildTag, with an implied relationship between the two, there is no way to
guarantee that every instance of myChildTag will have an instance of myParentTag
as its immediate parent. Perhaps the page author is also using the mut library, and
has wrapped a call to the <mut:encodeHTML> tag between your two tags in order to
encode the output of your myChildTag handler. While the myChildTag instance
may still be descended from an instance of your myParentTag handler within the
page’s parent/child hierarchy, the result of calling getParent() from your
myChildTag handler will yield an instance of EncodeHtmlTag, rather than an
instance of myParentTag.

 Coping with this inevitability is the role of findAncestorWithClass(), a static
method defined by the TagSupport class. As its name suggests, this method is used
to search up the parent/child hierarchy for the first ancestor of a tag that is an
instance of a particular class. The signature for this method is:

static Tag TagSupport.findAncestorWithClass(Tag from, Class class)

The first argument, from, identifies the child tag from which the search is initiated.
The second argument, class, specifies the tag handler class (or interface) for which
an instance is sought. Starting from the handler identified by from, then, its parent
handler is checked to see if it is an instance of class. If so, the parent handler is
returned. If not, the parent’s parent is checked. This process continues recursively
until an instance of class is found, or a tag handler with no parent is reached, in
which case the method returns null. In this way, a handler searching for an enclos-
ing tag of a certain type can locate it by means of its class.

NOTE The base requirement for custom tag handlers is that they implement the Tag
interface. The findAncestorWithClass() method is provided by the Tag-
Support class so that a full implementation can be provided, since interfaces
can only specify abstract methods. Because it is a static method, however, it



616 CHAPTER 19

Implementing advanced custom tags
can readily be called by tag handlers based on the Tag, IterationTag, or
BodyTag interfaces, as well as those extending the TagSupport and
BodyTagSupport classes. 

19.3.2 Index tag

To demonstrate the use of findAncestorWithClass(), we will implement an
index tag for use with the forProperty tag introduced previously. This tag can be
used to print the value of the index counter for the current iteration. The retrieval
of this value from the parent forProperty tag handler by the child index tag han-
dler is accomplished via findAncestorWithClass().  

 The syntax for the index tag is as follows: 

<mut:forProperty ...>
...
<mut:index start=”offset”/>
...

</mut:forProperty>

The tag has no body content and supports only a single, optional attribute named
start. This attribute allows the user to specify an offset which is to be added to the
index value before it is displayed. This option is provided because Java, like many
programming languages, starts its count from zero when iterating through a set of
indexed values. Natural languages, as well as HTML, treat such counts as starting
from one. If the optional start attribute is omitted, the Java convention is fol-
lowed. A value of one for this attribute mimics the natural language convention. 

 Given this description of its syntax, the corresponding TLD entry for the index
tag takes this form: 

<tag>
<name>index</name>
<tag-class>com.taglib.wdjsp.mut.IndexTag</tag-class>
<body-content>empty</body-content>
<description>

Prints the index value for the current iteration.
</description>
<attribute>

<name>start</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Thus, the index tag is implemented by means of an IndexTag tag handler class and
has no body content.  Its only attribute, which is optional, is named start. 



Interacting tags 617
Tag handler
The IndexTag handler class is presented in listing 19.11. Once again, the
doStartTag() method is the primary workhorse in implementing the functionality
of the custom tag, with support from one instance variable, its corresponding getter
and setter methods, and a release() method for resetting its value prior to return-
ing the tag handler to its resource pool. 

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.jsp.JspWriter;

import java.lang.IOException;
import javax.servlet.jsp.JspException; 
import javax.servlet.jsp.JspTagException;

public class IndexTag extends TagSupport {
private int start = 0;

public void setStart (int start) { this. start = start; }
public int getStart () { return start; }

public int doStartTag throws JspException () {
ForPropertyTag outer = (ForPropertyTag)

TagSupport.findAncestorWithClass(this, ForPropertyTag.class);
if (outer == null)

throw new JspTagException(“No enclosing ForPropertyTag instance.”);
JspWriter out = pageContext.getOut();
try {

out.print(start + outer.getIndex());
return Tag.SKIP_BODY;

}
catch (IOException e) {

throw new JspTagException("I/O exception " + e.getMessage());
}

}
public void release () { 

super.release();
this.start = 0;

}
}

The first action taken by the handler’s doStartTag() method is to call the TagSup-
port.findAncestorWithClass() method to locate the tag handler for the enclos-
ing forProperty tag, if any, and assign it to a local variable named outer. Since this

Listing 19.11 IndexTag tag handler



618 CHAPTER 19

Implementing advanced custom tags
is a static method, the calling tag handler is passed in as the first argument, in the
form of the this variable. The ForPropertyTag handler class acts as the second argu-
ment, indicating the type of enclosing handler that is sought. The index tag is only
valid when nested inside a forProperty tag; if no enclosing instance of ForProper-
tyTag is found, a JspTagException is raised to report the error.

 If the enclosing handler is found, the JspWriter representing the current out-
put stream is retrieved from the handler’s pageContext. The handler then writes
out the index value, incremented by the value of the start instance variable, to this
stream. The index value is itself retrieved by calling the getIndex() method of the
enclosing ForPropertyTag instance, now referenced by the outer local variable.
This method, introduced earlier in the chapter, is of no direct utility to its defining
class; it is essential, however, to the operation of the IndexTag handler. The
doStartTag() method then concludes by returning Tag.SKIP_BODY, consistent
with the absence of body content for this custom tag.

Sample page
A final sample page demonstrating the interaction of the index and forProperty
tags is presented in listing 19.12. This page is, of course, based on the original sam-
ple page for the forProperty tag, and only minor modifications were made to
incorporate the second tag. Specifically, a new column was added to the table for
displaying the index value of each row. The content of this column is provided by
the index tag in the first line of the forProperty tag’s body. A value of one has
been specified for the index tag’s start attribute, so that the row count starts at
one instead of zero. In addition, a corresponding column heading was added  to the
table, and the page’s  title was changed. The resulting JSP page is depicted in
figure 19.4.    

<%@ taglib uri="/mutlib" prefix="mut" %>
<jsp:useBean id="plot"
             class="com.taglib.wdjsp.advtags.PlotBean"/>
  <jsp:setProperty name="plot" property="dataSize" value="12"/>
</jsp:useBean>
<html>
<head>
<title>Index Tag</title>
</head>
<body>
<h1>Index Tag</h1>
<center><table border=1>
<tr><th>i</th><th>X</th><th>Y</th></tr>

Listing 19.12 The index tag example page



The final ingredient 619
<mut:forProperty name="plot" property="data"
              id="point" class="com.taglib.wdjsp.advtags.DataBean">

  <tr><td><mut:index start=”1”/></td>
      <td><jsp:getProperty name=”point” property=”x”/></td>
      <td><jsp:getProperty name=”point” property=”y”/></td></tr>
</mut:forProperty>
</table></center>
</body>
</html>

19.4 The final ingredient

The index tag completes the set of JSP custom actions to be included in the mut tag
library. There is one more element to be added to the library before it is complete,
however.

 As indicated, the index tag can only be used within the body of a forProperty
tag. Attempting to apply it outside the body of a forProperty tag results in a run-
time error. In a traditional programming language, though, nesting requirements
such as these are often enforced syntactically, allowing them to be detected during

Figure 19.4 Output of the iteration index tag



620 CHAPTER 19

Implementing advanced custom tags
compilation. Since compile-time errors tend to be detected earlier in the develop-
ment process than run-time errors—particularly if you take advantage of JSP’s pre-
compilation protocol (chapter 14)—providing a compile-time mechanism for
enforcing this relationship should prove advantageous.

 Fortunately, this is exactly the sort of functionality provided by tag library vali-
dators. This feature, introduced in JSP 1.2, is the topic of our final chapter, and a
validator for enforcing the nesting of forProperty and index tags which will be the
final ingredient in our example tag library.



 20Validating
custom tag libraries
This chapter covers
� XML representation of JSP pages

� How tag library validators work

� Implementation of tag library validators

� Packaging the example tag library
 

621



622 CHAPTER 20

Validating custom tag libraries
In the previous two chapters, we examined the design and operation of tag handlers
for implementing JSP custom actions. We saw how information in the TLD is used
by the JSP container to validate the syntax of custom tags and their attributes. We
also discussed how the isValidMethod() of the TagExtraInfo class may be used to
further validate individual applications of a specific custom tag. The two approaches
are limited, however, in that they are applied to each individual occurrence of a cus-
tom tag within a JSP page.

 Validating the complete set of custom tags present within a page—for example,
to enforce uniqueness constraints or verify that dependencies among interacting
tags are met—requires a different approach. This is the role of JSP 1.2’s tag library
validators, the primary topic of this final chapter. We will start by examining how
JSP pages may be represented as XML documents, and then discuss how tag library
validators interact with this XML representation to validate a page’s custom tags.
Several examples will be presented, including one for use with the example library
presented in chapters 18 and 19. This validator will then be combined with the tag
handlers from those chapters to constuct a JAR file for the completed mut custom
tag library.

20.1 Two representations of JSP

As indicated in chapters 4 and 5, JSP supports two different representations of its
pages. The standard representation, in which JSP markup tags are embedded in
template text for dynamic content generation, has been used throughout the exam-
ples presented thus far. The format of this template text is arbitrary. It can take the
form of HTML, WML, or any other text-based content, such as a table of comma-
separated values to be displayed as a spread sheet.

 The template text can also be an XML document, with the JSP markup tags used
to supply content for that document dynamically. Application of JSP to XML in this
way was demonstrated in the VXML example presented in chapter 16. When taking
this approach, the underlying JSP page, containing the template text and JSP
markup, is not a valid XML document. This is because the JSP markup tags are not
part of the governing DTD for the document being generated. While standard
actions and custom tags employ an XML-based syntax, they are in namespaces that
are unrelated to the content being delivered. The remaining JSP markup tags,
which use <% and %> as their delimiters, are completely invalid as XML elements.

 It is only after the page has processed by the JSP container in response to a
request that a valid XML document will result. All of the JSP markup will have been



Two representations of JSP 623
replaced by the generated content, which (presumably) fills in the template text to
create well-formed XML.

 As of JSP 1.2, however, an alternative is available. Although the XML variants of
the various JSP markup tags were introduced in version 1.1 of the JSP specification,
it was not until version 1.2 that a complete representation for JSP pages as well-
formed XML documents was provided. Whereas the standard representation calls
for template text interspersed with JSP markup tags, the XML representation of a
JSP page conforms to a JSP-specific DTD, with dedicated elements for the markup
tags as well as the template text.

 For every JSP page written using the standard representation, then, there is an
equivalent XML document that may be written using the XML representation. This
equivalent XML document, when deployed in a JSP container, will produce exactly
the same result in response to a request as the original JSP page (assuming, of
course, that the context—request parameters, session attributes, etc.—for the two
requests is identical). In fact, given that such an equivalent XML document exists
for every possible JSP page using the standard representation, the JSP 1.2 specifica-
tion mandates its use by the page compiler. As indicated in figure 20.1, fully com-
pliant JSP containers are expected to create this equivalent XML page whenever a
request is received for a JSP page that uses the standard representation and has not
already been compiled into a servlet. Once it has been translated into the XML repre-
sentation, it is this XML version of the page that is used to generate the servlet source
code for the page which is then compiled and loaded into the JSP container. Pages
originally written using the XML representation, of course, do not require this extra
translation step. As depicted in figure 20.1, such pages are compiled directly.

Standard
representation

JSP 
pages

XML
documents

Page
compiler

Compiled
servlets

XML
translation

XML
representation

XML
translation SAME

Figure 20.1 Compilation of JSP pages as XML documents



624 CHAPTER 20

Validating custom tag libraries
 The primary advantage of the XML representation is its regularity. Because JSP
pages using this representation are well-formed XML documents, conforming to
published standards, they can readily be parsed by software needing to analyze their
contents. JSP containers would be one example of such software, but tools for creat-
ing, editing, and maintaining JSP pages are another equally valid example. The stan-
dard representation relies on arbitrary text files with JSP markup tags interspersed
within the template text. While this approach is highly flexible and easy for authors
to work with, this underlying flexibility makes the resulting files difficult for pro-
grams to work with, because they are difficult to parse. XML is, in comparison, very
easy to parse, as evidenced by the large number of XML parsers, both commercial
and free, available to the development community. A tool that produces JSP pages
using the XML representation can readily read that file back in for modification at a
later date, simply by parsing the page as an XML document. In contrast, when
working with the standard representation, it is fairly easy to create JSP pages, but
because there is no structure to the resulting document, reading it back in again is
considerably more complex.

 Finally, the ability of the XML representation to be easily parsed also greatly sim-
plifies the task of validating JSP pages, as we shall soon see.

20.2 JSP pages as XML documents

In chapter 5, the XML equivalents of the various JSP markup tags were presented.
For example, the page and include directives have corresponding XML elements
named <jsp:directive.page> and <jsp:directive.include>, respectively.
When constructing a JSP page using the XML representation, however, simply
replacing the original markup tags with the appropriate XML forms is insufficient.
XML documents have additional requirements, such as a top-level root element,
that must be met in order for the document to be considered well-formed. XML is
also strict about the characters that may appear within the body content of a tag.
Some of the characters that commonly occur in Java code, including quotation
marks and mathematical symbols such as < and >, require special treatment when
they appear in the body of an XML tag. XML also does not allow one tag to be
embedded within another, as is the case for JSP request-time attribute values. Addi-
tional modifications are required, then, to satisfy such requirements. If they are not
satisfied, the document will be rejected when it is parsed by the page compiler.



JSP pages as XML documents 625
20.2.1 The root element

The root element for all JSP pages using the XML representation is <jsp:root>. All
elements on the page are thus delimited by matching <jsp:root> and </jsp:root>
tags. This root element accepts multiple xmlns attributes identifying the XML
namespaces used by the tags in the document. There will always be at least one
xmlns attribute corresponding to the jsp namespace used by the standard JSP
markup tags (e.g,. <jsp:directive.include>, <jsp:expression>, <jsp:set-
Property>, etc.). A version attribute, indicating the version of the JSP specifica-
tion to which the document adheres, is also required. The basic syntax for the root
element, then, is:

<jsp:root version="1.2" xmlns:prefix1="uri1" xmlns:prefix2="uri2" ... >
page content

</jsp:root>

where each xmlns attribute includes the namespace prefix as part of the attribute’s
name, and specifies the URI of the TLD for that namespace as its value.

 For JSP pages that only use the built-in JSP tags, the root element takes this form: 

<jsp:root version="1.2" xmlns:jsp="http://java.sun.com/JSP/Page">
page content

</jsp:root>

Since only the standard markup tags are being used, only the specification of the
jsp namespace is required. The URI for the namespace of the standard tags is
http://java.sun.com/JSP/Page.

 As mentioned in chapter 5, there is no direct XML equivalent for the JSP taglib
directive. Instead, custom tags are referenced as additional namespaces for the root
element. For a page using our mut tag library with mut as the chosen prefix for those
tags, the root element would be

<jsp:root version="1.2" xmlns:jsp="http://java.sun.com/JSP/Page" 
xmlns:mut="urn:jsptld:/mutlib">
page content

</jsp:root>

Instead of an explicit element specifying the tag library being used, an xmlns
attribute for that tag library is added to the root element. The namespace prefix for
the custom tag library appears in the name of the xmlns attribute, while the URI
pointing to its TLD—in this case, /mutlib—serves as the attribute’s value. These
correspond to the values of the prefix and uri attributes, respectively, of the stan-
dard taglib directive. Using the standard representation, there is one taglib
directive for each custom tag library used by a page. In the XML representation,



626 CHAPTER 20

Validating custom tag libraries
there is one xmlns attribute for each custom tag library, plus an additional xmlns
attribute for the standard tags (i.e., the jsp namespace).

 Note in the previous example that the local URI for the custom tag library’s
TLD is specified as urn:jsptld:/mutlib, whereas the URI for the standard tags is a
conventional http URL. This is because the TLD resides on the local server, using a
mapped URI dictated by the web application to which the JSP page belongs (see
chapter 14). Since the full URL is deployment-specific, this alternative URI syntax
lets the JSP container know that it should use its own internal mechanisms to locate
the TLD.

20.2.2 Template text

Template text within a JSP page is modeled in the XML representation as the body
content of one or more <jsp:text> elements. In addition, to ensure that the body
content of this element complies with XML data requirements, it is typically
wrapped inside an XML CDATA element, indicating that it contains character data
that is to be treated as literal text, rather than interpreted as XML tags.

 Consider, for example, the following fragment of text to be included in a JSP
page:

A world inside the computer where man has never been.

Since none of the characters in this text have any special meaning as XML, they can
be wrapped directly in a <jsp:text> element without any negative side effects: 

<jsp:text>A world inside the computer where man has never been.</jsp:text>

Consider, though, this second fragment, which includes HTML markup:

Never before <i>now</i>.

In this case, the delimiters for the HTML italics tags in this fragment do have mean-
ing as XML. When parsing this fragment as XML, the parser would attempt to inter-
pret the <i> and </i> tags as XML elements, most likely causing an error in the
process. To ensure that template text such as this is treated literally, it is embedded
in a CDATA element, like this:

<jsp:text> <![CDATA[Never before <i>now</i>.]]></jsp:text>

Wrapping the template text inside the CDATA element protects it from being inter-
preted as XML when the document is parsed.



JSP pages as XML documents 627
20.2.3 Scripting elements

As indicated in chapter 5, JSP provides the <jsp:declaration>, <jsp:scriptlet>,
and <jsp:expression> tags for specifying the three forms of JSP scripting elements
in XML. As is the case for template text, however, the Java (or other scripting lan-
guage) code that appears in such elements may not always comply with XML data
requirements. For that reason, scripting code in the body of these three XML tags is
also commonly wrapped inside an XML CDATA element, to avoid potential errors
when the XML document containing these elements is parsed.

 For example, consider the following method declaration using the standard rep-
resentation:

<%! public long fact (long x) {
      if (x < 2) return 1;
      else return x * fact(x –1);
    } %>

Due to the presence of the < character in the second line of this declaration, the
method definition cannot simply be placed between a set of <jsp:declaration>
tags. If it were, an XML parser would attempt to interpret this character as the
opening delimiter of a nested tag, which it obviously is not. By wrapping the Java
code inside a CDATA element, however, parsing of the method body as XML is pre-
empted. The equivalent XML representation for this declaration, then, is as follows: 

<jsp:declaration><![CDATA[
 public long fact (long x) {
      if (x < 2) return 1;
      else return x * fact(x –1);
    }]]>
</jsp:declaration>

For the purposes of XML parsing, the Java code is thus treated as literal text. 
 Scriptlets and top-level expressions are treated similarly when using the XML

representation.

20.2.4 Request-time attribute values

When expressions are used to provide request-time attribute values for JSP actions,
the standard representation calls for them to be embedded within the action tag
containing the attribute whose value they are setting. This is not permitted in well-
formed XML, however. While it is legal for one or more XML tags to appear in the
body content of another XML tag, XML does not permit such nesting within the
tags themselves.



628 CHAPTER 20

Validating custom tag libraries
 In order to accommodate request-time attribute values in the XML representa-
tion, then, JSP takes a slightly different approach. Rather than represent the
request-time attribute value as an XML element, special character-based delimiters
are used to signify the presence of scripting code representing a request-time
attribute value. More specifically, the beginning of an expression providing a
request-time attribute value is indicated by the characters %=, while the end of the
expression is delimited by a %.

 Consider the following action, which includes a request-time attribute value,
using the standard representation:

<jsp:setProperty name=”pizzaBean” slices=”<%= fact(4) %>”/>

The equivalent action, using the XML representation, is:

<jsp:setProperty name=”pizzaBean” slices=”%= fact(4) %”/>

As you can see, the only difference between these two actions is the absence of the
< and > delimiters on the request-time attribute value in the XML representation. 

 Note, however, that if the scripting code in such expressions uses any characters
that have special meaning in XML, they must be properly escaped. For Java code,
the character most likely to cause such difficulties is the quotation mark, since the
XML parser would attempt to interpret it as the closing delimiter for the attribute
value. There are three approaches to avoiding this problem.

 The first takes advantage of the fact that both the standard representation and
the XML representation support the use of the apostrophe (or single quote) charac-
ter as a delimiter for attribute values. When there are quotation marks present in the
expression, simply use this alternative delimiter to avoid conflicts, as in the follow-
ing example, which uses the standard representation: 

<jsp:setProperty name=”user” nickname=’<%= user.getLastName() + ”ster” %>’/>

Unfortunately, if the expression contains both quotation marks and apostrophes,
this approach is inadequate.

 The second option is based on Java’s built-in support for Unicode escape
sequences. The escape sequence for quotation marks is \u0022, and can appear any-
where in the expression to stand in for a quotation mark. Here is the same tag using
the XML representation and Unicode escape sequences:

<jsp:setProperty name=”user” nickname=”%= user.getLastName() + 
\u0022ster\u0022 %”/>

When the text of this expression is passed to the Java compiler, the escape sequences
will automatically be recognized as representing a pair of quotation marks.



JSP pages as XML documents 629
 A third alternative is to use XML entities, as in this example:

<jsp:setProperty name="user" nickname="%= user.getLastName() + 
&quot;ster&quot; %"/>

In this case, it is the XML parser that is performing the character translation, recog-
nizing the &quot; entities as representing quotation marks intended to be part of
the attribute value, rather than delimiters.

20.2.5 Directives and actions

The XML representation for the taglib directive has already been described: cus-
tom tag libraries are specified via the xmlns attribute of the <jsp:root> element.
The other two JSP directives, page and include, have explicit XML equivalents, as
described in chapter 5. All JSP actions, including those provided by a custom tag
library, already employ a syntax that is compatible with XML.

 When authoring a JSP page using the XML representation, then, page and
include directives are specified using the equivalent XML syntax, rather than their
standard form. Actions (both standard and custom) take the same form as in the
standard representation.

 When the JSP container translates a JSP page from the standard representation
into the equivalent XML document, page and include directives are mapped into
their XML equivalents. Action tags do not themselves require any mapping, unless
they have attributes whose values are provided via request-time attribute values. In
this case, the JSP expressions representing those request-time attribute values are
transformed as described in the previous section. Finally, if there is any body con-
tent associated with the action, it too must be translated.

20.2.6 Sample page

A sample JSP page, expressed using both the standard and XML representations, is
presented in listings 20.1 and 20.2. Note that the taglib directive in the standard
representation is replaced by an xmlns attribute of the root element in the XML rep-
resentation. Also note the two approaches to handling the quotation marks in the
request-time attribute value for the timezone attribute of the <mut:timeOfDay>
custom action, and the usage of <jsp:text> and associated CDATA elements in the
XML representation to preserve the line spacing of the version using the standard
representation.



630 CHAPTER 20

Validating custom tag libraries
<%@ page session="false" %>
<%@ taglib prefix="mut" uri="/mutlib" %>

<% String zone = request.getParameter("timezone"); %>
<mut:timeOfDay id="timeOfDay" timezone=’<%= (zone == null) ? "EST" : zone %>"/>

<html>
<head>
<title>Standard and XML Representations</title>
</head>
<body>

<mut:ifProperty name="timeOfDay" property="daytime" action="include">
<p align=”center”>Good Day!</p>
</mut:ifProperty>
<mut:ifProperty name="timeOfDay" property="daytime" action="exclude">
<p align=”center”>Good Night!</p>
</mut:ifProperty>

</body>
</html>

<jsp:root version="1.2" xmlns:jsp="http://java.sun.com/JSP/Page"
          xmlns:mut="/mutlib">
<jsp:directive.page session="false"/>
<jsp:text><![CDATA[

]]>
</jsp:text>
<jsp:text><![CDATA[

]]>
</jsp:text>
<jsp:scriptlet><![CDATA[
 String zone = request.getParameter("timezone");
   if (zone == null) zone="EST"; ]]>
</jsp:scriptlet>
<jsp:text><![CDATA[

]]>
</jsp:text>
<mut:timeOfDay id="timeOfDay"
   timezone="%= (zone == null) ? &quot;EST&quot; : zone %"></mut:timeOfDay>
<jsp:text><![CDATA[

<html>
<head>
<title>Standard and XML Representations</title>

Listing 20.1 Sample JSP page using the standard representation

Listing 20.2 Sample JSP page using the XML representation



Tag library validation 631
</head>
<body>

]]>
</jsp:text>
<mut:ifProperty name="timeOfDay" property="daytime" action="include">
<jsp:text><![CDATA[

<p align=”center”>Good Day!</p>
]]>
</jsp:text>
</mut:ifProperty>
<jsp:text><![CDATA[

]]>
</jsp:text>
<mut:ifProperty name="timeOfDay" property="daytime" action="exclude">
<jsp:text><![CDATA[

<p align=”center”>Good Night!</p>
]]>
</jsp:text>
</mut:ifProperty>
<jsp:text><![CDATA[

</body>
</html>
]]>
</jsp:text>
</jsp:root>

20.3 Tag library validation

As listing 20.2 suggests, the XML representation of a JSP page is considerably more
verbose than the standard representation. At first glance, the XML representation
also appears to be more complex, at least from the standpoint of readability. Assum-
ing, of course, you are a human being.

 If you happen to be a computer, however, the XML representation is much more
readable. This is because XML documents are highly structured and therefore much
easier to parse. For this reason, it is the XML representation of a JSP page that is
exposed to tag library developers for the purpose of validating their libraries’ cus-
tom tags.

 Each custom tag library is permitted to specify a single tag library validator for
validating pages that employ its custom tags. As described in chapter 18, when the
JSP container needs to compile a JSP page that uses one or more custom tag librar-
ies, it first checks the syntax of the page’s custom tags against the corresponding
entries in the libraries’ TLDs. Then, for TLDs that specify tag library validators, each



632 CHAPTER 20

Validating custom tag libraries
validator is called to examine the entire contents of the JSP page and perform what-
ever checks are appropriate. (The validators are called in the same order as the cor-
responding taglib directives or xmlns attributes appear in the page.) The contents
of the JSP page are provided to the validator using the XML representation. This
allows the validator to parse the page’s contents, so that it may find and examine the
tags it is intended to validate.

 Tag l ibrar y validators are created as subclasses of the javax.serv-
let.jsp.tagext.TagLibraryValidator class. A validator is associated with a cus-
tom tag library by specifying the name of its TagLibraryValidator subclass in the
<validator-class> element of its TLD. When the JSP container is compiling a
page using the library, an instance of this class is obtained—either by retrieving it
from a resource pool or by constructing a new one—and provided with access to
the page’s contents in order to validate them.

 This is accomplished by calling the validator instance’s validate() method,
which is expected to perform the validation of JSP pages. The default implementa-
tion of this method, provided by the TagLibraryValidator base class, does noth-
ing. In order to validate a JSP page, then, library-specific subclasses must provide
their own implementations of this method, whose signature is as follows:

public ValidationMethod[] validate (String uri, String prefix,
                                    javax.servlet.jsp.tagext.PageData page)

As its signature indicates, the JSP container passes three arguments to the vali-
date() method when it is called to validate a JSP page. The first two arguments are
character strings identifying the URI of the tag library’s TLD and the prefix used by
the library’s custom tags within the page, respectively. The values of these two argu-
ments thus correspond directly to the values of the taglib directive or xmlns
attributes that caused the validator to be called in the first place.

 The final parameter of the validate() method is an instance of the javax.serv-
let.jsp.tagext.PageData class. It is this instance that exposes the contents of the
JSP page to the validator. This class supports just a single method, getInput-
Stream(), that returns an instance of java.io.InputStream for reading the XML
representation of the page. The validate() method can then pass this input stream
to an XML parser for extracting and validating the relevant custom tags.

 Based on these three inputs, then, the validate() method knows how the tag
library is being referenced by the page, and has full access to the contents of the
page. Using this information, it is able to determine whether or not the use of the
tag library by the page is valid. It is the ValidationMessage array returned by this
method that conveys this determination to the JSP container. If the validator finds
no problems with the contents of the JSP page, it is expected to return either null



Tag library validation 633
or an empty array. If the page is found to be invalid, however, the validate()
method should return a populated array of ValidationMessage objects whose
properties explain why the page’s use of the tag library is invalid. These messages
are then displayed by the JSP container to assist the page author in correcting what-
ever problems were detected.

 Since a given tag library may be used by multiple JSP pages managed by the
same container, there are efficiency benefits to be gained by reusing TagLibrary-
Validator instances. To that end, JSP containers are allowed to store these
instances in a resource pool, from which they may be removed for use and returned
for reuse. 

 Recall from the description in chapter 18, the TLD provides an <init-parame-
ter> element for passing initialization parameters to a tag library validator. Each
time the container removes a TagLibraryValidator instance from its resource
pool, it will call the instance’s setInitParameters() method, passing it a
java.utils.Map instance which maps the names of those initialization parameters to
the values supplied for them in the tag library’s TLD. This mapping can be retrieved
by the validator instance within its validate() method by calling the getInitPa-
rameters() method. This initialization must take place each time the validator is
removed from the resource pool, since the same validator class can be shared by mul-
tiple tag libraries. Once removed from the resource pool, the container can apply the
validator instance to multiple JSP pages before returning it to the resource pool. For
example, if one JSP page uses the <jsp:include> action to include another JSP page,
both of which make use of the same custom tag library, the container can use the
same TagLibraryValidator instance to validate both pages. Furthermore, the JSP
container is permitted to apply this instance to both pages simultaneously, so thread
safety is an important consideration for tag library validators.

 When returning the TagLibraryValidator instance to its resource pool, the JSP
container is required to call release(). This method is provided so that developers
can ensure that any resources the instance might have created or obtained while
performing its validation are deallocated. The default implementation provided by
the TagLibraryValidator base class does nothing; it must be overridden if any
validator-specific resource management is required.

 The life cycle of a tag library validator thus has three major phases. First, an
instance of the appropriate TagLibraryValidator subclass is created and added to
the JSP container’s resource pool. Next, whenever its services are required to vali-
date one or more JSP pages, the instance is removed from the pool and its setInit-
Parameters() method is called. For each page to be validated, its validate()
method is called. Once the validation sequence is complete, the validator’s



634 CHAPTER 20

Validating custom tag libraries
release() method is called, and the instance is returned to the resource pool. In
the final phase of its life cycle, when the instance is no longer needed (perhaps
because the container has no JSP pages that haven’t been validated and compiled),
it is removed from the resource pool and made available for garbage collection.

20.4 Example validators

To illustrate the use of these methods in implementing tag library validators, we will
present three examples. The first, which is more of a debugging aid than an actual
validator, uses the input stream exposed by the PageData object to make a copy of
the XML representation of a JSP page for subsequent review. (When validating a JSP
page using the standard representation, the XML view into which it is translated for
validating and compiling is only temporary. The JSP container is free to discard it
after generating the servlet code for the page.) The other examples, however, are
true validators.

 Two major types of XML parsers are currently in wide use, known by the acro-
nyms SAX and DOM. SAX parsers use an event-based model, in which the parser
sends events to an associated event handler by invoking callback routines as it
encounters constructs within the page being parsed. DOM parsers have a more
structural focus. As a DOM parser traverses an XML document, it constructs a tree
of objects that models the document’s contents and structure, using different
classes of objects for the various categories of data (e.g., elements, attributes, body
content) it encounters. DOM parsers are therefore very useful for examining the
structure of XML documents and the relationships among their elements. Because
the output of a DOM parser is a large tree structure representing the entire contents
of the parsed document, however, use of this approach tends to be rather memory-
intensive. SAX parsers, on the other hand, process a document’s contents one ele-
ment at a time. As a result, they can be used very efficiently for searching through
XML documents without incurring significant overhead with respect to memory
utilization. Their disadvantage is that, due to their event-driven nature, they are not
as well-suited to global analysis of a document’s contents.

 The second example validator to be presented here demonstrates the use of a SAX
parser, while the third employs a DOM parser. In both cases, JAXP version 1.1  is used
to create, configure, and run the selected parser. JAXP is a set of generalized APIs for
interacting with XML parsers that provides a set of standard abstractions for accessing
parser functionality. JAXP provides hooks for plugging in third-party XML parsers and
using them via the JAXP interfaces; many Java-based XML parsers available now
include JAXP integration.



Example validators 635
 Other approaches to parsing XML documents for tag library validation are also
possible. Those based on document schemas—such as XML Schema, Relax NG, and
Schematron—hold particular promise for JSP validation because they enable the vali-
dation requirements to be specified declaratively via a schema specification, rather
than via Java code. Since schema languages are design for expressing relationships and
dependencies, validation requirements expressed in this manner should be much eas-
ier to create and maintain. In any event, the increasing popularity of XML for data
representation ensures that we haven’t heard the last word on XML parsing and vali-
dation; any new technologies developed for these purposes should be readily adapt-
able to JSP tag library validation.

20.4.1 Copying validator

As previously suggested, this first example tag library validator doesn’t perform any
validation. Instead, it simply takes advantage of the functionality provided by the
validation API to make a copy of the XML representation of any JSP page to which it
is applied.

 As is the case for all tag library validators, the class implementing this validator is
a subclass of javax.servlet.jsp.tagext.TagLibraryValidator:

public class CopyingTLV extends TagLibraryValidator {
  static private String DEST_FILE = "/tmp/ParsedPage.xml";
  ...
}

To simplify the implementation, the class defines a single static variable, DEST_FILE,
which indicates where the XML representation should be stored.

 As is the case for all tag library validators, CopyingTLV obtains access to the XML
representation by means of its validate() method, defined as follows:

public ValidationMessage[] validate (String prefix, String uri, PageData page) {
  InputStream in = null;
  try {
     in = page.getInputStream();
     copyToFile(in, DEST_FILE);
  }
  catch (IOException e) {
    return new ValidateionMessage[1] {
      new ValidationMessage(null, e.getMessage() );
  }
  finally {
    if (in != null) try { in.close(); } catch (IOException e) {}
  }
  return null;
}



636 CHAPTER 20

Validating custom tag libraries
It is the third parameter, the PageData instance named page, that ultimately pro-
vides the access. This instance’s getInputStream() method is called to obtain an
input stream for reading the XML representation, which is then copied to the file
name specified by the DEST_FILE static variable by means of the copyToFile() util-
ity method.

 As noted previously, a tag library validator indicates the success or failure of a
page validation via the return value of its validate() method. In this case, valida-
tion only fails if some problem occurs while obtaining or copying the input stream,
in the form of a java.io.IOException being thrown. Since the validate()
method cannot itself throw an exception, it catches any exceptions raised within the
method body, and uses the error message associated with that exception to con-
struct its return value. Recall that a non-null return value indicates that validation
has failed, and should be an array of ValidationMessage objects explaining why.
The error message from the IOException is thus a fine source for this explanation.
Only if all other operations succeed does the method return null, indicating success-
ful validation of the JSP page.

 If an IOException is raised, then the code in the catch block will be called upon
to handle it. This block constructs a ValidationMessage array of length one, and
populates it with a single new instance of the ValidationMessage class. The con-
structor for this message takes two arguments, an ID string and a message describ-
ing the validation error. The message argument is obtained from the IOException
object. The ID string argument is an indication of which custom tag was responsi-
ble for the validation error, and will be described in detail later in the chapter. Since
there is no individual custom tag being checked by this validator, a null value is sup-
plied as the first argument to the constructor.

 The code defining the copyToFile() utility method is a straightforward applica-
tion of Java’s built-in I/O classes:

private void copyToFile (InputStream stream, String filename) 
  throws IOException {
  PrintWriter out = null;
  BufferedReader in = null;
  try {
    out = new PrintWriter(new FileWriter(filename));
    in = new BufferedReader(new InputStreamReader(stream));
    String line;
    while ((line = in.readLine()) != null) {
      out.println(line);
    }
  }
  finally {
    if (out != null) out.close();



Example validators 637
    if (in != null) in.close();
  }
}

A java.io.FileWriter provides access to the named file, and is wrapped inside a
java.io.PrintWriter in order to take advantage of the latter class’s println()
method. A java.io.InputStreamReader is wrapped around the input stream orig-
inally passed to the method, which is itself wrapped inside a java.io.Buffered-
Reader. The BufferedReader class provides a readLine() method which is used to
iterate through the input stream line-by-line, so that its contents may be written via
the println() method. The readLine() method returns null once all available
input is exhausted, providing a convenient termination condition for this iteration.
A try/finally block is employed to make sure that all I/O streams are closed
when the method is finished. It doesn’t catch any exceptions, however. If an excep-
tion is raised in this utility method, it needs to be passed back up to the validate()
method for further processing.

 The full source code for the CopyingTLV validator is presented (in abbreviated
form) in listing 20.3. With respect to seeing this validator in action, it turns out that
we already have. The XML representation appearing in listing 20.2 was generated
by applying the CopyingTLV validator to the (standard representation) JSP page pre-
sented in listing 20.1. The TLD entry for enabling this validator within a custom
tag library is as follows:

<taglib>
  ...
  <validator>
    <validator-class>com.taglib.wdjsp.mut.CopyingTLV</validator-class>
    <description>
      Makes a copy of the most recently validated XML representation.
    </description>
  </validator>
  ...
</taglib>

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.TagLibraryValidator;
import javax.servlet.jsp.tagext.ValidationMessage;
import javax.servlet.jsp.tagext.PageData;
import java.io.InputStream;
import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.InputStreamReader;

Listing 20.3 The CopyingTLV tag library validator 



638 CHAPTER 20

Validating custom tag libraries
import java.io.BufferedReader;

import java.io.IOException;

public class CopyingTLV extends TagLibraryValidator {
  static private String DEST_FILE = "/tmp/ParsedPage.xml";

  public ValidationMessage[] validate (String prefix, String uri, PageData 
page) { 

    ... 

  }
  private void copyToFile (InputStream stream, String filename)
      throws IOException {
    ...
  }
}

20.4.2 Script-prohibiting validator

In previous chapters, we have cautioned against excessive use of scripting elements
within an application’s JSP pages. While in practice it is very difficult to avoid them
completely (particularly the use of expressions for specifying request-time attribute
values), those wishing to take this advice to heart may find it encouraging to dis-
cover that the tag library validation API may be used to enforce restrictions on the
use of JSP scripting elements.

 This is the task of our next tag library validator, implemented via the Script-
FreeTLV class. Like the CopyingTLV, this validator does not, strictly speaking, vali-
date a custom tag library. Because a tag library validator has complete access to the
full XML representation of a page, however, it can be used to impose constraints on
the built-in JSP tags, as well. The ScriptFreeTLV validator uses exactly this
approach to ensure that a JSP page is free of <jsp:declaration>, <jsp:script-
let>, and <jsp:expression> tags.

 A SAX parser is employed to detect these tags. When applying a SAX parser to
an XML document, it is necessary to provide a content handler (i.e., an instance of
the org.xml.sax.ContentHandler interface) to receive the parsing events as the
document is traversed. For the ScriptFreeTLV validator, the content handler will
be implemented as an inner class named MyContentHandler. Each time the SAX
parser detects a new element, it notifies the handler by calling one of its methods.
If the detected element corresponds to one of the three JSP scripting elements, a
tag-specific counter is incremented within the handler. After the parsing of the
document is complete, if any of these counters is greater than zero, the validator
reports the prohibited usage as an error.



Example validators 639
Initialization parameters
To make this validator more flexible, it will support four initialization parameters,
for individually controlling which of the four types of scripting elements are to be
restricted. The TLD entry for specifying and configuring this validator would there-
fore take the following form:

<taglib>
  ...
  <validator>
    <validator-class>com.taglib.wdjsp.mut.ScriptFreeTLV</validator-class>
    <init-param>
      <param-name>allowDeclarations</param-name>
      <param-value>false</param-value>
      <description>Permit JSP declarations if true (default is false).</descrip-

tion>
    </init-param>
    <init-param>
      <param-name>allowScriptlets</param-name>
      <param-value>false</param-value>
      <description>Permit JSP scriptlets if true (default is false).</description>
    </init-param>
    <init-param>
      <param-name>allowExpressions</param-name>
      <param-value>true</param-value>
      <description>Permit JSP expressions if true (default is false).</descrip-

tion>
    </init-param>
    <init-param>
      <param-name>allowRTExpressions</param-name>
      <param-value>true</param-value>
      <description>
        Permit JSP expressions as request-time attributes if true 

        (default is false).
      </description>
    </init-param>
<description>
      Enforces prohibitions against JSP scripting elements.
    </description>
  </validator>
  ...
</taglib>

As indicated by this TLD fragment, this validator has four initialization parame-
ters, allowDeclarations, allowScriptlets, allowExpressions, and allow-
RTExpressions, for controlling which scripting elements are allowed, and which
are forbidden.



640 CHAPTER 20

Validating custom tag libraries
 These initialization parameters are modeled as instance variables of the class
implementing the validator, as follows: 

public class ScriptFreeTLV extends TagLibraryValidator {
  private boolean allowDeclarations = false;
  private boolean allowScriptlets = false;
  private boolean allowExpressions = false;
  private boolean allowRTExpressions = false;
  ...
}

These four boolean instance variables are set by overloading the setInitParame-
ters() method, inherited from the TagLibraryValidator base class:

public void setInitParameters (Map initParms) {
  super.setInitParameters(initParms);
  String declarationsParm = (String) initParms.get("allowDeclarations");
  String scriptletsParm = (String) initParms.get("allowScriptlets");
  String expressionsParm = (String) initParms.get("allowExpressions");
  String rtExpressionsParm = (String) initParms.get("allowRTExpressions");

  allowDeclarations = "true".equalsIgnoreCase(declarationsParm);
  allowScriptlets = "true".equalsIgnoreCase(scriptletsParm);
  allowExpressions = "true".equalsIgnoreCase(expressionsParm);
  allowRTExpressions = "true".equalsIgnoreCase(rtExpressionsParm);
}

The first action taken by this method is to make sure that the superclass’s setInit-
Parameters() method is called, so that it can take care of any bookkeeping the
superclass needs to do. Next, each of the four initialization parameters is retrieved
from the Map (an abstraction of a hash table, introduced as part of Java 2’s Collec-
tions API), using the names specified in the TLD entry. The values specified in the
TLD take the form of text strings, so a series of string comparisons is performed to
set the instance variables. Note that Map’s get() method will return null if there is
no entry for the corresponding initialization parameter in the TLD. This is the rea-
son behind the somewhat awkward practice of calling the equalsIgnoreCase()
method on the String literal (i.e., "true") and providing the retrieved value as that
method’s parameter. Doing so enables us to avoid the potential NullPointerEx-
ception that might occur if the method were instead called on the (possibly null)
retrieved value with the String literal as its argument.

Parsing
The initialization parameters provide added flexibility for potential users of this tag
library validator. The primary functionality of the validator, however, is the parsing



Example validators 641
of JSP pages to detect specific tags. For the ScriptFreeTLV validator, this is accom-
plished by means of a SAX parser.

 JAXP relies on factory objects to construct SAX parsers. In addition to its
instance variables for supporting the initialization parameters, the validator needs an
instance variable for its parser factory:

public class ScriptFreeTLV extends TagLibraryValidator {
  ...
  private SAXParserFactory factory;

  public ScriptFreeTLV () {
    factory = SAXParserFactory.newInstance();
    factory.setValidating(false);
    factory.setNamespaceAware(true);
  }
  ...
}

The factory is an instance of the javax.xml.parsers.SAXParserFactory class, and
a constructor method is provided to create and configure this instance. The factory
class provides a static newInstance() method for constructing factory instances,
and the setValidating() and setNamespaceAware() methods tell the factory
what types of parsers it should create. In this case, since there is typically no DTD
associated with the XML representation of a JSP page, the factory is configured to
produce nonvalidating parsers. Because JSP actions rely on XML namespaces, how-
ever, it is important that any parsers applied to a JSP page are compatible with and
fully aware of XML namespace conventions.

 Creating and applying a parser is the job of the validate() method, defined as
follows:

public ValidationMessage[] validate (String prefix, String uri, PageData page) 
{

  ArrayList msgs = new ArrayList();
  InputStream in = null;
  SAXParser parser;
  MyContentHandler handler = new MyContentHandler(msgs);
  try {
    synchronized (factory) {
      parser = factory.newSAXParser();
    }
    in = page.getInputStream();
    parser.parse(in, handler);
  }
  catch (ParserConfigurationException e) {
    addMessage(msgs, null, e.getMessage());
  }



642 CHAPTER 20

Validating custom tag libraries
  catch (SAXException e) {
    addMessage(msgs, null, e.getMessage());
  }
  catch (IOException e) {
    addMessage(msgs, null, e.getMessage());
  }
  finally {
    if (in != null) try { in.close(); } catch (IOException e) {}
  }
  String results = handler.reportResults();
  if (results != null) addMessage(msgs, null, results, 0);
  return (ValidationMessage[]) msgs.toArray(new ValidationMessage[0]);

}

The first task here is to construct an ArrayList for storing validation messages, and
to use it to instantiate a content handler. As previously mentioned, ScriptFreeTLV
defines an inner class named MyContentHandler which fills this role. Next, the vali-
dator’s parser factory is used to construct a parser, which will be an instance of
JAXP’s javax.xml.parsers.SAXParser class. Note that the construction of a parser
by the parser factory is not guaranteed to be thread-safe, so a synchronized block
has been introduced to protect this operation.

 Next, an input stream is obtained from the method’s page parameter, for access-
ing the XML representation of the page being validated. The input stream and the
content handler are passed as arguments to the SAXParser instance’s parse()
method to simultaneously parse and validate the page. These steps have the possi-
bility of throwing a variety of exceptions, as indicated in the validate() method
body. As was the case for CopyingTLV, all exceptions are caught and their error mes-
sages are used to construct ValidationMessage instances indicating that validation
was unsuccessful. A finally clause is provided to make sure the input stream for
the XML representation is always closed.

 The last step of validate() is to call on the content handler to report its results.
If any prohibited scripting elements were found on the page, the content handler’s
reportResults() method is expected to return a String value summarizing such
violations. If not, it should return null, indicating that validation was successful.

20.4.3 Error handling

A non-null result from the reportResults() method is treated similarly to the
error messages associated with any caught exceptions: a corresponding Valida-
tionMessage instance is created and added to a collection of such messages being
maintained by the validator. A utility method, addMessage(), is employed to man-
age this collection, and is defined as follows:



Example validators 643
private void addMessage (ArrayList messages,
                         String jspId, String msg, int index) {
    ValidationMessage vMessage = new ValidationMessage(jspId, msg);
    if (index < 0) {
      messages.add(vMessage);
    } else {
      messages.add(index, vMessage);
    }
  }

The first argument is the list of messages being maintained, while its second argu-
ment is the ID string mentioned previously. The third argument represents the
message, and is combined with the second argument to construct the Val-
idationMessage instance.

 The fourth and final argument indicates where in the list of messages this new
instance should be inserted. As the method body indicates, if this index value is
negative, the message will be added to the end of the list. Otherwise, it will be
inserted at the specified location. This fourth argument is taken advantage of in the
final call to addMessage() by the validate() message, in order to ensure that the
final results from the content handler will be inserted at the beginning of the array
of validation messages.

 As a convenience to the developer, a second version of this method is provided
which has no explicit index argument:

  private void addMessage (ArrayList messages, String jspId, String msg) {
    addMessage(messages, jspId, msg, -1);
  }

This version simply calls the original method, supplying –1 as the index. The net
effect is that, if no index value is supplied, the default behavior is to append the new
message to the end of the list.

 Within the body of the validate() method in the example, only null values are
provided for the ID string argument, jspId, of the addMessage() method. As indi-
cated earlier, this argument is provided to allow the tag library developer to tie the
error message to a specific tag within the page. This allows the JSP container to map
the error to a specific location with the original JSP page, and thereby provide more
meaningful feedback to the page author.

 Where does this ID string come from? Since it is the JSP container that must
map the IDs to file locations, it only makes sense that they be provided by the con-
tainer in the first place. In fact, before the container passes the XML representation
of the page to the validator via the PageData argument of its validate() method,
it adds these ID strings as attributes to each JSP tag present on the page. As



644 CHAPTER 20

Validating custom tag libraries
indicated in llisting 20.4, this attribute is named jsp:id, and a unique value for
that attribute is added to every built-in or custom JSP tag included in the XML
representation. As the validator processes the page looking for errors, it can
extract the value of this attribute from any tag found to have problems. This value
may then be passed to the ValidationMessage constructor to map the validation
error back to that specific tag.

NOTE Support for incorporating jsp:id attributes into the XML representation of
JSP pages provided for validation is an optional element of the JSP 1.2 specifi-
cation. As such, validate() methods must be carefully written in order to
work properly whether or not these attributes are present. As demonstrated
earlier in the chapter, a null value can be provided to the ValidationMes-
sage constructor to indicate the absence of an ID string. A JSP container that
supports jsp:id attributes will produce results such as those in listing 20.4
when preparing the XML representation of the JSP page in listing 20.1. A JSP
container that does not support jsp:id attributes will produce results similar
to those in listing 20.2.

<jsp:root version="1.2" xmlns:jsp="http://java.sun.com/JSP/Page"
          xmlns:mut="/mutlib" jsp:id="10001">
<jsp:directive.page session="false" jsp:id="10002"/>
<jsp:text jsp:id="10003"><![CDATA[

]]>
</jsp:text>
<jsp:text jsp:id="10004"><![CDATA[

]]>
</jsp:text>
<jsp:scriptlet jsp:id="10005"><![CDATA[
 String zone = request.getParameter("timezone");
   if (zone == null) zone="EST"; ]]>
</jsp:scriptlet>
<jsp:text jsp:id="10006"><![CDATA[

]]>
</jsp:text>
<mut:timeOfDay id="timeOfDay"
   timezone="%= (zone == null) ? &quot;EST&quot; : zone %"
   jsp:id="10007"></mut:timeOfDay>
<jsp:text jsp:id="10008"><![CDATA[

<html>
<head>
<title>Standard and XML Representations</title>

Listing 20.4 JSP page using the XML representation, including jsp:id attributes



Example validators 645
</head>
<body>

]]>
</jsp:text>
<mut:ifProperty name="timeOfDay" property="daytime" action="include" 

jsp:id="10009">
<jsp:text jsp:id="10010"><![CDATA[

<p align="center">Good Day!</p>
]]>
</jsp:text>
</mut:ifProperty>
<jsp:text jsp:id="10011"><![CDATA[

]]>
</jsp:text>
<mut:ifProperty name="timeOfDay" property="daytime" action="exclude" 

jsp:id="10012">
<jsp:text jsp:id="10013"><![CDATA[

<p align="center">Good Night!</p>
]]>
</jsp:text>
</mut:ifProperty>
<jsp:text jsp:id="10014"><![CDATA[

</body>
</html>
]]>
</jsp:text>
</jsp:root>

20.4.4 Content handler

It is the content handler, then, that plays the pivotal role in performing the actual
validation. It receives the events from the SAX parser that are used to detect any
scripting elements present on the page, and the return value from its reportRe-
sults() method makes the final determination as to whether or not the page is valid.

 By implementing the content handler as an inner class of ScriptFreeTLV, it
automatically has access to all of the validator object’s instance variables. In particu-
lar, it has access to the instance variables representing the validator’s initialization
parameters. In addition, it defines five of its own instance variables: 

public class ScriptFreeTLV extends TagLibraryValidator {
  ...
  private class MyContentHandler extends DefaultHandler {
    private int declarationCount = 0;
    private int scriptletCount = 0;



646 CHAPTER 20

Validating custom tag libraries
    private int expressionCount = 0;
    private int rtExpressionCount = 0;
    private ArrayList messages;

    MyContentHandler (ArrayList messages) { this.messages = messages; }

    ...
  }
}

As their names suggest, the first four of these instance variables are used to keep track
of how many declarations, scriptlets, and expressions have been found in the page
being validated. The fifth provides a reference to the ArrayList local variable cre-
ated by the validator for keeping track of validation messages. It is passed to the con-
tent handler as the sole parameter of its constructor.

 The values for the four counters are obtained by parsing the page. Note that the
MyContentHandler inner class is a subclass of the org.xml.sax.helpers.Default-
Handler class. This class provides default implementations of all of the callback
methods needed to handle SAX events. To be precise, this class provides default
implementations that ignore all SAX events.

 This is actually a good thing, because it makes it easy to create subclasses that are
interested in only a subset of those events. The subclass need only provide handlers
for the events it is interested in, and can rely on the inherited methods to ignore the
rest. For ScriptFreeTLV’s content handler, in fact, only one event handler method
is required. Since the validator is only interested in keeping track of the occurrence
of particular elements and their attributes, this is readily accomplished by overriding
the startElement() event handler method:

public void startElement (String namespaceUri, String localName, 
                             String qualifiedName, Attributes atts) {
  if ((! allowDeclarations) && qualifiedName.equals("jsp:declaration")) {
    ++declarationCount;
    addMessage(messages, getJspId(atts), "Declaration found.");
  } else if ((! allowScriptlets) && qualifiedName.equals("jsp:scriptlet")) {
    ++scriptletCount;
    addMessage(messages, getJspId(atts), "Scriptlet found.");
  } else if ((! allowExpressions) && qualifiedName.equals("jsp:expression")) {
    ++expressionCount;
    addMessage(messages, getJspId(atts), "Expression found.");
  }
  if (! allowRTexpressions) countRTExpressions(atts);
}

This content handler method will be called whenever the SAX parser detects the
start of an XML element. The method’s first parameter indicates the URI for the ele-
ment’s namespace (if any), while the second argument holds the element’s name,



Example validators 647
absent any namespace prefix. The method’s third and fourth parameters, however,
contain the name of the element (with its namespace prefix) and a representation of
its attributes, and are therefore of most use to the purpose at hand.

 For each type of scripting element, then, startElement() first checks the
appropriate initialization parameter to see whether or not its presence has been
allowed. If so, the method then checks the element’s prefixed name, as represented
by the qualifiedName parameter, against the corresponding scripting element’s
name. If there’s a match, the associated counter is incremented. This check is per-
formed against the XML names of all three JSP scripting elements, jsp:declara-
tion, jsp:scriptlet, and jsp:expression. After the page has been fully parsed,
then, the final values of the counters for these three elements should accurately
reflect the number of scripting elements present on the page.

NOTE Although ScriptFreeTLV has been written to completely restrict the use of
specific built-in tags, the underlying approach is applicable to custom tag li-
braries. It would not be very difficult, for example, to use the Script-
FreeTLV  code as the foundation for a new tag library validator that enforces
a uniqueness constraint on one or more custom tags. Such a validator would
apply the same basic algorithm as ScriptFreeTLV: instantiate a SAX parser,
pass it a content handler that counts the number of occurrences of the rele-
vant tags, then report any violations based on those tags counts. For Script-
FreeTLV, tag counts greater than zero are invalid. For tags that must be
unique, a count greater than one would signal a problem. 

In order to detect expressions used as request-time attribute values, the content
handler must check the attributes of all XML elements. (This turns out to be consid-
erably more efficient than trying to figure out in advance which elements have
attributes that support request-time attributes and only checking those. It also has
an important side benefit of making the code considerably more understandable.)
This is accomplished by means of the countRTexpressions() method:

public void countRTExpressions (Attributes atts) {
  int stop = atts.getLength();
  for (int i = 0; i < stop; ++i) {
    String attval = atts.getValue(i);
    if (attval.startsWith("%=") && attval.endsWith("%")) {
      ++rtExpressionCount;
      addMessage(messages, getJspId(atts),
                "Request-time attribute value expression found.");
    }



648 CHAPTER 20

Validating custom tag libraries
  }
}

This method is passed an instance of the org.xml.sax.Attributes class, which is a
data structure representing the full set of attributes associated with an XML ele-
ment. Its getLength() method is used to determine the total number of attributes
for the element, allowing countRTExpressions() to iterate through them all (via
the getValue() method of Attributes) looking for request-time attribute values.
These are recognized by their %= and % delimiters, as described earlier in the chap-
ter, causing the corresponding counter to be incremented and an appropriate vali-
dation message to be constructed.

 Note that both startElement() and countRTExpressions() take advantage of
a utility method named getJspId(). This method is used to obtain the value of the
jsp:id attribute (if any), as discussed in the preceding section. The getJspId()
method is defined as follows:

private String getJspId (Attributes atts) {
  return atts.getValue("jsp:id");
}

This method uses an alternate form of the Attributes class’s getValue() method,
which retrieves the value of an attribute specified by its name, rather than by its
index. In this case, we are specifically interested in the value of the attribute named
jsp:id. If no such attribute is found, the method returns null.

 The final method defined by MyContentHandler is reportResults(). This
method examines the content handler’s four counters to determine whether or not
it should construct a String value indicating why the page is invalid, and is defined
as follows:

public String reportResults () {
  if (declarationCount + scriptletCount + expressionCount 
      + rtExpressionCount > 0) {
    StringBuffer results = new StringBuffer("JSP page contains ");
    boolean first = true;
    if (declarationCount > 0) {
      results.append(Integer.toString(declarationCount));
      results.append(" declaration");
      if (declarationCount > 1) results.append('s');
      first = false;
    }
    if (scriptletCount > 0) {
      if (! first) results.append(", ");
      results.append(Integer.toString(scriptletCount));
      results.append(" scriptlet");
      if (scriptletCount > 1) results.append('s');
      first = false;
    }



Example validators 649
    if (expressionCount > 0) {
      if (! first) results.append(", ");
      results.append(Integer.toString(expressionCount));
      results.append(" expression");
      if (expressionCount > 1) results.append('s');
      first = false;
    }
    if (rtExpressionCount > 0) {
      if (! first) results.append(", ");
      results.append(Integer.toString(rtExpressionCount));
      results.append(" request-time attribute value");
      if (expressionCount > 1) results.append('s');
    }
    results.append(".");
    return results.toString();
  } else {
    return null;
  }
}

The basic intent of this method is simple. If there is at least one prohibited scripting
element (as determined by checking whether the sum of the counters exceeds zero),
construct a String and return it. Otherwise, return null, indicating that the page
is compliant.

 Considerable complexity is introduced, however, by trying to craft a nicely
worded, well-punctuated error message when validation fails. Unraveling the details
is left as an exercise for the reader, but it is perhaps worth mentioning explicitly that
efficiency is the motivation for introducing an instance of thejava.util.String-
Buffer class. Concatenation of String instances is a rather expensive operation in
Java, which StringBuffer’s various append() methods allow us to avoid.

 The full source code for ScriptFreeTLV and its MyContentHandler inner class is
presented (in abbreviated form) in listing 20.5.

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.TagLibraryValidator;
import javax.servlet.jsp.tagext.ValidationMessage;
import javax.servlet.jsp.tagext.PageData;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;
import java.io.InputStream;
import java.util.Map;
import java.util.ArrayList;

Listing 20.5 The ScriptFreeTLV tag library validator 



650 CHAPTER 20

Validating custom tag libraries
import java.io.IOException;
import org.xml.sax.SAXException;
import javax.xml.parsers.ParserConfigurationException;

public class ScriptFreeTLV extends TagLibraryValidator {
  private boolean allowDeclarations = false;
  private boolean allowScriptlets = false;
  private boolean allowExpressions = false;
  private boolean allowRTExpressions = false;
  private SAXParserFactory factory;

  public ScriptFreeTLV () { ... }
  public void setInitParameters (Map initParms) { ... }
  public ValidationMessage[] validate (String prefix, String uri, PageData page) 

{
    ...
  }
  private void addMessage (ArrayList messages, String jspId, String msg, int 

index) {
    ...
  }
  private void addMessage (ArrayList messages, String jspId, String msg) { ... }

  private class MyContentHandler extends DefaultHandler {
    private int declarationCount = 0;
    private int scriptletCount = 0;
    private int expressionCount = 0;
    private int rtExpressionCount = 0;

    public void startElement (String uri, String localName, 
                              String qualifiedName, Attributes atts) {
      ...
    }
    public void countRTExpressions (Attributes atts) { ... }
    private String getJspId (Attributes atts) { ... }
    public String reportResults () { ... }
}

Sample application
Before we can see this validator in action, we first need a JSP page that includes one
or more scripting elements. Such a page, based on an example from chapter 5, is
presented in listing 20.6. A manual count indicates that this JSP page includes one
declaration, four scriptlets, and two expressions.



Example validators 651
<html>
<body>

<h1>Scriptful Page</h1>

<% String xParm = request.getParameter("x");
   long x = 0;
   try { x = Long.parseLong(xParm); }
   catch (NumberFormatException e) {}

   if (x < 0) { %>
        <p>Sorry, can't compute the factorial of a negative number.</p>
<% } else if (x > 20) { %>
        <p>Sorry, arguments greater than 20 cause an overflow error.</p>
<% } else { %>
        <p align=center><%= x %>! = <%= fact(x) %></p>
<% } %>

<%! private long fact (long x) {
        if (x == 0) return 1;
        else return x * fact(x-1);
} %>

</body>
</html>

If this page were permitted to run as is, it would produce output such as that
depicted in figure 20.2. If the ScriptFreeTLV validator were applied to this page,
however, a different result would be obtained. If the TLD entry presented earlier in
the chapter were in effect, with initialization parameters set to prohibit declarations
and scriptlets but allow expressions and request-time attribute values, attempting to
view this page in a browser would instead yield an error message, similar to the one
in figure 20.3. Note that, as a result of the initialization parameter settings, the
error message flags the declaration and scriptlets as violations, but has ignored the
two expressions. Also note that by taking advantage of the jsp:id attributes, the
error message generated by the JSP container is able to reference the line numbers
corresponding to the occurrences of the prohibited scripting elements in the origi-
nal JSP page.    

20.4.5 Nesting validator

The third and final example validator, NestingTLV, enables a custom tag library to
detect tags that are improperly nested. The mut library’s <mut:index> tag, for exam-
ple, is only valid within the body of a <mut:forProperty> tag. The NestingTLV

Listing 20.6 The ScriptFreeTLV tag library validator example page



652 CHAPTER 20

Validating custom tag libraries
validator provides a mechanism for enforcing relationships such as this during page
compilation, by flagging tags that are not properly nested as invalid.

 Since the nesting of tags is a property of the overall page structure, the use of a
DOM parser to construct an object model of the page elements is preferable to
SAX’s event-driven approach. For this reason, NestingTLV relies on a DOM parser

Figure 20.2 Normal output of the ScriptFreeTLV example page

Figure 20.3 Output of the page compiler after validating the ScriptFreeTLV example page



Example validators 653
to extract the contents of a page’s XML representation, and then examines the
resulting object model for tags that are not properly nested.

Initialization parameters
For added flexibility, initialization parameters are provided for specifying the names
of the two tags for which nesting is to be enforced. The TLD <validator> element
for enforcing the mut library’s nesting requirement is as follows:

<validator>
  <validator-class>com.taglib.wdjsp.mut.NestingTLV</validator-class>
  <init-param>
    <param-name>inner</param-name>
    <param-value>index</param-value>
    <description>Name of the inner tag.</description>
  </init-param>
  <init-param>
    <param-name>outer</param-name>
    <param-value>forProperty</param-value>
    <description>Name of the outer tag.</description>
  </init-param>
  <description>Validates tag nesting requirements.</description>
</validator>

The first initialization parameter, inner, names the inner tag in the nesting relation-
ship. The inner tag may only appear within the body content of the relationship’s
outer tag, specified via the second initialization parameter, outer.

 As was the case for the ScriptFreeTLV validator, instance variables are provided
for storing the values of the initialization parameters, set via the class’s setInitPa-
rameters() method.

public class NestingTLV extends TagLibraryValidator {
  private String inner, outer;

  public void setInitParameters (Map initParms) {
    super.setInitParameters(initParms);
    inner = (String) initParms.get("inner");
    outer = (String) initParms.get("outer");
  }

...
}

Note, however, that—as indicated in the example TLD—these instance variables
store only the base names of the inner and outer tags, without any prefix. This is
because the prefix with which a library’s tags are used within a JSP page is set by the
page itself. The prefix therefore cannot be specified in the TLD, and must be
obtained by alternate means.



654 CHAPTER 20

Validating custom tag libraries
Parsing
As with SAX parsers, JAXP relies on factory objects to construct DOM parsers. Nest-
ingTLV therefore includes an instance variable named factory for storing its parser
factory. The class’s constructor is used to instantiate and configure this factory: 

public class NestingTLV extends TagLibraryValidator {
  ...
  private DocumentBuilderFactory factory;

  public NestingTLV () {
    factory = DocumentBuilderFactory.newInstance();
    factory.setValidating(false);
    factory.setNamespaceAware(true);
  }
  ...
}

Once again, the factory—here, an instance of javax.xml.parsers.Document-
BuilderFactory—is configured to create parsers that do not validate against a
DTD, but do support XML namespaces.

 It is in NestingTLV’s validate() method that the actual parsing of JSP pages
takes place. This method first makes sure that both of the validator’s initialization
parameters have been set, and then constructs a DOM parser to parse the XML rep-
resentation of a page: 

public ValidationMessage[] validate (String prefix, String uri, PageData page) 
{

  ArrayList messages = new ArrayList();
  if (inner == null) 
    messages.add(new ValidationMessage(null, "No inner tag specified."));
  if (outer == null) 
    messages.add(new ValidationMessage(null, "No outer tag specified."));
  if (! messages.isEmpty())
    return (ValidationMessage[]) messages.toArray(new ValidationMessage[0]);
  InputStream in = null;
  DocumentBuilder builder;
  try {
    synchronized (factory) {
      builder = factory.newDocumentBuilder();
    }
    in = page.getInputStream();
    Document doc = builder.parse(in);
     validateDocument(messages, doc, prefix + ":" + inner, prefix + ":" + outer);
  }
  catch (ParserConfigurationException e) {
    messages.add(new ValidationMessage(null, e.getMessage()));
  }



Example validators 655
  catch (SAXException e) {
    messages.add(new ValidationMessage(null,e.getMessage()));
  }
  catch (IOException e) {
    messages.add(new ValidationMessage(null,e.getMessage()));
  }
  finally {
     if (in != null) try { in.close(); } catch (IOException e) {}
  }
  return (ValidationMessage[]) messages.toArray(new ValidationMessage[0]);
}

If either of the initialization parameters has not been set, a ValidationMessage is
created indicating that validation failed. Otherwise, a new DOM parser in the form
of a javax.xml.parsers.DocumentBuilder is created by calling the factory’s new-
DocumentBuilder() method. Next, an input stream for reading the current page’s
XML representation is obtained from the PageData instance passed in as the
method’s third parameter. This input stream is then used to parse the XML repre-
sentation, by supplying it as the argument to the DocumentBuilder instance’s
parse() method.

 Unlike the SAX parser, no auxiliary content handler is required by the DOM
parser. Instead of signaling events based on the contents of the parsed document,
the DOM parser returns an object representing the complete contents of the page,
in the form of a org.w3c.dom.Document instance. It is only after the document has
been fully parsed that the page is validated by calling NestingTLV’s validateDocu-
ment() method, passing the Document object in as this method’s second argument.
Note that this method takes the qualified name of the inner and outer tags as its
third  and fourth parameters, respectively. Since the values of the inner and outer
initialization parameters do not include the namespace prefix for the tag library, the
prefix name supplied by the JSP container as the second argument to the vali-
date() method is prepended to the values of the initialization parameters, along
with a colon (the delimiter character for XML namespaces). Keep in mind that each
custom tag library used by a JSP page, if it specifies a validator class, will indepen-
dently validate that page. As such, each validator in turn will parse the entire con-
tents of the page for itself. NestingTLV is only interested in the two tags named by
its inner and outer initialization parameters, but it must search through the JSP
page for all occurrences of these tags in order to validate the nesting relationship.

 Finally, as was the case in the validate() method of the ScriptFreeTLV vali-
dator, any exceptions raised while constructing or running the parser are caught,
and the associated error message is used to create a new ValidationMessage to
indicate failure of the page validation.



656 CHAPTER 20

Validating custom tag libraries
Validation
Validation of the Document object returned by the parser is performed by searching
for instances of the inner tag, and confirming whether or not they are enclosed by
an instance of the outer tag. The Document object stores the page elements in a tree
structure, consisting of nodes which may or may not have child nodes. The tree is
searched for nodes whose names match that of the inner tag, and these are in turn
examined to confirm whether or not they have a parent node whose name matches
that of the outer tag.

 The first step in this process takes place via the validateDocument() method,
defined as follows: 

private void validateDocument (ArrayList messages, Document doc, 
                               String inner, String outer) {
  NodeList innerNodes = doc.getElementsByTagName(inner);
  int len = innerNodes.getLength();
   String errorString = null;
  for (int i = 0; i < len; ++i) {
    ValidationMesssage msg = validateInnerNode(innerNodes.item(i), outer);
     if (msg != null) messages.add(msg);
  }
}

First, a list of nodes (represented by an instance of org.w3c.dom.NodeList) whose
names match that of the inner tag is generated by calling the Document object’s
getElementsByTagName() method. The validateDocument() method then iter-
ates through that list of nodes, obtaining individual nodes (which are instances of
the org.w3c.dom.Node class) by means of the list’s item() method. The nesting of
each node is then tested by calling the validateInnerNode() method, passing it
the node and the name of the outer tag in which it is expected to be nested. (Recall
that the tag names passed to this method have now been qualified by their
namespace name.) If validateInnerNode() returns a ValidationMessage, it is
added to the running list referenced by the messages parameter. When control
passes back to the validate() method, this value will be included among those
used to indicate to the JSP container that the page is invalid.

 Inner nodes are validated by checking their ancestors (i.e., their parent node,
their parent node’s parent node, etc.) for occurrences of the outer tag. Here is the
definition of validateInnerNode(), which performs this check.

private ValidationMessage validateInnerNode (Node innerNode, 
                                          String outerName) {

  Node parent = findAncestor(innerNode, outerName);
  if (parent == null) {
    NamedNodeMap atts = innerNode.getAttributes();



Example validators 657
    Attr idAttr = (Attr) atts.getNamedItem("jsp:id");
    String id = (idAttr == null) ? null : idAttr.getValue();
    return new ValidationMessage(id,
                                "Improper nesting of " + innerName 
                                + " tag: must appear in body of "
                                + outerName + " tag.");
  } else {
    return null;
  }
}

This method in turn relies on a utility method named findAncestor() to locate
instances of the outer tag. If one is found, the findAncestor() method returns it,
and the validateInnerNode() method returns null, indicating that innerNode is
valid. If an instance of the outer tag is not found, findAncestor() returns null and
validateInnerNode() returns a newly created instance of ValidationMessage.
This validation message is ultimately returned to NestingTLV's validate()
method, which itself returns it to the JSP container as an indication that the page
contains a tag that is not properly nested. Note that various objects and methods
associated with JAXP's API for DOM parsing are called upon to retrieve the value of
the jsp:id attribute of the improperly nested tag.

 The final element of NestingTLV is the findAncestor() utility method, which
is defined as follows: 

private String findAncestor (Node child, String named) {
  Node parent = child.getParentNode();
  if (parent == null) {
    return null;
  }
  String parentName = parent.getNodeName();
  if (parentName.equals(named)) {
    return parent;
  } else {
    return findAncestor(parent, named);
  }
}

This method recursively walks through all of the ancestors of the supplied child
node, checking the name of each parent—retrieved via the parent node’s getNode-
Name() method—to see if it matches the named parameter. If a matching node is
found, it is returned. If not, the findAncestor() utility method is called recur-
sively, with the current child’s parent acting as the child for the next attempt. If the
original inner tag node was not properly nested, eventually this method will reach
the root element of the XML document, having checked each enclosing tag in turn
and failing to find one whose name matches the sought-for outer tag. The root



658 CHAPTER 20

Validating custom tag libraries
element has no parent, so in this case findAncestor() will return a null value to
validateInnerNode(),  resulting in the creation of a ValidationMessage for noti-
fying the JSP container that the page is not valid.

 The complete source code for the NestingTVL validator is presented in abbrevi-
ated form in listing 20.7. 

package com.taglib.wdjsp.mut;

import javax.servlet.jsp.tagext.TagLibraryValidator;
import javax.servlet.jsp.tagext.ValidationMessage;
import javax.servlet.jsp.tagext.PageData;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers. DocumentBuilder;
import org.w3c.dom.Document; 
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Attr;
import java.io.InputStream;
import java.util.Map;
import java.util.ArrayList;

import java.io.IOException;
import org.xml.sax.SAXException;
import javax.xml.parsers.ParserConfigurationException;

public class NestingTLV extends TagLibraryValidator {
  private String inner, outer;
  private DocumentBuilderFactory factory;

  public NestingTLV () { ... }
  public void setInitParameters (Map initParms) { ... }

  public ValidationMessage[] validate (String prefix, String uri, PageData 
page) {

    ...
  }
  private void validateDocument (ArrayList messages, Document doc,
                                 String inner, String outer) { 
    ...
  }
  private ValidationMessage validateInnerNode (Node innerNode, 
                                               String innerName, String outerName) {
    ...
  }
  private String findAncestor (Node child, String named) { ... }
}

Listing 20.7 The NestingTLV tag library validator 



Example validators 659
Sample application
Listing 20.8 presents a sample JSP page, based on the example page presented in
listing 19.12, whose second occurrence of the <mut:index> tag is not properly
nested. In this JSP page, the author has mistakenly assumed that the <mut:index>
tag can be used to display the total number of iterations after the <mut:forProp-
erty> tag has been closed. While this is not necessarily an unreasonable assumption,
the implementation presented in chapter 19 does not support such a feature.

 If the tag library is not configured to validate pages using the NestingTLV valida-
tor, then page compilation will be successful, but end users will see a run-time error
when requesting the page, as depicted in figure 20.4. This exception is thrown by
the custom tag’s doStartTag() method, as presented in the previous chapter.

<%@ taglib prefix="mut" uri="/mutlib" %>
<jsp:useBean id="plot" class="com.taglib.wdjsp.advtags.PlotBean">
  <jsp:setProperty name="plot" property="dataSize" value="12"/>
</jsp:useBean>
<html>
<head>
<title>Invalid Index Tag</title>
</head>
<body>
<h1>Invalid Index Tag</h1>
<center><table border=1>
<tr><th>i</th><th>X</th><th>Y</th></tr>
<mut:forProperty name="plot" property="data"
                 id="point" class="com.taglib.wdjsp.advtags.DataBean">
  <tr><td><mut:index start="1"/></td>
      <td><jsp:getProperty name="point" property="x"/></td>
      <td><jsp:getProperty name="point" property="y"/></td></tr>
</mut:forProperty>
</table></center>

<p align="center">
        There were <mut:index start="1"/> entries in the table.
</p>

</body>
</html>        

When the custom tag library is configured to use this validator, however, a slightly
different result is obtained. In this case, the error is generated during page compila-
tion. If precompiling JSP pages (chapter 14) is a standard part of the development

Listing 20.8 The NestingTLV tag library validator example page



660 CHAPTER 20

Validating custom tag libraries
process, then compilation errors such as this are likely to be noticed (and fixed)
early in the development cycle. Run-time errors that can only be observed by sub-
mitting an appropriate HTTP request have a greater risk of being overlooked until
later in the development process. Since the costs associated with fixing bugs tends
to increase significantly as development progresses, it’s always advantageous to find
such problems earlier rather than later in the development cycle.

20.5 Packaging the tag library

In JSP 1.1, custom tag libraries must be packaged and deployed individually, as
single-library JAR files. Version 1.2 adds the ability to package multiple custom tag

Figure 20.4 Request-time error for the NestingTLV example page when validation is not used

Figure 20.5 Compile-time error for the NestingTLV example page when validation is used.



Packaging the tag library 661
libraries in the same JAR file. Single-library JAR files continue to work in JSP 1.2,
but the new version of the specification also permits an individual JAR file to con-
tain an arbitrary number of custom tag libraries, which may then be deployed en
masse to a JSP 1.2 container.

20.5.1 Packaging a single library

As discussed in chapter 18, individual tag libraries are deployed in the form of JAR
files containing both the tag handler classes and the TLD. The TLD appears in the
META-INF directory of the JAR file, under the name taglib.tld. (See listing 18.1
for the basic outline of the TLD for the mut custom tag library.) The tag handler
classes are organized into directories according to their package structure.

 Any auxiliary classes upon which the tag handlers rely must also be present in
the JAR file. This includes any application-specific base classes, inner classes, Bean-
Info classes, or JavaBeans (such as our TimeOfDayBean) as well as any helper classes
specified in the TLD’s <tei-class> entries. The JAR file for deploying a JSP 1.2 tag
library must also include any tag library validator or listener classes specified in its
TLD. The full table of contents listing for the mut library’s JAR file is presented in
listing 20.9.

META-INF/MANIFEST.MF
META-INF/taglib.tld
com/taglib/wdjsp/mut/DebugBufferTag.class
com/taglib/wdjsp/mut/DebugCookiesTag.class
com/taglib/wdjsp/mut/EncodeHtmlTag.class
com/taglib/wdjsp/mut/FailsafeTag.class
com/taglib/wdjsp/mut/ForPropertyTag.class
com/taglib/wdjsp/mut/ForPropertyTagBeanInfo.class
com/taglib/wdjsp/mut/ForPropertyTEI.class
com/taglib/wdjsp/mut/IfPropertyTag.class
com/taglib/wdjsp/mut/IndexTag.class
com/taglib/wdjsp/mut/NestingTLV.class
com/taglib/wdjsp/mut/TimeOfDayBean.class
com/taglib/wdjsp/mut/TimeOfDayTag.class
com/taglib/wdjsp/mut/UrlTag.class

As discussed in chapter 14, deploying the tag library to a JSP 1.1 container happens
at the application level. The library’s JAR file is added to the WEB-INF/lib directory
associated with the application, and a copy of its TLD is added to the WEB-INF/tlds
directory and assigned a library-specific name. A URI for accessing this TLD from

Listing 20.9 Contents of the JAR file for the mut tag library



662 CHAPTER 20

Validating custom tag libraries
the application’s JSP pages is then created in the application’s deployment descrip-
tor, using a <taglib> entry such as the following: 

<taglib>
  <taglib-uri>/mutlib</taglib-uri>
  <taglib-location>/WEB-INF/tlds/mut.tld</taglib-location>
</taglib>

As a result of including this entry in the application’s web.xml file, JSP pages
employing the taglib directive can reference this TLD via the specified URI. In this
example, the URI /mutlib is mapped to the TLD for the mut custom tag library.
This URI then serves as the value for the uri attribute in the taglib directive, as
demonstrated in the sample pages presented in this and the previous two chapters.

20.5.2 Packaging multiple libraries

As of JSP 1.2, developers have the option of packaging multiple tag libraries
together in the same JAR file. As when creating a JAR file for a single library, a JAR
file containing multiple libraries must include all of the classes that implement those
libraries’ tag handlers, tag library validators, and listeners, arranged in a directory
hierarchy matching the associated package structure. Other classes specific to those
libraries, such as library-specific base classes, TagExtraInfo classes, and JavaBeans,
should also be included in the JAR file.

 The only difference from the single-library case, actually, is the handling of the
TLD. Since there will be one TLD for each custom tag library contained in the JAR
file, using the META-INF/taglib.tld file name won’t work. Instead, each TLD file is
placed in the META-INF directory of the JAR file using a library-specific file name,
but preserving the .tld extension. Listing 20.10 depicts the contents of a JAR file
containing three custom tag libraries: the mut library, with the NestingTLV valida-
tor, and two additional tag libraries based on the two other validators presented in
this chapter. 

META-INF/MANIFEST.MF
META-INF/copyXML.tld 
META-INF/mut.tld 
META-INF/scriptfree.tld
com/taglib/wdjsp/mut/CopyingTLV.class
com/taglib/wdjsp/mut/DebugBufferTag.class
com/taglib/wdjsp/mut/DebugCookiesTag.class
com/taglib/wdjsp/mut/EncodeHtmlTag.class
com/taglib/wdjsp/mut/FailsafeTag.class
com/taglib/wdjsp/mut/ForPropertyTag.class

Listing 20.10 Contents of the JAR file for the mut tag library



Packaging the tag library 663
com/taglib/wdjsp/mut/ForPropertyTagBeanInfo.class
com/taglib/wdjsp/mut/ForPropertyTEI.class
com/taglib/wdjsp/mut/IfPropertyTag.class
com/taglib/wdjsp/mut/IndexTag.class
com/taglib/wdjsp/mut/NestingTLV.class
com/taglib/wdjsp/mut/ScriptFreeTLV$MyContentHandler.class
com/taglib/wdjsp/mut/ScriptFreeTLV.class
com/taglib/wdjsp/mut/TimeOfDayBean.class
com/taglib/wdjsp/mut/TimeOfDayTag.class
com/taglib/wdjsp/mut/UrlTag.class

This JAR file includes five additional files beyond those present in the single-library
example presented previously: the two additional TLDs, the two tag library valida-
tor classes, and the inner class implementing ScriptFreeTLV’s content handler. The
new TLDs are presented in listings 20.11 and 20.12. 

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
        PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
        "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd">
<taglib>
    <tlib-version>1.0</tlib-version>
    <jsp-version>1.2</jsp-version>
    <short-name>copyXML</short-name>
    <uri>/copyXML</uri>
    <description>
        Validates JSP pages to make a copy of their XML representations.
    </description>

    <validator>
        <validator-class>com.taglib.wdjsp.mut.CopyingTLV</validator-class>
        <description>Copies XML representation.</description>
    </validator>

    <tag>
        <name>noop</name>
        <tag-class>javax.servlet.jsp.tagext.TagSupport</tag-class>
        <body-content>empty</body-content>
        <description>
            Does nothing.
        </description>
    </tag>
</taglib>

Listing 20.11 Tag library descriptor for the copyXML custom tag library



664 CHAPTER 20

Validating custom tag libraries
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
        PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
        "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd">
<taglib>
    <tlib-version>1.0</tlib-version>
    <jsp-version>1.2</jsp-version>
    <short-name>scriptfree</short-name>
    <uri>/scriptfree</uri>
    <description>
        Validates JSP pages to prohibit use of scripting elements.
    </description>

    <validator>
        <validator-class>com.taglib.wdjsp.mut.ScriptFreeTLV</validator-class>
        <init-param>
                <param-name>allowDeclarations</param-name>
                <param-value>false</param-value>
                <description>
                    Controls whether or not declarations are considered valid.
                </description>
        </init-param>
        <init-param>
                <param-name>allowScriptlets</param-name>
                <param-value>false</param-value>
                <description>
                    Controls whether or not scriptlets are considered valid.
                </description>
        </init-param>
        <init-param>
                <param-name>allowExpressions</param-name>
                <param-value>true</param-value>
                <description>
                    Controls whether or not expressions are considered valid.
                </description>
        </init-param>
        <description>Validates page scripting requirements.</description>
    </validator>

    <tag>
        <name>noop</name>
        <tag-class>javax.servlet.jsp.tagext.TagSupport</tag-class>
        <body-content>empty</body-content>
        <description>
            Does nothing.
        </description>
    </tag>
</taglib>

Listing 20.12 Tag library descriptor for the scriptfree custom tag library



Packaging the tag library 665
As indicated by their TLDs, these are not really custom tag libraries, but simply take
advantage of the custom tag library functionality to make their validators available
for application to JSP pages. These TLDs include <tag> elements only because the
DTD governing them requires the presence of at least one <tag> element. And the
single tag that is specified, as the name selected for it suggests, doesn’t actually do
anything. In fact, the library doesn’t even go through the trouble of defining a tag
handler class, instead relying on the built-in TagSupport class. You may recall that
the default implementation provided for this class’s doStartTag() method is to
simply return Tag.SKIP_BODY, while its doEndTag() method just returns
Tag.EVAL_PAGE. As a result, the behavior of the aptly named noop tag defined in
each of these TLDs is to ignore its body content (which its TLD entry prevents it
from having in the first place) and continue processing the remainder of the page.
(In programmer lingo, a noop is a function or method that does nothing: it per-
forms no operations.)

 The utility of these two custom tag libraries, then, resides solely in their valida-
tors. Adding a taglib directive to a JSP page which references one of these two
libraries does not have the effect of making new tags available (at least, not any par-
ticularly useful new tags). Instead, it has the sole effect of applying that library’s val-
idator to the page. Consider, for example, the following JSP page fragment:

<%@ taglib uri=”/mutlib” prefix=”mut” %>
<%@ taglib uri=”/scriptfree” prefix=”scriptfree” %>
...
<mut:timeOfDay id=”time”/>
<mut:ifProperty name=”time” property=”morning”>
  ...
</mut:ifProperty>
...

The first taglib directive makes all of the mut custom tags available from within
the page, as well as ensuring that mut’s NestingTLV validator is applied. The second
taglib directive does not add any new tags (except for the dubious noop tag): its
only purpose is to cause the ScriptFreeTLV validator to be applied.

 In addition to support for multiple tag libraries within a single JAR file, JSP 1.2
also adds another feature to ease the deployment of custom tag libraries. As described
in chapter 14, the URI specified in the uri attribute of a taglib directive must typi-
cally be manually mapped to the corresponding TLD file via the web.xml application
deployment descriptor. In JSP 1.2, a default mapping between the URI and the TLD
can be created automatically, based on the <uri> element in the TLD itself.

 The JSP container creates this mapping by examining all of the JAR files
deployed in an application (i.e., in its WEB-INF/lib subdirectory) to see if they



666 CHAPTER 20

Validating custom tag libraries
contain any TLDs. Such TLDs are located by looking in the META-INF directory of
the JAR file for any files with the .tld extension. The container then checks each
such TLD for a <uri> element. If one is found, the URI specified as the value of
that element is automatically mapped to the TLD in which it was found.

 For the TLDs presented in listings 20.11 and 20.12, then, they will automatically
be mapped to the URIs /copyXML and /scriptfree, respectively. The net effect of
this behavior is that a page author can take a packaged tag library, drop it into his or
her web application, and immediately start using the library, without having to
reconfigure anything. The full control provided by the web.xml deployment descrip-
tor is still available, of course, but the mechanism described here for automatically
creating a default mapping for TLDs can be quite convenient, particularly when the
web application developer is still in the early stages of a project and may be evaluat-
ing several alternative custom tag libraries for inclusion in the finished product.

20.6 For further information

Since their introduction in JSP 1.1, custom tags have proven themselves to be a
powerful tool for expanding the scope and power of the base JSP technology. The
range of potential applications for JSP custom tag libraries is vast, and we have only
been able to scratch the surface of their capabilities in these three final chapters.
For those readers wishing to take full advantage of them in their own web applica-
tions, here are some pointers to a number of important resources for custom tag
users and developers.

 Now that JSP has been widely adopted and significant practical experience with
its application has been gained, steps are being taken to supplement the existing set
of built-in JSP tags. The intent of this effort is to provide page authors with greater
“out-of-the-box” functionality, hopefully reducing the need to resort to scripting
elements. Rather than add more built-in tags, however, an alternate approach has
been adopted. Via the Java Community Process, specification of a Standard Tag
Library providing a core set of commonly used tags (e.g., iteration, conditionaliza-
tion, etc.) is currently under way. Once the specification is complete, the resulting
custom tag library will become a required feature of all JSP containers. At the time
of this writing, finalization of the Standard Tag Library was not expected for several
months yet, but early access to a reference implementation of the custom tags pro-
posed for inclusion in this library is now available.



For further information 667
Beyond the general-purpose tags planned for the Standard Tag Library, however,
several examples of more targeted custom tag libraries are now available through
the Jakarta Taglibs project. A variety of custom tag libraries—some of which are
listed in table 20.1—are available through the project’s web site, http://
jakarta.apache.org/taglibs/. In keeping with the project’s sponsorship by the
Apache Software Foundation, all of the code implementing these libraries is avail-
able as open source. It is thus a tremendous resource for developers wishing to
implement their own custom tag libraries by learning from the work of others. In
addition, the Jakarta Taglibs project is the home for the reference implementation
of the JSP Standard Tag Library.

 The Jakarta web site is also home to the Jakarta Struts project, which imple-
ments a complete web application framework in the form of a controller servlet and
several associated JSP custom tag libraries and utility classes. All of these framework
classes, in both binary and source code forms, can be downloaded from the Struts
homepage at http://jakarta.apache.org/struts/.

 Finally, we invite you to join us at the book’s companion web site, http://
www.taglib.com/. All of the source code examples from the text are there, along
with other sample code and custom tag libraries written by the authors. And as JSP
and its associated web development technologies continue to mature, we’ll be high-
lighting the important developments there to keep you informed.

Table 20.1 A sampling of the custom tag libraries available from the 
Jakarta Taglibs project 

Tag Library Description

DBTags Custom tags for accessing SQL databases via JDBC.

I18N A library supporting the internationalization of JSP pages.

IO A set of tags for accessing external web resources (via HTTP, FTP, SOAP, etc.) 
from within JSP pages.

Request Tags for accessing the properties of a JSP page’s HTTP request.

Response Tags for accessing the properties of a JSP page’s HTTP response.

Session Tags for accessing the properties of a user’s session.

XSL A set of tags for performing XML extensible stylesheet transformations.

XTags Custom tags for manipulating the contents of XML documents.





 AChanges in
the JSP 1.2 API
A.1 Introduction

We created the second edition of this book in part to bring it up to date with the
changes and enhancements to JSP technology. Since the release of the first edition,
Sun has updated JSP to release 1.2, and the underlying Servlet API to release 2.3.
For the benefit of readers of the first edition, the terminally impatient, and those
wanting a look at what’s new we have included this appendix to hit the highlights.
The changes to the JSP API focus on fixing some rough spots in the language,
improving custom tags, and better preparing the technology for tool support.
While it doesn’t cover the changes in detail, it does highlight important changes
and introduces new functionality. 
669



670 APPENDIX A

Changes in the JSP 1.2 API
A.2 Changes to the API

Sun has recently updated the JSP API to release 1.2 and published errata to the 1.1
specifications. Likewise the underlying Servlet API has been updated to release 2.3.
Here are some of the important changes.

A.2.1 Java 2, Version 1.2 now a requirement

Previous versions of JSP were based on the 1.1 JDK, even though they worked fine
under the Java 2 JDK versions 1.2 and 1.3. Starting with the latest release of the API
however, Sun has firmly tied JSP to the Java 2 family by requiring JDK 1.2 or higher
as the underlying technology.

A.2.2 Servlet API 2.3 required

Since JSP is, in essence, an extension of the Servlet API, it is linked to the new ver-
sion, 2.3. However, an explicit requirement of the 2.3 API is that containers must
maintain backward compatibility with the 2.2 API, as well as the 2.2 deployment
descriptor for web applications. This assures that existing applications will continue
to function under the newer containers.

A.2.3 XML syntax now fully supported

There has always been a close relationship between XML and JSP, and it was
assumed since the beginning that a full XML syntax would be required to enable
parsing and generation of JSP content by page authoring tools. With JSP 1.2, the
XML syntax is now fully developed. There is an XML representation for all of the
page elements, including the raw content. Here’s a quick example of what the XML
version of an HTML “Hello World” page is shown in listing A.1:

<jsp:root
  xmlns:jsp”http://java.sun.com/JSP/Page”
  version=”1.2”>
<jsp:text><!-[CDATA[<html>
<title>My Page</title>
<body>
<jsp:include page=”top_banner.jsp”/>
Hello World.

</body>
]]</jsp:text>

Listing A.1 A “Hello World” JSP Expressed As XML



Changes to the API 671
The ability to express a JSP page fully in XML provides a number of capabilities. It
allows a machine-friendly format for page authoring tools, automated validation of
the document structure, and the ability to use technology like XSL to help convert
data directly into a JSP form. This is a big step in allowing the tool vendors to take
JSP into the mainstream.

A.2.4 Determining the real path

One inconsistency that arose with the WAR format was the concept of determining
the path to a request file via the getRealPath method of the request object. This
method doesn’t mean anything if the web application is being run directly from a
WAR file. The new specification says that in such a case it should now return null if
unable to determine an actual path to the resource. All in all, you probably want to
avoid this method if you can.

A.2.5 Redirects are not relative to the servlet context

A clarification to Servlet API 2.2 was made to indicate that the sendRedirect
method of the HttpServletResponse class should operate relative to the context
root of the web server (“/”), rather than the context root of the servlet as some
container vendors had surmised. To redirect to a URL relative to your servlet con-
text instead, simply prepend the context path.

A.2.6 Restricted names

There was some contention as to which prefixes were reserved words in JSP. JSP 1.2
clears this up, stating that the prefixes jsp, _jsp, java, and sun cannot be used as
the prefix in taglib directives, as element names used in actions, as attribute
names, or in request parameters. This entire namespace is reserved for internal
usage, and should not be used by application developers.

A.2.7 Page encoding attribute

The 1.2 JSP API adds an attribute to the page directive called pageEncoding. This
new attribute allows you to specify the page encoding separately from the content
type of the page, improving readability. It defaults to the encoding specified in the
contentType attribute, if present, otherwise, the default encoding of ISO8859-1
(Latin-1) is used. 

A.2.8 Flush on include no longer required

Prior to JSP 1.2, the <jsp:include> tag required a flush attribute with a value of
true. This meant that as soon as you attempt to perform an inclusion, the buffer



672 APPENDIX A

Changes in the JSP 1.2 API
would be flushed and your output committed, preventing you from setting any
response headers (such as setting cookies or redirecting the request) via the
included page. The attribute now defaults to a value of false and is optional.

A.3 Web application changes

JSPs are packaged into WARs as defined in the Servlet API. Therefore, changes
made to the web application format as part of Servlet API 2.3 are likely to affect
JSP developers.

A.3.1 New 2.3 web application DTD

Along with the new API comes a new DTD to specify in the deployment descriptor.
This helps the container tell version 2.3 applications from 2.2 applications, and val-
idate the descriptor appropriately.

A.3.2 Handling of white space

Servlet containers are now required to be more lenient of white space in the deploy-
ment descriptor. They must ignore any leading or trailing white space surrounding
PCDATA.

A.3.3 Resolving path names in the web.xml file

Clarifications and additions were made to the specifications regarding the handling
of path names in the deployment descriptor. All paths are considered to be in
decoded form. Any references to resources stored within a WAR (for example,
images or other data files) must be referenced absolutely, starting with a “/”.

A.3.4 Request mappings

Prior to the 2.3 API, there was confusion surrounding several elements of the
request mapping facilities that has since been clarified. If you map a servlet to an
entire directory hierarchy, for example, /private/*, the specification now states
explicitly that it should match a request to /private. Another clarification is that
request matching is case sensitive, so a request for /userInfo is different than a
request for /userinfo.

A.3.5 Dependency on installed extensions

The new JSP API recognizes the difficulty of managing the installed extensions
required by a web application and addresses this issue with a series of recommenda-
tions to container developers. They recommend that containers support a facility



Custom tag improvements 673
for easily adding extensions (in the form of jar files) to all of the container’s applica-
tions, as well as a method for validating required extensions through an optional
manifest file in the WAR.

A.4 Custom tag improvements

The addition of custom tag capabilities in the 1.1 API has created excitement in the
development community. Already well under way is an effort to define a standard
set of tags that would be available in all containers. Several new capabilities made it
into the new API to help proliferate custom tags.

A.4.1 Translation time validation

A new element, <validator>, has been added to support translation time valida-
tion. This element uses the <validator-class> element to define a class that can
be used to validate proper use of the tags in a document. It allows you to enforce
rules about which tags can appear where, and in what combinations.

A.4.2 New tag interfaces

A new custom tag interface, IterationTag, provides a convenient way to create
looping related custom tags while the TryCatchFinally (which can be imple-
mented by any tag) improves exception-handling capabilities.

A.4.3 Changes to the TLD

The TLD is an XML document that tells the JSP container about the custom tags
you have written. Several important changes to the TLD DTD have been made in
version 1.2 of the JSP API.

New <variable> element
A new <variable> element is available to specify any scripting variables defined by
a custom tag. This tag obviates the need for a TagExtraInfo class in many cases,
and improves translation time validation capabilities.

<jsp-version> element now required
The <jsp-version> element is used to specify the minimum version of the JSP API
that the tag library supports. This element was optional in JSP 1.1, but is now
required. This will prevent conflicts between tag libraries and their containers as the
technology continues to progress. The TLD is not compatible with the version 1.1
TLD, but servlet containers are required to support both formats.



674 APPENDIX A

Changes in the JSP 1.2 API
Improved documentation elements
In JSP 1.2 the TLD has been extended to allow more detailed documentation about
the tags. A new optional element, <example>, has been added to the <tag> ele-
ment. This element can be used to specify an intended usage of the tag, to give the
user some clue about how to use it. The <info> element, which has always existed
for the <tag> element, has been renamed <description> and can now be used on
the <variable>, <attribute>, and <validator> elements as well. The TLD can be
read by a page-authoring tool or translated directly into documentation via XSL,
similar to how javadoc turns Java source into API documentation.

A.5 JavaBean changes

JavaBeans, the component model for JSP development has not changed much in
the new API, but several important clarifications have been made.

A.5.1 Bean tags cannot implicitly access scriptlet objects

In some vendor’s implementations the <jsp:getProperty> and <jsp:setProp-
erty> tags could access variables defined by scriptlets and custom tags, while others
could not because in some containers, the JSP tags interacted only with objects
stored in the page context. The specification now clearly states that these tags
should work with the page context exclusively. If custom tags or scriptlets wish to
expose any objects they create to these tags they must explicitly do so by adding
them to the page context. 

A.5.2 Fully qualified class names required

Some early JSP implementations honored import statements in the <jsp:useBean>
tag and allowed class names that were not fully qualified in this tag, but this has been
clarified in version 1.2 and is no longer allowed. Even if your container supports this
shortcut, you should always fully qualify your class names to keep your code compat-
ible with other containers or updates to yours. Note that for scripting variables,
imported packages are supported and fully qualified class names are not required.

A.6 New servlet features

Two new features of the Servlet API, servlet filters and application events, will prove
especially useful in building JSP applications.



New servlet features 675
A.6.1 Servlet filters

This feature is based on a nonstandard feature seen in the early servlet container
precursors called servlet chaining. With servlet filters you can define special filter
classes that can interact with the request headers and content prior to the servlet or
JSP receiving the request. Filters can also be applied to the response from a servlet
or JSP to perform additional processing. You can apply multiple filters to given sets
of requests at deployment time, without the underlying servlet or JSP having any
knowledge of the filters presence. This will become the way to add authentication,
logging, and encryption capabilities to web applications of the future.

A.6.2 Application events

Application level events provide a mechanism for responding to signals about the
state of the servlet container and the servlet application life cycle. For example, your
code can be informed just prior to a servlet context being initialized, any time
attributes are added to the application scope, or a new session is created. It provides
for a much more cohesive web application than was previously possible. A <lis-
tener> element has been added to the TLD, allowing custom tags to receive these
events and react to them.

 



 BRunning the reference
implementation
For most people, experimenting with programming languages is an integral part of
learning them. JSP is no exception to this rule. To help developers get up and run-
ning quickly in cases where they have no JSP container to use, this appendix pro-
vides information about installing Tomcat.

 Tomcat is a free servlet and JSP container that provides the official reference
implementation of the Servlet and JSP standards. The standards are developed under
the Java Community Process, but Tomcat is a product of the Jakarta Project, which
exists under the umbrella of the Apache Software Foundation. The entire Tomcat
distribution, including its source code, is available freely from Apache’s web site.

 Computers and televisions often come with “Quick Start” guides to help impa-
tient consumers get started. If Tomcat were such a product, here is the guide it
might come with. Of course, Tomcat comes with its own documentation; the guide
here provides a roadmap to help you locate, download, and install the product. For
676



Downloading and installing Tomcat 677
more information, refer to the documentation on the http://jakarta.apache.org/
tomcat site.

B.1 Prerequisites 

Tomcat is written in Java, and like all Java programs, it requires a working Java
environment in which to run. The most recent versions of Tomcat require a JDK of
at least version 1.2. If you do not already have access to a suitable JDK on your sys-
tem, you will need to download and install one. JDKs for many common platforms
are freely available from Sun Microsystems’s web site. (See appendix D for the rel-
evant URLs.) 

B.2 Downloading and installing Tomcat

Once you have located or installed a suitable JDK, you can download and install
Tomcat. The most recent version of Tomcat is always available from http://
jakarta.apache.org/tomcat. Compared to traditional commercial products, open
source software is updated extremely frequently. Therefore, it is difficult for us to
recommend a specific version of Tomcat for all purposes, but we can provide infor-
mation on the various version trees available at the time of this writing.

 Broadly speaking, there are currently two versions of Tomcat that might interest
you, Tomcat 3 and Tomcat 4. At the time this appendix was written, Tomcat 3 was
still a more mature product, with release-quality versions (e.g., Tomcat 3.2.2) hav-
ing been subjected to widespread use and testing. Even the latest versions of Tom-
cat 3, however, do not support the Servlet 2.3 and JSP 1.2 standards, which this
book covers. Therefore, for support of these standards, you will need to turn to
Tomcat 4.

WARNING When this appendix was written, Tomcat 4 had just been officially released.
Its initial versions will likely be suitable for your experimentation with JSP,
but if you run into unexplained problems, you might wish to drop back to a
more tried-and-true version. 

Just as it is difficult for a book to document an actively changing open source prod-
uct, it’s hard for printed material to provide instructions on how to use a web site.
Links can, of course, change, and sites can be restructured. However, for quite some
time, the Jakarta Tomcat site has offered precompiled, binary releases under a link
labeled Binaries. Following this link, you will typically see categories of versions,



678 APPENDIX B

Running the reference implementation
including Release Builds, Milestone Builds, and Nightly Builds. The Release Builds
category contains stable, well-tested versions of products. Milestone Builds typically
includes versions that are stable but known to be flawed or incomplete. Nightly
Builds are simply snapshots of the current versions of products; as we’ve mentioned,
open source software changes actively—often day-to-day—and each day’s version
can be different from the last. Such temporary, “nightly” versions are often unstable
and should generally be avoided unless you either contribute your own code to the
project or absolutely need a new feature that can’t be found elsewhere.

TIP Experienced Java developers may prefer to download source code and build it
themselves, instead of downloading precompiled binary releases. If you want
to download the Tomcat source code, you should look for a Source Code
line instead of Binaries. We can’t guarantee that the link will be labeled iden-
tically in the future, but it shouldn’t be too difficult to find. The installation
instructions given in this appendix apply specifically to the precompiled bina-
ry releases.

Once you choose the version you wish to download, click its link. You will be pre-
sented with a list of files from which you can choose the individual distribution to
download. Two popular formats that are typically offered on Jakarta’s site are Zip
(.zip) and compressed tar (.tar.Z). Zip files are typically more natural on Windows
systems, while tar files are used more widely on UNIX. Both formats, however, are
usable on most platforms. Separately from the files’ formats, which are indicated by
file extensions, you might see a variety of base file names as well. The Tomcat distri-
butions will probably look like jakarta-tomcat-<version>.zip or jakarta-tom-
cat-<version>.tar.Z.

 From here, you can pick an appropriate file and download it by following its
hyperlink. Once you download the file, you will need to expand it. The exact proce-
dure for expanding a file archive depends on the system you use and the type of file
archive (Zip versus compressed tar, and so on). On Windows, you can typically load
Zip files in a graphical package that expands them for you. On UNIX systems, you
can usually expand a Tar.Z file using the command

% uncompress –c filename.tar.Z | tar xvf -

TIP Because JAR files use the same format as Zip files, you can use the jar utility
that comes with the JDK to unpackage a Zip file on both Windows or UNIX
platforms. The command for doing this is jar xvf filename.zip. 



Downloading and installing Tomcat 679
After you expand the archive, you can finally start Tomcat. First, change into the
new directory you created by expanding the archive. This directory is typically
called jakarta-tomcat-<version>. If you ran the uncompress or jar commands
we suggested from the command line, this directory will be created underneath
your current directory at the time you execute the command.

 Once you have changed to the base directory of the Tomcat tree, you can start
Tomcat by typing bin/startup.sh on UNIX systems or bin\startup on Windows. On
UNIX systems, if you get an error related to file permissions, you will need to exe-
cute the command

% chmod u+x bin/*.sh

before running bin/startup.sh.

NOTE If you get an error related to the environment variable JAVA_HOME not be-
ing set, you will need to set this variable. If you know how to set environ-
ment variables from the shell or interface you typically use, you can simply
set this variable to the base directory of your JDK’s installation. This is the
directory in the JDK distribution that contains such subdirectories as bin,
jre, and lib.

If you want to modify your Tomcat installation so that it can find your JDK
every time it runs, you can add an appropriate line to the file bin/catalina.sh
(bin\catalina.bat on Windows) from the root of your Tomcat installation.
This line should be added toward the top of the file—after the initial com-
ments but prior to other commands—and should look like

JAVA_HOME=path to your JDK directory

and on UNIX systems and like

set JAVA_HOME=path to your JDK directory

on Windows machines. The path to your JDK directory might look like /
usr/local/jdk1.3 on UNIX systems or c:\jdk1.3 on Windows, but it
can be located anywhere that you, your system’s administrator, or another
user has installed it. 

By default, Tomcat runs on port 8080. If you can run a web browser on the same
machine on which you just started Tomcat, you can therefore access the running
Tomcat process over the web by loading the following URL from your browser:
http://localhost:8080/



680 APPENDIX B

Running the reference implementation
 If your web browser runs on a different machine from Tomcat, replace local-
host with the name of Tomcat’s machine.

WARNING If another server on your machine uses port 8080, Tomcat will not be able
to start by default. You can change the port that Tomcat runs on by editing
the conf/server.xml file inside Tomcat’s root directory (conf\server.xml on
Windows). Because the exact procedure for doing this varies across Tomcat’s
versions, the easiest general procedure to follow is simply to replace all oc-
currences of the number 8080 with a different number corresponding to the
port of your choice. If you want to proceed more carefully—after all, the
characters 8080 might appear in a future version of the default conf/serv-
er.xml file and not correspond to a port number—you can always read the
documentation that comes with your version of Tomcat to determine how
to configure it.

Another thing to note: on Unix machines, unprivileged programs cannot
typically bind to ports with numbers less than 1024. You must run Tomcat
as the superuser for it to bind to port numbers below 1024. If you do this,
you should have a good understanding of the security ramifications, for run-
ning programs as the root user on a Unix machine can be extremely
dangerous.

If Tomcat has started successfully, you will see Tomcat’s introductory screen, which
provides links to documentation and sample applications. At the time of this writ-
ing, the current Tomcat version’s initial screen contained a link labeled JSP Exam-
ples; clicking this link allows you to run the example JSP pages that come with
Tomcat. These JSP pages are found in the directory webapps/examples/jsp under-
neath the root of your Tomcat installation (webapps\examples\jsp on Windows),
and you are free to modify them. Because of the back-end machinery of JSP that we
described in chapter 4, your changes will take effect automatically: simply edit the
file, and you can reload its URL in a browser to see the effects of your changes. In
fact, if you add a JSP file underneath this directory, you will be able to run it right
away; no formal installation is necessary. That is, if you create a file called my-own-
example.jsp inside webapps/examples/jsp (webapps\examples\jsp on Windows),
you would be able to access it by loading the following URL from your web
browser: http://localhost:8080/examples/jsp/my-own-example.jsp

 As before, if your web browser runs on a different machine from your Tomcat
installation, replace localhost with the name of Tomcat’s host.



Web applications and Tomcat 681
B.3 Web applications and Tomcat

Adding individual JSP files to the examples application that comes with Tomcat is
suitable for small-scale testing. For instance, if you want to experiment with any of
the stand-alone JSP examples from chapter 3, you can add them to Tomcat’s exam-
ples application and cause them to run by accessing the appropriate URL, as with
my-own-example.jsp.

 However, it requires more forethought to use Tomcat with some types of JSP
pages. For instance, as we’ve seen, many pages use JavaBeans or custom tag librar-
ies. These pages depend on the specific Java class files that represent bean imple-
mentations and tag-handler logic. Tomcat needs a mechanism to determine the
location of such dependencies.

 To facilitate portable deployment, the servlet specification outlines a recom-
mended directory structure for web applications. This structure is very similar to
that of a WAR file, as presented in chapter 13. See figure 14.1 for a graphical repre-
sentation of this structure.

 Deploying applications on Tomcat is straightforward. By default, current ver-
sions of Tomcat will automatically notice both expanded web applications and WAR
files that are placed in the webapps directory under Tomcat’s root directory. For
instance, if the webdev.war file from chapter 14 (figure 14.1) were copied to Tom-
cat’s webapps directory, Tomcat would automatically notice this file upon initializa-
tion and thus be able to serve the webdev application. Assuming you added the
webdev.war file to the version of Tomcat you installed using the instructions in sec-
tion B.2, you would be able to access the root of the webdev application using the
URL http://localhost:8080/webdev/ or a similar URL containing the Tomcat
server machine’s name for cases where Tomcat runs on a different machine from
your web browser.

 It is worth highlighting the purpose of two particular directories in the hierarchy
of a web application. One directory, WEB-INF/classes (WEB-INF\classes on Win-
dows), is for expanded directories of Java .class files. In the classes directory, just
as in a directory of a typical Java class path, Java packages correspond to levels in the
directory hierarchy. For instance, the file representing the com.manning.exam-
ples.Example class would appear underneath classes as com/manning/examples/
Example.class on UNIX and com\manning\examples\Example.class on Win-
dows. Separately, the lib directory underneath WEB-INF stores .jar files that are
made accessible to the web application.

 Suppose you wanted to run the JSP page from chapter 3 that uses the HelloBean
class presented in the same chapter. Noting that this class is in the com.tag-



682 APPENDIX B

Running the reference implementation
lib.wdjsp.firststeps package, you would copy its class file to the directory
WEB-INF/classes/com/taglib/wdjsp/firststeps (or the corresponding path on
Windows) inside your web application. This would make this class accessible to the
JSP files in that application.

 



 CIncorporating Java applet
s

Java applets are small applications that run within the context of a web browser.
Because they can take advantage of the powerful GUI classes provided by the stan-
dard Java AWT and Swing class libraries, applets can be used to implement much
richer user interfaces than is typically possible using HTML alone.

Using the latest versions of Java for applet development, however, requires
browser-specific code. To simplify the deployment of applets based on Java 2, JSP
provides the <jsp:plugin> action for cross-platform specification of Java 2 applets.

C.1 Browser support for Java

When Java was released to the programming community in 1995, it was primarily
positioned as a language for deploying interactive applications via the web in the
form of Java applets. Sun Microsystems’ formal announcement of Java at SunWorld
’95 was accompanied by the announcement of the HotJava browser, which was
written in Java and included support for a new HTML tag, <applet>. At this same
683



684 APPENDIX C

Incorporating Java applets
conference, Netscape revealed that it would be adding support for applets to its
own browser product, including built-in JVMs for all of its major platforms. In
December of that same year, Microsoft announced support for Java applets in Inter-
net Explorer, based on Microsoft’s own JVM for Windows. Less than a year after  its
formal introduction in May 1995, it appeared that Java had firmly established itself
as a standard feature of web browsers.

Supporting a brand new programming language across diverse platforms and
operating systems, however, proved to be problematic. The web browser was still in
its infancy as a mass-market, consumer-oriented product, and the fact that Java
incorporates advanced features such as garbage collection and multithreading did
not make the task of incorporating the language into the browser applications any
easier. As a result, the early browser JVMs were plagued with incompatibilities and
inconsistencies that undermined Java’s value proposition as a cross-platform pro-
gramming language. The fierce competition between Netscape and Microsoft in
the browser marketplace, as well as Sun’s legal battles with Microsoft over the lat-
ter’s in-house extensions to the language, provided additional impediments to the
ongoing improvement of the browser-based JVMs. As a result, support for Java in
the browser has languished at Version 1.1 of the specification, years after the Java 2
platform was released by Sun Microsystems in 1998. In 2001, Java became yet
another casualty of the browser wars, when Microsoft removed client-side Java sup-
port from the default installation of its market-leading Internet Explorer product.

As a result of the failure of the browser vendors to produce robust, fully compati-
ble JVMs supporting the Java 2 platform, Sun Microsystems has chosen to develop
its own browser plug-in for running Java 2 applets and JavaBeans. Instead of relying
on HTML’s standard <applet> tag, support for which is provided by the browser
itself, Sun has taken advantage of the browser-extension APIs built into these prod-
ucts to implement an alternative mechanism for running Java applets. The Java plug-
in relies on its own JVM instead of the one built into the browser (if any). By taking
advantage of the plug-in mechanism, applet support becomes browser-independent.

As an added benefit, because the extension APIs have been available for several
years, the Java plug-in is fully compatible with many older versions of the popular
browsers. This means that users often need not upgrade their web browsers in order
to take advantage of the new features made available through the Java plug-in. In
particular, the Java plug-in is compatible with Versions 3 and later of both Commu-
nicator and Internet Explorer. In late 2001, implementations of the plug-in are
available for the following operating systems: Solaris, Microsoft Windows, Hewlett-
Packard’s HPUX, SGI IRIX, Compaq’s Tru64 Unix, and Linux.



The plug-in action 685
C.2 The plug-in action

Unfortunately, the HTML for adding an applet to a page using the Java plug-in is
browser-specific. In addition, the plug-in code is itself platform-specific, based on
the hardware and operating system it will be running on. As a result, configuring a
page to run an applet via the plug-in is not very straightforward using HTML alone.

NOTE Plug-ins for Internet Explorer are specified via the HTML <OBJECT> tag.
Plug-ins for Communicator are specified via the HTML <EMBED> tag.

To simplify this task, JSP provides the <jsp:plugin> action, which gives developers
a cross-platform mechanism for specifying the use of the Java plug-in. The syntax
for this action is as follows:

<jsp:plugin type=”type” code=”objectCode” codebase=”objectCodeBase”
     height="height" width="width"
     attribute1=”value1” attribute2=”value2” … >

    <jsp:params>
<jsp:param name=”parameterName1” value=”parameterValue1”/>
… 
<jsp:param name=”parameterNameN” value=”parameterValueN”/>

    </jsp:params>
    <jsp:fallback>fallback text</jsp:fallback>
</jsp:plugin>

There are four basic elements to this JSP action. First, there are three required
attributes for the <jsp:plugin> tag itself. There are also several optional attributes,
many of which are carried over from the <applet> tag in HTML. The third element
of a <jsp:plugin> specification is a set of parameter values, which are indicated via
multiple <jsp:param> tags within the body of a <jsp:params> element, which is
itself part of the body of the <jsp:plugin> action. Finally, the body of the action
can also specify text to be displayed if for some reason the Java plug-in cannot be
used. This is accomplished via the <jsp:fallback> tag.

C.2.1 Required attributes

There are five required attributes for the <jsp:plugin> tag, as summarized in
table C.1. All have the same meaning as the corresponding attributes of the HTML
<applet> tag, with the exception of the type attribute, for which the <applet> tag
has no equivalent.

The type attribute is used to specify the type of Java component which is to be
loaded and run by the plug-in. In addition to applets, which are indicated by



686 APPENDIX C

Incorporating Java applets
providing the keyword applet as the value for this attribute, the Java plug-in can
be used to run JavaBeans components within the browser. This latter behavior is
specified by supplying the keyword bean as the value of the type attribute. The
two valid values for this attribute, then, are as follows:

<jsp:plugin type=”applet” … >
<jsp:plugin type=”bean” … >

The code attribute is used to specify the file containing the compiled Java code for
the applet or bean to be run. For applets, its value takes the form of a class file,
qualified with the package name—if any—and including the .class extension.
Alternatively, for both applets and beans, a file containing a serialized object may
be specified.

 The codebase attribute indicates the directory on the web server in which the
applet or bean code may be found. Its value takes the form of a URL directory spec-
ification. Either an absolute or a relative URL may be provided; if the URL is not
absolute, it is assumed to be relative to the URL of the JSP page containing the
<jsp:plugin> tag. In either case, the file name specified for the code attribute is
required to be relative to the directory specified for the codebase attribute. 

The height and width attributes are used to designate the dimensions of the
applet or the bean. They effectively specify a rectangular region of the browser page
which is to be set aside for the display of the applet or Bean.

In the following <jsp:plugin> tag, for example, an applet is to be loaded from a
class file:

   <jsp:plugin type=”applet” codebase=”plugins”
               code=”com.taglib.wdjsp.applet.CountDown.class” … >

In this case, the applet code may be found in the file plugins/com/taglib/wdjsp/
applet/CountDown.class, where the subdirectories are derived by combining the
value of the codebase attribute with the package names appearing in the value of
the code attribute. Here, the plugins directory should be a subdirectory of the
directory which contains the JSP page. 

This second example loads a Bean from a serialized object file:

<jsp:plugin type=”bean” codebase=”/resources/objects”
               code=”MagicPizzaBean.ser” … >

Here, the serialized object is stored in the file /resources/objects/MagicPizza-
Bean.ser. In this case, an absolute URL has been specified for the codebase
attribute, so the resources directory should be one of the web server’s top-level
document directories.



The plug-in action 687
C.2.2 Optional attributes

Several optional attributes are also supported by the <jsp:plugin> action, as summa-
rized in table C.2. Those which share the same name as attributes of the original
HTML <applet> tag have corresponding behavior. Three of these attributes, however,
are unique to the <jsp:plugin> tag: jreversion, nspluginurl, and iepluginurl. 

The jreversion attribute is used to indicate which version of the JRE  is required
to run the applet or bean. The value of this attribute is used to determine whether or
not the JRE being used by the plug-in is compatible with the component that is to
be loaded and run. The default value of this attribute is 1.1, indicating the compo-
nent is compatible with JRE version 1.1 or higher. The JRE for Java 2 is JRE version
1.2, so for Java 2 applets and JavaBeans this attribute should be set to 1.2.

The nspluginurl and iepluginurl attributes are used to indicate the URLs
from which the plug-in code for the browsers can be downloaded. The nsplug-
inurl attribute specifies the location of the plug-in for Communicator, while
iepluginurl provides the location of the plug-in for Internet Explorer. Default val-
ues for these two URLs are implementation-specific. Because the code for the plug-
in can be quite large (i.e., multiple megabytes), you may wish to install copies of the
plug-in software on a local server, to improve download performance. In this case,
these two attributes are used to point to the local copies so that, if the plug-in has
not been installed when the browser encounters the HTML generated by the
<jsp:plugin> action, it will look for the required software on that local server
instead of attempting to load it from some default location on the Internet.

Table C.1 Required attributes of the <jsp:plugin> tag 

Attribute Value Description

type applet or bean Type of Java component to be loaded into browser.

code File name File containing Java component, either a serialized object or a 
class file qualified with package name, relative to codebase 
value.

codebase Directory URL Directory on server containing file specified by code attribute.

height Integer Vertical dimension (in pixels) of the Java component within the 
browser window.

width Integer Horizontal dimension (in pixels) of the Java component within the 
browser window.



688 APPENDIX C

Incorporating Java applets
C.2.3 Parameters

Applets may be configured on a page-by-page basis by means of parameters passed
in from the browser. When using the HTML <applet> tag, this is accomplished via
the <param> tag. When the <jsp:plugin> tag is used to specify an applet or bean,
parameter values are set by means of the <jsp:param> tag, which takes the follow-
ing form:

<jsp:param name=”parameterName” value=”parameterValue”/>

The name attribute designates the name of the parameter to be set, and the value
attribute specifies its value, which may take the form of a JSP expression representing

Table C.2 Optional attributes of the <jsp:plugin> tag 

Attribute Value Default Description

align Text string baseline Alignment of the Java component relative to 
other page elements. Allowed values are 
left, right, top, texttop, middle, 

absmiddle, baseline, bottom, and 
absbottom.

name Text string None Name by which other components on the 
same page can reference the Java compo-
nent.

archive File names None Comma-separated list of JAR files contain-
ing resources (classes, images, data files, 
etc.) to be preloaded.

vspace Integer 0 Margin (in pixels) that should appear on the 
left and right sides of the Java component 
in the browser window.

hspace Integer 0 Margin (in pixels) that  should appear above 
and below the Java component in the 
browser window.

title Text string None Descriptive title for the applet that may be 
optionally displayed by the browser (e.g., 
via the status bar or as a tool tip).

jreversion Version 1.2 Version of the JRE required to run the Java 
component.

nsplugin URL Implementation-specific Location from which the Java Plug-in for 
Netscape Communicator can be down-
loaded.

ieplugin URL Implementation-specific Location from which the Java Plug-in for 
Microsoft Internet Explorer can be down-
loaded.



The plug-in action 689
a request-time attribute value. An applet accesses these parameters via the getParam-
eter() method of the java.applet.Applet class, and all applet parameter values
are interpreted as character strings. The applet itself is responsible for parsing param-
eter values that represent other data types, such as numeric values.

Multiple applet parameters can be set via multiple <jsp:param> tags. All
<jsp:param> tags, however, must occur within the body of <jsp:params> tag,
which itself occurs within the body of the <jsp:plugin> action. The overall syntax
for specifying applet parameters, then, is as follows: 

<jsp:plugin … >
    …
    <jsp:params>

<jsp:param name=”parameterName1” value=”parameterValue1”/>
… 
<jsp:param name=”parameterNameN” value=”parameterValueN”/>

    </jsp:params>
    …
</jsp:plugin>

Note that only one set of parameter values, as bounded by the <jsp:params> and
</jsp:params>  de l imiter  tags ,  should occur within the body of  the
<jsp:plugin> action.

In addition to applet parameter values, the <jsp:param> tag can also be used to
configure beans loaded via the <jsp:plugin> action. In this case, the name attribute
of each <jsp:param> tag is interpreted as the name of a bean property, and the
value attribute indicates the value to which the property should be set. As for
applet parameters, bean property values can be provided via JSP expressions by pro-
viding a request-time attribute value for the value attribute.

C.2.4 Fallback text

Successful use of the <jsp:plugin> action is dependent upon the end user being
able to run the Java plug-in from their browser. As a result of this reliance on the
installation and configuration of end-user software, it is convenient to be able to
gracefully handle situations in which, for whatever reason, the Java plug-in cannot
be run. This is the role of the <jsp:fallback> tag.

The <jsp:fallback> tag is used to specify content to be displayed in the output
of the JSP page in the event the Java plug-in fails to be started by the browser. This
content is delimited by matching <jsp:fallback> and </jsp:fallback> tags, as
in the following example: 



690 APPENDIX C

Incorporating Java applets
<jsp:plugin … >
    …
    <jsp:fallback>
    Sorry, unable to start <b>Java Plug-in</b> to run Java 2 applet.
    </jsp:fallback>
    …
</jsp:plugin>

Note that since the <jsp:plugin> action is used to load Java components into a
web browser, its utility is generally limited to JSP pages used to construct HTML
documents. As a result, it is perfectly acceptable for the fallback text in the body of
the <jsp:fallback> tag to include HTML markup, as in this example.

The fallback text is only displayed when there are problems with the plug-in
itself. If, instead, there is a problem with the applet or JavaBean to be loaded via the
plug-in, the plug-in will display an error message to that effect. The exact contents
and presentation of this error message are implementation-specific.

C.3 Example: applet configuration

One particular advantage of combining JSP with applets is that the applet can be
configured at run time. This is made possible by the use of request-time attribute
values when specifying the value attributes of one or more <jsp:param> tags. In
this way, the values of the corresponding applet parameters are computed by the JSP
page at the time the request for the page is processed.

Consider, for example, the Java class presented in listing C.3. This class,
com.taglib.wdjsp.applets.CountDown, defines an applet that implements a
timer, counting down to a date and time specified via applet parameters. Since this
is a book on JSP rather than applet design, we will not consider the details of this
code. In brief, then, the various components specifying the state of the timer are
stored as an array of String elements, which are updated via a thread represented
by the countdown instance variable. This thread updates the timer’s state every
tenth of a second, until the countdown expires. Two parameters, named endTime
and endDate, are used to configure the applet.

To allow the user to set these configuration parameters, a form could be pro-
vided for selecting the desired date and time. One such form is presented in
figure C.1, with the corresponding (abbreviated) HTML code presented in
listing C.1. Note that the value of the action attribute for this document’s <form>
tag is set to a JSP page, specifically /webdev/countdown.jsp.

When this form is submitted, the values of its form fields are sent via a POST
request to the specified page. This page, whose source code appears in listing C.2,



Example: applet configuration 691
uses those form values to construct a date string and a time string, using a scriptlet
to retrieve those parameters from the request implicit object. These two strings are
then supplied as parameters to the Java applet, via request-time attribute values.
The result is presented in figure C.2   

<html>
<body> Please specify date and time for countdown to end:<br>
<center><form action="/webdev/countdown.jsp" method="POST">
<select name="month" size="1">
  <option value="January" selected>January</option>
  <option value="February">February</option>

...
  <option value="December">December</option>
</select>
<select name="day" size="1">
  <option value="1" selected>1</option>

Listing C.1 Abbreviated HTML source code for applet configuration form

Figure C.1 Form for configuring countdown applet

Figure C.2 Countdown applet running via <jsp:plugin> tag



692 APPENDIX C

Incorporating Java applets
  <option value="2">2</option> ... <option value="31">31</option>
</select>,
<select name="year" size="1">
  <option value="2000" selected>2000</option>
  <option value="2001">2001</option> ... <option value="2005">2005</option>
</select>
at
<select name="hour" size="1">
  <option value="1">1</option> ... <option value="11">11</option>
  <option value="12" selected>12</option>
</select>:
<select name="minutes" size="1">
  <option value="00" selected>00</option>
  <option value="01">01</option> ... <option value="59">59</option>
</select>:
<select name="seconds" size="1">
  <option value="00" selected>00</option>
  <option value="01">01</option> ... <option value="59">59</option>
</select>
<select name="ampm" size="1">
  <option value="AM">AM</option><option value="PM">PM</option>
</select>
<select name="zone" size="1">
  <option value="EST">EST</option><option value="EDT">EDT</option>
  <option value="CST">CST</option><option value="CDT">CDT</option>
  <option value="MST">MST</option><option value="MDT">MDT</option>
  <option value="PST">PST</option><option value="PDT">PDT</option>
</select><br>
<input type="submit" value="Submit">
</form></center>
</body>
</html>

<html>
<body>
<% String month = request.getParameter("month");
   if (month == null) month = "January";
   String day = request.getParameter("day");
   if (day == null) day = "1";
   String year = request.getParameter("year");
   if (year == null) year = "2001";
   String hour = request.getParameter("hour");
   if (hour == null) hour = "12";
   String minutes = request.getParameter("minutes");
   if (minutes == null) minutes = "00";
   String seconds = request.getParameter("seconds");
   if (seconds == null) seconds = "00";

Listing C.2 JSP page for displaying applet via <jsp:plugin> tag



Example: applet configuration 693
   String ampm = request.getParameter("ampm");
   if (ampm == null) ampm = "AM";
   String zone = request.getParameter("zone");
   if (zone == null) zone = "CST";
   String date = month + " " + day + ", " + year;
   String time =

 hour + ":" + minutes + ":" + seconds + " " + ampm + " " + zone;
 %>
Countdown until <b><%= date %> <%= time %></b>:<br>
<center>
<jsp:plugin type="applet" codebase="plugins"
            code="com.taglib.wdjsp.applets.CountDown"
            width="300" height="50"
            jreversion="1.2">
  <jsp:params>
    <jsp:param name="endDate" value="<%= date %>" />
    <jsp:param name="endTime" value="<%= time %>" />
  </jsp:params>
  <jsp:fallback>Unable to start Java Plug-in for applet.</jsp:fallback>
</jsp:plugin>
</center>
</body>
</html>

package com.taglib.wdjsp.applets;

import java.applet.*;
import java.awt.*;
import java.util.*;
import java.text.*;

public class CountDown extends Applet implements Runnable {
    private Thread countdown;
    private long ends;
    private int height, width;
    Image offscreen;
    private String[] text = new String[FIELDS];
    private int[] textWidth = new int[FIELDS];
    Font font;
    FontMetrics fontMetrics;
    private int fontHeight, ascent;

    static final int FIELDS = 7;
    static final int DAYS = 0;
    static final int HOURS = 2;
    static final int MINUTES = 4;
    static final int SECONDS = 6;

Listing C.3 com.taglib.wdjsp.applets.CountDown class



694 APPENDIX C

Incorporating Java applets
    // Constructor
    public CountDown () {

ends = 0l;
long now = new Date().getTime()/1000l;
ends = now + 7l * 24l * 60l * 60l; // One week
ends = now + 24l * 60l * 60l + 30; // One day
text[HOURS+1] = ":";
text[MINUTES+1] = ":";
updateElements(); 
width = 0;
height = 0;
font = new Font("Helvetica", Font.BOLD, 18);
fontMetrics = this.getFontMetrics(font);
fontHeight = fontMetrics.getHeight();
ascent = fontMetrics.getAscent();

    }

    // Display code
    public void paint (Graphics g) {

g.setColor(Color.white);
g.fillRect(0, 0, width, height);
g.setColor(Color.black);
int strWidth = 0;
for (int i = 0; i < FIELDS; ++i) {
    textWidth[i] = fontMetrics.stringWidth(text[i]);
    strWidth += textWidth[i];
}
int x = (width - strWidth)/2;
int y = (height + fontHeight - ascent)/2;
for (int i = 0; i < FIELDS; ++i) {
    g.drawString(text[i], x, y);
    x += textWidth[i];
}

    }

    // Thread code
    public void run () {

boolean updating = false;
boolean counting = true;
while (counting) {
    if (! updating) {

updating = true;
try {
    counting = updateElements();
    updateDisplay();
}
finally { updating = false; }

    }
try { Thread.sleep(100); } catch (InterruptedException e) {};

}



Example: applet configuration 695
    }

    // Updating
    final static long minuteSeconds = 60l;
    final static long hourSeconds = 60l * minuteSeconds;
    final static long daySeconds = 24l * hourSeconds;

    private boolean updateElements () {
long now = new Date().getTime()/1000l;
if (now >= ends) {
    setDays(0);
    setElement(HOURS, 0);
    setElement(MINUTES, 0);
    setElement(SECONDS, 0);
    return false;
} else {
    long remaining = ends - now;
    long days = remaining/daySeconds;
    setDays(days);
    remaining -= days*daySeconds;
    long hours = remaining/hourSeconds;
    setElement(HOURS, hours);
    remaining -= hours*hourSeconds;
    long minutes = remaining/minuteSeconds;
    setElement(MINUTES, minutes);
    remaining -= minutes*minuteSeconds;
    setElement(SECONDS, remaining);
    return true;
}

    }
    private void setElement (int index, long t) {

if (t < 10) {
    text[index] = "0" + Long.toString(t);
} else {
    text[index] = Long.toString(t);
}

    }
    private void setDays (long d) {

text[DAYS] = Long.toString(d);
text[DAYS + 1] = (d == 1l) ? " day, " : " days, ";

    }

    private void updateDisplay () {
Dimension size = this.getSize();
if ((offscreen == null)
    || (width != size.width)
    || (height != size.height)) {
    width = size.width;
    height = size.height;
    offscreen = this.createImage(width, height);
}



696 APPENDIX C

Incorporating Java applets
Graphics g = offscreen.getGraphics();
paint(g);
g = this.getGraphics();
g.drawImage(offscreen, 0, 0, this);

    }

    // Applet Lifecycle
    public void init () {

String endTime = getParameter("endTime");
if (endTime == null) endTime = "12:00am";
String endDate = getParameter("endDate");
if (endDate == null) endDate = "January 1, 2001";
DateFormat fmt = DateFormat.getDateTimeInstance(DateFormat.LONG,

DateFormat.LONG,
Locale.US);

Date d;
try {
    d = fmt.parse(endDate + " " + endTime);
}
catch (ParseException e) {
    System.err.println("Error while parsing date: " + e.getClass());
    System.err.println(e.getMessage());
    d = new Date();
}
ends = d.getTime()/1000l;

    }
    public void start () {

countdown = new Thread(this);
countdown.start();

    }
    public void stop () {

if (countdown != null) countdown.stop();
countdown = null;

    }
}



 DJSP resource
D.1 Java implementations

http://java.sun.com/jdk
Sun Microsystem’s implementations of the Java platform for the Solaris, Lin
and Windows operating systems. 

http://www.developer.ibm.com/java/member/technical/jdk.html
s

ux,

IBM’s implementations of the Java platform for the Windows, Linux, AIX, OS/2,
AS/400, OS/390, and VM/ESA operating systems. Registration required.

http://www.sgi.com/developers/devtools/languages/java.html
SGI’s implementation of the Java platform for the IRIX operating system. 

http://www.hp.com/products1/unix/java/
Hewlett Packard’s implementation of the Java platform for the HPUX operating
system.

http://oss.software.ibm.com/developerworks/opensource/jikes/
Home page for Jikes, a high-speed Java compiler.

D.2 JSP-related web sites

http://java.sun.com/products/jsp
Sun Microsystem’s official home page for JSP technology.
697



698 APPENDIX D

JSP resources
http://www.taglib.com/
Home page for this book, featuring source code and a collection of JSP custom
tag libraries.

http://www.deepmagic.com/
Duane Fields’ web site, with an archive of articles and presentations on JSP and
Java development.

http://jakarta.apache.org/taglibs/
Jakarta open source tag libraries 

http://www.ibazaar.com/jasp/index.htm
JaSP!, a web-based journal and newsletter focusing on JSP and related technologies. 

http://www.serverpages.com/index.html
Online programmer resources for several server-side scripting technologies,
including JSP.

http://us.imdb.com/Title?0084827
Critical resources for JSP book authors.

D.3 JSP FAQs and tutorials

http://java.sun.com/products/jsp/docs.html
A series of JSP tutorials and reference information from Sun Microsystems.

http://java.sun.com/products/jsp/faq.html
Sun’s official online FAQ.

http://www.esperanto.org.nz/jsp/jspfaq.jsp
The unofficial online FAQ.

http://www.jguru.com/jguru/faq/faqpage.jsp?name=JSP
An interactive FAQ from jGuru, with visitor-submitted questions.

http://www2.software.ibm.com/developer/education.nsf/java-onlinecourse-bytitle
Online Java tutorials from IBM, including “Introduction to JavaServer Pages.”

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
A tutorial on writing tag libraries from Sun Microsystems.

D.4 JSP containers

http://jakarta.apache.org/tomcat/
Home page for Tomcat, the official reference implementation of the servlet and
JSP specifications. Tomcat is available as source code and in compiled form.



Java application servers with JSP support 699
http://www.caucho.com/
Web site for Resin, a servlet and JSP container supporting both Java and server-
side JavaScript as its scripting languages.

http://www.klomp.org/gnujsp/
Home page for GNUJSP, an open source implementation of the JSP specification.

http://www.newatlanta.com/
Web site for New Atlanta, makers of ServletExec. 

http://www.plenix.org/polyjsp/
An open source JSP container that supports multiple scripting languages.

D.5 Java application servers with JSP support

http://java.sun.com/j2ee
Sun Microsystem’s home page for J2EE. The reference implementation of J2EE,
available here, includes a JSP container.

http://www.orionserver.com/
Home page for the Orion application server.

http://www.allaire.com/Products/Jrun
Home page for JRun, from Allaire. 

http://www.bea.com/java
Web site for BEA Systems, makers of the WebLogic application server. 

http://www.bluestone.com/
Web site for the Bluestone/Sapphire web application server.

http://www.gemstone.com/
Web site for the GemStone application server.

http://www.ibm.com/software/webservers/
Home page for IBM’s WebSphere application server. 

http://www.inprise.com/appserver/
Web site for the Inprise application server from Borland.

http://www.iplanet.com/
Web site for the Sun-Netscape Alliance, makers of the iPlanet server.

http://www.oracle.com/java/
Web site for Oracle’s 9i, with Java. 

http://www.silverstream.com/
Web site for the SilverStream application server. 



700 APPENDIX D

JSP resources
http://www.flashline.com/components/appservermatrix.jsp
A matrix comparing the features and platform support of all the major applica-
tion servers (Java-based and otherwise), hosted by Flashline.com.

D.6 JSP development tools

http://www.allaire.com/Products/HomeSite
Home page for HomeSite, a web page authoring tool from Allaire with built-in
support for JSP tags. 

http://www.forte.com/
Forte is an integrated JSP development environment. 

http://www-4.ibm.com/software/webservers/studio/index.html
Product information about IBM’s Websphere Studio, which includes a tool for
visually creating and editing JSP pages.

http://www.macromedia.com/software/ultradev/
Web site for Macromedia’s UltraDev, a visual editor for authoring JSP pages.

D.7 Tools for performance testing

http://jakarta.apache.org/jmeter/
Like Tomcat, JMeter is a product of the Jakarta Project.  JMeter is a tool for mea-
suring servlet and JSP performance.

http://www.binevolve.com/velometer/velometer.vet
VeloMeter is a web server load tester from Binary Evolution, distributed as open
source. A commercial version, VeloMeter Pro, is also available.

http://www.sitraka.com/
Sitraka Software’s (formerly KL Group) JProbe ServerSide Suite bundles multi-
ple tools for tuning the performance of server-side Java applications.

http://www.vmgear.com/
Optimize It!, from VMGear is a profiling tool for Java applications that can be inte-
grated directly with a large number of JSP containers and Java Application Servers.

D.8 Mailing lists and newsgroups

JSP-INTEREST@java.sun.com
A mailing list for technical discussions among developers who are deploying JSP
technology. To subscribe, use the archive site described next, or send an email



Mailing lists and newsgroups 701
message to listserv@java.sun.com with the text subscribe JSP-INTEREST as the
body of the message. 

http://archives.java.sun.com/archives/jsp-interest.html
These are the online archives for the JSP-INTEREST mailing list. Forms are avail-
able for searching past messages, as well as for subscribing or unsubscribing to
the mailing list.

comp.lang.java.*
This is the Usenet News hierarchy dedicated to discussion of the Java program-
ming language. There are, as yet, no groups dedicated to either servlet or JSP
development, but occasional discussions of these topics do appear on some of the
exist ing Java newsgroups,  such as comp.lang. java.programmer and
comp.lang.java.misc.  If you are relatively new to Java programming, you may
find the discussions in the  comp.lang.java.help and comp.lang.java.setup groups
particularly helpful.



 EJSP syntax reference
In this appendix we’ll summarize the usage of all of the JSP tags discussed in this
book. This listing is intended primarily as a quick reference to JSP, and repeats infor-
mation presented elsewhere. If you’re in a hurry, reading this appendix will get you
started, but is no substitute for studying the thorough discussion and examples of
each tag, especially the coverage provided in chapters 1 through 8.

E.1 Content comments

Content comments will be sent back to the browser as part of the response. Since
they are comments, they do not produce any visible output, but they may be viewed
by the end user via the browser’s View Source menu item.
702



JSP comments 703
Syntax

XML: <!-- comment -->
Standard: <!-- comment -->

Description
Those familiar with HTML and XML will recognize that this is the standard com-
ment syntax for the two markup languages. Thus, a JSP page that is generating
either HTML or XML simply uses the native comment syntax for whichever form of
content it is constructing. Content comments are part of the output from the page.
You can, if you wish, include dynamic content in them. HTML and XML comments
can, for example, include JSP expressions, and the output generated by these
expressions will appear as part of the comment in the page’s response. 

Examples

<!-- begin dynamically generated content -->
<%= new java.util.Date() %>
<!-- end dynamically generated content -->

<!-- longs are 64 bits, so 20! = <%= fact(20) %> is the upper limit. -->

E.2 JSP comments

JSP comments are independent of the type of content being produced by the page.
They are also independent of the scripting language used by the page. These com-
ments can only be viewed by examining the original JSP file

Syntax

XML: same

Standard: <%-- comment --%>

Description
The body of a JSP comment is ignored by the JSP container. When the page is com-
piled into a servlet, anything appearing between these two delimiters is skipped while
translating the page into servlet source code. For this reason, comments such as this
are very useful for commenting out portions of a JSP page, as when debugging.



704 APPENDIX E

JSP syntax reference
Examples

int y = 0;
int z = 3;
<%-- y = 2; --%>
z = 4;

<table width=”150”>
<%-- Really should make the width dynamic --%>
<tr><td>Hello There</td></tr>
</table>

E.3 <jsp:declaration>

Declarations define a variable or method for use on the current page, using the cur-
rent page’s designated scripting language.

Syntax

XML: <jsp:declaration> declaration(s) </jsp:declaration>

Standard: <%! declaration(s) %>

Description
Declarations are used to define variables and methods for use by other scripting ele-
ments on a specific JSP page. Multiple declarations may appear within a single tag,
but each declaration must be a complete declarative statement in the designated
scripting language. White space after the opening delimiter and before the closing
delimiter is optional, but recommended to improve readability. Variables defined as
declarations become instance variables of the servlet class into which the JSP page is
translated and compiled. Since variables specified via JSP declarations are directly
translated into variables of the corresponding servlet class, they may also be used to
declare class variables, whose values are shared among all instances of a class rather
than being specific to an individual instance. Methods defined via declarations
become methods of the servlet class into which the JSP page is compiled. Class
methods, also known as static methods, are associated with the class itself, rather
than individual instances, and may be called without requiring access to an instance
of the class. In fact, class methods are typically called simply by prepending the
name of the class to the name of the method. Class methods may reference only
class variables, not instance variables.



<jsp:directive.include> 705
Examples

<%! private int x = 0, y = 0; %>

<jsp:declaration> String units = ”ft”; </jsp:declaration>

<%!
  public long fact (long x) {
    if (x == 0)
      return 1;
    else
      return x * fact(x-1);
  }
%>

E.4 <jsp:directive.include>

The include directive enables page authors to include the contents of one file in
another. The file to be included is identified via a local URL, and the directive has
the effect of replacing itself with the contents of the indicated file.

Syntax

XML: <jsp:directive.include file=”localURL” />
Standard: <%@ include file=”localURL” %>

Description
There are no restrictions on the number of include directives that may appear in a
single JSP page. There are also no restrictions on nesting; it is completely valid for a
JSP page to include another JSP page, which itself includes one or more others. All
included pages must use the same scripting language as the original page. The value
of the include directive’s file attribute can be specified as an absolute path on the
local server, or relative to the current page, depending upon whether or not it starts
with a forward slash character.

Examples

<%@ include file=”includes/navigation.jsp” %>

<%@ include file=”/shared/epilogue/copyright.html” %>



706 APPENDIX E

JSP syntax reference
E.5 <jsp:directive.page>

The page directive is used to convey special processing information about the page
to the JSP container. The page directive supports a wide range of attributes and
associated functionality, as summarized in table E.1.

Syntax

XML: <jsp:directive.page attribute1=”value1” attribute2=”value2”      
attribute3=… />

Standard:  <%@ page attribute1=”value1” attribute2=”value2” attribute3=… %>

Description
The page directive does not directly produce any output that is visible to end users
when the page is requested; instead, it generates side effects that change the way the
JSP container processes the page. The page directive supports a number of
attributes. With the exception of the import attribute, however, no individual page
directive attribute may be specified multiple times on the same page.

Table E.1 Attributes supported by the page directive 

Attribute Value Default Examples

info Text string None info=”Registration form.”

language Scripting language 
name

”java” language=”java”

contentType MIME type,
character set

See first 
example

contentType=”text/html;charset=ISO-
8859-1”
contentType=”text/xml”

pageEncoding ISO character set ISO-8859-1 pageEncoding="ISO-8859-5"

extends Class name None extends=”com.taglib.wdjsp.MyJspPage”

import Class and/or 
package names

None import=”java.net.URL”
import=”java.util.*, java.text.*”

session Boolean flag ”true” session=”true”

buffer Buffer size, or 
false

”8kb” buffer=”12kb”
buffer=”false”

autoFlush Boolean flag ”true” autoFlush=”false”

isThreadSafe Boolean flag ”true” isThreadSafe=”true”

errorPage Local URL None errorPage=”results/failed.jsp”

isErrorPage Boolean flag ”false” isErrorPage=”false”



<jsp:directive.taglib> 707
Examples

<%@ page contentType=”text/xml” %>

<%@ page import=”java.util.*” %>

<%@ page info=”This is a valid set of page directives.” %>
<%@ page language=”java” import=”java.net.*” %>
<%@ page import=”java.util.List, java.util.ArrayList” %>

E.6 <jsp:directive.taglib>

The taglib directive is used to notify the JSP container that a page relies on one or
more custom tag libraries. A tag library is a collection of custom tags that can be
used to extend the functionality of JSP on a page-by-page basis.

Syntax

XML: <jsp:directive.taglib uri=”tagLibraryURI” prefix=”tagPrefix” />
Standard: <%@ taglib uri=”tagLibraryURI” prefix=”tagPrefix” %>

Description
In both cases, the value of the uri attribute indicates the location of the TLD, and
the prefix attribute specifies the XML namespace identifier that will be prepended
to all occurrences of the library’s tags on the page. Once this directive has been
used to indicate the reliance of a page on a specific tag library, all of the custom tags
defined in that library become available for use on that page. Because the tag prefix
is specified external to the library itself, and on a page-specific basis, multiple librar-
ies can be loaded by a single page without the risk of conflicts between tag names. If
two libraries define tags with the same name, a JSP page would still be able to load
and use both libraries since it can distinguish between those tags via their prefixes.
As such, there are no restrictions on how many taglib directives may appear on a
page, as long as each is assigned a unique prefix. If, however, the JSP container can-
not find the TLD at the indicated location, or the page references a tag that is not
actually defined in the library, an error will result when the JSP container tries to
compile the page.



708 APPENDIX E

JSP syntax reference
Examples

<jsp:directive.taglib uri=”/localTags” prefix=”my”/>

<%@ taglib uri=”/EncomTags” prefix=”mcp” %>
<mcp:showUser user=”flynn”>
  firstname, lastname, idnumber
</mcp:showUser>

E.7 <jsp:expression>

Expressions are code fragments evaluated at run time. The JSP expression element is
explicitly intended for content generation, displaying the output of the code frag-
ment’s execution into the page content.

Syntax

XML: <jsp:expression> expression </jsp:expression>
Standard: <%= expression %>

Description
In both syntax cases, the expression should be a valid and complete scripting lan-
guage expression, in whatever scripting language has been specified for the page.
Note that no end-of-line marker (in Java, the ;) is present. The effect of this ele-
ment is to evaluate the specified expression and substitute the resulting value into
the output of the page, in place of the element itself. JSP expressions can be used to
print out individual variables, or the result of some calculation or other operation.
Any valid scripting language expression is allowed, so calls to methods are likewise
permitted. Expressions can return Java primitive values, such as numbers, charac-
ters, and booleans, or full-fledged Java objects, such as String objects and Java-
Beans. All expression results are converted to character strings before they are
added to the page’s output.

Examples

The value of PI is about <%= Math.PI %>

The time is <%= hours %> <%= (hours < 12) ? ”AM” : ”PM” %>

Hello <%= request.getRemoteUser() %>



<jsp:forward> 709
E.8 <jsp:forward>

The <jsp:forward> action is used to permanently transfer control from a JSP page
to another location on the local server.

Syntax

XML:    <jsp:forward page=”localURL” />

or

<jsp:forward page=”localURL”>
  <jsp:param name=”parameterName1” value=”parameterValue1”/>
  …
  <jsp:param name=”parameterNameN” value=”parameterValueN”/>
</jsp:forward>

Standard: same

Description
The page attribute of the <jsp:forward> action is used to specify this alternate
location to which control should be transferred, which may be a static document, a
CGI, a servlet, or another JSP page. Since the request object is common to both
the original page and the forwarded page, any request parameters that were avail-
able on the original page will also be accessible from the forwarded page. If addi-
tional parameters are supplied, they are passed to the receiving page.

The browser from which the request was submitted is not notified when the
request is transferred to this alternate URL. In particular, the location field at the
top of the browser window will continue to display the URL that was originally
requested. Any content generated by the current page is discarded, and processing
of the request begins anew at the alternate location. For added flexibility, the
<jsp:forward> action supports the use of request-time attribute values. In addi-
tion, the <jsp:param> tag may be used to specify additional request parameters.

For the specific case when control is transferred to another JSP page, the JSP con-
tainer will automatically assign a new pageContext object to the forwarded page.
The request object and the session object, though, will be the same for both the
original page and the forwarded page. Sharing of the application object depends
upon whether or not the two pages are both part of the same application. Thus,
some, but not all, of the attribute values accessible from the original page will be
accessible on the forwarded page, depending upon their scope: page attributes are
not shared, request and session attributes are, and application attributes may or may
not be. 



710 APPENDIX E

JSP syntax reference
Examples

<jsp:forward page=”showresults.jsp”>
  <jsp:param name=”header” value=”Results of Query”/>
  <jsp:param name=”color” value=”blue”/>
</jsp:forward>

<% if (! database.isAvailable()) { %>
// Notify the user about routine maintenance.
<jsp:forward page=”db-maintenance.html”/>

<% } %>
<%-- Database is up, proceeed as usual... --%>

E.9 <jsp:getProperty>

The <jsp:getProperty> action is the primary way to access a bean’s properties in JSP.

Syntax

XML: <jsp:getProperty name=”bean name” property=”property name”/>
Standard: same

Description
Unlike the <jsp:useBean> action which performs some work behind the scenes
but doesn’t produce any output, the <jsp:getProperty> action produces content
that we can see in the HTML generated by the page. The name attribute specifies the
bean we are accessing, and should correspond to the identifier we selected for the
bean in the <jsp:useBean> tag’s id attribute. In the resulting HTML that is dis-
played at run time, this tag is replaced with the value of the property of the bean
being requested. Of course, since we are creating an HTML document, the property
is first converted into text by the JSP container. You can use as many <jsp:get-
Property> tags in your page as you need. You can intersperse them with HTML to
not only dynamically generate individual values and blocks of text, but to control
attributes of the HTML as well. It is perfectly legal to nest JSP tags inside HTML
attribute values. For example, a bean property could be used to control the page’s
background color, the width of a table, or the source of an image.

Examples

<jsp:getProperty name=”user” property=”department”/>

<jsp:useBean id=”myclock” class=”ClockBean”/>
<html>
<body>



<jsp:include> 711
The Bean says that the time is now:
<jsp:getProperty name=”myclock” property=”time”/>
</body>
</html>

E.10 <jsp:include>

The <jsp:include> action enables page authors to incorporate the content gener-
ated by another local document into the output of the current page.

Syntax

XML: <jsp:include page=”localURL” flush="boolean" />

or

<jsp:include page=”localURL” flush=”true”>

  <jsp:param name=”parameterName1” value=”parameterValue1”/>
  …
  <jsp:param name=”parameterNameN” value=”parameterValueN”/>
</jsp:include>

Standard: same

Description
The output from the included document is inserted into the original page’s output
in place of the <jsp:include> tag, after which processing of the original page
resumes. In contrast to the <jsp:forward> tag, this action is used to temporarily
transfer control from a JSP page to another location on the local server. The page
attribute of the <jsp:include> action is used to identify the document whose out-
put is to be inserted into the current page, and is specified as a URL on the local
server. The included page can be a static document, a CGI, a servlet, or another JSP
page. As with the <jsp:forward> action, the page attribute of the <jsp:include>
action supports request-time attribute values. The <jsp:param> tag may be used to
specify additional request parameters.

The flush attribute of the <jsp:include> action controls whether or not the
output buffer for the current page is flushed prior to including the content from the
included page. As of version 1.2 of the JSP specification the flush attribute is
optional, defaulting to false. In version 1.1 of the JSP specification this attribute is
not only required, it has only one legal value, true. If enabled, the output buffer is
flushed as the first step in performing the <jsp:include> action, forwarding to
another page—including an error page—is not possible. Likewise, setting cookies
or other HTTP headers will not succeed if attempted after processing a



712 APPENDIX E

JSP syntax reference
<jsp:include> tag with buffer flushing enabled. Keep in mind however that even
with this attribute disabled the page buffer may fill up as a result of the included
content, causing an automatic flush.

If the included page changes, its changes will be reflected immediately. In con-
trast, the JSP include directive does not automatically update the including page
when the included file is modified. This is because the include directive takes effect
when the including page is translated into a servlet, effectively merging the base
contents of the included page into those of the original. The <jsp:include> action
takes effect when processing requests, and merges the output from the included
page, rather than its original text.

Examples

<jsp:include page=”/headers/support_header.jsp” flush=”true”/>

<jsp:include page=”topten.jsp” flush=”true”>
  <jsp:param name=”category” value=”books”/>
</jsp:include>

E.11 <jsp:plugin>

The <jsp:plugin> action provides a cross-platform mechanism for incorporating
applets based on the Java 2 platform into JSP pages.

Syntax

XML: 
<jsp:plugin type=”type” code=”objectCode” codebase=”objectCodeBase”
            attribute1=”value1” attribute2=”value2” … />

or

<jsp:plugin type=”type” code=”objectCode” codebase=”objectCodeBase”
     attribute1=”value1” attribute2=”value2” … >

  <jsp:params>
    <jsp:param name=”parameterName1” value=”parameterValue1”/>
    … 
    <jsp:param name=”parameterNameN” value=”parameterValueN”/>
  </jsp:params>
  <jsp:fallback>fallback text</jsp:fallback>
</jsp:plugin>

Standard: same



<jsp:scriptlet> 713
Description 
The <jsp:plugin> action uses Sun Microsystem’s Java plug-in to run an applet or
JavaBean in the end user’s browser. Browser-specific code is inserted into the out-
put of the JSP page for loading the Java plug-in, which is based on the Java 2 JVM,
and running the specified code. The code attribute indicates the Java class to be
run, while the codebase attribute indicates where this class is located on the server.
If value of the type attribute is ”applet”, the specified class is presumed to be an
applet. If this attribute’s value is ”bean”, a JavaBean is assumed. The <jsp:plugin>
action also supports all of the attributes supported by HTML’s <applet> tag, of
which the height and width attributes are required.

Applet parameters are specified via the <jsp:param> tag, and must be delimited
as a group in the body of a <jsp:params> tag. The <jsp:fallback> tag is used to
specify the content that should be displayed if the Java plug-in is not available in the
end user’s browser.

Examples

<jsp:plugin type="bean" code="timer.ser" width=”100” height=”50”/> 

<jsp:plugin type="applet" codebase="plugins"
            code="com.taglib.wdjsp.applets.CountDown"
            width="300" height="50"
            jreversion="1.2">
  <jsp:params>
    <jsp:param name="endDate" value="<%= date %>" />
    <jsp:param name="endTime" value="<%= time %>" />
  </jsp:params>
  <jsp:fallback>Unable to start Java Plug-in for applet.</jsp:fallback>
</jsp:plugin>

E.12 <jsp:scriptlet>

Scriptlets are the primary way to include fragments of code, typically Java, into a JSP
page. Scriptlets can contain arbitrary scripting language statements, which—like
declarations—are evaluated for side effect only. Scriptlets do not automatically add
content to a JSP page’s output.

Syntax

XML: <jsp:scriptlet> scriptlet </jsp:scriptlet>
Standard: <% scriptlet %>



714 APPENDIX E

JSP syntax reference
Description
For either tag style, the scriptlet should be one or more valid and complete state-
ments in the JSP page’s scripting language. Alternatively, a scriptlet can leave open
one or more statement blocks, which must be closed by subsequent scriptlets in the
same page. In the (default) case where the JSP scripting language is Java, statement
blocks are opened using the left brace character (i.e., {) and closed using the right
brace character (i.e., }). If a scriptlet opens a new block without also closing it, then
the Java statements corresponding to any subsequent static content or JSP elements
simply become part of this new block. The block must ultimately be closed by
another scriptlet, or else compilation will fail due to a Java syntax error. A page’s
scriptlets will be run for each request received by the page—any variables intro-
duced in a scriptlet are available for use in subsequent scriptlets and expressions on
the same page (subject to variable scoping rules). 

Examples

<jsp:sriptlet>
Date now = new java.util.Date();
out.println("The time is: " + now);
</jsp:scriptlet>

<table>
<% for (int j=0; j < 11; ++j) { %>
<tr><td><%= j %></td></tr>
<% } %>
</table>

E.13 <jsp:setProperty>

The <jsp:setProperty> action is used to modify the properties of beans used in
the page.

Syntax

XML: 

<jsp:setProperty name=”bean name” property=”property name” value=”value”/>

or

<jsp:setProperty name=”bean name” property=”property name” param=”param”/>

or



<jsp:useBean> 715
<jsp:setProperty name=”bean name” property=”*”/>

Standard: same

Description
The <jsp:setProperty> action can be used anywhere within the page to modify a
bean’s properties, as long as it appears after the <jsp:useBean> action used to
define that bean. The bean is identified via the action’s name attribute, which should
correspond to the identifier originally assigned to a bean via the id attribute of its
<jsp:useBean> tag. Only properties that have public setter methods can be modi-
fied via the <jsp:setProperty> action. The property to be set is specified via the
tag’s property attribute.

The value attribute is used to specify the value to be assigned to the indicated
property, and may be a JSP expression representing a request-time attribute value.
Alternatively, the param attribute can be used to specify the name of a request
parameter whose value is to be copied to the bean property. As a special case, if the
value of the property attribute is ”*”, the JSP container will identify all of the
request parameters whose names match those of bean properties, and make the cor-
responding assignments from the request parameter values to those matching prop-
erties. In all cases, the JSP container will attempt to coerce values specified by the
value attribute or obtained from request parameters into the appropriate type for
the specified property.

At run time the JSP container evaluates the tags in a page in the order they
appear, from top to bottom. Any property values that you set will only be reflected
in JSP elements that follow the <jsp:setProperty> tag within the page. 

Examples

<jsp:setProperty name=”user” property=”daysLeft” value=”30”/>

<jsp:setProperty name=”user” property=”daysLeft” value=”<%= 15 * 2 %>”/>

<jsp:useBean id=”clock” class=”com.taglib.wdjsp.ClockBean”>
  <jsp:setProperty name=”clock” property=”timezone” value=”CST”/>
</jsp:useBean>

E.14 <jsp:useBean>

The <jsp:useBean> action tells the page that we want to make a bean available to
the page. The tag is used to create a bean or fetch one from the server.



716 APPENDIX E

JSP syntax reference
Syntax

XML: <jsp:useBean id=”bean name” class=”class name”/>

or

<jsp:useBean id=”bean name” class=”class name”>
  initialization code

</jsp:useBean>

Standard: same

Description
The attributes of this tag specify the type of bean you wish to use and assign it a
name that can later be used to refer to it. The <jsp:useBean> action comes in two
forms, a single empty tag and a matching pair of start and end tags that contain the
body of the tag, which can be used to specify initialization code. In its simplest and
most straightforward form, the <jsp:useBean> tag requires only two attributes, id
and class. The attributes of this tag are summarized in table E.2.

The <jsp:useBean> action creates or retrieves an instance of the bean and asso-
ciates it with the identifier specified by the id attribute. This identifier can be used
to access the bean from scripting elements, or in subsequent <jsp:setProperty>
or <jsp:getProperty> tags. If a bean is not located in the scope specified by the
scope attribute, a bean instance is created using the bean class’s default constructor,
and any content specified in the body of the <jsp:useBean> tag is processed.
Otherwise, the bean is simply retrieved from the corresponding scope and the tag’s
body content is ignored.

Table E.2 Attributes of the <jsp:useBean> tag

Attribute Value Default Example Value

id Java identifier none myBean

scope page, request, session, 
application

page session

class Fully qualified Java class 
name

none java.util.Date

type Fully qualified Java class 
name

class value com.taglib.wdjsp.AbstractPerson

beanName Fully qualified Java class or 
serialized bean

none com.taglib.wdjsp.USCurrency.ser



<jsp:useBean> 717
Examples

<jsp:useBean id=”now” class=”java.util.Date”/>

<% @page import=”com.taglib.wdjsp.*” %>
<jsp:useBean id=”user” class=”RegisteredUserBean”/>

<jsp:useBean id=”user” class=”RegisteredUser” scope=”session”/>

<jsp:useBean id=”news” class=”NewsReports” scope=”request”>
  <jsp:setProperty name=”news” property=”category” value=”financial”/>
  <jsp:setProperty name=”news” property=”maxItems” value=”5”/>
</jsp:useBean>



 FJSP API referenc

This appendix provides summary information on the Java classes and interfa
e

ces
defined by the Servlet 2.3 and JSP 1.2 specifications. It is intended as a quick refer-
ence for JSP application developers. Information about inheritance, variables, and
methods is provided for each class and interface, where applicable. Note that depre-
cated methods have been omitted. In addition, changes introduced by these specifi-
cations relative to their 2.2 and 1.1 predecessors are marked with a dagger (†). For
certain classes that are managed by the JSP container and do not provide public
constructors (e.g., javax.servlet.RequestDispatcher), any alternative methods
for obtaining instances of these classes, referred to as factory methods, are listed. For
convenience, table 6.1, summarizing the JSP implicit objects and their types, is
repeated here as well (see table F.1). 

DEFINITION In the parlance of design patterns, the use of one type of object to ab-
stract the instantiation of other types of objects is the factory pattern.
Hence, methods for obtaining instances of a class without calling a
constructor are described as factory methods.  
718



Package javax.servlet 719
F.1 JSP implicit objects

F.2 Package javax.servlet

F.2.1 Interface Filter†

Constructors
No public constructors or factory methods.
Methodspublic void destroy ()
public void doFilter (ServletRequest request, ServletResponse response,
                      FilterChain chain)
    throws java.io.IOException, ServletException
public void init (FilterConfig config) throws ServletException

F.2.2 Interface FilterChain†

Constructors
No public constructors or factory methods.

Table F.1 Implicit objects and their corresponding types

Object Class or Interface Attributes?

pagea

a. The default type for accessing the page implicit object is java.lang.Object.

javax.servlet.jsp.HttpJspPage No

config javax.servlet.ServletConfig No

request javax.servlet.http.HttpServletRequest Yes

response javax.servlet.http.HttpServletResponse No

out javax.servlet.jsp.JspWriter No

sessionb

b. The session implicit object is only available on JSP pages that participate in session track-
ing. The default behavior is for all pages to partake in session tracking, but this can be
overridden by specifying a value of false for the session attribute of the page directive.

javax.servlet.http.HttpSession Yes

application javax.servlet.ServletContext Yes

pageContext javax.servlet.jsp.PageContext Yes

exceptionc

c. The exception implicit object is only available on JSP pages that are designated as error
pages by setting the isErrorPage attribute of the page directive to true.

java.lang.Throwable No



720 APPENDIX F

JSP API reference
Methods
public void doFilter (ServletRequest request, ServletResponse response)
    throws java.io.IOException, ServletException

F.2.3 Interface FilterConfig†

Constructors
No public constructors or factory methods.

Methods
public String getFilterName ()
public String getInitParameter (String name)
public java.util.Enumeration getInitParameterNames ()
public ServletContext getServletContext ()

F.2.4 Class GenericServlet 

Inheritance
This is an abstract class.
Implements Servlet, ServletConfig, and java.io.Serializable.

Constructors
public GenericServlet ()

Methods
public void destroy ()
public String getInitParameter (String name)
public java.util.Enumeration getInitParameterNames ()
public ServletConfig getServletConfig ()
public ServletContext getServletContext ()
public String getServletInfo ()
public void init ()throws ServletException
public void init (ServletConfig config) throws ServletException
public void log (String message)
public void log (String message, Throwable t)
public void service (ServletRequest request, ServletResponse response)

throws ServletException, java.io.IOException

F.2.5 Interface RequestDispatcher 

Factory methods
ServletContext.getRequestDispatcher(String URL)
ServletContext.getNamedDispatcher(String URL)
ServletRequest.getRequestDispatcher(String URL)



Package javax.servlet 721
Methods
public void forward (ServletRequest request, ServletResponse response)  

throws ServletException,
          java.io.IOException, java.lang.IllegalStateException
public void include (ServletRequest request, ServletResponse response) 

throws ServletException, java.io.IOException

F.2.6 Interface servlet

Constructors
No public constructors or factory methods.

Methods
public void destroy ()  
public ServletConfig getServletConfig ()
public String getServletInfo ()
public void init (ServletConfig config) throws ServletException
public void service (ServletRequest request, ServletResponse response)

throws ServletException, java.io.IOException

F.2.7 Interface ServletConfig

Factory methods
Servlet.getServletConfig()

Methods
public String getInitParameter (String name)  
public java.util.Enumeration getInitParameterNames ()
public ServletContext getServletContext ()
public String getServletName ()

F.2.8 Interface ServletContext

Factory methods
Servlet.getServletContext()
ServletConfig.getServletContext()

Methods
public String getAttribute (String name)  
public Java.util.Enumeration getAttributeNames ()
public ServletContext getContext (String uripath)
public String getInitParameter (String name)  
public Java.util.Enumeration getInitParameterNames ()
public int getMajorVersion ()
public String getMimeType (String file)
public int getMinorVersion ()



722 APPENDIX F

JSP API reference
public RequestDispatcher getNamedDispatcher (String URL)
public String getRealPath (String URL)
public RequestDispatcher getRequestDispatcher (String URL)
public java.net.URL getResource (String path)

throws java.net.MalformedURLException
public java.io.InputStream getResourceAsStream (String path)
public java.util.Set getResourcePaths (String path)†

public String getServletContextName ()†

public String getServerInfo ()
public void log (String message)
public void log (String message, Throwable throwable)
public void removeAttribute (String name)
public void setAttribute (String name, Object value)

F.2.9 Interface ServletContextAttributeEvent†

Inheritance
Extends ServletContextEvent.

Constructors
public ServletContextAttributeEvent (ServletContext source,
                                     String name, String value)

Methods
public String getName ()
public String getValue ()

F.2.10 Interface ServletContextAttributeListener† 

Inheritance
Extends java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void attributeAdded (ServletContextAttributeEvent event)
public void attributeRemoved (ServletContextAttributeEvent event) 
public void attributeReplaced (ServletContextAttributeEvent event)

F.2.11 Interface ServletContextEvent† 

Inheritance
Extends java.util.EventObject.



Package javax.servlet 723
Constructors
public ServletContextEvent (ServletContext source)

Methods
public ServletContext getServletContext ()

F.2.12 Interface ServletContextListener†

Inheritance
Extends java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void contextDestroyed (ServletContextEvent event)
public void contextInitialized (ServletContextEvent event)

F.2.13 Class ServletException

Inheritance
Extends Exception.

Constructors
public ServletException ()
public ServletException (String message)
public ServletException (String message, Throwable rootCause)
public ServletException (Throwable rootCause)

Methods
public Throwable getRootCause ()

F.2.14 Class ServletInputStream

Inheritance
This is an abstract class.
Extends java.io.InputStream.

Factory methods
ServletRequest.getInputStream()

throws IllegalStateException, java.io.IOException



724 APPENDIX F

JSP API reference
Methods
public int readLine (byte[] b, int offset, int length)

throws java.io.IOException

F.2.15 Class ServletOutputStream

Inheritance
This is an abstract class.
Extends java.io.OutputStream.

Factory methods
ServletResponse.getOutputStream()

throws IllegalStateException, java.io.IOException

Methods
public void print (boolean b) throws java.io.IOException
public void print (char c) throws java.io.IOException
public void print (double d) throws java.io.IOException
public void print (float f) throws java.io.IOException
public void print (int i) throws java.io.IOException
public void print (long l) throws java.io.IOException
public void print (String s) throws java.io.IOException
public void println () throws java.io.IOException
public void println (boolean b) throws java.io.IOException
public void println (char c) throws java.io.IOException
public void println (double d) throws java.io.IOException
public void println (float f) throws java.io.IOException
public void println (int i) throws java.io.IOException
public void println (long l) throws java.io.IOException
public void println (String s) throws java.io.IOException

F.2.16 Interface ServletRequest

Constructors
No public constructors or factory methods.

Methods
public String getAttribute (String name)  
public java.util.Enumeration getAttributeNames ()
public String getCharacterEncoding ()
public int getContentLength ()  
public String getContentType ()
public ServletInputStream getInputStream ()

throws IllegalStateException, java.io.IOException
public java.util.Locale getLocale ()
public java.util.Enumeration getLocales ()



Package javax.servlet 725
public String getParameter (String name) 
public String[] getParameterMap (String name)†public java.util.Enumeration get-

ParameterNames ()
public String[] getParameterValues (String name)
public String getProtocol ()
public java.io.BufferedReader getReader ()

throws IllegalStateException,
          java.io.IOException, java.io.UnsupportedEncodingException
public String getRemoteAddr ()
public String getRemoteHost ()
public RequestDispatcher getRequestDispatcher (String URL)
public String getScheme ()
public String getServerName ()
public int getServerPort ()
public boolean isSecure ()
public void removeAttribute (String name)
public void setAttribute (String name, Object value)
public void setCharacterEncoding (String encoding)

throws java.io.UnsupportedEncodingException† 

F.2.17 Class ServletRequestWrapper†

Inheritance
Implements ServletRequest.

Constructors
public ServletRequestWrapper (ServletRequest request)  

Methods
public String getAttribute (String name)  
public java.util.Enumeration getAttributeNames ()
public String getCharacterEncoding ()
public int getContentLength ()  
public String getContentType ()
public ServletInputStream getInputStream ()

throws IllegalStateException, java.io.IOException
public java.util.Locale getLocale ()
public java.util.Enumeration getLocales ()
public String getParameter (String name) 
public String[] getParameterMap (String name)†

public java.util.Enumeration getParameterNames ()
public String[] getParameterValues (String name)
public String getProtocol ()
public java.io.BufferedReader getReader ()

throws IllegalStateException,
          java.io.IOException, java.io.UnsupportedEncodingException
public String getRemoteAddr ()
public String getRemoteHost ()



726 APPENDIX F

JSP API reference
public ServletRequest getRequest ()
public RequestDispatcher getRequestDispatcher (String URL)
public String getScheme ()
public String getServerName ()
public int getServerPort ()
public boolean isSecure ()
public void removeAttribute (String name)
public void setAttribute (String name, Object value)
public void setCharacterEncoding (String encoding)

throws java.io.UnsupportedEncodingException
public void setRequest (ServletRequest request) throws IllegalArgumentException

F.2.18 Interface ServletResponse

Constructors
No public constructors or factory methods.

Methods
public void flushBuffer ()throws java.io.IOException  
public int getBufferSize ()
public String getCharacterEncoding ()
public java.util.Locale getLocale ()
public ServletOutputStream getOutputStream ()

throws IllegalStateException, java.io.IOException
public java.io.PrintWriter getWriter ()

throws IllegalStateException,
          java.io.IOException, java.io.UnsupportedEncodingException
public boolean isCommitted ()
public void reset () throws IllegalStateException
pbulic void resetBuffer () throws IllegalStateException†

public void setBufferSize (int size) throws IllegalStateException
public void setContentLength (int length)
public void setContentType (String type)
public void setLocale (java.util.Locale locale)

F.2.19 Class ServletResponseWrapper†

Inheritance
Implements ServletResponse.

Constructors
public ServletResponseWrapper (ServletResponse request)  

Methods
public void flushBuffer ()throws java.io.IOException  
public int getBufferSize ()



Package javax.servlet.http 727
public String getCharacterEncoding ()
public java.util.Locale getLocale ()
public ServletOutputStream getOutputStream ()

throws IllegalStateException, java.io.IOException
public ServletResponse getResponse ()
public java.io.PrintWriter getWriter ()

throws IllegalStateException,
          java.io.IOException, java.io.UnsupportedEncodingException
public boolean isCommitted ()
public void reset () throws IllegalStateException
pbulic void resetBuffer () throws IllegalStateException†

public void setBufferSize (int size) throws IllegalStateException
public void setContentLength (int length)
public void setContentType (String type)
public void setLocale (java.util.Locale locale)
public void setResponse (ServletResponse response)

throws IllegalArgumentException

F.2.20 Interface SingleThreadModel

This interface defines no variables or methods.

F.2.21 Class UnavailableException

Inheritance
Extends ServletException.

Constructors
public UnavailableException (String message)
public UnavailableException (String message, int seconds)

Methods
public int getUnavailableSeconds ()
public boolean isPermanent ()

F.3 Package javax.servlet.http

F.3.1 Class cookie

Inheritance
Implements Cloneable.

Constructors
public Cookie (String name, String value) throws IllegalArgumentException



728 APPENDIX F

JSP API reference
Methods
public Object clone ()  
public String getComment ()
public String getDomain ()
public int getMaxAge ()
public String getName ()
public String getPath ()
public boolean getSecure ()
public String getValue ()
public int getVersion ()
public void setComment (String comment)
public void setDomain (String domain)
public void setMaxAge (int seconds)
public void setPath (String url)
public void setSecure (boolean flag)
public void setValue (String value)
public void setVersion (int version)

F.3.2 Class HttpServlet

Inheritance
This is an abstract class.
Extends javax.servlet.GenericServlet.
Implements java.io.Serializable, javax.servlet.Servlet, javax.serv-
let.ServletConfig.

Constructors
public HttpServlet ()

Methods
protected void doDelete (HttpServletRequest request,
                         HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected void doGet (HttpServletRequest request,
                      HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected void doHead (HttpServletRequest request,
                       HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected void doOptions (HttpServletRequest request,
                          HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected void doPost (HttpServletRequest request,
                       HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected void doPut (HttpServletRequest request,



Package javax.servlet.http 729
                      HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException

protected void doTrace (HttpServletRequest request,
                        HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
protected long getLastModified (HttpServletRequest request)
protected void service (HttpServletRequest request,
                        HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
public void service (HttpServletRequest request,
                     HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException

F.3.3 Interface HttpServletRequest

Inheritance
Extends javax.servlet.ServletRequest.

Constructors
No public constructors or factory methods.

Class variables
public static final String BASIC_AUTH = ”BASIC”;†

public static final String CLIENT_CERT_AUTH = ”CLIENT_CERT”;†

public static final String DIGEST_AUTH = ”DIGEST”;†

public static final String FORM_AUTH = ”FORM”;†

Methods
public String getAuthType ()  
public String getContextPath ()
public Cookie[] getCookies ()
public long getDateHeader (String name)
public String getHeader (String name) throws IllegalArgumentException
public java.util.Enumeration getHeaderNames ()
public java.util.Enumeration getHeaders (String name)
public int getIntHeader (String name) throws NumberFormatException
public String getMethod ()
public String getPathInfo ()
public String getPathTranslated()
public String getQueryString ()
public String getRemoteUser ()
public String getRequestedSessionId ()
public String getRequestURI ()
public StringBuffer getRequestURL ()†

public String getServletPath ()
public HttpSession getSession ()
public HttpSession getSession (boolean create)



730 APPENDIX F

JSP API reference
public java.security.Principal getUserPrincipal ()
public boolean isRequestedSessionIdFromCookie ()
public boolean isRequestedSessionIdFromURL ()
public boolean isRequestedSessionIdValid ()
public boolean isUserInRole (String role)

F.3.4 Class HttpServletRequestWrapper†

Inheritance
Extends javax.servlet.ServletRequestWrapper.
Implements HttpServletRequest, javax.servlet.ServletRequest.

Constructors
public HttpServletRequestWrapper (HttpServletRequest request)

throws IllegalArgumentException

Methods
public String getAuthType ()  
public String getContextPath ()
public Cookie[] getCookies ()
public long getDateHeader (String name)
public String getHeader (String name) throws IllegalArgumentException
public java.util.Enumeration getHeaderNames ()
public java.util.Enumeration getHeaders (String name)
public int getIntHeader (String name) throws NumberFormatException
public String getMethod ()
public String getPathInfo ()
public String getPathTranslated()
public String getQueryString ()
public String getRemoteUser ()
public String getRequestedSessionId ()
public String getRequestURI ()
public StringBuffer getRequestURL ()
public String getServletPath ()
public HttpSession getSession ()
public HttpSession getSession (boolean create)
public java.security.Principal getUserPrincipal ()
public boolean isRequestedSessionIdFromCookie ()
public boolean isRequestedSessionIdFromURL ()
public boolean isRequestedSessionIdValid ()
public boolean isUserInRole (String role)

F.3.5 Interface HttpServletResponse

Inheritance
Extends javax.servlet.ServletResponse.



Package javax.servlet.http 731
Constructors
No public constructors or factory methods.

Class variables
public static final int SC_ACCEPTED = 202;
public static final int SC_BAD_GATEWAY = 502;
public static final int SC_BAD_REQUEST = 400;
public static final int SC_CONFLICT = 409;
public static final int SC_CONTINUE = 100;
public static final int SC_CREATED = 201;
public static final int SC_EXPECTATION_FAILED = 417;
public static final int SC_FORBIDDEN = 403;
public static final int SC_GATEWAY_TIMEOUT = 504;
public static final int SC_GONE = 410;
public static final int SC_HTTP_VERSION_NOT_SUPPORTED = 505;
public static final int SC_INTERNAL_SERVER_ERROR = 500;
public static final int SC_LENGTH_REQUIRED = 411;
public static final int SC_METHOD_NOT_ALLOWED = 405;
public static final int SC_MOVED_PERMANENTLY = 301;
public static final int SC_MOVED_TEMPORARILY = 302;
public static final int SC_MULTIPLE_CHOICES = 300;
public static final int SC_NO_CONTENT = 204;
public static final int SC_NON_AUTHORITATIVE_INFORMATION = 203;
public static final int SC_NOT_ACCEPTABLE = 406;
public static final int SC_NOT_FOUND = 404;
public static final int SC_NOT_IMPLEMENTED = 501;
public static final int SC_NOT_MODIFIED = 304;
public static final int SC_OK = 200;
public static final int SC_PARTIAL_CONTENT = 206;
public static final int SC_PAYMENT_REQUIRED = 402;
public static final int SC_PRECONDITION_FAILED = 412;
public static final int SC_PROXY_AUTHENTICATION_REQUIRED = 407;
public static final int SC_REQUEST_ENTITY_TOO_LARGE = 413;
public static final int SC_REQUEST_TIMEOUT = 408;
public static final int SC_REQUEST_URI_TOO_LONG = 414;
public static final int SC_REQUEST_RANGE_NOT_SATISFIABLE = 416;
public static final int SC_RESET_CONTENT = 205;
public static final int SC_SEE_OTHER = 303;
public static final int SC_SERVICE_UNAVAILABLE = 503;
public static final int SC_SWITCHING_PROTOCOLS = 101;
public static final int SC_UNAUTHORIZED = 401;
public static final int SC_UNSUPPORTED_MEDIA_TYPE = 415;
public static final int SC_USE_PROXY = 305;

Methods
public void addCookie (Cookie)  
public void addDateHeader (String name, long date)
public void addHeader (String name, String value)



732 APPENDIX F

JSP API reference
public void addIntHeader (String name, int value)
public boolean containsHeader (String name)
public String encodeRedirectURL (String url)
public String encodeURL (String url)
public void sendError (int statusCode)

throws java.io.IOException, IllegalStateException
public void sendError (int statusCode, String message) 

throws java.io.IOException, IllegalStateException
public void sendRedirect (String location) 

throws java.io.IOException, IllegalStateException
public void setDateHeader (String name, long date)
public void setHeader (String name, String value)
public void setIntHeader (String name, int value)
public void setStatus (int statusCode)

F.3.6 Class HttpServletResponseWrapper†

Inheritance
Extends javax.servlet.ServletResponseWrapper.
Implements HttpServletResponse, javax.servlet.ServletResponse.

Constructors
public HttpServletResponseWrapper (HttpServletResponse response)

Methods
public void addCookie (Cookie)  
public void addDateHeader (String name, long date)
public void addHeader (String name, String value)
public void addIntHeader (String name, int value)
public boolean containsHeader (String name)
public String encodeRedirectURL (String url)
public String encodeURL (String url)
public void sendError (int statusCode)

throws java.io.IOException, IllegalStateException
public void sendError (int statusCode, String message) 

throws java.io.IOException, IllegalStateException
public void sendRedirect (String location) 

throws java.io.IOException, IllegalStateException
public void setDateHeader (String name, long date)
public void setHeader (String name, String value)
public void setIntHeader (String name, int value) 
public void setStatus (int statusCode)



Package javax.servlet.http 733
F.3.7 Interface HttpSession

Constructors
No public constructors or factory methods.

Methods
public Object getAttribute (String name) throws IllegalStateException
public java.util.Enumeration getAttributeNames ()

throws IllegalStateException
public long getCreationTime () throws IllegalStateException
public String getId ()
public long getLastAccessedTime ()
public int getMaxInactiveInterval ()
public javax.servlet.ServletContext getServletContext ()†

public void invalidate () throws IllegalStateException
public boolean isNew () throws IllegalStateException
public void removeAttribute (String name) throws IllegalStateException
public void setAttribute (String name, Object value)

throws IllegalStateException
public void setMaxInactiveInterval (int seconds)

F.3.8 Interface HttpSessionActivationListener†

Inheritance
Extends java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void sessionDidActivate (HttpSessionEvent event)  
public void sessionWillPassivate (HttpSessionEvent event)

F.3.9 Interface HttpSessionAttributeListener†

Inheritance
Extends java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void attributeAdded (HttpSessionBindingEvent event)
public void attributeRemoved (HttpSessionBindingEvent event)
public void attributeReplaced (HttpSessionBindingEvent event)



734 APPENDIX F

JSP API reference
F.3.10 Class HttpSessionBindingEvent

Inheritance
Extends java.util.EventObject.
Implements java.io.Serializable.

Constructors
public HttpSessionBindingEvent (HttpSession session, String name)
public HttpSessionBindingEvent (HttpSession session,
                                String name, Object value)†

Methods
public String getName ()  
public HttpSession getSession ()
public Object getValue ()†

F.3.11 Interface HttpSessionBindingListener

Inheritance
Implements java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void valueBound (HttpSessionBindingEvent event)  
public void valueUnbound (HttpSessionBindingEvent event)

F.3.12 Class HttpSessionEvent†

Inheritance
Extends java.util.EventObject.
Implements java.io.Serializable.

Constructors
public HttpSessionEvent (HttpSession session)

Methods
public HttpSession getSession ()



Package javax.servlet.jsp 735
F.3.13 Interface HttpSessionListener†

Inheritance
Extends java.util.EventListener.

Constructors
No public constructors or factory methods.

Methods
public void sessionCreated (HttpSessionEvent event)  
public void sessionDestroyed (HttpSessionEvent event)

F.3.14  Class HttpUtils

Deprecation
This class has been deprecated as of Servlet 2.3. Equivalent functionality is available
via the javax.servlet.ServletRequest and javax.servlet.http.HttpServ-
letRequest interfaces.

Constructors
public HttpUtils ()

Class methods
public static StringBuffer getRequestURL (HttpServletRequest request)  
public static java.util.Hashtable parsePostData (int length,
                                                 ServletInputStream in)

throws IllegalArgumentException
public static java.util.Hashtable parseQueryString (String queryString)

throws IllegalArgumentException

F.4 Package javax.servlet.jsp

F.4.1 Interface HttpJspPage

Inheritance
Extends JspPage.

Constructors
No public constructors or factory methods.



736 APPENDIX F

JSP API reference
Methods
public void _jspService (HttpServletRequest request,
                         HttpServletResponse response)

throws ServletException java.io.IOException 

F.4.2 Class JspEngineInfo

Inheritance
This is an abstract class.

Factory methods
JspFactory.getEngineInfo()

Methods
public String getSpecificationVersion ()  

F.4.3 Class JspException

Inheritance
Extends Exception.
Implements java.io.Serializable.

Constructors
public JspException ()
public JspException (String message)
public JspException (String message, Throwable rootCause)†

public JspException (Throwable rootCause)†

Methods
public Throwable getRootCause ()

F.4.4 Class JspFactory

Inheritance
This is an abstract class.

Factory methods
JspFactory.getDefaultFactory()

Class methods
public static JspFactory getDefaultFactory()
public static void setDefaultFactory (JspFactory defaultFactory)



Package javax.servlet.jsp 737
Methods
public JspEngineInfo getEngineInfo ()
public PageContext getPageContext (javax.servlet.Servlet servlet,
                                   javax.servlet.ServletRequest request,
                                   javax.servlet.ServletResponse response,
                                   String errorPageURL,
                                   boolean needsSession, int bufferSize,
                                   boolean autoFlush)
public void releasePageContext (PageContext context)

F.4.5 Interface JspPage

Inheritance
Extends javax.servlet.Servlet.

Constructors
No public constructors or factory methods.

Methods
public void jspDestroy ()
public void jspInit ()

F.4.6 Class JspTagException

Inheritance
Extends JspException.

Constructors
public JspTagException ()
public JspTagException (String message)

F.4.7 Class JspWriter

Inheritance
This is an abstract class.
Extends java.io.Writer.

Constructors
protected JspWriter (int bufferSize, boolean autoFlush)

Class variables
public static final int DEFAULT_BUFFER;
public static final int NO_BUFFER;
public static final int UNBOUNDED_BUFFER;



738 APPENDIX F

JSP API reference
Instance variables
protected boolean autoFlush;
protected int bufferSize;

Methods
public void clear () throws java.io.IOException
public void clearBuffer () throws java.io.IOException
public void close () throws java.io.IOException
public void flush () throws java.io.IOException
public int getBufferSize ()
public int getRemaining ()
public boolean isAutoFlush ()
public void newLine () throws java.io.IOException
public void print (boolean b) throws java.io.IOException
public void print (char c) throws java.io.IOException
public void print (char[] s) throws java.io.IOException
public void print (double d) throws java.io.IOException
public void print (float f) throws java.io.IOException
public void print (int i) throws java.io.IOException
public void print (long l) throws java.io.IOException
public void print (Object o) throws java.io.IOException
public void print (String s) throws java.io.IOException
public void println ()throws java.io.IOException
public void println (boolean b) throws java.io.IOException
public void println (char c) throws java.io.IOException
public void println (char[] s) throws java.io.IOException
public void println (double d) throws java.io.IOException
public void println (float f) throws java.io.IOException
public void println (int i) throws java.io.IOException
public void println (long l) throws java.io.IOException
public void println (Object o) throws java.io.IOException
public void println (String s) throws java.io.IOException

F.4.8 Class PageContext

Inheritance
This is an abstract class.

Factory methods
JspFactory.getPageContext(...)

Class variables
public static final String APPLICATION;
public static final int APPLICATION_SCOPE;
public static final String CONFIG;
public static final String EXCEPTION;
public static final String OUT;



Package javax.servlet.jsp 739
public static final String PAGE;
public static final int PAGE_SCOPE;
public static final String PAGECONTEXT;
public static final String REQUEST;
public static final int REQUEST_SCOPE;
public static final String RESPONSE;
public static final String SESSION;
public static final int SESSION_SCOPE;

Methods
public Object findAttribute (String name)
public void forward (String localURL)

throws javax.servlet.ServletException,
          java.io.IOException, IllegalArgumentException,
          IllegalStateException, SecurityException
public Object getAttribute (String name)

throws NullPointerException, IllegalArgumentException
public Object getAttribute (String name, int scope)

throws NullPointerException, IllegalArgumentException
public java.util.Enumeration getAttributeNamesInScope (int scope)
public int getAttributesScope (String name)
public Exception getException ()
public JspWriter getOut ()
public Object getPage ()
public javax.servlet.ServletRequest getRequest ()
public javax.servlet.ServletResponse getResponse ()
public javax.servlet.ServletConfig getServletConfig ()
public javax.servlet.ServletContext getServletContext ()
public javax.servlet.http.HttpSession getSession ()
public void handlePageException (Throwable t) 

throws javax.servlet.ServletException, java.io.IOException,
          NullPointerException, SecurityException
public void include (String localURL) 

throws javax.servlet.ServletException, java.io.IOException,
          IllegalArgumentException, SecurityException
public void initialize (javax.servlet.Servlet servlet,
                        javax.servlet.ServletRequest request,
                        javax.servlet.ServletResponse response,
                        String errorPageURL, boolean needsSession,
                        int bufferSize, boolean autoFlush)

throws java.io.IOException,
          IllegalStateException, IllegalArgumentException
public JspWriter popBody ()
public BodyContent pushBody ()
public void release ()
public void removeAttribute (String name)
public void removeAttribute (String name, int scope)
public void setAttribute (String name, Object value)

throws NullPointerException



740 APPENDIX F

JSP API reference
public void setAttribute (String name, Object value, int scope)
throws NullPointerException, IllegalArgumentException

F.5 Package javax.servlet.jsp.tagext

F.5.1 Class BodyContent

Inheritance
This is an abstract class.
Extends javax.servlet.jsp.JspWriter.

Constructors
protected BodyContent (javax.servlet.jsp.JspWriter writer)

Methods
public void clearBody ()
public void flush () throws java.io.IOException
public javax.servlet.jsp.JspWriter getEnclosingWriter ()
public java.io.Reader getReader ()
public String getString ()
public void writeOut (java.io.Writer writer) throws java.io.IOException

F.5.2 Interface BodyTag

Inheritance
Extends Tag. As of JSP 1.2, also extends IterationTag.

Constructors
No public constructors or factory methods.

Class variables
public static final int EVAL_BODY_BUFFERED;†

Methods
public void doInitBody () throws javax.servlet.jsp.JspException
public void setBodyContent (BodyContent content)

F.5.3 Class BodyTagSupport

Inheritance
Extends TagSupport.



Package javax.servlet.jsp.tagext 741
Implements BodyTag, Tag, java.io.Serializable. As of JSP 1.2, also implements
IterationTag.

Constructors
public BodyTagSupport ()

Methods
public int doAfterBody ()throws javax.servlet.jsp.JspException
public int doEndTag () throws javax.servlet.jsp.JspException
public void doInitBody () throws javax.servlet.jsp.JspException
public int doStartTag () throws javax.servlet.jsp.JspException
public BodyContent getBodyContent ()
public javax.servlet.jsp.JspWriter getPreviousOut ()
public void release ()
public void setBodyContent (BodyContent content)

F.5.4 Interface IterationTag†

Inheritance
Extends Tag.

Constructors
No public constructors or factory methods.

Class variables
public static final int EVAL_BODY_AGAIN;

Methods
public void doAfterBody () throws javax.servlet.jsp.JspException

F.5.5 Class PageData†

Constructors
public PageData ()

Methods

public java.io.InputStream getInputStream ()

F.5.6 Interface Tag

Constructors
No public constructors or factory methods.



742 APPENDIX F

JSP API reference
Class variables
public static final int EVAL_BODY_INCLUDE;
public static final int EVAL_PAGE;
public static final int SKIP_BODY;
public static final int SKIP_PAGE;

Methods
public int doEndTag ()throws javax.servlet.jsp.JspException
public int doStartTag () throws javax.servlet.jsp.JspException
public Tag getParent ()
public void release ()
public void setPageContext (javax.servlet.jsp.PageContext context)
public void setParent (Tag parent)

F.5.7 Class TagAttributeInfo

Constructors
public TagAttributeInfo (String name, boolean required,
                         String type, boolean requestTime)

Class methods
public static TagAttributeInfo getIdAttribute (TagAttributeInfo[] array)

Methods
public boolean canBeRequestTime ()
public String getName ()
public String getTypeName ()
public boolean isRequired ()

F.5.8 Class TagData

Inheritance
Implements Cloneable.

Constructors
public TagData (Object[][] attributes)
public TagData (java.util.Hashtable attributes)

Class variables
public static final Object REQUEST_TIME_VALUE;

Methods
public Object clone ()
public Object getAttribute (String name)
public String getAttributeString (String name)



Package javax.servlet.jsp.tagext 743
public String getId ()
public void setAttribute (String name, Object value)

F.5.9 Class TagExtraInfo

Constructors
public TagExtraInfo ()

Methods
public TagInfo getTagInfo ()
public VariableInfo[] getVariableInfo (TagData data)
public boolean isValid (TagData data)
public void setTagInfo (TagInfo info)

F.5.10 Class TagInfo

Constructors
public TagInfo (String tagName, String tagClassName, String bodyContent,
                String infoString, TagLibraryInfo taglib,
                TagExtraInfo tei, TagAttributeInfo[] attributeInfo)
public TagInfo (String tagName, String tagClassName, String bodyContent,
                String infoString, TagLibraryInfo taglib,
                TagExtraInfo tei, TagAttributeInfo[] attributeInfo,
                String displayName, String smallIcon, String largeIcon,
                TagVariableInfo[] tagVariableInfo)†

Class variables
public static String BODY_CONTENT_EMPTY;
public static String BODY_CONTENT_JSP;
public static String BODY_CONTENT_TAG_DEPENDENT;

Methods
public TagAttributeInfo[] getAttributes ()
public String getBodyContent ()
public String getDisplayName ()†

public String getInfoString ()
public String getLargeIcon ()†

public String getSmallIcon ()†

public String getTagClassName ()
public TagExtraInfo getTagExtraInfo ()
public TagLibraryInfo getTagLibrary ()
public String getTagName ()
public VariableInfo getVariableInfo (TagData data)
public boolean isValid (TagData data)
public void setTagExtraInfo (TagExtraInfo tei)†

public void setTagLibrary (TagLibrary library)†



744 APPENDIX F

JSP API reference
F.5.11 Class TagLibraryInfo

Inheritance
This is an abstract class.

Constructors
No public constructors or factory methods.

Methods
public String getInfoString ()
public String getPrefixString ()
public String getReliableURN ()
public String getRequiredVersion ()
public String getShortname ()
public TagInfo getTag (String shortname)
public TagInfo[] getTags ()
public String getURI ()

F.5.12 Class TagLibraryValidator†

Inheritance
This is an abstract class.

Constructors
public TagLibraryValidator ()

Methods
public java.util.Map getInitParameters ()
public void release ()
public void setInitParameters (java.util.Map map)
public String validate (String prefix, String uri, PageData page)

F.5.13 Class TagSupport

Inheritance
Implements Tag, java.io.Serializable. As of JSP 1.2, also implements
IterationTag.

Constructors
public TagSupport ()

Class methods
public static final Tag findAncestorWithClass (Tag from, Class klass)



Package javax.servlet.jsp.tagext 745
Methods
public int doAfterBody () throws javax.servlet.jsp.JspException
public int doEndTag () throws javax.servlet.jsp.JspException
public int doStartTag () throws javax.servlet.jsp.JspException
public String getId ()
public Tag getParent ()
public Object getValue (String name)
public java.util.Enumeration getValues ()
public void release ()
public void removeValue (String name)
public void setId (String id)
public void setPageContext (javax.servlet.jsp.PageContext context)
public void setParent (Tag parent)
public void setValue (String name, Object value)

F.5.14 Class TagVariableInfo†

Constructors
public TagVariableInfo (String nameGive, String nameFromAttribute,
                        String className, boolean declare, int scope)

Methods
public String getClassName ()
public boolean getDeclare ()
public String getNameFromAttribute ()
public String getNameGiven ()
public int getScope ()

F.5.15 Interface TryCatchFinally†

Constructors
No public constructors or factory methods.

Methods
public void doCatch (Throwable t) throws Throwable
public void doFinally ()

F.5.16 Class VariableInfo 

Constructors
public VariableInfo (String variableName, String className,
                     boolean declare, int scope)

Class variables
public static int AT_BEGIN;
public static int AT_END;



746 APPENDIX F

JSP API reference
public static int NESTED;

Methods
public String getClassName ()
public boolean getDeclare ()
public int getScope ()
public String getVarName ()



index
Symbols

.CVS file 488

.NET 7
:getProperty 609, 613
:setProperty 588, 609, 612
:useBean 588
<% and %> delimiters 32, 33

in JSP 10
origins in ASP 7

<%= delimeter 36
<%@ include %>. See include directive
<%@ page %> 53
<%@ taglib %> directive 50
<applet> 683, 685, 713
<attribute> 541, 563
<BASE> 393
<body-content> 539, 568
<context-param> 412, 413
<declare> 540, 558
<description> 397, 406, 537, 540, 541, 543
<display-nam> 540
<display-name> 397, 406, 536
<distributable> 397
<EMBED> 685
<error-page> 413
<example> 543
<filter> 406
<filter-class> 407
<filter-mapping> 406, 407
<filter-name> 407
<icon> 397, 406
<init-param> 399, 406, 537
<init-parameter> 633
<input> 446, 447–449
<jsp:declaration> 84, 627, 638
<jsp:directive.include> 80

<jsp:directive.page> 69
<jsp:expression> 88, 627, 638
<jsp:fallback> 685, 689
<jsp:forward> 75, 106, 117, 122, 125, 126, 158–

159, 427, 709
<jsp:getProperty> 43, 128, 146–147, 179, 588, 

596, 597, 710
<jsp:include> 82, 106, 117, 124, 125, 158–159, 

238, 240, 421, 633, 711
<jsp:param> 123, 124, 688, 690, 709, 711, 713
<jsp:params> 689, 713
<jsp:plugin> 73, 128, 685, 712
<jsp:root> 625
<jsp:scriptlet> 91, 627, 638
<jsp:setProperty> 43, 128, 148–149, 154, 157, 

179, 542, 596, 613, 714
form support 64
wild card 154, 515

<jsp:text> 626
<jsp:useBean> 43, 128, 142, 145, 151, 192, 584, 

589, 597, 609, 612, 613, 710, 715
type attribute 164

<jsp-file> 402
<jsp-version> 536
<large-icon> 397, 536, 540
<listener> 538
<listener-class> 538
<load-on-startup> 399, 403
<mime-mapping> 411
<mut:ifProperty> 44
<name> 539, 542
<name-from-attribute> 541, 558
<name-given> 540, 558
<OBJECT> 685
<option> 448
<param> 688
<param-name> 399, 407, 537
747



748 INDEX
<param-value> 399, 407, 537
<required> 542
<rtexprvalue> 542, 543
<scope> 540, 558
<select> 448
<servlet> 397, 400
<servlet-class> 398
<servlet-mapping> 400, 475
<servlet-name> 398, 400, 407
<session-config> 412
<session-timeout> 412
<short-name> 536
<small-icon> 397, 536, 540
<table> 35
<tag> 535, 538
<tag-class> 539
<taglib> 405, 535, 662
<taglib-location> 405
<taglib-uri> 405
<tei-class> 539, 556, 583, 588
<textarea> 447
<tlib-version> 536
<type> 543
<url-pattern> 400, 407
<validator> 537
<validator-class> 537
<variable> 540, 558, 583
<variable-class> 540, 558, 588
<welcome-file-list> 397
_jspService() 53, 93

A

absolute URLs 393
abstraction 130

and JavaBeans 13
accept header 473
access control 361
accessor methods 168–169, 171

getter method 168, 171
setter method 168, 171

actions 41, 50, 68, 102, 629
custom 48
standard 48

Active Server Pages 7, 36, 47
ActiveX components 7
addCookie() 419, 421
Allaire ColdFusion. See ColdFusion

Apache
Server 24
Server. See also web server
Software Foundation 8, 12, 676

API for XML Processing 12
applets 8, 683, 689
application beans 163
application flow 231–232, 247
application implicit object 114, 123, 385, 467
application initialization parameters 413
application logic 230–231, 265, 287
application scope 120, 163
application server 264, 699
architecture 233

multitier 263
page-centric 233, 270
requirements 268
servlet-centric 233, 265

architecture multitier 266
ASCII text 475
ASP

See also Active Server Pages
similarities to JSP 11

ASP.NET 7
attribute scope 119
attributes 118
authentication 195, 247, 335, 337, 361
AuthenticationFilter 361, 408
autocommit 216, 223
autoFlush attribute 77, 79, 421
availability 269
AWT 683

B

back button 232, 251, 291
BannerBean 494
base name, Java classes 73
BeanInfo 189, 546, 590, 597, 603, 606
beanName attribute 190
beans. See JavaBeans
Blue Cookie Page 423
BodyContent 548, 570, 588, 596, 740
BodyTag 544, 547, 569, 575, 596, 616, 740
BodyTagSupport 544, 562, 570, 573, 596, 

616, 740
bookmarking 233
boolean properties 178, 180
bound properties 192
browser 472



INDEX 749
buffer 58
buffer attribute 75, 77
buffered output 75, 76

See also output buffering
BufferedReader 469
ByteArrayInputStream 377
ByteArrayOutputStream 377
bytecodes 8

C

C language
as programming language 5

C preprocessor 81
C sharp 7
C++ 6
CachedRowSet 212
caching 161, 163, 481

prevention 109
Calendar 586
CDATA 626, 627, 629
CGI. See Common Gateway Interface
character set 71, 72
checked keyword 448
class methods 87
class path 394, 395
class variables 85
clearBody() 569
client/server protocol 19
Cocoon 12
code generation 489
coin flips 33–35, 40–41
Colburn, Rafe 235
ColdFusion 6–7, 199, 200

similarities to JSP 11
color bars 523
COM 6
command pattern 249, 265, 287
CommandToken 292
comments 68, 97, 98, 702
commit() 216
Common Gateway Interface 4–5

contrast with template systems 6
scripting 468

compilation 7
in ASP.NET 7
into Java bytecodes 8
of JSP into servlets 52
of PHP 7

compilation error 92, 100, 114, 561

component 13
component-centric design 130
components

architecture 13, 130–131, 240
development 131, 140
model 130
persistence 160

composite pages 238
compound interest calculator 152
CompoundInterestBean 184, 187
conditionalization 93, 97, 587

example 33
tenary operator 90

conference booking tool 217
config implicit object 104, 116
configuring beans 181
connection pool 209
ConnectionBean 209, 219
constrained properties 192
container. See servlet, container, JSP container
content comments 98, 702
content handler 638, 645
content type 20, 71, 410, 411, 433, 471, 472
contentType attribute 71, 411, 525
control layer 230–232
cookies 26, 59–61, 67, 76, 106, 126, 128, 419, 

431, 441, 563, 565, 568, 571, 727
restrictions 425

CopyingTLV 635
CORBA 6
CountDown applet 690
CSS-1 483
custom tags 15, 44, 57, 66, 68, 82, 97, 121, 141, 

174, 395, 468, 530, 531, 559, 583, 707
API 544
attributes 533
body content 548
descriptor 82, 405, 531, 535, 556, 559, 567, 

587, 608, 609, 661, 707
hierarchy 614
interaction 614
libraries 405, 698
nested 570
validation 556
versioning 536

D

data beans 139, 271
data sources 200



750 INDEX
databases 87, 254, 264
access 217
database-driven JSPs 202
handling large sets of results 211
handling nulls 207
java.sql package 199
persistent connections 208
persistent ResultSet 211
prepared statements 201, 283–284
type conversion 205

DataBean 610
dates and times

from a database 206
DebugBufferTag 561
declarations 84, 609, 704

method 86
variable 84

declare flag 557
DefaultHandler 646
deployment descriptor 105, 114, 116, 386, 387, 

390, 396, 475
deprecated methods 718
destroy() 25
directives 68

JSP 47
distributed

architectures 263
transactions 269
web applications 397

division of labor 132, 134, 270
DMZ 267, 268, 275
doAfterBody() 549, 569, 573, 577, 600
doCatch() 554, 577
Document Object Model 12, 634, 652
Document Type Definition 11, 396, 623, 665
DocumentBuilder 655
DocumentBuilderFactory 654
doEndTag() 546, 549, 563, 564
doFinally() 554, 578
doGet() 57
doInitBody() 549
DOM. See Document Object Model
doPost() 25, 57
doStartTag() 546, 561, 564, 577, 585, 589, 

598, 617
Drumbeat 2000 700
DTD. See Document Type Definition
dynamic content 470–492

definition 3
history 2–8

justification 3–4
simple JSP examples 32–44

dynamic HTML 441
dynamically generating property values 170

E

EJBs. See Enterprise JavaBeans
electronic mail 432–433, 501

JavaMail 426, 432, 503, 531
Element Construction Set 10
email. See electronic mail
encodeHTML 572
EncodeHtmlTag 573
encodeURL() 570
Encom 335
Enterprise JavaBeans 263, 270

and ColdFusion 6
and Javabeans 264
EJB container 264, 412

Ericsson R320 38
error handling 63, 94, 227, 252

run time 56
tag library validation 632
translation-time 55

error page 79, 120, 126, 425
errorPage attribute 76, 79, 80, 94, 426
EVAL_BODY_AGAIN 549, 600
EVAL_BODY_BUFFERED 577
event listeners 409, 538
example tag library 559
Excel 488
Excel spread sheets 488
exception 63
exception implicit object 80, 120, 426, 427, 

435, 719
expressions 84, 88
extends attribute 53, 72, 104
Extensible Markup Language. See XML
eXtensible Server Pages 12
Extensible Stylesheet Language 

Transformations 12
external content 482
extranet 267

F

fact() 86, 89, 93, 94, 98, 99, 106
factorial 86
factory method 718



INDEX 751
factory pattern 718
failsafe 575
FailsafeTag 576
FAQ 698
FaqBean 276
FaqRepository 279
FaqRepositoryException 285
FaqServlet 312
FetchEmployeeServlet 258
file extension 52, 474
Filter 327, 330, 719
FilterChain 327, 331, 409, 719
FilterConfig 330, 362, 374, 407, 720
filters 327, 406
findAncestorWithClass() 615
firewall 267
flow control 93, 241, 247, 288
Flynn, Kevin 70, 91, 708
for loop 94
form processing

persistent interfaces 447
FormBean 454
forms

and HTTP methods 23
handling 152, 155, 296, 441, 452
persistent interfaces 446–447, 516
submission 155
support in JSP for 64

forProperty 588, 595, 616
tag 596, 618

ForPropertyTagBeanInfo 606
ForPropertyTEI 608
freeMemory() 62

G

GameGrid 91
GET 21

and servlets 25
getAttribute() 243, 246, 249
getAttributeString() 609
getClass() 597
getContextPath() 393
getCookies() 419, 421
getHeaders()

as HTTP-specific method 26
getId() 609
getIndexedReader() 602
getInitParameter() 413
getInitParameters() 633

getInputStream() 632
getLastAccessedTime() 163
getMaxInactiveInterval() 163
getMimeType() 524
getPageContext() 524
getParam() 442
getParameter() 26, 38, 39, 64, 689
getParamValues() 442
getParent() 614, 615
getPathInfo() 249, 401
getPreviousOut() 570, 578
getReader() 602
getRemoteAddr() 27, 39
getRequestDispatcher() 107, 244
getRequestURL() 216, 246, 429
getResource() 394
getResourceAsStream() 394
getServletPath() 246
getString() 569
getter method 168, 171
getVariableInfo() 556, 608, 609
Gregg, Preston 253

H

headers 76, 128
HTTP 20

Hello, world! 31
HelloBean 43, 681
helper class 533, 534, 556, 595, 600, 608

naming convention 608
Hewlett Packard 697
hidden form elements 249, 446
HomeSite 700
HTML

embedding code within 5
encoding 572
entity 447, 572
printed by servlets 10
production by JavaBeans 15
tags 393

HTML. See Hypertext Markup Language
HTTP 72, 419, 422, 441

cookies. See cookies
GET 429
GET method 347
headers 106, 126
POST method 347
protocol 232
status code 414



752 INDEX
HTTP GET. See GET
HTTP POST. See POST
HTTP. See Hypertext Transfer Protocol 18
HttpJspPage 104, 735
HttpResponseWrapper 374
HTTPS 422
HttpServlet 25
HttpServletRequest 25, 39, 64, 106, 393, 419, 

429, 729
HttpServletRequestWrapper 329, 332, 730
HttpServletResponse 25, 108, 419, 730
HttpServletResponseWrapper 329, 333, 376, 732
HttpSession 112, 163, 733
HttpSessionActivationListener 410, 733
HttpSessionAttributeListener 369, 410, 538, 733
HttpSessionBindingEvent 191
HttpSessionBindingListener 114, 190, 210–211, 

734
HttpSessionEvent 734
HttpSessionListener 369, 410, 538, 735
HttpUtils 216, 429
Hypertext Markup Language 18
Hypertext Transfer Protocol 18–23, 57

I

IBM 697
if statement 93
ifProperty 588
IfPropertyTag 588
IIS. See  Internet Information Server
IllegalArgumentException 95
IllegalStateException 125
implicit object 38, 64, 103, 196, 524, 562

attributes 103, 106, 112, 115, 117, 123
import attribute 69, 72, 435, 706
import statement 73
include directive 71, 80, 81, 84, 116, 127, 238, 

239, 629, 705, 712
index 616
index generator 517
indexed properties 137, 150, 172–174, 176, 194, 

510, 600, 610
accessing through bean tags 175

IndexTag 616
industry standards 16
InetAddress 440
info attribute 70
inheritance 718
initialization parameters 104, 114, 116

initializing beans 150
from request 151
properties 156

instance variables 85, 170, 185
Internet Assigned Numbers Authority (IANA) 71, 

411
Internet Information Server. See web server
intranet 267–268
intranet example 335
introspection 167, 590, 595, 599, 602, 610
IntrospectionException 592, 603
introspector 590, 606
invoke() 605
IP address 28, 39, 437
iPlanet 699
isChecked() 443
isErrorPage attribute 79, 120, 435, 719
isNew() 41
ISO-8859-1 character set 71, 72
isSelected() 443
isThreadSafe attribute 85
isValid() 556, 608, 609
iteration 93, 94, 97, 587, 595

example 34
IterationTag 546, 596, 741

J

J2EE. See Java 2 Platform, Enterprise Edition
J2ME. See Java 2 Platform, Micro Edition
J2SE. See Java 2 Platform, Standard Edition
Jakarta Tomcat 31, 405, 698

and JSP 1.2 677
and web applications 681
builds 678
downloading 677
installation and use 676–682
version 3 677
version 4 677

JARs 532, 661
jar command 395
JAR files 385, 395

Java
bytecodes 8
CGI programs in 5
ColdFusion extensions in 6
generating with JSP 489
history 683
on the web 8–11



INDEX 753
Java 2 683
Enterprise Edition (J2EE) 396, 536, 539, 699

Java 2 Platform
Enterprise Edition 15

BluePrints 16
Micro Edition 15
Standard Edition 15

Java APIs for XML Processing 634
Java applets. See  applets
Java Community Process 8, 10, 57, 676
Java Development Kit 677, 697
Java plug-in 128, 684
Java Server Pages

application 163
as a template system 10
Bean tags 140
comments 98
components 202
container 68, 70, 72, 390, 392, 399, 698

version information 116
future outlook 16
history 10
JSP 1.1 126, 535, 536, 539, 549
JSP 1.2 72, 126, 319, 406, 530, 533, 535, 537, 

538, 541, 543, 558, 623, 660, 718
life-cycle methods 87

Java servlet technology. See servlets
Java servlet. See servlet
Java Virtual Machine 8, 684
Java Web Server 10
java.io.Serializable 62
java.sql package 199
JAVA_HOME 679
JavaBeans 13–15, 42–44, 66, 68, 89, 93, 128, 130, 

135, 203, 530, 531, 545, 603
accessibility 157
and EJBs 264
API 135, 166, 191
bean containers 135
configuring 164, 181
constructors 181
containers 135, 137, 166
conventions 166
creating 165
data beans 139
data types 137
defining properties 168
event model 191
from a database 202
indexed property 595

initializing 150, 151, 155
initializing from the request 151
interfaces 189
life span 157, 195
persisting 202–205
properties 135
property sheets 138
removing from scope 195
scope 157
self populating from a database 204
serialized 190
service beans 139
support in JSP for 64
visual 139

JavaMail 426, 432, 503, 531
See also electronic mail 531

JavaScript 7, 19, 67, 133, 296, 298, 437, 451, 485, 
528, 699

cross-frame 439
generating with JSP 437
onChange() handler 439
onKeyPress() handler 440
onSubmit() handler 451

javax.servlet package 25
javax.servlet.Servlet interface 53
javax.sql 199
JAXP. See Java APIs for XML Processing
JCP. See Java Community Process
JDBC 199, 216, 254, 531, 540

data types 205
JDBC 2.0 200, 211, 212

JDBC Data Access API 14
JDK. See Java Deveopment Kit
Jedi training 234
JMeter 700
JNDI 200, 283
JRE 687
JRun 699
JScript 7
JSP

contents of pages 47
JSP 1.2 543
standard tag library. See JSPTL

JSP container 31, 52, 53
See also Jakarrta Tomcat

JSP style sheets 483
JspException 253, 551, 562, 599, 736
JSP-INTEREST 700
JspPage 104, 404, 737
JspTagException 562, 603, 605, 618



754 INDEX
JSPTL (JSP Standard Tag Library) 57
JspWriter 109, 548, 618, 737
JVM. See Java Virtual Machine

L

latin-1 character set 72
life span 157
life-cycle events 87, 538
linked properties 136–137
Linux 697
LISP 5
load balancing 62
log files 114
LoginServlet 344
LogoutServlet 358
Lora 446

M

Macromedia ColdFusion.See ColdFusion
mail merge 6
mail. See electronic mail 531
maintenance 269
makeErrorReport() 427
MANIFEST.MF 532
Manning utility tags 560
Math.random() 33
Matryoshka dolls 327
MD5 292
mediator pattern 242, 286
message digest 252
META-INF directory 532
methods

HTTP 21
Microsoft

Internet Explorer 684, 687
Windows 82, 437, 697

Microsoft Windows 7
ColdFusion on 6

MIME 471
MIME types 71, 410, 411, 433, 471

setContentType() 411
text/html 410

modification date 467
multiformat applications 473
multipage transaction processing 217
multiplication table 35
multithreading 78

See also isThreadSafe attribute

thread safety 77, 85
multitier architectures 263, 266
multivalued properties. See indexed properties

N

NamedRequestDispatcher 246
namespaces

XML 49
NestingTLV 651
Netscape

Application Server 264
Communicator 437, 684, 687

Node 656
NodeList 656
non-HTML content 37, 470–492
null values 180
NumberFormat 562

O

Object 104, 116, 597, 606
onChange() handler 439
onKeyPress() handler 440
onSubmit() handler 451
open source 7, 667, 699
out implicit object 109, 549
out.println() 27, 33, 53
output buffer 76, 125, 128, 421

buffer size 76
clearing 111
default size 75
error pages 79
flushing 111, 125, 126
size parameters 111

P

packages 72, 75, 143
page beans 158
page compiler 401
page compiler servlet 403, 533
page directive 68, 70, 85, 94, 104, 114, 120, 411, 

421, 426, 427, 435, 613, 629, 706, 719
page implicit object 104, 719
page scope 120
page-centric design 233, 270

limitations 241



INDEX 755
PageContext 557, 738
implicit object 117, 123, 303
instance variable 562, 565, 570, 583, 589, 598, 

600, 614
PageData 632, 741
pageEncoding attribute 72
page-to-page communication 294
performance 269

JSP performance 54
persistence 265

long term 190
persistent connections 208
persistent ResultSet 211
PHP 7, 199
plain text output 475
PlotBean 610
ports

TCP 680
POST 21, 429

and servlets 25
precompilation 54, 659
precompiling JSP pages 386, 403, 404
prepared statements 201, 283–284
presentation layer 230–231
PrintWriter 109, 428
process

definition 5
properties 135, 168

data types 137
handling null values 180
indexed 137
linked 136
name conventions 171
read-only, write-only 136

property
JavaBeans 42

property descriptors 603
property sheets 138
PropertyDescriptor 591, 607
PropertyVetoException 192
protocol

client/server 19
definition 18
request/response 19

protocols
bidrectional 19

proxies. See web proxies
public web 267

Q

quote generator 497

R

radio buttons 447
read-only property 171
Recognizer 91
Red Cookie Page 421
reference implementation
reflection 167, 590, 591, 595, 599, 600, 604
relative URL 393
release() 553, 564, 565, 571, 584, 589, 592, 601, 

617, 633
reloading a page 232, 251, 291
removing a bean 195
reportCookies() 431
reportException() 428
reportHeaders() 430
reporting system problems 437
reportParameters() 429
reportRequest() 428
request 24, 448

attributes 103, 106, 159, 243–246, 248, 253, 
446, 720

beans 159
headers 419, 430
HTTP 18
implicit object 38, 64, 105, 123, 196, 419, 423, 

427, 442, 446, 467
parameters 67, 106, 123, 124, 126, 152, 

155–157, 249, 430, 442, 447–449, 
451, 453

scope 120
spoofing 156

request parameters 38
request phase 54
request/response model 19, 24, 52
requestContains() 443
RequestDispatcher 243–245, 247, 253, 446, 720

forward() 244
include() 245

request-time attribute expressions 52
request-time attribute values 52, 122, 124, 126, 

542, 689, 690, 709, 711, 715
XML representation 627

Resin 67, 699
resource pooling 534, 544, 556



756 INDEX
response 24
headers 77, 112, 419, 421
HTTP 18
implicit object 38, 64, 107, 419, 421

ResponseWrapper 374
ResultSet 203, 212

persistent 211
reusability 130–131

and JavaBeans 13
risk factors 269
role-based pages 233
role-based security 336
RoleFilter 364, 408
rollback() 216
rotating banner ad 494
run time

of JSP page 54
run-time errors 76

S

SAX. See Simple API for XML
SAXParser 642
SAXParserFactory 641
scalability 269
scope 92, 119, 164, 195, 557

application 120
of JavaBeans 157
page 158
request 159
session 120

screen mapper 248
ScriptFreeTLV 638
scripting

elements 66, 68, 71, 102
language 66, 80, 84, 89, 104, 601

comments 99
variables 533, 538, 557, 559, 583, 595, 599, 

600, 608, 609
scripting elements 47
scripting language

and JavaBeans 14
in template systems 6

scriptlets 84, 91, 93, 99, 713
and JavaBeans 192

search engine 3
security 156, 195
selected keyword 448
self-populating Beans 204
sendEmail() 432

sending mail. See electronic mail
separation

of presentation and implementation 2, 14, 
41–44

serialization 269
serializable interface 190

server control. See ASP.NET
Server Side JavaScript 199
server.xml 680
service beans 139
service() 25, 53
servlet 9, 98, 104, 122, 124, 126, 128, 159, 233, 

242–249, 253, 265, 270, 386, 397, 402, 446, 
718, 720

and web servers 24
comparison with applets 9
comparison with CGI 9–10
compilation of JSP to 52, 56
container

definition 24
version information 116

drawbacks 10
errors 426
example code 26
history 10
mapping 400
request attributes 247, 253, 446, 720
RequestDispatcher 246
Servlet 2.3 319
Servlet API 2.1 244
Servlet API 2.2 159, 244
Servlet API 2.3 126, 538
servlet interface 25
structure 24
technical overview 23–29
with JSP 242, 287

servlet chaining 326
servlet container

See also Jakarta Tomcat
servlet engine. See servlet container
servlet JSP standards

See Jakarta Tomcat
servlet-centric design 233, 265
ServletConfig 105
ServletContext 114, 244, 385, 413, 721
ServletContextAttributeEvent 722
ServletContextAttributeListener 410, 538, 722
ServletContextEvent 722
ServletContextListener 410, 538, 723
ServletExec 699



INDEX 757
ServletRequest 25, 105, 724
ServletRequestWrapper 329, 332, 725
ServletResponse 25, 107, 726
ServletResponseWrapper 329, 332, 726
session 39, 59–63, 269, 413

attribute 70, 75, 114, 719
beans 160
events 190
ID 568, 570, 571
implicit object 38, 39, 64, 75, 112, 120, 123
management 67, 75, 112, 114, 120, 123, 160, 

567, 568
migration 63
scope 120
timeout 113

session identifier 59
session management 19, 39, 59

special considerations 61
setAttribute() 39, 246, 583, 585
setBodyContent() 548
setContentType() 411
setInitParameters() 633, 640
setMaxAge() 421
setMaxInactiveInterval() 163, 412
setPageContext() 545, 562
setParent() 545, 614
setStatus() 414
setter method 168, 171
shopping cart 161, 190
Simple API for XML 12, 634, 638
SimpleBeanInfo 607
SimpleUserBase 339
SimpleUserDataManager 340
singleton pattern 279, 283
SMTP 432–433
socket connections 507
Solaris 697
source

viewing HTML 35
spawned

definition 5
spread sheets 488
SQL 201, 216, 254, 540
SQLException 285, 414
stack trace 425, 428, 436
standard action

definition 50
startsWithVowel() 86
state

HTTP as not preserving 19

stateful
HTTP as not 19

stateless
HTTP as 19
protocols, implecations of 59

static content 3
example 31

static methods 87
static variables 85
status line

HTTP 20
sticker 499
sticky widgets 441, 515
StringBuffer 428, 574
StringReplaceFilter 372
StringReplaceResponse 375
StringWriter 428
style sheets 483
Submit buttons 449
Sun Microsystems 697
superclass 72
Swing 683
synchronized keyword 78, 284
syntax 48–50
system commands 468

T

table
HTML 35
multiplication 35

tag 544, 561, 615, 741
tag constants

EVAL_BODY_AGAIN 547
EVAL_BODY_BUFFERED 548, 577
EVAL_BODY_INCLUDE 546, 548, 589
EVAL_PAGE 547, 563
REQUEST_TIME_VALUE 556
SKIP_BODY 549, 577, 585, 589, 599, 

600, 618
SKIP_PAGE 547

tag handler 534, 544, 661
naming convention 561
resource management 556
reuse 534, 550

tag libraries. See  custom tags
tag library validator 631

sequencing 632
TagAttributeInfo 559, 742
TagData 556, 609



758 INDEX
TagExtraInfo 539, 556, 558, 608, 743
TagInfo 559, 743
taglib directive 82, 405, 530, 531, 625, 662, 

665, 707
taglib.tld 532, 661
TagLibraryInfo 559, 744
TagLibraryValidator 632, 744
TagSupport 544, 561, 562, 615, 744
TagVariableInfo 559
team size 270
TEI 608

See also TagExtraInfo
Tell a Friend! sticker 499
Telnet

comparison with HTTP 19
template systems 5–8
testing 404
text areas 447, 516
text field 446
throwable 56, 120, 435
timeOfDay 583, 594
TimeOfDayBean 584, 594
TimeOfDayTag 584
TimerBean 161
timestamp 206, 285
TimeZone 586
TLD. See tag library, descriptor 83
TmpServletOutputStream 376
Tomcat. See Jakarta Tomcat
toString() 89
touch 82
transaction 216, 218, 232

integrity 251, 269, 291
management 263
monitors 264
processing 216–217
support 265
token 251, 252

transferring control 117, 122, 125
transformation

XSLT 12
translation 52–56

errors 55
versus execution 54

trigger properties 136, 205
try block 94, 96, 426, 435
TryCatchFinally 554, 575
tutorial 698
type conversion 137, 179

U

Unicode 628
UNIX 82, 109, 468, 680

time 109
UnknownFaqException 285
Uniform Recource Locator. See URL
URL 22, 567

absolute 393
mapping 386, 392, 400
parameters 28, 38
relative 393
rewriting 567, 568

URLDecoder 424
user authentication 195, 335, 337
user-agent 472
UserBean 337
UserDataManager 338
UserSessionManager 341

V

validate() 632
validating

custom tag libraries 533
validation 533

client-side 451
custom tag libraries 537
of JSP pages 12
of XML documents 11
server-side 452

ValidationMessage 632
valueBound() 191
valueUnbound() 191
VariableInfo 557, 609
VariableInfo constants

AT_BEGIN 558
AT_END 558
NESTED 558, 609

velocity 8
View Source 35, 98, 525
virtual private networks 267
visibility 557
visual component Beans 138–139
VPN. See Virtual Private Network
VXML 479

W

WAR. See web archive



INDEX 759
wasNull() 207
WDDX and XML 11
WDDX. See  Web Distributed Data Exchange
web application deployment descriptor. 

See deployment descriptor
web applications 230

from component 133
web archive 385

<context-param> 412
<description> 397
<display-name> 397
<distributable> 397
<icon> 397
<init-param> 399
<large-icon> 397
<load-on-startup> 399
<param-name> 399
<param-value> 399
<servlet> 400
<servlet-class> 398
<servlet-mapping> 400
<servlet-name> 398, 400
<session-config> 412
<session-timeout> 412
<small-icon> 397
<url-pattern> 400
<web-app> 397
<welcome-file-list> 397
classes directory 394
creating 395
deployment descriptor 386
expanded 415, 417
files 390, 392
lib directory 395
registering with JSP container 386

web browser 19–23
Web Distributed Data Exchange 6, 8
web server

communication with external process 4
definition 18

web server clustering 269
web teams 132
web.xml 386, 389, 532, 662
WEB-INF 681
WEB-INF directory 386, 394

classes directory 394, 405
lib directory 395, 405, 661
tlds directory 395, 405, 532

WebLogic 699
WebSphere 160, 264, 699, 700

while loop 94
white space 148
Whois 505
Windows. See Microsoft Windows
Wireless Markup Language 37, 474
withArticle() 86
WML 474
worker beans 139
write-only property 171
WYGIWYG 478, 489
WYGIWYG output 476

X

XML 11–13, 47, 71, 82, 98, 121, 386, 387, 396, 
531, 622

and JSP 12
empty tags 49
entities 629
generating 477
namespace 49, 625, 655, 707
overview 48–50
page translation 69
syntax 51
view of JSP pages 50

XML Path Language 12
XML representation 623

root element 625
xmlns attribute 625
XPath. See XML Path Language
XSLT. See Extensible Stylesheet Language 

Transformations 12
XSP. See eXtensible Server Pages

Z

Zip files 678




	brief contents
	contents
	preface to the second edition
	preface to the first edition
	acknowledgments
	about this book
	about the authors
	authors online
	about the cover illustration
	Introduction
	1.1 What is JSP?
	1.2 Dynamic content on the web
	1.2.1 Why dynamic content?
	1.2.2 Common Gateway Interface
	1.2.3 Template systems
	1.2.4 Java on the Web
	1.2.5 How XML fits in

	1.3 The role of JSP
	1.3.1 The JavaBeans component architecture
	1.3.2 JSP and Java 2 Platform Enterprise Edition


	HTTP and servlets
	2.1 The Hypertext Transfer Protocol (HTTP)
	2.1.1 HTTP basics
	2.1.2 GET versus POST

	2.2 Java servlets
	2.2.1 How a web server uses servlets
	2.2.2 The anatomy of a servlet
	2.2.3 A servlet example


	First steps
	3.1 Simple text
	3.2 Dynamic content
	3.2.1 Conditional logic
	3.2.2 Iteration
	3.2.3 Non-HTML output

	3.3 Processing requests and managing sessions
	3.3.1 Accessing request parameters
	3.3.2 Using sessions

	3.4 Separating logic from presentation
	3.4.1 Reusing logic with JavaBeans
	3.4.2 Abstracting logic with custom tags

	3.5 Review of examples

	How JSP works
	4.1 The structure of JSP pages
	4.1.1 Directives and scripting elements
	4.1.2 Standard and custom actions

	4.2 Behind the scenes
	4.2.1 Translation to servlets
	4.2.2 Translation versus execution

	4.3 What the environment provides
	4.3.1 Automatic servlet generation
	4.3.2 Buffered output
	4.3.3 Session management
	4.3.4 Exception handling
	4.3.5 Implicit objects
	4.3.6 Support for JavaBeans and HTML forms


	Programming JSP scripts
	5.1 Scripting languages
	5.2 JSP tags
	5.3 JSP directives
	5.3.1 Page directive
	5.3.2 Include directive
	5.3.3 Tag library directive

	5.4 Scripting elements
	5.4.1 Declarations
	5.4.2 Expressions
	5.4.3 Scriptlets

	5.5 Flow of control
	5.5.1 Conditionalization
	5.5.2 Iteration
	5.5.3 Exception handling
	5.5.4 A word of caution

	5.6 Comments
	5.6.1 Content comments
	5.6.2 JSP comments
	5.6.3 Scripting language comments


	Actions and implicit objects
	6.1 Implicit objects
	6.1.1 Servlet-related objects
	6.1.2 Input/Output
	6.1.3 Contextual objects
	6.1.4 Error handling

	6.2 Actions
	6.2.1 Forward
	6.2.2 Include
	6.2.3 Plug-in
	6.2.4 Bean tags


	Using JSP components
	7.1 The JSP component model
	7.1.1 Component architectures
	7.1.2 Benefits of a component architecture
	7.1.3 Component design for web projects
	7.1.4 Building applications from components

	7.2 JavaBean fundamentals
	7.2.1 The different types of JavaBeans

	7.3 JSP bean tags
	7.3.1 Tag-based component programming
	7.3.2 Accessing JSP components
	7.3.3 Initializing beans
	7.3.4 Controlling a bean’s scope


	Developing JSP components
	8.1 What makes a bean a bean?
	8.1.1 Bean conventions
	8.1.2 The bean constructor
	8.1.3 Defining a bean’s properties
	8.1.4 Indexed properties
	8.1.5 Implementing bean properties as cursors
	8.1.6 Boolean properties
	8.1.7 JSP type conversion
	8.1.8 Configuring beans

	8.2 Some examples
	8.2.1 Example: a TimerBean
	8.2.2 A bean that calculates interest

	8.3 Bean interfaces
	8.3.1 The BeanInfo interface
	8.3.2 The Serializable interface
	8.3.3 The HttpSessionBindingListener interface
	8.3.4 Other features of the Bean API

	8.4 Mixing scriptlets and bean tags
	8.4.1 Accessing beans through scriptlets
	8.4.2 Accessing scriptlet created objects


	Working with databases
	9.1 JSP and JDBC
	9.1.1 JNDI and data sources
	9.1.2 Prepared statements

	9.2 Database driven JSPs
	9.2.1 Creating JSP components from table data
	9.2.2 JSPs and JDBC data types
	9.2.3 Maintaining persistent connections
	9.2.4 Handling large sets of results
	9.2.5 Transaction processing

	9.3 Example: JSP conference booking tool
	9.3.1 Project overview
	9.3.2 Our database
	9.3.3 Design overview


	Architecting JSP applications
	10.1 Web applications
	10.1.1 Web application flow
	10.1.2 Architectural approaches

	10.2 Page-centric design
	10.2.1 Role-based pages
	10.2.2 Managing page flow with action targets
	10.2.3 Building composite pages
	10.2.4 Limitations of the page-centric approach

	10.3 Servlet-centric design
	10.3.1 Hello, World—with servlets
	10.3.2 JSP and the servlet API
	10.3.3 Servlets for application control
	10.3.4 Servlets for handling application logic
	10.3.5 Servlets as single entry points
	10.3.6 Handling errors in the servlet
	10.3.7 Example: servlet-centric employee browser
	10.3.8 EmployeeBean
	10.3.9 FetchEmployeeServlet
	10.3.10 JSP employee list
	10.3.11 JSP page viewer

	10.4 Enterprise JavaBeans
	10.4.1 What are Enterprise JavaBeans?
	10.4.2 JavaBeans vs. EJBs
	10.4.3 Application servers and EJB containers
	10.4.4 Application design with EJBs

	10.5 Choosing an appropriate architecture
	10.5.1 Application environment
	10.5.2 Enterprise software requirements
	10.5.3 Performance, scalability, and availability
	10.5.4 Technical considerations
	10.5.5 Organizational considerations


	An example JSP project
	11.1 An FAQ system
	11.1.1 Project motivations
	11.1.2 Application requirements
	11.1.3 Application modules
	11.1.4 Building an FAQ component

	11.2 The storage module
	11.2.1 Database schema
	11.2.2 The FaqRepository class
	11.2.3 Storage module exceptions

	11.3 The administration module
	11.3.1 The administration servlet
	11.3.2 The main menu
	11.3.3 Adding an FAQ
	11.3.4 Deleting an FAQ
	11.3.5 Updating an FAQ

	11.4 The web access module
	11.4.1 The FaqServlet
	11.4.2 Viewing a single FAQ
	11.4.3 Viewing all the FAQs
	11.4.4 A table of contents view
	11.4.5 Plain text view


	Introducing filters and listeners
	12.1 Life-cycle event listeners
	12.1.1 Session listeners
	12.1.2 Application listeners

	12.2 Filters
	12.2.1 How filters work
	12.2.2 Filter classes
	12.2.3 Wrapper classes

	12.3 Using filters and listeners

	Applying filters and listeners
	13.1 Application description
	13.2 User authentication
	13.2.1 User account representation
	13.2.2 User management interface
	13.2.3 User management implementation

	13.3 Web authentication
	13.3.1 Session interactions
	13.3.2 Login servlet
	13.3.3 Login pages
	13.3.4 Content pages
	13.3.5 Logout servlet
	13.3.6 Logout pages

	13.4 Access control filters
	13.4.1 Authentication filter
	13.4.2 Role filter

	13.5 Logging listener
	13.5.1 HttpSessionListener methods
	13.5.2 HttpSessionAttributeListener methods

	13.6 Content filter
	13.6.1 Filter methods
	13.6.2 Response wrapper inner class
	13.6.3 Output stream inner class
	13.6.4 More filter methods
	13.6.5 Filter results
	13.6.6 Other content filters


	Deploying JSP applications
	14.1 This means WAR
	14.1.1 WAR is XML
	14.1.2 Waging WAR

	14.2 The art of WAR
	14.2.1 WAR materiel
	14.2.2 Drafting deployment descriptors

	14.3 Maintaining a WAR footing

	Performing common JSP tasks
	15.1 Handling cookies
	15.1.1 Managing cookies
	15.1.2 The Cookie class
	15.1.3 Example 1: setting a cookie
	15.1.4 Example 2: retrieving a cookie

	15.2 Creating error pages
	15.2.1 An erroneous page
	15.2.2 Data collection methods
	15.2.3 Sending electronic mail
	15.2.4 The error page

	15.3 Mixing JSP and JavaScript
	15.4 Building interactive interfaces
	15.4.1 Sticky widgets
	15.4.2 Utility methods
	15.4.3 The example form
	15.4.4 Setting up the form
	15.4.5 Text and hidden fields
	15.4.6 Text areas
	15.4.7 Radio buttons
	15.4.8 Select boxes
	15.4.9 Check boxes
	15.4.10 Form source

	15.5 Validating form data
	15.5.1 Client- and server-side validation
	15.5.2 Example: server-side validation

	15.6 Building a shopping cart
	15.6.1 Overview
	15.6.2 The catalog page
	15.6.3 ShoppingCartItem and InventoryManager
	15.6.4 The ShoppingCart bean
	15.6.5 Displaying the shopping cart

	15.7 Miscellaneous tasks
	15.7.1 Determining the last modification date
	15.7.2 Executing system commands


	Generating non-HTML content
	16.1 Working with non-HTML content
	16.1.1 The importance of MIME
	16.1.2 Controlling the content type
	16.1.3 Detecting your client
	16.1.4 Designing multiformat applications
	16.1.5 Controlling the file extension

	16.2 Text content formats
	16.2.1 Plain text output
	16.2.2 WYGIWYG output (what you generate is what you get)

	16.3 XML documents
	16.3.1 Creating voice XML documents

	16.4 External content
	16.4.1 JSP style sheets
	16.4.2 JavaScript

	16.5 Advanced content formats
	16.5.1 Excel spread sheets
	16.5.2 Code generation


	JSP by example
	17.1 A rotating banner ad
	17.1.1 The BannerBean
	17.1.2 Using the bean

	17.2 A random quote generator
	17.2.1 The QuoteBean
	17.2.2 Using the bean

	17.3 The Tell a Friend! sticker
	17.3.1 The sticker
	17.3.2 The MailForm page
	17.3.3 Sending the mail

	17.4 A JSP Whois client
	17.4.1 The Whois protocol
	17.4.2 Requirements and design considerations
	17.4.3 The WhoisBean
	17.4.4 Building the front end

	17.5 An index generator
	17.5.1 A basic implementation
	17.5.2 An improved version
	17.5.3 Going further

	17.6 A button to view JSP source
	17.6.1 Displaying the source
	17.6.2 Limitations of the view source program
	17.6.3 Adding a view source button to a page
	17.6.4 Viewing source through a bookmark


	Creating custom tags
	18.1 Role of custom tags
	18.2 How tag libraries work
	18.3 Tag library descriptors
	18.3.1 Library elements
	18.3.2 Validator elements
	18.3.3 Listener elements
	18.3.4 Tag elements
	18.3.5 Variable elements
	18.3.6 Attribute elements
	18.3.7 Example element

	18.4 API overview
	18.4.1 Tag handlers
	18.4.2 Tag handler life-cycle
	18.4.3 Helper classes
	18.4.4 Auxiliary classes

	18.5 Example tag library
	18.6 Content substitution
	18.7 Tag attributes
	18.8 Content translation
	18.8.1 URL rewriting
	18.8.2 HTML encoding

	18.9 Exception handling
	18.10 To be continued

	Implementing advanced custom tags
	19.1 Tag scripting variables
	19.1.1 Example tag
	19.1.2 Scripting variable JavaBean

	19.2 Flow of control
	19.2.1 Conditionalization
	19.2.2 Iteration

	19.3 Interacting tags
	19.3.1 Interaction mechanisms
	19.3.2 Index tag

	19.4 The final ingredient

	Validating custom tag libraries
	20.1 Two representations of JSP
	20.2 JSP pages as XML documents
	20.2.1 The root element
	20.2.2 Template text
	20.2.3 Scripting elements
	20.2.4 Request-time attribute values
	20.2.5 Directives and actions
	20.2.6 Sample page

	20.3 Tag library validation
	20.4 Example validators
	20.4.1 Copying validator
	20.4.2 Script-prohibiting validator
	20.4.3 Error handling
	20.4.4 Content handler
	20.4.5 Nesting validator

	20.5 Packaging the tag library
	20.5.1 Packaging a single library
	20.5.2 Packaging multiple libraries

	20.6 For further information

	Changes in the JSP 1.2 API
	A.1 Introduction
	A.2 Changes to the API
	A.2.1 Java 2, Version 1.2 now a requirement
	A.2.2 Servlet API 2.3 required
	A.2.3 XML syntax now fully supported
	A.2.4 Determining the real path
	A.2.5 Redirects are not relative to the servlet context
	A.2.6 Restricted names
	A.2.7 Page encoding attribute
	A.2.8 Flush on include no longer required

	A.3 Web application changes
	A.3.1 New 2.3 web application DTD
	A.3.2 Handling of white space
	A.3.3 Resolving path names in the web.xml file
	A.3.4 Request mappings
	A.3.5 Dependency on installed extensions

	A.4 Custom tag improvements
	A.4.1 Translation time validation
	A.4.2 New tag interfaces
	A.4.3 Changes to the TLD

	A.5 JavaBean changes
	A.5.1 Bean tags cannot implicitly access scriptlet objects
	A.5.2 Fully qualified class names required

	A.6 New servlet features
	A.6.1 Servlet filters
	A.6.2 Application events


	Running the reference implementation
	B.1 Prerequisites
	B.2 Downloading and installing Tomcat
	B.3 Web applications and Tomcat

	Incorporating Java applets
	C.1 Browser support for Java
	C.2 The plug-in action
	C.2.1 Required attributes
	C.2.2 Optional attributes
	C.2.3 Parameters
	C.2.4 Fallback text

	C.3 Example: applet configuration

	JSP resources
	D.1 Java implementations
	D.2 JSP-related web sites
	D.3 JSP FAQs and tutorials
	D.4 JSP containers
	D.5 Java application servers with JSP support
	D.6 JSP development tools
	D.7 Tools for performance testing
	D.8 Mailing lists and newsgroups

	JSP syntax reference
	E.1 Content comments
	E.2 JSP comments
	E.3 <jsp:declaration>
	E.4 <jsp:directive.include>
	E.5 <jsp:directive.page>
	E.6 <jsp:directive.taglib>
	E.7 <jsp:expression>
	E.8 <jsp:forward>
	E.9 <jsp:getProperty>
	E.10 <jsp:include>
	E.11 <jsp:plugin>
	E.12 <jsp:scriptlet>
	E.13 <jsp:setProperty>
	E.14 <jsp:useBean>

	JSP API reference
	F.1 JSP implicit objects
	F.2 Package javax.servlet
	F.2.1 Interface Filter†
	F.2.2 Interface FilterChain†
	F.2.3 Interface FilterConfig†
	F.2.4 Class GenericServlet
	F.2.5 Interface RequestDispatcher
	F.2.6 Interface servlet
	F.2.7 Interface ServletConfig
	F.2.8 Interface ServletContext
	F.2.9 Interface ServletContextAttributeEvent†
	F.2.10 Interface ServletContextAttributeListener†
	F.2.11 Interface ServletContextEvent†
	F.2.12 Interface ServletContextListener†
	F.2.13 Class ServletException
	F.2.14 Class ServletInputStream
	F.2.15 Class ServletOutputStream
	F.2.16 Interface ServletRequest
	F.2.17 Class ServletRequestWrapper†
	F.2.18 Interface ServletResponse
	F.2.19 Class ServletResponseWrapper†
	F.2.20 Interface SingleThreadModel
	F.2.21 Class UnavailableException

	F.3 Package javax.servlet.http
	F.3.1 Class cookie
	F.3.2 Class HttpServlet
	F.3.3 Interface HttpServletRequest
	F.3.4 Class HttpServletRequestWrapper†
	F.3.5 Interface HttpServletResponse
	F.3.6 Class HttpServletResponseWrapper†
	F.3.7 Interface HttpSession
	F.3.8 Interface HttpSessionActivationListener†
	F.3.9 Interface HttpSessionAttributeListener†
	F.3.10 Class HttpSessionBindingEvent
	F.3.11 Interface HttpSessionBindingListener
	F.3.12 Class HttpSessionEvent†
	F.3.13 Interface HttpSessionListener†
	F.3.14 Class HttpUtils

	F.4 Package javax.servlet.jsp
	F.4.1 Interface HttpJspPage
	F.4.2 Class JspEngineInfo
	F.4.3 Class JspException
	F.4.4 Class JspFactory
	F.4.5 Interface JspPage
	F.4.6 Class JspTagException
	F.4.7 Class JspWriter
	F.4.8 Class PageContext

	F.5 Package javax.servlet.jsp.tagext
	F.5.1 Class BodyContent
	F.5.2 Interface BodyTag
	F.5.3 Class BodyTagSupport
	F.5.4 Interface IterationTag†
	F.5.5 Class PageData†
	F.5.6 Interface Tag
	F.5.7 Class TagAttributeInfo
	F.5.8 Class TagData
	F.5.9 Class TagExtraInfo
	F.5.10 Class TagInfo
	F.5.11 Class TagLibraryInfo
	F.5.12 Class TagLibraryValidator†
	F.5.13 Class TagSupport
	F.5.14 Class TagVariableInfo†
	F.5.15 Interface TryCatchFinally†
	F.5.16 Class VariableInfo


	index

