

Programming Java 2
Micro Edition
on Symbian OS
A developer’s guide to MIDP 2.0

Martin de Jode

With
Jonathan Allin, Darren Holland, Alan Newman
and Colin Turfus

Reviewed by

Ivan Litovski, Roy Hayun, George Sewell, Simon Lewis,
Michael Aubert and Hana Bisada

Managing Editor

Phil Northam

Assistant Editor
Freddie Gjertsen

Programming Java 2
Micro Edition
on Symbian OS

Programming Java 2
Micro Edition
on Symbian OS
A developer’s guide to MIDP 2.0

Martin de Jode

With
Jonathan Allin, Darren Holland, Alan Newman
and Colin Turfus

Reviewed by

Ivan Litovski, Roy Hayun, George Sewell, Simon Lewis,
Michael Aubert and Hana Bisada

Managing Editor

Phil Northam

Assistant Editor
Freddie Gjertsen

Copyright 2004 Symbian Ltd

Published by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1T 4LP, UK, without the permission in writing of the Publisher, with the
exception of any material supplied specifically for the purpose of being entered and executed on
a computer system for exclusive use by the purchase of the publication. Requests to the Publisher
should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium,
Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks,
trademarks or registered trademarks of their respective owners. The Publisher is not associated
with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Jode, Martin de.
Programming the Java 2 micro edition for symbian OS: a developer’s guide to MIDP 2.0/
Martin de Jode . . . [et al.].
p. cm.
ISBN 0-470-09223-8
1. Java (Computer program language). 2. Operating systems (Computers) 3. Wireless
communication systems–Programming.

I. Title.
QA76.73.J38J615 2004
005.13′3 – dc22

2004007312

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09223-8

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

Contents

About This Book ix

Author Biographies xiii

Author’s Acknowledgements xvii

Symbian Press Acknowledgements xix

Foreword xxi

Innovation Through Openness xxiii

Section 1: J2ME and MIDP 1

1 Introduction to J2ME 3
1.1 Configurations and Profiles 3
1.2 CLDC and MIDP 7
1.3 CDC and Personal Profile 16
1.4 J2ME on Symbian OS 21
1.5 Summary 22

2 Getting Started 23
2.1 Introduction to MIDP 23
2.2 Helloworld, Turbo Edition 46
2.3 Introduction to Tools for MIDP 54
2.4 Installing and Running a MIDlet 82
2.5 MIDP on Symbian OS Phones 89
2.6 Summary 89

vi CONTENTS

3 MIDP 2.0 and the JTWI 91
3.1 Introduction to the JTWI 91
3.2 The CLDC on Symbian OS 94
3.3 MIDP 2.0 95
3.4 Optional J2ME APIs in the JTWI 155
3.5 MIDP 2.0 and Symbian OS Phones 201
3.6 Summary 202

4 Java APIs for Bluetooth Wireless Technology 205
4.1 Introduction to Bluetooth 205
4.2 Introduction to the Bluetooth APIs 206
4.3 Programming the Bluetooth APIs 208
4.4 L2CAP Protocol 224
4.5 Security 227
4.6 Java Bluetooth API and the MIDP 2.0 Security Model 229
4.7 Sample Code 230
4.8 Development Tools 241
4.9 Java Bluetooth APIs and Symbian OS 244
4.10 Summary 244

5 MIDP 2.0 Case Studies 247
5.1 Introduction 247
5.2 The Expense Application 248
5.3 The Demo Racer Game 282
5.4 The Picture Puzzle 294

Section 2: Writing Quality Code
for Smartphones 317

6 Making Java Code Portable 319
6.1 Introduction 319
6.2 Design Patterns 320
6.3 Portability Issues 326
6.4 Summary 333

7 Writing Optimized Code 335
7.1 Introduction 335
7.2 What Are We Starting With? 336
7.3 Benchmarking 336
7.4 General Guidelines for Optimization 337
7.5 Feedback and Responsiveness 338
7.6 Object Creation 338
7.7 Method Modifiers and Inlining 340
7.8 Strings 343

CONTENTS vii

7.9 Using Containers 348
7.10 How Not To Do It 349
7.11 Copying an Array 351
7.12 Thoughts on Looping 352
7.13 Graphics 358
7.14 LifeTime Case Study 366
7.15 Arithmetic Operations 385
7.16 Design Patterns 386
7.17 Memory Management 388
7.18 JIT and DAC Compilers 390
7.19 Obfuscators 391
7.20 Summary 392

Section 3: The Evolution of the Wireless
Java Market 393

8 The Market, the Opportunities
and Symbian’s Plans 395
8.1 Introduction 395
8.2 The Wireless Java Market 395
8.3 Meeting Market Needs 400
8.4 Providing Advanced Services 402
8.5 Why Java? 406
8.6 Symbian and Java 409
8.7 Java and Digital Rights Management 418
8.8 The Java Verified Program 420
8.9 Beyond Advanced Consumer Services 421
8.10 Trends in Technology 421

Appendix 1: CLDC Core Libraries 423

Appendix 2: MIDP Libraries 429

Appendix 3: Using the Wireless Toolkit Tools
at the Command Line 437

Appendix 4: Developer Resources and Bibliography 439

Appendix 5: Specifications of Symbian OS Phones 445

Index 461

About This Book

In 2001, Symbian’s first book devoted to Java on Symbian OS was
published. Jonathan Allin’s Wireless Java for Symbian Devices (WJSD)
provided an in-depth exposition targeted at programming PersonalJava
on Symbian OS. The embedded Java story has moved on a lot in two
years and so has Symbian’s implementation, so once again we decided
to put pen to paper to produce a new book aimed at helping developers
program Java on the latest generation of Symbian OS phones.

This book is not intended to supersede Jonathan Allin’s WJSD, which
dealt very thoroughly with Symbian’s PersonalJava implementation and
still remains the definitive guide for developers programming PersonalJava
on Symbian devices such as the Nokia 9200 or Sony Ericsson P800 and
P900. Instead, this new book covers very different territory, focusing on
programming MIDP, particularly MIDP 2.0, on Symbian OS.

Symbian’s Java implementation has evolved over the years from a
JDK 1.1.4-based implementation in Symbian OS Version 5.0, through
PersonalJava on Symbian OS Version 6.0 and is now moving, with
Symbian OS Version 7.0 and subsequent releases, to a single Java 2 Micro
Edition (J2ME) CLDC/MIDP-based implementation. The latest generation
of Symbian OS phones support MIDP 2.0 plus a range of additional,
optional APIs, all conforming to Java Specification Requests (JSRs) arrived
at through the Java Community Process.

Phones based on the latest releases of Symbian OS, such as the
Nokia 6600 and Sony Ericsson P900, support MIDP 2.0 as well as
implementations of the Wireless Messaging API (JSR 120), Java Bluetooth
API (JSR 82) and also, in the case of the Nokia 6600, the Mobile Media
API (JSR 135).

This book is not just about MIDP 2.0. Instead we will show developers
how to get the best out of the latest generation of Symbian OS phones,
by providing a practical, in-depth, guide to programming J2ME on these
devices. In addition to a thorough discussion of MIDP we have also
included an in-depth exposition of all the optional J2ME APIs that can be
found on phones such as the Sony Ericsson P900 and Nokia 6600.

x ABOUT THIS BOOK

Our approach has been to illustrate the new MIDP 2.0 features and
optional APIs by way of concrete examples tested on real devices.
In addition to extensive sample code we include a chapter of case
studies that develop more or less complete applications. By adopting this
approach developers will be equipped with code that they know will
run on real devices. Where specifications allow optional functionality we
indicate whether this is supported on Symbian phones. We also point
out known bugs and possible work-arounds. In addition we aim to use
the considerable experience available within Symbian to show the reader
how to write efficient and effective code for constrained devices. To
complete the picture we also discuss what Java has to offer in the wireless
space and how it may enrich the wireless value chain. We also provide
an insight into how Java is likely to evolve on Symbian OS in the future.

In writing this book, our desire has been to give enough information in
one volume for developers to make the most of the Java 2 Micro Edition
on Symbian OS, enabling them to provide the compelling content that
will enrich the wireless ecosystem.

The book is divided three sections:

• Section 1: J2ME and MIDP

• Section 2: Writing Quality Code for Smartphones

• Section 3: The Evolution of the Wireless Java Market

In Section 1 we introduce the Java 2 Micro Edition and the ideas behind
configurations and profiles. We then concentrate on programming MIDP
and the additional APIs that make up the Java platform on the latest
generation of Symbian OS phones.

Section 2 investigates design and implementation considerations in-
volved in writing high-quality code, focusing on the issues of portability
and efficiency.

The final section looks at the strategic importance of Java to the wireless
ecosystem and provides a glimpse as to how Wireless Java may evolve
on Symbian OS.

Who Is This Book For?

The book is aimed at Java developers already programming in the
wireless space or interested in moving into the wireless space and who
wish to know what can be achieved with J2ME on the latest Symbian
OS phones. Enough introductory information and examples are provided
for newcomers to J2ME to get going with MIDP programming, while the
thorough treatment of the new MIDP 2.0 and optional APIs provides more
weighty fare for the experienced MIDP programmer.

ABOUT THIS BOOK xi

Conventions

To help you get the most from the text and keep track of what’s happening,
we’ve used a number of simple conventions throughout this book.

When we refer to words you use in your code, such as classes,
attributes and methods, or to the name of a file, we use this style:
Person class: we obtain the name attribute by invoking the getName

method on our Person instance
When we list code, or the contents of files, we use the follow-

ing convention:

SocketConnection conn = (SocketConnection)Connector.open(url);
DataOutputStream out = conn.openDataOutputStream();
byte[] buf= request.getBytes();
out.write(buf);
out.flush();
out.close();

We show commands typed at the command line like this:

C:\WTK20\apps\Example\src>javac -d tmpclasses -bootclasspath %MIDPAPI%
-classpath %J2MECLASSPATH% *.java

URLs are written: www.symbian.com/developer

Author Biographies

Martin de Jode

Martin graduated from the University of York with a BSc in Physics and,
after a brief spell in industry, returned to academia to undertake research
in the field of non-linear optics at Essex University. Graduating with a
PhD, Martin spent eight years working in research at the London Hospital
Medical College, studying the use of lasers to treat cancer. During this
time he developed a particular interest in using Monte Carlo simulation
to model the interaction of light with biological tissue using Fortran.

Martin joined Symbian in 2000, after completing an MSc in Object
Oriented Software Systems from City University. As a Java Developer
Consultant in Symbian’s Developer Network he spends his time providing
support to Symbian’s Java developer community. In addition to writing
technical papers on PersonalJava and J2ME for Symbian’s website, Martin
has developed numerous utility and sample applications showing how
to make the most of Symbian’s Java platform. Other activities include
delivering training, evangelizing Java on Symbian OS and trying to keep
up with the proliferation of J2ME JSRs.

Outside of work, Martin is passionate about cricket, having spent what
seems like a lifetime playing competitive club cricket in and around the
home counties.

Jonathan Allin

Jonathan is Symbian’s Product Manager for Java Technology. His role
is to ensure that Symbian OS provides a first class Java platform for
mobile phones, and covers Symbian’s Java strategy and implementation
roadmap, partnerships, and, of course, how Java relates to other devel-
opment environments. Jonathan was the lead author of Wireless Java
for Symbian Devices, authored the ‘‘Developing with Java’’ chapter in

xiv AUTHOR BIOGRAPHIES

Professional Symbian Programming, and presents regularly on wireless
Java opportunities and optimizing Java code for mobile devices.

Jonathan has a BSc in Electronics and a DSc in Biomedical Engineering.
He picked up an MBA when working for Acorn Computers, where he
helped develop computers and software for schools. Prior to joining
Symbian in 1999, he worked for Origin BV for three years, where he
first became interested in Java and particularly the role it can play within
the enterprise.

Jonathan is married to Lauren, who is a social worker and essential for
keeping in order their three children: Benjamin, Daniel, and Victoria, who
are into rugby, music, and hockey respectively. Java reminds Jonathan
that computing can be fun, interesting and useful.

Darren Holland

Darren joined Symbian in 2002. He graduated in 1995 with a BSc
in Computing Systems Technology and started his career developing
telephone billing and enterprise fax software in C++ before starting to
work with Java in 1999.

Darren would like to thank the IS department of Symbian who pro-
vided support throughout the development of the Expense application
prototype, ensuring that the resources and infrastructure required were in
place. More importantly, they supported the project remit and supplied
the encouragement that ultimately ensured success. In particular Olivia
Hawkins, Belen Ares Paredes and Tarek Meliti contributed greatly.

Darren would also like to thank his wife Solène for her continual
support and for helping to keep him sane during life’s more stressful
moments. No matter how much Darren enjoys work he would always
rather be sailing!

Alan Newman

Alan Newman is a technology consultant and freelance technical writer,
living in Brighton with his partner Abi and his son, Freddie, who was born
in the summer of 2003. He has been programming since he was 8 years
old when he acquired his first computer, a Sinclair ZX81, before moving
on to the Commodore Pet, and BBC B Micro.

After graduating with a business degree, he began working in the NHS
as an analyst, automating many previously manual data entry tasks for
his department. He then moved into banking and programmed trade
entry and loan collateral management systems on the trade floor of
the Republic National Bank of New York where, in 1998, he took a
keen interest in learning Java and its interaction with the Internet. He

AUTHOR BIOGRAPHIES xv

then spent a year with Internet sports magazine Sportal.com, before
setting up his own company, Sensible Development, which created and
now runs a multiplayer football manager game, which can be found at
www.effeffelle.com.

He is an advocate of plain speaking as a means of preventing that
glazed-over look consumers often show when confronted with technol-
ogy. He also believes that technology should not dictate but instead
enhance consumer and business tasks.

Colin Turfus

Colin graduated from the University of Dundee, Scotland with a BSc
(Hons) in maths and physics, and from the University of Cambridge
with a PhD in applied mathematics. He has researched and lectured at
universities in the UK and in South Korea, publishing papers in fluid
dynamics and computational astrophysics. He became interested in Java
programming while developing intranet-based maths teaching resources
and lecturing about Internet technology in South Korea.

He joined Symbian shortly after its inception in the summer of 1998,
and has been involved since in establishing and building the Symbian
Developer Network, which he now heads. He was a contributing author
to Wireless Java for Symbian Devices.

Colin’s interests include jogging, hill-walking and classical guitar. He
is married to Keum-ye from South Korea. They have three girls: Selina,
Sonya and Emily.

Author’s Acknowledgements

First and foremost I would like to thank my co-authors Alan Newman,
Jonathan Allin, Colin Turfus and Darren Holland without whose help we
would not have been able to create this book.

I must also thank Phil Northam of Symbian Press, whose initial idea
this book was and who lobbied hard for its realization. Also thanks to his
assistant Freddie Gjertsen for his painstaking work in ensuring consistency
in the style and grammar of our work and who kept us all on the straight
and narrow.

I’m also very indebted to the reviewers from Symbian’s Java Engineer-
ing team: Hana Bisada, Roy Hayun, Simon Lewis, Michael Aubert, Ivan
Litovski and George Sewell, the real experts, who develop Symbian’s
Java implementation. They have all spent considerable time ensuring the
correctness and quality of the author’s contributions.

I’m grateful to the guys at Rococo Software for providing us with their
Impronto Simulator for JSR 82, and in particular to Steven Crane for
suggesting numerous improvements to Chapter 5. I’d also like to thank
Jarmo Lahtinen and Janne Levula from Nokia for their advice on aspects
of the MIDP implementation running on the Nokia 6600.

I would also like to extend my thanks to Gaynor Redvers-Mutton who
has ably managed the publication of the book at John Wiley.

Last, but far from least, I must mention the Symbian work placement
students Xi Chen and Sunny Khaila, who provided much of the ground-
work for this book. As well as exploring the MIDP 2.0 specification, they
also produced early prototypes of several of the example applications
featured in the text.

Symbian Press Acknowledgements

Symbian licenses, develops and supports Symbian OS, the platform for
next-generation data-enabled mobile phones. Symbian is headquartered
in London, with offices worldwide. For more information see the Sym-
bian website, www.symbian.com. ’Symbian’, ’Symbian OS’ and other
associated Symbian marks are all trademarks of Symbian Ltd. Symbian
acknowledges the trademark rights of all third parties referred to in
this material.

Thanks to all who have had input into this book, including the many
whose behind-the-scenes work ensured the book was delivered on time!
Let’s not forget the Laughing Gravy and the Stage Door either. . .

About the cover

The cover concept, designed by Jonathan Tastard, was inspired by David
Levin, CEO of Symbian, in a 2003 keynote presentation at Exposium,
where he pronounced:

The mobile phone has traditionally connected the mouth to the ear.
Symbian develops Symbian OS to enable a new generation of connected
communications devices to connect the mouth to the ear to the eye.
To realize this vision, the mobile phone industry is working together to
develop the latest technologies, support open industry standards, and ensure
interoperability between advanced mobile phones as networks evolve from
2.5G to 3G.

Foreword

Tim Lindholm, Architect of the J2ME platform at Sun Microsystems, Inc.

The rate of adoption of the Java platform in wireless devices is unprece-
dented, but more important is the change in perspective that the
adoption reflects.

The desktop and server have relatively long histories as open platforms
and, as such, have evolved developer communities and vibrant markets
for third-party software. In contrast, until recently, wireless devices were
as closed as the legendary mainframes of decades past; the only devel-
opers of software for the early mobile phones were hidden away in the
laboratories of the large companies who made those phones.

Coupled with advances in the raw computational capabilities of the
devices themselves, the development and adoption of the Java 2 Micro
Edition (J2ME) platform has changed all that. Within the last few years,
wireless devices have emerged as a new, open, networked computing
platform deployed on a massive scale. Its effectiveness has been in large
part facilitated by the availability of a standard software architecture,

xxii FOREWORD

one that reduces the difficulty and cost of developing applications while
supporting a broad and competitive market for implementations.

Symbian has been a key player in the creation of this new ecosystem.
The most recent version of Symbian OS incorporates the most current
J2ME platform targeting mobile devices: MIDP 2.0. Symbian OS and
MIDP 2.0 together form an integrated, compelling package spanning the
software stack of a wireless device.

This book focuses on MIDP programming of Symbian OS phones. Far
from just reciting a litany of API descriptions, it uses example applications
to make practical points. It digs into the details that are relevant to good
application design and getting good performance. As well as covering
MIDP 2.0 programming, the book also covers programming for MIDP
1.0, the platform in many already-deployed devices. Finally, the book
explores many of the standard J2ME optional packages that Symbian
OS currently supports, or will support in the near future. The examples
are developed completely, through to their installation and execution on
real devices.

Although presented in the context of Symbian OS, the worldwide
availability of MIDP on wireless devices means that the lessons of this
book are not tied to any particular operating system. This book should
appeal to all developers who want to take better advantage of the wireless
J2ME platform.

Innovation Through Openness

The success of an open operating system for smartphones is closely
linked to the degree to which the functionality of lower levels of software
and hardware can be accessed, modified, and augmented by add-on
software and hardware. Java MIDP 1.0 allowed only modest access to
underlying Symbian OS functionality. Java MIDP 2.0 exploits it much
more fully and this book brings you the most up-to-date information
available for programming Java MIDP 2.0 for Symbian OS. As Java MIDP
2.0 smartphones begin to ship in volume in 2004, we are witnessing the
coming of a third wave of mobile phones.

The first wave was voice-centric mobile phones. Mobile phone man-
ufacturers have performed wonders of optimization on the core feature
of these phones – their ability to provide great mobile voice communi-
cations. Successive generations of products improved their portability,
battery life, reliability, signal handling, voice quality, ergonomics, price,
and usability. In the process, mobile phones became the most successful
consumer electronics product in history.

The second wave was rich-experience mobile phones. Instead of just
conveying voice conversations between mouth and ear, these phones
provided a much richer sensory experience than their predecessors.
High-resolution color screens conveyed data vividly and graphically.
High-fidelity audio systems played quality music through such things
as ringtones and audio files. These phones combined multimedia with
information and communications, to dramatic effect.

But the best was still to come. The primary characteristic of the third
wave of mobile phones is their openness. Openness is an abstract concept,
but one with huge and tangible consequences for developers. The key
driver is that the growing on-board intelligence in modern phones – the
smartness of the hardware and software – can now be readily accessed
by add-on hardware and software. The range of applications and services
that can be used on a phone is not fixed at the time of manufacture,
meaning new applications and services can be added afterwards. The

xxiv INNOVATION THROUGH OPENNESS

phone can be tailored by an operator to suit its customers and these
customers can then add further customizations, reflecting specific needs
or interests.

The Symbian Ecosystem

Open phones allow a much wider array of companies and individuals
to contribute to the value and attractiveness of smartphones. The attrac-
tiveness of a phone to an end-user is no longer determined only by the
various parties involved in the creation of that phone. Over-the-air down-
loads and other late-binding mechanisms allow additional companies
and individuals to try out new ideas, delivering their applications and
services directly to end-users. Many of these ideas may not seem viable at
the time of manufacture. However, the advantage of open phones is that
there is more time and more opportunity for all these new and innovative
ideas to mature into advantageous, usable applications that can make a
user’s life easier – whether it be over-the-air synchronization with a PC,
checking traffic or having fun with 3D games or photo editing.

The real power of open phones arises when add-on services on one
phone are re-used as add-on services on other phones. This allows an
enormous third-party development ecosystem to flourish. These third
parties are no longer tied to the fortunes of any one phone, or any
one phone manufacturer. Moreover, applications that start their lives
as add-ons for one phone can find themselves incorporated at time
of manufacture in subsequent phones, including phones from other
manufacturers. This depends on the commonality of the underlying
operating system. Open standards drive a virtuous cycle of research
and development: numerous companies can leverage the prowess, skills,
experience and success of the Symbian ecosystem.

Symbian OS Phones

Symbian OS phones are currently based on the following user interfaces
open to C++ and Java programmers: the Series 80 Platform (Nokia 9200
Communicator series), the Series 90 Platform (Nokia 7700), the Series 60
Platform (Nokia 6600, 6620, 7650, 3650, 3660, 3620, N-Gage, Siemens
SX1 and Sendo X), and UIQ (Sony Ericsson P800, P900, BenQ P30,
Motorola A920 and A925). The Nokia 6600 was the first smartphone to
include Java MIDP 2.0. Read on for a brief summary of the user interface
families now available.

Mobile Phones with a Numeric Keypad
These phones are designed for one-handed use and require a flexible
UI that is simple to navigate with a joystick, softkeys, jogdial, or any

INNOVATION THROUGH OPENNESS xxv

combination of these. Examples of this come from the Series 60 Platform
which, in addition to the manufacturers listed above, is also licensed to
Panasonic and Samsung. Fujitsu produces a user interface for a range
of phones including the F2102v, F2051 and F900i for NTT DoCoMo’s
FOMA network. Pictured is the Siemens SX1.

Mobile Phones with Portrait Touch Screens
These mobile phones tend to have larger screens than those in the
previous category and can dispense with a numeric keypad altogether. A
larger screen is ideal for viewing content or working on the move, and
pen-based interaction gives new opportunities to users and developers.
The best current example of this form factor is UIQ, which is the platform
for the Sony Ericsson P800 and P900, as well as BenQ P30 and Motorola’s
A920 and A925. The P800, P900 and P30 actually combine elements of
full screen access and more traditional mobile phone use by including a
numeric keypad, while the Motorola smartphones dispense with a keypad
altogether. Pictured is the Sony Ericsson P900.

Mobile Phones with Landscape Screens
These mobile phones have the largest screens of all Symbian OS phones
and can have a full keyboard and may also include a touch screen. With
this type of mobile phone, developers may find enterprise applications
particularly attractive. A current example of the keyboard form factor is
the Series 80 Platform. This is the basis of the Nokia 9200 Communicator
series, and has been used in the Nokia 9210i and Nokia 9290. Based on
the Series 90 Platform, the Nokia 7700 is an example of a touch screen
mobile phone without keyboard, aimed more at high multimedia usage.

xxvi INNOVATION THROUGH OPENNESS

When you’re ready to use the Java programming skills you’ve learned
in this book, you’ll want an up-to-the-minute overview of available
phones, user interfaces and tools. For the latest information, start at
www.symbian.com/developer for pointers to partner websites, other
books, white papers and sample code. If you’re developing technology
that could be used on any Symbian OS phone, you can find more infor-
mation about partnering with Symbian at www.symbian.com/partners.

We wish you an enjoyable experience programming with Symbian OS
and lots of commercial success.

Section 1
J2ME and MIDP

1
Introduction to J2ME

In order to understand how Java 2 Micro Edition (J2ME) lies within the
wider Java landscape it is best to explore the overall Java architecture.
J2ME has been developed primarily as a technology for the execution of
applications on constrained devices. In this case, constrained devices are
mobile phones, PDAs, TV set-top boxes, in-vehicle telemetry, residential
gateways and other embedded devices.

J2ME as a whole can be described as the technology that caters for all
these devices. Given that many of them have limited resources, it would
be imprudent to expect all of these devices to be able to deliver all of the
functionality of the few. The Java community therefore decided that these
devices should be grouped to best reflect their purpose and capabilities.
This would provide a lowest common denominator for each device
group and arrange them into configurations. To further differentiate these
devices and to accommodate vertical markets within each configuration,
profiles were created, refining the Java APIs for each device type.

The following analyzes how J2ME is positioned within the Java archi-
tecture and how the J2ME configurations and profiles complement each
other. It also describes the packages and classes within the commonly
used environments, with special emphasis on MIDP 2.0.

1.1 Configurations and Profiles

1.1.1 Architecture
J2ME is the newest and smallest addition to the Java family. It is the smaller
brother of J2SE (Standard Edition) and the server-based J2EE (Enterprise
Edition). As mentioned, J2ME provides a development environment for
a range of small, constrained devices. Even though J2ME is targeted
at devices with limited capabilities, it has been derived from J2SE and
shows all the characteristics of the Java language. We have already

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

4 INTRODUCTION TO J2ME

introduced the concepts of configurations and profiles; the rest of this
chapter will explain how and why these concepts have been derived and
implemented.

Each combination of configuration and profile matches a group of
products specifically optimized to match the memory, processing power
and I/O capabilities of each device.

The full Java architecture can be seen in Figure 1.1. It shows how the
technology has developed to offer a platform for a range of circumstances.
Enterprise applications can be developed using the J2EE packages, taking
full advantage of the power of large servers capable of transmitting large
chunks of data across networks. The J2SE edition complements J2EE and
provides the basis for desktop-type applications. Already we can see that
these two versions of Java are defined with consideration of processor
power, memory and communication ability: it would be inefficient for
the virtual machine running on a desktop machine (J2SE) to also include
large packages targeted towards an enterprise application (J2EE).

Further inspection of the Java architecture reveals that there are two
groups of special interest to us, under the banner of J2ME. J2ME provides
an environment for developers wishing to develop applications for smaller
devices. This environment has been specialized to cater for machines with
even less capacity.

Optional
Packages

Java 2
Platform,
Enterprise

Edition
(J2EE)

Java 2
Platform,
Standard
Edition
(J2SE)

Optional
Packages

Optional
Packages

Optional
Packages

MIDP

CLDC
CDC

Foundation
Profile

Personal
Basis Profile

Java Card

Personal
Profile

JVM Card VMJVM JVM KVM

Java 2 Platform, Micro Edition (J2ME)

Servers,
enterprise
computers

Servers, personal
computers

High-end PDAs
TV set-top boxes

Embedded
devices

Mobile
phones &
entry-level

PDAs

Smart cards

Figure 1.1 The Java landscape.

CONFIGURATIONS AND PROFILES 5

1.1.2 Configurations
So far we have examined the bigger Java picture and looked at how
J2ME fits within that. We have also established that J2ME provides
an environment for the development and execution of applications for
constrained devices. These devices cover a broad range of functionality
and use: we may want to program devices that provide telemetry data
from a vehicle, or create data applications for a TV set-top box; but we
might instead want to develop applications for mobile phones.

These three examples show immediately why we might want to split
J2ME into configurations. While an application sitting in a motor vehicle
transmitting data back to a server has much in common with a gaming
application transmitting high scores to a server, one thing that becomes
apparent is the differential in power source available to both. One device
is able to draw on the car battery, whereas a mobile phone has to rely
on a rechargeable battery. The requirements in the cost and size of the
hardware are also different. This provides particular constraints on the
capabilities of the processor and therefore the virtual machine within the
device. While all these devices have common attributes, not all of them
are the same. It is therefore necessary to provide a set of base classes
appropriate to each grouping of devices.

A configuration consists of a combination of a virtual machine and a
minimal set of class libraries designed to provide the base functionality
for a distinct set of devices with similar characteristics, such as network
connectivity, processor power and memory. There are two such current
configurations, defined as follows:

• Connected Device Configuration (CDC)
This configuration is designed for devices with more memory, faster
processors and greater network bandwidth. It is appropriate, at least
in the near term, for home automation and automotive entertainment,
navigation, and telemetry systems. A programming model closer to
J2SE simplifies porting existing desktop clients for enterprise systems
to mobile devices that support CDC.

• Connected Limited Device Configuration (CLDC)
This configuration is intended for devices with intermittent network
connections, small processors and limited memory. Expected tar-
gets included two-way pagers, mobile phones and entry-level PDAs.
However, in practice, the functionality delivered by CLDC and the
associated profiles and optional packages is very close to that of CDC.
As a consequence it is used today on most high-end mobile phones,
or smartphones, which are replacing PDAs in the marketplace.

1.1.3 Profiles
Whereas a configuration provides the lowest common denominator for
a group of devices, the profile adds an additional layer on top of the

6 INTRODUCTION TO J2ME

configuration providing APIs for a specific class of device. This creates
the ability for each configuration to be adapted and targeted towards
vertical markets. That is to say, while some devices may appear to have
similar functionality, they do in fact have different requirements in terms
of the available APIs and interfaces to their own hardware. Some mobile
phones, for example, offer more memory, CPU speed or I/O interfaces
than others and therefore might want to offer more in terms of an interface
between the programmer and the hardware.

Currently, four Java Community Process profiles exist across the two
J2ME configurations, but only one of those is a CLDC profile. However,
an additional profile called ’DoJa’, defined by NTT DoCoMo, operates on
the J2ME CLDC APIs and is used on i-mode devices. With only one JCP
profile currently defined, a developer new to J2ME might ask themselves:
why is a profile required at all?

Using the example of two-way pagers as a possible type of CLDC
device, it becomes easier to understand the need for another profile.
We can see there are similarities between two-way pagers and mobile
phones. Both usually connect intermittently over a wireless network, both
can communicate via text type messaging and, possibly, both may store
a certain level of information, such as phone numbers. They will both
also have a screen of some description. However, the user interface (UI)
signals the beginning of the diversity between the two types of device. The
method by which data input is captured and indeed displayed will be very
different. Each device should have a UI in tune with its own capabilities.
While both types of device are CLDC, each will require a separate profile
so that the most appropriate APIs are available to the developer.

Mobile Information Device Profile (MIDP)
This profile offers the core functionality required by mobile applications,
such as the user interface, network connectivity, local data storage and,
importantly, application lifecycle management. As well as the reference
implementation for mobile phones and pagers, there is a second imple-
mentation that caters for the Palm OS. It is known as MIDP for Palm OS
and it provides for the different user interface on such devices.

Information Module Profile (IMP)
This profile is based upon the MIDP 1.0 profile. IMP combined with
CLDC provides a Java application environment targeted at resource-
constrained and embedded networked devices. These devices do not
have rich graphical user interfaces, but their relationship to MIDP 1.0
means that developer skills can be easily transferred to IMP.

Foundation Profile
This profile is the first of three, tiered CDC profiles. It provides a network-
capable implementation without a user interface. It can be combined

CLDC AND MIDP 7

with the Personal Profile and Personal Basis Profile when devices require
a UI.

Personal Profile
This profile is aimed at devices that require full GUI or Internet applet sup-
port, such as high-end PDAs or communicator-type devices. It provides
a full Abstract Window Toolkit (AWT) library and offers web fidelity.
It is capable of running web-based applets designed for the desktop
environment.

Personal Basis Profile
This profile is a subset of the Personal Profile and provides a network-
based environment for network-connected devices that support a limited
GUI or require specialized graphical interfaces. Devices include set-top
boxes and in-vehicle systems.

The Personal Basis Profile and Personal Profile have replaced Person-
alJava technology and provide a clear migration path for PersonalJava
applications to J2ME. Although Personal Information Management and
Telephony APIs are not mandatory in this profile, replacements are being
specified for J2ME use. Both the Personal Basis Profile and Personal Profile
are layered on top of the CDC and Foundation Profile.

1.2 CLDC and MIDP

1.2.1 CLDC
A developer wishing to create applications for mobile devices may be
tempted to ignore the full specification of CLDC. A developer may initially
be interested in getting acquainted with MIDP as a standalone technology.
It is, however, important to understand the underlying technology that
forms MIDP.

The CLDC, as specified by Java Specification Request (JSR) 30
(http://jcp.org/en/jsr/detail?id=30), is the smaller of the two configu-
rations and sets out to define a standard for devices with the following
capabilities:

• 160 KB to 512 KB of total memory budget available for the Java
platform

• 16-bit or 32-bit processor

• low power consumption, often operating on battery power

• intermittent network connection, possibly wireless and limited to a
bandwidth of 9600 bps or less.

The 160 KB memory budget is derived from the minimum hardware
requirements, as follows:

8 INTRODUCTION TO J2ME

• at least 128 KB of non-volatile memory available for the Java Virtual
Machine and CLDC libraries

• 32 KB of volatile memory for the Java runtime object memory.

CLDC itself defines the minimum required Java technology in terms of
libraries and components for small-connected devices. Specifically, this
addresses the Java language itself, the virtual machine definition, core
libraries, I/O capabilities, networking and security.

Interestingly, from an early stage, one of the focuses for the CLDC
definition was to recognize that much of the content for these devices
would come from third-party developers. Another was that the idea of
being able to create applications portable across a range of devices should
be adhered to. This would provide an easier path to revenue generation
and therefore proliferate content for more devices. The nature of Java
means that a programmer can create applications that use the device’s
features without having to actually understand the working of the device.
The developer only needs to comprehend the interface to the device.
CLDC does not guarantee portability and it does not implement any
optional features. Variants of devices within CLDC should be specified
through profiles, rather than the configuration. It must be said that true
application portability can only be obtained if a few principles are applied
during the application design stage. We shall be looking at these issues
later in this book.

1.2.1.1 K-Virtual Machine

Sun’s original VM for CLDC was known as the KVM (which stood
for Kauai Virtual Machine, sometimes also known as the Kilo Virtual
Machine). The CLDC VM is, apart from a few differences which we shall
outline shortly, compliant with the Java Virtual Machine Specification
and the Java Language Specification.

The libraries available are typically split into two categories: those
defined by CLDC and those defined by a profile and its optional packages
such as MMAPI and WMA. Figure 1.2 demonstrates at a high level how
these components fit together.

So that the CLDC virtual machine can run within a small footprint
and also to take into account additional security requirements for CLDC
devices, CLDC differs from CDC in the following respects:

• no floating point support (although it has been added for CLDC
1.1) – this means that float and double numbers cannot be used
and alternative means of storing these values have to be found, for
example, ”string math”

• no finalization – the Object.finalize() method does not exist
(Object.finalize() is used to carry out any tidying up that may

CLDC AND MIDP 9

Profiles

CLDC Libraries

Java Virtual Machine

Host Operating System

Figure 1.2 High-level architecture.

be needed when an object is collected by the garbage-collector.
However, there is little, if any, practical need for this method.)

• limited error handling – only three error classes exist: java.lang.
Error, java.lang.OutOfMemory and java.lang.Vir-
tualMachineError

• no Java Native Interface (JNI) – this is due to security concerns and
the overhead exerted by JNI on the device memory

• no user-defined class loaders – the built-in class loader cannot be
overridden, for security reasons

• no reflection

• no thread groups and daemon threads – although threading is avail-
able, thread groups cannot be created (however, Thread arrays can
be created if a similar effect is required)

• no weak references, although these will be added to CLDC 1.1.

1.2.1.2 Core Libraries

A number of classes have been inherited from J2SE. To maintain the
relationship between J2ME configurations and J2SE, it was decided that
each class has to have the same name and that each package name must
be identical or a subset of the corresponding J2SE class. The semantics of
the class must remain the same; methods included in the subset shall not
be changed. This means that classes may not be added to a package if
they do not exist in J2SE.

The following outlines the classes that are available in CLDC 1.0 (a
full listing of these packages can be found in Appendix 1):

10 INTRODUCTION TO J2ME

• system classes – J2SE includes several classes that are closely tied into
the Java virtual machine; for example, the javac compiler requires
certain functions from the String and StringBuffer classes

• data type classes – Boolean, Byte, Short, Integer, Long and
Character are supported under CLDC; Double and Float are
not supported

• collection classes – Vector, Stack and Hashtable are available,
together with interfaces such as Enumeration

• input/output classes – Reader, Writer, InputStreamReader and
InputStreamWriter are required in order to support internation-
alization

• calendar and time classes – a small subset of the java.util classes
Calendar, Date and TimeZone are included; only one time zone is
supported by default, although device manufacturers may implement
additional ones

• additional utility classes – the java.util classes Random and Math
have been included to provide a pseudo-random number generator
and methods such as min, max and abs, respectively

• exception classes – as the CLDC classes are compatible with J2SE
libraries, CLDC classes throw the same exceptions as J2SE classes;
there is, therefore, a fairly comprehensive list of exception classes (see
Appendix 1)

• error classes – in contrast to the exception classes, the error han-
dling capabilities of CLDC are limited to the three error classes
seen previously

• internationalization – CLDC provides support for the translation of
Unicode characters to and from byte streams; just as J2SE uses readers
and writers, J2ME uses the following constructors:

new InputStreamReader(InputStream is);
new InputStreamReader(InputStream is, String name);
new OutputStreamReader(OutputStream os);
new OutputStreamReader(OutputStream os, String name);

The constructors that define a string parameter can name the encoding
scheme. If it is not named, the default encoding (stored in the system prop-
erty microedition.encoding) is used. Additional converters may be
used by certain implementations. An UnsupportedEncodingExcep-
tion will be thrown if the specified converter is not present. CLDC
does not support localization such as time and currency formatting. If
necessary, these can be added to an application’s logic.

CLDC AND MIDP 11

• property support – java.util.Properties provides support for
the limited set of properties available in CLDC.

The properties are obtained by making a call to System.getProp-
erty(String, key). This method returns some limited property
information about the device itself, such as the configuration version,
platform name, character encoding and supported profiles. It also returns
the values of the properties defined by each optional package supported
by the device.

1.2.1.3 Networking and I/O

Networking on CLDC devices has been streamlined so that the program-
mer does not have to fully understand the underlying device capabilities.
The Generic Connection Framework (GCF) has been created, streamlin-
ing the implementation of networking within applications. This also helps
provide a smaller footprint.

Networking and I/O are implemented using the same interface. All
connections are created using a single static method in a system class
called Connector. There are six basic interface types addressed by this
framework, although the actual implementation of any of these protocols
is governed by the profile rather than by CLDC:

• basic serial input

• basic serial output

• datagram communication

• connection-orientated, i.e. TCP/IP

• notification mechanism for client–server communications

• basic web server connections.

Creating the connections is rather simple and, regardless of the type
of connection, the format is the same. Here is a list of some common
examples:

• HTTP:
Connector.open("www.foo.com");

• Sockets:
Connector.open("socket://192.168.0.1:9000");

• Datagrams:
Connector.open("datagram://192.168.0.1");

This minimizes the differences between one protocol and another and
uses a text string (the parameter to the open() method) to categorize the
type of connection required. This approach means abstractions within
application modules remain the same when communication changes
from one form to another. Essentially, the binding of the protocols is

12 INTRODUCTION TO J2ME

carried out at runtime. At implementation level, the open() parameter
(up to the first ”:”) instructs the system to obtain the desired protocol
from the location where the protocol implementations are stored. This
late binding allows an application to dynamically adapt to use different
protocols at runtime.

1.2.1.4 Security

Implementing a full J2SE-style security policy requires a large amount of
memory that is not available to typical CLDC devices. CLDC therefore
implements a simpler domain-based security model, which specifies:

• Java classes are properly verified and guaranteed to be valid Java
applications; the classes are pre-verified at build time, which means
that the CLDC implementation has much less to do to verify a JAR file

• only a limited, predefined set of Java APIs is available to the
application programmer: those defined by CLDC, the profiles and
optional packages

• the downloading and management of applications on the device
takes place at the native code level inside the virtual machine; no
user-definable class loaders are provided

• the set of native functions accessible to the virtual machine is closed,
meaning that the programmer cannot download new libraries contain-
ing native functionality; native functions other than those associated
with the Java libraries provided by the configuration or profile cannot
be accessed

• the programmer cannot override the system classes provided in the
packages java.*,javax.microedition.* and other profile or
system-specific packages; this is governed by a class lookup which
is performed during class verification and provides the reason for the
pre-verification stage of MIDlet (the basic MIDP application struc-
ture) packaging.

Further security measures may, of course, be implemented by the profile,
as shall be seen in Section 1.2.2.

1.2.2 MIDP
The Mobile Information Device Profile (MIDP) combined with CLDC
provides a more focused platform for mobile information devices, such
mobile phones and entry-level PDAs. MIDP provides the vertical inte-
gration required to make the Java runtime environment applicable to
these devices by providing direction for the base environment provided
by CLDC.

The MIDP specification has been revised under JSR 118 (Symbian is
one of the contributors to the JSR 118 expert group). MIDP 2.0 extends

CLDC AND MIDP 13

the original definition in a number of ways and provides a platform which
enables developers to create highly graphical, audio-capable, networked
applications for mobile devices. A maintenance release, MIDP 2.1, is
being specified.

Supported by many integrated development environments, MIDP has
become a widely-accepted platform and has been deployed on many
mobile devices around the world. If developers take the approach that
they can ”write once and tweak everywhere”, they can leverage the
underlying technology to distribute enterprise, utility and entertainment
applications to a wide and varied audience.

The introduction of over-the-air provisioning has standardized the
method by which applications may be deployed to end-users. Users can
browse web or WAP sites to locate applications and the Application
Manager System (AMS) checks for versioning and compatibility with the
host device and manages local installation. MIDP is also optimized to
provide a graphical user interface for mobile devices, regardless of input
method and screen size.

1.2.2.1 MIDP Packages

The MIDP 2.0 specification offers developers seven packages with which
they may create applications. The packages are derived from CLDC
as well as providing additional classes, which can be found under
javax.microedition.*. This follows the rule that all packages and
classes inherited from J2SE must follow the same naming conventions.
All new classes not inherited from J2SE must be given a new naming
convention, hence the creation of the javax.microedition package
nomenclature.

Inherited classes
These classes are inherited from J2SE via CLDC:

• java.lang

• java.io

• java.util

MIDP 2.0 classes
These classes extend the CLDC environment and provide user interface,
gaming, MIDlet application framework, persistent storage, multimedia,
network and security classes. Details of these classes can be found in
Appendix 2:

• javax.microedition.io provides networking support based
upon the Generic Connection Framework defined in CLDC

• javax.microedition.lcduiprovides a standard set of user inter-
face classes

14 INTRODUCTION TO J2ME

• javax.microedition.lcdui.game is new to MIDP 2.0 and
provides a game development framework aimed at speeding up the
game development process

• javax.microedition.media is new to MIDP 2.0 and provides
basic audio functionality such as playback and simple tone generation

• javax.microedition.media.control is new to MIDP 2.0 and
defines the specific Control types that can be used with a media
Player

• javax.microedition.midlet provides the MIDlet framework

• javax.microedition.rms provides persistent storage for appli-
cations, even when the MIDlet is not running; a ‘‘best effort’’ is also
made by the device implementation to retain data during power loss

• javax.microedition.pki is new to MIDP 2.0 and provides end-
to-end security for MIDlets by the introduction of registered domains;
trusted MIDlets can be installed and given extra access to the device.

1.2.2.2 Core Functionality

Mobile User Interface (LCDUI)
MIDP provides a set of standard components to aid the creation of
portable, intuitive user interfaces. These classes reduce the development
time and also reduce the size of the final application.

The standard classes include screen objects, which hold objects such
as choice groups, lists, pop-up alerts and progress bars. Forms can be
created to capture user input via text entry components, read-only fields
and custom items. All screen and form objects are device-aware and
provide support for native display, input and navigation techniques.
MIDP 2.0 also sees the introduction of the CustomItem class, which
allows developers to define their own form items.

Multimedia and Game Functionality
MIDP provides an ideal opportunity for developers to create game and
other entertainment content for mobile devices. A set of low-level APIs
allows the developer to take control of the screen at pixel level. Graphics
can be animated and user input can be captured. The Game API adds
game-specific control over animation with its framework implementa-
tion managing sprites, collision detection, layers and tiled layers. Built-in
multimedia support is also provided with the Mobile Media API (MMAPI),
an optional MIDP package that adds video and other multimedia func-
tionality. MIDP also has a subset of the MMAPI which provides support
for simple tone generation and playback of WAV files.

The Game API has been added as part of MIDP 2.0 and further
consolidates the case for Java being a game development platform for
mobile devices. Coupled with over-the-air provisioning, this offers a

CLDC AND MIDP 15

strong business case for generating revenue streams from users obtaining
entertaining applications whilst on the move. The provision of this game
development framework leaves the designer more time to work on game-
play, rather than having to repurpose home-made animation classes to
suit another application. This also reduces application size and optimizes
animation routines by permitting extensive use of native code, hardware
acceleration and device-specific image data formats, as required.

The Game API provides a manager for sprites and layers, as well as
providing an implementation for creating complex tiled layers. The layer
manager keeps an index of all screen objects registered with it and renders
them on screen as required when calls are made to its paint() method.

The Media API has been created for MIDP 2.0 as a subset of the
larger Mobile Media API (MMAPI), developed under the Java Community
Process JSR 135. When the MMAPI was developed it was recognized
that smaller constrained devices, such as mobile phones, would not be
able to accommodate its full complement. Wisely, it was recognized that
not all mobile devices would, for example, have cameras so making this
compulsory would be ineffective. The MIDP 2.0 Media API therefore
sets out to provide upwards audio compatibility with MMAPI. The Media
API provides the ability to perform simple tone generation, audio play-
back of WAV files, and general media controls such as start, stop and
volume control.

Extensive Connectivity
Developers can enable their applications to communicate over a network
as required (see Section 2.1.3.2). Interfaces are available for communi-
cation over http, https, datagrams, sockets and serial ports. MIDP
also supports the SMS capabilities of GSM and CDMA networks through
the optional Wireless Messaging API (WMA). WMA 2.0 even supports
MMS capabilities. A specific device may not provide support for all of
these protocols.

Communication with third parties can also be created using an event-
based networking model. MIDP supports a server push model based
upon a push registry which keeps track of registered third party inbound
communications from the network. When information arrives, the device
can start the registered MIDlet (this may depend on user approval). This
enables developers to create turn-based games, for example, or to create
enterprise applications which receive alert-based data such as financial
or field sales information, and integrate that information directly with an
application.

Over-the-Air Provisioning
Although MIDP 1.0 did not officially encapsulate an over-the-air provi-
sioning (OTA) definition, it did recommend a practice that was adopted as
an addendum to the original specification and has now been made a part
of the MIDP 2.0 specification. This means that deployment and updating

16 INTRODUCTION TO J2ME

of applications over-the-air now falls within the MIDP specification. It has
therefore been standardized and defines how applications are discovered,
installed and removed on MIDP devices. The most useful consequence
of this is that status reports can now be produced. This greatly enhances
the revenue model for MIDP applications because applications can be
tracked as they are installed, updated or removed.

Persistent Storage
MIDP also implements a simple record-based database management
system. The data will remain present across multiple invocations of a
MIDlet. The platform is responsible for making its best effort to maintain
the integrity of the data throughout normal use of the device, including
rebooting and battery changes. However, when the associated MIDlet
suite is removed, so are the record stores. MIDP 2.0 now allows explicit
sharing of data across MIDlet suites, assuming the serving data store has
given permission for this sharing.

End-to-End Security
With greater network connectivity and the nature of common application
installation methods, a robust security model has been specified. HTTPS
leverages existing standards such SSL and WTLS and enables the trans-
mission of encrypted data. Security domains are used to identify trusted
and untrusted MIDlets. By default, all applications are untrusted and are
prevented from accessing any privileged functionality. Access can be
gained by signing the MIDlet to specific domains defined on the device
using the X.509 PKI standard.

This allows mobile phone operators and manufacturers to improve
the user experience by limiting the capabilities of unknown applications.
Developers see application credibility and user confidence increased by
having their applications reviewed, and deemed trusted, by operators
or manufacturers in order to access advanced capabilities. Depending
on the security policy of the device, a user may also choose to allow
unknown applications full or temporary access to advanced capabilities.

1.3 CDC and Personal Profile

1.3.1 CDC

The Connected Device Configuration (CDC) has been developed under
the Java Community Process, by JSR 36. Symbian was a member of the
expert group that developed it. The configuration has been designed
for devices with more memory, faster processors and greater network
bandwidth than those using CLDC. Examples of such devices include
TV set-top boxes, residential gateways, in-vehicle telemetry and high-
end PDAs.

CDC AND PERSONAL PROFILE 17

With this in mind, it is easier to understand that CDC was designed with
the aim of being based upon the J2SE 1.3 APIs while providing support
for resource-constrained devices. This leaves a route open for existing
J2SE developers to leverage their skills and also provides a path for the
creation of secure enterprise-type applications for constrained devices.

CDC offers more facilities than CLDC. It provides a full Java 2 virtual
machine including floating point and core library features, such as custom
class loading, thread support and security. Like CLDC, it is a subset of
the full J2SE implementation; the classes have been optimized to cre-
ate a smaller memory footprint and some J2SE libraries have modified
interfaces. An example of this is that the javax.microedition.io
package provides the generic connection interface for input/output
and networking.

Target devices are expected to have the following minimum specifica-
tion:

• 32-bit CPU

• 2 MB RAM

• 2 MB ROM.

The Java environment for these devices is completed with the addition
of one of three profiles which sit on top of the CDC classes to form
the complete implementation. The CDC profiles, which are layered, are
as follows:

• the Foundation Profile (JSR 46) is the most basic CDC profile; it
provides the basic application support classes such as network and
I/O support but does not provide a graphical user interface

• the Personal Basis Profile (JSR 129) provides all of the Foundation
Profile APIs and a structure for building lightweight component toolkits
and support for the Xlet application model

• the Personal Profile (JSR 62) provides full AWT, applet and limited
bean support as well as the Foundation and Personal Basis Profiles; it
represents a migration path for PersonalJava technology.

We shall have a close look at the Personal Profile in Section 1.3.2.

1.3.1.1 Core Libraries

The following core packages are available within the CDC configuration:

• java.io provides the system input and output through data streams,
serialization and the file system

18 INTRODUCTION TO J2ME

• java.lang provides the classes that are fundamental to the design
of the Java language, for example, Object, which is the root of the
class hierarchy

• java.lang.ref provides the reference-object classes, which sup-
port a limited degree of interaction with the garbage collector

• java.lang.reflect provides the classes and interfaces for obtain-
ing reflective information about classes and objects

• java.math provides classes for performing arbitrary-precision inte-
ger (BigInteger) and decimal (BigDecimal) arithmetic

• java.net provides the classes for implementing networking appli-
cations

• java.security provides the classes and interfaces for the secu-
rity framework

• java.security.cert provides the classes and interfaces for pars-
ing and managing certificates

• java.text provides classes and interfaces for handling text, dates,
numbers and messages in a manner independent of natural languages

• java.util provides the classes which contain the collections frame-
work, legacy collection classes, event model, date and time facilities,
internationalization and miscellaneous utility classes such as the string
tokenizer and random number generator

• java.util.jar provides classes for reading and writing the JAR
file format, which is based upon the standard ZIP file format with an
optional manifest file

• java.util.zipprovides classes for reading and writing the standard
ZIP and GZIP file formats

• javax.microedition.io provides the classes for generic connec-
tions.

1.3.1.2 Optional Packages

The optional packages give device manufacturers the ability to support
additional technologies if they so wish:

• RMI provides a subset of the J2SE RMI for Java-based network devices;
it exposes distributed application protocols (through Java interfaces,
classes and method invocations) and shields the application developer
from the details of network communications

CDC AND PERSONAL PROFILE 19

• JDBC provides a subset of the JDBC 3.0 API, which can be used to
access flat files and tabular data sources such as spreadsheets; it also
provides cross-DBMS connectivity to a range of SQL databases.

1.3.2 Personal Profile

The Personal Profile provides a further way of specifying the subset
of APIs for a CDC-based device. Its definition is based upon the Java
Community Process JSR 62, for which Symbian was a member of the
expert advisory group.

As we have seen earlier, profiles provide a more specialized envi-
ronment for devices common to a particular configuration. The Personal
Profile is aimed at devices that require full GUI or internet applet support,
such as communicators or game consoles. It is the successor to Personal-
Java, which was developed prior to the formalization of J2ME, and
therefore provides a clear migration path for PersonalJava applications to
the J2ME platform.

The Personal Profile builds upon the Foundation Profile and the
Personal Basis Profile by adding graphical user interface classes to the
environment. It inherits networking and Xlet capabilities from the other
two profiles. It has been designed to provide full graphical support and the
ability to run web-based applets designed for the desktop to mobile device
applications with web fidelity. The following outlines the core packages
included in the Personal Profile and from where they are derived.

Added by the Foundation Profile
The following packages provide full J2SE 1.3.1 support for basic class
library packages:

• java.io

• java.lang

• java.lang.ref

• java.net

• java.security

• java.security.acl

• java.security.cert

• java.security.interfaces

• java.security.spec

• java.text

• java.util

20 INTRODUCTION TO J2ME

• java.util.jar

• java.util.zip

The following package provides compatibility for the CLDC 1.0 generic
connection framework:

• javax.microedition.io

Added by the Personal Basis Profile
The following packages provide support for lightweight components and
some 2D Java graphics:

• java.awt

• java.awt.color

• java.awt.event

• java.awt.image

The following package provides bean support by an external bean editor
(IDE) running on a J2SE-based JRE:

• java.beans

The following packages provide limited RMI support for Xlets and are not
intended for general-purpose use:

• java.rmi

• java.rmi.registry

The following packages provide Xlet support:

• javax.microedition.xlet

• javax.microedition.clet.ixc

Added by the Personal Profile
The following package provides support for applets:

• java.applet

The following packages provide support for heavyweight components
and 2D graphics:

• java.awt

• java.awt.datatransfer

J2ME ON SYMBIAN OS 21

1.4 J2ME on Symbian OS

Java on Symbian OS has a long history dating back to Symbian OS Version
5 (released in 1999). This initial Java offering was based on Sun’s JDK 1.1.4
platform. For the next major release, Symbian decided to take advantage
of the reduced memory footprint offered by PersonalJava (compared to
the burgeoning JDK) and used the PersonalJava 1.1.1 specification as the
basis for the Java implementation. This release, Symbian OS Version 6.0,
became available in 2000.

PersonalJava was the forerunner of J2ME and the first attempt by Sun to
provide a Java environment for the more resource-constrained embedded
device. It is the direct antecedent of the CDC-based Personal Profile.

In 1999, acknowledging that ‘‘one size doesn’t fit all’’, Sun announced
the splitting of Java into three versions:

• Java 2 Enterprise Edition (J2EE)

• Java 2 Standard Edition (J2SE)

• Java 2 Micro Edition (J2ME).

Symbian immediately became involved in shaping the Micro Edition
via the expert groups of the Java Community Process. Soon it was
clear that J2ME MIDP was gaining momentum in the wireless space as
phone manufacturers endorsed the idea of a lightweight Java environment
suitable for mass-market phones. Symbian recognized the strength of the
MIDP movement by including J2ME CLDC/MIDP 1.0 as its standard
Java offering in Symbian OS Version 7.0, released in 2002, as well as
back-porting the technology to earlier versions. Currently, all Symbian
OS phones available in Western markets support at least MIDP 1.0.

Although MIDP 1.0 generated considerable enthusiasm amongst the
wireless Java community, it was also realized that MIDP 1.0 on its
own was limited in its capabilities to access the functionality offered by
a typical smartphone from within a MIDlet. Consequently, soon after
the release of MIDP 1.0, the wireless Java community started work on
enhancing the capabilities of MIDP. This has manifested in MIDP 2.0
(JSR 118), released in its final form in November 2002, and a range of
extension API JSRs, all forming part of the Java Community Process.

These developments provide a substantial increase in the functionality
available to MIDlets. As a consequence, the latest release of Symbian
OS (Version 7.0s) and UIQ 2.1 move to a single Java technology stream
based on J2ME CLDC and MIDP 2.0 (plus additional optional J2ME APIs).

J2ME MIDP is now established as the ubiquitous Java platform in the
mobile phone arena and, as such, Symbian will continue to evolve and
enhance its CLDC/MIDP offering. For more insight into future develop-
ments of J2ME on Symbian OS, including Symbian’s position with regard
to CDC-based technologies, the reader is referred to Chapter 8.

22 INTRODUCTION TO J2ME

1.5 Summary

This chapter has introduced the J2ME architecture in order to indicate
the position of MIDP 2.0 within that structure. We have examined the
various configurations and profiles and shown why they are necessary in
providing a structure for the various needs and requirements of a J2ME
device now and in the future. We have outlined the packages and classes
of CLDC 1.0 and MIDP 2.0 to show their core functionality and have also
shown how J2ME and Symbian sit together.

In Chapter 2 we are going to examine MIDP 2.0 in more depth, start
programming a simple MIDP 2.0 application and look at the some of the
various tools on offer.

2
Getting Started

2.1 Introduction to MIDP

In the previous chapter we examined the core MIDP functionality and
outlined the CLDC and MIDP classes that form the development envi-
ronment. Before we start writing our first piece of code, we need to
look at the basic concepts of MIDP, the most commonly used packages
and methods, and how it all fits together. We’ll also look at the various
development options, what they can do, and how they are installed.

MIDP allows the execution of multiple MIDP applications, known as
MIDlets. The model defines how the MIDlet is packaged, what runtime
environment is available, and how it should behave with respect to the,
sometimes, constrained resources of the MIDP device. The model also
defines how MIDlets can be packaged together in suites and share one
another’s resources, such as graphics and data stored in the small database
facility known as the RMS. Each MIDlet suite also has a descriptor file
called the JAD file, which allows the application management software
on the device to identify what it is about to install prior to installation.
The model also defines a lifecycle for a MIDlet, which allows for orderly
starting, stopping and cleanup of a MIDlet.

2.1.1 The MIDP Model and Lifecycle

The MIDlet forms the application framework that executes on CLDC
devices under the Mobile Information Device Profile (MIDP). Every
application must extend the MIDlet class found in the javax.micro-
edition.midlet package. The application management software
(AMS) manages the MIDlet itself. The AMS is a part of the device’s
operating environment and guides the MIDlet through its various states
during the execution process. Unlike desktop or server applications,
MIDlets should not have a public static void main() method. If

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

24 GETTING STARTED

one is found then the AMS ignores it. MIDlets are initialized when the
AMS provides the initial class needed by CLDC to start the MIDlet. The
AMS then guides the MIDlet through its various changes of state. We
shall look at these states next.

2.1.1.1 MIDlet States

Once a MIDlet has been instantiated, it resides in one of three possible
states. A state is designed to ensure that the behavior of an application
is consistent with the expectations of the end-users and device manu-
facturer. Initialization of the application should be short; it should be
possible to put an application in a non-active state; and it should also
be possible to destroy an application at any time. Therefore, three valid
MIDlet states exist:

PAUSED
The MIDlet has been initialized, but is in a dormant state. This state is
entered in one of four ways:

• after the MIDlet has been instantiated by the AMS invoking its con-
structor; if an exception occurs, the DESTROYED state is entered

• from the ACTIVE state, if the pauseApp() method is called by the
AMS

• from the ACTIVE state, if the startApp() method has been called
but an exception has been thrown

• from the ACTIVE state, if the notifyPaused() method has been
invoked and successfully returned.

When a well-written MIDlet is paused, it should generally release any
shared resources.

ACTIVE
The MIDlet is functioning normally. This state is entered after the AMS
has called the startApp() method. The startApp() method can be
called on more than one occasion during the MIDlet lifecycle.

DESTROYED
The MIDlet has released all resources and terminated. This state, which
can only be entered once, is entered for the following two reasons:

• the destroyApp(boolean unconditional) method has been
called by the AMS and returned successfully; if the unconditional
argument is false a MIDletStateChangedException may be

INTRODUCTION TO MIDP 25

thrown and the MIDlet will not move to the DESTROYED state; the
implementation of the destroyApp() method should release all
resources and terminate any running threads

• when the notifyDestroyed() method successfully returns; the
application should release all resources and terminate any running
threads prior to calling notifyDestroyed().

2.1.1.2 MIDlet Lifecycle Methods

The javax.microedition.midlet.MIDlet abstract class defines
three lifecycle methods:

• pauseApp() – this method is called by the AMS to indicate to the
MIDlet that it should enter the PAUSED state, releasing all shared
resources and becoming passive

• startApp() – this method is invoked by the AMS to signal to the
MIDlet that it has moved from the PAUSED to the ACTIVE state. The
application should acquire any resources it requires to run and then
set the current display

• destroyApp() – this method is called by the AMS to indicate to the
MIDlet that it should enter the DESTROYED state; all persistent and
state data should be saved and all resources that have been acquired
during its lifecycle should be released at this point; generally, a
well-written MIDlet will start up in the state it was in prior to being
shut down.

2.1.1.3 Notifying and Requesting the AMS

The AMS manages the MIDlet suite installation and lifecycle. There are
a number of methods that the MIDlet may use to notify the AMS of the
state it is in:

• notifyDestroyed() – the MIDlet notifies the AMS that it has
released all resources held during execution, moved into the
DESTROYED state and may be reclaimed by the system

• notifyPaused() – the MIDlet notifies the AMS that it has moved
into the PAUSED state, releasing any shared resources it held

• resumeRequest() – a paused MIDlet asks the AMS to be started
again

• getAppProperty() – provides a MIDlet with a mechanism to
retrieve named properties from the AMS.

26 GETTING STARTED

2.1.1.4 The Lifecycle Model

The various states of the MIDlet (see Figure 2.1) show how the AMS and
the MIDlet interface combine to form the lifecycle of the MIDlet:

1. The AMS creates a new instance of a MIDlet. The MIDlet’s constructor
is called with no argument and the application is put into the PAUSED
state. If any exception is thrown during this phase then the application
is put into the DESTROYED state.

2. The AMS calls startApp() to move the MIDlet into the ACTIVE
state. The MIDlet itself will at this point acquire any resources it
needs and begin executing.

3. Once the application is running, the MIDlet can move to two other
states:

• the MIDlet can be put into the PAUSED state by a call from the
AMS to the pauseApp() method
The MIDlet will cease to be in the ACTIVE state and choose to
release some of the resources it currently holds. If the programmer
requires the MIDlet to pause, then the MIDlet should first release
shared resources (possibly stopping any running threads) and then
call the notifyPaused() method.

• the MIDlet can move to the DESTROYED state
The user or the AMS decides that the application no longer needs
to be running. Game play may be finished, for example, or the
AMS may have decided that a process of a higher priority needs
to claim the resources being used by the MIDlet.

PAUSED ACTIVE

DESTROYED

AMS invokes startApp

AMS invokes pauseApp

AMS invokes MIDlet
constructor

AMS invokes
destroyApp

AMS invokes
destroyApp

AMS reclaims
MIDlet

Figure 2.1 State transition diagram of the MIDlet lifecycle.

INTRODUCTION TO MIDP 27

2.1.1.5 Example MIDlet

The basic structure of a MIDlet is very simple. As outlined earlier, there
is no static main method. The MIDlet is instantiated by the AMS, which
provides the initial class for the MIDlet to initialize.

The following skeleton code shows this basic MIDlet structure:

import javax.microedition.midlet.*;
public class MyMidlet extends MIDlet {

public MyMidlet() {
}
public void startApp() throws MIDletStateChangeException {
}
public void pauseApp() {
}
public void destroyApp(boolean unconditional) {
}

}

2.1.1.6 Creating MIDlets

Once the MIDlet has been created we are ready to compile, pre-verify
and package the MIDlet into a suite for deployment to a target device or
a device emulator.

CLDC provides a two-pass implementation of the bytecode verifier.
Not only is the standard J2SE verifier bigger than the whole of a typical
CLDC implementation, it also requires over 100 KB of dynamic memory
for a typical application. CLDC therefore requires a pre-verifier, which
is typically run on the machine used to build the application, to carry
out the space- and performance-intensive parts of verification. The pre-
verifier annotates the bytecode so that all the client device has to do is
check the results for correctness: the annotations cannot be spoofed and
code signing is not required. The on-device footprint is about 10 KB and
requires fewer than one hundred bytes of runtime memory. The downside
is a 5 % increase in class file size.

Typically, compilation, pre-verification and packaging are automated
by tools, such as the KToolbar, available with Sun’s J2ME Wireless
Toolkit, as we will discuss later in this chapter. The toolkits provide an
interface for the compiler, javac; pre-verification, preverify.exe;
and the packaging tool, jar. These commands are also available on the
command line (see Appendix 3).

Once this process has been completed we are nearly ready to run the
MIDlet suite. There is, however, one final task to complete: the creation
of the application descriptor (JAD) file. This file is required to notify the
AMS of the contents of the JAR file. The following attributes must be
included in a JAD file:

• MIDlet-Name – the name of the suite that identifies the MIDlets to
the user

28 GETTING STARTED

• MIDlet-Version – the version number of the MIDlet suite; this is
used by the AMS to identify whether this version of the MIDlet suite
is already installed or whether it is an upgrade, and communicate this
information to the user

• MIDlet-Vendor – the organization that provides the MIDlet suite

• MIDlet-Jar-URL – the URL from which the JAR file can be loaded;
both absolute and relative URLs must be supported; the context for
relative URLs is from where the JAD file was loaded

• MIDlet-Jar-Size – the number of bytes in the JAR file.

It is also useful to include the following attributes in a JAD file:

• MIDlet-n – the name, icon and class of the nth MIDlet in the JAR
file (separated by commas); the lowest value of n must be 1 and all
following values must be consecutive; the name is used to identify the
MIDlet to the user and must not be null; the icon refers to a PNG file
in the resource directory and may be omitted; the class parameter is
the name of the class extending the MIDlet class

• MIDlet-Description – a description of the MIDlet suite

• MicroEdition-Configuration – the J2ME configuration re-
quired, in the same format as the microedition.configuration
system property, e.g. ”CLDC-1.0”

• MicroEdition-Profile – the J2ME profiles required, in the same
format as the microedition.profiles system property, e.g.
‘‘MIDP-1.0’’ or ”MIDP-2.0” depending on the version of MIDP against
which the MIDlet is built; if the value of the attribute is set to ‘‘MIDP-
2.0’’, the device onto which the MIDlet is to be installed must
implement the MIDP 2.0 profile otherwise the installation will fail;
MIDlets compiled against the MIDP 1.0 profile will install successfully
on a device implementing MIDP 2.0.

The following represents a sample JAD file for a hypothetical application
called ”MyMidlet”:

MIDlet-1:MyMidlet, MyIcon.png, com.symbian.MyMidlet
MIDlet-Description: Example MIDP 2.0 MIDlet
MIDlet-Jar-Size: 3707
MIDlet-Jar-URL: MyMidlet.jar
MIDlet-Name: MyMidlet
MIDlet-Vendor: Symbian Ltd
MIDlet-Version: 2.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

Once the JAD file has been created the MIDlet is ready to be executed.
The following command line is used to initiate the MIDlet within the
emulator supplied with the Wireless Toolkit, via its JAD file.

INTRODUCTION TO MIDP 29

C:\WTK20\bin>emulator -
Xescriptor:C:\WTK20\apps\Example\bin\MyMidlet.jad

Of course, much of this is simplified if the developer uses the Wireless
Toolkit KToolbar application, which provides a convenient GUI to these
functions. However, it may not always be possible to do this, especially
in the case of Solaris and Linux machines.

2.1.2 User Interfaces

A user interface for mobile information devices would have proved
something of a challenge for those sitting around the table during the early
stages of creating the MIDP 1.0 specification. Confronted with a device
of limited power, display and storage capabilities, those participants,
including Symbian, who were a part of the Java Community Process for
JSR 37 (MIDP 1.0) would have thought long and hard about how best to
tackle this problem.

MIDP devices do, of course, pose quite a challenge for those tasked
with developing applications. Much of the challenge in the application
design is trying to create a sophisticated, productive application intuitive
enough for the enterprise user to grasp easily or engaging enough for the
gamer. It must also be capable of running in a restricted environment.

Java developers may at this point be asking themselves, ”I can see how
much of the J2ME technology has been adapted or truncated from J2SE,
so why not do the same with the user interface?” There are numerous
reasons, many of which are concerned with the device paradigm itself.
AWT was designed for desktop applications. The desktop paradigm
draws upon inherited usage from other applications: the purpose and use
of certain components, and the navigation between them, is understood
by the user and, therefore, doesn’t have to be re-learnt. It is also intuitive:
more space allows the GUI to have fuller, more explanatory labels and a
pointer device provides a convenient way to initiate those commands.

One of the main considerations for mobile applications has to be
portability. There are many different devices in the marketplace, all with
different screen sizes and keypads. Some have pointer devices, some
have joysticks and others have full keyboards. MIDP has had to cater for
all these devices.

Mobile devices do not have a great need for window management or
re-sizing. Clearly an AWT-type interface would be overkill on a device
so small. Features such as overlapping windows, toggling between forms
and then resizing them would be wasted. Buttons are also placed in
specific places. The mobile UI needs to be more fluid and dynamic.

Since much time has been spent by manufacturers testing out their
devices on users, with focus groups, usability studies and other market
research, it would be a waste to then expect users to learn another

30 GETTING STARTED

method of entering and reading data from the device’s screen. Remember
the inherited knowledge a PC user gains from using the PC user interface?
Well, the same applies to a mobile UI. The implementation of each of the
high-level UI components is therefore left to the devices themselves and
as a result the MIDP GUI (known as the LCDUI) was designed to take
into account the following:

• a portable user interface

• a consideration of the form factor of small devices, the size of the
screen, the data input methods and the processor size: processing
AWT objects and dealing with their garbage collection would not be
appropriate for a constrained device

• many people will use the devices while on the move or when not
fully concentrating on the task in hand; many of the devices will be
used with one hand, although some may use a pointing device

• the UI of the applications should be comparable to the native appli-
cations on the device.

2.1.2.1 Structure of the MIDP UI API and Class Overview

The LCDUI is split into high-level and low-level APIs, both of which have
event-handling capabilities.

The high-level API is designed for applications that are required to be
portable across many devices, regardless of screen size and input method.
These applications can generally be aware of the device they are running
on and make adjustments accordingly. A simple example of this would
be whether a pointing device was present or not. This set of classes has
a high level of abstraction and therefore the developer has little control
over the look and feel. More specifically, the programmer has no control
over the color, font and style of the components; scrolling and navigation
of the on-screen image is left to the underlying implementation.

Conversely, the low-level API provides very little abstraction and gives
the programmer precise control over where objects are placed on the
screen. Typical examples of such applications would be games, where
graphics require pixel-level placement on screen. As well as providing
precise control over object positioning, event listeners will monitor for
primitive events such as key presses and releases. The developer also has
access to concrete keys and pointer actions. The Canvas and Graphics
objects are the basis for the low-level API classes.

Typically, these applications are less portable than those developed
using the high-level API. That does not mean, however, that these
applications cannot be made to be portable. Some careful design to
separate the UI from the main game logic can yield economies of scale

INTRODUCTION TO MIDP 31

and a number of these techniques and theories will be investigated in
Chapter 6. The Canvas object provides methods for querying the size
of the screen and also for identifying keys with the use of game-key
mapping, which provides a generic method for accessing certain keys on
the keypad. This mapping helps identify many of the actions required
by games developers and maps the layout of certain keys on the pad to
logical positions a game player might assume when playing.

2.1.2.2 The LCDUI Model

At the basic abstraction level of the MIDP user interface is the Dis-
playable object. This encapsulates device-specific graphics rendering,
along with the user input, and only one Displayable object can be
visible at any one time. There are three types of Displayable object
across the two APIs:

• complex, predefined, immutable user interface components, such as
List or TextBox

• generic objects that may contain other objects or user interface
components, such as a Form; input objects such as text fields can be
appended to provide screens capable of capturing user input, entry of
a password, for example

• user-defined screens, such as Canvas, a part of the low-level API.

The first two are inherited from Screen, which is itself derived from
Displayable and handles all the user interaction between the high-
level components and the application. The Screen object also manages
all the rendering, interaction, traversal and on-screen scrolling, regardless
of the device and the underlying implementation and it forms the basis
for portability of the applications using these APIs. In the case of the third
type of Displayable object, Canvas takes care of providing the basis
of a UI with the low-level API classes.

The Display class acts as the display manager for the MIDlet. Each
MIDlet is initialized with a Display object. There can only be one
display in action at any one time and user interaction can only be made
with the current display. The application sets the current display by
calling the Display.setCurrent(Displayable)method; it can, of
course, be any of the three Displayable object types.

The display manager interacts with the AMS to render the current
display on the screen. To understand how to structure the application in
the correct way, we need to look back at the MIDlet initialization process
and lifecycle we examined in Section 2.1.1. The MIDlet is initialized in
the paused state. Once the AMS has decided that the MIDlet is ready,
it makes a call to the startApp() method. It should be remembered

32 GETTING STARTED

that the startApp() method can be called many times during the
lifecycle of a MIDlet, so the developer should be aware of what display
is made current and at what time. In MIDP 1.0, it was advised that
the Displayable object was not truly visible until startApp() had
returned. However, this requirement has been relaxed in MIDP 2.0.
The Display.setCurrent(Displayable) method can, therefore,
be carried out at MIDlet initialization and put in the MIDlet constructor.
This also alleviates any problems the developer may experience with
unwanted re-initialization of the application and its display after resuming
from the paused state.

2.1.2.3 The Event Model

The javax.microedition.lcdui package implements an event
model that runs across both the high- and low-level APIs. This han-
dles such things as user interaction and calls to redraw the display. The
implementation is notified of such an event and responds by making a
corresponding call back to the MIDlet. There are four types of UI event:

• events that represent abstract commands that are part of the high-
level API

• low-level events that represent single key presses or releases, or
pointer events in the case of pointer-based devices

• calls to the paint() method of the Canvas class, generated for
instance by a call to repaint()

• calls to a Runnable object’s run() method requested by a call to
callSerially() of class Display.

All callbacks are serialized and never occur in parallel. More specifi-
cally, a new callback will never start while another is running. The next
one will only start once the previous one has finished, this will even be
true when there is a series of events to be processed. In this case the
callbacks are processed as soon as possible after the last UI callback
has returned. The implementation also guarantees that a call to run(),
requested by a call to callSerially(), is made after any pending
repaint() requests have been satisfied.

There is, however, one exception to this rule: this occurs when the
Canvas.serviceRepaints() method is called by the MIDlet. The
call to this method causes the Canvas.paint() method to be invoked
by the implementation and then waits for it to complete. This will occur
whenever the serviceRepaints() method is called, regardless of
where the method was called from, even if that source was an event
callback itself.

INTRODUCTION TO MIDP 33

Abstract commands are used to avoid having to implement concrete
command buttons; semantic representations are used instead. The com-
mands are attached to Displayable objects such high-level List or
Form objects or low-level Canvas objects. The addCommand()method
attaches a Command to the Displayable object. The Command specifies
the label, type and priority. The commandListener then implements
the actual semantics of the command. The native style of the device may
prioritize where certain commands appear on the UI. For example, ‘‘Exit’’
is always placed above the right softkey on Nokia devices.

There are also some device-provided operations that help contribute
towards the operation of the high-level API. For example, screen objects,
such as List and ChoiceGroup, will have built-in events that return
user input to the application for processing.

2.1.2.4 The High-Level API

Since MIDP 1.0, the LCDUI classes have vastly improved, helping the
developer to create more intuitive, portable applications. Figure 2.2
shows the class diagram for both the high- and low-level APIs.

Command Class
The Command class is a construct that encapsulates the semantic meaning
of an action. The behavior or response to the action is not itself specified
by the class, but rather by a CommandListener. The command listener
is attached to a Displayable object. The display of this command will
depend upon the number and type of the other commands for that dis-
playable object. The implementation is responsible for the representation

Command Displayable

Screen

Display

Canvas

Alert List TextBox GameCanvas
(from javax.microedition.lcdui.game)

DateField ImageItem StringItem TextField Gauge ChoiceGroupCustomItem Spacer

Item Form

0..* 0..1

0..*

Figure 2.2 The architecture of the LCDUI.

34 GETTING STARTED

of the command semantic information on screen; Command itself merely
contains the following four pieces of information about the command:

• short label
This string is mandatory. The application can request the user to
be shown a label. Dependent upon the current layout and available
screen space, the implementation will decide which is more appropri-
ate. For command types other than SCREEN, a system-specific label
considered more appropriate for this command on this device may
override the labels provided.

• long label – this longer label is optional; it will be used if there is
enough space to display it

• type – BACK, CANCEL, EXIT, HELP, ITEM, OK, SCREEN and STOP
This is used to indicate the command’s intent, so that the implemen-
tation can follow the style of the device. For example, the ”back”
operation on one device may always be placed over the right softkey.

• priority
This integer value describes the importance of the command relative
to other commands on the same screen. The implementation makes
the choice as to the actual order and placement of commands on the
screen. The implementation may, for example, first examine the com-
mand type to check for any particular style requirements and then use
the priority values to distinguish between the remaining commands.

Screen Objects
Alert, List, Form and TextBox are all derived from Screen, itself
derived from Displayable. Screen objects are high-level UI compo-
nents that can be displayed. They provide a complete user interface in
their own right, the specific look and feel of which is determined by the
implementation.

Alert Object
An Alert object shows a message to the user, waits for a certain period
and then disappears, at which point the next Displayable object is
shown. This object is intended as a way of informing the user of any
errors or exceptional conditions.

An Alert may be used by the developer to inform the user that an
error or other condition has been reached. To emphasize these states to
the user, the AlertType can be set to convey the context or importance
of the message. For example, a warning sound may be played with the
alert to draw the user’s attention to an error. A different sound can then
be played when the alert is advisory. This can be achieved using the
AlertType.playSound() method. Other types may also be set, such

INTRODUCTION TO MIDP 35

as ALARM, CONFIRMATION, ERROR and INFO. These manifest as titles
at the top of the alert screen.

As well as providing text, an image can also be used to indicate
the nature of the alert. An exclamation mark may indicate an error, for
example. To ensure the user reads the message, the alert may be made
modal (the user must dismiss it before the next Displayable object is
shown). This is effectively achieved by setting an infinite timeout on the
alert: setTimeout(Alert.FOREVER).

An alert can also be used to show activity to the user. A gauge can
be added to the alert to indicate progress, for example, for loading a
new level in a game or connecting to a remote server over HTTP. An
indicator is added by using the method setIndicator(Gauge). The
gauge object is subject to certain limitations: it cannot be interactive,
owned by another Form or have Commands attached to it; nor can it be
an ItemCommandListener.

List Object
A List object is a screen that contains a list of choices for the user. It
has much in common with ChoiceGroup (it shares the same interface,
Choice). However, a List cannot be added to a Form and is, in fact,
a Displayable object in its own right. This means it is very good for
implementing a choice-based menu for the user. The Series 60 and UIQ
platforms have a default ”Select” mechanism, which means a separate
CommandListener does not have to be added to the list. A List can
be created by using one of the following two constructors:

List menu = new List(String title, int listType)
List menu = new List(String title, int listType, String[] stringElements,

Image[] imageElements)

The second constructor allows the developer to specify the items
within the list at creation rather than having to append, insert or set
elements within the list.

The list type can be EXCLUSIVE, where only one choice can be made
and one choice is selected at a time; MULTIPLE, which allows for more
than one selection; or IMPLICIT, in which case the currently focused
element is selected when a command is initiated.

Once the selection has been made, the index value or values of the
selection can be captured by the application using one of two methods:

• getSelectedIndex() returns the results of a list returning one
selection

• getSelectedFlags(boolean[]) returns the flags for all the ele-
ments in a MULTIPLE list; the application can then loop through the
flags to determine the user’s selections.

36 GETTING STARTED

Form Object
This Displayable object is designed to contain a small number of
closely-related user interface elements. Those elements are, in general,
any subclass of the Item class and we shall be investigating these objects
in more detail below. The Form manages the traversal, scrolling and
layout of the form. It is defined by two constructors:

Form (String title)
Form (String title, Item[] items)

Items enclosed within a Form may be edited using the append(),
delete(), insert() and set() methods and they are referred to by
their indexes, starting at zero and ending with size()−1. A distinct
Item may only be placed upon one Form at a time. If an attempt is
made to put the same instance of Item on another Form, an Illegal-
StateException will be thrown.

Items are organized via a layout policy that is based around rows.
The rows typically relate to the width of the screen and are constant
throughout. Forms grow vertically and a scroll bar will be introduced as
required. If a form becomes too large, it may be better for the developer
to create another screen. The layout algorithm used in MIDP 2.0 will be
discussed in greater detail in Chapter 3.

Users can, of course, interact with a Form, and a CommandListener
can be attached to capture this input using the setCommandLis-
tener() method. An individual Item can be given an ItemCom-
mandListener if a more contextual approach is required by the UI.

TextBox Object
A TextBox is a Screen object that allows the user to enter and edit
text in a separate space away from the form. This is a Displayable
object and can, therefore, be displayed on the screen in its own right.
Its maximum size can be set at creation, but the number of characters
displayed at any one time is unrelated to this size and is determined by
the device itself.

Item Class
This is the superclass for all items that can be added to a Form. Every
Item has a label, which is a string. This label is displayed by the
implementation as near as possible to the Item, either on the same
horizontal row or above.

When an Item is created, by default it is not owned by any container
and does not have a Command or ItemCommandListener. However,
default commands can be attached to an Item, using the setDefault-
Command() method, which means the developer can make the user
interface more intuitive for the user. A user can then use a standard

INTRODUCTION TO MIDP 37

gesture, such as pressing a dedicated selection key or tapping on the item
with a pointer. Symbian devices support both interfaces through Series
60 and UIQ respectively. As a side issue, it should be noted that the use
of default commands can disrupt the use of layout directives. Normal
commands can also be attached to items using the setDefaultCom-
mand(Command) method. Developers who use the low-level API will
be quite familiar with this method.

A new set of properties that determine the minimum and preferred
width and height of an Item has been added in MIDP 2.0. This can be
used by the device implementation to determine how best to render the
item on the screen and will be discussed further in Chapter 3.

The following types are derived from Item.

ChoiceGroup
A ChoiceGroup is a group of selectable objects. It may be used to
capture single or multiple choices placed upon a Form. It is a subclass of
Item and most of its methods are implemented via the Choice interface.
It can be created using one of two constructors:

ChoiceGroup (String title, int type);
ChoiceGroup (String title, int type, String[] elements,

Image[] image Elements);

The first, a simpler constructor, allows the developer to create an
empty choice group, specifying its title and type, and append elements
afterwards. The type can be either EXCLUSIVE (to capture one option
from the group) or MULTIPLE (to capture many selections).

A developer who already knows the contents of the choice group may
choose to use the second constructor. This has the advantage that all
entries are created at the same time but, of course, the contents of the
group may still be dynamic. Just as a List can be changed after creation,
so the contents of the choice group can be changed. Insert, append and
replace functionality is present. Each choice is indexed, incrementing by
1 from the first item being 0.

It is the responsibility of the device implementation to provide the
graphical representation of the option group. For example, one device
may use ticks to represent selected options in a multiple choice group and
radio buttons to denote an exclusive selection. Another device, however,
may choose to display these items another way. The point here is that the
developer does not have control over the appearance of these items on
the screen.

CustomItem
This is one of the most interesting MIDP 2.0 additions to the high-level
API. It operates in a similar way to Canvas, in that the developer is able

38 GETTING STARTED

to specify what content appears where within the CustomItem. The
developer has free rein to create an item that suits the purposes of the
application.

Some of the standard items may not give quite the required function-
ality, so it may be better to define home-made ones instead. The only
drawback to this approach is that, as well as having to draw all the con-
tents using the item’s paint() method, the programmer has to process
and manage all events, such as user input, through keyPressed().

Custom items may interact with either keypad or pointer-based devices.
Both are optional within the specification and the underlying implemen-
tation will signal to the item which has been implemented. In the case of
Symbian, these can be either UIQ or Series 60 devices.

Deriving from Item, CustomItem also inherits such methods as
getMinContentWidth() and getPrefContentHeight() which
help the implementation to determine the best fit of items within the
screen layout. If the CustomItem is too large for the screen dimensions,
it will resize itself to within those preferred, minimum dimensions. These
changes will be notified to the CustomItem via the sizeChanged()
and paint() methods.

As we have seen, the developer has total control over what appears on a
CustomItem and the item is responsible for rendering itself to the display.
Additionally, the developer can use the Display.getColor(int) and
Font.getFont(int) methods to determine the underlying properties
for items already displayed in the form of which the CustomItem will
be a part. This will ensure that a consistent appearance is maintained.

DateField
This is an editable component that may be placed upon a Form to capture
and display date and time (calendar) values. When the item is added to
the form it can be set with or without an initial value. If the value is not set,
a call to the getDate() method will return null. The field can handle
DATE values, TIME values or both, DATE_TIME values. Where both are
specified, the user interface will manage one after the other when looking
for input. Calendar calculations made from this field are based upon the
default locale and time zone definitions stored on the device.

ImageItem
The ImageItem is a reference to a mutable or immutable image that
can be displayed on a Form. We shall look at the Image object in detail
when we examine the low-level API classes. Suffice to say that the Image
is retrieved from the MIDlet suite’s JAR file in order to be displayed upon
the form. This is performed by calling the following method, in this case
from the root directory:

Image image = Image.createImage("/myImage.png");

INTRODUCTION TO MIDP 39

This returns anImageobject that can be used to create theImageItem.
An ImageItem is created by calling one of two constructors:

ImageItem imageItem = new ImageItem (String label, Image image,
int layout, String altText);

ImageItem imageItem = new ImageItem (String label, Image image,
int layout, String altText, in appearanceMode);

A title for the item can be defined along with a combination of layout
constants that determine how the image should be laid out. The altText
parameter will be displayed by the implementation if it establishes that
the image is too large for the current display. The second constructor adds
another parameter that determines the appearance of the ImageItem.
The appearanceMode parameter values may be PLAIN, HYPERLINK
or BUTTON. The preferred and minimum sizes may be affected if the
second or third options are used.

Spacer
This is a blank non-interactive item with a definable minimum size,
which was added as part of the MIDP 2.0 specification. It is used for
allocating flexible amounts of space between items on a form and gives
the developer much more control over the appearance of a form. The
minimum width and height for each spacer can be defined to provide
space between items within a row or between rows of items on the form.

StringItem
This is an item that can contain a string. It is a display-only item and
the user cannot edit the contents. Both the label and content of the
StringItem can, however, be changed by the application. As with
ImageItem, its appearance can be specified at creation as one of
PLAIN, HYPERLINK or BUTTON. The developer is able to set the text
using the setText() method and its appearance using setFont().

TextField
A TextField is an editable text component that may be placed upon a
Form. It can be given an initial piece of text to display. It has a maximum
size, set by setSize(int size), and an input mask, which can be set
when the item is constructed.

An input mask is used to ensure that end-users enter the correct
data. This can reduce user frustration which, considering the input
methods available to mobile devices, is very useful. The following
masks can be used: ANY, EMAILADDR, NUMERIC, PHONENUMBER,
URL, DECIMAL. These constraints can be set using the setCon-
straints() method and retrieved using getConstraints(). The
constraint settings should be used in conjunction with the following set of

40 GETTING STARTED

modifier flags using the bit-wise AND (&) operator: PASSWORD, SEN-
SITIVE, UNEDITABLE, NON_PREDICTIVE, INITIAL_CAPS_WORD,
INITIAL_CAPS_SENTENCE.

Ticker
This implements a ticker-tape object – a piece of text that runs continu-
ously across the display. The direction and speed of the text is determined
by the device. The ticker scrolls continuously and there is no interface to
stop and start it. The implementation may pause it when there has been
a period of inactivity on the device, in which case the ticker will resume
when the user recommences interaction with the device.

The Ticker is created using the constructor Ticker(String
text); the currently displayed text is returned by getString(); and
the text is set or reset using setString(String text).

Interfaces
Four interfaces are provided by the user interface package, javax.mi-
croedition.lcdui. They are available to both the high- and low-
level APIs.

• Choice defines an API for user interface components such as List
and ChoiceGroup
The contents of these components are represented by strings and
images which provide a defined number of choices for the user. The
user’s input can be one or more choices and they are returned to the
application upon selection.

• CommandListener is used by applications that need to receive
high-level events from the implementation; the listener is attached to
a Displayable object within the application using the addCom-
mand() method

• ItemCommandListener is a listener type for receiving notification
of commands that have been invoked on Item objects
This provides the mechanism for associating commands with specific
Form items, thus contextualizing user input and actions according to
the current active item on the Form, making it more intuitive.

• ItemStateListener is used by applications that need to receive
events that indicate changes in the internal state of the interactive items
within a Form; for example, a notification is sent to the application
when the set of selected values within a ChoiceGroup changes.

2.1.2.5 The Low-Level API

Graphics and the Canvas
The low-level API provides the developer with a much more flexible
approach to user interface development. Whereas the high-level classes

INTRODUCTION TO MIDP 41

leave the implementation to manage the display, the low-level API pro-
vides fine-grained control of the display to the developer. The programmer
has pixel-level control over the positioning of objects on the screen and
can also define objects through the extensive graphics facilities available.
Canvas, the main base class for low-level application programming,

allows the developer total control over the display. The developer may
specify down to pixel level the position of objects on the screen. To
implement Canvas, the application should subclass it to create a new
Displayable screen object. As it isDisplayable, it is interchangeable
with other screen objects such as List and Form. The developer may
choose to use the high-level user interface classes when creating the UI
by toggling between the two types.
Canvas is most commonly used by game developers when creating

sprite animation, and it also forms the basis of GameCanvas, which is part
of the new MIDP 2.0 Game API and will be examined later in this chapter
and in more detail in the next. Canvas can be used in two modes. Normal
mode allows for the display of other information such as softkey labels,
title and other device information screen furniture. In full screen mode,
set by calling the setFullScreenMode(boolean mode)method, the
Canvas takes up as much of the display as the implementation will allow.
In either mode, the dimensions of the Canvas can be accessed using the
getWidth() and getHeight() methods.

Graphics are drawn to the screen by implementing code in the abstract
paint() method. This method must be present in the subclass and will
be called as part of the event model. The event model provides a series
of methods that include user input methods such as keyPressed()
and pointerPressed(), depending upon the device’s data input
implementation. All the methods are called serially except serviceRe-
paints() which blocks all other events until paint() has returned. In
other words, if serviceRepaints() is called, then it will be serviced
before calls to the others are resumed.

The paint(Graphics g)method provides a graphics object, which
is used to draw to the display. The Graphics object provides a simple
2D geometric rendering capability. Rendering operations are based upon
pixel replacement. Source pixels from the graphics context replace the
destination pixels in the display object. Transparency is also supported
and is implemented by leaving the pixel in an unchanged state. The color
context can be set using the setColor (int red, int green,
int blue) method.

An Image is drawn using the drawImage(Image image, int x,
int y, int anchor) method of the Graphic class, which specifies
the location of an Image object on the display. Other primitives may also
be drawn: strings are drawn using drawstring(String string,
int x, int y, int anchor) and rectangles using drawRectan-
gle(int x, int y, int width, int height).

42 GETTING STARTED

Such methods as keyPressed() and pointerPressed() repre-
sent the interface methods for the CommandListener. When a key is
pressed, it returns a keyCode to the command listener. These key-
Codes are mapped to keys on the keypad. The keyCode values are
unique for each hardware key, unless keys are obvious synonyms for one
another. These codes are equal to the Unicode encoding for the charac-
ter representing the key. Examples of these are KEY_NUM0, KEY_NUM1,
KEY_STAR, KEY_POUND, to mention a few. The problem with these key
codes is that they are not necessarily portable across devices: other keys
may be present on the keypad and will perhaps form a distinct list from
those described previously. It is therefore better, and more portable, to
use game actions instead.

EachkeyCode can be mapped to a game action using thegetGameAc-
tion(intkeyCode)method. This translates the key code into constants
such as LEFT, RIGHT, FIRE, GAME_A and GAME_B. Codes can translated
back to keyCodes by using getKeyCode(int gameAction). Apart
from making the application portable across devices, these game actions
are mapped in such a way as to suit gamers. For example, theLEFT,RIGHT,
UP and DOWN game actions might be mapped to the 4, 6, 2 and 8 keys on
the keypad, making game-play instantly intuitive.

Typically, a simple Canvas class might look like this:

import javax.microedition.lcdui.*;
public class SimpleCanvas extends Canvas {

public void paint(Graphics g) {
// set color context to be black
g.setColor(255, 255, 255);
// draw a black filled rectangle
g.fillRect(0, 0, getWidth(), getHeight());
// set color context to be white
g.setColor(0, 0, 0);
// draw a string in the top left corner of the display
g.drawString("This is some white text", 0, 0, g.TOP | g.LEFT);

}
}

Threading
While we are looking at the low-level API, it is worth having a quick
look at threading. Threading can be used to create animation within an
application; there are many ways in which this can be done.

Timers can be used, but the most common way to create a thread is to
implement a Runnable interface. Typically, it would be best to make the
Canvas class Runnable and use this as the central core of any animated
application. Implementing this interface specifies that the abstract run()
method must be implemented and this is where the main work of the
thread will be carried out. Normally, a Thread object is instantiated and
the Runnable class itself is passed as the target. The following shows a
framework that might be adopted:

INTRODUCTION TO MIDP 43

import javax.microedition.lcdui.*;
public class ThreadedCanvas extends Canvas implements Runnable {

private Thread thread;
private boolean isRunning;
private final int SLEEP = 50;
ThreadedCanvas() {

// initialize the class here.
}
synchronized void start() {

isRunning = true;
thread = new Thread(this);
thread.start();

}
synchronized void stop() {

isRunning = false;
}
public void run() {

// put the main game logic in here
while (isRunning) {

// perform thread tasks
// repaint

}
try {

Thread.sleep(SLEEP);
}
catch (Exception e) {}

}
public void paint(Graphics g) {

// paint Graphics object to the screen
}

}

The Game API
Probably one of the most useful additions to the MIDP 2.0 programming
environment is the creation of the Game API. It specifies a frame-
work with which programmers can create rich gaming applications. The
API has been designed to improve the performance of gaming appli-
cations on mobile devices that have, by definition, limited processor
power. Application size is greatly reduced because much of the code
required to produce sprite animation has been wrapped within the API’s
classes.

The API consists of five classes, which are as follows and will be given
greater attention in Chapter 3:

• GameCanvas – a subclass of Canvas that provides the basic screen
functionality for game development
As well as inheriting methods from Canvas, it also provides some
game-centric functionality, such as being able to query the current
state of game keys, synchronous graphics flushing and an off-screen
graphics buffer, which improve overall performance and simplify
development.

44 GETTING STARTED

• Layer – the visual element in a game such as a Sprite or a
TiledLayer; it forms the basis for the Layer framework and affords
necessary features such as location, size and visibility

• LayerManager – an index of all the layers present in the game
It provides the ability to create a ”view” or ‘‘viewport’’ to the game,
which is useful when the developer is creating a large virtual world. As
the user navigates through the world, the LayerManager manages
what should be seen at each particular moment. It then renders that
view to the display.

• Sprite – a basic animated Layer that can display one of sev-
eral frames
The really useful functionality of Sprite is that it creates a number
of equal-sized frames based upon the input of a Sprite film-strip,
provided at creation. It therefore becomes self-aware and is able to
provide a custom or default sequential animation of all of its frames.
Transformations may also be carried out and collision detection
methods are available to simplify the development.

• TiledLayer – a class that enables the developer to create a large
area of graphical content, without having to use the huge resources
that a large image would require.
The TiledLayer consists of a grid of cells that can be populated
with one of several small tile images. In the Demo Racer application
(see Chapter 5), we use a TiledLayer to create the background.
These tiles are repeated across the screen to create a larger, screen
sized image. If, for example, we want some of these tiles to change we
could create dynamic cells to provide animation for a specific cell.
For example, we may want to add a ”glaring sun” to the sky area of
the screen.

2.1.3 RMS Storage

One of the main problems for any application, especially in the enterprise
sector, is the question of storing data after the application has been closed.
MIDP applications may be used by sales people on the road, snapshots
of financial data may be downloaded via a secure server to the device or
it may be that high scores for a game need to be stored. Implementing
a full-scale JDBC database on a small, constrained device would be
adventurous, not to mention resource-draining on power and processor.
However, at the other end of the scale the data cannot be written directly
to the device’s file system as this breaks the MIDP sandbox security
model. Therefore MIDP provides a simple record-based persistent storage
mechanism known as the Record Management System (RMS). The RMS
allows the MIDlet application to store persistent data within a controlled

INTRODUCTION TO MIDP 45

environment, while maintaining system security. It provides a simple,
non-volatile data store for MIDlets while they are not running.

The classes making up the RMS are contained in the javax.micro-
edition.rms package. Essentially, the RMS is a very small, basic
database. It stores binary data in a Record within a RecordStore.
MIDlets can add, remove and update the records in a RecordStore.
The persistent data storage location is implementation-dependent and is
not exposed to the MIDlet.

A RecordStore is accessible across all MIDlets within a suite, and
MIDP 2.0 extends access to MIDlets with the correct access permissions
from other MIDlet suites. However, when the parent MIDlet suite is
removed from the device, its recordstores are also removed regardless of
whether a MIDlet in another suite is making use of them.

The RMS recordstore is discussed in more detail in Chapter 3 and will
also feature in a couple of the case studies described in Chapter 5.

2.1.3.1 Media API in MIDP 2.0

MIDP 2.0 includes a small audio-only media capability, known as the
Media API. The Media API is a subset of the much richer optional J2ME
Mobile Media API (JSR 135). The Mobile Media API does ship on some
Symbian OS phones, such as the Nokia 3650 and Nokia 6600, but it is
an additional API and not part of MIDP 2.0.

The MIDP 2.0 Media API provides support for tone generation and
audio playback of WAV files if the latter is supported by the underlying
hardware. Since MIDP 2.0 is targeted at the widest possible range of
devices, not just feature rich smartphones, the aim of the Media API is
to provide a lowest common denominator functionality suitable for the
capabilities of all MIDP 2.0 devices.

We will discuss programming the Media API and the Mobile Media
API in detail in Chapter 3.

2.1.3.2 Networking

In Chapter 1 we looked at how the CLDC has defined a streamlined
approach to networking, known as the Generic Connection Framework.
The framework seeks to provide a consistent interface for every network
connection between the MIDP classes and the underlying network proto-
cols. Every time a network connection is made, no matter what protocol
is being used, the interface remains the same. To open a connection, the
static open() method in the Connector class is used.

In MIDP 1.0, the only protocol for which support was required was
HTTP. MIDP 2.0 has made many more protocols available, although
HTTP and HTTPS are the only two mandatory protocols. The optional
protocols include sockets, server sockets and datagrams.

46 GETTING STARTED

MIDP 2.0 adds an interesting new feature in the Push Registry. The
Push Registry maintains a list of incoming network connections registered
by MIDlets. When an incoming connection is received by the device a
lookup of the port and MIDlet name is performed. If the MIDlet is not
currently running then, if permitted by the security policy, the MIDlet will
be launched.

Networking and the Push Registry will be discussed in more detail in
Chapter 3.

2.2 Helloworld, Turbo Edition

By this stage in the book it is about time we started showing you some
real code. So let’s have a look at a sample application.

Helloworld has been the stalwart for authors time and time again
because it serves to show the developer the basics and is also simple to
program. We thought, however, we might stretch the reader a little more
here. We want to give you something a little more useful, something
that serves to demonstrate some points already made and also illustrates
points we wish to make once we delve deeper into this book.

This application is still called Helloworld, but the tag ”Turbo Edition”
has been added to give it some glamour! Whereas previous Helloworld
applications have only really served to display some text on the screen,
this version sets out to unlock some of the more useful additions included
in MIDP 2.0. The Game API seemed the most likely candidate.

2.2.1 Overview

As has been outlined above, rather than recreate the wheel, we decided
that it would be interesting to show what can be achieved by using the
Game API and some sprite graphics. It was thought that the techniques
used here might serve as a splash screen, just to let the user know that
everything is well in the world and the application is loading. When it
is running, the Symbian logo is displayed, before splitting into four (see
Figure 2.3). The four pieces rotate and the display becomes ”Helloworld,
Turbo Edition” (see Figure 2.4). The animation then runs in reverse.

In addition to being a rather sophisticated animation, this demonstrates
the application lifecycle and what it really means for the developer. It also
illustrates one of the basic principles of the Game API, sprite animation.
So let’s have an initial look at what is actually inside it.

This application is made up of four classes and one PNG format
graphics file. It has been tested using the Nokia 6600 and we did, of
course, use some of the tools outlined later in this chapter to achieve the
end product.

HELLOWORLD, TURBO EDITION 47

Figure 2.3 Helloworld: Symbian.

Figure 2.4 Helloworld: Turbo Edition.

2.2.2 MIDlet Class: Helloworld.java

This is the main class for the application. This class represents the MIDlet
lifecycle of the application. Earlier in this chapter we described the
process a MIDlet goes through from initialization to being destroyed. You
may remember we talked about the relationship between the application
software manager and the MIDlet itself. The AMS provides the class
which initializes the MIDlet class. When it is ready to do so, a call is
made to the startApp() method (every MIDlet has one).

It must be remembered that the startApp() method can be called
more than once during the lifecycle of the MIDlet. The developer has,
therefore, to be careful what code is put in this method. If, for example,
the application were paused during execution, it would be unwise to

48 GETTING STARTED

display the wrong screen to the user. It would cause confusion and it is
better to let the user know what is happening. It would also be unwise to
put all initialization for a recordstore into the MIDlet constructor because
the data does not have to be re-initialized when the MIDlet is re-executed
after being released during the pauseApp() process. A balance has to
be struck at this point to create a well-structured application.

Why not just set the current display, say a Canvas object, directly
in the setCurrent() method in startApp()? More flexibility can
be given to the application if we set a global displayable object at
this point. It means that when the application is paused, whether by the
AMS or the user, the global displayable object is set, for example to a
pause screen which is more informative. After setting the displayable
and therefore the current display to this temporary ”paused” screen, the
displayable object can then be set to the screen you wish the user to
see once execution resumes. Therefore when startApp() is called and
the MIDlet resumes execution, the user will return to the place where
they were when they paused.

While we have been concerning ourselves with displaying the correct
screen to the user, we also have to remember that the MyGameCanvas
object is Runnable. During the startApp() process we have made a
call to start the MyGameCanvas thread running. This enables the thread
that provides the animation for that class. While the application is in the
paused state, this resource should be released. Although the application
can pause execution, it must be remembered that the device, through the
AMS, may require the MIDlet to pause and release resources to deal with
more important issues, such as receiving a phone call or text message.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import java.io.IOException;
public class Helloworld extends MIDlet implements CommandListener {

private MyGameCanvas gameCanvas;
private MyPauseCanvas pauseCanvas;
private Command exit;
private Command pause;
private Command resume;
private Display display;
private Displayable displayable;
public Helloworld() {

display = Display.getDisplay(this);
pauseCanvas=new MyPauseCanvas();
getCanvasDisplay();
// create the commands for both the gameCanvas and pauseCanvas
exit=new Command("Exit",Command.EXIT,1);
pause=new Command("Pause",Command.ITEM,2);
gameCanvas.addCommand(exit);
gameCanvas.addCommand(pause);
gameCanvas.setCommandListener(this);
resume=new Command("Resume",Command.ITEM,2);
pauseCanvas.addCommand(resume);

HELLOWORLD, TURBO EDITION 49

pauseCanvas.setCommandListener(this);
}
protected void startApp() throws MIDletStateChangeException {

getCanvasDisplay();
display.setCurrent(displayable);

}
protected void pauseApp() {

System.out.println("Pausing...");
if(displayable!=null){

display.setCurrent(displayable);
}

}
public void destroyApp(boolean unconditional) {

releaseResource();
}
private void releaseResource() {

if(gameCanvas!=null){
gameCanvas.stop();

}
}
private void getCanvasDisplay(){

try{
if(gameCanvas==null){

gameCanvas=new MyGameCanvas(this);
}
if(!gameCanvas.isRunning()){

gameCanvas.start();
}
displayable=gameCanvas;

}
catch(IOException ioe){
}

}
public void commandAction(Command command, Displayable d) {

if (command==exit){
releaseResource();
notifyDestroyed();

}
else if (command==pause){

displayable=pauseCanvas;
releaseResource();
notifyPaused();

}
else if(command==resume){

try{
startApp();

}
catch (MIDletStateChangeException msce){}

}
}

}

2.2.3 GameCanvas Class: MyGameCanvas.java

Whereas the Helloworld.java class might be described as the heart-
beat of this application, the MyGameCanvas.java class is probably the
brains behind the operation! It is called at the very beginning of execution

50 GETTING STARTED

by the MIDlet and it only stops ”thinking” when the MIDlet is paused
or destroyed.
MyGameCanvas is responsible for instigating a thread that provides

animation to the current display. However, prior to that it loads the
graphics from the resource directory within the MIDlet suite; these are
then used to form the sprite object, MySprite.java. A LayerManager,
also created by the game canvas, manages this sprite object. As each
sprite is created, it is added to the layer manager’s index.

Once the thread is up and running, having been started by the
startApp() method of the MIDlet, it is responsible through each cycle
for painting sprites to the screen and making sure that the correct sprite
frame is ready to be displayed at the correct time. The thread actually
leaves the frame management to the sprite itself, but we shall look at this
later. The layer manager makes a call to its own graphics context and draws
the sprites to the screen. This cycle creates the illusion that is animation.

This process can be seen in the code below. The run() method
provides the engine room for the thread cycle. First, it draws all the
objects in its graphics context to the screen, using the draw() method.
draw() receives the graphics context from the thread and uses it to
create a black rectangular background the size of the screen dimensions.
Having calculated the center of the screen, it then uses the layer manager
to also paint the sprites within its index to the screen and makes the call
to the flushGraphics() method, which notifies the screen that the
graphics are ready for drawing and that they should be drawn now.

Before resting for a short while, a call is made to the tick() method,
which asks the sprite to manage which frame should be displayed next.
This interface needs to remain the same if any changes are made to the
underlying logic that determines the frame display.

import javax.microedition.lcdui.game.*;
import javax.microedition.lcdui.*;
import java.io.IOException;
public class MyGameCanvas extends GameCanvas implements Runnable {

private Command exit;
private Helloworld midlet;
private MySprite sprite;
private LayerManager layerManager;
private Thread thread;
private boolean running;
private final int SLEEP = 100;
public MyGameCanvas(Helloworld midlet) throws IOException {

super(true);
this.midlet = midlet;
sprite = createSprite();
// initialize the layer manager
layerManager = new LayerManager();
// append the sprite to the layer manager
layerManager.append(sprite);

}

HELLOWORLD, TURBO EDITION 51

public boolean isRunning(){return running;}
synchronized void start(){

running=true;
thread=new Thread(this);
thread.start();

}
public void run(){

Graphics graphics=getGraphics();
try{

while (running){
draw(graphics);
tick();
Thread.sleep(SLEEP);

}
}
catch(InterruptedException ie){

System.out.println(ie.toString());
}

}
synchronized void stop(){

running=false;
}
private void tick(){

sprite.tick();
}
private void draw(Graphics g){

// calculate the center of the screen based upon the
// the images and canvas size
int x = (getWidth()/2-sprite.getWidth()/2);
int y = (getHeight()/2-sprite.getHeight()/2);
// set and draw the background
g.setColor(0,0,0);
g.fillRect(0,0,getWidth(),getHeight());
// paint the sprite on the screen
layerManager.paint(g,x,y);
flushGraphics();

}
private MySprite createSprite(){

Image image=null;
int height=0;
int width=0;
try{

image = Image.createImage("/Splash.png");
width = image.getWidth();
height = image.getHeight() / MySprite.RAW_FRAMES;

}
catch(IOException io){

io.printStackTrace();
}
return new MySprite(image, width, height);

}
}

2.2.4 Sprite Class: MySprite.java
While the metaphor of the body is being used to describe this application,
this class most probably represents a limb! It is a relatively simple class,

52 GETTING STARTED

but it is clever enough to recognize what it is and act according to
the information it has at its disposal. It subclasses the Game API class
Sprite, which is itself an extension of Layer.

In order to make our GameCanvas as flexible as possible we need
to make MySprite.java an intelligent class so that it can morph
according to what it is holding – in other words, it reacts to the frames
it has at its disposal. This is best achieved by making it responsible for
making sure the correct frame is current when the game canvas cycles
through its loop.

Upon initialization, the object is passed some basic information about
itself. First, it is told what image to use. This image is full of the individual
sprite images required to provide the animation for the application. This
is where the Game API comes into its own. If you pass it an image of a
certain height and tell it the height of the individual frames, the Sprite
class is clever enough to create the frames for you. This really saves
on development time and allows the developer to concentrate on the
game logic of the application rather than getting bogged down in sprite
definition. Therefore, the other items in the sprite’s constructor are width
and height.

The sprite in this case is left to determine its own frame order, based
upon the order in which the frames are laid out in the graphic image
passed to it at initialization. Essentially, the frames are sequenced in one
direction and then reversed to provide the opposite effect, forming the ani-
mation of the Symbian image rotating to become the Helloworld image.

The beauty of this self-determination approach is that we now have
a reusable object, as long as the functionality of the object is to remain
the same. If we want to change the appearance of the animation, all we
have to do is create a new set of frames and the sprite will do the rest. It
is, of course, important to remember that we have to maintain the same
interface with the game canvas which makes the calls to the class to set
the next frame. It is, however, fair to say that this represents portable code
that can be reused to create a different animation without any change to
the game canvas.

import javax.microedition.lcdui.Image;
import javax.microedition.lcdui.game.Sprite;
public class MySprite extends Sprite {

protected final int SLEEP=1000;
protected static final int RAW_FRAMES=13;
protected static final int HELLOWORLD_FRAME=12;
protected static final int SYMBIAN_FRAME=0;
protected boolean direction=false;
public MySprite(Image image, int width, int height){

super (image,width,height);
}
public void tick(){

this.getDirection();
if(direction){

HELLOWORLD, TURBO EDITION 53

this.nextFrame();
}
else{

this.prevFrame();
}

}
private void getDirection(){

if (this.getFrame() == SYMBIAN_FRAME |
this.getFrame()== HELLOWORLD_FRAME){

getDelay();
if(direction){

direction=false;
}
else{

direction=true;
}

}
}
private void getDelay(){

try{
Thread.sleep(SLEEP);

}
catch(InterruptedException ie){

System.out.println(ie.toString());
}

}
}

2.2.5 Paused Message Class: MyPausedCanvas.java

This is a very simple class, which requires little explanation. It is merely a
Canvas which is set as the current Displayable when the Helloworld
MIDlet is paused (see Figure 2.5).

Figure 2.5 Helloworld paused state.

54 GETTING STARTED

import javax.microedition.lcdui.*;
public class MyPauseCanvas extends Canvas {

private Font font = Font.getFont(Font.FACE_PROPORTIONAL,
Font.STYLE_BOLD, Font.SIZE_LARGE);

public void paint(Graphics g) {
// show the user a screen with "PAUSED" in the center
g.setColor(0,0,0);
g.fillRect(0,0,getWidth(),getHeight());
g.setColor(255,255,255);
g.setFont(font);
g.drawString("PAUSED",getWidth()/2,getHeight()/2,

Graphics.TOP|Graphics.HCENTER);
}

}

2.3 Introduction to Tools for MIDP

2.3.1 Toolkits
2.3.1.1 J2ME Wireless Toolkit 2.1

Overview
The J2ME Wireless Toolkit 2.1 provides basic tools for developers to
create MIDP 2.0 applications. The Wireless Toolkit (WTK) was created
by Sun to facilitate MIDP development. At the time of writing, the
production release can be obtained free of charge from Sun’s website
(http://java.sun.com/products/j2mewtoolkit/download-2 1.html).

Amongst more advanced features, it provides the developer with the
ability to compile, pre-verify and package MIDlet suites on the command
line, as well as providing a simple GUI to manage MIDP application
creation. The ”Build” button on the KToolbar combines all the command
line functionality described in Section 2.1.1.6, apart from packaging. The
packaging command in the Projects menu provides this extra step. A
handy interface for creating the JAD file is also supplied and accessed via
the Settings button.

The J2ME WTK does not, however, provide a text editor or sophis-
ticated debugging facilities, so users may find development a slightly
cumbersome process. It does, however, remain a useful tool as it pro-
vides developers with device emulators and a development infrastructure
and it captures system output and other debug information such as error
messages (see Figure 2.6).

Versions of this tool are available for Windows and Unix-based sys-
tems. At the time of writing, the J2ME Wireless Toolkit 2.1 is available in
production releases for the following operating systems:

• Microsoft Windows XP or Microsoft Windows 2000

• Microsoft Windows 98/NT (unsupported)

INTRODUCTION TO TOOLS FOR MIDP 55

Figure 2.6 J2ME Wireless Toolkit.

• Solaris 8

• Red Hat Linux kernel 2.4.2-2. glibc version 2.2.2 (unsupported).

Also required for development is Java 2 SDK Standard Edition (J2SE
SDK) of at least version 1.4 (this is available at the following location:
http://java.sun.com/j2se/downloads.html).

Although support is only given for the more recent Windows platforms,
this still represents a good opportunity for Java developers to test wireless
applications on their favored development platforms.

The toolkit offers the developer support in the following develop-
ment areas:

• OTA emulation
The toolkit takes the developer through the steps a user experiences
when discovering and downloading an application to the device. The
emulator displays JAD file information, which allows the end-user
to decide whether to install locally or not. The application is then
downloaded and verified by the emulator device and installed. The
application is then run ”locally”.

• MIDlet signing
MIDlet signing is new to the MIDP environment. The toolkit allows a
developer to browse for a J2SE keystore file (an SKS file) and use it to
sign a MIDlet suite

• WMA emulation for SMS (and CBS broadcasts)

• new skins for QWERTY and media devices

56 GETTING STARTED

• certificate management – an interface for the developer to manage
security certificate files (CER files) and view the contents of J2ME
keystore files (KS files)

• Push Registry emulation – this emulates a MIDlet’s reaction to an
inbound network connection or timer-based alarm; the registry is set
up using the Push Registry tab within the Project > Settings dialog

• access to J2ME Web Services – the user can generate a stub connector
to access J2ME Web Services from the toolbar; the user provides a
Web Service Descriptor Language file (a WDSL file)

• monitoring for all protocols – HTTPS, socket, datagram, COMM,
SSL, SMS/CBS

• compile-time and runtime selection of API extensions (WMA, MMAPI)

• switching between MMAPI and MIDP 2.0 Media API – this allows the
developer to set the abilities of the underlying API implementation
on the emulator device (some devices ship with the full MMAPI,
so developers may wish to configure the emulator to reflect more
powerful devices)

• new demos – demos such as the Mobile Media MIDlet (mmademo)
and SMSDemo MIDlet allow the developer to gain an idea of how the
toolkit handles SMS messaging between emulators within the same
instance of the toolkit

• support for the ProGuard obfuscator
Obfuscation provides a level of protection against reverse engineering.
It also reduces the final file size of MIDlet suites. This is very useful
when most end-users will be downloading their MIDlets remotely over
the air. Smaller files mean more efficient execution and less space
taken up in the device. ProGuard provides software that performs
the obfuscation. It is available, under General Public License, at
http://proguard.sourceforge.net.

• method profiling (from v1.0)

• memory and network monitoring (from v1.0) – this includes message
filtering, sorting messages and viewing network traffic

• device speed emulation (from v1.0).

Installation
To enable installation of the J2ME Wireless Toolkit 2.1, the host PC will
need to have the Java 2 SDK 1.4.1 installed. Installation on the PC can
be carried out as follows.

INTRODUCTION TO TOOLS FOR MIDP 57

1. Execute the file j2me_wireless_toolkit-2_1-windows.exe
which is available from the download areas on the Java Sun website
(see above).

2. The user will be prompted to confirm the location of the Java Runtime
Environment (Figure 2.7). Version 1.4.1 or higher is required. If this
is not present, it should be installed before continuing with the
installation of the toolkit.

3. The destination of the toolkit can then be chosen and confirmed
(Figure 2.8). In this case we deviated from the default location. Note
that, at least for the current Toolkit, this name cannot contain spaces.

4. The installation program then prompts for the confirmation of a
Program Folder name (Figure 2.9). On Windows machines, this is
the name of the folder as it appears on the Start menu. It may be
desirable to enter a shorter name.

5. A dialog reviewing the installation details is displayed. Press Next to
begin installation.

6. The installer will then display a dialog to tell the user that installation
has been completed (Figure 2.10).

Figure 2.7 J2ME Wireless Toolkit setup.

58 GETTING STARTED

Figure 2.8 Confirming location.

Figure 2.9 Selecting a program folder.

INTRODUCTION TO TOOLS FOR MIDP 59

Figure 2.10 Installation complete.

2.3.1.2 Apache Ant

Overview
The Apache Ant project is a part of Apache’s Jakarta project (http://jakarta.
apache.org) and is a Java-based building tool distributed under the
Apache license. It has been developed by the Java community and
is described as ”kind of like Make, but without the wrinkles”. It can
be obtained from the Apache Ant website (http://ant.apache.org/index.
html). We are going to use it in conjunction with another tool, Antenna,
which provides specific Ant tasks for building MIDP 1.0 and 2.0 applica-
tions. This is distributed under the GNU Lesser GPL and can be obtained
from the SourceForge website (http://antenna.sourceforge.net).

It is a reasonably easy tool to use and, in a similar way to the Wireless
Toolkit, it automates the compiling, pre-verifying and packaging of a
MIDlet suite. The execution of an emulator can also be added on to the
end of the XML configuration file for extra convenience. Whereas the
KToolbar provides the developer with adequate tools for MIDlet creation,
Ant gives the developer fine-grained control over how the MIDlet suite
should be put together. The really great thing about Ant is that it comes
fully integrated with Borland’s JBuilder, Sun’s ONE Studio and can also
be integrated with other IDEs such as JCreator (www.jcreator.com), JEdit
(www.jedit.org), and Eclipse (www.eclipse.org). However, this section
will look at Ant as a standalone tool.

60 GETTING STARTED

Ant reads an XML configuration file and uses this information to carry
out whatever commands are inside it. In this case, it uses the Antenna’s
built-in tasks, such as compile, pre-verify and package. Commands can
be set to true, or false when they are not required. This gives the
developer the option of adding in an obfuscation step between compiling
and pre-verification. An extra target could be inserted as well, to deal with
packages from third-party developers. Ant really is flexible, and this is one
of the reasons why it has been embraced by a growing number of Java
developers. It facilitates the handling of builds for different applications or
numerous builds for the same application, saving developer time during
development as well as smoothing the communication between different
members of a development team. Whichever way it is used it provides a
defined and reproducible build for a MIDlet (with the use of Antenna) or
for any other Java application for that matter.

Before we look at installation and execution let’s have a look at an
example build.xml file. We have built one for use with the Demo Racer
application discussed in Chapter 5. Configuration of Ant and Antenna for
MIDP 2.0 using the Wireless Toolkit version 2.1 is a little more difficult
than for previous editions. Version 2.1 splits the CLDC and MIDP packages
into JAR files for each version. Therefore the <wtk home>/lib directory
contains cldcapi10.jar, cldcapi11.jar, midpapi10.jar and
midpapi20.jar files. This split has to be reflected in the build.xml
file, such as the one below. This build file was taken from the ”hello”
example included in the Antenna source ZIP file and then adapted for
our needs.

<?xml version="1.0"?>
<project name="DemoRacer" default="build" basedir=".">
<!-- Define the WTK home directory, needed by the tasks. -->

<property name="wtk.home" value="D:/WTK21"/>
<!-- Define the MIDP API: either 1.0 or 2.0 can be used. -->
<property name="wtk.midpapi" value="${wtk.home}/lib/midpapi20.jar"/>
<!-- Define optional properties for this project. -->
<property name="midlet.name" value="DemoRacer"/>
<property name="midlet.home"

value="${wtk.home}/apps/${midlet.name}"/>

<!-- Define the tasks. -->
<taskdef resource="antenna.properties"/>

<target name="clean">
<delete failonerror="false" dir="classes"/>
<delete failonerror="false">

<fileset dir=".">
<exclude name="build.xml"/>

</fileset>
</delete>

</target>

<target name="build">

INTRODUCTION TO TOOLS FOR MIDP 61

<!-- Copy a JAD file from the WTK demo applications.
Caution: Ant only copies this the first time. Also
make a directory to compile into. -->

<copy file="${midlet.home}/bin/${midlet.name}.jad" todir="."/>
<mkdir dir="classes"/>
<!-- Compile everything, but don’t preverify (yet). -->
<wtkbuild srcdir="${midlet.home}/src"

destdir="classes"
preverify="false"/>

<!-- Package everything. Most of the necessary information is
contained in the JAD file. Also preverify the result this
time. To obfuscate everything, set the corresponding
parameter to "true" (requires RetroGuard or ProGuard).
The version parameter increments the MIDlet-Version by
one. -->

<wtkpackage jarfile="${midlet.name}.jar"
jadfile="${midlet.name}.jad"
classpath="${wtk.home}/lib/cldcapi10.jar"
obfuscate="false"
preverify="true"
autoversion="true">

<!-- Package our newly compiled classes and the
resources from the WTK demo application. -->

<fileset dir="classes"/>
<fileset dir="${midlet.home}/res"/>

</wtkpackage>

<!-- Start the MIDlet suite -->
<wtkrun jadfile="${midlet.name}.jad"

device="DefaultColorPhone"
trace="class,gc" wait="true"/>

</target>
</project>

There are seven areas of interest in this build.xml file:

• Wireless Toolkit location – in the property wtk.home; Antenna relies
upon functionality provided by the WTK, so this property is essential

• MIDP API location – the WTK 2.1 defines two sets of API, to allow for
backwards compatibility when building MIDlets; we have chosen the
midpapi20.jar file

• the Antenna properties file – defined in a task definition as a resource
and set to antenna.properties, this file specifies the classpath of
the antenna classes within the antenna-bin-0.9.11.jar file

• the build target – as the default build (we can define more than one
within the same configuration file), this defines what the build will
actually include
In this case, we copy the existing JAD file to a new location, although
we could use this build.xml file to create a new one. The MIDlet

62 GETTING STARTED

source is defined along with the destination for the compiled classes.
The emulator execution and packaging are wrapped in this build.

• the wtkpackage command – this creates the JAR and if the JAD file
is present, it tries to update the MIDlet-Jar-Size and MIDlet-
Jar-URL attributes; it performs obfuscation and pre-verification (if
those attributes are set to true) and increments the version number
of the MIDlet

• the build classpath – the WTK 2.1 splits the CLDC classes into CLDC
1.0 and CLDC 1.1, so we need to specify the classes against which the
pre-verifier should verify; we have chosen CLDC 1.0; the pre-verifier
won’t execute successfully if this property is not set correctly

• running in an emulator – once all this has been completed successfully
the specified emulator will be run according to the device set in the
device property.

Installation
Builds are available from the Ant website for both Windows and Linux/Unix
developers, though we are only concerned with Windows installation.
Developers can choose either a binary (http://ant.apache.org/index.
html) or source (http://ant.apache.org/srcdownload.cgi) download. For
simplicity we shall examine the binary download. Once the Ant ZIP or
TAR file has been downloaded (http://antenna.sourceforge.net), its con-
tents should be extracted to a suitable location. Once this has been done,
there are a number of environment variables that need to be set, before
Ant can be used.

You will also need to download the antenna-bin-0.9.11.jar
and antenna-src-0.9.11.zip files. Place the JAR file in Ant’s lib
directory. Extract the source files to a location under the existing Ant
installation, for example <ant installation>\antenna\ and then
place the Antenna JAR file in Ant’s lib directory. This will ensure that
the Antenna package is in the classpath.

Assume, for this example, that Ant is installed in c:\ant\. The following
sets up the environment:

set ANT_HOME=c:\ant
set JAVA_HOME=c:\jdk1.2.2
set PATH=%PATH%;%ANT_HOME%\bin

Alternatively these can be set permanently via the System command
within the Control Panel on the PC.

Using Ant
Once these environment variables have been set up, Ant is ready to
go. To run with the default arguments, simply navigate to the directory

INTRODUCTION TO TOOLS FOR MIDP 63

containing the build.xml file and type ant at the command prompt.
As each target is met, its name will be echoed to the screen, so progress
can be monitored. Any errors will also be written to the screen. While
build.xml is the default build file, different configurations may have
been created for each project. To specify which build file to use, set the
–buildfile argument to identify an alternative file:

ant –buildfile <path to build file>

Alternatively the developer may only want to run up to a certain target
or perhaps they have a build file containing many targets. This can be
specified by adding the target name as an option. If a particular target
has a dependency (our example hasn’t, but they can be added), then it
will run those first, before running itself. Executing the emulator may be
taken out of the build target in our example, put into a separate target
and executed on its own.

ant –buildfile <path to build file> <target name>

These are just two useful options. Ant help provides a list of the other
options available and it can be called by typing:

ant -help

2.3.1.3 Nokia Developer’s Suite 2.0 for J2ME

Overview
The Nokia Developer’s Suite 2.0 for J2ME (NDS) has been created by
Nokia and is available from the Forum Nokia website (download from
the Tools & SDKs section at www.forum.nokia.com). It is a tool designed
primarily to enhance existing development tools, although it can run
as a standalone tool. Incidentally, there are versions available for both
Windows and Linux platforms.

The suite provides developers with class libraries, APIs and Nokia
device emulators used to create both MIDP 1.0 and MIDP 2.0 Java
applications. Once it is integrated with an IDE, such as Borland’s JBuilder
or Sun’s Studio ONE, it becomes a very useful tool in the development of
mobile applications.

The NDS offers many features to the developer:

• support for Series 60 MIDP Concept SDK Beta 0.3 Nokia Edition
Series 60 is a major Symbian OS platform, which has been developed
by Nokia and licensed to manufacturers such as Sendo, Siemens,
Samsung and Panasonic. This SDK provides a Nokia device reference
implementation of that platform

64 GETTING STARTED

• deployment on devices using infrared, USB and RS-232 (available on
Windows platforms only)
The suite provides a convenient interface with which to deploy JAR
files to the device during development. During testing it is wise to
make intermittent checks on the quality of the application code on the
target device. This will greatly reduce the frustration and time spent.

• FTP uploading capability with WML deck creation

• application signing with a public/private key

• an integrated audio converter for MIDI and ringtone XML files.

For developers new to the Java environment, Figure 2.11 shows how
the NDS can be used to speed up the creation of new classes. Imported
packages and interface references can be set up using a dialog box. This
also gives the developer the ability to browse the MIDP packages to find
various APIs.

Figure 2.11 Create Class dialog.

INTRODUCTION TO TOOLS FOR MIDP 65

Installation
Although the NDS can be installed in standalone mode, it is probably best
used when integrated with an IDE. We shall, therefore, walk through the
necessary steps required to integrate the product with Borland’s JBuilder
9 Personal Edition. (Note that the NDS can also be integrated with Sun
ONE Studio 4, Mobile Edition.)

The Nokia Developer’s Suite requires JBuilder 9 and the Mobile Set
3.01 to be installed first. We will outline the installation of them in
Section 2.3.2.1.

The steps to install the NDS on Windows are as follows:

1. Download the ZIP file from the Forum Nokia website and extract it
to a suitable location.

2. To register the software and obtain a serial number for installation,
you must have a valid registration with Forum Nokia. The serial
number will be sent to the registered email address. Request the
registration key and click either ‘‘sent’’ or ‘‘already supplied’’ on the
dialog box.

3. Execute the file setup.exe in the extraction directory. After the
splash screen, the terms and conditions of use have to be agreed to.
A prompt then appears requesting the entry of the serial number for
the software (Figure 2.12).

Figure 2.12 NDS installation.

66 GETTING STARTED

Figure 2.13 Choosing configuration type.

4. Once the serial number has been entered, the next decision to be
made is how you will actually install the suite, integrated either with
JBuilder or Sun ONE Studio, or as a Standalone tool (Figure 2.13).

5. The locations of the JBuilder IDE need to be confirmed along with
the destination of the NDS, in successive dialog boxes.

6. The installation is now ready to begin. Press ”Install” to install
the software. Once the installation has completed, the PC will
require restarting.

The NDS has now been fully integrated with the JBuilder IDE. Go to
the Tools menu within the Borland IDE and see that ”Nokia Developers
Suite for J2ME” has appeared near the bottom.

2.3.2 Integrated Development Environments

2.3.2.1 JBuilder 9

Overview
Borland has created a number of tools for the developer, with varying
degrees of functionality, ranging from the basic personal edition through
to enterprise level.

The IDE provides a thorough interface for creating Java applications.
The text editor provides auto-completion of methods and class members.
It also provides a graphical overview of all the methods and class members

INTRODUCTION TO TOOLS FOR MIDP 67

in the currently displayed class. Classes can be navigated and viewed
easily using the Project and Structure windows.

Compilation highlights where errors have occurred and, by simply
double-clicking the message, the user will be taken to the error. Libraries
and other APIs can be easily imported and added to projects, negating the
need to worry about classpaths on the PC itself. Version 9 also includes
team collaboration utilities with version control software such as CVS.

As each new edition of the IDE is released, the previous one is avail-
able from the Borland website for non-commercial evaluation purposes
(www.borland.com/products/downloads/download jbuilder.html). The
Personal version can be found here and, of course, can only be used for
non-commercial evaluation purposes.

Borland also provides an additional module, the Mobile Set, which
extends the IDE into mobile development, providing the functionality
of the WTK. The Borland Mobile Set 3.01 has been created essentially
to enable the JBuilder IDE to also be a wireless development tool. It
integrates with the Wireless Toolkit and provides visual design tools for
the creation of MIDlets. It can also provide support for the NDS and
other manufacturer add-ins, and the Mobile Set includes support for OTA
provisioning. JBuilder 9 also provides support for the unified emulator
interface (UEI), which is described in greater detail later in this chapter.
JBuilder 9 supports class obfuscation, using RetroGuard version 1.1. This
process occurs as part of the archive process and reduces the final size of
the JAR files. The process of obfuscation reduces class file sizes when it
scrambles the source code. The Mobile Set also uses RetroGuard.

RetroGuard rolls the creation of JAD and JAR files into a more acces-
sible interface as well as giving developers debugging capabilities and
testing of applications on device emulators. It is available under the GNU
Lesser General Public License from www.retrologic.com.

Installation
We will now give an overview of how to install JBuilder 9 Personal Edition
IDE. A non-commercial Personal edition of each version of JBuilder is
made available for evaluation purposes. The latest version is called
JBuilderX and includes support for MIDP 2.0 application development.

First, download two installation files (jb9_windows.zip and
mobileset_301.zip) from the Borland website: www.borland.
com/products/downloads/download jbuilder.html. A valid registration
and email address will be required to successfully complete the
installation.

1. Extract both ZIP files to a suitable location. The JBuilder ZIP will pro-
duce a file called per_install.exe. This file should be executed.

2. After the Borland splash appears, the destination for the tool will be
requested (see Figure 2.14). When this has been entered press Next.

68 GETTING STARTED

Figure 2.14 JBuilder installation.

3. Once installation is complete, the product needs to be registered with
the vendor. A license activation file is sent automatically to the regis-
tered email address. This should be saved to an appropriate location.

4. Enter the location of the activation file (Figure 2.15).

5. Once the activation location has been given, the IDE is now ready
for use. However, the IDE is not quite ready for J2ME development.
We need to also install the Mobile Set to give the option of working
with J2ME capabilities as well as J2SE.

6. Execute mobileset.exe to commence installation. A prompt will
appear to determine the installation type. The Full Install option also
installs the RetroGuard obfuscator.

7. After setting the destination for the tool, installation should continue
without further prompting.

2.3.2.2 Metrowerks CodeWarrior Wireless Studio 7

Overview
CodeWarrior is a commonly-used IDE that provides the developer with
all the tools required for MIDP application creation. A new version of the
tool is on its way, and it will integrate Java with native C++ development.

The Wireless Development Toolkit has been integrated into the IDE.
This means the default emulators are present. Device emulators such as

INTRODUCTION TO TOOLS FOR MIDP 69

Figure 2.15 Registering the tool.

that for the Sony Ericsson P800 can, however, also be added to the IDE.
Consequently, the packaging, pre-verification, compilation, and testing
can all be carried out within one user interface. JAD files are also created
automatically for the developer, while WYSIWYG drag and drop RAD
tools supporting MIDP are also present.

CodeWarrior offers code obfuscation, just as JBuilder does. This is
useful for two reasons. It provides a level of protection against pirating
of software by mangling the source code; if the application is ever
decompiled, the results will, hopefully, be confusing enough to prevent
the code from being stolen. Obfuscation also provides shortened naming
conventions within the output code. This is a known method for creating
more efficient MIDP applications and will speed up performance.

Project management and team development are supported by ver-
sion control and integrated management of targets, classes and source
code. Remote debugging can also be carried out on JDWP-compliant
virtual machines.

Installation
Metrowerks does not at present provide an online evaluation version of
the software. This document will therefore give a brief overview of the
installation of the full Professional Wireless Edition.

70 GETTING STARTED

The minimum system requirements are as follows:

• Windows 98/2000/ME/NT 4.0 with Service Pack 4 or later

• Sun’s Java SDK, v1.2 or later (JSDK 1.3.1 and JSDK 1.4.0 included)

• Pentium class or AMD-K6 class processor

• 64 MB RAM

• 250 MB hard disk space

• CD-ROM drive for installation

• an Internet connection for registration.

To install the IDE:

1. Insert the CodeWarrior CD-ROM. It should automatically display
the setup menu. If it does not, locate and run Launch.exe. The
user is welcomed to the installation process and warned that the
installation process is about to begin.

2. A dialog asks the user to accept the licensing conditions and
provides a brief introduction to the product.

3. The user is asked to specify the destination for the installation
(Figure 2.16).

Figure 2.16 CodeWarrior installation.

INTRODUCTION TO TOOLS FOR MIDP 71

4. The user is asked to name the shortcut for later use.

5. The user is given the chance to make file associations between the
IDE and, amongst others, Java source files.

6. A summary of the installation information is displayed for confirma-
tion. Upon acceptance, the installation process begins.

7. During this process, the option of installing PersonalJava is pre-
sented. If this is required, a separate installation process will be run
before the CodeWarrior installation continues.

8. Next, the installation of the J2ME Wireless Toolkit is required. If this
already resides on the PC this can be ignored. Otherwise proceed
with its installation.

9. Select the Stand Alone installation type when prompted.

10. At the end of the process, the user will be asked if they wish to
search for any updates and patches to the IDE software.

11. The registration process then needs to be followed (see Figure 2.17).
Registration details are sent to Metrowerks and a temporary license
is granted until the license request has been validated. An Internet
connection is required for this. The permanent license will be sent
via email and the instructions within the readme.txt file should
be followed.

12. The user will be prompted to restart the PC. Make sure all necessary
files are saved at this point.

Figure 2.17 Registering CodeWarrior.

72 GETTING STARTED

2.3.2.3 Sun ONE Studio 4, Mobile Edition

Overview
Sun ONE Studio 4 is widely used within the Java developer community.
This IDE gives the developer all the usual source file editing, packaging,
pre-verification and compilation processes. The Wireless Toolkit has been
integrated with the IDE. It also comes with plenty of examples to get the
developer started, both with the IDE and with MIDP development.

There is a free offering of the IDE from the Sun Java website at the fol-
lowing location: http://wwws.sun.com/software/sundev/jde/studio me/
index.html). The free version can be used for non-commercial evaluation
purposes. In the same way that JBuilder 9 can be integrated with the
Nokia Developer’s Suite, so can this IDE.

The text editor offers code completion and contextual shortcut menus
to save the developer having to search for commands. A project navigator
is also available, as is version control through its ”VCS groups” and
CVS functions.

While this book will be examining version 4 of the software, it should
be noted that at the time of writing an early access edition of version 5.0
was being released. While this is not a full production release it is worth
noting that it has the following features:

• J2ME Wireless Toolkit integration

• dual support for both J2ME MIDP 1.0 and 2.0 development

• MIDP 2.0 development features

• application signing utility to sign MIDlet suites

• Push Registry development

• over-the-air (OTA) testing

• J2ME Wireless Toolkit Project Import Wizard

• Wireless Connection Wizard for development of networked J2ME
applications

• integration of third-party device SDKs through the emulator registry

• XML-file-based emulator configuration and integration

• sample MIDlets to get the developer started.

Installation
The IDE will run on the following systems:

• Solaris 8 and 9 operating environments

• Windows XP, NT 4.0 SP6, 2000 SP2, 98 (Community Edition only)

• Red Hat Linux 7.2 and Sun Linux 5.0

INTRODUCTION TO TOOLS FOR MIDP 73

As a runtime environment, it requires J2SE at version 1.3.1, 1.4.0, or
1.4.1. It will compile code developed with JDK 1.0 or 1.1, or J2SE 1.2,
1.3, 1.3.1, 1.4.0, or 1.4.1.

The installation package can be obtained from the following location:
http://wwws.sun.com/software/sundev/jde/studio me/index.html.

1. To begin the installation process, execute the file ffj_me_win32.
exe. A welcome dialog is displayed to the user (Figure 2.18).

2. When the user accepts the terms and condition of using the software,
a search for a suitable Java Virtual Machine starts. If one can be found
then accept it, otherwise its location, if present on the PC, should be
given to the installer.

3. Next, specify the destination for the IDE. On some PC operating
system versions it may be wise to avoid locations with spaces. It may
have a detrimental effect on the Wireless Toolkit.

4. A summary of the installation information gathered from the user is
displayed. Also the choice is given to associate Sun ONE Studio with
Java file types.

5. Press Next to begin the installation. Upon completion, the user will
be told whether it was successful or not. Assuming the installation
was fine, the IDE is now ready for use. However, some configuration
issues will be asked for, such as the window mode of use for the IDE
and some proxy settings. Set these as desired and then continue.

Figure 2.18 Sun ONE Studio 4 installation.

74 GETTING STARTED

6. Registration then needs to be made with Sun’s website. This requires
the user to enter a username and password, which is the user details
used to obtain the software in the first instance.

2.3.2.4 Unified Emulator Interface

As more device manufacturers create emulators for content developers, it
becomes increasingly difficult for Integrated Development Environment
(IDE) makers to support each emulator. Most emulators have different
directory structures, different commands and different command-line
arguments. A generic unified emulator interface (UEI) that all emulators
support is needed. The UEI allows IDE manufacturers to write to a single
interface and, with little or no effort, be able to support emulators from
many different companies.

The UEI specification defines a directory structure for the emu-
lator distribution unit (executables, documentation and library files),
binary executables (emulator, etc.), names and command line execution
arguments.

In the next release, Symbian will provide a compliant UEI imple-
mentation to facilitate easier and more standard integration of the MIDP
emulator with existing IDEs such as JBuilder and Sun ONE Studio.

Symbian OS Version 8.0 will support launching a MIDlet in the
emulator VM from within the IDE and provide options to start the VM
in debug mode to enable debugging with your IDE. You develop and
compile in your working folder. When you run the emulator, you would
continue to develop in this way, using the IDE, and Symbian UEI takes
care of packaging the classes, copying them to the emulator file space
and launching the MIDlet.

The following example demonstrates how to integrate a UEI-compliant
emulator with Sun ONE Studio.

Adding the Emulator to Sun ONE Studio

1. From the Explorer window, right-click on Installed Emulators and
click on Add Emulator (Figure 2.19).

2. Browse to the directory that contains the distribution unit for the
product/platform variant (Figure 2.20).

Setting the Default Emulator
In the explorer window (Figure 2.19), you should now see the Symbian
UEI added to the list of installed emulators. Right-click on Default
Emulators and click on Set Default Emulator. From the list of installed
emulators, select one of the options (Figure 2.21).

INTRODUCTION TO TOOLS FOR MIDP 75

Figure 2.19 Add emulator.

Figure 2.20 Browse for udeb.

Figure 2.21 Select Emulator.

76 GETTING STARTED

Figure 2.22 Run and debug toolbar.

Running and Debugging a MIDlet
This is done as with any other MIDlet within Sun ONE Studio, using the
menus, the shortcuts or the Toolbar (Figure 2.22). The UEI will take care
of creating the JAR file and copying it and the descriptor (JAD) file into
the appropriate place in the emulator file system and then starting the VM
in the required mode.

2.3.3 Device Emulators

2.3.3.1 UIQ SDK

Overview
The UIQ platform provides the basis for Symbian OS phones that use
a pointing device as the means of user input. The UIQ SDK provides
developers with the ability to test and develop MIDP 2.0 applications for
devices such as the Sony Ericsson P900. The SDK provides classes and
the emulator facilitates development of native Symbian, PersonalJava and
MIDP 1.0 and 2.0 applications. Developers do not need to install the full
SDK to develop MIDP 2.0 applications, as we shall demonstrate in the
installation section below.

The SDK provides an environment that includes Symbian’s CLDC
1.0-based VM, MIDP 2.0, including the Bluetooth and Wireless Messag-
ing APIs.

Setting Up the SDK
In the first instance, some minor housekeeping needs to be carried out to
ensure the tool will execute in a suitable way.

First, make sure the path C:\ is in the system path. The EPOCROOT
environment variable must be set to the location of the UIQ tool instal-
lation. In this case we have used the SET command at the command
prompt in Windows as follows:

D:\>SET EPOCROOT=<installation of UIQ>\UIQ_21_\

Also, the devices command should be used to check that the default
device is the UIQ emulator. Assuming Perl is installed (this can be installed

INTRODUCTION TO TOOLS FOR MIDP 77

as part of the installation process), issuing the command devices.exe
will return the following:

D:\>devices.pl
UIQ_21:com.symbian.UIQ – default
UIQ_21:com.symbian.UIQ-runtime

If this does not appear then the devices.pl command should be
used to set the default command to the UIQ tool. This is done in the
following way:

D:\>devices.exe -setdefault @ UIQ_21:com.symbian.UIQ

Once these have been set, the following command can be issued:

D:\>epoc.exe -wins -rel

This will execute the WinS release version of the emulator. Other
versions such as a debug version can also be executed, although these
are used for debugging native C++ applications. Once this command has
been run, the UIQ 2.1 emulator will appear on the screen.

Installing a MIDP 2.0 Application on the Emulator
The MIDP packages can be placed in the emulator device’s virtual
drive, for example <installation directory>\epoc32\wins\c.
This package can be installed from the emulator interface in the follow-
ing way:

1. Navigate to the Launcher menu on the emulator and use the mouse
to select Install (Figure 2.23).

2. A sub menu prompting the developer to locate the MIDP suite will
appear (Figure 2.24). Press the Install button and the MIDlet will
be installed.

3. It will appear as an icon on the emulator’s desktop. In this case
we have installed our Helloworld application from Section 2.2
(Figure 2.25).

Installation
The SDK can be downloaded from the Symbian Developer Network at
www.symbian.com/developer/sdks uiq21.asp.

1. This download is delivered in the form of a ZIP file which needs to
be extracted to a suitable temporary location.

78 GETTING STARTED

Figure 2.23 UIQ emulator. Figure 2.24 Install MIDlet.

2. Navigate to the extracted files and execute Setup.exe. The instal-
lation process will begin.

3. After accepting terms, conditions and the license agreement, a prompt
for the destination of the SDK is given (Figure 2.26).

4. Once this has been selected, you will be prompted to select the
components you wish to install (Figure 2.27). The rather greedy
system requirement for disk space (Figure 2.26) can be ignored. It
refers to the full Symbian ‘‘DevKit’’, which includes the full source
code. The example installation was installed on a PC with modest
available disk space. A figure of approximately 550 MB, depending
upon the packages, example and documentation selected, is more
accurate. As well as the packages forming the SDK itself, Perl and a
Java Runtime are required. (This refers to the full Java Runtime Edition
(JRE) version 1.3.1 and should not be confused with the MIDP 2.0
runtime.) If these are not present on the target PC, then select them
as well. In this case it has been decided not to install them.

5. After a summary dialog, an installer kit is installed. This is the first
stage of the installation. If Perl, which is required to run the emulator,

INTRODUCTION TO TOOLS FOR MIDP 79

Figure 2.25 Helloworld.

and the Java Runtime have been selected, they will also be installed
at this stage. This part can take some time.

6. The installer is now ready to install the required SDK packages
(Figure 2.28).

7. The developer should now decide which packages to install.
Figure 2.29 demonstrates how the developer can pick and choose
what they want to be installed on the PC. In this case, we
are only interested in the emulator, the MIDP package and the
documentation, which might help us better understand the SDK.
Note that UIQ 2.1 Java SDK has not been selected. This is, in fact, for
PersonalJava and therefore we are not interested in installing it in this
instance.

8. The installer gathers the packages together and displays the names
of all the selected packages and the required disk space. Press Next
to continue. Before installing, a prompt appears asking the user to
accept the terms of the license. The SDK will then be installed. Once
it has been successfully installed, Figure 2.30 appears.

80 GETTING STARTED

Figure 2.26 Symbian OS Kit Installer.

Figure 2.27 Install components.

INTRODUCTION TO TOOLS FOR MIDP 81

Figure 2.28 Ready to install SDK.

Figure 2.29 Choosing packages.

2.3.3.2 Sony Ericsson P900 J2ME SDK

Also available for UIQ developers is a Sony Ericsson MIDP 2.0 emulator
that can be plugged into the Wireless Toolkit, version 2.1. This is a
very useful tool for perfecting the user interface side of application
development. However, the drawback is that the Java runtime is Sun’s
reference implementation, rather than the actual Symbian OS device

82 GETTING STARTED

Figure 2.30 Installation complete.

implementation, which can be found within the UIQ SDK described in
Section 2.3.3.1. The Symbian emulator device is based upon Symbian’s
source code and more evenly reflects the real device, where the binaries
are optimized for the ARM processor rather than the x86.

The installation of the P900 emulator (Figure 2.31) for the Wireless
Toolkit is fairly straightforward. The required files can be downloaded from
the Sony Ericsson developer portal at: www.sonyericsson.com/developer/
user/ViewDocument.jsp?id=65090&name=java midp2 p900.zip.

All the emulator devices for the toolkit are stored in the directory
<installation location>\wtklib\devices\<emulator
name>. Once the ZIP file has been obtained, the files within the
archive can be extracted to SonyEricsson_P900, a subdirectory under
device. When the toolkit is next executed the new P900 device emulator
will be available for selection.

2.4 Installing and Running a MIDlet

Now that we have created our first MIDP 2.0 application and tested it
with the various emulators and toolkits described above, it is time to
try it out on a real device. There are a number of ways to install the
MIDlet suite. All have their own merits and conveniences. However, the
developer shouldn’t be reliant upon just one method.

During development, from time to time, you should try out a test run
on the target device, rather than relying on the emulators. The latter may

INSTALLING AND RUNNING A MIDLET 83

Figure 2.31 P900 Emulator.

not provide a true indication of application performance and usability.
Emulator speeds can vary from the real devices and memory management
may not be the same either. During development, Bluetooth or infrared
deployment should be used. These are the easiest forms of installation
and avoid the costs of installing the application over the air.

2.4.1 Transferring the MIDlet to a Device

2.4.1.1 Infrared Installation

On the device, in this case the Nokia 6600, locate the Connect menu and
then the infrared command. Press Options > Open. This will activate the
infrared functionality. Put the device in line with and within range of a
laptop with an infrared port, or a PC with an infrared pod. The laptop

84 GETTING STARTED

will recognize that another computer is nearby. In this case, the ‘‘nearby
computer’’ is in fact the Nokia 6600.

Navigate to the MIDlet JAR file and engage the shortcut menu. Select
Send to > nearby computer. Assuming the mobile device is within range,
the JAR file will be sent to the device. When the phone has received the
JAR file, it will appear as if a message has arrived on the device. When the
developer tries to open the message, the application manager software
takes over and installs the MIDlet on the device. This installation process
can be seen in more detail below.

2.4.1.2 Bluetooth

There are many Bluetooth accessories that can be added to laptops
and desktops. In this case, we used a Smart Modular Technologies USB
Adaptor and connected it to a laptop.

Assuming the software has been installed, the laptop has the ability to
browse for other Bluetooth devices within its range. Transferring the file
to the mobile phone is simple. The Smart software allows the developer
to browse for and select the appropriate JAR file. The Bluetooth software
searches for and compiles a list of available devices. When the Nokia
6600 realizes that it has been contacted, it prompts the user to give
permission to accept contact. In return, the mobile device passes a
password back to the laptop which has to be entered correctly before
the conversation can continue. After validation, the JAR file is sent to the
Nokia device. The JAR file arrives as a message and can be installed as
demonstrated below.

The great advantage of this is that the laptop and the phone can be
anywhere within 10 meters of each other and the connection is persistent,
saving time for the developer.

2.4.1.3 Over the Air

Compared to the two methods described above, installing over the air
(OTA) is a cumbersome way of installing an application on a device
during development. However, it is an important mechanism for dis-
tributing finished MIDlets and should therefore be tested rigorously prior
to distribution.

Whereas the infrared and Bluetooth methods do not require a JAD file
to install, the OTA method does. The JAD file specification is part of the
MIDP 2.0 specification and forms an extra layer of security between the
device and the application. It provides information to the device as to
what it is about to receive. The specification requires the information in
the JAD file to be very precise and, if it is not, the MIDlet installation will
be unsuccessful. It is therefore very important to test installation by this
method to ensure the end-user can install and purchase the application.
It is, after all, convenient for the user and is a way to maximize revenue

INSTALLING AND RUNNING A MIDLET 85

streams if the application has been distributed to content providers and
network operators to good effect.

To facilitate this, the developer will need to create the JAD file as
described in Section 2.1.1.6. Next, a WML card, or XHTML mobile
profile, needs to be created; it will be the target for the user to navigate
to while they are browsing for an application to purchase. In reality, this
card will be hosted by an operator or content aggregator.

This is a simple WML with a link to the JAD file:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-// WAPFORUM// DTD WML 1.1// EN"

"www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Symbian Download Test">
<p align="center">

To download game click below:
</p>
<p>

Hello World Turbo
</p>

</card>
</wml>

The XHTML file works in the same way as the WML file. The Nokia
6600 and Sony Ericsson P900 will recognize both XHTML and WML
file formats.

<?xml version="1.0"?>
<!DOCTYPE html
PUBLIC "-// W3C// DTD XHTML Basic 1.0// EN"

"www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<html xmlns="www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Symbian Download Test</title>
</head>
<body>

Hello World Turbo

</body>
</html>

Once the WML and XHTML files are loaded onto the webserver, there
is one more configuration setting that needs to be checked. This tells the
webserver to recognize the JAD and JAR file types as downloadable. The
third line tells the webserver to serve the WML files as text.

AddType text/vnd.sun.j2me.app-descriptor jad
AddType application/java-archive jar
AddType text/vnd.wap.wml wml

Once the device has recognized and validated the JAD file infor-
mation against the contents of the JAR file, download and installation
will commence.

86 GETTING STARTED

2.4.2 Installing the MIDlet

The previous section looked at how to physically put the MIDlet suite on
the device. Once this has been achieved it needs to be installed by the
application management software.

When the AMS detects that the user has either downloaded or trans-
ferred a MIDlet to the device, it will ask the user whether they wish
to install the application. In this case we are installing the Helloworld
application on a Nokia 6600 (Figure 2.32).

The softkeys display Yes and No options. Selecting No cancels the
installation. Select Yes and you will be shown two options (Figure 2.33).

Selecting View Details displays information from the JAD file
(Figure 2.34).

Figure 2.32 AMS checks that installation is required.

Figure 2.33 AMS gives user the option to view details.

INSTALLING AND RUNNING A MIDLET 87

Figure 2.34 JAD file information.

Figure 2.35 AMS checks that installation can continue.

After viewing this information, press OK to return to the previ-
ous prompt. Continue can then be selected. Another message appears
(Figure 2.35).

Selecting No will cancel the installation. If installation is continued,
Figure 2.36 may appear.

The AMS may detect that the MIDlet has been previously installed on
the device. The user can choose to overwrite the previous version of the
application or cancel the process. On the Nokia 6600, the user will then
be prompted for a location for the MIDlet (Figure 2.37).

This allows the user to determine whether to install the MIDlet on the
phone memory or the removable multimedia card. Use the joystick to
choose one of the two options and press OK. Figure 2.38 illustrates what
then appears.

88 GETTING STARTED

Figure 2.36 AMS detects that an existing application will be upgraded.

Figure 2.37 Specifying the location.

Figure 2.38 AMS checks whether to save existing data.

SUMMARY 89

Selecting No overwrites the RMS data created by the previous instal-
lation of the MIDlet, if it existed. Selecting Yes leaves the current data
intact for use by the new MIDlet. After this, the new MIDlet is installed
on the device and an icon will appear in the Menu. Click the MIDlet
icon with the joystick, or select Options > Open, and the application will
be executed.

2.5 MIDP on Symbian OS Phones

All Symbian OS phones currently available in Western markets support
at least MIDP 1.0. The latest generation of Symbian OS phones, such as
the Nokia 6600 and Sony Ericsson P900 (and its localized variants) ship
with MIDP 2.0. The Nokia 6600 is based on the Series 60 Developer
Platform 2.0, itself built on top of Symbian OS Version 7.0s. The Sony
Ericsson P900 is built on Symbian’s UIQ 2.1 touch screen reference
design. In addition to MIDP 2.0, both these devices also support a range
of additional optional APIs from the J2ME JSRs. Both phones support the
Wireless Messaging API (JSR 120), allowing phones to send and receive
SMS messages, and the Java API for Bluetooth Wireless Technology (JSR
82). In addition, the Nokia 6600 ships with an implementation of the
Mobile Media API (JSR 135). Chapters 3 and 4 cover programming these
phones, in detail.

2.6 Summary

In this chapter we have looked in greater depth at the MIDP 2.0 model.
We have looked at how a MIDlet is structured, the GUI, the Event model
and the MIDlet lifecycle. We have also looked at how to build, pre-verify
and package MIDlet suites. We have created a sample application and
shown how to put it onto a real device. We have also shown some of the
tools on offer to the developer, from basic toolkits and emulators to full
development environments.

In Chapter 3 we shall be looking in greater detail at MIDP 2.0, the
security model, the push registry and the Game API, to mention a few
topics. We shall also be examining some of the extra APIs falling under
the Java Technology for the Wireless Industry (JTWI) specification.

3
MIDP 2.0 and the JTWI

The Java Technology for the Wireless Industry (JTWI) initiative is part of
the Java Community Process (JSR 185) and its expert group has as its goal
the task of defining an industry-standard Java platform for mobile phones.
By specifying a minimum set of Java APIs (as defined in the respective
JSRs) that every JTWI-compliant device should support, it provides a
lowest common denominator Java platform that developers and service
providers can expect on future Java-enabled mobile phones.

In this chapter we will take a look at the JTWI and the JSRs that form
part of Release 1. After introducing the JTWI, we will briefly review the
CLDC on Symbian OS. Then we will take a detailed look at MIDP 2.0
and the optional APIs that are part of the JTWI roadmap.

3.1 Introduction to the JTWI

The main goal of the JTWI is to minimize API fragmentation of the wireless
Java platform by reducing the need for proprietary APIs and providing
a clear specification that phone manufacturers, network operators and
developers can target. Release 1 of the JSR 185 specification received
final approval in July 2003.

The JTWI specification concerns three main areas:

• it provides a minimum set of APIs (JSRs) that a compliant device
should support

• it defines what optional features within these component JSRs must
be implemented on a JTWI-compliant device

• it provides clarification of component JSR specifications, where appro-
priate.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

92 MIDP 2.0 AND THE JTWI

3.1.1 Component JSRs of the JTWI
The JTWI defines three categories of JSR that fall under the specification:
mandatory, conditionally required and minimum configuration.

The following mandatory JSRs must be implemented as part of a Java
platform that is compliant with JTWI Release 1:

• MIDP 2.0 (JSR 118)

• Wireless Messaging API (JSR 120).

The Mobile Media API (JSR 135) is conditionally required in the JTWI
Release 1. It must be present if the device exposes multimedia APIs (e.g.
audio or video playback or recording) to Java applications.

The minimum configuration required for JTWI compliance is CLDC
1.0 (JSR 30). Since CLDC 1.1 is a superset of CLDC 1.0 it may be used
instead, in which case it supersedes the requirement for CLDC 1.0.

3.1.2 JTWI Specification Requirements
As mentioned earlier, the JTWI specification makes additional require-
ments on the implementation of the component JSRs. A few selected
examples of these are listed below. For full details of the requirements
imposed on component JSRs consult the JTWI specification available
from the Java Community Process (JCP) website (http://jcp.org).

CLDC 1.0/1.1

• must allow a MIDlet suite to create a minimum of ten running threads

• must support Unicode characters.

MIDP 2.0

• must allow creation of at least five independent recordstores

• must support the JPEG image format

• must provide a mechanism for selecting a phone number from
the device’s phonebook when the user is editing a TextField
or TextBox with the PHONENUMBER constraint.

WMA

• GSM/UMTS phones must support SMS protocol push handling within
PushRegistry

MMA

• must support MIDI playback

• must support VolumeControl for MIDI playback

INTRODUCTION TO THE JTWI 93

• must support JPEG encoding for video snapshots

• must support Tone Sequence file format.

Security Policy for GSM/UMTS Compliant Devices
The JTWI specification provides a clarification of aspects of the MIDP
2.0 recommended security policy for GSM/UMTS devices relating to
untrusted domains.

3.1.3 JTWI Deliverables
As well as defining the specification for the JTWI and providing a reference
implementation (RI) and technology compatibility kit (TCK), JSR 185 also
delivers a roadmap of candidate JSRs related to mobile phones that are
likely to form part of future releases of JSR 185. The JTWI initiative does
not discourage the adoption of additional JSRs to those defined in the
specification or featured in the roadmap; it merely defines a minimum set
of APIs that a JTWI-compliant device should support.

3.1.4 Symbian and the JTWI
Symbian supports and endorses the efforts of the JTWI and is a member
of the JSR 185 expert group. At the time of writing, the current release of
Symbian OS (Version 7.0s) provides implementations of the mandatory
JSRs and minimum configuration required by JTWI Release 1: CLDC 1.0,
MIDP 2.0 and Wireless Messaging API.

Current releases also provide an implementation of JSR 82, the Java
APIs for Bluetooth Wireless Technology (see Chapter 4). The Nokia Series
60 Developer Platform Version 2.0 is built on Symbian OS Version
7.0s and, in addition to the JSRs already implemented, also provides
Nokia’s implementation of the Mobile Media API (JSR 135) as part of the
Java platform.

Current Symbian MIDP 2.0-enabled phones support the following JSRs:

Nokia 6600 Sony Ericsson
P900/P908

UI Reference Design Series 60 v 2 UIQ 2.1
CLDC 1.0 (JSR 30) Yes Yes
MIDP 2.0 (JSR 118) Yes Yes
WMA (JSR 120) Yes Yes
MMA (JSR 135) Yes No
JABWT (JSR 82) Yes Yes

Because the final release of the JTWI specification postdated that of the
MIDP 2.0 specification by some eight months, the current implementation

94 MIDP 2.0 AND THE JTWI

of Symbian’s CLDC 1.0/MIDP 2.0 Java platform (and devices using it
such as the Nokia 6600 and the Sony Ericsson P900 and its localized
variants) is not fully compliant with all the requirements of the JTWI
specification. Future releases (and devices based upon them) will be
JTWI-compliant.

The following sections will cover the component APIs that are part of
JTWI Release 1.

3.2 The CLDC on Symbian OS

The Connected Limited Device Configuration (CLDC) was introduced in
Chapter 1. In this section we will briefly describe the implementations of
CLDC available on Symbian OS.

Symbian’s MIDP 1.0 offering runs on top of a port of Sun’s CLDC
1.0-based Virtual Machine (VM – also known as the KVM). Like early
desktop Java VMs, this CLDC 1.0 VM is a pure interpreter written in the
C programming language. Symbian OS supports a subset of the C STDLIB
(originally written to support the implementation of Symbian’s first JDK
1.1.6-based Java offering in Symbian OS Version 5), making porting CLDC
1.0 a relatively straightforward task. Conscious of the performance over-
head inherent in interpreted environments, Symbian integrated ARM’s
VMA Technology Kit (VTK) into the CLDC 1.0 implementation. VTK
provides a number of optimizations for the ARM architecture, including
a re-write of the bytecode interpreter loop in ARM assembler (instead
of the original C code). These optimizations provide very significant
performance enhancements compared with standard KVM implementa-
tions, giving Symbian’s CLDC 1.0/MIDP 1.0 implementation best-in-class
performance.

With the release of Symbian OS Version 7.0s, Symbian enhanced
its VM offering for MIDP 2.0 by providing a port of Sun’s new CLDC
1.0 Hotspot Implementation VM (CLDC HI, also known by its code
name of Monty). CLDC HI is a highly optimized VM incorporat-
ing many advanced technologies previously only available in desktop
Java VMs, such as Dynamic Adaptive Compilation (DAC). CLDC HI
delivers nearly an order of magnitude better performance than the
standard KVM (see The CLDC Hotspot Implementation Virtual Machine
at http://java.sun.com) while still retaining the small memory footprint
required by mobile phones. This gives Symbian’s CLDC HI/MIDP 2.0
Java platform the performance to run demanding applications that take
full advantage of the additional functionality offered by MIDP 2.0 and
the additional optional APIs. The MIDP 2.0 implementation on the
Sony Ericsson P900/P908 and the Nokia 6600 runs on top of CLDC
1.0 HI.

MIDP 2.0 95

In future releases, Symbian OS will provide an implementation of Sun’s
CLDC 1.1 HI VM. As well as offering further performance enhancements
compared with CLDC 1.0 HI, this brings in floating point support (a
standard part of the CLDC 1.1 specification).

3.3 MIDP 2.0

3.3.1 New Features in MIDP 2.0

MIDP 2.0 was introduced in the previous chapter. In this section we shall
look in more detail at the features available in MIDP 2.0.

Although MIDP 1.0 can be regarded as a success story, with widespread
adoption of the technology within the wireless industry, it was soon
realized that MIDP 1.0 on its own was too restrictive. MIDP 1.0 was
targeted at severely resource-constrained CLDC devices. The MIDP API
set was targeted at the lowest common denominator of functionality likely
to be available on mobile phones. For these highly-constrained devices, a
lightweight security model was required. MIDP 1.0 adopted the sandbox
security model: an application runs in a closed environment and can only
access APIs defined in the configuration and profile (or any OEM-specific
libraries that ship with the device).

The influence of Moore’s Law is, however, felt in the wireless space.
Once MIDP 1.0 was adopted as a standard for wireless devices, it was
soon being ported to devices with far richer native functionality than the
lowest common denominator phone that the MIDP 1.0 specification was
originally designed for. For instance, Symbian OS provides a very rich
native API set, the majority of which are not accessible to MIDlets.

The solution was the formation of the MIDP 2.0 expert group (with
Symbian a member) and a proliferation of J2ME JSR expert groups defining
optional APIs, in the majority of which Symbian participates. The MIDP
2.0 expert group released the final specification in November 2002,
resulting in the following major additions to the profile:

• a more fine-grained security model

• extended networking

• a push registry

• user interface modifications

• the Game API

• the Media API.

We will now look at these additions in more detail.

96 MIDP 2.0 AND THE JTWI

3.3.2 Security Model
3.3.2.1 Overview

The MIDP 2.0 security model is built on two concepts: trusted MIDlet
suites and protected APIs. Trusted MIDlet suites are those whose origin
and integrity can be trusted by the device on the basis of some objective
criterion. Protected APIs are APIs to which access is restricted, with the
level of access being determined by the permissions (Allowed or User)
allocated to the API. A protection domain defines a set of permissions
which grant, or potentially grant, access to an associated set of protected
APIs. An installed MIDlet suite is bound to a protection domain, thereby
determining its access to protected APIs. A MIDP 2.0 device must support
at least one protection domain, the untrusted domain, and may support
several protection domains, although a given MIDlet suite can only be
bound to one protection domain. The set of protection domains supported
by an implementation defines the security policy.

If installed, an unsigned MIDlet suite is always bound to the untrusted
domain, in which access to protected APIs may be denied or require
explicit user permission. Since a requirement of the MIDP 2.0 spec-
ification is that a MIDlet suite written to the MIDP 1.0 specification
runs unaltered in a MIDP 2.0 environment, MIDP 1.0 MIDlets are
automatically treated as untrusted.

3.3.2.2 Trusted MIDlet Suites

The mechanism for identifying and verifying that a signed MIDlet suite
should be bound to a trusted domain is not mandated by the MIDP
2.0 specification but is left to the manufacturer of the device and other
stakeholders with an interest in the security of the device, for example,
network operators in the case of mobile phones. The specification does,
however, define how the X.509 Public Key Infrastructure (PKI) can be
used to identify and verify a signed MIDlet suite.

3.3.2.3 The X.509 PKI

The Public Key Infrastructure is a system for managing the creation
and distribution of digital certificates. At the heart of the PKI lies the
system of public key cryptography. Public key cryptography involves
the creation of a key pair consisting of a private key and a public
key. The creator of the key pair keeps the private key secret, but can
freely distribute the public key. Public and private key pairs have two
principal uses: they enable secure communication using cryptography
and authentication using digital signatures. In the first case, someone
wishing to communicate with the holder of the private key uses the
public key to encrypt the communication. The encrypted communication
is secure since it can only be decrypted by the holder of the private key.

MIDP 2.0 97

In the current context, however, we are more interested in the second
use of public–private key pairs, enabling authentication using digital
signatures. A digital signature is an electronic analogy of a conventional
signature. It authenticates the source of document and verifies that the
document has not been tampered with in transit. Signing a document
is a two-stage process: a message digest is created that is a unique
representation of the contents of the document; the message digest is then
encrypted using the private key of the sender (see Figure 3.1).

The receiver of the document then uses the public key of the sender to
decrypt the message digest, creates a digest of the received contents, and
checks that it matches the decrypted digest that accompanied the doc-
ument. Hence, a digital signature is used to verify that a document was
actually sent by the holder of the private key, not some third party mas-
querading as the sender, and that the contents have not been tampered
with in transit.

This raises the issue of key management and how the receiver of a
public key can verify the source of the public key. For instance, if I receive
a digitally signed JAR file I will need the public key of the signer to verify
the signature, but how do I verify the source of the public key? The public
key itself is just a series of numbers, with no clue as to the identity of the
owner. I need to have confidence that a public key purporting to belong
to a legitimate organization does in fact originate from that organization
and has not been distributed by an impostor, enabling the impostor to
masquerade as the legitimate organization, signing files using the private
key of a bogus key pair. The solution is to distribute the public key in the
form of a certificate from a trusted certificate authority (CA).

A certificate authority distributes a certificate that contains details of a
person’s or organization’s identity, the public key belonging to that person
or organization, and the identity of the issuing CA. The CA vouches that
the public key contained in the certificate does indeed belong to the
person or organization identified on the certificate. To verify that the
certificate was issued by the CA, the certificate is digitally signed by

Message Hash function
(MD5)

Message digest

RSA
cryptographic

process

Digital
signature

Sender's

Figure 3.1 Creating a digital signature: create a message digest using the hash function
and encrypt the digest using the sender’s private key.

98 MIDP 2.0 AND THE JTWI

the CA using its private key. The format of certificates used in X509.PKI
is known as the X509 format.

Of course, this raises the question of how the recipient of the certificate
verifies the digital signature contained therein. This is resolved using root
certificates or root keys. The root certificate contains details of the
identity of the CA and the public key of the CA (the root key) and is
signed by the CA itself (self-signed). For mobile phones which support
one or more trusted protection domains, one or more certificates will
ship with the device, placed on the phone by manufacturer or embedded
in the WIM/SIM card by the network operator. Each certificate will be
associated with a trusted protection domain, so that a signed MIDlet
that is authenticated against a certificate will be bound to the protection
domain associated with that certificate.

3.3.2.4 Certification Paths
In practice, the authentication of a signed file using the root certificate
may be more involved than the simplified approach described above.
The PKI allows for a hierarchy of certificate authorities (see Figure 3.2)
whose validity can be traced back to a root certification authority, the
uppermost CA in the hierarchy, also known as the trust anchor.

In this case the root certificate on the device (the trust root) belongs to
the root certification authority in the hierarchy (the trust anchor) which
directly or indirectly validates all the other CAs in the certification path.
The certificate supplied with the signed JAR file does not need to be
validated (signed) by the trust anchor whose certificate is supplied with
the device, as long as a valid certification path can be established between
the certificate accompanying the signed JAR file and the root CA.

It is not actually necessary for a device to have various self-signed
top-level certificates from CAs, manufacturers and operators installed.
In practice, it only needs access to one or more certificates which are
known to be trustworthy, for example, because they are in ROM or secure
storage on a WIM/SIM, or because the user has decided that they are.
These certificates act as trust roots. If the authentication of an arbitrary
certificate chains back to a trust root known to the device, and the trust
root is also identified as being suitable for authenticating certificates being
used for a given purpose, e.g., code-signing, web site identification, etc.,
then the arbitrary certificate is considered to have been authenticated.

3.3.2.5 Signing a MIDlet Suite
To sign a MIDlet suite, a supplier must create a public–private key pair and
sign the MIDlet JAR file with the private key. The JAR file is signed using the
RSA-SHA1 algorithm. The resulting signature is encoded in Base64 format
and inserted into the application descriptor as the following attribute:

MIDlet-Jar-RSA-SHA1: <base64 encoding of Jar signature>

MIDP 2.0 99

Root CA
(Trust Anchor)

Operator 2
CA

Operator 1
CA

Manufacturer
1 CA

ISV 1 ISV 2 ISV 3 ISV 4 ISV 5 ISV 6

Trust Anchor's
Certificate

Figure 3.2 Applications from a variety of independent software vendors (ISVs) signed by
various CAs and authenticated by a single trust root.

The supplier must obtain a suitable MIDlet suite/code-signing certifi-
cate from an appropriate source, e.g., the developer program of a device
manufacturer or network operator containing the identity of the supplier
and the supplier’s public key. The certificate is incorporated into the
MIDlet suite application descriptor (JAD) file.

In the case of a certification path, we need to include all the necessary
certificates required to validate the JAR file. Furthermore, a MIDlet suite
may include several certification paths in the application descriptor file
(if, for example, the MIDlet suite supplier wishes to target several different
device types, each with a different root certificate).

In Figure 3.3, we need to include certificates containing the public
keys belonging to CA 1, CA 2 and the Supplier.

The root certification authority’s certificate (the root certificate) is
available on the device. Using the root certification authority’s public
key, we can validate CA 1’s public key. This is then used to validate CA

100 MIDP 2.0 AND THE JTWI

Supplier's public key
096365829672

Signed:
CA 2

<803457622>
jar file

<169032678>

CA 2's public key
2092657883565

Signed:
CA 1

<135932516>

CA 1's public key
1683975610743

Signed:
Root CA

<793639120>

Figure 3.3 Using a certification path to authenticate a signed JAR file.

2’s public key, which is then used to validate the Supplier’s public key.
The Supplier’s public key is then used to verify the origin and integrity of
the JAR file. The MIDP 2.0 specification defines an application descriptor
attribute of the following format:

MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>

Here <n> represents the certification path and has a value of 1 for the
first certification path, with each additional certification path adding 1 to
the previous value (e.g. 1, 2, 3, . . .). There may be several certification
paths, each leading to a different root CA. <m> has a value of 1 for
the certificate belonging to the signer of the JAR file and a value 1
greater than the previous value for each intermediate certificate in the
certification path.

For the example shown in Figure 3.3, with just one certification path
the relevant descriptor attribute entries would have the following content:

MIDlet-Certificate-1-1: <base64 encoding of Supplier's certificate>
MIDlet-Certificate-1-2: <base64 encoding of CA 2's certificate>
MIDlet-Certificate-1-3: <base64 encoding of CA 1's certificate>

3.3.2.6 Authenticating a Signed MIDlet Suite

Before a MIDlet suite is installed, the Application Management Software
(AMS) will check for the presence of the MIDlet-Jar-RSA-SHA1
attribute in the application descriptor and, if it is present, attempt to
authenticate the JAR file by verifying the signer certificate and the JAR
file. If it is not possible to successfully authenticate a signed MIDlet suite,
it will not be installed.

If the MIDlet suite descriptor file does not include the MIDlet-Jar-
RSA-SHA1 attribute then the MIDlet can only be installed as untrusted.

3.3.2.7 Authorization Model

A signed MIDlet suite containing MIDlets which access protected APIs
must explicitly request the required permissions. The MIDP 2.0 specifica-
tion defines two new attributes: MIDlet-Permissions and MIDlet-
Permissions-Opt for this purpose. Permissions that are required for

MIDP 2.0 101

access to protected APIs that are essential to the operation of MIDlets
(critical permissions) must be listed under the MIDlet-Permissions
attribute. Permissions required to access protected APIs that are not essen-
tial to the operation of the MIDlets (in other words the MIDlets can run
in a restricted mode without access to these APIs) are non-critical per-
missions and should be listed under the MIDlet-Permissions-Opt
attribute.

The MIDlet-Permissions and MIDlet-Permissions-Optattri-
butes may appear in the JAD file or the manifest of a signed MIDlet suite,
or in both, in which case their respective values in each must be identical,
but only the values in the manifest are ‘protected’ by the signature of the
JAR file.

It is important to note that a MIDlet suite that has been installed as
trusted will not be granted any permission it has not explicitly requested
in either the MIDlet-Permissions or MIDlet-Permissions-Opt
attributes, irrespective of whether it would be granted were it to be
requested.

The naming scheme for permissions is similar to that for Java package
names. The exact name of a permission to access an API or function is
defined in the specification for that API. For instance, the entry request-
ing permission to open HTTP and secure HTTP connections would be
as follows:

MIDlet-Permissions: javax.microedition.io.Connector.http,
javax.microedition.io.Connector.https

The successful authorization of a trusted MIDlet suite requires that the
requested critical permissions are recognized by the device (for instance,
in the case of optional APIs) and are granted, or potentially granted, in
the protection domain to which the MIDlet suite would be bound, were
it to be installed. If either of these requirements cannot be satisfied, the
MIDlet suite will not be installed.

3.3.2.8 Protection Domains

A protection domain is a set of permissions determining access to pro-
tected APIs or functions. A permission is either Allowed, in which case
MIDlets in MIDlet suites bound to this protection domain have automatic
access to this API, or User, in which case permission to access the pro-
tected API or function is requested from the user, who can then either
grant or deny access. In the case of User permissions there are three
interaction modes:

• Blanket – as long as the MIDlet suite is installed, it has this permission
unless the user explicitly revokes it

102 MIDP 2.0 AND THE JTWI

• Session – user authorization is requested the first time the API is
invoked and it is in force while the MIDlet is running

• Oneshot – user authorization is requested each time the API is
invoked.

The protection domains for a given device are defined in a security
policy file. A sample security policy file is shown below:

alias: net_access
javax.microedition.io.Connector.http,
javax.microedition.io.Connector.https,
javax.microedition.io.Connector.datagram,
javax.microedition.io.Connector.datagramreceiver,
javax.microedition.io.Connector.socket,
javax.microedition.io.Connector.serversocket,
javax.microedition.io.Connector.ssl
domain: Untrusted
session (oneshot): net_access
oneshot (oneshot): javax.microedition.io.Connector.sms.send
oneshot (oneshot): javax.microedition.io.Connector.sms.receive
session (oneshot): javax.microedition.io.PushRegistry
domain: Symbian
allow: net_access
allow: javax.microedition.io.Connector.sms.send
allow: javax.microedition.io.Connector.sms.receive
allow: javax.microedition.io.PushRegistry

User permissions may offer several interaction modes, the user being
able to select the level of access. For instance, the following line indicates
that the API or functions defined under the net_access alias have User
permission with either session or oneshot interaction modes, the latter
being the default.

session (oneshot): net_access

3.3.2.9 The Security Model in Practice

In this section we go through the steps involved in producing a signed
MIDlet suite. We shall illustrate this process using the tools provided by
the Nokia Developer’s Suite (NDS) for J2ME 2.0 – a set of tools aimed
at developers developing for Nokia’s MIDP phones, including Series 60
devices. The Sun J2ME Wireless Toolkit 2.0 offers similar capabilities.
The basic steps in producing a signed MIDlet suite are listed below:

1. Obtain (or generate) a public–private key pair.

2. Associate the key pair with a code signing certificate from a recom-
mended CA.

MIDP 2.0 103

3. Sign the MIDlet suite and incorporate the certificate into the JAD
file.

To sign a MIDlet suite the supplier of the suite needs to obtain a
public–private key pair either by generating a new pair or importing an
existing key pair. The NDS provides tools for doing this. These can be
accessed by selecting the Sign Application Package option (Figure 3.4)
from the main panel. Clicking the New Key Pair button brings up the
panel shown in Figure 3.5.

To generate the key pair, enter the appropriate details and click
the Create button. A new key pair will be generated and added to
the NDS key store. The newly-generated public key is incorporated
into a self-signed certificate. We use this to obtain a suitable MIDlet
suite code-signing certificate from an appropriate source (such as a
recommended Certification Authority) that can be authenticated by a root
certificate that ships with the device or is contained in the WIM/SIM

Figure 3.4 The application signing view of the NDS.

104 MIDP 2.0 AND THE JTWI

Figure 3.5 Creating a new public–private key pair in the NDS.

card. Application developers and suppliers should contact the relevant
developer program of the device manufacturer or network operator to
ascertain the appropriate CA. We can then generate a Certificate Signing
Request (CSR) using our self-signed certificate and the Generate CSR
option in the NDS (Figure 3.4). This generates a file containing the CSR
that can be saved to a convenient location. The contents of the CSR
can then be copied into an email to the recommended CA, requesting a
code-signing certificate.

When we have received the certificate from the recommended CA we
need to associate this with our key pair. The Import Certificate option
of the NDS associates the certificate with our key pair, identified by its
alias, and held in the key store. If the public key that we provided in the
CSR, and now contained in the certificate, matches the public key of the
key pair held in the key store we should be notified accordingly and are
now ready to sign our MIDlet suite. To sign the MIDlet suite we simply
select the Sign option (Figure 3.4) and choose the JAD file belonging
to the MIDlet suite we wish to sign. The MIDlet suite is now ready for
deployment on the target device. For further information on using the
NDS refer to the User’s Guide contained in the NDS documentation.

As mentioned earlier, the Sun J2ME Wireless Toolkit 2.0 (WTK 2.0)
offers tools for creating and signing MIDlet suites. It also offers additional
functionality to test out signed MIDlet suites under emulation within the
WTK 2.0 environment. The WTK 2.0 provides a default trusted key pair
(and an associated certificate recognized by the emulator) that can be
used to install and bind a signed MIDlet suite to a trusted protection
domain within the emulator environment. This then allows MIDlets in the

MIDP 2.0 105

signed suite to run within the WTK 2.0 environment as trusted without the
cost and hassle of obtaining and importing a certificate from a CA. This
feature is particularly useful for ensuring that the appropriate permissions
to access protected APIs have been requested in the JAD file in order for
the MIDlets within the signed MIDlet suite to install and run successfully
as trusted MIDlets. It is important to remember that this feature of the WTK
2.0 only simulates a real signing event. It is, of course, necessary to obtain
and sign your MIDlet suite with a valid certificate from a recommended
CA before deploying your signed MIDlet suite onto a real device.

3.3.2.10 Untrusted MIDlets

An untrusted MIDlet suite is an unsigned MIDlet suite, i.e. one which
does not include the MIDlet-Jar-RSA-SHA1 attribute in its application
descriptor (JAD), which has successfully been installed and bound to the
untrusted protection domain. MIDlets in untrusted suites execute within
a restricted environment where access to protected APIs or functions may
be prohibited or allowed only with explicit user permission, depending on
the security policy in force on the device. Unsigned MIDlet suites should
not request permissions explicitly in either the application descriptor or
the manifest. To ensure compatibility with MIDlets developed according
to the MIDP 1.0 specification, the MIDP 2.0 specification demands that
the untrusted domain must allow unrestricted access to the following APIs:

• javax.microedition.rms

• javax.microedition.midlet

• javax.microedition.lcdui

• javax.microedition.lcdui.game

• javax.microedition.media

• javax.microedition.media.control

Furthermore, the specification requires that the following APIs can be
accessed with explicit permission of the user:

• javax.microedition.io.HttpConnection

• javax.microedition.io.HttpsConnection

The full list of permissions for the untrusted domain is device-specific
however the MIDP 2.0 specification does provide a Recommended
Security Policy Document for GSM/UMTS Compliant Devices as an
addendum (with some clarifications added in the JTWI Release 1 Security
Policy for Untrusted MIDlet Suites).

106 MIDP 2.0 AND THE JTWI

Finally, note that if a signed MIDlet fails authentication or authoriza-
tion, it does not run as an untrusted MIDlet, but rather is not installed by
the AMS. For more information on the MIDP 2.0 security model, including
mechanisms for certificate revocation, see the MIDP 2.0 specification.

3.3.2.11 Recommended Security Policy

The MIDP 2.0 specification provides a framework for the MIDP 2.0
security model but does not itself mandate the device security policy
in terms of specifying protection domains and permissions within those
protection domains. The MIDP 2.0 specification does, however, supply
an addendum to the specification that provides a recommended security
policy (RSP) for GSM/UMTS compliant devices. It is not a mandatory part
of the MIDP 2.0 specification, but GSM/UMTS compliant devices are
expected to comply with it.

In addition to the untrusted domain, the RSP defines a set of three
protection domains (Manufacturer, Operator and Trusted Third
Party) to which trusted MIDlet suites can be bound (and that a compliant
device may support).

For a trusted domain to be enabled there must be a certificate on the
device, or a WIM/SIM, identified as a trust root for MIDlet suites in that
domain, i.e. if a signed MIDlet suite can be authenticated using that trust
root it will be bound to that domain.

For example, to enable the Manufacturer protection domain the
manufacturer must place a certificate on the device. This is identified as
the trust root for the Manufacturer domain.

A signed MIDlet suite will be bound to the Operator domain if
it can be authenticated using a certificate found on the WIM/SIM and
identified as a trust root for the Operator domain. A signed MIDlet
suite will be bound to the Trusted Third Party protection domain
if it can be authenticated using a certificate found on the device or on a
WIM/SIM and identified as a trust root for the Trusted Third Party
protection domain.

The RSP defines its policy in terms of function groups rather than
individual permissions. A function group is a set of functionally related
permissions, e.g. the Net Access function group contains all those permis-
sions which relate to functionality that accesses the network, i.e. HTTP,
HTTPS, datagram connection, secure socket and socket connections. The
policy defines whether each function group is Allowed or User. User
permission is requested in terms of the function group to which an indi-
vidual permission belongs rather than the permission itself and the user’s
response applies to all permissions in that function group.

For more information on the Recommended Security Policy for
GSM/UMTS Compliant Devices refer to the addendum contained in
the MIDP 2.0 specification.

MIDP 2.0 107

As already mentioned, the recommended security policy is not a
mandatory requirement for a MIDP 2.0-compliant device. An implemen-
tation does not have to support the RSP in order to install signed MIDlet
suites; it simply has to implement the MIDP 2.0 security model and
support at least one trusted protection domain.

3.3.2.12 Security Model on Symbian OS Phones

At the time of writing the current MIDP 2.0 phones based on Symbian
OS are the Sony Ericsson P900/P908 and the Nokia 6600. The Sony Eric-
sson P900/P908 (Organizer firmware versions R2B02 or later) provides
support for a single trusted protection domain and therefore supports the
installation of appropriately signed MIDlet suites. At the time of writing
the available firmware (version 3.42.1) on the Nokia 6600 only supports
the untrusted domain, although Nokia have indicated future firmware
releases will bring in support for the Manufacturer and Trusted
Third Party protection domains (see Known Issues in the Nokia 6600
MIDP 2.0 Implementation Version 1.2 at www.forum.nokia.com).

With regard to the Recommended Security Policy for GSM/UMTS
Compliant Devices Symbian’s MIDP 2.0 implementation does not in
itself implement the RSP, but instead provides the necessary framework
for licensees to implement the security policy. To implement the RSP,
the associated trusted protection domains (Manufacturer, Operator
and Trusted Third Party) need to be associated with trust root
certificates in the ROM or WIM/SIM card of the device. In addition, to
be effective the MIDlet signing process needs to be associated with a
certification scheme run by the relevant stakeholder’s developer program.
At the time of writing the infrastructure for the RSP is not yet fully in
place, thus the current MIDP 2.0 phones based on Symbian OS are
not fully compliant with the RSP. In the future this is likely to change
as certification programs under development, such as the Java Verified
Program for J2ME (www.javaverified.com), become established.

3.3.3 Over-the-Air Provisioning

The MIDP 1.0 specification provided a recommended practice for over-
the-air (OTA) provisioning, but it was not a mandatory requirement that
MIDP 1.0 implementations supported it. With the release of MIDP 2.0,
support for user-initiated OTA provisioning became a mandatory part of
the specification.

Symbian’s MIDP implementation has provided the necessary support
for OTA provisioning since MIDP 1.0. Therefore MIDP 1.0 devices such
as the Nokia Series 60 N-Gage, 7650, 3650, 3660 and 3620 all support
OTA provisioning, as does the Sony Ericsson P800. Naturally, Symbian
OS-based MIDP 2.0 devices also support OTA provisioning.

108 MIDP 2.0 AND THE JTWI

3.3.4 Connection Framework
3.3.4.1 What’s Optional and What’s Not

The CLDC provides a Generic Connection Framework (GCF), which is an
extensible framework that can be customized by a J2ME profile to support
the necessary networking protocols required by that vertical device cate-
gory. The MIDP 1.0 specification only required support (in other words,
a concrete implementation) for the HTTP protocol. The MIDP 2.0 speci-
fication extends the support required for networking protocols to include
mandatory support for HTTPS. The MIDP 2.0 specification also states
that implementations should (where ‘‘should’’ implies a recommended
practice that can be ignored only in exceptional circumstances) provide
support for sockets, secure sockets, server sockets and datagrams. Sup-
port for serial port access via the CommConnection interface is optional
under the MIDP 2.0 specification.

Symbian’s implementation of MIDP 2.0 complies with the specifica-
tion, providing implementations for all of the above except the optional
serial port access. So, Symbian’s MIDP 2.0 currently provides implemen-
tations of the following protocols:

• HTTP

• HTTPS

• sockets

• server sockets

• secure sockets

• datagrams.

In the following sections we will explore using these connections in a
little more detail.

3.3.4.2 HTTP and HTTPS Support

HTTP connections have been supported since MIDP 1.0. To open an
HTTP connection we use the Connector.open() method with a URL
of the form www.myserver.com.

So code to open an HttpConnection and obtain an InputStream
would look something like this.

try{
String url = "www.myserver.com";
HttpConnection conn = (HttpConnection)Connector.open(url);
InputStream is = conn.openInputStream();
...
conn.close()

}catch(IOException ioe){...}

MIDP 2.0 109

Under the MIDP 2.0 security model, untrusted MIDlets can open an
HTTP connection only with explicit user confirmation. Signed MIDlets
that require access to an HTTP connection must explicitly request
the javax.microedition.io.Connector.http permission in the
MIDlet-Permissions attribute:

MIDlet-Permissions: javax.microedition.io.Connector.http, ...

The MIDP 2.0 specification adds the requirement that implementa-
tions must support the HTTPS protocol, which implements HTTP over a
secure network connection via the Secure Sockets Layer (SSL). Opening
an HTTPS connection follows the same pattern as a normal HTTP con-
nection, with the exception that we pass in a connection URL of the form
https://www.mysecureserver.com and cast the returned instance
to an HttpsConnection object, as in the following example of code
for interrogating a secure server for security information associated with
the connection.

try{
String url = "https://www.mysecureserver.com";
HttpsConnection hc = (HttpsConnection)Connector.open(url);
SecurityInfo info = hc.getSecurityInfo();

String protocolName = info.getProtocolName();
String protocolVersion = info.getProtocolVersion();
String cipherSuite = info.getCipherSuite();
Certificate c = info.getServerCertificate();
String name = c.getIssuer();
...

}catch(IOException ioe){...}

The MIDP 2.0 specification requires that MIDlets in untrusted MIDlet
suites be able to open HTTPS connections with User permission. A signed
MIDlet suite which contains MIDlets that open HTTPS connections must
explicitly request the javax.microedition.io.Connector.https
permission in its MIDlet-Permissions attribute:

MIDlet-Permissions: javax.microedition.io.Connector.https, ...

3.3.4.3 Socket and Server Socket Support

Although support for socket connections was an optional part of the MIDP
1.0 specification, MIDP 2.0 now makes support for socket connections
a recommended practice. Socket connections come in two forms: client
connections in which a socket connection is opened to another host; and
server connections in which the system listens on a particular port for

110 MIDP 2.0 AND THE JTWI

incoming connections from other hosts. The connections are specified
using Universal Resource Identifiers (URI).

You should be familiar with the syntax of a URI from Web browsing.
They have the format <string1>://<string2> where <string1>
identifies the communication protocol to be used (e.g. http) and
<string2> provides specific details about the connection. The protocol
may be one of those supported by the Generic Connection Framework
(see Section 2.1.3.2).

To open a client socket connection to another host we pass a URI of
the following form to the connector’s open() method:

socket://www.symbian.com:80

The host may be specified as a fully qualified hostname or IPv4 address
and the port number refers to the connection endpoint on the remote
peer. Some sample code is shown below:

SocketConnection sc = null;
OutputStream out = null;
try{

sc = (SocketConnection)Connector.open ("socket://localhost:79");
...
out = c.openOutputStream();
...

}catch(IOException ioe){...}

A server socket connection is used for listening for inbound socket
connections. To obtain a server socket connection we can pass a URI in
either of the following forms to the connector’s open() method:

socket://:79
socket://

In the first case the system listens for incoming connections on port
79 (of the local host). In the latter case, the system allocates an available
port for the incoming connections.

ServerSocketConnection ssc = null;
InputStream is = null;
try{

ssc = (ServerSocketConnection)Connector.open(“socket://:1234”);
SocketConnection sc = (SocketConnection)ssc.acceptAndOpen();
...
is = sc.openInputStream();
...

}catch(IOException ioe){...}

MIDP 2.0 111

The ServerSocketConnection interface extends the StreamCon-
nectionNotifier interface. To obtain a connection object for an
incoming connection the acceptAndOpen() method must be called
on the ServerSocketConnection instance. An inbound socket con-
nection results in the call to the acceptAndOpen() method, returning
a StreamConnection object which can be cast to a SocketConnec-
tion as desired.

The SocketConnection interface defines several useful methods
including:

public void setSocketOption(byte option, int value)

This allows the developer to set several socket options using the
following public static final byte constants defined in Sock-
etConnection:

• DELAY
A value of zero disables the use of Nagle’s algorithm – written data
is not buffered pending acknowledgement of previously written data.
This may be desirable when sending and receiving small packets of
data, for instance, in a peer-to-peer messenger application.

• LINGER
A non-zero value represents the interval in seconds that the system
will continue to try to process queued data after the close()method
has been called. After the interval has elapsed the connection will be
forcefully closed with a TCP RST. A value of zero disables linger on
close.

• KEEPALIVE
If enabled (by a non-zero value), a keepalive probe will be sent to the
remote peer after an implementation-specific time interval (the default
is two hours) if no other data has been sent or received on the socket
during that time interval. The purpose of the probe is to detect if the
peer has become unreachable. The peer can respond in one of three
ways: a TCP ACK response indicating all is well – no action is taken; a
TCP RST response indicating the peer has crashed and been rebooted
in which case the socket is closed; no response from the remote
peer – the socket is closed. A value of zero disables this feature.

• RCVBUF
This option is used by the platform’s networking code as a hint for the
size at which to set the underlying network I/O receiving buffer.

• SNDBUF
This option is used by the platform’s networking code as a hint for the
size to set the underlying network I/O sending buffer.

112 MIDP 2.0 AND THE JTWI

A signed MIDlet suite which contains MIDlets which open socket
connections must explicitly request the javax.microedition.io.
Connector.socket permission (needed to open client connec-
tions) and if required the javax.microedition.io.Connector.
serversocket permission (needed to open server connections), in its
MIDlet-Permissions attribute, for example:

MIDlet-Permissions: javax.microedition.io.Connector.socket, ...

or:

MIDlet-Permissions: javax.microedition.io.Connector.socket,
javax.microedition.io.Connector.serversocket, ...

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, these permissions, then the MIDlet
suite will be installed and the MIDlets it contains will be able to open
socket connections, either automatically or with user permission, depend-
ing upon the security policy in effect on the device for the protection
domain to which the MIDlet suite has been bound.

Whether MIDlets in untrusted MIDlet suites can open socket connec-
tions depends on the security policy relating to the untrusted domain in
force on the device.

3.3.4.4 Secure Socket Support

Secure socket connections are client socket connections over SSL. To
open a secure socket connection we pass in a hostname (or IPv4 address)
and port number to the connector’s open() method using the following
URI syntax:

ssl://hostname:port

We can then use the secure socket connection in the same manner as
a normal socket connection, for example:

try{
SecureConnection sc = (SecureConnection)

Connector.open("ssl://www.secureserver.com:443");
...
OutputStream out = sc.openOutputStream();
...
InputStream in = sc.openInputStream();
...

}catch(IOException ioe){...}

MIDP 2.0 113

A signed MIDlet suite that contains MIDlets which open secure con-
nections must explicitly request the javax.microedition.io.Con-
nector.ssl permission in its MIDlet-Permissions attribute, for
example:

MIDlet-Permissions: javax.microedition.io.Connector.ssl, ...

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, this permission, the MIDlet suite can
be installed and the MIDlets it contains will be able to open secure
connections, either automatically or with user permission, depending on
the security policy in effect.

Whether MIDlets in untrusted MIDlet suites can open secure con-
nections depends on the permissions granted in the untrusted protection
domain.

3.3.4.5 Datagram Support

Symbian’s MIDP 2.0 implementation includes support for sending and
receiving UDP datagrams. A datagram connection can be opened in
client or server mode. Client mode is for sending datagrams to a remote
device. To open a client mode datagram connection we use the following
URI format:

datagram://localhost:1234

Here the port number indicates the port on the target device to
which the datagram will be sent. Sample code for sending a datagram is
shown below:

String message = “Hello!”;
byte[] payload = message.toString();
try{

UDPDatagramConnection conn = null;
conn = (UDPDatagramConnection)

Connector.open(“datagram://localhost:1234”);
Datagram datagram = conn.newDatagram(payload, payload.length);
conn.send(datagram);

}catch(IOException ioe){...}

Server mode connections are for receiving (and replying to) incoming
datagrams. To open a datagram connection in server mode we use a URI
of the following form:

datagram://:1234

114 MIDP 2.0 AND THE JTWI

The port number in this case refers to the port on which the local
device is listening for incoming datagrams. Sample code for receiving
incoming datagrams is given below:

try{
UDPDatagramConnection dconn = null;
dconn = (UDPDatagramConnection)Connector.open("datagram://:1234");
Datagram dg = dconn.newDatagram(300);
while(true){

dconn.receive(dg);
byte[] data = dg.getData();
...

}
}catch(IOException ioe){...}

A signed MIDlet suite which contains MIDlets that open datagram con-
nections must explicitly request the javax.microedition.io.Con-
nector.datagram permission (needed to open client connections) and
the javax.microedition.io.Connector.datagramreceiver
permission (needed to open server connections) in its MIDlet-
Permissions attribute, for example:

MIDlet-Permissions: javax.microedition.io.Connector.datagram, ...

or:

MIDlet-Permissions: javax.microedition.io.Connector.datagramreceiver,
...

or:

MIDlet-Permissions: javax.microedition.io.Connector.datagram,
javax.microedition.io.Connector.datagramreceiver, ...

If the protection domain to which the signed MIDlet suite would
be bound grants, or potentially grants, the requested permissions, the
MIDlet suite can be installed and the MIDlets it contains will be able to
open datagram connections, either automatically or with user permission,
depending on the security policy in effect.

Whether MIDlets in untrusted MIDlet suites can open datagram con-
nections depends on permissions granted to MIDlet suites bound to the
untrusted protection domain.

3.3.4.6 Security Policy for Network Connections

The connections discussed above are part of the Net Access function
group (see the Recommended Security Policy for GSM/UMTS Compliant

MIDP 2.0 115

Devices addendum to the MIDP 2.0 specification). On the Nokia 6600
and Sony Ericsson P900/P908, MIDlets in untrusted MIDlet suites can
access the Net Access function group with User permission (explicit
confirmation required from the user). On the Sony Ericsson P900/P908,
the default User permission is set to session (and is not customizable
by the user). On the Nokia 6600, the default User permission is set to
oneshot, but can be changed by the user to session or disallowed.

The Sony Ericsson P900/P908 supports the trusted protection domain
on Organizer firmware versions R2B02 or later. The security policy
in effect for MIDlets in MIDlet suites bound to the trusted protection
domain on the P900/P908 allows automatic access (Allowed permission)
to the Net Access function group connections. At the time of writing, the
available firmware release (3.42.1) on the Nokia 6600 only supported the
untrusted domain, although future releases will add support for trusted
protection domains.

3.3.4.7 Practical Networking using Wireless Networks

In the spirit of providing practical information, we shall now digress
slightly into a discussion of networking on wireless data networks. The
most common GSM networks at the time of writing are 2.5 G General
Packet Radio Service (GPRS) networks. GPRS networks can be regarded
as a private sub-network behind a gateway to the Internet. All cur-
rent GPRS network providers operate their consumer networks behind
Network Address Translation (NAT) gateways and dynamically allocate
private IP addresses to mobile terminals on each PDP activation (data
session).

This has important consequences for application developers wishing to
use wireless networking. One consequence is that mobile terminals on a
GPRS network typically are unable to receive inbound connections since
their private IP addresses are not visible on the Internet. Another issue
relates to connection-less communications protocols such as UDP. When
a terminal on a GPRS network sends a UDP packet to a remote host on
the Internet, the sender address is stripped out of the packet and replaced
with the IP address of the gateway and a port number representing the
terminal data session. How long this session information remains valid
(enabling the remote host to reply to the sender) depends on the NAT
gateway. After a limited period of time the gateway will re-allocate that
port to another GPRS terminal. Some NAT policies allow for the session
information (and thus the allocated port) to remain associated with the
GPRS terminal as long as traffic flows through it. Such inactivity timeouts
though, vary quite significantly between operators.

The most effective way of avoiding complications arising out of oper-
ating behind NAT gateways is for developers to use TCP-based protocols
such as HTTP. As long as there is an active TCP session in place, the

116 MIDP 2.0 AND THE JTWI

gateway port will remain allocated to that GPRS terminal by the NAT
gateway, enabling two-way traffic between the GPRS terminal and the
remote device.

3.3.4.8 Socket Demo MIDlet

We will finish this section with a simple example using TCP sockets to
interrogate a web browser. The Socket Demo MIDlet sends an HTTP GET
request to a web server over a client socket connection and then reads and
displays the response. The Socket Demo MIDlet consists of two classes,
SocketMIDlet extending MIDlet and the ClientConnection class.
The source code for the SocketMIDlet class is shown below.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class SocketMIDlet extends MIDlet implements CommandListener {

private final static String defaultURL =
"socket://www.symbian.com:80";

private Command exitCommand, sendCommand;
private Display display;
public TextBox textBox;

public SocketMIDlet() {
display = Display.getDisplay(this);
exitCommand = new Command("Exit", Command.EXIT, 2);
sendCommand = new Command("Send request", Command.SCREEN, 1);

}

public void startApp() {
textBox = new TextBox("Sockets Demo", defaultURL, 256,

TextField.ANY);
textBox.addCommand(exitCommand);
textBox.addCommand(sendCommand);
textBox.setCommandListener(this);
display.setCurrent(textBox);

}

public void commandAction(Command c, Displayable s) {
if (c == exitCommand) {

notifyDestroyed();
}
else if (c == sendCommand) {

ClientConnection socketConn = new ClientConnection(this);
socketConn.sendMessage(textBox.getString());
textBox.removeCommand(sendCommand);

}
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

}

MIDP 2.0 117

SocketMIDlet sets up the UI and responds to the ‘‘Send request’’
Command by creating an instance of ClientConnection and invoking
its sendMessage() method, passing in a String representing the URL
of the required web server.

The main work is done in the ClientConnection class:

import javax.microedition.io.*;
import java.io.*;
public class ClientConnection extends Thread {

private final static String line1 = "GET /index.html\r\n";
private final static String line2 = "Accept: */*\r\n";
private final static String line3 = "Accept-Language: en-us\r\n";
private final static String line4 =

"Accept-Encoding: gzip, deflate\r\n";
private final static String line5 =

"User-Agent: Mozilla/4.0 (Compatible; MSIE 5.01; Windows NT)\r\n";

private SocketMIDlet sM = null;
private String url = null;
private String request = null;

public ClientConnection(SocketMIDlet sM) {
this.sM = sM;

}

public void sendMessage(String url) {
this.url = url;
String host = url.substring(url.lastIndexOf('/') + 1);
System.out.println("host is " + host);
String hostLine = "Host: " + host + "\r\n";
request = line1 + line2 + line3 + line4 + line5 + hostLine;
start();

}

public void run() {
try{

SocketConnection conn =
(SocketConnection)Connector.open(url);

DataOutputStream out = conn.openDataOutputStream();
byte[] buf= request.getBytes();
out.write(buf);
out.flush();
out.close();
sM.textBox.insert("Finished request!\n" +

"Receiving response...\n", sM.textBox.size());

DataInputStream in = conn.openDataInputStream();
int ch;
while ((ch = in.read()) != -1 &&

sM.textBox.size() < sM.textBox.getMaxSize()) {
String str = new Character((char) ch).toString();
try {

sM.textBox.insert(str, sM.textBox.size());
}catch(Exception e) {

e.printStackTrace();
}

118 MIDP 2.0 AND THE JTWI

}
conn.close();
conn = null;

}catch(Exception e){
e.printStackTrace();

}
}

}

The url parameter of the sendMessage() method has the follow-
ing form:

socket://www.symbian.com:80

The sendMessage() method creates a GET request and then starts
a new Thread to create the connection, send the request and read the
response. Let us look at the contents of the thread’s run() method in
more detail.

SocketConnection conn = (SocketConnection)Connector.open(url);
DataOutputStream out = conn.openDataOutputStream();
byte[] buf= request.getBytes();
out.write(buf);
out.flush();
out.close();

A SocketConnection is opened using a URI of the form
socket://hostname:port and the returned SocketConnection
object is used to get a DataOutputStream. After converting the
request to a byte array, this is written to the DataOutputStream
using the write() method. The flush() method is then called on
the DataOutputStream to ensure any buffered data is written to the
connection endpoint. This last step is essential. Symbian’s implementation
of OutputStream buffers data internally and only writes it to the
connection endpoint when the buffer is full, or when the buffer is flushed.
Failing to call flush() may result in data never being written to the
connection endpoint. Once we have finished with the OutputStream
we can close it.

Having written the request we are now ready to read the response. We
use our SocketConnection to get a DataInputStream and use the
read() method to read from it in the standard manner.

DataInputStream in = conn.openDataInputStream();
int ch;
while ((ch = in.read()) != -1 &&

sM.textBox.size() < sM.textBox.getMaxSize()) {
...

}

MIDP 2.0 119

Figure 3.6 Socket Demo MIDlet running on a Nokia 6600.

The response from the web server should be a stream of raw HTML.
We read the stream until our MIDlet’s TextBox is full and then close the
connection (reading the response in its entirety is likely to be a lengthy
process for most web sites!).

The screenshots in Figure 3.6 show the Socket Demo MIDlet running
on a Nokia 6600.

Note that the purpose of this sample code is to demonstrate how to
use client TCP socket connections. Normally, to make requests to a HTTP
server we would use an HttpConnection or HttpsConnection.
Also, under the JTWI security policy for GSM/UMTS compliant devices,
the implementation of SocketConnection using TCP sockets must
throw a SecurityExceptionwhen an untrusted MIDlet suite attempts
to connect on ports 80, 8080 (HTTP) and 443 (HTTPS). Hence the above
code is not future-proof for untrusted MIDlet suites.

3.3.5 The Push Registry

3.3.5.1 Introduction

One of the exciting new additions to MIDP 2.0 is the Push Registry API,
which allows MIDlets to be launched in response to incoming network
connections. Many applications, particularly messaging applications,
need to be continuously listening for incoming messages. Previously,
to achieve this a Java application would have had to be continually
running in the background. Although the listening Java application may
itself be small, it would still require an instance of the virtual machine
to be running, thus appropriating some of the mobile phone’s scarce
resources. The JSR 118 recognized the need for an alternative, more
resource-effective solution for MIDP 2.0 and so introduced the push
registry.

120 MIDP 2.0 AND THE JTWI

3.3.5.2 Using the Push Registry

The Push Registry API is encapsulated in the javax.microedition.
io.PushRegistry class. The push registry maintains a list of inbound
connections that have been previously registered by installed MIDlets.
A MIDlet registers an incoming connection with the push registry either
statically at installation via an entry in the JAD file or dynamically
(programmatically) via the registerConnection() method.

When a MIDlet is running, it handles all the incoming connections
(whether registered with the push registry or not). If, however, the MIDlet
is not running, the AMS listens for registered incoming connections and
launches the MIDlet in response to an incoming connection previously
registered by that MIDlet, by invoking the startApp() method. The
AMS then hands off the connection to the MIDlet which is then responsible
for opening the appropriate connection and handling the I/O.

In the case of static registration, the MIDlet registers its interest in
incoming connections in the JAD file, in the following format:

MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

The <ConnectionURL> field specifies the protocol and port for the
connection end point in the same URI syntax used as the argument to the
Connector.open() method that is used by the MIDlet to process the
incoming connection. Examples of <ConnectionURL> entries might be:

sms://:1234
socket://:1234

The <MIDletClassName> field contains the package-qualified name
of the class that extends javax.microedition.midlet.MIDlet.
This would be the name of the MIDlet class as listed in the application
descriptor or manifest file under the MIDlet-<n> entry.

The <AllowedSender> field acts as a filter indicating that the AMS
should only respond to incoming connections from a specific sender.
For the SMS protocol, the <AllowedSender> entry is the phone num-
ber of the required sender. For a server socket connection endpoint
the <AllowedSender> entry would be an IP address (note in both
cases that the sender port number is not included in the filter). The
<AllowedSender> syntax supports two wildcard characters: * matches
any string including an empty string and ? matches any character. Hence
the following would be valid entries for the <AllowedSender> field:

*
129.70.40.*
129.70.40.23?

MIDP 2.0 121

The first entry indicates any IP address, the second entry allows the
last three digits of the IP address to take any value, while the last entry
allows only the last digit to have any value.

So the full entry for the MIDlet-Push-<n> attribute in a JAD file may
look something like this:

MIDlet-Push-1: sms://:1234, com.symbian.devnet.ChatMIDlet, *
MIDlet-Push-2: socket://:3000, com.symbian.devnet.ChatMIDlet,

129.70.40.*

If the request for a static connection registration can not be fulfilled
then the AMS must not install the MIDlet. Examples of when a registration
request might fail include the requested protocol not being supported
by the device, or the requested port number being already allocated to
another application.

To register a dynamic connection with the AMS we use the static
registerConnection() method of PushRegistry:

PushRegistry.registerConnection(“sms://:1234”,
“com.symbian.devnet.ChatMIDlet”, “*”);

The arguments take precisely the same format as those used to make up
the MIDlet-Push-<n> entry in a JAD or manifest. Upon registration,
the dynamic connection behaves in an identical manner to a static
connection registered via the application descriptor.

To un-register a dynamic connection the static boolean unregis-
terConnection() method of PushRegistry is used:

boolean result = PushRegistry.unregisterConnection((“sms://:1234”);

If the dynamic connection was successfully unregistered a value of
true is returned.

The AMS will respond to input activity on a registered connection
by launching the corresponding MIDlet (assuming that the MIDlet is
not already running). The MIDlet should then respond to the incoming
connection by launching a thread to handle the incoming data in the
startApp() method. Using a separate thread is the recommended
practice for avoiding conflicts between blocking I/O operations and the
normal user interaction events. For a MIDlet registered for incoming SMS
messages, the startApp() method might look something like this:

public void startApp() {
// List of active connections.
String[] connections = PushRegistry.listConnections(true);

122 MIDP 2.0 AND THE JTWI

for (int i=0; i < connections.length; i++) {
if(connections[i].equals(“sms://:1234”)){

new Thread(){
public void run(){

Receiver.openReceiver();
}

}.start();
}

}
...
}

One other use of the push registry should be mentioned before we
leave this topic. The PushRegistry class provides the register-
Alarm() method:

public static long registerAlarm(String midlet, long time)

This allows a running MIDlet to register itself or another MIDlet in
the same suite for activation at a given time. The midlet argument is
the class name of the MIDlet to be launched at the time specified by
the time argument. The launch time is specified in milliseconds since
January 1, 1970, 00:00:00 GMT. The push registry may contain only one
outstanding activation time entry per MIDlet in each installed MIDlet
suite. If a previous activation entry is registered, it will be replaced by
the current invocation and the previous value returned. If no previous
wakeup time has been set, a zero is returned.

3.3.5.3 The Push Registry and the Security Model

The PushRegistry is a protected API and, as such, a signed
MIDlet suite which registers connections statically or contains MIDlets
which register connections and/or alarms, must explicitly request
the javax.microedition.io.PushRegistry permission in its
MIDlet-Permissions attribute, for example:

MIDlet-Permissions: javax.microedition.io.PushRegistry, ...

Note that a signed MIDlet suite must also explicitly request the per-
missions necessary to open the connection types of any connections it
wishes to register either statically or dynamically. If the protection domain
to which the signed MIDlet suite would be bound grants, or potentially
grants, the requested permission, the MIDlet suite can be installed and the
MIDlets it contains will be able to register and deregister connections, and
register alarms, either automatically, or with user permission, depending
on the security policy in effect.

MIDP 2.0 123

Untrusted MIDlets do not require a MIDlet-Permissions entry.
Whether access is granted to the Push Registry API will depend on the
security policy for the untrusted protection domain in effect on the device.

On the Sony Ericsson P900/P908 and Nokia 6600, MIDlets in untrusted
MIDlet suites can use the Push Registry APIs (Application Auto-Invocation
function group) with user permission. On both the 6600 and the
P900/P908, the default user permission is set to session. On the Nokia
6600, the default value can be changed by the user to oneshot or disal-
lowed. For the Sony Ericsson P900/P908, the security policy in effect for
MIDlets in MIDlet suites bound to the trusted protection domain allows
automatic access to the Push Registry API.

3.3.5.4 Symbian’s Implementation

At the time of writing, the current version of Symbian OS, Version 7.0s,
supports the following connection types in its implementation of the
MIDP 2.0 push architecture:

• Server socket

• Datagram

• SMS.

In Symbian’s implementation, all connections that can be registered as
push connections are managed by the system AMS, even if they are not
requested to be push-enabled by an application. In the case of server
connections that spawn off a connected stream due to an incoming
connection, the stream connections are also maintained through the
system AMS.

Future releases of Symbian OS are likely to increase the types of
connections supported by the push architecture to include Bluetooth,
L2CAP and RFCOMM connections.

3.3.6 Additions to the LCDUI

3.3.6.1 A Quick Tour

The MIDP 2.0 specification introduces a number of new features to the
LCDUI toolkit which are designed to give developers more control over
their application’s user interface. In this section we briefly look at some
of them.

Display
MIDP 2.0 introduces two useful new methods to the Display class
which allow MIDlets to control the screen backlight and the vibration of
the phone:

124 MIDP 2.0 AND THE JTWI

public boolean flashBackLight(int duration)
public boolean vibrate(int duration)

The duration of the effect is specified by the duration parameter – a
value of zero causes the action to stop. The return value is false if the
relevant feature is not supported by the phone.

Form
MIDP 2.0 introduces a new layout algorithm for arranging items in
a Form. The layout algorithm arranges items in rows according to a
layout direction defined by the implementation for the language con-
vention in use. For European and North American markets the default
layout direction will be left to right. The layout algorithm then arranges
items from left to right and starts a new row when there is insuffi-
cient space in the row to accommodate the next Item. The layout
algorithm uses the concept of current alignment. For an implementa-
tion with a left to right layout direction the initial current alignment is
Item.LAYOUT_LEFT. Other possible values for the current alignment
are Item.LAYOUT_RIGHT and Item.LAYOUT_CENTER. The current
alignment changes when the layout algorithm encounters an Item with
a (horizontal) layout value other than the current setting (the layout direc-
tive for an Item is set using the setLayout() method). When this
happens, the layout algorithm adds that Item on a new row and uses the
new alignment value until an Item with a different horizontal directive
is encountered.

Vertical layout directives provided are Item.LAYOUT_TOP, Item.
LAYOUT_BOTTOM and Item.LAYOUT_VCENTER. These are used to indi-
cate the required vertical alignment of an Item within the current row.

MIDP 2.0 added the getPreferredWidth(), getPreferred-
Height(), getMinimumWidth() and getMinimumHeight()meth-
ods to the Item class. These are used by the form layout algorithm
to position and size Items within rows. In addition a MIDlet can
influence the size of an Item by using the Item.LAYOUT_EXPAND,
Item.LAYOUT_VEXPAND and Item.LAYOUT_SHRINK and Item.
LAYOUT_VSHRINK directives.

When filling a row, the layout algorithm first adds each Item accord-
ing to its preferred width (or minimum width, if the LAYOUT_SHRINK
directive is set). Once the row has been filled, any remaining space is
proportionately distributed amongst the items by expanding their widths.
Any Item with the LAYOUT_SHRINK directive set is expanded to no
more than its preferred size and then any remaining space is taken up
expanding Items with the LAYOUT_EXPAND directive set.

The height of a row is determined by the tallest Item in the row.
The height of an Item is determined by its preferred height (unless
the LAYOUT_VSHRINK directive has been set, in which case initially the

MIDP 2.0 125

minimum height is used). Once the height of the row has been determined,
any Item shorter than the row height that has its LAYOUT_VEXPAND
directive set is expanded to the height of the row. Any Item with its
LAYOUT_VSHRINK directive set is expanded to its preferred size or the
height of the row, whichever is shorter. Finally, any Item with vertical
directives (LAYOUT_TOP, LAYOUT_BOTTOM or LAYOUT_CENTER) set is
positioned accordingly in the row. Remaining items with no vertical
directive are positioned at the bottom of the row.

It is possible to force a row break using setLayout(Item.LAYOUT_
NEWLINE_BEFORE) and setLayout(Item.LAYOUT_NEWLINE_
AFTER). In the first case, the item will be added on a new row. In
the second case, a row break will occur immediately after the item that
called the method. Note that for backward compatibility with MIDP
1.0, TextField, DateField, Gauge and ChoiceGroup items are
always positioned with a row to themselves unless the Item.LAYOUT_2
directive has been set.

Item
MIDP 2.0 introduces new features into the Item class including:

• support for the new layout algorithm with new directives defined as
public static final int (see above)

• the addCommand()method; an item can have commands associated
with it

• the setItemCommandListener() method

• the getMinimumHeight(), getMinimumWidth(), getPre-
ferredHeight()and getPreferredWidth() methods.

It also introduces new public static final int appearance modes:

• BUTTON indicates the item is to appear as a button

• HYPERLINK indicates the item is to appear as a hyperlink

• PLAIN indicates the item is to have a normal appearance.

CustomItem
This is a new class introduced in MIDP 2.0 that can be sub-classed to
create new visual elements for use in Forms.

StringItem
MIDP 2.0 introduces a new constructor to the StringItem class that
creates a StringItem with the indicated appearance mode: PLAIN,
BUTTON, or HYPERLINK.

public StringItem(String label,String text,int appearanceMode)

126 MIDP 2.0 AND THE JTWI

ItemCommandListener
A listener type introduced in MIDP 2.0 for receiving notification of
commands that have been invoked on Item objects.

Spacer
A new class introduced in MIDP 2.0 representing a blank Item with a
settable minimum size whose primary purpose is to position other items.

Choice
New features introduced in MIDP 2.0 to the Choice interface include:

• static int POPUP

• static int TEXT_WRAP_DEFAULT

• static int TEXT_WRAP_OFF

• static int TEXT_WRAP_ON

• deleteAll()

• getFitPolicy()

• getFont()

• setFitPolicy(int fitPolicy)

• setFont(int elementNum, Font font).

3.3.6.2 Exploring the LCDUI: the KeyPad Example

Rather than exploring the new features of the LCDUI API by API, we will
instead discuss an example MIDlet that illustrates some of the features.
For a more thorough exposition of the LCDUI APIs, the reader is referred
to Sun’s MIDP 2.0 documentation.

We will use as the example a simple numeric keypad. Screenshots of
our KeyPad MIDlet running on the Series 60 and UIQ reference designs
are shown in Figure 3.7.

The KeyPad MIDlet consists of two classes: the KeyPad class extends
MIDlet and provides the main UI in the guise of a Form instance; and
the Button class extends CustomItem and models a simple button.
The Button instances are appended to the Form to create our keypad.

First, let’s consider the KeyPad class:

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;
public class KeyPad extends MIDlet implements CommandListener {

private Display display;
private Form container;
private Command exit;

MIDP 2.0 127

Figure 3.7 The KeyPad MIDlet on Series 60 and UIQ.

private Command clear;
private TextField field;

public KeyPad() {
display = Display.getDisplay(this);
container = new Form("");
clear = new Command("CLEAR",Command.SCREEN,1);
exit = new Command("EXIT",Command.EXIT,1);
container.addCommand(exit);
container.addCommand(clear);
container.setCommandListener(this);

Button one = new Button(this, "1");
Button two = new Button(this, "2");
Button three = new Button(this, "3");
Button four = new Button(this, "4");
Button five = new Button(this, "5");
Button six = new Button(this, "6");
Button seven = new Button(this, "7");
Button eight = new Button(this, "8");
Button nine = new Button(this, "9");
Button zero = new Button(this, "0");

field = new TextField(null,null,32,TextField.UNEDITABLE);

int bheight = one.getPrefContentHeight(-1);
int bwidth = one.getPrefContentWidth(-1);

128 MIDP 2.0 AND THE JTWI

container.append(new Spacer
(container.getWidth(),bheight/2));

container.append(new Spacer (bwidth/2, bheight));
container.append(one);
container.append(new Spacer (bwidth/2, bheight));
container.append(two);
container.append(new Spacer (bwidth/2, bheight));
container.append(three);

container.append(new Spacer
(container.getWidth(),bheight/4));

container.append(new Spacer (bwidth/2, bheight));
container.append(four);
container.append(new Spacer (bwidth/2, bheight));
container.append(five);
container.append(new Spacer (bwidth/2, bheight));
container.append(six);

container.append(new Spacer
(container.getWidth(),bheight/4));

container.append(new Spacer (bwidth/2, bheight));
container.append(seven);
container.append(new Spacer (bwidth/2, bheight));
container.append(eight);
container.append(new Spacer (bwidth/2, bheight));
container.append(nine);
container.append(new Spacer (bwidth/2, bheight));
container.append(zero);

container.append(new Spacer
(container.getWidth(),bheight/2));

container.append(field);
}

public void setString(String s) {
String current = field.getString();
field.setString(current.concat(s));

}

public void commandAction(Command c, Displayable d) {
if(c == exit) {

notifyDestroyed();
}
else if(c == clear) {

field.setString("");
}

}

public void startApp() {
display.setCurrent(container);

}

public void pauseApp() {

MIDP 2.0 129

}

public void destroyApp(boolean unconditional) {
}

}

The main work is done in the constructor. We create the Form, plus
a couple of Command instances. We add the commands to the form and
set the CommandListener. Then we create various instances of our
Button and a TextField to display the output of the button presses.
We append the Button instances to the Form, separated by instances
of the Spacer class, plus the TextField instance. We implement a
setString() callback method that is invoked by a Button instance,
taking the button’s label as its parameter. Finally, we implement the
commandAction() method mandated by the CommandListener
interface, which our KeyPad class implements.

Now let’s look at the Button class:

import javax.microedition.lcdui.*;
public class Button extends CustomItem{

private static final int HEIGHT = 20;
private static final int WIDTH = 20;
private static final int DELTA = 2;
private String num;
private KeyPad pad;

public Button(KeyPad pad, String num){
super("");
this.pad = pad;
this.num = num;

}

protected void paint(Graphics g, int w, int h){
g.setColor(0, 0, 0);
g.fillRect(0, 0, WIDTH+DELTA, HEIGHT+DELTA);
g.setColor(128, 128, 128);
g.fillRect(0, 0, WIDTH-DELTA, HEIGHT-DELTA);
int xOffset = WIDTH/3;
int yOffset = 2*HEIGHT/3;
g.setColor(255, 255, 255);
g.drawString(num, xOffset, yOffset,

Graphics.BASELINE | Graphics.LEFT);
}

protected int getPrefContentHeight(int width) {
return getMinContentWidth();

}

protected int getPrefContentWidth(int height) {
return getMinContentHeight();

}

protected int getMinContentHeight() {

130 MIDP 2.0 AND THE JTWI

return HEIGHT;
}

protected int getMinContentWidth() {
return WIDTH;

}

protected void pointerPressed(int x, int y) {
pad.setString(num);

}

public void keyPressed(int keyCode){
int gameAction = getGameAction(keyCode);
if (gameAction == Canvas.FIRE){

pad.setString(num);
}

}

}

The constructor takes as arguments the KeyPad instance, to facilitate a
callback, and a String acting as the button label. The paint()method
must be implemented to render the CustomItem. In the example code
above we have produced a minimal button, leaving it as an exercise
to the reader to add the embellishments. We must also implement the
getPrefContentWidth(), getPrefContentHeight(), getMin-
ContentWidth() and getMinContentHeight() methods inherited
from CustomItem; here we have provided trivial implementations. An
attractive feature of CustomItem is the optional support for pointer
input, via the protected pointerPressed(), pointerDragged()
and pointerReleased() methods. The Button class redefines the
pointerPressed() method to provide support for touch screen user
interfaces such as Symbian’s UIQ.

Of course, we could have adopted a simpler approach to our keypad.
Instead of providing a custom Button class extending CustomItem we
could have simply used StringItem instances with appearanceMode
set to Item.BUTTON:

public StringItem (String label, String text, int appearanceMode)

We would then add a Command to the StringItem to take appro-
priate action when it is selected and implement an ItemCommandLis-
tener on each StringItem instance, as shown below:

public class KeyPad extends MIDlet implements CommandListener,
ItemCommandListener{

...
public KeyPad() {

...
StringItem button1 = new StringItem(null, “1”, Item.BUTTON);

MIDP 2.0 131

button1.setDefaultCommand(new Command(“Select 1”,
Command.Item, 1));

button1.setItemCommandListener(this);
...
form.append(button1);
...

}
...
public void commandAction(Command command, Item item) {

StringItem button = (StringItem)item;
setString(button.getText());

}
...

}

We adopted the CustomItem approach for our keypad example
for two reasons: it provides an opportunity to illustrate the use of
CustomItem, and its inherent support for touch screens; and the par-
ticular variant of StringItem shown above was subject to a defect
on the original Nokia 6600 firmware release (but should be fixed in
future upgrades).

3.3.7 The Game API
3.3.7.1 Introduction

The MIDP 1.0 specification, though limited in many respects, proved a
big hit with the gaming fraternity. The vast majority of MIDlets developed
so far are games.

As mentioned briefly in Chapter 2, the MIDP 2.0 specification extends
support for games developers with the introduction of the javax.micro-
edition.lcdui.game package. We will now discuss programming
this API in more detail. The aim of the API is to facilitate richer gaming
content by providing a set of APIs, targeted at games developers, that
map directly to native functionality, taking advantage of the performance
enhancements offered by native code and minimizing the amount of
work required in pure Java code.

The game package contains the following classes:

• GameCanvas

• LayerManager

• Layer

• Sprite

• TiledLayer.

In the next few sections we shall look at the functionality offered by these
classes, illustrating some of the key concepts with sample code.

132 MIDP 2.0 AND THE JTWI

3.3.7.2 GameCanvas

A basic game user interface class extending javax.microedition.
lcdui.Canvas, GameCanvas provides an offscreen buffer as part of
the implementation even if the underlying device doesn’t support double
buffering. The Graphics object obtained from the getGraphics()
method is used to draw to the screen buffer. The contents of the screen
buffer can then be rendered to the display synchronously by calling the
flushGraphics() method.

The GameCanvas class also provides the ability to query key states
and return an integer value in which each bit represents the state of a
specific key on the device:

public int getKeyStates()

If the bit representing a key is set to 1 then this key is pressed or
has been pressed at least once since the last invocation of the method.
The returned integer can be ANDed against a set of predefined constants
(shown below), each representing the appropriate bit for a specific key
set to 1 (support for the last four values is optional).

public static final int UP_PRESSED
public static final int DOWN_PRESSED
public static final int LEFT_PRESSED
public static final int RIGHT_PRESSED
public static final int FIRE_PRESSED
public static final int GAME_A_PRESSED
public static final int GAME_B_PRESSED
public static final int GAME_C_PRESSED
public static final int GAME_D_PRESSED

We would use these values to ascertain the state of a key in the manner
shown below.

if (getKeyStates() & FIRE_PRESSED != 0) {
// FIRE key is down or has been pressed
// take appropriate action

}

3.3.7.3 TiledLayer

The abstract Layer class is the parent class of TiledLayer and Sprite.
A TiledLayer consists of a grid of cells each of which can be filled

with an image tile. An instance of TiledLayer is created by invoking
the constructor of the TiledLayer class:

public TiledLayer(int columns, int rows, Image image, int tileWidth,
int tileHeight)

MIDP 2.0 133

The columns and rows arguments represent the number of columns
and rows in the grid. The tileWidth and tileHeight arguments
represent the width and height of a single tile in pixels. The image
argument represents the image used for creating the set of tiles that will
be employed to populate the TiledLayer. Naturally, the dimension
of the image in pixels must be an integral multiple of the dimension
of an individual tile. The use of TiledLayer is best illustrated with
an example.

The image in Figure 3.8 (taken with a Symbian OS phone) is a
panoramic view of Prague. The dimensions of the image are 560 × 140
pixels and we will use it to provide the tile set for our TiledLayer.
We will use a TiledLayer to pan through this view. To fit comfortably
in the display of a phone we will display samples of the image on a
TiledLayer of 140 × 140 pixels, consisting of a 7 × 7 grid, as shown
in Figure 3.9.

Note that cells are identified by their column and row number, the
top left cell having coordinates (0, 0) and the bottom right (7, 7). The
dimensions of the TiledLayer and the number of cells it contains
dictates that the individual tile dimensions are 20 × 20 pixels in this
example and that the image can be treated as a 28 × 7 matrix of tiles (see
Figure 3.10).

A given tile is specified by its tile index. Tile indices in this example
run from 1 for the top left tile to 196 for the bottom right tile.

Figure 3.8 Basic image for use by a TiledLayer.

Figure 3.9 Example of a 7 × 7 TiledLayer.

134 MIDP 2.0 AND THE JTWI

Figure 3.10 Dividing our image into tiles.

Figure 3.11 Panning through a panoramic view using TiledLayer.

To pan through the whole image we simply shift each column of tiles
one position left within the TiledLayer, as shown in Figure 3.11.

The source code for the TiledLayerCanvas class, which renders
the panned view, is listed below:

import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;
import java.io.*;
public class TiledLayerCanvas extends Canvas implements Runnable {

private Image image;
private int x;
private int y;

MIDP 2.0 135

private TiledLayer layer;
public TiledLayerCanvas(String imageName)

throws ApplicationException {
//create the image
try {

image = Image.createImage(imageName);
layer = new TiledLayer(7, 7, image, 20, 20);
x = (getWidth() - layer.getHeight())/2;
y = (getHeight() - layer.getWidth())/2;
layer.setPosition(x, y);

}catch(IOException ioe) {
throw new ApplicationException("Unable to create image");

}
}

public void paint(Graphics g) {
layer.paint(g);

}

public void run() {
int n = 0;
while (n <= 21) {

for(int i = 0; i < 7; i++) {
for(int j = 0; j < 7; j++) {

layer.setCell(i, j, (i + 1) + n +(j*28));
}

}
repaint();

try {
Thread.sleep(100);

}catch(InterruptedException ie) {}
n++;

}
}

}

The TiledLayerCanvas constructor creates an instance of Image
from a resource file containing the panoramic view. This is then used to
create the TiledLayer instance:

layer = new TiledLayer(7, 7, image, 20, 20);

This consists of a 7 × 7 grid, to be populated with tiles of dimensions
20 × 20 pixels. The position of the TiledLayer relative to the containing
Canvas is defined by the setPosition()method of the parent Layer
class. To render the TiledLayer, we call its paint() method from
the Canvas paint() method. We pan through the image using a
while loop that increments a counter running from 0 to 21 for each
new tile set. Each iteration of the while loop sets the tile set and then
calls repaint (and increments the counter). The TiledLayer grid is
populated with a tile set by multiple calls to setCell from within nested
for loops:

136 MIDP 2.0 AND THE JTWI

for(int i = 0; i < 7; i++) {
for(int j = 0; j < 7; j++) {

layer.setCell(i, j, (i + 1) + n +(j*28));
}

}
repaint();

The setCell() method of TiledLayer takes integers representing
the row and column of the TiledLayer grid (which in this case run from
0 to 6 for a 7 × 7 grid) in which the tile is to be placed, and an integer
representing the index of the tile within the image (which in this example
runs from 1 to 196 for an image consisting of 28 × 7 tiles) as arguments.

public void setCell(int col, int row, int tileIndex)

The full source code and JAR and JAD files for the Panorama MIDlet
can be downloaded from the Symbian website at www.symbian.com/
books.

One of the principal uses of TiledLayer is the creation of large
scrolling backgrounds from relatively few tiles. Consider the rather sim-
plistic, but nonetheless illustrative, example in Figure 3.12.

We have built up a background TiledLayer from just four tiles.
By changing the arrangement of the four tiles within the TiledLayer
grid we can convey the impression of an infinite scrolling background.
For more information on using TiledLayer to create backgrounds,
including the use of animation, consult the MIDP 2.0 documentation
which includes a comprehensive example.

Figure 3.12 A simple background TiledLayer built up from four tiles.

3.3.7.4 Sprite

Sprite is a basic visual element suitable for creating animations.
A Sprite consists of an image composed of several smaller images
(frames). The Sprite can be rendered as one of the frames. By rendering

MIDP 2.0 137

Figure 3.13 A Sprite image consisting of two frames.

different frames in a sequence, a Sprite provides animation. Let us
consider a simple example. Figure 3.13 consists of two frames, each of
the same width and height.

By displaying the frames in a sequence, we can produce an animation.
The following code shows how this can be achieved:

import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;
import java.io.*;
public class SpriteCanvas extends Canvas implements Runnable {

private static final int SPRITE_WIDTH = 140;
private static final int SPRITE_HEIGHT = 140;

private Sprite plane;
private int spritePositionX;
private int spritePositionY;
private boolean running = false;

public SpriteCanvas(String imageName) throws
ApplicationException {

try {
Image image = Image.createImage(imageName);
plane = new Sprite(image, SPRITE_WIDTH, SPRITE_HEIGHT);
spritePositionX = (getWidth() – SPRITE_WIDTH)/2;
spritePositionY = (getHeight() – SPRITE_HEIGHT)/2;
plane.setPosition(spritePositionX, spritePositionY);

}catch(IOException ioe) {
throw new ApplicationException("Unable to create image");

}
}

public void paint(Graphics g) {
g.setColor(255, 255, 255);
g.fillRect(0, 0, getWidth(), getHeight());

//paint background white
plane.paint(g);

}

138 MIDP 2.0 AND THE JTWI

public void run() {
running = true;
while (running) {

repaint();
plane.nextFrame();
try {

Thread.sleep(50);
} catch(InterruptedException ie){}

}
}

public void stop() {
running = false;

}
}

A new Sprite is created using the following constructor:

public Sprite(Image image, int frameWidth, int frameHeight)

The first argument is the image consisting of the sequence of frames.
The second and third arguments indicate the width and height in pixels
of the individual frames within the image. Note that the width and height
of the image in pixels must be an integer multiple of the frame width
and height.

The setPosition() method of Sprite is used to position the
Sprite in the coordinate space of the containing object, a Canvas in
this example.

plane.setPosition(spritePositionX, spritePositionY);

To render the Sprite, we call the paint() method. Here this is
done within the paint() method of SpriteCanvas:

public void paint(Graphics g) {
g.setColor(255, 255, 255);
g.fillRect(0, 0, getWidth(), getHeight());
plane.paint(g);

}

To animate the sprite we call the nextFrame() method of Sprite
after a repaint(), as shown below:

while (running) {
repaint();
plane.nextFrame();
...

}

MIDP 2.0 139

Figure 3.14 PlaneSprite running on the Nokia 6600.

Figure 3.14 illustrates the PlaneSprite MIDlet running on a Nokia
6600. The full source code for the PlaneSprite MIDlet can be
downloaded from Symbian’s website at www.symbian.com/books.

In addition to various transformations such as rotation and mirroring,
the Sprite class also provides collision detection. Collision detection
allows the developer to detect when the sprite collides with another
element. The following three methods are available in the Sprite class:

public final boolean collidesWith(Image image, int x, int y,
boolean pixelLevel)

public final boolean collidesWith(Sprite s, boolean pixelLevel)
public final boolean collidesWith(TiledLayer t, boolean pixelLevel)

The first method detects collisions between the invoking Sprite and
the specified Image, while the second detects collisions with another
Sprite and the last method detects collisions with the specified Tiled-
Layer. If pixelLevel is set to true, collision detection is performed
on a pixel by pixel basis; if it is false then collision detection is per-
formed on the basis of the bounding rectangle of the sprite. The bounding
rectangle of the sprite can be set using the method:

public void defineCollisionRectangle(int x, int y, int width,
int height)

Otherwise, the default, bounding rectangle is located at (0,0) in the
coordinate space of the sprite and is of the same dimensions as the sprite.

For more information on using sprites refer to the MIDP 2.0 docu-
mentation.

140 MIDP 2.0 AND THE JTWI

3.3.7.5 Layer Manager

As the name implies, the LayerManager manages a series of Layer
objects. Sprite and TiledLayer both extend Layer. More specifi-
cally a LayerManager controls the rendering of Layer objects. The
LayerManager maintains an ordered list so that they are rendered
according to their z-values (in standard computer graphics terminology).
We add a Layer to the list using the method:

public void append(Layer l)

The first layer appended has index zero and the lowest z-value, that is,
it appears closest to the user (viewer). Subsequent layers have successively
greater z-values and indices. Alternatively we can add a layer at a specific
index using the method:

public void insert(Layer l, int index)

To remove a layer from the list we use the method:

public void remove(Layer l)

We position a layer in the LayerManager’s coordinate system using
the setPosition() method. The contents of LayerManager are not
rendered in their entirety, instead a view window is rendered using the
paint() method of the LayerManager:

public void paint(Graphics g, int x, int y)

The x and y arguments are used to position the view window on
the Displayable object the Canvas or GameCanvas upon which the
LayerManager is ultimately rendered and therefore the device’s screen.
The size of the view window is set using the method:

public void setViewWindow(int x, int y, int width, int height)

The x and y values determine the position of the top left corner of
the rectangular view window in the coordinate system of the Layer-
Manager. The width and height arguments determine the width and
height of the view window and are usually set to a size appropriate for the
device’s screen. By varying the x and y coordinates we can pan through
the contents of the LayerManager.

We shall illustrate using LayerManager to display our plane sprite
against a simple moving background. The image used to make up the

MIDP 2.0 141

Figure 3.15 The background image for the LayerManager Demo MIDlet.

background TiledLayer is shown in Figure 3.15 and consists of just
one tile.

The source code for the LayerManagerCanvas class is listed below.

import javax.microedition.lcdui.game.*;
import javax.microedition.lcdui.*;
import java.io.*;
public class LayerManagerCanvas extends Canvas implements Runnable {

private static final int TILE_WIDTH = 140;
private static final int TILE_HEIGHT = 140;
private static final int SPRITE_WIDTH = 140;
private static final int SPRITE_HEIGHT = 140;
private static final int WINDOW_WIDTH = 140;
private static final int WINDOW_HEIGHT = 140;

private Sprite sprite;
private TiledLayer backgroundLayer;
private LayerManager layerManager;

private boolean running = false;
private int x;
private int y;

public LayerManagerCanvas(String spriteImageName,
String backgroundImageName) throws ApplicationException {

try {
Image spriteImage = Image.createImage(spriteImageName);
Image backgroundImage =

Image.createImage(backgroundImageName);
sprite = new Sprite(spriteImage, SPRITE_WIDTH,

SPRITE_HEIGHT);
backgroundLayer = new TiledLayer(2, 1, backgroundImage,

TILE_WIDTH, TILE_HEIGHT);
backgroundLayer.setCell(0,0,1);
backgroundLayer.setCell(1,0,1);
layerManager = new LayerManager();
layerManager.append(sprite);
layerManager.append(backgroundLayer);

//set layer position relative to LayerManager origin
// this is the default anyway
sprite.setPosition(0, 0);

142 MIDP 2.0 AND THE JTWI

//this is the default anyway
backgroundLayer.setPosition(0, 0);

//set view window size and position relative to
//LayerManager's origin
layerManager.setViewWindow(0, 0, WINDOW_WIDTH,

WINDOW_HEIGHT);

//calculate coordinates to position view window in Canvas
x = (getWidth() - WINDOW_WIDTH)/2;
y = (getHeight() - WINDOW_HEIGHT)/2;

}catch(IOException ioe) {
throw new ApplicationException("Unable to create image");

}
}

public void paint(Graphics g) {
g.setColor(255, 255, 255);
//paint Canvas background white
g.fillRect(0, 0, getWidth(), getHeight());
//position view window in Canvas and render
layerManager.paint(g, x, y);

}

public void run() {
running = true;
int layerX = -TILE_WIDTH;

while (running) {
if (layerX == 0) {

layerX = -TILE_WIDTH;
}
backgroundLayer.setPosition(layerX, 0);
sprite.nextFrame();
repaint(x, y, TILE_WIDTH, TILE_HEIGHT);
try {

Thread.sleep(30);
}catch(InterruptedException ie) {}
layerX++;

}
}

public void stop() {
running = false;

}

}

The class constructor first creates the Sprite and a TiledLayer for
the background, as shown below.

Image spriteImage = Image.createImage(spriteImageName);
Image backgroundImage = Image.createImage(backgroundImageName);
sprite = new Sprite(spriteImage, SPRITE_WIDTH, SPRITE_HEIGHT);
backgroundLayer = new TiledLayer(2, 1, backgroundImage,

TILE_HEIGHT);

MIDP 2.0 143

Figure 3.16 The background TiledLayer.

backgroundLayer.setCell(0,0,1);
backgroundLayer.setCell(1,0,1);

Our background TiledLayer consists of a 2 × 1 grid of tiles (see
Figure 3.16) sufficient to simulate an infinite scene.

Next a LayerManager is created and the sprite and background
layers are appended:

layerManager = new LayerManager();
layerManager.append(sprite);
layerManager.append(backgroundLayer);
//this is the default anyway
sprite.setPosition(0, 0);
//this is the default anyway
backgroundLayer.setPosition(0, 0);
layerManager.setViewWindow(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT);
x = (getWidth() – WINDOW_WIDTH)/2;
y = (getHeight() – WINDOW_HEIGHT)/2;

The layers are positioned relative to the LayerManager’s coordinate
system using their setPosition() methods.

The LayerManager’s view window is rendered by the paint()
method of Canvas as follows:

public void paint(Graphics g) {
g.setColor(255, 255, 255);
//paint Canvas background white
g.fillRect(0, 0, getWidth(), getHeight());
//position view window in Canvas and render
layerManager.paint(g, x, y);

}

The animation of the MIDlet is handled in the run() method listed
below.

public void run() {
running = true;
int layerX = -TILE_WIDTH;

144 MIDP 2.0 AND THE JTWI

while (running) {
if (layerX == 0) {

layerX = -TILE_WIDTH;
}
backgroundLayer.setPosition(layerX, 0);
sprite.nextFrame();
repaint(x, y, TILE_WIDTH, TILE_HEIGHT);
try {

Thread.sleep(30);
}catch(InterruptedException ie) {}
layerX++;

}
}

In this example, to generate the illusion of motion, instead of moving
the sprite, we move the background layer relative to the coordinate
system of the Canvas using the setPosition() method. The plane
sprite remains stationary while alternating between its two frames on each
cycle. The background layer is initially offset in a negative direction by
an amount equal to TILE_WIDTH. On each cycle we move its position
by one pixel in the positive direction until it has shifted by a total amount
equal to TILE_WIDTH. We then reset the position of the background
layer back to its initial position to avoid running out of scenery. Because
of the symmetrical nature of the background image the effect is to simulate
an infinitely scrolling background (see Figure 3.17).

To observe the full effect, download and run the example. The source
code and JAR and JAD files for the LayerManagerDemo MIDlet are
available from the Symbian website at www.symbian.com/books.

The DemoRacer case study, discussed in Chapter 5, provides a fur-
ther detailed study of programming the Game API, including using
collision detection.

Figure 3.17 The LayerManagerDemo MIDlet.

MIDP 2.0 145

3.3.8 The Media API
As mentioned in Chapter 2, MIDP 2.0 introduces support for audio
playback and sound generation in two new packages:

• javax.microedition.media

• javax.microedition.media.control.

Specifically, the Media API mandates support for tone generation and
audio playback of WAV files. Support for other audio formats is optional.
Symbian’s MIDP 2.0 Media API implementation, at the time of writing,
does not provide support for additional optional audio formats. However,
licensee phones built on Symbian OS may provide support for additional
audio formats, particularly if they provide implementations of the full
Mobile Media API (JSR 135), such as found on the Series 60 Nokia 6600.

The MIDP 2.0 Media API is an audio-only building block subset of the
Mobile Media API that is fully upward compatible with the Mobile Media
API. The rationale behind providing only audio support in the Media API
was that the MIDP 2.0 specification is targeted at the whole spectrum of
mobile phones including mass-market low-end phones with no support
for video rendering capabilities. In contrast, the optional Mobile Media
API is targeted at high-end feature phones and PDAs with advanced
sound and video capabilities.

Since the Media API is a proper subset of the Mobile Media API we
shall leave a detailed discussion of programming tone generation and
audio playback to later in the chapter where a section is devoted to the
Mobile Media API.

3.3.9 Other New Features
3.3.9.1 MIDlet Class

MIDP 2.0 brings a couple of new methods into the MIDlet class including
the platformRequest() method:

public final boolean platformRequest(String URL)

This method allows the MIDlet to bring certain native applications
to the foreground and permits the user to interact with the context while
the MIDlet continues running in the background. Forms of the String
URL argument required by the MIDP 2.0 specification include:

platformRequest("www.symbian.com/mobile/MyMidlet.jad")

or:

platformRequest("tel:07940176427")

146 MIDP 2.0 AND THE JTWI

The former launches the installer to install the indicated MIDlet
suite. The latter launches the native phone application, if supported by
the device. If the platform cannot handle the specified URL request a
ConnectionNotFoundException will be thrown. Note that at the
time of writing platformRequest() was not supported on the current
firmware release (3.42.1) available on the Nokia 6600. Later versions of
the firmware will support this feature (see Known Issues in the Nokia
6600 MIDP 2.0 Implementation Version 1.2 at www.forum.nokia.com).

Another new method introduced in MIDP 2.0 is the checkPermis-
sion() method.

public final int checkPermission(String permission)

This allows the MIDlet to check the permission of a particular API,
passed in as the permission argument. For example, the code shown
below would check the permission to open an SMS connection.

checkPermission(“javax.microedition.io.Connector.sms”)

The return value can be:

• 1 – if the permission is Allowed

• 0 – if the permission is denied (including when the API is not supported
on the device)

• −1 – if the permission is unknown, including the case where the
permission requires user interaction.

3.3.9.2 Alpha Blending

MIDP 2.0 adds functionality to the Image and Graphics classes to
provide support for alpha blending. Alpha blending is a way of combining
a semi-transparent mask image with a background image to create a
blended image with the appearance of transparency. The degree of
transparency depends on the alpha coefficient. The alpha coefficient can
take a value ranging from 0, in which case the mask is totally transparent
and the blended image is simply the background image, to 1 (FF) in which
case the mask is completely opaque and therefore the blended image is
the same as the mask image.

In particular, MIDP 2.0 provides the createRGBImage() method of
the Image class, which allows an image to be created from an array of
ARGB values:

public static Image createRGBImage(int[] rgb, int width, int height,
boolean processAlpha)

MIDP 2.0 147

Figure 3.18 Illustrating the drawRGB() method.

The rgb argument represents the image data consisting of an array
of 32-bit values of the form 0xAARRGGBB. The high eight bits of each
32-bit value provide the value of the alpha coefficient and the remaining
24 bits represent the 8-bit RGB values. The alpha value is used in alpha
blending. The width and height arguments represent the width and
the height of the image in pixels. If the processAlpha argument is false,
alpha blending is disabled and the image will appear totally opaque.

MIDP 2.0 also adds the drawRGB() method to the Graphics class:

public void drawRGB(int[] rgbData, int offset, int scanlength,
int x, int y, int width, int height, boolean processAlpha)

The rgbData argument is presented in 0xAARRGGBB format, as
previously. The offset argument represents the array index of the first
value to be drawn and scanlength represents the relative offset in the
rgbData array between corresponding pixels in consecutive rows. For
instance, let us consider an array of 32 ARGB values representing an
image 8 pixels wide and 4 pixels high. However, we only want to render
pixels corresponding to a central strip of an image 4 pixels wide and 4
pixels high (see Figure 3.18).

In this case we would invoke the drawRGB()method with the offset
value set to 2 and the scanlength equal to 8. The values for width
and height are both equal to 4 in this case.

Let us now consider an example of alpha blending in action. The
AlphaCanvas class shown below uses alpha blending to progressively
render a semi-transparent red mask over a background image:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.io.*;
public class AlphaCanvas extends Canvas implements Runnable {

private Image backgroundImage;
private int[] maskArray;
private int imageWidth;
private int imageHeight;
private int x;
private int y;
private int maskHeight = 0;
public AlphaCanvas(String imageName) {

148 MIDP 2.0 AND THE JTWI

//create the background image
try {

backgroundImage = Image.createImage(imageName);
}catch(IOException ioe) {

ioe.printStackTrace() ;
}
imageWidth = backgroundImage.getWidth();
imageHeight = backgroundImage.getHeight();

//create a semi-transparent red mask to cover the
//background image
maskArray = new int[imageWidth*imageHeight];
for (int i = 0; i < imageWidth*imageHeight; i++) {

maskArray[i] = 0x80FF0000;
//alpha coefficient set to 0.5

}
x = (getWidth() – imageWidth)/2;
y = (getHeight() – imageHeight)/2;

}

public void paint(Graphics g) {
g.drawImage(backgroundImage, x, y,

Graphics.TOP|Graphics.LEFT);
//render the semi-transparent mask
if (maskHeight != 0){

g.drawRGB(maskArray, 0, imageWidth, x, y, imageWidth,
maskHeight, true);

}
}

public void run() {
for(int i = 1; i <= imageHeight; i++) {

maskHeight = i;
repaint();
try {

Thread.sleep(50);
}catch(InterruptedException ie) {}

}
}

}

A background image is created from a resource file in the Alpha-
Canvas constructor. We then create a data array containing a sufficient
number of values to completely mask the background image:

maskArray = new int[imageWidth*imageHeight];
for (int i = 0; i < imageWidth*imageHeight; i++) {

maskArray[i] = 0x80FF0000;
//alpha coefficient set to 0.5

}

In this case the alpha coefficient is set to 0.5 (0 × 80). The paint()
method first renders the background image and then the mask using the
drawRGB() method:

g.drawRGB(maskArray, 0, imageWidth, x, y, imageWidth, maskHeight,
true);

MIDP 2.0 149

Figure 3.19 Alpha blending on a Nokia 6600.

As we want to render over the full width of the background image,
the offset value is set to 0 and the scanlength is equal to the width
of the background image. By successively incrementing the mask height
and calling repaint() we are able to gradually cover the background
image with the transparency. Figure 3.19 displays screenshots of the
AlphaBlending MIDlet running on a Nokia 6600.

The full source code for the AlphaBlending MIDlet can be downloaded
from Symbian’s website at www.symbian.com/books.

3.3.9.3 RMS Storage

The Record Management System (RMS) storage mechanism was intro-
duced in Chapter 2. We will now investigate it in more detail. The RMS
provides simple record-based persistent storage, with data stored as a
record in the form of a byte array. The MIDP 1.0 specification required
that a record store created by a MIDlet can only be accessed by a different
MIDlet if both MIDlets belonged to the same MIDlet suite. The MIDP 2.0
specification has relaxed this restriction, allowing any MIDlet to access
another MIDlet’s record store provided that the MIDlet that created the
record store has given authorization.

To use the RMS, we must first open a record store using one of the
overloaded openRecordStore() methods:

public static RecordStore openRecordStore(String recordStoreName,
boolean createIfNecessary)

public static RecordStore openRecordStore(String recordStoreName,
boolean createIfNecessary, int authmode, boolean writable)

150 MIDP 2.0 AND THE JTWI

public static RecordStore openRecordStore(String recordStoreName,
String vendorName, String suiteName)

The last two methods were added by the MIDP 2.0 specification. The
second openRecordStore() method takes an authmode argument
that can have one of two possible public static final int values:
AUTHMODE_ANY and AUTHMODE_PRIVATE.
AUTHMODE_ANY allows the RecordStore to be accessed by any

MIDlet in any MIDlet suite while AUTHMODE_PRIVATE restricts access
only to MIDlets in the same suite as the creator of the RecordStore.
If writable is true, MIDlets in other suites that have been granted
access can write to this RecordStore.

The third openRecordstore() method is used to open a Re-
cordStore associated with the MIDlet suite that is identified by
the suiteName argument. If the RecordStore to be opened has
AUTHMODE_PRIVATE access then the vendorName and suiteName
arguments must match the respective attributes of the MIDlet suite as
listed in the application descriptor or manifest file.

We shall illustrate sharing record stores between MIDlet suites with
a simple example. The RMSWriter MIDlet creates an Image from
a resource file and displays it. It then saves the image data into a
recordstore. We shall then show how the image data can be retrieved
from the recordstore by a different MIDlet suite using the RMSReader
MIDlet example.

The source code for the RMSWriter class is listed below:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;
import java.io.*;
public class RMSWriter extends MIDlet implements

CommandListener {

private static final String IMAGE_NAME = "/image.png";
private static final int IMAGE_SIZE = 11222;

private Display display;
private Form form;

private Command exitCommand;
private Command startCommand;
private Command saveCommand;

private ImageCanvas imageCanvas;
private byte[] data;

public RMSWriter(){
data = loadImage(IMAGE_NAME, IMAGE_SIZE);
display = Display.getDisplay(this);
Image image = Image.createImage(data, 0, data.length);

MIDP 2.0 151

imageCanvas = new ImageCanvas(image);

form = new Form("RMS Writing Demo");
exitCommand = new Command("Exit", Command.EXIT, 2);
startCommand = new Command("Start", Command.SCREEN, 1);
saveCommand = new Command("Save image", Command.SCREEN, 1);
form.addCommand(exitCommand);
form.addCommand(startCommand);
form.setCommandListener(this);

}

public void startApp() {
display.setCurrent(form);

}

public byte[] loadImage(String imageName, int imageSize) {
byte[] data = new byte[imageSize];
try {

Class c = this.getClass() ;
InputStream is = c.getResourceAsStream(imageName);
DataInputStream dis = new DataInputStream(is);
dis.readFully(data);
is.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}
return data;

}

public int saveToStore(byte[] data) {
int recordID = 0;
try {

RecordStore store =
RecordStore.openRecordStore("ImageStore",
true, RecordStore.AUTHMODE_ANY, true);

recordID = store.addRecord(data, 0, data.length);
store.closeRecordStore();

}catch(RecordStoreException rse) {
rse.printStackTrace();

}
return recordID;

}

public void commandAction(Command c, Displayable d) {
if (c == exitCommand) {

notifyDestroyed();
}else if (c == startCommand) {

display.setCurrent(imageCanvas);
imageCanvas.addCommand(saveCommand);
imageCanvas.setCommandListener(this);

}else if (c == saveCommand) {
int recordID = saveToStore(data);
imageCanvas.removeCommand(saveCommand);
display.setCurrent(form);
form.append(new StringItem(null, "Image saved as record "

+ recordID));
}

}

152 MIDP 2.0 AND THE JTWI

public void pauseApp() {}
public void destroyApp(boolean unconditional) {}

}

The image is loaded from the resources in the loadImage() method.
This opens an input stream using the getResourceAsStream()
method and stores the data in a byte array. This byte array is used
to create the Image using one of the overloaded static createImage()
methods. The image is then displayed in a Canvas. When the user selects
the ”Save image” option, the image data is saved into the record store by
the saveToStore() method listed below:

public int saveToStore(byte[] data) {
int recordID = 0;
try {

RecordStore store = RecordStore.openRecordStore("ImageStore",
true, RecordStore.AUTHMODE_ANY, true);

recordID = store.addRecord(data, 0, data.length);
store.closeRecordStore();

}catch(RecordStoreException rse) {
rse.printStackTrace();

}
return recordID;

}

A RecordStore is opened with AUTHMODE_ANY permission. The
data is saved to the RecordStore using the addRecord() method,
which creates a new record and returns an integer identifying that record
within the recordstore. The RecordStore is then closed using the
closeRecordStore() method.

Figure 3.20 shows the RMSWriter MIDlet running on a Nokia 6600.

Figure 3.20 The RMSWriter MIDlet running on the Nokia 6600.

MIDP 2.0 153

Now that we have created a RecordStore, we shall show how this
can be accessed from a different MIDlet suite using the RMSReader
MIDlet. The source code for the RMSReader class is listed below.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;
import java.io.*;
public class RMSReader extends MIDlet implements CommandListener {

private Display display;
private Form form;
private Command exitCommand;
private Command startCommand;
private Command backCommand;
private TextField storeName;
private TextField recordNo;
private ImageCanvas imageCanvas;

public RMSReader() {
display = Display.getDisplay(this);
form = new Form("RMS Reading Demo");
exitCommand = new Command("Exit", Command.EXIT, 2);
startCommand = new Command("Load image", Command.SCREEN, 1);
backCommand = new Command("Back", Command.BACK, 1);
storeName = new TextField("Enter recordstore name",

"ImageStore", 100, TextField.ANY);
recordNo = new TextField("Enter record ID", "1", 10,

TextField.NUMERIC);
form.addCommand(exitCommand);
form.addCommand(startCommand);
form.append(storeName);
form.append(recordNo);
form.setCommandListener(this);

}
public void startApp() {

display.setCurrent(form);
}

public byte[] loadFromStore(String storeName, int recordID) {
byte[] data = null;

try {
RecordStore store =

RecordStore.openRecordStore(storeName, false);
data = store.getRecord(recordID);
store.closeRecordStore();

}catch(RecordStoreException rse) {
rse.printStackTrace();

}
return data;

}
public Image constructImage() {

Integer tempRecordID = Integer.valueOf(recordNo.getString());
int recordID = tempRecordID.intValue();
byte[] data = loadFromStore(storeName.getString(), recordID);
Image image = null;
if (data != null) {

154 MIDP 2.0 AND THE JTWI

image = Image.createImage(data, 0, data.length);
}
return image;

}
public void commandAction(Command c, Displayable d) {

if (c == exitCommand) {
notifyDestroyed();

}else if (c == startCommand) {
Image image = constructImage();
if (image != null) {

imageCanvas = new ImageCanvas(image);
display.setCurrent(imageCanvas);
imageCanvas.addCommand(backCommand);
imageCanvas.setCommandListener(this);

}else {
Alert alert = new Alert("Application error",

"Unable to create image.", null,
AlertType.ERROR);

display.setCurrent(alert);
}

}else if (c == backCommand) {
imageCanvas.removeCommand(backCommand);
display.setCurrent(form);

}
}
public void pauseApp() {}
public void destroyApp(boolean unconditional) {}

}

The image data is loaded from the RecordStore by the loadFrom-
Store() method:

public byte[] loadFromStore(String storeName, int recordID) {
byte[] data = null;
try {

RecordStore store = RecordStore.openRecordStore(storeName,
false);

data = store.getRecord(recordID);
store.closeRecordStore();

}catch(RecordStoreException rse) {
rse.printStackTrace();

}
return data;

}

The RecordStore is opened and then the record is retrieved in the
form of a byte array by the getRecord() method, using the record
identifier. The RecordStore is then closed. The image data in the form
of the byte array can then be used to create an Image and display it as
before. Figure 3.21 shows the RMSReader MIDlet.

The full source code and JAR and JAD files for the RMSWriter and
RMSReader MIDlets can be downloaded from the Symbian website at
www.symbian.com/books.

OPTIONAL J2ME APIS IN THE JTWI 155

Figure 3.21 RMSReader MIDlet running on a Nokia 6600.

The underlying operating system is responsible for maintaining the
integrity of record stores throughout the normal use of the platform, how-
ever, the RMS store provides no support for locking records accessed
by multiple threads; this is the responsibility of the developer. However,
the javax.microedition.rms package does provide a RecordLis-
tener interface to assist the developer in synchronizing access to records.
Since record IDs are lost when the MIDlet that created the records shuts
down, the developer has to provide some process for searching through
records and selecting the required one. Thejavax.microedition.rms
package provides the RecordComparator, RecordEnumerator and
RecordFilter interfaces to assist this process.

For more information on using the RMS APIs, consult the MIDP
documentation. Further examples of using the RMS are presented in the
case studies discussed in Chapter 5.

3.4 Optional J2ME APIs in the JTWI

In this section we consider the optional J2ME APIs that are indicated for a
JTWI-compliant device. Note that these APIs do not themselves form part
of the MIDP 2.0 specification, but have their own specifications derived
from a Java Specification Request (JSR) presided over by an expert group.

3.4.1 Mobile Media API

As discussed in Chapter 2, one of the most commonly-cited limitations
of MIDP 1.0 since it was launched in 2000 has been the level of support
it provides for multimedia functionality. ‘‘Out of the box’’ there is no
audio capability and limited graphics support only through the Canvas

156 MIDP 2.0 AND THE JTWI

primitive. This was reasonable for the mainly monochrome devices with
more limited capabilities at which MIDP was targeted, such as the
pioneering Motorola i3000 phone and RIM BlackBerry 950 and 957
wireless handhelds. Given these limitations, it is perhaps remarkable how
much media-rich content has yet made its way onto the first generation
of MIDP 1.0-enabled mobile phones.

However, Symbian OS devices like the Psion netBook and the Nokia
9210 were already providing a PersonalJava Application Environment
with AWT graphics, audio playback support and color screens. MIDP 1.0
was not sufficiently attractive to present itself as an alternative Java runtime
environment for Symbian OS phones. It is interesting to note here that no
Symbian OS phone has shipped without the MIDP 1.0 Java functionality
being complemented either directly by additional multimedia functional-
ity or else by inclusion of a PersonalJava Application Environment. Even
the Nokia 7650, which provided one of the least feature-rich Java runtime
environments among Symbian OS phones, extended the basic MIDP 1.0
specification with custom Nokia extension classes. A sound package
allowed playing of several audio formats and a UI package provided API
support for such multimedia enhancements as:

• full-screen display

• vibrator activation

• a number of graphics utilities.

And when the Nokia 3650 was released a few months later, the main
enhancement to the programming environment it provided was in terms
of MIDP multimedia functionality.

The limitations of MIDP have been systematically addressed over the
last few years through the Java Community Process. From this have
emerged a number of extensions that have been made to, or made
available to, MIDP runtimes.

We note first in this regard the extensions made directly to MIDP 1.0
in its upgrade to MIDP 2.0, which have been discussed in Chapter 2 and
Section 3.3. This upgrade included, for the first time, an audio API under
the javax.microedition.media package. However, in recognition
of the need for a J2ME-based framework supporting wider multimedia
capabilities, such as tone generation, photo capture (given the ubiquity
of camera phones) and video playback/capture, a Java Specification
Request was initiated by Nokia under the Java Community Process. This
was JSR 135, the Mobile Media API, which is the main subject of the
present section. We shall follow here the convention introduced in the
specification of referring to it as ‘‘MMAPI’’.

Given the wide scope that is encompassed by the concept of ‘‘multi-
media’’, both in terms of the kind of content (e.g. video and audio) and

OPTIONAL J2ME APIS IN THE JTWI 157

of its encoding (e.g. JPEG and GIF), the authors of the multimedia API
recognized a need for flexibility. As a result, MMAPI is highly modular;
also, where a module is supported in an implementation there is a great
degree of latitude as to which protocols or file formats are supported.

There are essentially three media types which can be handled within
the framework. These are:

• audio

• video

• generated tones.

All of these or any non-zero subset may be supported in a particular
MMAPI implementation, although it is unlikely that generated tones
would be omitted given their mandatory status in MIDP 2.0. There is
further modularity: three tasks can be performed in relation to audio
and video:

• playing – stored video or audio content is recovered from a file at a
specified URI (or perhaps stored locally) and displayed onscreen or
sent to a speaker

• capturing – a video or audio stream is obtained directly from hardware
(camera or microphone) associated with the device

• recording – video or audio content which is being played or captured
is sent to a specified URI or else cached as a local OutputStream
and is thus made available for ‘‘re-playing’’.

Because of the nature of tone generation, playing is the only task of
relevance. Again, implementations are not required to support all three
tasks, although clearly it is not possible to support recording without
supporting either playing or capturing. Further, in the context of a mobile
phone, there is little point in supporting capture without the ability to
play. So the practical options for audio or video are:

• only playing is supported

• playing and capturing are supported, but not recording

• playing and recording are supported, but not capturing

• all three are supported.

As we shall see, Symbian OS phones typically provide the second
option for video (recording not possible) and the fourth for audio (every-
thing supported). There is further optionality in terms of supported formats

158 MIDP 2.0 AND THE JTWI

and the ability to manipulate data streams or playback. We will return to
this below.

3.4.1.1 MMAPI Architecture

At the heart of MMAPI is the concept of a media player. Players are
obtained from a factory or manager which also serves to associate them
with a particular media stream. While the player allows basic start/stop
capability for the playback, fine-grained manipulation is achieved through
various kinds of control, which are typically obtained from a player.
Another task performed by controls is the recording of incoming media
for later playback. Also of interest is the concept of a player listener.
This allows you to track conveniently on multiple threads the progress of
players being initialized, started or stopped. Since these events involve
accessing (shared) hardware resources, they can take some time to com-
plete, so you will typically not want your program to block while waiting.

The following classes or interfaces embody the above basic concepts:

• Player

• Manager

• Control

• PlayerListener.

These are the fundamental elements of the core package javax.micro-
edition.media. In fact, of these only Manager is a concrete class; the
others are all interfaces. The Control interface exists merely as a marker
for the set of (more concrete) subinterfaces which are defined in the related
package javax.microedition.media.control. The functionality
provided by the latter is so diverse that nothing is in common, and the
Control interface, remarkably, defines no methods!

The package javax.microedition.media.protocol is pro-
vided by MMAPI for users who wish to define new protocols for
obtaining/downloading media content. This package provides data source
functionality, introducing a common interface for handling content deliv-
ered by whatever protocol. Most MMAPI users will not have to work
directly with data sources. Rather, DataSource objects will be mar-
shaled on their behalf as a by-product of creating a player. But MMAPI
does allow you the flexibility to define your own protocols for down-
loading/obtaining the media content to be played. This involves defining
concrete implementations of the abstract DataSource class. As this is a
specialist topic beyond the scope of this chapter, we shall not say anything
further. The MMAPI specification document contains further details.

OPTIONAL J2ME APIS IN THE JTWI 159

Player Control

<<Interface>>

Controllable

getControl()

Manager

createPlayer(source: DataSource):Player

DataSource

creates

gets control

Figure 3.22 The basic architecture of the Mobile Media API.

3.4.1.2 Obtaining Media Content

The elements of the Mobile Media API work together as shown in
Figure 3.22 (the PlayerListener has been omitted and we shall
return to it in Section 3.4.1.3).

A Player is typically created using the following factory method
of the javax.microedition.media.Manager class:

public static Player createPlayer(String locator)

The method’s argument is a media locator, a String representing a
URI that provides details about the media content being obtained. The
details are specified using the well-documented BNF syntax (Augmented
Backus–Naur Format). We’ll look at some practical examples below.

In the context of MMAPI on Symbian OS, the only such communication
protocol supported is HTTP (http://) but MMAPI also introduces a
number of other protocol options, in particular:

• capture://
This is used, as the name suggests, to capture live media from hard-
ware such as an onboard camera (capture://video), microphone
(capture://audio) or radio (capture://radio).

• device://
This allows players to be configured for tone sequences (device://
tone) or MIDI data (device://midi). These are defined as static

160 MIDP 2.0 AND THE JTWI

Stringmembers of the Manager class, denoted by TONE_DEVICE_
LOCATOR and MIDI_DEVICE_LOCATOR. The latter is not currently
supported on Symbian OS phones.

• rtp://
The Real Time Protocol (RTP) allows for streaming media: playback
begins without having to wait for all the media content to be down-
loaded/buffered. This is not currently supported for any media type in
the context of Symbian OS.

In summary, the following set of media locator formats are currently
supported on (at least some) Symbian OS phones:

• capture://audio

• capture://video

• device://midi

• device://tone

• http://

Specifying a URI is not the only way to create a Player. A second
variant of the Manager.createPlayer() method takes as arguments
an InputStream and a String representing a MIME type:

public static Player createPlayer(InputStream stream, String type)

This would be used, for example, to read a byte stream from the record
management system (RMS) as follows:

RecordStore rs;
int recordID;

... // code to set up the recordstore.
try {

InputStream is = new
ByteArrayInputStream(rs.getRecord(recordID));

Player p = Manager.createPlayer(is, "audio/X-wav");
p.start();

} catch (IOException ioe) {
} catch (MediaException me) { }

A final variant of the Manager.createPlayer() method takes as
argument a custom data source deriving from the abstract DataSource
class and is used to handle proprietary or application-defined protocols:

Player p = Manager.createPlayer(customDataSource);

OPTIONAL J2ME APIS IN THE JTWI 161

Note that all variants of createPlayer throw a MediaException
if it is not possible to create a player of the correct type (perhaps due to
that media type being unsupported). They also throw an IOException
if there is a problem connecting to or reading from the source or stream.

We note in passing that an IOException would be expected to
occur, if at all, only in the process of connecting to a DataSource,
rather than in instantiating it. The connection is performed explicitly in
client code only in the case of a custom DataSource, before it is passed
as an argument to the createPlayer() method.

3.4.1.3 Playing Media Content

Because of the complexity of what a Player does, there are necessarily
several stages (or states) it has to go through before it can do its playing.
As we have just seen, the first stage is the creation of a Player object
via the Manager factory class.

This involves the creation of a DataSource object, which provides
a standard interface to the media content. The content is ultimately
presented as a SourceStream, although this detail will not affect you
unless you are designing a custom DataSource. The DataSource
is created implicitly on your behalf when you instantiate the Player.
However, if you are working with a custom DataSource, you will
instantiate your DataSource explicitly.

Creating the Player object does not initialize the data transfer,
which begins at the next stage. On creation, the Player will be in
the UNREALIZED state. Its subsequent lifecycle is described in the state
diagram in Figure 3.23.

Calling the realize() method causes the Player to initiate data
transfer, e.g. communicating with a server or a file system. Peer classes
to marshal the data on the native side will typically be instantiated at
this point. When this method returns, the player is in the REALIZED
state. Calling prefetch() causes the Player to acquire the scarce
and exclusive resources it needs to play the media, such as access to
the phone’s audio device. It may have to wait for another application
to release these resources before it can move to the PREFETCHED state.
Once in this state, the Player is ready to start. A call to its start()
method initiates playing and moves it on to the STARTED state. In order
to interrogate the state of the Player the getState() method of the
Player class is provided.

In many cases, of course, clients of MMAPI will not be interested in
the fine distinctions of which resources are acquired by which methods.
The good news is that you are free to ignore them if you wish: a call
to start() on a Player in any state other than CLOSED will result
in any intermediate calls needed to realize() or prefetch() being
made implicitly on your behalf. Of course, the price you pay will be less
fine-grained control of exception handling.

162 MIDP 2.0 AND THE JTWI

UNREALIZED

REALIZED

PREFETCHED

STARTED

CLOSED

close()

deallocate()

stop()

realize()

prefetch()

start()

close()

close()

close()

Figure 3.23 Lifecycle of a Player object.

The matching methods to stop the Player are close(), deal-
locate() and stop(). As with the start() method, the close()
method encompasses the other two, so they need not be invoked on
a Player directly. You should be aware, however, that reaching the
end of the media results in the Player returning to the PREFETCHED
state, as though the stop() method had been called. The good thing
about this is that you can then conveniently replay the media by calling
start() again.

However, you must ultimately call the close() method explicitly to
recover all the resources associated with ‘‘realization’’ and ‘‘prefetching’’
and to set to null all references to your Player so the garbage collector
can dispose of it. (You do want to dispose of it, since a closed Player
cannot be reused!)

In playing media content it is often useful to work with one or more
Control objects. These allow you to control media processing and are
obtained from an implementer of the Controllable interface, in most
cases a Player, using one of the following methods:

Control getControl(String controlType);
Control[] getControls();

DataSource also implements Controllable, thus providing cus-
tom DataSources with the flexibility to make available new ways to

OPTIONAL J2ME APIS IN THE JTWI 163

control playback. This approach to adding controls is necessary as there
is no application-level API for making the availability of new controls
known to the system-defined Players.

A media player of a given type may support a variety of Controls.
The String passed in determines the name of the interface implemented
by the Control returned, which will typically be one of the pre-defined
types in the javax.microedition.media.control subpackage:

• FramePositioningControl

• GUIControl

• MetaDataControl

• MIDIControl

• PitchControl

• RateControl

• TempoControl

• RecordControl

• StopTimeControl

• ToneControl

• VideoControl

• VolumeControl.

If the type of Control you want is not available you will be returned a
null value (which you should always check for!). You will also need to
cast the Control appropriately before using it:

VolumeControl volC = (VolumeControl)
player.getControl(“VolumeControl”);

if (volC != null)
volC.setVolume(50);

Of these 12 controls, only the last five are currently supported on
Symbian OS phones. The availability of support for the others depends
on a number of factors, such as the media type and the phone model.
Only ToneControl and Volumecontrol are available as part of the
MIDP 2.0 audio subset. The remainder are specific to MMAPI.

An alternative approach to controls is the getControls() method,
which returns an array containing all available controls. You can then use
instanceof to ascertain whether the Control you want is available:

Control[] controls = player.getControls();
for (int i = 0; i < controls.length; i++)
{

164 MIDP 2.0 AND THE JTWI

if (controls[i] instanceof VolumeControl) {
VolumeControl volC = (VolumeControl) controls[i]
volC.setVolume(50);

}
if (controls[i] instanceof VideoControl) {

VideoControl vidC = (VideoControl) controls[i]
vidC.setDisplayFullScreen(true);

}
}
// allow controls to be garbage collected
controls = null;

Note that getControl() and getControls() cannot be invoked
on a Player in the UNREALIZED or CLOSED states; doing so will cause
an IllegalStateException to be thrown.

Aside from the use of Players, there is a further option to play simple
tones or tone sequences directly using the static Manager.playTone()
method. However, you will normally want the additional flexibility
provided by working with a Player (configured for tones) and a
ToneControl (see Section 3.4.1.7).

The final topic for this brief introduction to the Mobile Media API is the
PlayerListener interface. This provides a playerUpdate()method
for receiving asynchronous events from a Player. Any user-defined class
may implement this interface and then register the PlayerListener
using the addPlayerListener() method. The PlayerListener
listens for a range of standard pre-defined events including STARTED,
STOPPED and END_OF_MEDIA, with obvious meanings. For a listing of
all the standard events refer to the MMAPI specification.

3.4.1.4 Working with Audio

In this section we shall demonstrate how to play audio files. We shall
illustrate the section with code from a simple Audio Player MIDlet (see
Figure 3.24).

Figure 3.24 The Audio Player MIDlet running on a Nokia Series 60 phone.

OPTIONAL J2ME APIS IN THE JTWI 165

javax.microedition.lcdui.Form

javax.microedition.media.control.VolumeControl

javax.microedition.media.Player

InitialView

PlayerView

MIDletController AudioPlayer

Figure 3.25 UML class diagram of the Audio Player MIDlet.

The Audio Player MIDlet consists of four classes: a controller, MIDlet-
Controller; two views, InitialView and PlayerView; and the
player, AudioPlayer. We shall look in detail only at the controller
and the player, which contain all the information of interest from the
viewpoint of MMAPI. A UML class diagram of the Audio Player MIDlet
is shown in Figure 3.25.

The AudioPlayer Class
The AudioPlayer class performs the actual playing of the audio file
and we shall consider it first. The key signatures are shown below:

import javax.microedition.media.*;
import javax.microedition.media.control.*;
import java.io.*;
// Encapsulates the audio Player
public class AudioPlayer implements Runnable {

private MIDletController controller;
private Player player;
private VolumeControl volumeControl;
private String url;

public AudioPlayer(MIDletController controller){...}

public void initializeAudio(String url){...}

public void run(){...}

166 MIDP 2.0 AND THE JTWI

public void startPlayer(){...}

public void stopPlayer(){...}

public void closePlayer(){...}

}

We shall first look at the constructor.

public AudioPlayer(MIDletController controller){
this.controller = controller;

}

This simply takes a reference to the MIDletController object,
allowing the AudioPlayer to make callbacks to the controller.

We initialize the Player in a separate thread launched from the
initializeAudio() method shown below. Generally it is good prac-
tice to put the (potentially time-consuming) initialization into a separate
thread, performing it in the background to reduce latency.

public void initializeAudio(String url){
this.url = url;
Thread initializer = new Thread(this);
initializer.start();

}

Another reason for performing the initialization in a separate thread
is so that it is possible to update a progress gauge, giving the user
valuable feedback as to how the audio acquisition is proceeding. The
actual initialization takes place in the run() method mandated by the
Runnable Interface.

public void run(){
try {

player = Manager.createPlayer(url);
controller.updateProgressGauge();
player.addPlayerListener(controller);
player.realize();
controller.updateProgressGauge();
player.prefetch();
controller.updateProgressGauge();
volumeControl =

(VolumeControl)player.getControl("VolumeControl");
if (volumeControl != null) {

volumeControl.setLevel(50);
}
else {

controller.removeVolumeControl();
}

OPTIONAL J2ME APIS IN THE JTWI 167

startPlayer();

} catch (IOException ioe) {
controller.showAlert("Unable to connect to resource",

ioe.getMessage());
closePlayer();

} catch (MediaException me) {
controller.showAlert("Unable to create player",

me.getMessage());
closePlayer();

}
}

A Player is created and a PlayerListener registered with it. The
controller reference serves two purposes: first to facilitate callbacks
to the UI indicating the progress of the initialization; and, secondly,
to act as the PlayerListener which will be notified of Player
events. The Player is then moved through its states. In this example,
we obtain a VolumeControl (providing the implementation supports
this feature) although it is not essential for simple audio playback.
Intuitively, a VolumeControl provides control over the audio playback
volume, including a mute option. The volume range provided by a
VolumeControl ranges from 0–100. Here we set the volume level
midway. We then start the Player.

Our AudioPlayer class also contains some simple service methods.
The startPlayer() method is used to start or re-start an initialized
audio player.

public void replay(){
try{

player.start();
} catch (MediaException me) {

controller.showAlert("MediaException thrown",
me.getMessage());

}
}

The setVolume() method is used to change the volume level of the
audio playback via the VolumeControl:

public void setVolume(int level){
if (volumeControl != null) {

volumeControl.setLevel(level);
}

}

The closePlayer()method is called to release all resources associ-
ated with the audio Player by means of a call to close(). Additionally,

168 MIDP 2.0 AND THE JTWI

the closePlayer() method sets to null the references to the Player
and VideoControl instances to facilitate garbage collection.

public void closePlayer(){
if (player != null){

player.close();
}
player = null;
volumeControl = null;

}

The MIDletController Class
The MIDletController sets up the instances of InitialView and
PlayerView (see Figure 3.24). The InitialView instance provides
a TextField for the audio file URL and a Gauge to indicate the
progress of the audio player initialization, as well as controls to start
playback or exit the application. The PlayerView instance provides
a status StringItem and an interactive volume indicator (providing
the implementation supports a VolumeControl), allowing the user to
adjust the playback volume, plus controls to close the player or replay the
audio content. The MIDletController constructs the AudioPlayer
instance in response to user commands from the InitialView. The
MIDletController receives callbacks from the AudioPlayer, via
the playerUpdate() method of PlayerListener, and updates the
InitialView progress gauge as the player moves through its initializa-
tion states. The MIDletController also receives callbacks from the
PlayerView via the ItemStateChanged() method of ItemLis-
tener when the user adjusts the volume slider and passes these calls
to the AudioPlayer. The key signatures of the MIDletController
class are shown below:

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.media.*;
import javax.microedition.media.control.*;
public class MIDletController extends MIDlet implements

CommandListener, PlayerListener, ItemStateListener {
private Display display;
private Command exitCommand, playCommand, backCommand,

replayCommand;
private InitialView initialView;
private PlayerView playerView;
private AudioPlayer audioPlayer;

public MIDletController() {...}

public void startApp(){...}

public void pauseApp(){...}

public void destroyApp(boolean unconditional){...}

OPTIONAL J2ME APIS IN THE JTWI 169

public void commandAction(Command c, Displayable s){...}

public void playerUpdate(Player p, String event,
Object eventData) {...}

public void itemStateChanged(Item item){...}

public void updateProgressGauge(){...}

public void removeVolumeControl() {...}

public void showAlert(String title, String message){...}

public void releaseResources() {...}
}

Let’s first consider the MIDletController constructor:

public MIDletController() {
display = Display.getDisplay(this);
initialView = new InitialView(this);
exitCommand = new Command("Exit", Command.EXIT, 2);
playCommand = new Command("Play", Command.SCREEN, 1);
initialView.addCommand(exitCommand);
playerView = new PlayerView(this);
audioPlayer = new AudioPlayer(this);

}

The constructor creates instances of the main UI classes InitialView
and PlayerView plus their associated Commands. It also creates the
AudioPlayer instance which encapsulates the audio Player.

Now let’s look at the MIDlet lifecycle methods. The startApp()
method sets InitialView as the current screen and adds the ‘‘Play’’
Command to it:

public void startApp(){
display.setCurrent(initialView);
initialView.addCommand(playCommand);

}

This latter measure is to ensure that the user can continue to use
the application after resuming from the PAUSED state. If the Ini-
tialView already has a playCommand associated with it then add-
Command(playCommand) does nothing.

The pauseApp() method releases all resources associated with the
audio Player and removes the progress gauge (if any) from the Ini-
tialView:

public void pauseApp(){
releaseResources();

170 MIDP 2.0 AND THE JTWI

initialView.removeProgressGauge();
}

Again, this latter step is to ensure the MIDlet resumes from a pause in
the correct state.

The destroyApp() method simply releases all resources associated
with the audio Player:

public void destroyApp(boolean unconditional){
releaseResources();

}

Now let’s look at the commandAction() method mandated by the
CommandListener interface:

public void commandAction(Command c, Displayable s){

if(c == playCommand){
initialView.removeCommand(playCommand);
initialView.addProgressGauge();
audioPlayer.initializePlayer(initialView.getURL());

}
else if(c == replayCommand){

playerView.removeCommand(replayCommand);
audioPlayer.startPlayer();

}
else if(c == backCommand){

releaseResources();
initialView.removeProgressGauge();
display.setCurrent(initialView);
initialView.addCommand(playCommand);
playerView.removeCommand(replayCommand);

}
else if(c == exitCommand){

releaseResources();
notifyDestroyed();

}
}

When the user selects the ‘‘Play’’ Command, the initial-
izePlayer() method is called with the URL of the audio content
(obtained from the InitialView) as an argument. In addition, a progress
gauge is added to the InitialView to give visual feedback to the
user as to how the audio acquisition is progressing. The ‘‘Play’’ Com-
mand is removed from the InitialView to avoid multiple Players
being created.

The ‘‘Re-play’’ Command is used to replay a given audio file (for
which a Player has already been created) once its end of media has
been reached.

The ‘‘Back’’ Command allows the user to abandon the current Player
session and return to the InitialView, either to play a different audio
file, or quit the application.

OPTIONAL J2ME APIS IN THE JTWI 171

Finally, when the user selects the ‘‘Exit’’ Command the MIDlet releases
all resources associatedwith thePlayerandcallsnotifyDestroyed()
to indicate to the AMS that it has moved into the DESTROYED state and
can be reclaimed.

Now let us consider the playerUpdate() method mandated by the
PlayerListener interface:

public void playerUpdate(Player p, String event, Object eventData) {
if (event == PlayerListener.STARTED) {

playerView.setStatus("Player started!");
if(backCommand == null){

backCommand = new Command("Back", Command.BACK, 1);
playerView.addCommand(backCommand);

}
display.setCurrent(playerView);

}

//add "Replay" option when audio playback is finished
else if (event == PlayerListener.END_OF_MEDIA){

playerView.setStatus("End of Media, select 'Re-play' or 'Back'");
if (replayCommand == null){

replayCommand = new Command("Re-play", Command.SCREEN, 1);
}
playerView.addCommand(replayCommand);

}

else if (event == PlayerListener.VOLUME_CHANGED) {
VolumeControl volumeControl = (VolumeControl)eventData;
int currentLevel = volumeControl.getLevel();
if (playerView.getVolumeLevel() != currentLevel) {

playerView.setVolumeIndicator(currentLevel);
}

}
}

In this example, three types of PlayerListener event are processed:
STARTED, END_OF_MEDIA and VOLUME_CHANGED. A STARTED event
is broadcast in response to the Player starting. The PlayerView is
made the current view, the ‘‘Back’’ Command is added to it and the status
of PlayerView is set appropriately.

An END_OF_MEDIA event is generated when the Player reaches
the end of the audio file. The ‘‘Re-play’’ Command is added to the
PlayerView and the status set accordingly.

A VOLUME_CHANGED event is posted when the volume is changed
using the VolumeControl. The eventData object is cast to a Vol-
umeControl and used to get the current volume setting. The volume
indicator Gauge owned by the PlayerView is adjusted accordingly,
ensuring it correctly reflects the volume level of the VolumeControl.

The ItemStateChanged()method (listed below) is mandated by the
ItemStateListener and listens for requests by the user to change the
volume level via the interactive volume indicator Gauge of PlayerView.

172 MIDP 2.0 AND THE JTWI

public void itemStateChanged(Item item){
if (item instanceof Gauge){

Gauge volumeIndicator = (Gauge)item;
int level = volumeIndicator.getValue();
audioPlayer.setVolume(level);

}
}

The itemStateChanged() method obtains the value requested by
the user and invokes the setVolume() method to adjust the audio
playback volume via the Player’s VolumeControl.

The showAlert()method (see below) is called by the AudioPlayer
instance in the event of an Exception being thrown at any stage of the
Player lifecycle.

public void showAlert(String title, String message){
Alert alert = new Alert(title, message, null, AlertType.ERROR);
display.setCurrent(alert, initialView);
initialView.removeProgressGauge();
initialView.addCommand(playCommand);

}

After displaying an error Alert, the current Displayable is set to
the InitialView allowing the user to try either the same URL again or
a different URL.

The MIDletController class also provides a couple of callback
methods: updateProgressGauge and removeVolumeControl. The
first updates the InitialView progress gauge as the Player progresses
through its lifecycle. The second removes the interactive volume indicator
Gauge from the PlayerView in the event that the implementation of
Player does not support a VolumeControl.

The full source code and JAR and JAD files for the Audio Player
MIDlet can be downloaded from the Symbian website at www.symbian.
com/books.

3.4.1.5 Working with Video

We shall now illustrate how to play a video with code highlights taken
from a simple Video Player MIDlet (see Figure 3.26).

The architecture of the Video Player MIDlet (see Figure 3.27) is very
similar to that of the Audio Player.

The MIDlet contains four classes: MIDletController,
InitialView, VideoPlayer and VideoCanvas. The VideoCan-
vas is used for rendering the video playback as well as providing
controls similar to those found in the PlayerView of the Audio Player
MIDlet. The other classes fulfill very similar roles to their equivalents in
the Audio Player MIDlet.

OPTIONAL J2ME APIS IN THE JTWI 173

Figure 3.26 The Video Player MIDlet running on a Nokia Series 60 phone.

javax.microedition.lcdui.Form

InitialView

MIDletController VideoPlayer javax.microedition.media.control.VideoControl

javax.microedition.lcdui.Canvas

javax.microedition.media.Player

VideoCanvas

Figure 3.27 UML class diagram of the Video Player MIDlet.

The VideoPlayer Class
Let’s first take a look at the key methods of the VideoPlayer class:

import javax.microedition.media.*;
import javax.microedition.media.control.*;
import java.io.*;
// Acquires the video content and renders it
public class VideoPlayer implements Runnable {

private final static String THREE_GPP = "3gp";
private final static String MPEG = "mpg";

174 MIDP 2.0 AND THE JTWI

private final static String MIME_3GPP = "video/3gpp";
private final static String MIME_MPEG = "video/mpeg";

private MIDletController controller;
private VideoCanvas canvas;
private Player player;
private VideoControl videoControl;
private String resource;
private String mimeType = THREE_GPP;
private Thread initializer;

public VideoPlayer(MIDletController controller,
VideoCanvas canvas){...}

public void initializeVideo(String resource){...}

public void run(){...}

public void startPlayer(){...}

public void stopPlayer(){...}

public void closePlayer(){...}
}

The constructor is shown below.

public VideoPlayer(MIDletController controller, VideoCanvas canvas){
this.controller = controller;
this.canvas = canvas;

}

It simply initializes the controller and canvas attributes with refer-
ences to the MIDletController and the VideoCanvas respectively.

One difference between the Video Player and Audio Player MIDlets
is that the Video Player obtains its content from resource files packaged
in the MIDlet suite JAR file, rather than from a remote resource. The
initializeVideo() method takes the name of the video file as
a parameter.

public void initializeVideo(String resource){
this.resource = resource;
String fileExt =

resource.substring(resource.lastIndexOf('.') + 1);
if(fileExt.equals(THREE_GPP)) {

mimeType = MIME_3GPP;
}
else if(fileExt.equals(MPEG)) {

mimeType = MIME_MPEG;
}
initializer = new Thread(this);
initializer.start();

}

OPTIONAL J2ME APIS IN THE JTWI 175

The resource file name is tested to ascertain its format (MPEG for the
Sun’s J2ME Wireless Toolkit 2.0 emulator and 3GPP for real phones) and
the appropriate MIME type set. A new thread is then launched to perform
the essential initialization required to play the video content.

The run() method, mandated by the Runnable interface, contains
the initialization of the Player.

public void run(){
try {

InputStream in = getClass().getResourceAsStream("/"
+ resource);

player = Manager.createPlayer(in, mimeType);
player.addPlayerListener(controller);
player.realize();
player.prefetch();
videoControl =

(VideoControl)player.getControl("VideoControl");
if (videoControl != null) {

videoControl.initDisplayMode(
videoControl.USE_DIRECT_VIDEO, canvas);

int cHeight = canvas.getHeight();
int cWidth = canvas.getWidth();
videoControl.setDisplaySize(cWidth, cHeight);
videoControl.setVisible(true);
startPlayer();

}
else{

controller.showAlert("Error!",
"Unable to get Video Control");

closePlayer();
}

} catch (IOException ioe) {
controller.showAlert("Unable to access resource",

ioe.getMessage());
closePlayer();

} catch (MediaException me) {
controller.showAlert("Unable to create player",

me.getMessage());
closePlayer();

}
}

An InputStream is obtained from the resource file and used to
create the Player instance. A PlayerListener (the controller) is
registered with the Player in order to receive callbacks. The prefetch
and realize() methods are then called on the Player instance.

Once the player is in the PREFETCHED state we are ready to render
the video content. First we must obtain a VideoControl by calling
getControl on the Player, and casting it down appropriately. Note
that the MMAPI specification requires that a player for video media
must support a VideoControl, unlike the case of a player for audio
content, where support for VolumeControl is only a recommended
practice.

176 MIDP 2.0 AND THE JTWI

The initDisplayMode() method is used to initialize the video
mode that determines how the video is displayed. This method takes
an integer mode value as its first argument with one of two predefined
values: USE_GUI_PRIMITIVE or USE_DIRECT_VIDEO. In the case of
MIDP implementations (supporting the LCDUI), USE_GUI_PRIMITIVE
will result in an instance of a javax.microedition.lcdui.Item
being returned:

Item display = control.initDisplayMode(control.USE_GUI_PRIMITIVE, null);

For CDC implementations supporting AWT, USE_GUI_PRIMITIVE
will return an instance of java.awt.Component. For implementations
that support both LCDUI and AWT, the required type must be specified
by a String as the second argument:

Item display = control.initDisplayMode(control.USE_GUI_PRIMITIVE,
"javax.microedition.lcdui.Item");

The USE_DIRECT_VIDEO mode can only be used with implementa-
tions that support the LCDUI (such as Symbian OS) and a second argument
of type javax.microedition.lcdui.Canvas (or a subclass) must
be supplied. This is the approach adopted in the example code above.
Methods of VideoControl can be used to manipulate the size and the
location of the video with respect to the Canvas where it will be dis-
played. Since we are using direct video as the display mode it is necessary
to call setVisible(true) in order for the video to be displayed. (In
the case of USE_GUI_PRIMITIVE the video is shown by default when
the GUI primitive is displayed.) Finally, we start the rendering of the
video with the startPlayer() method. If at any stage an Exception
is thrown the MIDletController.showAlert() method is called
and the resources acquired by the Player are released by calling the
closePlayer() method.

The other methods of the VideoPlayer class are the same as their
namesakes in the AudioPlayer class of the Audio Player MIDlet.

The MIDletController Class
The MIDletController class for the Video Player MIDlet is very
similar to that of the Audio Player. The method signatures of the class are
shown below.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.media.*;
// A simple video player MIDlet using JSR 135 - Mobile Media API
public class MIDletController extends MIDlet implements

OPTIONAL J2ME APIS IN THE JTWI 177

CommandListener, PlayerListener {

private Command exitCommand, playCommand, backCommand,
replayCommand;

private Display display;
private InitialView initialView;
private VideoCanvas videoCanvas;
private VideoPlayer videoPlayer;

public MIDletController() {...}

public void startApp(){...}

public void pauseApp(){...}

public void destroyApp(boolean unconditional){...}

public void commandAction(Command c, Displayable s){...}

public void playerUpdate(Player p, String event,
Object eventData) {...}

public void showAlert(String title, String message){...}

public void releaseResources(){...}
}

The constructor is listed below:

public MIDletController() {
int noOfVideos = Integer.parseInt(getAppProperty(

"number-of-videos"));
String[] videoNames = new String[noOfVideos];

for (int i = 1; i <= noOfVideos; i++){
videoNames[i-1] = getAppProperty("video-" + i);

}

initialView = new InitialView(this, videoNames);
exitCommand = new Command("Exit", Command.EXIT, 2);
playCommand = new Command("Play", Command.SCREEN, 1);
initialView.addCommand(exitCommand);

videoCanvas = new VideoCanvas(this);
backCommand = new Command("Back", Command.BACK, 1);
videoCanvas.addCommand(backCommand);

videoPlayer = new VideoPlayer(this, videoCanvas);
display = Display.getDisplay(this);

}

It first uses the MIDlet getAppProperty() method to retrieve user-
defined attributes from the JAD file, namely the number of video files
packaged in the JAR and their names. The names are then used to
initialize the InitialView. The VideoCanvas and VideoPlayer
instances are then created.

178 MIDP 2.0 AND THE JTWI

All the other methods in MIDletController are essentially the
same as their Audio Player namesakes.

The VideoCanvas Class
We will briefly take a look at the (very simple) VideoCanvas class:

import javax.microedition.lcdui.*;
public class VideoCanvas extends Canvas{

public VideoCanvas(MIDletController controller){
setCommandListener(controller);

}

// Paints background color
public void paint(Graphics g){

g.setColor(128, 128, 128);
g.fillRect(0, 0, getWidth(), getHeight());

}
}

The important point to note is that the paint() method plays no part
in rendering the video. This is performed directly by the VideoControl.

The full source code and JAR and JAD files for the Video Player
MIDlet can be downloaded from the Symbian website at www.symbian.
com/books.

3.4.1.6 Capturing Images

Another use of VideoControl is to capture images from a camera. In this
case, rather than specifying a file (and MIME type) as the data source,
we specify capture://video. Other than that, the setting up of the
video player and control proceeds pretty much as in the Video Player
MIDlet above.

The Picture Puzzle MIDlet, included as a case study in Chapter 5,
illustrates image capture. The following code which performs the neces-
sary initialization of a video player and a control is reproduced from the
Capturer class in that example.

// Creates a VideoPlayer and gets an associated VideoControl
public void createPlayer() throws ApplicationException {

try {
player = Manager.createPlayer("capture://video");
player.realize();
// Sets VideoControl to the current display.
videoControl =

(VideoControl)(player.getControl("VideoControl"));
if (videoControl == null) {

discardPlayer();
} else {

OPTIONAL J2ME APIS IN THE JTWI 179

videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO,
canvas);

int cWidth = canvas.getWidth();
int cHeight = canvas.getHeight();
int dWidth = 160;
int dHeight = 120;
videoControl.setDisplaySize(dWidth, dHeight);
videoControl.setDisplayLocation((cWidth - dWidth)/2,

(cHeight - dHeight)/2);
}

By setting the Canvas to be the current one in the Display, we can
use it as a ‘‘viewfinder’’ for the camera. When we are ready to take a
picture, we simply call getSnapshot(null) on the VideoControl,
as shown in the following code from the Picture Puzzle MIDlet:

public byte[] takeSnapshot() throws ApplicationException {
byte[] pngImage = null;
if (videoControl == null) {

throw new ApplicationException("Unable to capture photo:
VideoControl null");

}
try {

pngImage = videoControl.getSnapshot(null);
}catch(MediaException me) {

throw new ApplicationException("Unable to capture photo",
me);

}

return pngImage;
}

It should be noted that, if a security policy is in operation, user
permission may be requested through an intermediate dialog, which may
interfere with the photography!

3.4.1.7 Generating Tones

MMAPI also supports tone generation. Generating a single tone is simply
achieved using the following method of the Manager class:

public static void playTone(int note, int duration, int volume)
throws MediaException

The note is passed as an integer value in the range 0–127. ToneCon-
trol.C4 = 60 represents middle C. Adding or subtracting 1 increases
or lowers the pitch by a semitone. The duration is specified in milliseconds
and the volume is an integer value on the scale 0–100.

To play a sequence of tones it is more appropriate to create a Player
and use it to obtain a ToneControl.

180 MIDP 2.0 AND THE JTWI

byte[] toneSequence = { ToneControl.C4, ToneControl.C4 + 2,
ToneControl.c4 +4, ...};

try{
Player player = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
player.realize();
ToneControl control = (ToneControl)player.getControl("ToneControl");
control.setSequence(toneSequence);
player.start();

} catch (IOException ioe) {
} catch (MediaException me) { //handle }

A tone sequence is specified as a list of tone–duration pairs and user-
defined sequence blocks, using Augmented Backus–Naur form (ABNF)
syntax (refer to the MMAPI specification for more detail). The list is
packaged as a byte array and passed to the ToneControl using the
setSequence() method. To play the sequence we simply invoke the
start() method of the Player.

A more sophisticated example can be found in the documentation of
ToneControl in the MMAPI specification.

3.4.2 MMAPI on Symbian OS Phones

We next look at the important question of which media capabilities are
supported in practice on the various Symbian OS phones on the market.
It is important to understand that when we talk about MMAPI on Symbian
OS we are not talking about a single version but three, based on two
distinct implementations. These are:

• Symbian MIDP 2.0 Audio subset (on Symbian OS Version 7.0)

• Series 60 Developer Platform 1.0 (on Symbian OS Version 6.1)

• Series 60 Developer Platform 2.0 (on Symbian OS Version 7.0s).

These MMAPI implementations will be discussed in turn.
MMAPI was first implemented on Symbian OS not by Symbian but

by Nokia, for their Series 60 Developer Platform 1.0 (as embodied in
the Series 60 MIDP SDK 1.2.1 for Symbian OS, Nokia edition, based on
Symbian OS Version 6.1). This is available on all phones based on this
platform, with the exception of the Nokia 7650 which was technically
based on a precursor to the Series 60 Developer Platform 1.0, and
provided multimedia capabilities only through custom Nokia APIs.

This implementation was extended by Nokia for the Series 60 Devel-
oper Platform 2.0 and Series 90 Developer Platform 1.0, both based on
Symbian OS Version 7.0s. At the time of writing, the only announced
phones based on these platforms are the Nokia 6600 and the Nokia 7700,
based on Series 60 and Series 90 respectively.

OPTIONAL J2ME APIS IN THE JTWI 181

As the number of phones based on these platforms continues to grow,
the reader is referred to www.symbian.com/phones to ascertain the cur-
rent list. Note that Nokia licenses its platforms to other mobile phone
manufacturers, so the list is not restricted to Nokia phones.

At the same time, Symbian has separately implemented the audio
subset (‘‘building block’’) of MMAPI defined by MIDP 2.0, which became
available with the release of Symbian OS Version 7.0s. Consequently, it
is not available as standard on phones based on Symbian OS Version 7.0.
However, the whole of MIDP 2.0 has been ‘‘backported’’ from Symbian
OS Version 7.0s to Symbian OS Version 7.0 as part of the upgrade of the
UIQ platform from UIQ 2.0 to UIQ 2.1. As a result, phones based on UIQ
2.1 (the first of which to be announced are the Sony Ericsson P900/P908
and the BenQ P30) support the audio subset.

Symbian is releasing a fully featured MMAPI implementation in the
forthcoming Symbian OS Version 8.0, which will be available for
all Symbian OS phones (see www.symbian.com/technology/standard-
java.html). This will certainly mean a closer match of the MMAPI
capabilities of Symbian OS phones based on different UIs than at
present.

3.4.2.1 Symbian MIDP 2.0 Audio Subset

The audio subset of MIDP 2.0 is described in the MIDP 2.0 specification
document under javax.microedition.media and javax.micro-
edition.media.control. Notably there is no javax.micro-
edition.media.protocol package, since custom DataSources
are not supported. The associated overridden version of Manager.
createPlayer() is not, as a result, supported either. Only two con-
trols are available, VolumeControl and ToneControl, both of which
are fully supported by Symbian OS. There is no support for media
recording or capture.

The following are the audio formats supported:

Format File extension MIME types

AU audio .au audio/basic
Wave audio .wav audio/wav, audio/x-wav
MP3 .mp3 audio/mp3
Tone sequence n/a audio/x-tone-seq

These can all, with the exception of tone sequences, be played via the
various mechanisms described in Section 3.4.1.2. Tone sequences differ
in that there is no file extension associated with them; they can only be
created in a programmatic manner, in the context of a ToneControl.

182 MIDP 2.0 AND THE JTWI

The P900 adds additional support for the following audio types:

Format File extension MIME types

RMF (Beatnik) .rmf audio/rmf
iMelody .imy text/x-imelody, audio/x-imelody
MIDI .mid audio/midi, audio/x-midi

3.4.2.2 Series 60 Developer Platform 1.0

Nokia’s implementation of MMAPI in Series 60 Developer Platform 1.0
supports playing of the following types of media:

Format File extension MIME types

Wave audio .wav audio/x-wav
AMR audio .amr audio/amr
Nokia ring tone .rng audio/x-nokia-rng
Tone sequence n/a audio/x-tone-seq
MIDI .mid audio/midi
Scalable Polyphonic MIDI .mid audio/sp-midi
3GPP video .3gp video/3gpp
NIM video .nim video/vnd.nokia.interleaved-

multimedia

These all support VolumeControl and StopTimeControl (which
allows you to specify in advance a stop time, rather than letting the
media play to its end). In addition, tone sequences necessarily support
ToneControl and videos support VideoControl. No other controls
are supported.

It is worth noting that Nokia’s MIDP implementation supports full-
screen display of a Canvas, through a custom FullCanvas class. It is
possible to play video full-screen using such a class as follows:

FullCanvas canvas
VideoControl videoControl;
Player player;
...
videoControl = (VideoControl)player.getControl(“VideoControl”);
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, canvas);

There are no recording capabilities. Nor is there support for audio
capture. However, still images can be captured from the camera, using

OPTIONAL J2ME APIS IN THE JTWI 183

the protocol described in Section 3.4.1.2. The default encoding for the
captured image on all Nokia phones is PNG. Alternatively you can specify
one of the three supported formats:

• Portable Network Graphics (PNG)

• Bitmap (BMP)

• JPEG (JPG).

You do this by passing one of the strings encoding=png, encoding
=bmp or encoding=jpeg as an argument to the getSnapshot()
method of VideoControl. You can set the width and height in the
same way. The default is 160 × 120 pixels. Be aware that if you change
the aspect ratio in your specification, the image will be stretched rather
than clipped. VideoControl is the only control which can be used in the
context of video capture. Further details about the use of VideoControl
can be found in Camera MIDlet: A Mobile Media API Example on Forum
Nokia (http://ncsp.forum.nokia.com/csp).

Other points worth noting about Nokia’s implementation are that:

• ‘‘mixing’’, in the sense of simultaneous playback by multiple players,
is not supported; although the TimeBase concept is supported, it
would not appear to be usable for its intended purpose of playback
synchronization

• RTP streaming is not supported: the protocol itself is unsupported

• HTTP streaming is not supported; media data will be downloaded
completely (during the ‘‘realization’’ phase) before ‘‘prefetching’’ and
playing can begin (see Figure 3.23).

3.4.2.3 Series 60 Developer Platform 2.0

A number of modifications have been made to Nokia’s MMAPI imple-
mentation for the Series 60 Developer Platform 2.0. The comments below
can be expected to apply equally to the Series 90 Developer Platform 1.0
which is closely related.

The main differences are that support has been added for audio
capture and recording, and there are changes to the set of supported
content types. In particular, support for the proprietary Nokia audio and
video file formats has been removed and support has been added for
AU, Raw and AMR wideband audio formats and MP4 and Real Media
video formats.

184 MIDP 2.0 AND THE JTWI

The following is the list of supported content types:

Format File extension MIME types

Wave audio .wav audio/wav, audio/x-wav
AMR audio .amr audio/amr
AMR wideband audio .awb audio/amr-wb
Raw audio .raw audio/basic
AU audio .au audio/au, audio/x-au
Tone sequence n/a audio/x-tone-seq
MIDI .mid audio/midi
Scalable Polyphonic MIDI .mid audio/sp-midi
3GPP video .3gp video/3gpp
MP4 video .mp4 video/mp4
Real Media video .rm application/vnd.rn-realmedia

It might be observed here that a number of the file extensions have
associated with them more than one MIME type. For media downloaded
from a server this is not a problem; the server can specify the MIME type as
part of the transaction. Where media is obtained from an InputStream
rather than a URI (as will typically be the case for local data), a default
MIME type will be assumed. In the case of AU and WAV files, the
defaults are audio/au and audio/x-wav, respectively. With MIDI, the
more powerful audio/sp-midi format will be assumed; if no prioritization
of channels is specified (as will be the case for the generic MIDI format),
but the number of requested channels exceeds the supported number, an
arbitrary selection of channels is played.

Note that, although MP3 playback is supported on a number of Series
60 and Series 90 phones, it is not among the above-listed formats, so
it is not supported through MMAPI. Again, although streaming video is
supported on the Nokia 6600 and Nokia 7700, the restrictions on mixing
and streaming media are the same as in Series 60 Developer Platform 1.0.

The support for controls is exactly the same as in Series 60 Developer
Platform 1.0, with one exception. Because of the introduction of sup-
port for audio capture and recording, RecordControl is available for
audio/wav, audio/au and audio/amr. Usage of RecordControls
is illustrated in the following code sample reproduced from the MMAPI
specification:

try {
// Create a Player that captures live audio.
Player p = Manager.createPlayer("capture://audio");
p.realize();
// Get the RecordControl, set the record stream,
// start the Player and record for 5 seconds.
RecordControl rc = (RecordControl)p.getControl("RecordControl");

OPTIONAL J2ME APIS IN THE JTWI 185

ByteArrayOutputStream output = new ByteArrayOutputStream();
rc.setRecordStream(output);
rc.startRecord();
p.start();
Thread.currentThread().sleep(5000);
rc.commit();
p.close();

} catch (IOException ioe) {
} catch (MediaException me) {
} catch (InterruptedException ie) { }

This will capture five seconds of audio input from the microphone.
Notice here that the commit() method implies a call to stopRecord
before ending the record session. The MIME type of the captured data
can conveniently be ascertained using the getContentType()method
of RecordControl. For the Nokia 6600, the default encoding is PCM.
You can also, if you wish, specify the encoding to use for the record-
ing. You should first ascertain which encodings are supported by the
implementation (see Section 3.4.2.5). Then, if you wanted to ensure the
audio stream was captured in WAV format, for example, you could
specify capture://audio&encoding=wav as the argument to the
createPlayer() method.

Similar code will allow recording from a remote URI providing audio
data of one of the supported MIME types. The URI is passed in as an
argument to the setRecordLocation of RecordControl. The server
which delivers the audio content would specify the MIME type, which
you can ascertain in the manner just discussed. Rather than causing the
thread to sleep for a preset time, however, it would be better to arrange
to commit the recording on receipt of an END_OF_MEDIA event. Clearly
there is no important use case for recording local audio data since, by
definition, a data InputStream would already exist which could be
piped to an OutputStream.

3.4.2.4 Symbian OS Version 8.0

From Symbian OS Version 8.0, Symbian is providing a fully-featured
MMAPI implementation as standard. Although at time of writing no
phones have been announced based on this OS release, it is worth spend-
ing a little time reviewing some of the main features of this forthcoming
implementation, to get a flavor of what is to come.

One of the main features is that the content types supported are
not considered as a closed set but depend on what is implemented
natively in the multimedia framework on the host phone. The capabilities
will inevitably vary from phone to phone, so there is not so much
value in discussing the details of Symbian’s default implementation here.
However, it is likely that playing MP3 files from Java will become possible
for the first time on phones based on Symbian OS Version 8.0.

186 MIDP 2.0 AND THE JTWI

Another significant difference in the new implementation is that many
more controls are supported than hitherto, and in more contexts. In fact,
all 12 of the controls listed in Section 3.4.1.3 have been implemented.
The details of which controls are supported for different players will be
subject to some variation in practice, depending on the phone design.
Perhaps the most important development in this regard is that Record-
Control is supported in the context of both capture://audio and
capture://video, opening up the possibility of recording video clips
from Java for the first time!

Also device://midi is supported, and both tone generation and
midi sound generation have PitchControl and RateControl avail-
able. Thus many more possibilities are presented.

3.4.2.5 Working Out What Is Supported

If you know which of the Symbian OS platforms you are targeting with
a MIDlet, you will be able to craft your code to conform to the cited
capabilities. However, in practice it is more likely that you will want
to write portable code which can run on several or all of the above
platforms, or indeed on non-Symbian OS phones with MMAPI capability.
In this case you will need to be able to work out the supported capabilities
dynamically and make use of what is available, or else fail gracefully (for
example, by removing certain options from menus) if the capability you
want is just not available.

This you can achieve by interrogating the javax.microedition.
media.Manager class about the properties of interest. In particular, if
you want to find out which content types are supported, you can do so
with the following call:

String[] types = Manager.getSupportedContentTypes(null);

This will return an array of the MIME types as strings preceded by
audio/ or video/. In the case of the Nokia 6600, the RealMedia MIME
type is preceded by application/.

Correspondingly, to find out which protocols are supported, you
can call:

String[] types = Manager.getSupportedProtocols(null);

This will return the appropriate selection of http, capture or
device on Symbian OS phones. If you want to know which con-
tent types are available for a particular protocol, simply pass the relevant
string returned by getSupportedProtocols(null) as the argument
to getSupportedContentTypes(), instead of null. Similarly, if you
want to know the protocols available for a particular content type, pass
the content type to getSupportedProtocols().

OPTIONAL J2ME APIS IN THE JTWI 187

In addition, there are a number of system properties which can be
used to work out what multimedia capabilities are supported for a
particular implementation. These are described in full in the overview
of the MMAPI specification. They can be recovered as strings with the
usual System.getProperty() method. The following properties are
of particular use:

• supports.mixing – returns false on all Symbian OS phones

• supports.audio.capture – returns true on Nokia 6600 (Series
60 v2.0) and in the Symbian OS Version 8.0 implementation

• supports.video.capture – returns true on all Symbian OS
phones, indicating that snapshots are possible

• supports.recording – returns true on Nokia 6600 (Series 60
v2.0) and in the Symbian OS Version 8.0 implementation

• audio.encodings – returns a list of encodings depending on the
implementation

• video.encodings – returns non-null values on only the Symbian
OS Version 8.0 implementation, which is the first to support video
recording (the default is encoding=video/msvideo)

• video.snapshot.encodings – returns the default encoding=
png for Series 60 v2.0; returns a list of all supported encodings for
Series 60 v1.2 and Symbian OS Version 8.0 (for which the default is
the first value in the list)

• streamable.contents – returns null on all Symbian OS phones.

3.4.3 MMAPI and the MIDP 2.0 Security Model
For reasons of privacy the following Mobile Media API calls are restricted
under the MIDP 2.0 security model (see Mobile Media API Specification
1.1 Maintenance Release at http://jcp.org.)

• RecordControl.setRecordLocation(String locator)

• RecordControl.setRecordStream(OutputStream
stream)

• VideoControl.getSnapshot(String type).

Under the MIDP 2.0 security model, a signed MIDlet suite which contains
MIDlets that make use of these APIs must explicitly request the appro-
priate permission in its MIDlet-Permissions attribute. The required
MIDlet-Permissions attribute entries in the JAD file or manifest are
as follows:

MIDlet-Permissions: javax.microedition.media.control.RecordControl, ...

188 MIDP 2.0 AND THE JTWI

or:

MIDlet-Permissions:
javax.microedition.media.control.VideoControl.getSnapshot, ...

These protected APIs are part of the Multimedia Recording function
group as defined by the Recommended Security Policy for GSM/UMTS
Compliant Devices addendum to the MIDP 2.0 specification.

It must also be remembered that if a MIDlet in a signed MIDlet
suite makes use of a protected API of the javax.microedition.io
package, for instance to fetch media content over HTTP, then explicit
permission to access that API must be requested in the MIDlet-
Permissions attribute. This is the case even if it is fetched implicitly,
perhaps by calling:

Manager.createPlayer(“www.myserver.com/video.3gp”)

Whether MIDlets in untrusted MIDlet suites can use the protected APIs
of the MMAPI depends on the security policy relating to the untrusted
domain in force on the device. Under the JTWI Release 1 Security Policy
for GSM/UMTS Compliant Devices, MIDlets in untrusted MIDlet suites
can access the Multimedia Recording function group APIs with explicit
permission from the user. The default user permission setting is oneshot
(‘‘Ask every time’’).

Current devices based on the MIDP 2.0-enabled Series 60 Developer
Platform 2.0, such as the Nokia 6600, support both audio recording and
capturing snapshots. The security policy for the untrusted domain on
this device complies with the JTWI Release 1 requirements. Note that
on the Nokia 6600, the user may change the default user permission
from oneshot to session (‘‘Ask first time’’) in the following manner (see
Figure 3.28):

1. Navigate to the main menu.

2. Select the Application Manager.

3. Highlight the appropriate MIDlet from the list of applications.

4. Select Options > Settings > Multimedia.

5. Select ‘‘Ask first time’’.

Devices based on the MIDP 1.0-enabled Series 60 Developer Platform
1.x, such as the Nokia 3650, only support the capture of snapshots. Obvi-
ously such devices are not subject to the MIDP 2.0 security requirements.
Taking photos using the getSnapshot() method of the VideoCon-
trol does not require explicit user permission on these devices.

OPTIONAL J2ME APIS IN THE JTWI 189

Figure 3.28 Changing the default user permission on the Nokia 6600.

3.4.4 Wireless Messaging API

3.4.4.1 Introduction

The Wireless Messaging API (JSR 120) is an optional API targeted at
devices supporting the Generic Connection Framework defined in the
CLDC. The Wireless Messaging API (WMA) specification defines APIs for
sending and receiving SMS messages and receiving CBS messages. At
the time of writing the current release of the Wireless Messaging API is
version 1.1. This contains minor modifications to the 1.0 specification to
enable the API to be compatible with MIDP 2.0.

The WMA is a compact API containing just two packages:

• javax.microedition.io

• javax.wireless.messaging.

The first package contains the platform network interfaces modified for
use on platforms supporting wireless messaging connection, in particular
an implementation of the Connector class for creating new Mes-
sageConnection objects. The second package defines APIs which
allow applications to send and receive wireless messages. It defines a base
interface Message from which BinaryMessage and TextMessage
both derive. It also defines a MessageConnection interface, which
provides the basic functionality for sending and receiving messages, and
a MessageListener interface for listening to incoming messages.

In this section we shall consider sending and receiving SMS messages.
We shall then go on to show how to use the Push Registry API of MIDP
2.0 to register an incoming SMS connection with a MIDlet.

190 MIDP 2.0 AND THE JTWI

3.4.4.2 Sending Messages

Sending an SMS message using the WMA could not be simpler, as the
code paragraph below shows:

String address = “sms://+447111222333”;
MessageConnection smsconn = null;
try {

smsconn = (MessageConnection)Connector.open(address);
TextMessage txtMessage =

(TextMessage)smsconn.newMessage(MessageConnection.TEXT_MESSAGE);
txtmessage.setPayloadText(“Hello World”);
smsconn.send(txtMessage);
smsconn.close();

} catch (Exception e) {
//handle

}

First we obtain a MessageConnection instance by invoking the
Connector.open()method with an address of the appropriate syntax.
A MessageConnection can operate in client or server mode depending
on the URL syntax of the address passed to the open() method. For a
client mode connection (as used in the code listed above), messages can
only be sent. The URL address syntax for a client mode connection has
the following possible formats:

• sms://+447111222333

• sms://+447111222333:1234

The first format (as in the example above) is used to open a connection
for sending a normal SMS message, which will be received in the
end-user’s inbox. The second format is used to open a connection to
send an SMS message to a particular Java application listening on the
specified port.

The MessageConnector instance is then used to create a Message
instance using the method:

public Message newMessage(String type)

The MessageConnection interface defines two public static
final String variables BINARY_MESSAGE and TEXT_MESSAGE. If
type is equal to BINARY_MESSAGE an instance of BinaryMessage
is returned, whereas if type equals TEXT_MESSAGE an instance of a
TextMessage is returned. Both BinaryMessage and TextMessage
implement the Message interface. In the above code we specify a type
equal to TEXT_MESSAGE and cast the returned instance appropriately.

OPTIONAL J2ME APIS IN THE JTWI 191

Now that we have a TextMessage object we use the following
method to set the message text:

public void setPayloadText(String data)

We are now ready to send the message. This is achieved by invoking
the send method of the MessageConnection class:

public void send(Message msg)

Finally, when we no longer need the connection we should close it
using the close() method inherited from the Connection class.

3.4.4.3 Receiving Messages

Receiving a message is, again, straightforward and is illustrated with the
code paragraph below.

MessageConnection smsconn = null;
Message msg = null;
String receivedMessage = null;
String senderAddress = null;

try {
conn = (MessageConnection) Connector.open(("sms://:1234”);
msg = smsconn.receive();
...
//get sender's address for replying
senderAddress = msg.getAddress();
if (msg instanceof TextMessage) {

//extract text message
receivedMessage = ((TextMessage)msg).getPayloadText();
//do something with message
...

}
}catch (IOException ioe) {

ioe.printStackTrace();
}

We open a server mode MessageConnection by passing in a URL
of the following syntax:

sms://:1234

We retrieve the message by invoking the following method on the
MessageConnection instance.

public Message receive()

The address of the message sender can be obtained using the following
method of the Message interface:

public String getAddress()

192 MIDP 2.0 AND THE JTWI

A server mode connection can be used to reply to incoming messages,
by making use of the setAddress() method of the Message interface.
In the case of a text message, we cast the Message object appropriately
and then retrieve its contents with the TextMessage interface, using the
method below.

public String getPayloadText()

If the Message is an instance of BinaryMessage then the corre-
sponding getPayloadData() method returns a byte array.

In practice, of course, we need the receiving application to listen
for incoming messages and then invoke the receive() method upon
receipt. We achieve this by implementing a MessageListener inter-
face for notification of incoming messages. The MessageListener
mandates one method, below, which is called on registered listeners by
the system when an incoming message arrives.

public void notifyIncomingMessage(MessageConnection conn)

The MessageConnection interface supplies the following to register
a listener on MessageConnection:

public void setMessageListener(MessageListener l)

Only one listener can be registered on a given MessageConnec-
tion at a given time. A call to setMessageListener(l)will replace
a previously registered MessageListener with l. To de-register a
MessageListener on a MessageConnection we call setMes-
sageListener(null).

Note that the notifyIncomingMessage() method must return
quickly to avoid blocking the event dispatcher. The method should
not, therefore, handle the incoming message directly but hand off the
processing to a new thread.

3.4.4.4 WMA in MIDP 2.0

The Wireless Messaging API can be implemented on either MIDP 1.0
or MIDP 2.0 platforms. When implemented in conjunction with MIDP
2.0, the Wireless Messaging API can take advantage of the push registry
technology. A MIDlet suite lists the server connections it wishes to register
in its JAD file, or manifest, by specifying the protocol and port for the
connection end point. The entry has the following format:

MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

OPTIONAL J2ME APIS IN THE JTWI 193

In this example, the entry in the JAD file would be as follows:

MIDlet-Push-1: sms://:1234, SMSMIDlet, *

The <AllowedSender> field acts as a filter indicating that the AMS
should only respond to incoming connections from a specific sender. For
the SMS protocol the <AllowedSender> entry is the phone number of
the required sender (note the sender port number is not included in the
filter). Here the wildcard character ‘‘*’’ indicates respond to any sender.

The AMS will respond to an incoming SMS directed to the spec-
ified MessageConnection by launching the corresponding MIDlet
(assuming it is not already running). The MIDlet should then respond
by immediately handling the incoming message in the startApp()
method. As before, the message should be processed in a separate thread
to avoid conflicts between blocking I/O operations and the normal user
interaction events.

3.4.4.5 The SMS ChatMIDlet Sample Code

We shall illustrate the WMA APIs just discussed using a simple SMS
ChatMIDlet. The ChatMIDlet allows a user to send and receive SMS
messages and displays the ongoing conversation in a TextBox. The
ChatMIDlet also makes use of the push registry so that the MIDlet will
be launched in response to an incoming SMS targeted at the application.
Let’s first consider the main controller ChatMIDlet class.

package com.symbian.devnet.chatmidlet;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.wireless.messaging.*;
import javax.microedition.io.*;
import java.io.*;
public class ChatMIDlet extends MIDlet implements CommandListener,

MessageListener{
private Sender sender;
private Receiver receiver;
private MessageConnection smsconn;

//Widgets for the UI for entering and reading the msgs
private ChatView chatBox;
private MessageView messageView;
private Display display;

private String smsPort;//The port on which we send SMS messages

private final static int SENT = 1;
private final static int RECEIVED = 2;
private final static int ERROR = 3;

public ChatMIDlet() {
display = Display.getDisplay(this);

194 MIDP 2.0 AND THE JTWI

smsPort = getAppProperty("SMS-Port");
receiver = new Receiver(this);
sender = new Sender(smsPort);
chatBox = new ChatView(this);
messageView = new MessageView(this);

}
public void startApp() {

smsconn = receiver.open(smsPort);
if (smsconn != null) {

String[] connections =PushRegistry.listConnections(true);
if (connections.length > 0) {

for(int i = 0; i < connections.length; i++) {
if (connections[i].equals("sms://:" + smsPort)) {

receiver.handleMessage(smsconn);
}

}
}
display.setCurrent(chatBox);

}else {
//handle

}
}
public void notifyIncomingMessage(MessageConnection conn) {

if (conn == smsconn) {
receiver.handleMessage(conn);

}
}

public void pauseApp() {
if (smsconn != null) {

receiver.close(smsconn);
smsconn = null; // make eligible for garbage collection

}
}

public void destroyApp(boolean unconditional) {
if (smsconn != null) {

receiver.close(smsconn);
}

}

public void commandAction(Command command,
Displayable displayable) {

if(command.getLabel().equals("Send")) {
display.setCurrent(messageView);

}
else if(command.getLabel().equals("Exit")) {

if (smsconn != null) {
receiver.close(smsconn);

}
notifyDestroyed();

}
else if(command.getLabel().equals("OK")) {

String message = messageView.getMessage();
String phoneNumber = messageView.getPhoneNumber();
sender.connectAndSend(message, phoneNumber);
chatBox.addMsg(ChatMIDlet.SENT, message);
display.setCurrent(chatBox);

OPTIONAL J2ME APIS IN THE JTWI 195

}
}

public Display getDisplay() {
return display;

}

public void msgTypeError(String error) {
chatBox.addMsg(ChatMIDlet.ERROR,error);

}

public void processMsg(String message, String destinationAddress) {
chatBox.addMsg(ChatMIDlet.RECEIVED,message);
messageView.setPhoneNumber(destinationAddress);

}
}

The ChatMIDlet constructor creates instances of the Sender and
Receiver classes which encapsulate functionality for sending and
receiving SMS messages, and the ChatView and MessageView UI
classes. The startApp() method sets up the Receiver for handling
incoming SMS messages by calling open() on the Receiver instance:

public void startApp() {
smsconn = receiver.open(smsPort);
if (smsconn != null) {

String[] connections = PushRegistry.listConnections(true);
if (connections.length > 0) {

for(int i = 0; i < connections.length; i++) {
if (connections[i].equals("sms://:" + smsPort)) {

receiver.handleMessage(smsconn);
}

}
}
display.setCurrent(chatBox);

}else {
//handle

}
}

As will be shown later, in addition to opening a connection, this
also registers the ChatMIDlet as a MessageListener on the receiver
connection. The startApp() method also checks to see if it was
invoked in response to an incoming message via the push registry and, if
so, immediately handles the message.

Since the ChatMidlet class implements the MessageListener
interface it must implement the notifyIncomingMessage interface:

public void notifyIncomingMessage(MessageConnection conn) {
if (conn == smsconn) {

receiver.handleMessage(conn);
}

}

196 MIDP 2.0 AND THE JTWI

This checks that the incoming connection bearing the SMS message
belongs to this application and if so calls the handleMessage()method
of Receiver to process the message in a separate Thread.

The pauseApp() method, in line with good practice, releases
resources by closing the Receiver.

Now let’s look at the Receiver class:

package com.symbian.devnet.chatmidlet;
import javax.wireless.messaging.*;
import java.io.*;
import javax.microedition.io.*;
// Opens and closes a connection for receiving SMS messages.
public class Receiver implements Runnable {

private ChatMIDlet chat;
private MessageConnection smsconn;
private boolean listening = false;
private int messageWaiting = 0;

public Receiver(ChatMIDlet chat) {
this.chat = chat;

}
public MessageConnection open(String smsPort) {

String smsAddress = "sms://:" + smsPort;
MessageConnection conn = null;
try {

conn = (MessageConnection) Connector.open(smsAddress);
conn.setMessageListener(chat);
receiverThread.start();
listening = true;

}catch (IOException ioe) {
ioe.printStackTrace();

}
return conn;

}

public synchronized void handleMessage(MessageConnection conn) {
messageWaiting++;
smsconn = conn;
notify();

}

public void run() {
while (listening) {

synchronized(this) {
while (listening && messageWaiting == 0) {

try {
wait();

} catch (InterruptedException ie) {
// Handle interruption

}
}
if (messageWaiting != 0) {

receiveMessage();
messageWaiting--;

}
}

OPTIONAL J2ME APIS IN THE JTWI 197

}
}

public void receiveMessage() {
Message msg = null;
String senderAddress = null;
String receivedMessage = null;
try {

msg = smsconn.receive();
if (msg != null) {

senderAddress = msg.getAddress();
if (msg instanceof TextMessage) {

receivedMessage =
((TextMessage)msg).getPayloadText();

chat.processMsg(receivedMessage, senderAddress)
} else {

chat.msgTypeError("Error whilst receiving.");
}

}
} catch (IOException ioe) {

ioe.printStackTrace();
}

}

public synchronized void close(MessageConnection conn) {
listening = false;
notify();
if (conn != null) {

try {
conn.setMessageListener(null);
conn.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}
}

}
}

The open() method opens a message connection, registers a Mes-
sageListener (the ChatMIDlet instance) on this connection and
starts a new thread for handling incoming messages. This is performed by
the run() method:

public void run() {
while (listening) {

synchronized(this) {
while (listening && messageWaiting == 0) {

try {
wait();

} catch (InterruptedException ie) {
// Handle interruption

}
}
if (messageWaiting != 0) {

receiveMessage();
messageWaiting--;

198 MIDP 2.0 AND THE JTWI

}
}

}
}

This processes incoming messages in a while loop. When there
are no messages waiting the thread is paused. When awoken by a
notification from the handleMessage() method, the thread checks
that there is a message waiting and if so processes it by calling the
receiveMessage() method.

Functionality for sending messages is encapsulated in theSender class:

package com.symbian.devnet.chatmidlet;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.wireless.messaging.*;
import java.io.IOException;
// Sends an SMS message
public class Sender implements Runnable {

private String smsReceiverPort;
private String message;
private String phoneNumber;

public Sender(String smsReceiverPort) {
this.smsReceiverPort = smsReceiverPort;

}

public void run() {
String address = "sms://" + phoneNumber + ":" +

smsReceiverPort;
MessageConnection smsconn = null;
try {

smsconn = (MessageConnection)Connector.open(address);
TextMessage txtmessage = (TextMessage)

smsconn.newMessage(MessageConnection.TEXT_MESSAGE);
txtmessage.setPayloadText(message);
smsconn.send(txtmessage);

}
catch (Exception e) {

e.printStackTrace();
}

if (smsconn != null) {
try {

smsconn.close();
}
catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

public void connectAndSend(String message, String phoneNumber) {
this.message = message;
this.phoneNumber = phoneNumber;

OPTIONAL J2ME APIS IN THE JTWI 199

Thread t = new Thread(this);
t.start();

}
}

The connectAndSend() method takes a message and a phone
number and creates a new Thread to send the message. The actual
sending is performed by the run() method which opens a connection,
sends the message and then closes the connection.

The application descriptor for the ChatMIDlet is listed below.

MIDlet-1: SMS Chat, , com.symbian.devnet.chatmidlet.ChatMIDlet
MIDlet-Data-Size: 0
MIDlet-Description: This midlet demonstrates SMS chatting
MIDlet-Jar-Size: 6476
MIDlet-Jar-URL: SMSChat.jar
MIDlet-Name: SMS Chat
MIDlet-Push-1: sms://:1234, com.symbian.devnet.chatmidlet.ChatMIDlet, *
MIDlet-Vendor: Symbian Ltd.
MIDlet-Version: 2.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

Note that the MIDlet-push-1 entry (shown below) is required to
register a push registry connection:

MIDlet-Push-1: sms://:1234, com.symbian.devnet.chatmidlet.ChatMIDlet, *

Screenshots of the ChatMIDlet running on a Nokia 6600 are shown in
Figure 3.29. The full source code and JAR and JAD files for the ChatMIDlet
can be downloaded from the Symbian website at www.symbian.com/
books.

Figure 3.29 The SMS ChatMIDlet running on a Nokia 6600.

200 MIDP 2.0 AND THE JTWI

3.4.4.6 WMA and the MIDP 2.0 Security Model

A signed MIDlet suite that contains MIDlets which open and use SMS con-
nections must explicitly request the following permissions as appropriate
in its MIDlet-Permissions attribute:

• javax.microedition.io.Connector.sms – needed to open
an SMS connection

• javax.wireless.messaging.sms.send – needed to send an
SMS

• javax.wireless.messaging.sms.receive – needed to re-
ceive an SMS

MIDlet-Permissions: javax.microedition.io.Connector.sms,
javax.wireless.messaging.sms.send

or:

MIDlet-Permissions: javax.microedition.io.Connector.sms,
javax.wireless.messaging.sms.send,
javax.wireless.messaging.sms.receive

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, the requested permissions, the MIDlet
suite can be installed and the MIDlets it contains will be able to open SMS
connections and send and receive SMS messages, either automatically
or with explicit user permission, depending upon the security policy
in effect.

Whether MIDlets in untrusted MIDlet suites can access the WMA
depends on the security policy relating to the untrusted domain in
force on the device. On the Nokia 6600 and Sony Ericsson P900/P908,
MIDlets in untrusted MIDlet suites can access the Messaging function
group APIs with User permission. On both devices, the User permission
to access the Messaging function group is set to oneshot (and cannot
be changed by the user, except to deny permission to that MIDlet suite
altogether on the Nokia 6600). In line with the Recommended Security
Policy for GSM/UMTS Compliant Devices addendum to the MIDP 2.0
specification and the JTWI Security Policy for GSM/UMTS Compliant
Devices a Messaging function group permission of oneshot requires
explicit user permission to send an SMS message, but allows blanket
permission (permission is granted until the MIDlet suite is uninstalled or
the user changes the function group permission) to receive SMS messages.

The security policy in effect on the Sony Ericsson P900/P908 for
MIDlets in MIDlet suites bound to the trusted protection domain is the
same as that for untrusted MIDlet suites detailed above. At the time of

MIDP 2.0 AND SYMBIAN OS PHONES 201

writing, the available firmware version (3.42.1) on the Nokia 6600 did
not support the trusted protection domain (although this will be rectified
in a future release).

3.4.4.7 WMA on Symbian OS Phones

The first implementation of the Wireless Messaging API on Symbian
OS shipped as part of Nokia’s Series 60 v1.x platform. This WMA
implementation supplemented the MIDP 1.0 environment available on
this platform. The first phone to support this implementation of the WMA
was the Nokia 3650.

More recently, a MIDP 2.0-compatible version of the WMA shipped
as part of Symbian OS Version 7.0s which forms the basis for Nokia’s
Series 60 v2.0 platform. The first mobile phone employing this platform,
and therefore supporting WMA in conjunction with the push registry
technology, was the Nokia 6600.

Symbian also back-ported its WMA implementation compatible with
MIDP 2.0 to the UIQ 2.1 reference design based on Symbian OS Version
7.0. The first device released using this platform was the Sony Ericsson
P900/P908.

Note that Symbian’s implementation of the WMA currently does not
support receiving CBS.

3.5 MIDP 2.0 and Symbian OS Phones

At the time of writing, two MIDP 2.0 phones based on Symbian OS
have been released: the Nokia 6600 and Sony Ericsson P900/P908. Both
phones implement the mandatory APIs and the minimum configuration
required by the JTWI.

The Nokia 6600 (Figure 3.30) is a Series 60 Version 2.0 phone based
on Symbian OS Version 7.0s. It runs the CLDC 1.0 HI (Monty) VM and,
in addition to MIDP 2.0, includes the Wireless Messaging, Mobile Media
APIs and also the Java Bluetooth APIs (which are not currently part of the
JTWI and will be discussed in Chapter 4).

The Sony Ericsson P900/P908 (Figure 3.31) is based on Symbian OS
Version 7.0 running UIQ 2.1 reference design. Symbian back-ported the
CLDC 1.0 HI (Monty) VM, MIDP 2.0, the Wireless Messaging and Blue-
tooth APIs to the UIQ platform. An interesting feature of the P900/P908
is that it allows the user to install firmware upgrades downloaded from
Sony Ericsson’s website via a PC. It is therefore easy for users to ensure
they are running the latest available firmware, including the latest bug
fixes to the Java implementation.

Future MIDP 2.0-enabled phones in the pipeline include the Nokia
6620, 7700, BenQ P30, Panasonic X700 and Motorola A1000.

202 MIDP 2.0 AND THE JTWI

Figure 3.30 Nokia 6600 phone.

Figure 3.31 The Sony Ericsson P900 phone.

3.6 Summary

In this chapter we have discussed the JTWI and its component APIs
with particular reference to their implementation on Symbian OS-based
phones. First we briefly looked at the CLDC 1.0 and its various manifes-
tations on Symbian OS. We then embarked on an in-depth discussion
of MIDP 2.0 and its new features. Finally, we moved on to discuss the
optional APIs required by the JTWI, namely the Wireless Messaging and

SUMMARY 203

Mobile Media APIs. Throughout the chapter the emphasis has been on
providing code examples that have been tested on real Symbian OS-based
MIDP 2.0 phones.

In the next chapter we will look at another optional API, the Java
API for Bluetooth Wireless Technology, that is supported by the latest
generation of Symbian OS phones, but which does not currently fall
under the JTWI.

4
Java APIs for Bluetooth Wireless

Technology

In the last chapter we considered MIDP 2.0 and the optional APIs that
form part of the current release (Release 1) of the Java Technology for
the Wireless Industry initiative (JTWI). In this chapter we will consider an
optional API that is also part of Symbian’s current J2ME offering, but is
not yet part of the JTWI: the Java API for Bluetooth Wireless Technology
(JSR 82).

4.1 Introduction to Bluetooth

Bluetooth is an important emerging standard for wireless communication
between small devices such as mobile phones. The original research
on Bluetooth was performed by Ericsson and the name derives from
the tenth century Danish King Harald Blätand who united Denmark and
Norway. Ericsson decided to make Bluetooth an open standard by inviting
other industry leaders to participate in the establishment of the Bluetooth
Special Interest Group (SIG) in 1997. Today the Bluetooth SIG has over
2000 members.

Bluetooth is a short-range radio-based protocol operating in the
2.4 GHz band of the RF spectrum. Bluetooth is designed for connect-
ing small, battery-powered devices at ranges of up to 10 m and at a data
transfer rate of 1 Mb/s. By comparison with 802.11b (WiFi) technology,
which also operates in the 2.4 GHZ band, Bluetooth has a shorter range
(10 m compared to 100 m), lower data transfer rates (1 Mb/s compared
to 10 Mb/s), but consumes much less power, making it a more suitable
technology for battery-powered devices.

Symbian OS has provided native support for Bluetooth since Symbian
OS Version 6.1.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

206 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

4.2 Introduction to the Bluetooth APIs

The aim of JSR 82 was to provide a standard set of Java APIs to allow
Java-enabled devices to integrate into a Bluetooth environment. The JSR
82 expert group was formed in November 2000, with Symbian a member,
and produced a final release of the specification in March 2002.

The Bluetooth specification created and released by the Bluetooth SIG
runs to more than 1500 pages and continues to grow as new profiles are
added. It covers many layers and profiles and it is not the intention of JSR
82 to include them all. Rather, the Java API implements a core subset of
the Bluetooth specification providing support for generic profiles (e.g. the
Serial Port profile). It is the general intention that higher-level Bluetooth
profiles can be built on top of this API using Java.

4.2.1 Bluetooth Protocol Stack

For a device to support Bluetooth, naturally it must provide both the neces-
sary hardware support (an RF transmitter, etc.) and the necessary software
support to implement the Bluetooth protocol and control the Bluetooth
hardware programmatically. This software is known as the Bluetooth
protocol stack. The Bluetooth protocol stack is directly analogous with
other familiar communication protocol stacks, such as HTTP or WAP.
Figure 4.1 shows a simplified diagram of the Bluetooth protocol stack.

UDP/TCP

IP

PPP

RFCOMM

OBEX

SDP

L2CAP

Host Controller Interface

Figure 4.1 The Bluetooth protocol stack.

INTRODUCTION TO THE BLUETOOTH APIs 207

Some of the protocols are specific to Bluetooth, such as the Logical Link
Control and Adaptation Protocol (L2CAP); others are adopted protocols,
such as OBEX, PPP, IP, UDP and TCP. The Host Controller Interface
(HCI) is the interface between software and hardware. Everything below
the HCI is implemented in hardware, everything above is implemented
in software.

L2CAP is the lowest protocol of the Bluetooth stack and it handles all
data transmission from the upper layers. It is responsible for segmenting
data into packets for transmission and re-assembling received data pack-
ets. The RFCOMM layer simulates the functionality of a standard serial
communication port and is a cable replacement protocol. The service dis-
covery protocol (SDP) is used for discovering Bluetooth services offered
by remote devices.

4.2.2 Profiles
Profiles are defined by the Bluetooth SIG to enable Bluetooth devices
to interoperate. Each profile specifies a set of functionality to achieve a
particular task. It goes onto to define how this functionality is implemented
using the layers of the protocol stack. Profiles range from low-level generic
profiles, such as the Generic Access profile which is used by all other
profiles for basic establishment of connections, to highly specific high-
level profiles, such as the Headset profile, designed to enable Bluetooth
devices to connect to cordless Bluetooth-enabled headsets.

Since there are hundreds of Bluetooth profiles, with new ones being
added all the time, it was not the intention of the expert group for JSR 82 to
attempt to provide support directly for high-level profiles. It supports only
the generic profiles, which can then be used to implement higher-level
profiles in Java.

4.2.3 Requirements of JSR 82
JSR 82 is an optional API targeted at J2ME devices. More specifically, it is
aimed at any device that supports the Connected Limited Device Config-
uration (CLDC, see Chapter 1) and the Generic Connection Framework
(or a superset of them, such as the CDC).

To implement the Java APIs for Bluetooth Wireless Technology, the
underlying Bluetooth system must support the following layers and
generic profiles in the Bluetooth stack:

• L2CAP

• RFCOMM

• SDP

• Service Discovery Application Profile

• Serial Port profile.

208 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

The specification for JSR 82 also requires that the system supply a
nebulous entity known as the Bluetooth Control Center (BCC). The BCC
is a ‘‘Control Panel’’-like application that provides various functions
amongst which are configuration options including allowing the user to
specify security settings for Bluetooth connections as well as maintaining
a list of known devices. On Symbian OS the BCC functionality is already
provided by the underlying native Bluetooth system.

The current specification of JSR 82 was targeted at Version 1.1 of the
Bluetooth specification as defined by the Bluetooth SIG. The intention is,
however, that JSR 82 should be interoperable with stacks or hardware
based on earlier or subsequent versions of the Bluetooth specification.

4.2.4 The Java Bluetooth Packages
JSR 82 specifies two packages:

• javax.obex

• javax.bluetooth.

The Object Exchange Protocol (OBEX) is a communication protocol
originally defined by the Infrared Data Association (IrDA) that has been
adopted by the Bluetooth SIG. Since OBEX is an independent protocol,
it is supplied in a separate package. Applications may use the OBEX API
independently of the Bluetooth API.

The Java Bluetooth API is intended to provide support for the following
capabilities:

• registering services

• discovering devices and services

• establishing connections using RFCOMM, L2CAP and OBEX

• providing support for secure connections.

Symbian’s current implementation of JSR 82 does not provide an imple-
mentation of the OBEX API and hence it does not have a javax.obex
package.

4.3 Programming the Bluetooth APIs

4.3.1 Service Registration
4.3.1.1 Basic Steps

When we, as users, make a Bluetooth connection to a remote device to
perform some task such as sending a file, what we are in fact doing is

PROGRAMMING THE BLUETOOTH APIs 209

accessing a service offered by the remote device. To someone new to
Bluetooth it is not immediately obvious that making Bluetooth connec-
tions is ultimately about connecting to services rather than devices. Before
a Bluetooth host device can communicate with a remote Bluetooth peer,
a service must be registered and offered by the remote device.

As application developers wishing to register a service, we need to
perform the following steps:

• create a service record

• add a service record to the server’s Service Discovery Database

• set security measures associated with connections to clients

• accept connections from clients that request service.

4.3.1.2 Service Records

The Service Discovery Database (SDDB) maintains a repository of service
records corresponding to the services offered by the host device. A service
record provides sufficient information to allow a client to connect to the
Bluetooth service being offered by the server. Service discovery is the
province of the Service Discovery Application Protocol (SDAP) which
itself uses the Service Discovery Protocol layer in the Bluetooth stack.
The APIs for creating a service record and adding it to the SDDB are Java
wrappers around functionality defined in the SDAP and SDP.

The Java APIs provide an abstraction of the Bluetooth Service Re-
cord in the javax.bluetooth.ServiceRecord interface. A Ser-
viceRecord contains information about the service in a set of attributes
in the form of (ID, value) pairs, where the ID is a 16-bit unsigned integer,
and the value is an instance of a javax.bluetooth.DataElement.

A ServiceRecord may contain many attributes to fully describe the
service being offered. However, only two attributes are required to be
present in a ServiceRecord, the ServiceRecordHandle and the
ServiceClassIDList.

Some key attributes contained in a ServiceRecord:

Attribute Name Attribute ID Attribute Value Type

ServiceRecordHandle 0x0000 32-bit unsigned integer
ServiceClassIDList 0x0001 Sequence of UUIDs
ServiceRecordState 0x0002 32-bit unsigned integer
ServiceID 0x0003 UUID

Each Bluetooth device offering a service represents an instance of an
SDP server. The ServiceRecordHandle identifies this ServiceRe-
cord within the current instance of an SDP server. Otherwise identical

210 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

service records running in different SDP instances will have different values
for the ServiceRecordHandle.

The ServiceClassIDList is a list of UUIDs that represent the type
of service being offered. For instance, a printing service being offered via
the Serial Port profile may contain the following (16-bit) UUIDs: 0x11019
Serial Port and 0x1121 Basic Printing. The ServiceClassIDListmust
contain at least one service class UUID. We will discuss UUIDs in more
detail in the next section.

The ServiceRecordState is used by the SDP server to maintain
a cache of service attributes. The value of the ServiceRecordState
attribute will change every time an attribute is added, deleted or changed
within the service record.

The ServiceID is a UUID that uniquely and universally identifies the
service instance being described by this record. It is particularly useful if
the same service is offered by many SDP servers, but a particular instance
needs to be identified.

Other useful attributes include:

Mnemonic for String ID Attribute ID (relative)

ServiceName 0x0000
ServiceDescription 0x0001
ProviderName 0x0002

These attribute ID values must be added to the base offset (given by the
LanguageBaseAttributeIDList with attribute ID 0x0006) which
has the value of 0x0100 for the primary language.

For more information on service attributes refer to the Java Blue-
tooth API documentation or the SDP specification at the Bluetooth SIG
(www.bluetooth.org).

The Java API provides methods in the ServiceRecord interface to
set and retrieve attribute values.

public DataElement getAttributeValue(int attrID)
public boolean setAttributeValue(int attrID, DataElement attrValue)

The getAttributeValue() method returns the attribute speci-
fied by the attrID in the form of a DataElement. The setAttri-
buteValue() method sets an attribute specified by attrID with a
value represented by the DataElement, attrValue. To update a Ser-
viceRecord already added in the SDDB we use the updateRecord()
method of LocalDevice. Otherwise the ServiceRecord will be
updated when we first add it to the SDDB (when acceptAndOpen() is
called, see Section 4.3.1.4).

PROGRAMMING THE BLUETOOTH APIs 211

All attributes are stored in the ServiceRecord in the form of a
DataElement. A DataElement can encapsulate data of the following
types by using one of the overloaded constructors of the DataEle-
ment class:

• UUID

• String

• integer

• boolean

• sequences of any one of the above types.

Another useful method of ServiceRecord is:

public void setDeviceServiceClasses(int classes)

This is used to set the major service class in the ServiceRecord of
this service (e.g. rendering, audio, telephony, etc.). This information is
used to create a DeviceClass object which encapsulates information
about the types of service offered by this device and is used in device
inquiry to find suitable devices (see Section 4.3.2).

4.3.1.3 UUIDs
Universally Unique Identifiers (UUIDs) are 128-bit values that uniquely
identify a Bluetooth service. For convenience the SDP allows the use of
16-bit or 32-bit alias (‘‘short’’) UUIDs, with the Bluetooth specification
providing an algorithm describing how a 16-bit or 32-bit alias can be
promoted to the actual 128-bit UUID for comparison.

Every service, including generic low-level protocols and profiles, has
a UUID. For regular protocols and profiles the UUIDs are pre-defined
and, for convenience, are normally represented by their 16-bit (or 32-bit)
aliases (see Assigned Numbers at www.bluetooth.org). Some of the 16-bit
UUIDs for Bluetooth protocols and profiles are listed below.

Protocol UUID

L2CAP 0x0100
RFCOMM 0x0003
SDP 0x0001
OBEX 0x0008

Profile UUID

Serial Port 0x1101
Basic Printing 0x1122
Fax 0x1111

212 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

To convert a 16-bit or 32-bit alias to the actual 128-bit UUID the
following prescription is used:

128 bit value = 16 bit value * 296 + Bluetooth Base UUID
128 bit value = 32 bit value * 296 + Bluetooth Base UUID

Where the Bluetooth_Base_UUID has the value of:

0x0000000000001000800000805F9B34FB

However, Java developers do not have to worry about these conversions
as the Java APIs for Bluetooth provide thejavax.bluetooth.UUIDclass
to create and manipulate UUIDs. To create an actual (long) 128-bit UUID
we use the following constructor.

public UUID(long uuidValue)

The constructor takes a 16-bit or 32-bit alias as the uuidValue
argument and returns a UUID instance representing the 128-bit value.

We can also create UUID instances from a String representing a
16-bit or 32-bit alias using an alternative constructor:

public UUID(String uuidValue, boolean shortUUID)

If shortUUID is true, the constructor will create an instance repre-
senting a 16- or 32-bit UUID depending on the length of the String
representation of the UUID alias passed in as uuidValue (i.e. four
characters for a 16-bit alias or eight characters for a 32-bit alias). If
shortUUID is false then a 128-bit UUID will be returned, provided
a 32 character String representation of a 128-bit value was passed in
as uuidValue.

4.3.1.4 Creating the Server

Having introduced some of the concepts and classes necessary for regis-
tering a server, we shall now have a look at how this is realized in code
using the APIs. The code for setting up a simple server to accept stream
connections using the Serial Port profile is shown below.

private static final String uuidString =
"00112233445566778899AABBCCDDEEFF";
...
UUID uuid = new uuid(uuidString, false);
...
try {

LocaDevice device = LocalDevice.getLocalDevice();

PROGRAMMING THE BLUETOOTH APIs 213

//make generally discoverable
device.setDiscoverable(DiscoveryAgent.GIAC);
StreamConnectionNotifier service = (StreamConnectionNotifier)

Connector.open("btspp://localhost:" +
uuid.toString() + ";name=serialconn");

StreamConnection conn = service.acceptAndOpen();
InputStream input = conn.openInputStream();
...
input.close();
conn.close();

} catch(BluetoothStateException bse) {
bse.printStackTrace();

}catch(InputOutputException ioe){
ioe.printStackTrace();

}

Let’s look at this code in more detail. First, we create a UUID to
uniquely identify this service. Here we use a string representing a 128-bit
UUID to create a UUID instance using the appropriate constructor:

private final String uuidString = "00112233445566778899AABBCCDDEEFF";
UUID uuid = new uuid(uuidString, false);

Note that we pass in false as the second argument as we are creating
a long UUID. Next we use the static factory method getLocalDevice()
to obtain an instance of the LocalDevice representing the host device.

LocaDevice device = LocalDevice.getLocalDevice();
device.setDiscoverable(DiscoveryAgent.GIAC);

We make the Bluetooth device discoverable using the setDiscov-
erable()method. The pre-defined public static final int GIAC
value represents a General/Unlimited Inquiry Access Code, meaning there
are no restrictions placed on which remote devices may discover the host.

To establish an RFCOMM connection using the SPP we use the
open() method as follows:

StreamConnectionNotifier service =
(StreamConnectionNotifier)Connector.open("btspp://localhost:" +
uuid.toString() + ";name=serialconn");

The localhost identifier refers to the host device and is the RFCOMM
server channel identifier. This is added to the ServiceRecord as the
ProtocolDescriptorList attribute. It is also necessary to append
a String representation of the UUID. This is added to the Ser-
viceRecord in the ServiceClassIDList. An optional name for
the service can also be appended to the URL which is added to the
ServiceRecord as the ServiceName attribute.

214 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

The open() method returns an object of type StreamConnec-
tionNotifier. Calling acceptAndOpen() on the StreamConnec-
tionNotifier indicates the server is ready to accept client connections
and adds the ServiceRecord to the SDDB.

StreamConnection conn = service.acceptAndOpen();

The acceptAndOpen() method blocks until the server accepts a
connection request, returning a StreamConnection object to enable
communication between the client and server.

4.3.2 Device Discovery
In the previous section, we saw how we can use the Java APIs to set up
a server offering a Bluetooth service. In the next few sections we shall
see how clients can locate and access this service. This is generally a
two-stage process involving discovering active Bluetooth devices in the
vicinity, then searching discovered devices for the required service. This
section deals with device discovery.

Device discovery is in fact very simple. First we need to implement a
DiscoveryListener. The javax.bluetooth.DiscoveryListe-
ner interface mandates the four callback methods shown below.

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)
public void inquiryCompleted(int discType)
public void servicesDiscovered(int transID, ServiceRecord[] servRecord)
public void serviceSearchCompleted(int transID, int respCode)

To implement a device DiscoveryListener we need to provide
non-trivial implementations for the first two methods.

The deviceDiscovered() method is called by the implementation
when a device is discovered. It may be called many times. The imple-
mentation passes in a RemoteDevice instance representing the remote
device just discovered and also a DeviceClass instance that provides
information about the type of device just discovered, allowing filtering of
unwanted devices.

The inquiryCompleted() method is called by the implementation
when the device inquiry has completed. discType can have one of
three values predefined in the DiscoveryListener interface:

• public static int INQUIRY_COMPLETED – which indicates that
the inquiry terminated normally

• public static int INQUIRY_TERMINATED – which indicates
that the inquiry was terminated by the application (via the can-
celInquiry() method of DiscoveryAgent)

PROGRAMMING THE BLUETOOTH APIs 215

• public static int INQUIRY_ERROR – which indicates that the
inquiry failed to complete normally, but was not terminated.

To initiate a device inquiry we need to obtain a DiscoveryAgent using
the getDiscoveryAgent() method of the LocalDevice and invoke
the following method on it:

public boolean startInquiry(int accessCode, DiscoveryListener listener)

The startInquiry() method takes an appropriately implemented
DiscoveryListener and also an accessCode that can have one of
two values pre-defined in the DiscoveryAgent class.

public static final GIAC
public static final LIAC

The General/Unlimited Inquiry Access Code (GIAC) indicates an
unlimited search returning all devices found in the vicinity. Using the
Limited Dedicated Inquiry Access Code (LIAC) discovers only remote
devices in LIAC mode. Both values are defined in the Bluetooth GAP
specification (www.bluetooth.org). Use GIAC for general inquiries.

We shall illustrate the APIs just discussed with a concrete example:

import java.io.*;

import javax.bluetooth.*;

import java.util.*;

public class DeviceDiscoverer implements DiscoveryListener {
private BluetoothUI btUI;

public Vector remoteDevices = new Vector();

private LocalDevice localDevice;

private DiscoveryAgent agent;

public DeviceDiscoverer(BluetoothUI btUI) {
this.btUI = btUI;

try {
localDevice = LocalDevice.getLocalDevice();

}
catch(BluetoothStateException bse){ //handle}
agent = localDevice.getDiscoveryAgent();

}

public void startDeviceSearch() {
try {

agent.startInquiry(DiscoveryAgent.GIAC, this);

} catch(BluetoothStateException bse){ //handle}
}

public void servicesDiscovered(int transID, ServiceRecord[] servRecord){}

public void serviceSearchCompleted(int transID, int respCode) {}

216 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {
// The major device class of 0x600 is an imaging device

if ((cod.getMajorDeviceClass() == 0x600) {
// The minor device class of 0x80 is a printer

if ((cod.getMinorDeviceClass() & 0x80) != 0) {
// The service class of 0x40000 is a rendering service

if ((cod.getServiceClasses() & 0x40000) != 0) {
remoteDevices.addElement(btDevice);

}
}

}
}

public void inquiryCompleted(int discType) {
if(discType == DiscoveryListener.INQUIRY_COMPLETED) {

btUI.displayDevices(remoteDevices);

}
else{

//take appropriate action

}
}

}

Our DeviceDiscoverer class implements the DiscoveryLis-
tener interface. We obtain a LocalDevice instance and use that to get
a DiscoveryAgent, with which we start an inquiry using the general
discoverable mode:

public void startDeviceSearch() {
try {

agent.startInquiry(DiscoveryAgent.GIAC, this);
} catch(BluetoothStateException bse){//handle}

}

Note that the startInquiry() method is non-blocking.
Every time a device is discovered the deviceDiscovered()method

is called. There may be many devices in range and we may not be
interested in them all so we can use the cod value to filter out unwanted
devices (as shown below).

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {
// The major device class of 0x600 is an imaging device

if ((cod.getMajorDeviceClass() == 0x600) {
// The minor device class of 0x80 is a printer

if ((cod.getMinorDeviceClass() & 0x80) != 0) {
// The service class of 0x40000 is a rendering service

if ((cod.getServiceClasses() & 0x40000) != 0) {
remoteDevices.addElement(btDevice);

}
}

}
}

PROGRAMMING THE BLUETOOTH APIs 217

The DeviceClass provides an abstraction of the Class of Device/Service
(CoD) record, as defined in the Bluetooth specification Assigned Num-
bers document (https://www.bluetooth.org/foundry/assignnumb/docu-
ment/baseband). The CoD record is a 24-bit number, formatted as shown
in Figure 4.2.

Note that CoD records and the associated service class and device
class values are unrelated to service UUIDs. CoDs classify the device
(printer, phone, etc.), whereas UUIDs specify the service that may be
offered by a device.

The getMajorDevice() method returns the major device class
value. A device may have only one value for the major device class. For
imaging, the bits are set in the CoD record representing a value of 0x600
(see Figure 4.3).

A device can have several values for the minor device class. So we
use the printer bit mask to do an AND with the value returned by
getMinorDevice and check the result is non-zero (see Figure 4.4).

major
device
class

octet 3 octet 2 octet 1

reserved for
service classes

minor
device class

positioning

networking

rendering

capturing

object transfer

audio

telephony

information

Figure 4.2 Class of Device/Service Record.

12

0

11

0

10

1

9

1

8

0

Figure 4.3 Major device bit values for imaging.

218 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

7

1

6

x

5

x

4

x

Figure 4.4 Minor device class bit mask for a printer.

Similarly, the major service class can have multiple values so we
check that the rendering bit (bit 18) has been set. A device that has passed
through all the filters is then added to the remoteDevices Vector.

When the inquiry is finished, the inquiryCompleted() method
is called.

public void inquiryCompleted(int discType) {
if(discType == DiscoveryListener.INQUIRY_COMPLETED) {

btUI.displayDevices(remoteDevices);
}
else{

//take appropriate action
}

}

Assuming the inquiry completed successfully, we return our filtered
remoteDevices Vector for further processing.

4.3.3 Service Discovery
Once we have located suitable devices in the vicinity we can search them
for the required service. The process is similar to that for device inquiry.
First we implement a service search DiscoveryListener. This requires
supplying non-trivial implementations for the following methods:

public void servicesDiscovered(int transID, ServiceRecord[] servRecord)
public void serviceSearchCompleted(int transID, int respCode)

The servicesDiscovered() method is invoked by the implemen-
tation when the requested services are discovered. The implementation
provides a transaction ID identifying the request that initiated the service
search and an array of ServiceRecords, each identifying a service
discovered in response to the request.

The serviceSearchCompleted()method is invoked by the imple-
mentation when a service search is completed or terminates. As well as
the transaction ID, the implementation also supplies a public static
final int code with the following values defined in the Discov-
eryListener interface:

• SERVICE_SEARCH_COMPLETED indicates that the search completed
normally

PROGRAMMING THE BLUETOOTH APIs 219

• SERVICE_SEARCH_TERMINATEDmeans that the service search was
terminated by the application calling the DiscoveryAgent can-
celServiceSearch() method

• SERVICE_SEARCH_ERROR indicates the service search terminated
with an error

• SERVICE_SEARCH_NO_RECORDS indicates that the remote device
being searched holds no service records

• SERVICE_SEARCH_NOT_REACHABLE indicates that the remote
device to be searched is not reachable (not in range anymore).

Before we can start a service search we have to get an instance of the
LocalDevice and use it to obtain a DiscoveryAgent as before. To
request a search we then invoke the following method on the Discov-
eryAgent:

public int searchServices(int[] attrSet, UUID[] uuidSet, RemoteDevice btDev,

DiscoveryListener discListener)

We have to pass in the RemoteDevice we wish to search (which
we have retrieved previously from a device inquiry) and an appropriately
implemented DiscoveryListener. We must also pass in an array
of UUIDs corresponding to those offered by the service required. Note
that for a successful service search the UUIDs contained in the UUID[]
argument must match those contained in the ServiceClassIDList
attribute of the ServiceRecord in the SDDB running on the remote
device. Hence, we must know in advance the UUIDs of the service we
are searching for.

We also pass in an array corresponding to the attributes we want to
retrieve from the ServiceRecord of the service found. If attrSet
is null a default list of attributes will be retrieved (ServiceRe-
cordHandle,ServiceClassIDList,ServiceRecordState,Ser-
viceID and ProtocolDescriptorList, with attribute IDs 0x0000
to 0x0004).

The integer value returned by the searchServices() method,
corresponding to the transaction ID, can be used later to cancel the search
if required. Note that searchServices is a non-blocking method.

Let’s see how this all fits together in practice. The ServiceDis-
coverer class listed below implements a DiscoveryListener for
service search:

import javax.bluetooth.*;
import java.io.*;
public class ServiceDiscoverer implements DiscoveryListener {

private BluetoothUI btUI;
private LocalDevice localDevice;

220 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

private DiscoveryAgent agent;
private ServiceRecord[] serviceRecord;

public ServiceDiscoverer(BluetoothUI btUI) {
this.btUI = btUI;

try {
localDevice = LocalDevice.getLocalDevice();

}
catch(BluetoothStateException bse){ //handle }

agent = localDevice.getDiscoveryAgent();
}

public void startServiceSearch(RemoteDevice btDevice) {
UUID[] uuidSet = {new UUID("00112233445566778899AABBCCDDEEFF",

false)};
try {

agent.searchServices(null, uuidSet, btDevice, this);
}
catch(BluetoothStateException bse) { //handle }

}

public void servicesDiscovered(int transID,
ServiceRecord[] servRecord) {

serviceRecord = servRecord;
}

public void serviceSearchCompleted(int transID, int respCode) {
String message = null;
if(respCode ==

DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE) {
message = "Device not reachable";

} else if(respCode ==
DiscoveryListener.SERVICE_SEARCH_NO_RECORDS) {

message = "Service not available";
} else if (respCode ==

DiscoveryListener.SERVICE_SEARCH_COMPLETED) {
message = “Service search completed”;
if (serviceRecord[0] != null) {

btUI.serviceFound(serviceRecord);
}

} else if(respCode ==
DiscoveryListener.SERVICE_SEARCH_TERMINATED) {

message = "Service search terminated";
} else if(respCode == DiscoveryListener.SERVICE_SEARCH_ERROR)

message = "Service search error";
}
btUI.setStatus(message);

}

public void inquiryCompleted(int discType){}

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod){}
}

Let’s look at the code above in more detail. First, we obtain a
DiscoveryAgent and use it to start a service search, as follows.

PROGRAMMING THE BLUETOOTH APIs 221

public void startServiceSearch(RemoteDevice btDevice) {
UUID[] uuidSet = {new UUID("00112233445566778899AABBCCDDEEFF", false)};
try {

agent.searchServices(null, uuidSet, btDevice, this);

} catch(BluetoothStateException bse) { //handle }
}

We create a long representation of the UUID of the service for which
we are searching, which in this is example is the single element in our
UUID[] uuidSet. In this example, the default attribute set of the service
record will suffice, so we pass in null for the attrSet argument.

If the required service is found, the servicesDiscovered()method
will be invoked by the implementation and we cache the service records
for all services offered by the device that correspond to our requirements.
In the case of a search for generic services, such as SPP, there may be
more than one instance offered by the device.

public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {
serviceRecord = servRecord;

}

When the service search is complete (whether successful or not)
the searchCompleted() method is invoked. We can interrogate the
respCode value to ascertain the success of search, as shown below.

public void serviceSearchCompleted(int transID, int respCode) {
String message = null;
if(respCode == DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE) {

message = "Device not reachable";
} else if(respCode == DiscoveryListener.SERVICE_SEARCH_NO_RECORDS) {

message = "Service not available";
} else if (respCode == DiscoveryListener.SERVICE_SEARCH_COMPLETED) {

message = “Service search completed”;
if (serviceRecord[0] != null) {

btUI.serviceFound(serviceRecord);
}

} else if(respCode == DiscoveryListener.SERVICE_SEARCH_TERMINATED)
message = "Service search terminated";

} else if(respCode == DiscoveryListener.SERVICE_SEARCH_ERROR) {
message = "Service search error";

}
btUI.setStatus(message);

}

Assuming we successfully discovered our service, we pass on its
ServiceRecord[] to enable a connection to be established with it.

222 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

4.3.4 Connecting to a Service

Once we have obtained the service record relating to our required
service we have everything we need to connect to the service. We
use the getConnectionURL() method of the ServiceRecord to
obtain a String encapsulating the necessary information (protocol,
Bluetooth address of device providing the service, RFCOMM server
channel identifier, etc.) to connect to the service.

public String getConnectionURL(int requiredSecurity, boolean mustBeMaster)

The requiredSecurity argument specifies the level of security
for the connection and can have one of three values defined in Ser-
viceRecord:

public static final int NOAUTHENTICATE_NOENCRYPT
public static final int AUTHENTICATE_NOENCRYPT
public static final int AUTHENTICATE_ENCRYPT

The mustBeMaster argument indicates whether the local device
must be master in connections to this service. If false the local device
is willing to be master or slave in the relationship. The master–slave
role relates to the frequency hopping pattern used in RF communications
between two Bluetooth devices. The master device initiates the connec-
tion and determines the frequency hopping pattern used. The slaves hop
in unison to the master’s pattern. The role (master or slave) that a device
assumes relates to low-level communication and is generally irrelevant to
higher level protocols. The current implementation of JSR 82 on Symbian
OS supports only a value of false for the mustBeMaster parameter
(true will result in an exception being thrown by the open() method).

Once we have the connection URL we use it to open a Connection.
In the case of connections using the SPP, the returned object is cast as a
StreamConnection, as shown below.

String url =

serviceRecord.getConnectionURL(ServiceRecord. NOAUTHENTICATE_NOENCRYPT,

false);

StreamConnection conn = (StreamConnection)Connector.open(url);

OutputStream output = conn.openOutputStream();

4.3.5 Connecting to a Service: the Quick and Dirty Way

In the previous section we described how to access services robustly.
We do a device enquiry then search the returned devices for the

PROGRAMMING THE BLUETOOTH APIs 223

required services and, if found, open a connection using the returned
ServiceRecord.

There is an alternative, quicker way of connecting to a service using
the selectService() method of the DiscoveryAgent class:

public String selectService(UUID uuid, int security, boolean master)

This method simply takes the UUID of the service required; an int
indicating the level of security for the connection; and the master/slave
boolean indicator. The method will search for the service denoted by
the UUID on any devices in range. If the service is found, a String
representing the URL to be used to connect to the service via the
open() method is returned. If no service is found a value of null is
returned.

Note that when using this method it is not necessary to implement a
DiscoveryListener. Nor does it require a RemoteDevice object to
be specified. It simply searches all devices in the vicinity and, if one of
them offers the required service, returns a connection URL. If there are
many devices in the area offering the required service, a connection URL
may be returned to any one of them (it is not possible to specify which).
For these reasons, plus the fact that this method takes only a single UUID,
it is best used to search for specific UUIDs created to denote a specific
service (rather than pre-defined UUIDs representing generic services such
as the SPP, which may be offered by many devices).

4.3.6 Retrieving a Cached Device

Before we leave this section we should discuss one other relevant method
provided by the Java APIs for Bluetooth Wireless Technology. This is the
retrieveDevices() method of the DiscoveryAgent class:

public RemoteDevice[] retrieveDevices(int option)

This takes an integer option argument that can have one of two
values pre-defined in the DiscoveryAgent class:

public static final int CACHED
public static final int PREKNOWN

• CACHED means that the method will return an array of RemoteDe-
vices that have been discovered by previous inquiries and cached
by the implementation; if no devices have been cached, a null value
will be returned

224 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

• PREKNOWN indicates a higher level of intimacy, referring to devices
that the local device communicates with often (‘‘paired devices’’); the
current implementation of JSR 82 on Symbian OS does not support
the PREKNOWN option, so a call to retrieveDevices using the
PREKNOWN option will return null.

The retrieveDevices() method will block the current thread until it
returns; it should generally be launched in a new Thread.

4.4 L2CAP Protocol

4.4.1 Introduction

The discussion in the previous sections used Serial Port profile connec-
tions running over RFCOMM to illustrate opening connections. In this
section we shall look at the other connection protocol currently offered
by Symbian OS, L2CAP.

RFCOMM is a higher-level protocol that runs on top of L2CAP.
Unlike SPP over RFCOMM, which is a stream-based protocol, L2CAP
is packet-based. This makes it more suitable for certain types of non-
stream communication, particularly those that route individual packets
to different destinations, methods or classes. In addition, a lower level,
datagram-like protocol such as L2CAP can confer performance advan-
tages over RFCOMM by avoiding the latency and overheads involved in
establishing and maintaining a stream connection.

4.4.2 Maximum Transmission Unit

Remember that L2CAP is a packet-based protocol. The maximum trans-
mission unit (MTU) is the maximum size of a packet of data that can
be sent over the L2CAP link. By default this size is set to 672 bytes.
However, the Java API does give us the option to specify different values
as part of the connection URL passed into the open() method (as will
seen in later sections). MTUs can be specified for transmitting and receiv-
ing data. Specifying MTU values when opening a connection does not
mean that communication (whether sending or receiving) will take place
at that value. Instead, when a connection between a client and server
is opened, a negotiation takes place to agree on acceptable MTUs for
communications in both directions. The agreed MTU will be the lowest
common denominator value that both parties can handle. For instance, if
a server can transmit a packet size of 4096 bytes but the client can only

L2CAP PROTOCOL 225

receive a maximum packet size of 512 bytes, then the negotiated MTU
will be 512 bytes.

It is possible to find out the maximum ReceiveMTU that the local
device will support using the following code:

localDevice.getProperty(“bluetooth.l2cap.receiveMTU.max”);

On Symbian OS Version 7.0s, the maximum values for TransmitMTU
and ReceiveMTU are both 672 bytes (the default values). We can also
find out the negotiated values for ReceiveMTU and TransmitMTU using
the following methods of L2CAPConnection:

public int getTransmitMTU()
public int getReceiveMTU()

For a more detailed discussion of MTUs see the JSR 82 specification.

4.4.3 Setting up an L2CAP Server

Setting up a server for L2CAP is very similar to our earlier example using
the SPP, except that an L2CAPConnection is opened in response to
incoming client requests.

L2CAPConnectionNotifier notifier =
(L2CAPConnectionNotifier)Connector.open(url);

L2CAPConnection conn = notifier.acceptAndOpen();

Here url may have the following form:

“btl2cap://localhost:00112233445566778899AABBCCDDEEFF;name=l2capServer”

The name=l2capServer field is optional. Other optional
fields include ReceiveMTU and TransmitMTU (see the JSR 82 specifi-
cation for a full list of options). The open() method returns an instance
of L2CAPConnectionNotifier. Calling the acceptAndOpen()
method on the L2CAPConnectionNotifierobject indicates the server
is ready to accept client connections. It also adds the ServiceRecord
to the SDDB. The acceptAndOpen() method blocks until the server
accepts a connection request, returning an L2CAPConnection object
enabling communication to take place.

226 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

4.4.4 Establishing a Client Connection
To obtain a connection to an L2CAP server, the process is very similar
to that presented in earlier discussions using RFCOMM. We can use a
ServiceRecord obtained by a service search to get the connection
URL via the getConnectionURL() method. We then use this in the
open() method to obtain an L2CAPConnection, as shown below.

String url =

serviceRecord.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

L2CAPConnection conn = (L2CAPConnection)Connector.open(url);

The url will have the general form:

“btl2cap://0050CD00321B:1001;ReceiveMTU=512;TransmitMTU=512”

Where 0050CD00321B is the Bluetooth address of the server and 1001
is the Protocol Service Multiplexor value for the service which identifies
the L2CAP service running on the device and allows the client to connect
to the service.

Again, there are various possible options for the url (check out the
JSR 82 specification for more details). Note that if we wish to change the
ReceiveMTU or TransmitMTU we would have to edit the connection
URL before passing it to the open() method.

Once we have obtained an L2CAPConnection we send a packet
using the send() method, where byte[] data contains the packet to
be sent:

public void send(byte[] data)

The size of data can have any value. However, if it exceeds the value of
TransmitMTU, any additional data will be discarded.

To read a packet of data from an L2CAPConnection we call:

public int receive(byte[] inBuf)

The packet will be read into the inBuf byte array. The size of
inBuf should at least be equal to ReceiveMTU to avoid loss of data.
L2CAPConnection also provides the ready() method:

public boolean ready()

If ready() returns true, a packet of data is available to be received
and we can call receive without blocking.

SECURITY 227

4.5 Security

Security is an important aspect of Bluetooth communication. JSR 82
provides various security options to prevent unauthorized access to a
Bluetooth device and to provide secure communication between devices
using data encryption.

4.5.1 Authentication

Authentication refers to the process of verifying the identity of a remote
device. The authentication mechanism in Bluetooth is based on a PIN
number shared between devices.

A Bluetooth server can require client authentication by adding the
optional authenticate=true parameter to the connection URL, as
shown below.

String url =
“btspp://localhost:00001111222233334444555566667777;authenticate=true”

StreamConnectionNotifier service =
(StreamConnectionNotifier)Connector.open(url);

Similarly, clients can request server authentication in the connec-
tion URL. In the absence of the authenticate=true parameter,
either client or server can, at any time after establishing an connec-
tion, request remote device authentication via the authenticate()
method of RemoteDevice.

On Symbian OS, if authentication of a remote device is requested
the system will display a pop-up dialog on the local device requesting
the user to enter a PIN number (see Figure 4.5) that is shared with the

Figure 4.5 Bluetooth authentication on the Nokia 6600.

228 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

user of the remote device. The remote device will prompt its user for the
shared PIN, and only if the PIN codes on both devices match will the
authentication process succeed. Note that the PIN number itself is not
transmitted between devices, instead a 128-bit key derived from the PIN
number is used.

A device may determine if a remote device has been authenticated
by invoking the isAuthenticated() method of RemoteDevice. A
return value of true indicates that the remote device has previously been
authenticated. Note that authentication is not specific to a particular con-
nection. The remote device may have been authenticated by a previous
connection or even another application.

4.5.2 Authorization

Bluetooth authorization is the process by which a server device grants a
specific client access to a specific service it offers. A server can require that
clients be authorized by adding the authorize=true parameter to the
connection URL. Note that authorization also requires authentication so
some parameter combinations (e.g. authenticate=false;autho-
rize=true) are forbidden and will result in a BluetoothConnec-
tionException.

If authorization was not requested in the connection URL, the server
can request client authorization via the authorize() method of the
RemoteDevice.

On Symbian OS, dynamic authorization is granted to a specific remote
device by the user for each connection request. A dialog box prompts the
user to accept or reject the connection (see Figure 4.6).

In addition, current Symbian OS devices allow static authorization by
the user of a paired remote device via the system Bluetooth control panel

Figure 4.6 Bluetooth authorization on the Nokia 6600.

JAVA BLUETOOTH API AND THE MIDP 2.0 SECURITY MODEL 229

(the BCC, in JSR terminology). The remote device becomes trusted and all
incoming connections from it are authorized until the static authorization
is revoked via the Bluetooth control panel.

A server device can determine if a remote device has previously
been authorized by invoking the isAuthorized() method of the Re-
moteDevice. A return value of true indicates the server side connection
to the remote device has been authorized.

4.5.3 Encryption
Encryption is used in Bluetooth communication to protect sensitive data
from eavesdropping. Either client or server can require that a connection
is encrypted by adding the encrypt=true parameter to the connec-
tion URL. Note that encryption requires the previous authentication
of the remote device so some parameter combinations (e.g. authen-
ticate=false;encrypt=true) are forbidden and will result in a
BluetoothConnectionException.

After establishing an unencrypted connection, it is possible to require
further communication to be encrypted by using the encrypt()method
of the RemoteDevice. Encryption is performed transparently by the
implementation using a symmetric encryption algorithm.

A device can determine whether communication with a remote device
is currently encrypted by invoking the isEncrypted() method of the
RemoteDevice. A return value of true indicates that data exchange
with the remote device is encrypted. Note that encryption of the data link
with a remote device is not specific to a particular connection and may
have enabled by a previous connection or even application.

4.6 Java Bluetooth API and the MIDP 2.0 Security Model

A signed MIDlet suite which contains MIDlets that open Bluetooth
connections must explicitly request the appropriate permission in its
MIDlet-Permissions attribute. To make outgoing (client) connections
the MIDlet suite must request the javax.microedition.io.Con-
nector.bluetooth.client permission. To accept incoming (server)
connections the MIDlet suite must request the javax.microedition.
io.Connector.bluetooth.server permission. For example, the
MIDlet-Permissions attribute entry in the JAD file may be as follows.

MIDlet-Permissions: javax.microedition.io.Connector.bluetooth.client,
javax.microedition.io.Connector.bluetooth.server

If the protection domain to which the signed MIDlet suite would be
bound grants, or potentially grants, the requested permissions, the MIDlet
suite can be installed and the MIDlets it contains will be able to open

230 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

Bluetooth client and server connections, either automatically or with
explicit user permission, depending upon the security policy in effect.

The Bluetooth protected APIs form part of the Local Connectivity
function group as defined in the Recommended Security Policy for
GSM/UMTS Compliant Devices addendum to the MIDP 2.0 specification.
The Sony Ericsson P900/P908 supports the trusted protection domain (on
Organiser firmware versions R2B02 or later). The security policy in effect
for MIDlets in MIDlet suites bound to the trusted protection domain on the
P900/P908 allows automatic access to the Local Connectivity function
group. At the time of writing, the available firmware release (3.42.1)
on the Nokia 6600 only supports the untrusted domain, although future
releases will add support for trusted protection domains.

Whether MIDlets in untrusted MIDlet suites can open Bluetooth con-
nections depends on the security policy relating to the Local Connectivity
function group for the untrusted domain in force on the device. On the
Nokia 6600 and the Sony Ericsson P900/P908, untrusted MIDlets can
access these APIs with User permission, the default being session. On the
Nokia 6600, the user can change the default setting for this function group
to Blanket (every invocation succeeds) or to disallow access altogether.

4.7 Sample Code

In this section we shall consider a small peer-to-peer application that
transmits an image between two Bluetooth devices using the Serial Port
profile over RFCOMM. First we consider a MIDlet that offers a service
to receive and display an image. The classes making up the BT Demo
Server MIDlet are depicted in Figure 4.7.

BTDemoServer ImageCanvas

Figure 4.7 A UML class diagram of the BT Demo Server MIDlet.

The BTDemoServer code is listed below.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;
import java.io.*;
public class BTDemoServer extends MIDlet implements CommandListener,

Runnable {

private static final int IMAGE_SIZE = 11222;

private ImageCanvas canvas;

SAMPLE CODE 231

private Display display;
private Form displayForm;
private StringItem status = new StringItem("status: ", "Off");
private Command exitCommand = new Command("Exit", Command.EXIT, 1);
private Command startCommand = new Command("Start", Command.SCREEN,

1);
private Command stopCommand = new Command("Stop", Command.SCREEN, 1);
private Command clearCommand = new Command("Clear", Command.SCREEN,

1);

private final String uuid = "00112233445566778899AABBCCDDEEFF";
private LocalDevice device;
private byte[] data;
private boolean running = false;
private StreamConnection conn;

public BTDemoServer() {
data = new byte[IMAGE_SIZE];
display = Display.getDisplay(this);

}

public void commandAction(Command c, Displayable d) {
if (c == exitCommand) {

destroyApp(true);
notifyDestroyed();

} else if (c == startCommand) {
running = true;
startServer();
displayForm.removeCommand(startCommand);
displayForm.removeCommand(exitCommand);
displayForm.addCommand(stopCommand);
status.setText("listening");

} else if (c == stopCommand) {
running = false;
displayForm.addCommand(exitCommand);
displayForm.addCommand(startCommand);
displayForm.removeCommand(stopCommand);
status.setText("Off");

} else if (c == clearCommand) {
display.setCurrent(displayForm);
canvas.removeCommand(clearCommand);
canvas.setCommandListener(null);
canvas = null;

}
}

public void startApp() {
displayForm = new Form("Bluetooth Server");
displayForm.setCommandListener(this);
displayForm.addCommand(exitCommand);
displayForm.addCommand(startCommand);
display.setCurrent(displayForm);
displayForm.append(status);

}

public void startServer() {
try {

device = LocalDevice.getLocalDevice();

232 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

device.setDiscoverable(DiscoveryAgent.GIAC);
Thread btServer = new Thread(this);
btServer.start();

} catch(BluetoothStateException bse) {
status.setText("BSException: " + bse.toString());

}
}

public void run() {
try {

StreamConnectionNotifier notifier =
(StreamConnectionNotifier)Connector.open("btspp://localhost:"

+ uuid + ";name=serialconn");
ServiceRecord record = device.getRecord(notifier);
record.setDeviceServiceClasses(0x40000);//SERVICE_RENDERING

while (running) {
conn = notifier.acceptAndOpen();
//record is saved to the SDDB on this call
DataInputStream input = conn.openDataInputStream();
input.readFully(data);
input.close();

DataOutputStream output = conn.openDataOutputStream();
output.writeInt(-1);
output.flush();
output.close();
conn.close();
conn = null;

Image image = Image.createImage(data, 0, IMAGE_SIZE);
canvas = new ImageCanvas(image);
canvas.addCommand(clearCommand);
canvas.setCommandListener(this);
display.setCurrent(canvas);

}

} catch(IOException ioe) {
status.setText("IOException " + ioe.toString());

} catch(Exception e) {
status.setText("Exception: " + e.toString());

}
}

public void destroyApp(boolean unconditionally) {
try{

if(conn != null)
conn.close();

}catch(IOException ioe){
status.setText("IOException: " + ioe.toString());

}
}

public void pauseApp() {
}

}

SAMPLE CODE 233

DeviceDiscoverer

ImageCanvas BluetoothUI

BTDemoClient ServiceDiscoverer

<<Interface>>
javax.bluetooth.DiscoveryListener

Figure 4.8 A UML class diagram of the BT Demo Client MIDlet.

Here we use a specific UUID of 00112233445566778899AABBC-
CDDEEFF to uniquely represent our service. In the run() method, we
launch the server in a new Thread listening for incoming connections.
When a remote device connects to the service an InputStream is
opened to read the data, then an Image is constructed from the data
and displayed.

The classes that make up the BT Demo Client MIDlet are depicted in
Figure 4.8.

The BTDemoClient class is listed below and acts as the controller for
the client MIDlet.

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;
import java.io.*;
public class BTDemoClient extends MIDlet implements CommandListener {

private static final String IMAGE_NAME = "/image.png";
private static final int IMAGE_SIZE = 11222;
private byte[] imageData;

private Display display;
private Command exitCommand = new Command("Exit", Command.EXIT, 1);
private Command startCommand = new Command("Start", Command.SCREEN,

1);
private Command sendCommand = new Command("Send", Command.SCREEN, 1);

234 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

private ImageCanvas imageCanvas;
private BluetoothUI btUI;

private DeviceDiscoverer deviceDiscoverer;
private ServiceDiscoverer serviceDiscoverer;
private RemoteDevice[] remoteDevices;
private ServiceRecord serviceRecord;
private StreamConnection conn;

public BTDemoClient() {
display = Display.getDisplay(this);
imageData = loadImage(IMAGE_NAME, IMAGE_SIZE);
Image image = Image.createImage(imageData, 0, imageData.length);
imageCanvas = new ImageCanvas(image);
imageCanvas.addCommand(startCommand);
imageCanvas.setCommandListener(this);
btUI = new BluetoothUI();
deviceDiscoverer = new DeviceDiscoverer(this);
serviceDiscoverer = new ServiceDiscoverer(this);

}

public byte[] loadImage(String imageName, int imageSize) {
byte[] data = new byte[imageSize];
try {

Class c = this.getClass() ;
InputStream is = c.getResourceAsStream(imageName);
DataInputStream dis = new DataInputStream(is);
dis.readFully(data);
is.close();

}catch(IOException ioe) {
btUI.setStatus("IOException: " + ioe.toString());

}
return data;

}

public void startServiceSearch(int index) {
btUI.setStatus("Starting service search");
serviceDiscoverer.startServiceSearch(remoteDevices[index]);

}

//Called from ServiceDiscoverer.serviceSearchCompleted
// when service search is complete.
public void searchCompleted(ServiceRecord servRecord,

String message) {
this.serviceRecord = servRecord;
//cache the service record for future use
btUI.setStatus(message);
new Thread() {

public void run() {
sendImage(serviceRecord);

}
}.start();

}

//Called from ServiceDiscoverer.inqiryCompleted
// when device inquiry is complete.
public void inquiryCompleted(RemoteDevice[] devices, String message) {

SAMPLE CODE 235

this.remoteDevices = devices;
String[] names = new String[devices.length];

for(int i = 0; i < devices.length; i++) {
try {

String name = devices[i].getFriendlyName(false);
names[i] = name;

}catch(IOException ioe){
btUI.setStatus("IOException: " + ioe.toString());

}
}

btUI.populateList(names);
btUI.addCommand(sendCommand);
btUI.setStatus(message);

}

public void sendImage(ServiceRecord serviceRecord) {
try {

String url =
serviceRecord.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);
conn = (StreamConnection)Connector.open(url);
DataOutputStream dataOutputStream =

conn.openDataOutputStream();

btUI.setStatus("connected");
dataOutputStream.write(imageData);
dataOutputStream.flush();
dataOutputStream.close();

DataInputStream dataInputStream = conn.openDataInputStream();
int eof = dataInputStream.readInt();
if(eof == -1) {

dataInputStream.close();
conn.close();
conn = null;
btUI.setStatus("closed connection");

}
} catch(IOException ioe) {

btUI.setStatus("IOException: " + ioe.toString());
}

}

public void commandAction(Command c, Displayable d) {
if (c == exitCommand) {

destroyApp(true);
notifyDestroyed();
} else if (c == startCommand) {

imageCanvas.removeCommand(exitCommand);
imageCanvas.removeCommand(startCommand);
imageCanvas.setCommandListener(null);
btUI.addCommand(exitCommand);
btUI.setCommandListener(this);
display.setCurrent(btUI);
deviceDiscoverer.startDeviceSearch();
btUI.setStatus("Searching for Bluetooth devices");

} else if (c == sendCommand) {

236 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

int index = btUI.getSelectedDevice();
startServiceSearch(index);
btUI.removeCommand(sendCommand);

}
}

public void startApp() {
display.setCurrent(imageCanvas);

}

public void destroyApp(boolean unconditionally) {
try {

if(conn != null)
conn.close();

}catch(IOException ioe) {
btUI.setStatus("IOException: " + ioe.toString());

}
}

public void pauseApp() {
}

}

The class creates the Image from a resource file and displays it in a
Canvas. Selecting the Start command starts a device inquiry using the
DeviceDiscoverer class, listed below.

import javax.bluetooth.*;
import java.util.*;
public class DeviceDiscoverer implements DiscoveryListener {

private BTDemoClient btClient;
private Vector remoteDevices = new Vector();
private DiscoveryAgent agent;

public DeviceDiscoverer(BTDemoClient btClient) {
this.btClient = btClient;
try {

LocalDevice localDevice = LocalDevice.getLocalDevice();
agent = localDevice.getDiscoveryAgent();

}
catch(BluetoothStateException bse) {

bse.printStackTrace();
}

}

public void startDeviceSearch() {
try {

agent.startInquiry(DiscoveryAgent.GIAC, this); //non-blocking
}
catch(BluetoothStateException bse){

bse.printStackTrace();
}

}

SAMPLE CODE 237

public void servicesDiscovered(int transID,
ServiceRecord[] servRecord){}

public void serviceSearchCompleted(int transID, int respCode) {}

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {
// The minor device class of 0x40000 is a rendering service
if ((cod.getServiceClasses() & 0x40000) != 0)

remoteDevices.addElement(btDevice);
}

public void inquiryCompleted(int discType) {
String message = null;
RemoteDevice[] devices = null;

if (discType == INQUIRY_COMPLETED) {
message = "Inquiry completed";
devices = new RemoteDevice[remoteDevices.size()];
for(int i = 0; i < remoteDevices.size(); i++) {

devices[i] = (RemoteDevice)remoteDevices.elementAt(i);
}

} else if (discType == INQUIRY_TERMINATED) {
message = "Inquiry terminated";

} else if (discType == INQUIRY_ERROR) {
message = "Inquiry error";

}
btClient.inquiryCompleted(devices, message);

}
}

The deviceDiscovered() method filters the device inquiry for
devices of the Rendering major service class.

When the inquiry is completed the system invokes the inquiryCom-
pleted() method mandated by the DiscoveryListener Interface.
This returns control to the BTDemoClient instance by calling its
inquiryCompleted() method, passing back an array of RemoteDe-
vices and amessage indicating the success (or otherwise) of the inquiry.

The BTDemoClient class then instigates a service search using the
ServiceDiscoverer class, listed below, which also implements the
DiscoveryListener Interface.

import javax.bluetooth.*;
import java.io.*;
public class ServiceDiscoverer implements DiscoveryListener {

private static final UUID[] uuidSet =
{new UUID("00112233445566778899AABBCCDDEEFF", false)};

private static final String SERVICE_NAME = "serialconn";
//return service name attribute
private static final int[] attrSet = {0x0100};

private BTDemoClient btClient;

238 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

private ServiceRecord serviceRecord;
private String message;

private DiscoveryAgent agent;

public ServiceDiscoverer(BTDemoClient btClient) {
this.btClient = btClient;
try {

LocalDevice localDevice = LocalDevice.getLocalDevice();
agent = localDevice.getDiscoveryAgent();

}
catch(BluetoothStateException bse) {

bse.printStackTrace();
}

}

public void startServiceSearch(RemoteDevice remoteDevice) {
try {

String device = remoteDevice.getFriendlyName(true);
}catch(IOException ioe) {

ioe.printStackTrace();
}

try {
//non-blocking
agent.searchServices(attrSet, uuidSet, remoteDevice, this);

} catch(BluetoothStateException bse) {
bse.printStackTrace();

}
}

public void servicesDiscovered(int transID,
ServiceRecord[] servRecord) {

for(int i = 0; i < servRecord.length; i++) {
DataElement serviceNameElement =

servRecord[i].getAttributeValue(0x0100);
//get the Service Name
String serviceName = (String)serviceNameElement.getValue();

if(serviceName.equals(SERVICE_NAME)){
serviceRecord = servRecord[i];

}
}

}

public void serviceSearchCompleted(int transID, int respCode) {
if (respCode ==

DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE) {
message = "Device not reachable";

}
else if(respCode == DiscoveryListener.SERVICE_SEARCH_NO_RECORDS) {

message = "Service not available";
}
else if (respCode == DiscoveryListener.SERVICE_SEARCH_COMPLETED) {

message = "Service search completed";
}

SAMPLE CODE 239

else if(respCode == DiscoveryListener.SERVICE_SEARCH_TERMINATED) {
message = "Service search terminated";

}
else if (respCode == DiscoveryListener.SERVICE_SEARCH_ERROR) {

message = "Service search error";
}
btClient.searchCompleted(serviceRecord, message);

}

public void inquiryCompleted(int discType){}

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod){}
}

When we call the following method to start the service search:

agent.searchServices(attrSet, uuidSet, remoteDevice, this);

we specify a non-null attrSet argument:

private static final int[] attrSet = {0x0100};

The value 0x0100 indicates the service name attribute (in the primary
language) so this attribute will be retrieved from discovered service
records in addition to the default attribute list. The system invokes the
servicesDiscovered() method when a service is discovered. We
filter the discovered services to find the one with name ‘‘serialconn’’
which is then cached.

When the service search is completed the system invokes the ser-
viceSearchCompleted()method mandated by the DiscoveryLis-
tener Interface. This returns control to the BTDemoClient instance by
calling its searchCompleted() method, passing back the cached
ServiceRecord and a message reporting the success of the search.

The BTDemoClient can then use the discovered ServiceRecord
to open a connection to the SPP server service using the sendIm-
age() method:

public void sendImage(ServiceRecord serviceRecord) {
try {

String url = serviceRecord.getConnectionURL(
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

conn = (StreamConnection)Connector.open(url);
DataOutputStream dataOutputStream = conn.openDataOutputStream();

btUI.setStatus("connected");
dataOutputStream.write(imageData);
dataOutputStream.flush();
dataOutputStream.close();

240 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

DataInputStream dataInputStream = conn.openDataInputStream();
int eof = dataInputStream.readInt();
if(eof == -1) {

dataInputStream.close();
conn.close();
conn = null;
btUI.setStatus("closed connection");

}
} catch(IOException ioe) {

btUI.setStatus("IOException: " + ioe.toString());
}

}

Figure 4.9 shows screenshots from the sample application.
The full source code and JAR and JAD files for the BT Demo Server and

BT Demo Client MIDlets can be downloaded from the Symbian website
at www.symbian.com/books.

a. Before starting the search

b. Sending the image to the discovered server

Figure 4.9 The Bluetooth application running on Nokia 6600 phones; the client is on the
left and the server on the right.

DEVELOPMENT TOOLS 241

4.8 Development Tools

In this section we shall consider some of the tools that are available
to assist developers in building applications using the Java APIs for
Bluetooth Wireless Technology (JSR 82). Tools for developing with JSR
82 come in two forms: those that interface to real Bluetooth devices
(dongles) attached to the development platform; and those that simulate
the Bluetooth hardware and interactions entirely in software. In this
section we will look at tools that adopt both approaches.

4.8.1 Rococo Impronto Simulator

The Impronto Simulator from Rococo Software is an ideal way for
developers new to JSR 82 to explore the APIs and for more experienced
developers to produce prototypes of Java Bluetooth applications.

The Impronto Simulator runs Java Bluetooth applications in a simulated
Bluetooth environment, allowing developers to easily test and configure
applications before deploying them on Bluetooth devices. Since the
Impronto Simulator provides total software emulation, developers can
start programming JSR 82 without the hassle of acquiring and configuring
multiple Bluetooth devices within their development environment.

At the time of writing, the Impronto Simulator integrates with both
the Java 2 SE JDK 1.3.1 and the Java 2 ME Sun Wireless Toolkit 1.0.4
and is available for both Windows and Linux (Red Hat) platforms. The
Impronto Simulator provides a virtual Bluetooth stack that processes JSR
82 API calls and routes the messages between virtual devices (such as
instances of the WTK emulator) via localhost socket connections. The
simulator also provides a Discovery Daemon allowing the virtual devices
to locate each other. A Simulator Manager GUI allows developers to
monitor the interaction of virtual devices and create and configure virtual
devices non-programmatically. Figure 4.10 shows a simple Bluetooth
client–server application running on Sun’s Wireless Toolkit in Impronto.

The contents of the server’s ServiceRecord are displayed in the
bottom left frame of the Manager console and the control panel in the
right hand frame allows the configuration of virtual devices.

For more information on the Impronto Simulator go to www.rococo-
soft.com.

4.8.2 Nokia Developer’s Suite for J2ME 2.0

The Nokia Developer’s Suite for J2ME 2.0 (NDS 2.0) is a develop-
ment environment for Nokia’s range of MIDP-enabled phones, including
Series 60 MIDP 2.0 devices such as the Nokia 6600. Windows and
Linux variants of the NDS 2.0 can be downloaded from Forum Nokia
(forum.nokia.com). It can be integrated with industry standard IDEs

242 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

Figure 4.10 Using Impronto Simulator with Sun’s Wireless Toolkit.

such as Borland’s JBuilder and Sun ONE Studio Mobile Edition, or run in
a standalone mode.

NDS 2.0 supports development using the Java Bluetooth APIs and
takes a similar approach to Impronto Simulator in providing emulation of
Bluetooth devices in software.

The default settings for Bluetooth emulation allow multiple instances
of the emulator running on the same computer to communicate over
the loopback address. The NDS 2.0 can also be configured to allow
multiple instances of the emulator running on different host machines to
communicate over UDP.

4.8.3 Symbian SDKs and Bluetooth

Both the Series 60 MIDP SDK 1.2.1 for Symbian OS, Nokia Edition and
the UIQ 2.1 SDK provide implementations of the Java Bluetooth APIs.
In both cases, they provide a testing environment that integrates with

DEVELOPMENT TOOLS 243

Figure 4.11 Nokia Developer’s Suite for J2ME 2.0.

real Bluetooth devices rather than using software simulation as employed
by the previously discussed tools. However, in each case only a limited
range of Bluetooth devices is supported.

The Series 60 MIDP SDK 1.2.1 for Symbian OS, Nokia Edition is avail-
able from Forum Nokia. To use Bluetooth, the SDK should be installed
on a laptop running Windows 2000. The SDK currently only supports
either the Nokia Connectivity Card DTL-4 or the Socket Bluetooth CF
Card. The Bluetooth card must be installed as a COM port using the
Serial Communications Driver in Windows 2000 (rather than installing
the proprietary drivers). For full installation instructions refer to Setting
Up and Using the Bluetooth Testing Environment for Series 60 Platform,
available from Forum Nokia.

The UIQ 2.1 SDK is available from www.symbian.com. This SDK
provides implementations of MIDP 2.0, WMA and the Java Bluetooth
APIs. In terms of Bluetooth hardware, the UIQ 2.1 SDK currently only
supports the Casira serial pod (see www.csr.com). For installation and

244 JAVA APIs FOR BLUETOOTH WIRELESS TECHNOLOGY

configuration instructions see the documentation that comes with the
SDK, How to configure comms settings / Configuring the UIQ emulator
for Bluetooth connection.

4.8.4 Choosing Tools for Java Bluetooth Development
The choice of tools for Java Bluetooth development falls into two cate-
gories: those that provide a virtual simulation of Bluetooth devices entirely
in software; and those that provide integration with Bluetooth hardware.
Currently, the support for Bluetooth hardware by developer tools is too
limited to make these solutions attractive unless one already owns the
particular Bluetooth device supported (particularly bearing in mind that
at least two Bluetooth devices are likely to be required for any serious JSR
82 development).

The best approach at present, particularly for small third-party devel-
opers, is to employ one of the software simulation options provided by
the Rococo Impronto Simulator or the Nokia Developer’s Suite for J2ME
2.0, and then move straight to testing on the target phone. However, it is
likely the situation will improve in the near future as the range of actual
Bluetooth hardware supported by SDKs improves.

4.9 Java Bluetooth APIs and Symbian OS

At the time of writing, the latest release of Symbian OS is Version 7.0s.
This is the first full release containing JSR 82 as part of Symbian’s Java
offering, although the UIQ 2.1 platform also offers the Java Bluetooth API
as a backport to Symbian OS Version 7.0. Devices shipping with this API
include Nokia 6600 (a Series 60 phone based on Symbian OS Version
7.0s) and Sony Ericsson P900 (based on UIQ 2.1).

As mentioned earlier, Version 7.0s and UIQ 2.1 implement the
javax.bluetooth APIs but not the javax.obex package. Hence,
Symbian OS currently provides no implementation for the Object
exchange protocol (OBEX) or the related Generic Object Exchange
Profile (GOEP). There is therefore no implementation for the Con-
nector.open(btgoep://...) URI syntax. In addition, Bluetooth
connections are not currently supported by the push registry implementa-
tion. It is intended that implementation of the javax.obex package will
be added in future releases, along with push registry support for incoming
L2CAP and RFCOMM connections.

4.10 Summary

In this chapter we have looked at programming the Java APIs for Bluetooth
Wireless Technology (JSR 82). First we introduced Bluetooth as a technol-
ogy and the Java APIs. Next we looked at programming these APIs: how to

SUMMARY 245

set up a Bluetooth Serial Port profile service over RFCOMM, discover the
service and connect to it. We also looked at the equivalent procedure for
establishing and connecting to L2CAP services. In the following section
we discussed a simple client–server sample application, building on the
material covered in the earlier sections. Finally, we reviewed some of
tools available to programmers interested in working with JSR 82. In
Chapter 5 we will look in depth at some MIDP case studies.

5
MIDP 2.0 Case Studies

5.1 Introduction

Case Study 1
This case study describes the design and creation of an expense claim
application. Aimed at the enterprise market, this is an early prototype of
an actual application designed for use by Symbian staff on the move with
a Sony Ericsson P900 or Nokia 6600.

Case Study 2
This case study demonstrates how the Game API can be used to develop
rich gaming content. We take you to the Symbian-sponsored speedway
track to learn to manage a complex composite scene of background
layers and sprites and to demonstrate the use of collision detection.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

248 MIDP 2.0 CASE STUDIES

Case Study 3
This case study demonstrates the application of the Mobile Media API,
the RMS and the TiledLayer class from the Game API. The Picture Puzzle
MIDlet is a variation on the familiar Mix Pix native application that ships
on Nokia Series 60 phones.

5.2 The Expense Application

This application uses a wide range of technologies including custom items
for the user interface, record stores for persistent information and XML
coupled with sockets for communication between the wireless devices
and a central server. It also provides information regarding the J2ME
development environment and practical considerations when creating
applications for Series 60 and UIQ devices.

The design of this application was based upon two central themes:

• to demonstrate that viable services can be created on wireless devices
using MIDP 2.0

• to create a useful prototype of an expense claim application in order to
provoke a discussion within Symbian on the requirements for a system
that could be made available to all staff and enable improvements in
efficiency over the existing expense processing system.

The requirements for the expense application prototype are reasonably
clear: as with all organizations, expenses must be approved by a manager
or budget holder prior to payment. The expense application allows users,
or claimants, to create and submit expenses on their wireless device.
Budget holders receive a copy of the expense claim on their device and
can either approve or reject it. In order for the approval mechanism
to work, the wireless devices synchronize expense information with a
central server.

THE EXPENSE APPLICATION 249

5.2.1 The Development Environment

The expense application was developed using Sun’s Wireless Toolkit
(WTK) in conjunction with Sun’s Java Developer Kit 1.4. Detailed dis-
cussion in this chapter will be limited to the WTK. WTK provides a
comprehensive solution to the needs of the MIDlet developer, with
numerous emulator skins and many parameters for restricting, monitoring
and profiling MIDlets. It’s worth spending some time understanding the
WTK’s capabilities, as this will pay dividends during development.

Nokia also provides a wireless toolkit that is downloadable from
http://forum.nokia.com. This provides the same basic tooling as the
WTK but with emulators for Series 60 devices. Sony Ericsson provides
an emulator skin for the P900 and UIQ devices that plugs into the WTK.
This can be downloaded from http://developer.sonyericsson.com.

The Symbian OS Toolkit can also be used when developing MIDlets.
Although Symbian’s toolkit is not designed specifically for MIDlet devel-
opment, the emulator environment provides a close match to the actual
device on which the MIDlet will run. The Symbian OS Toolkit should
be downloaded from the manufacturer of the device that you wish to
emulate. Each version is slightly different so that it accurately represents
the capabilities of the individual devices.

5.2.2 Requirements Overview

Before discussing how MIDP 2.0 is used for the expense application, a
more thorough overview of the application requirements must first be
provided. The high-level requirements for the application included the
following functions:

• claimants must be able to create, edit, view and delete expenses,
subject to the current expense state

• budget holders must be able to approve or reject expenses and request
additional information prior to approving or rejecting an expense

• all expenses should be synchronized with a central server

• expense information on the server should be able to be viewed on
a website.

The high-level requirements do a good job of describing what must be
achieved, but provide very little information regarding the detailed solu-
tion. Most of these requirements speak for themselves and do not require
further explanation. What will be discussed further is the workflow of an

250 MIDP 2.0 CASE STUDIES

expense claim from creation to approval or rejection, the application’s
user roles and synchronization of client device with server.

5.2.2.1 Workflow

The state of an expense claim reflects its current location on the path
from creation by a claimant to approval or rejection by a budget holder.
An expense claim can be in one of five states (see Figure 5.1).

5.2.2.2 User Roles

The application has two user roles: claimant and budget holder. The
claimant role provides the basic application functions, such as the creation
and submission of expenses and the viewing of retained expenses that
have been approved or rejected by a budget holder.

The budget holder role has a superset of the claimant’s functions,
including the ability to review and either approve or reject a claimant’s
expenses. Budget holders can use the application in claimant mode,
which allows them to create and submit their personal expenses.

Created

Submitted

Approved

RejectedQueried

Claimant creates

Claimant edits

Claimant deletes

Budget holder
approves

Claimant submits

Budget holder
rejects

Claimant re-submits

Claimant edits

Budget holder queries

Figure 5.1 Expense claim state diagram.

THE EXPENSE APPLICATION 251

5.2.2.3 Synchronization

A synchronization process is used to exchange expense claim and user
information between the wireless device and the server. When an expense
claim is updated or moves from one state to another, it will be sent to
the server when the next synchronization occurs. If the server has any
expense claims that must be sent to the device these will also be
exchanged, for example when a budget holder receives a claimant’s
expenses for approval.

If the same expense claim is updated by two users who then syn-
chronize, a conflict can occur. Under these circumstances it may be
difficult, or impossible, to determine which expense information is cor-
rect and should be retained. Resolving such conflicts is a non-trivial
problem that would normally become an administrative function of the
application.

For the expense application, each claim must be treated as an invi-
olable financial transaction. Fortunately, it makes little sense for two
users to be able to update an expense claim at the same time. Every
state transition results in another user being responsible for the claim.
Following a transition, the expense becomes read-only on the device
where the transition occurred. When the next synchronization occurs the
expense will be available for the user who is responsible for its continued
progression towards approval or rejection.

The server also provides a website that allows expense information to
be viewed. The site does not allow expenses to be modified or created;
doing so would again raise the issue of synchronization conflicts. Keeping
the business logic on the device also strengthens the demonstration of
the technology. A production version of the application would deal with
potential conflicts and allow the website to fulfill a view and amend
role.

5.2.3 The Expense MIDlet
The expense application’s MIDlet class is implemented inmidlet.view.
ExpenseMidlet, which is derived fromjavax.microedition.mid-
let.MIDlet. Unlike most MIDlets, the ExpenseMidlet does not im-
plement any part of the application view, deferring this to a class derived
fromjavax.microedition.lcdui.Form. The separation helps when
implementing the different user interfaces required for UIQ and Series 60
devices. This is discussed further in Section 5.2.4.4.

The MIDlet object is important not only for managing the run state
of the application, but also when using many MIDP APIs. The ability to
retrieve the MIDlet’s instance from other parts of the application is useful.
The expense application MIDlet permits this by keeping an instance
reference in a static member that is available using a static getter()
method. The MIDlet’s constructor is explicitly called from the MIDP

252 MIDP 2.0 CASE STUDIES

implementation, which ensures there is only ever a single instance of the
object. The basic MIDlet code is as follows:

public class ExpenseMIDlet extends MIDlet {
public static ExpenseMIDlet getInstance() {

return instance;
}

protected ExpenseMIDlet() {
instance = this;

}
// instance of this MIDlet
private static ExpenseMIDlet instance = null;

}

A commonly-used object javax.microedition.lcdui.Display
can only be obtained using an instance of a MIDlet. The Display object
is used to retrieve the attributes of a device’s screen and display new
Displayable objects, such as a Form or Canvas. There is a single
Display instance per MIDlet.

The expense application uses MIDP forms extensively with custom
items to make the user experience more agreeable. When a form needs to
be displayed, the Display.setCurrent() method is used to replace
the currently displayed object. Some additional methods were added to
the expense MIDlet in order to simplify display handling, including a
method to display the application’s main form, when needed:

public Display getDisplay() {
return Display.getDisplay(this);

}

public void displayMainForm() {
Display.getDisplay(this).setCurrent(mainForm);

}

public void display(Displayable disp) {
Display.getDisplay(this).setCurrent(disp);

}

The following code shows an example of how to use the helper
methods to display a new form:

SettingsForm form = new SettingsForm(settings);
ExpenseMIDlet.getInstance().display(form);

The main form of the expense application is derived from javax.
microedition.lcdui.Form. The Form contains a number of items
and commands that are all initialized in the class’s constructor. A

THE EXPENSE APPLICATION 253

number of listener interfaces are also implemented to handle command
and item events. See the sample code for the details.

The main Form implements the Singleton pattern. Therefore, it has a
private constructor and holds a static instance reference with a getter
method. There will only ever be one instance of the main form and it
exists for the duration of the MIDlet’s execution. Implementing the form
as a Singleton enforces this and provides a simple method of getting a
reference to the main form as needed.

5.2.4 Custom Items

5.2.4.1 Overview

When development began on the expense application it became apparent
that a form-based application was the best solution. Forms would make the
display and editing of expense claim and application settings reasonably
trivial. The only issue was how to create a main form with a list of
expenses that allowed easy navigation between months. The work during
the user interface prototyping suggested an interface that was just not
possible using the standard high-level LCDUI components.

The solution was to use a new MIDP 2.0 feature called CustomItem.
CustomItem allows the creation of new Items and gives the developer
complete control over the look and feel within the bounding rectangle.
As always, with great power comes great responsibility. In order to gain
this level of freedom the developer must perform all paint operations,
event handling and calculation of the currently visible rectangle if the
item size exceeds the screen size.

Figures 5.2, 5.3 and 5.4 show the user interface prototype for the main
form of the expense application, based loosely on the UIQ user interface,
and its eventual implementation on the Nokia 6600, a Series 60 phone,
and the Sony Ericsson P900, a UIQ device.

Two custom items were created for the expense MIDlet: the selector
item that can be used to select the month and a multi-column list that
shows the expenses for the month.

The selector item can be seen near the top in Figures 5.3 and 5.4. It has
a secondary mode that allows ordinal selection, e.g. 2 of 6, between a
minimum and maximum value. Left and right arrows are drawn when it is
possible to change the selection in that direction. On a Series 60 device,
the selection change occurs when the joystick is pushed left or right.

The UIQ version of the selector allows additional buttons to be added,
such as the Create button in Figure 5.4. The left and right arrows were
also re-engineered to be treated as buttons. Each button has its own
hotspot region to simplify pen tap logic. When a pen tap occurs the event
handler enumerates the buttons, searching for a hit.

254 MIDP 2.0 CASE STUDIES

Figure 5.2 User Interface Prototype.

Figure 5.3 Series 60 Implementation on Nokia 6600.

The Series 60 implementation of the selector item is implemented in
a single class, midlet.uitools.SelectorItem. The UIQ version is
implemented using two classes and one interface (see Figure 5.5).

The multi-column list can be seen in the lower half of the screen in
Figures 5.3 and 5.4. Users can move the current row selection up and
down using the joystick or jog wheel and select a row to ‘‘drill down’’
and see detailed information about the expense item.

THE EXPENSE APPLICATION 255

Figure 5.4 UIQ Implementation on Sony Ericsson P900.

+setSelectorRange(in from : int, in to : int, in current : int)
+setSelectorRange(in from : Date, in to : Date, in current : Date)
+getCurrentMonth() : Date
+getCurrentOrdinal() : int
+setButtons(in buttonMask : int)
+addToolbarListener()

SelectorItem

+paint(in width : int, in height : int)
+isHit(in x : int, in y : int) : boolean
+getId() : int

ToolbarButton

+toolbarEvent(in buttonId : int)

«interface»
ToolbarListener

1 *

1

0..1

Figure 5.5 UIQ selection item class diagram.

The list item allows columns to be dynamically added, removed and
re-sized. In the more complex, UIQ version, column headers can be
tapped with the pen to change the sort order of the list. As the number of
rows in the list grows so does the length of the list, until eventually it is
longer than the screen. Under these circumstances the list item provides
the currently selected row’s bounding rectangle to the underlying form
implementation so that MIDP can scroll the item and ensure the row is
always visible on the screen (this is covered in detail later).

256 MIDP 2.0 CASE STUDIES

The Series 60 and UIQ implementations are different. The UIQ version
is more complex because it supports changes in the sort order of the
list. Both versions of the item have the same three basic classes (see
Figure 5.6):

• a midlet.uitools.ListItem class which implements the cus-
tom item

• an abstract class midlet.uitools.ListModel which encapsu-
lates the data that the list contains in a similar fashion to the Java
Standard Edition javax.swing.ListModel interface

• a midlet.uitools.ListColumn class which represents individ-
ual columns and is responsible for painting the column header in the
list item.

The UIQ version has an additional interface and class. The midlet.
utils.Comparator interface provides a method that allows two
instances of a class to be compared. It is used in conjunction with the
midlet.utils.Sorter class, which sorts a Vector using a simple
bubble sort algorithm. Java 2 Standard Edition (J2SE) has numerous utility
classes for sorting and comparing. Unfortunately, due to size constraints,
these are not included in J2ME and developers must re-implement them
as needed.

5.2.4.2 Implementation

To create a custom item you must derive a class from the abstract
javax.microedition.lcdui.CustomItem class. The abstract me-
thods that must be implemented fulfill the form’s most basic requirements:
the dimensions of the custom item and how it should be painted.

+setModel(in model : ListModel)
+addColumn(in title : String, in width : int)
+removeAllColumns()
+getCurrentSelection() : int
+setCurrentSelection(in selection : int)

ListItem

+getRowCount() : int
+getData(in row : int, in column : int) : String

ListModel

+paintHeader()
+getWidth() : int
+getHeight() : int
+getTitle() : String
+isHit() : boolean

ListColumn

1 *

1

1

Figure 5.6 Class diagram for the list.

THE EXPENSE APPLICATION 257

Item Size
The custom item’s dimensions are handled by four methods, get-
MinContentWidth(), getMinContentHeight(), getPrefCon-
tentWidth() and getPrefContentHeight(). The form and base
custom item implementations use these methods when calculating the
layout of the form that surrounds the custom item.

The selector and list custom items developed for the expense MIDlet
have the minimum and preferred width set as the width of the display.
The selector item has a fixed height that is set at design time and never
changes. The list item must be of variable height to allow for differing
numbers of rows. Initially, the list has a small height that allows the list
header and up two rows to be shown. The preferred height is set to a
large value that allows the list to grow as required, eventually to several
times the screen length if needed.

Item Painting
Painting of the item is handled in the paint() method. It is passed a
javax.microedition.lcdui.Graphics object and the width and
height of the item’s area. The top right (0,0) of the paint area corresponds
to the top right position of the item on the screen; the underlying
implementation takes care of transforming the drawing commands to the
correct location on the physical screen.

If the custom item is larger than the physical screen size, the height
and width passed to paint() reflect the item size, not the screen size.
When painting a custom item the simplest approach is to draw everything
whenever paint() is called. This method is used for the items in the
expense application: neither has a sufficiently complex paint operation
as to cause a noticeable flicker during painting. Various techniques
exist to optimize painting by painting only the areas that have changed;
discussion of these techniques is outside the scope of this chapter.

The following code shows the paint() method of the Series 60
selector item. The code has been pared down slightly by removing
the ordinal mode painting. The paint() method breaks down into a
series of simple operations. Firstly, the stage is set by painting the item’s
background color white using the fillRect() method followed by a
drawRect() call to draw a single line border around the item. Next
the text that will be displayed is formatted and its size and x and y
offsets within the item calculated so that the text can be centrally aligned,
horizontally and vertically. drawString is used to render the text.
Finally, the item’s current selection is compared to the upper and lower
bounds of the item’s range to determine whether we need to paint the left
and right arrows using drawImage.

// Series 60 Selector Custom Item paint() method.
protected void paint(Graphics g, int width, int height) {

258 MIDP 2.0 CASE STUDIES

// blank canvas
int oldCol = g.getColor();
g.setColor(0xffffff); // white
g.fillRect(0, 0, width, height);

// paint toolbar border
g.setColor(thisDisplay.getColor(Display.COLOR_BORDER));
g.drawRect(0, 0, width - 1, height - 1);
g.setColor(oldCol);
// format display text
int yr = currentSelection / 12;
String selectText = months[currentSelection % 12] + " " +

((yr < 10) ? "0" : "") + yr;

// work out some draw metrics
Font font = g.getFont();
Display thisDisplay = ExpenseMIDlet.getInstance().getDisplay();
int selectTextY = (height - font.getHeight()) / 2;
int xOfs = (width - font.stringWidth(selectText)) / 2;
g.drawString(selectText, xOfs, selectTextY,

Graphics.TOP | Graphics.LEFT);

// draw left / right arrows if needed
if (currentSelection != selectFrom) {

g.drawImage(leftSelect, SELECTOR_SPACER,
((SELECTOR_HEIGHT - leftSelect.getHeight()) / 2),
Graphics.TOP | Graphics.LEFT);

}

if (currentSelection != selectTo) {
g.drawImage(rightSelect,

width - SELECTOR_SPACER - rightSelect.getWidth(),
((SELECTOR_HEIGHT - rightSelect.getHeight()) / 2),
Graphics.TOP | Graphics.LEFT);

}
}

The code for painting the list item is slightly more complex in that we
need to paint columns and rows and ensure that the current selection is
highlighted. The list item has a list of columns and a model that represents
the data within the list. The painting of the column headers is delegated
to the individual column objects and a loop iterates through the model
and draws the individual rows.

5.2.4.3 Event handling

Once the basic custom item methods have been implemented, it is
time to consider how the item will interact with the user. Events are
triggered when the keypad, joystick or pen are used. How the events are
handled determines the nature of the interaction between the user and
the custom item.

When discussing how to handle keypad events we must consider
traversal. When there are several form items only one has the focus at

THE EXPENSE APPLICATION 259

any time; as the user navigates the form, different items gain and lose
the focus. The developer does not have any code to write to make this
happen, the underlying form takes care of all the details. In MIDP this is
known as traversal: as users navigate around a form, they are traversing
between form items.

Some form items, such as javax.microedition.lcdui.
TextField, support internal traversal. While the item has focus, moving
left and right moves the cursor position within the text. It does not change
the focus to another form item. Internal traversal allows an item to specify
a rectangle that should be currently visible on the screen: this is useful for
items such as the list item created for the expense application which may
become longer than the physical screen. By specifying the rectangle of
the current row, the underlying implementation will ensure that the item
is scrolled so that the current row is visible.

Key events can be handled in two ways: the first uses traversal to
trap the directional buttons by overriding the traverse() method; the
second overrides the keyPressed(), keyReleased() and keyRe-
peated() methods. If traverse() is not overridden then it is not
possible to handle the directional keys: they will be used to change the
form’s current focus item.

The selector item uses traverse() to handle the left and right
keys so that the currently selected month can be changed. The list item
overrides both keyPressed() and traverse(). keyPressed() is
used to view an expense claim in the details form. traverse() is used
to change the current row selection and ensure that the current row is
always visible on the screen.

The following code shows the implementation of keyPressed()
for the list item. Only the joystick press is trapped; any registered state
listeners (in this case, the parent form) are notified that a row has been
selected and the expense detail form should be shown.

// Series 60 List Custom Item keyPressed() method
protected void keyPressed(int key) {

// trap the joystick press for the item selection
if (key == JOYSTICK_PRESS) {

notifyStateChanged();
}

}

The implementation of the traverse() method in the list item is
certainly a great deal longer. The method returns a boolean that signifies
whether the item is currently performing internal traversal. While internal
traversal is occurring, the item will retain the focus.

The traverse() method takes four parameters:

• direction is the key code of the button that was pressed; only the
left, right, up and down buttons are sent to the traverse() method

260 MIDP 2.0 CASE STUDIES

View Height

View Width

(Item orientation 0,0)

(Item width, height)

(Visible in [0], [1])

(Visible out [0], [1])

(Visible in [2], [3])

(Visible out [2], [3])

Row

Row

Row

Row

Row

Row

Row

Row

Row

Current Row

Row

Row

Row

Row

Row

Figure 5.7 List item visible rectangles.

• viewHeight and viewWidth specify the size of the region that
the item is currently painting into and is constrained by the size of
the screen

• visRect_inout is the array that defines the currently visible
region of the item (see Figure 5.7): visRect_inout[0] and vis-
Rect_inout[1] are the x and y coordinates of the top right corner
and visRect_inout[2] and visRect_inout[3] are the width
and height of the region.

visRect_inout must be updated to reflect the currently visible region
of the item. It comes into play when the item size is larger than the
screen. In the case of the list item, visRect_inout is set to the
bounding rectangle of the currently selected row in the list. The selector
item, which will always be visible on the screen, leaves the contents of
visRect_inout unchanged.

Below is the traverse() method of the list item. The first section
of code checks if the item is currently being traversed internally, if not
then the current selection is set based on the direction from which the
item was traversed into. If the item is currently traversing internally then a
switch statement is used to update the current row selection based on the
direction. If the current selection is no longer within the list, for example
less than 0 or greater than the row count, then the user is traversing out

THE EXPENSE APPLICATION 261

of the list item; false is returned and the neighboring form item gets the
focus. Finally, if the item is still traversing internally, the currently visible
region is calculated and a repaint() call is made to ensure that the
highlighted row has a chance to be painted; true is returned to ensure
that the item retains focus.

// Series 60 List Custom Item traverse() method
protected boolean traverse(int direction, int viewWidth, int viewHeight,

int[] visRect_inout) {
// is this the current item, i.e. we are traversing inside currently??
if (!isCurrentItem) {

isCurrentItem = true;
// set the current selected row
if (direction == Canvas.DOWN)

currentSelection = 0;
else if (direction == Canvas.UP)

currentSelection = model.getRowCount() - 1;
} else {

// we are currently traversing so handle the keypress
switch (direction) {

case Canvas.UP :
currentSelection--;
if (currentSelection < 0) {

currentSelection = 0;
return false; // traverse out

}
break;

case Canvas.DOWN :
currentSelection++;
if (currentSelection >= model.getRowCount()) {

return false; // traverse out
}
break;

}
}
// set the visible rectangle, i.e. just the current item, allow the
// implementation to do the screen management
int currentItemTopY = headerHeight + (rowHeight * currentSelection);
visRect_inout[1] = currentItemTopY;
visRect_inout[3] = rowHeight;
repaint();
return true;

}

There are three methods that can be overridden to handle pointer
events: pointerPressed(), pointerReleased() and pointer-
Dragged(). Each method is passed an x and y parameter that represents
the position of the pointer event relative to the top right corner of the item
that received the event.

When the pointer taps on a specific area of a custom item it is generally
better to handle it with the pointerReleased() method rather than
pointerPressed(), as it gives a more natural feel to the interaction.
If the user decides not to perform the action, dragging the pointer away

262 MIDP 2.0 CASE STUDIES

from the hotspot will avoid it triggering; and if the screen is redrawn as
part of the pointer event, the pointer is not touching a new hotspot.

When a pointer event occurs it is necessary to determine what it
actually means to the application, for example the list item must determine
if a tap is to signal a change in sorting or to select a row. As the complexity
of the custom item grows, so does the complexity of the logic to determine
what the pointer event means.

The following code shows an example from the UIQ version of the list
item. The code initially determines if the hit was in the list header; if so,
the columns in the list are enumerated and each is checked to determine
which was hit and the sort order updated. If the hit is not in the list
header then the row hit is calculated using the y hit position divided by
the row height.

// UIQ List Custom Item pointerReleased() method
protected void pointerReleased(int x, int y) {

// is the hit within the header??
if (y <= headerHeight) {

// within header, enum and work out which one...
Enumeration enum = columnList.elements();
int colNum = 0;
while (enum.hasMoreElements()) {

ListColumn col = (ListColumn)enum.nextElement();
if (col.isHit(x, y)) {

// found our hit, update sort order
...
break;

}
colNum++;

}
} else {

// within the body of the list, work out which entry was selected
currentSelection = 1 + ((y - headerHeight) / rowHeight);
notifyStateChanged();

}
}

5.2.4.4 Designing Custom Items for Series 60 and UIQ

As the user interface evolved during the development of the expense
application it became apparent from an early stage that the UIQ and
Series 60 user interfaces have sufficient differences that each MIDlet must
be tailored specifically to the device. The differences are only skin-deep;
all other application code remains identical.

This section aims to highlight the differences between the user interface
metaphors and suggest a few considerations that can help simplify the
implementation of device-specific versions of a MIDlet.

Device Look and Feel
The most notable difference between UIQ and Series 60 is that UIQ uses
a pen and a jog dial as the primary input methods and Series 60 has a

THE EXPENSE APPLICATION 263

keypad and a joystick. Each interface has its own unique look and feel;
users interact differently and expect different responses from them.

When creating a user interface the strengths of each interface metaphor
should be used to provide an interface that is consistent, or at least fits
broadly, with the expected characteristics of the device. For UIQ, this
means regions to tap with the pen; for Series 60, longer menus and simple
screen layouts.

A good example of how the user interface must be adapted for a
device is the implementation of the list item on Series 60. The item
is navigable using only the joystick. The column sort order cannot be
modified as it is not easy to fit this into the user interface – it would
require lengthy menu options that would only be available when the list
item has the focus. While context-sensitive commands are available in
MIDP, they may confuse the user. Menu options should generally remain
as consistent as possible, no matter what the currently selected item, to
aid application usability.

Conversely, the UIQ version of the list item allows rows to be selected
using the pen or jog wheel. Changing the sort order on the columns can be
achieved by tapping a column header. This is intuitive and consistent with
how a user might expect a UIQ application to work. Similar differences
exist between the different versions of the selector custom item.

Separation of Business Logic and Presentation Code
If the business logic and the presentation layer code are intertwined then
updating the user interface inevitably has effects on the business logic
and errors could be introduced. Of more concern is that you would have
to maintain a different version of the business logic for each device.
It also makes the both the business logic and UI code more difficult
to understand.

To avoid this, there should be a clear separation of the user interface
and the business logic. Most developers understand this need for sepa-
ration; the model–view–controller (MVC) pattern is a good example of
how this separation can be achieved when creating a user interface.

In the expense application, we have already seen separation in action
with the definition of the MIDlet object itself. For different versions of the
application there are different versions of the main form. Keeping these
two objects separate allows the MIDlet code to remain the same while
the code that produces the form changes independently.

Code Management
Separating the code into layers does not prevent us from having to keep
multiple branches of the application source code, one for each device
platform. Layer separation allows us to target our customization for each
user interface more precisely. If the business logic is changed, or a bug
found, the fixes can easily be applied to all versions.

264 MIDP 2.0 CASE STUDIES

The custom items created for the expense application look similar
and share a lot of common code. It would be possible to create a
single heavyweight custom item that works on both interfaces effectively;
however, such an item places an unfair burden on the device by increasing
the memory footprint of the application, which is not desirable. A more
practical approach is to branch the code once a device-specific version
of the custom item is close to completion, allowing as much code to be
re-used as possible.

5.2.5 Record Store
The expense application must keep expense and claimant information
as well as application settings on the device. This is achieved using
the Record Management System (RMS) API. The RMS API allows an
application to persist information as a series of records within a record
store and each record has its own unique ID that is assigned by the
underlying implementation. Several record stores can be maintained by
an application.

In the expense application there are three record stores, one each
for expenses, user information and application settings. Access to each
record store is encapsulated in an individual object, a data access
object (DAO). Encapsulating the persistence in this way allows its imple-
mentation to be abstracted away from the business logic; should the
underlying persistence mechanism change, the updates are confined
solely to the DAOs.

The expense application uses a single instance of each DAO for all
persistence operations. Making the DAO a Singleton enforces that only
one instance is created, ensuring that memory consumption is kept to a
minimum. Additionally, opening a record store is a lengthy operation. By
performing this operation once at application start-up we ensure that the
rest of the application responds well. If there were ever a good reason for
a splash screen in a MIDlet, opening several record stores is it.

5.2.5.1 Opening a Record Store

The DAO is created and opened in the ExpenseMidlet class; the
following code shows the portion of the startApp() method where
this occurs.

// make sure we have instances of the DAOs created and ready
ExpenseDAO.getInstance().openRecordStore();
PersonDAO.getInstance().openRecordStore();
SettingsDAO.getInstance().openRecordStore();

The openRecordStore() method opens a record store using the
RMS. The following code shows the implementation of the ExpenseDAO

THE EXPENSE APPLICATION 265

object. DAOException is used to wrap any exceptions that occur in
the DAOs.

// ExpenseDAO openRecordStore() method

public void openRecordStore() throws DAOException {
try {

if (rs != null)

rs = RecordStore.openRecordStore(EXPENSE_RMS_NAME, true);

} catch (Exception e) {
// handling for RecordStoreException

// RecordStoreNotFound

// RecordStoreFullException

// IllegalArgumentException

throw new DAOException("Failed to open the Expense RMS, reason: \n" +

e);

}
}

Each record has a unique ID, which allows individual records to be
retrieved and without which deletions and updates cannot take place.
When reading a record from the RMS, the record’s unique ID is retrieved
and stored in case the record needs to be updated or deleted. The
following code shows the implementation of the get() method in the
ExpenseDAO, which gets a record using its unique ID. The conversion
of the record into a usable object is discussed in the next section.

// ExpenseDAO get expense method
public Expense get(int id) throws DAOException {

try {
// get the expense and parse into an Expense object
byte[] expenseBytes = rs.getRecord(id);
Expense expense = Expense.bytesToExpense(expenseBytes);
expense.setRmsId(id);
return expense;

} catch (Exception e) {
throw new DAOException("Failed to read record, cause\n" + e);

}
}

The DAOs also provide functions to allow records to be updated,
deleted and enumerated. See the source code for examples of how these
functions are implemented.

5.2.5.2 Encoding Records

A single record is made up of a variable length array of bytes. In order to
use the record store, an application must encode its information to and
decode from a byte array. MIDP has implementations of the java.io.
ByteArrayInputStreamandjava.io.ByteArrayOutputStream
classes, which provide an excellent solution for this.

266 MIDP 2.0 CASE STUDIES

When interacting with the DAOs, the application uses objects that
represent an expense, a person or the application settings. Each of these
objects is responsible for encoding their data into a byte array ready
for persistence, which ensures that any modifications to the underly-
ing information do not affect the DAO. The following method shows
how an expense claim is encoded ready for persistence. The expense-
ToBytes() method in the midlet.model.Expense class uses a
java.io.ByteArrayOutputStream object in combination with a
java.io.DataOutputStream to encode an expense claim and return
an array of bytes:

// Expense objects expenseToBytes() method
public byte[] expenseToBytes() throws IOException {

byte[] bytes = null;
ByteArrayOutputStream baos = null;
DataOutputStream dos = null;
try {

// open streams that will do the work
baos = new ByteArrayOutputStream();
dos = new DataOutputStream(baos);
// write information to the output stream
dos.writeShort(getOwnerId());
dos.writeByte(getState());
...
dos.writeUTF(getBhNotes());
// convert byte output stream to byte array
bytes = baos.toByteArray();

} finally {
// tidy
if (dos != null)

dos.close();
}
// return bytes to caller
return bytes;

}

The decoding operation is similar to the encoding operation but uses
input streams and returns an Expense object. The fields must be encoded
and decoded in the same order. If a field is added then we must ensure
that both methods are updated; failure to do so would result in fields
being populated with the wrong data.

// Expense objects bytesToExpense() method
public static Expense bytesToExpense(byte[] expenseBytes)

throws IOException {
DataInputStream dis = null;
try {

// get at bytes via data stream
dis = new DataInputStream(new ByteArrayInputStream(expenseBytes));
// create empty expense object
Expense expense = new Expense();
// load the expense information from the byte array

THE EXPENSE APPLICATION 267

expense.setOwnerId(dis.readShort());
expense.setState(dis.readByte());
...
expense.setBhNotes(dis.readUTF());
// give the caller back their expense
return expense;

} finally {
// tidy
if (dis != null)

dis.close();
}

}

If changes to the underlying object require changes to the record
encoding, perhaps due to a new version of the application, then reading
old records from an existing record store would inevitably result in errors.
To ensure that future changes to the record format can be dealt with,
an object version number can be inserted into each record to allow
alternate decoding for legacy record versions. The expense application
we are discussing here does not handle different record versions as it is a
demonstration application.

5.2.5.3 Enumerating Records

The RMS permits the enumeration of records within a record store. During
enumeration, the records returned can be filtered by passing an object that
implements the javax.microedition.rms.RecordFilter inter-
face or sorted by passing an object that implements the javax.
microedition.rms.RecordComparator interface.

The expense application implements filtering using the Expense-
Filter class, which implements the matches() method from the
RecordFilter interface. Each record in the store is passed in turn to
matches(), which returns true if the record should be included in the
enumeration. ExpenseFilter allows filtering on a number of different
expense attributes, each of which is checked during the matches()
call:

// ExpenseFilter’s matches() method
public boolean matches(byte[] expenseBytes) {

boolean matchFound = true;
// do we have any search clauses? if not then let all records through
if ((personId == 0) && (monthCal == null)

&& (changedAfterSyncId == -1) && (createdDate == null))
return true;

Expense expense;
try {

// get the information from the record and filter
expense = Expense.bytesToExpense(expenseBytes);

} catch (IOException e) {
// we need to filter but cannot read this record,

268 MIDP 2.0 CASE STUDIES

// we assume no match
System.err.println("Failed to read expense in ExpenseFilter: "

+ e);
return false;

}
// test for owner match up
if (personId != 0)

matchFound = (isOwner)
? (expense.getOwnerId() == personId)
: (expense.getOwnerId() != personId);

// test for month match up only if owner check still means its useful
if ((matchFound) && (monthCal != null)) {

// get everything set up for compare...
Calendar receiptCal = Calendar.getInstance();
receiptCal.setTime(expense.getReceiptDate());
// check month and year on calendars
matchFound =

((monthCal.get(Calendar.MONTH)
== receiptCal.get(Calendar.MONTH))

&& (monthCal.get(Calendar.YEAR)
== receiptCal.get(Calendar.YEAR)));

}
// test for last change match up only if owner check still useful
if ((matchFound) && (changedAfterSyncId >= 0)) {

matchFound = (expense.getLastSyncId() > changedAfterSyncId);
}
// test for created date match
if ((matchFound) && (createdDate != null)) {

matchFound =
(createdDate.getTime() == expense.getCreatedDate().getTime());

}
return matchFound;

}

A record enumeration can return either the unique record ID or the
record itself; the DAO must fetch both. The following code enumerates
the unique record IDs and explicitly retrieves each expense record before
placing it into a Vector ready to be returned to the caller.

// ExpenseDAO enumerateExpenses() method

private Vector enumerateExpenses(ExpenseFilter filter)

throws DAOException {
Vector expenseList = new Vector();

try {
// create an enumeration of the records that we need

RecordEnumeration enum = rs.enumerateRecords(filter, null, false);

// enumerate the record ids and use them to retrieve the expenses

while (enum.hasNextElement()) {
Expense expense = get(enum.nextRecordId());

expenseList.addElement(expense);

}
} catch (Exception e) {

// failed to enumerate records...

throw new DAOException("Failed to enumerate expenses, cause " + e);

THE EXPENSE APPLICATION 269

}
return expenseList;

}

5.2.6 Synchronization
At the heart of the expense MIDlet is the exchange of information between
the client device and the server. Without synchronization, expenses could
not advance through the workflow from creation to approval or rejection.
Prior to using the expense MIDlet for the first time a user must enter
the synchronization server details; this allows the first synchronization to
take place so any existing expenses can be retrieved and the user’s role
is known.

The synchronization occurs when the Synchronize command is
selected from the menu. A form is displayed with some animation
to show progress while a worker thread is created to undertake the
synchronization process.

5.2.6.1 Animation of Synchronization Form

The synchronization form is simple, as can be seen in Figure 5.8. The
animation is achieved by scheduling a java.util.TimerTask that
updates the current image in the form. The timer task is implemented as
an anonymous inner class.

When the form is created the startSync()method, starts the worker
thread and schedules the timer task. The timer task has two purposes: to
animate the image on the form by cycling through a set of images loaded
during the form creation and to check if the worker thread has terminated.
Once the thread has terminated, its status is checked to determine the
success or failure of the operation. The animation timer task is scheduled

Figure 5.8 Synchronization form.

270 MIDP 2.0 CASE STUDIES

to trigger after 1
2 second and then every 1

2 second after that. This can be
seen at the end of the method where the timing parameters appear after
the inner class definition.

// SynchronizeForm startSync() method
private void startSync() {

timer = new Timer();
// start sync thread
Synchronizer = new SynchronizeThread(settings);
workerThread = new Thread(Synchronizer);
workerThread.start();
//schedule a timer for animation and to check if sync complete
timer.schedule(new TimerTask() {

public void run() {
// animate
currentImage = (currentImage + 1) % syncImages.length;
syncAnimation.setImage(syncImages[currentImage]);
// is sync operation complete??
if (!workerThread.isAlive()) {

timer.cancel();
// inform the user of the sync result, use the next
// displayable param to go back to the main form.
// so was there a problem?
if (Synchronizer.getErrorMessage() != null) {

// let the user know about the problem
ExpenseMIDlet.alert(

"Failed to Synchronize: "
+ Synchronizer.getErrorMessage(),
AlertType.ERROR,
MainForm.getInstance());

} else {
// update the last sync date information
settings.syncCompleted(Synchronizer.getSyncId());
ExpenseMIDlet.alert(

"Synchronization complete!",
AlertType.INFO,
MainForm.getInstance());

}
}

}
}, 500, 500);

}

5.2.6.2 Synchronization Worker Thread

The synchronization thread implements the java.lang.Runnable
interface; the implementation of the run() method has been included
below. Synchronization has three steps: check for change of user or
server, synchronize information and remove unneeded expenses from
the device.

// SynchronizationThread run() method
public void run() {

try {

THE EXPENSE APPLICATION 271

// are we changing user (sync required set)?
// sync expenses before clearing followed by normal sync of user
// & expenses from sync id of 0
if (settings.isNeedToSync()) {

// sync the expense information
SynchronizeExpense();
// remove all expenses from phone
ExpenseDAO.getInstance().removeAll();
// reset sync id to ensure complete info sent
syncId = oldSyncId = 0;

}
// Synchronize the person information
SynchronizePerson();
// sync the expense information
SynchronizeExpense();
// remove all expenses that are no longer required.
// i.e. if we are not the owner & state != SUBMITTED then remove!
Vector expenseList =

ExpenseDAO.getInstance().getExpenses(null, false, null);
for (int i = expenseList.size() - 1; i >= 0; i--) {

Expense expense = (Expense)expenseList.elementAt(i);
if ((expense.getOwnerId() != settings.getUserId())

&& (expense.getState() != Expense.STATE_SUBMITTED)) {
// remove this expense as we no longer need it!!
ExpenseDAO.getInstance().remove(expense);

}
}

} catch (Exception e) {
// set error code
errorMessage = e.getMessage();

}
}

If the current user or synchronization server address has changed
then a complete synchronization must occur. Any updated expenses on
the device should be uploaded and the device’s record store purged in
preparation for new information that will be received from a complete
synchronization. As complete and partial synchronization use the same
code, a synchronization ID is used to differentiate between the two
operations. During a complete synchronization the last synchronization
ID is set to 0; in a partial synchronization a unique ID received from the
server during the last synchronization is used so that only the updated
information is exchanged. In the run()method the isNeedToSync call
is used to determine whether a complete synchronization is required.

The exchange of information takes place in the SynchronizePerson
and SynchronizeExpense() method calls. Each method packages
and submits the information to the server, each request sent starts with
the current user ID and the last synchronization ID. The server response
includes a new globally unique synchronization ID for use during the
next synchronization. The code that handles the request and response is
discussed later.

The final operation in the synchronization is to remove all expenses
that are no longer needed on the device; these include other users’

272 MIDP 2.0 CASE STUDIES

expenses that have been approved or rejected by the current user acting
in the budget holder role.

The synchronization thread communicates with the server using the
HTTP protocol. XML formatted requests that contain all the information
that the device wishes to exchange are sent. After processing the request,
the server formats an XML response containing updates.

XML is space inefficient; many additional bytes are required to encode
information. So why use XML in an environment where memory is at a
premium and the network connections are slow? XML is convenient, it
is easy to validate and there are many existing tools and APIs to simplify
its use, allowing the expense application prototype to be created in the
minimum of time.

The javax.microedition.io.HttpConnection class is used
for the server communication. Requests to the server use a utility method,
sendMessageToServer(), that has a single parameter containing the
XML request to be sent. An HttpConnection is opened to the server
URL and the XML request sent via the connection’s OutputStream.

The response is read into a StringBuffer before being returned
to the caller. If there is an error then an exception is thrown that will
eventually find its way back to the synchronization form to be presented
to the user.

// SynchronizationThread sendMessageToServer() method
private String sendMessageToServer(String message)

throws IOException, ServerCommException {
StringBuffer sb = new StringBuffer();
HttpConnection connection = null;
InputStream is = null;
// open connection
connection = (HttpConnection)Connector.open(settings.getSyncServer());
// send message to server
OutputStream os = connection.openOutputStream();
os.write(message.getBytes());
os.close();
// make sure we got a good response code, i.e. >= 200 && < 300
if ((connection.getResponseCode() >= 200)

&& (connection.getResponseCode() < 300)) {
is = connection.openInputStream();
byte[] buffer = new byte[512];
int bytesRead = 0;
while (-1 != (bytesRead = is.read(buffer, 0, 512))) {

sb.append(new String(buffer, 0, bytesRead));
}

} else {
// error of some kind
throw new ServerCommException(

"Server communications error: "
+ connection.getResponseCode()
+ ", "
+ connection.getResponseMessage());

}
// close connection.

THE EXPENSE APPLICATION 273

connection.close();
return sb.toString();

}

5.2.6.3 Format of Synchronization Message

An XML schema was created for the interaction between the client device
and the server. This allowed the XML to be validated as well as allowing
the server side parsing code to be generated using JAXB, the Java API for
XML Binding. The schema is shown below.

<xsd:schema xmlns:xsd="www.w3.org/2001/XMLSchema">
<xsd:element name="etsync" type="ExpenseTrackerSync"/>
<xsd:complexType name="ExpenseTrackerSync">

<xsd:sequence>
<xsd:element name="req" type="ExpenseTrackerRequest"

minOccurs="0" />
<xsd:element name="resp" type="ExpenseTrackerResponse"

minOccurs="0" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="ExpenseTrackerRequest">

<xsd:sequence>
<xsd:element name="userupdate" type="UpdateUser" minOccurs="0"

maxOccurs="1" />
<xsd:element name="expense" type="PhoneExpense" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="lastSyncId" type="xsd:integer" />
<xsd:attribute name="userId" type="xsd:integer" />

</xsd:complexType>
<xsd:complexType name="ExpenseTrackerResponse">

<xsd:sequence>
<xsd:element name="mainuser" type="User" minOccurs="0"

maxOccurs="1" />
<xsd:element name="subord" type="User" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="expense" type="PhoneExpense" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="sid" type="xsd:integer" />

</xsd:complexType>
<xsd:complexType name="UpdateUser">

<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:complexType name="PhoneExpense">

<xsd:sequence>
<xsd:element name="owner" type="xsd:integer" minOccurs="1"

maxOccurs="1" />
<xsd:element name="state" type="xsd:integer" minOccurs="1"

maxOccurs="1" />
<xsd:element name="type" type="xsd:integer" minOccurs="1"

maxOccurs="1" />
<xsd:element name="receiptdate" type="xsd:date" minOccurs="1"

maxOccurs="1" />
<xsd:element name="amount" type="xsd:integer" minOccurs="1"

274 MIDP 2.0 CASE STUDIES

maxOccurs="1" />
<xsd:element name="currency" type="xsd:string" minOccurs="1"

maxOccurs="1" />
<xsd:element name="vatpercentage" type="xsd:integer"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="project" type="xsd:integer" minOccurs="1"

maxOccurs="1" />
<xsd:element name="dept" type="xsd:integer" minOccurs="1"

maxOccurs="1" />
<xsd:element name="createdate" type="xsd:dateTime"

minOccurs="1" maxOccurs="1" />
<xsd:element name="lastsyncid" type="xsd:integer"

minOccurs="1" maxOccurs="1"/>
<xsd:element name="ownernotes" type="xsd:string" minOccurs="1"

maxOccurs="1" />
<xsd:element name="bhnotes" type="xsd:string" minOccurs="1"

maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="User">

<xsd:attribute name="id" type="xsd:int" use="required"/>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:schema>

On the device, XML requests are encoded by appending to a string
buffer. There is no need to use an XML library: it overcomplicates the
process and increases memory overhead. The kXML library was used to
parse the XML responses on the device. It is designed to run under MIDP
and has a small memory footprint. The library can be downloaded from
http://xmlpull.org.

5.2.6.4 Parsing XML using kXML

The kXML parser is simple to use, once an InputStream has been set.
Parsing involves iterating through events in the XML stream. An event
includes beginning and end tags, elements and attributes. While parsing,
getName gets the tag name and getAttributeValue gets a named
attribute from the current tag. For tags that have text between a start and
end tag, the getNext() method must be used – the text is considered
another event.

The code below shows the kXML parser in action. In this example
all information is made up of attributes within tags, so the parser’s
getNext() method is not used for retrieving text (see processEx-
penseResponse in the midlet.sync.SynchronizeThread class
for an example of its usage).

// SynchronizationThread processPersonResponse() method

private void processPersonResponse(String reply)

throws IOException, XmlPullParserException, DAOException {
KXmlParser parser = new KXmlParser();

THE EXPENSE APPLICATION 275

// turn the reply into a input stream for the xml parser...

ByteArrayInputStream bais = new ByteArrayInputStream(reply.getBytes());

parser.setInput(bais, null);

int eventType = parser.getEventType();

while (eventType != KXmlParser.END_DOCUMENT) {
if (eventType == KXmlParser.START_TAG) {

// the information we want is always in the attributes, parsing

// is simple: if it’s a tag we are interested in then get

// the information, otherwise ignore!

int tagId = 0; // id == 1 for main user, 2 == subordinate

if (parser.getName().equals(TAG_PERSON_MAIN)) {
// main user, ensure they are the first person

tagId = 1;

} else if (parser.getName().equals(TAG_PERSON_SUBORD)) {
// subordinate person, ensure they are in the RMS

tagId = 2;

} else if (parser.getName().equals(TAG_RESPONSE)) {
syncId = Long.parseLong(parser.getAttributeValue("",

TAG_RESPONSE_SYNCID));

}

// are we doing some processing??

if (tagId != 0) {
// get the attributes and do some more work

String name = parser.getAttributeValue("", TAG_PERSON_NAME);

short id = Short.parseShort(parser.getAttributeValue("",

TAG_PERSON_ID));

short bhId = -1;

if (tagId == 1) {
// remove current users

...

} else {
// sub ord instead of main user.

bhId = settings.getUserId();

}
// ensure the RMS is update to date...

...

}
}

eventType = parser.next();

}
bais.close();

}

5.2.6.5 Message Exchange Example

An example of the XML request and response messages from a synchro-
nization operation now follows.

The first request and response is for a user that is using a device for
the first time. The request includes the name the user entered into the
application settings and the response includes the user’s unique ID and
any claimants, of which there are none in this instance.

276 MIDP 2.0 CASE STUDIES

<etsync>
<req lastSyncId="0" userId="0">

<userupdate name="Yossarian" />
</req>

</etsync>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<etsync>

<resp sid="424">
<mainuser name="Yossarian" id="2">
</mainuser>

</resp>
</etsync>

The next exchange retrieves the expenses that already exist for the
user. Note how the last sync ID remains 0 for the request to ensure that
all expenses are exchanged:

<etsync>
<req lastSyncId="0" userId="2">
</req></etsync>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<etsync>

<resp sid="425">
<expense>

<owner>2</owner>
<state>4</state>
<type>0</type>
<receiptdate>2003-06-09+00:00</receiptdate>
<amount>1299</amount>
<currency>£ </currency>
<vatpercentage>1750</vatpercentage>
<project>3</project>
<dept>2</dept>
<createdate>2003-06-11T19:52:46.000+00:00</createdate>
<lastsyncid>367</lastsyncid>
<ownernotes>one</ownernotes>
<bhnotes></bhnotes>

</expense>
<expense>

<owner>2</owner>
<state>2</state>
<type>2</type>
<receiptdate>2003-06-16+00:00</receiptdate>
<amount>2197</amount>
<currency>$ </currency>
<vatpercentage>1750</vatpercentage>
<project>0</project>
<dept>0</dept>
<createdate>2003-06-16T08:55:21.000+00:00</createdate>
<lastsyncid>381</lastsyncid>
<ownernotes></ownernotes>
<bhnotes></bhnotes>

</expense>
</resp>

</etsync>

THE EXPENSE APPLICATION 277

The final XML request shows a new expense claim being submitted to
the server:

<etsync>
<req lastSyncId="436" userId="2">

<expense>
<owner>2</owner>
<state>2</state>
<type>0</type>
<receiptdate>2003-12-09</receiptdate>
<amount>1299</amount>
<currency>£</currency>
<vatpercentage>1750</vatpercentage>
<project>0</project>
<dept>0</dept>
<createdate>2003-12-09T11:22:20</createdate>
<lastsyncid>437</lastsyncid>
<ownernotes>hello world</ownernotes>
<bhnotes></bhnotes>

</expense>
</req>

</etsync>

A discussion of how the requests are processed on the server takes
place in the next section.

5.2.7 Implementation of the Web Server Components

Apache Tomcat is used to provide the server functionality for the expense
application. Java Server Pages (JSP) are used in conjunction with Jav-
aBeans to provide a view of existing expenses. A servlet is used for
the synchronization process. This section gives an overview of the web
application.

Figures 5.9 and 5.10 are examples of the main web pages for the
expense application. The first image shows all the expenses in the system
for a single user, the second shows the full details of an expense item.

The web application uses a relational database management system
(RDBMS) to store the expenses and user information. The schema for
the database has just three tables. A homegrown library is used to
simplify the database code, allowing a simple mapping of a database
table to a Java class. See the source code on the support website at
www.symbian.com/books for more information.

The most complex part of the server is the synchronization servlet. All
XML parsing uses the Java API for XML Binding (JAXB). JAXB was used to
create a class hierarchy from the XML schema: if the schema changes the
classes can be automatically regenerated as part of the build process to
ensure that they always correctly map to the XML stream.

When the servlet receives a synchronization request, JAXB is used to
unmarshal the information into an object hierarchy that is used to process

278 MIDP 2.0 CASE STUDIES

Figure 5.9 Expenses list for a user.

Figure 5.10 Expense item details.

the request. A response is built by creating an object hierarchy from
classes generated by JAXB. Once processing is complete, the response
hierarchy is marshaled into an XML stream and sent back to the device.
The synchronization servlet does not handle any XML directly.

JAXB is available from Sun as part of the Java Web Services Toolkit.

THE EXPENSE APPLICATION 279

5.2.8 Building the MIDlet
This next section details the build and run scripts that were used during
the development. The scripts are modified versions of batch files that are
included with Sun’s Wireless Toolkit.

5.2.8.1 Build Script

The build script performs the following operations:

1. It builds the Java source into class files.

2. It packages the classes into a Java archive (JAR).

3. It reduces the application size using obfuscation.

4. It pre-verifies the application ready for deployment.

5. It updates the Java application descriptor (JAD) file with the correct
application JAR file size.

Building the Class Files
Sun’s Java Development Kit (JDK) is used to build the class files from the
Java source files. The javac command line is fairly standard apart from
an additional parameter to specify that the J2ME libraries should be used
to provide the bootstrap classes:

javac -bootclasspath %WTK_HOME%\lib/midpapi.zip -d build\classes
-classpath build\classes src/java/org/xmlpull/v1/*.java
src/java/org/kxml2/io/*.java src/java/midlet/utils/*.java
src/java/midlet/model/*.java src/java/midlet/view/*.java
src/java/midlet/uitools/*.java src/java/midlet/sync/*.java

Packaging into a Java Archive
An application JAR file is created from the classes. The obfuscation
process requires separate input and output JAR files. For this reason an
intermediate filename of ExpenseTrackerTemp.jar is used for the
initial packaging operation.

jar cmf src\meta\MANIFEST.MF build\ExpenseTrackerTemp.jar
-C build\classes .

Obfuscating
Obfuscation must be performed prior to pre-verification. If pre-verification
is performed first, the obfuscation process invalidates the pre-verification
checksums and the MIDlet will not run.

Sun’s Wireless Toolkit ships with the Proguard obfuscation library (see
http://proguard.sourceforge.net). To use Proguard, a configuration file

280 MIDP 2.0 CASE STUDIES

must be created that contains the options for the obfuscation process.
The file is passed to Proguard as a command line parameter, as follows.
If obfuscation is not required, the command should be commented out of
the build script.

java -jar lib\proguard.jar @proguard.txt

The contents of the configuration file, proguard.txt, follow:

-libraryjars /wtk20/lib/midpapi.zip
-injars build/ExpenseTrackerTemp.jar
-outjar build/ExpenseTracker.jar
-keep public class * extends javax.microedition.midlet.MIDlet

Pre-verifying the Application
The standard Java runtime performs verification of classes prior to launch-
ing a Java application, to ensure that class files are well-formed and do
not contain any malicious code. MIDP specifies that a MIDlet should
be pre-verified prior to deployment, allowing the MIDP implementation
on the wireless device to be reduced in size. Sun’s Wireless Toolkit is
supplied with a tool to perform pre-verification; the following command
line shows this operation in the build script:

%WTK_HOME%\bin\preverify -classpath
%WTK_HOME%\lib\midpapi.zip;build\tmpclasses build\ExpenseTracker.jar

Updating the JAD File
The final step in creating a deployable MIDlet is to update the JAD file
with the size of the application JAR. The JAD file contains configuration
information that a device requires for installing, managing and running a
MIDlet, such as the MIDlet’s main class and vendor information. A small
Java program was created to embed the size into a template file and write
out the expense application’s JAD. The command in the build script is
as follows:

java -cp . SizeEncoder build\ExpenseTracker.jar

The JAD template file is as follows (the $size$ token is replaced with
the size of the JAR file when the template is used):

MIDlet-1: Expenses,,midlet.view.ExpenseMidlet
MIDlet-Jar-Size: $size$
MIDlet-Jar-URL: ExpenseTracker.jar
MIDlet-Name: Expenses

THE EXPENSE APPLICATION 281

MIDlet-Vendor: Symbian IS
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0

5.2.8.2 Run Script

The run script has only one line of real interest: the line that launches the
expense MIDlet in Sun’s emulator. There are a number of useful parame-
ters available when using the emulator; for example, –Xheapsize sets
the maximum heap size and allows a MIDlet to be tested in different
memory conditions. The emulator skin can be set using the –Xdevice
parameter; the skin name should mirror the directory name of the skin in
the Wireless Toolkit’s wtklib directory. In the following example, the
Sony Ericsson P900 skin would be used. Default values are used for any
parameters not set on the command line but they can be changed using
the Preferences application in the toolkit.

%WTK_HOME%\bin\emulator -classpath build\ExpenseTracker.jar -
Xdescriptor:build\ExpenseTracker.jad -Xheapsize:192k -
Xdevice:SonyEricsson_P900

Sun’s emulator makes output from the System.out andSystem.err
streams visible on the console when running a MIDlet, providing a good
source of debugging information. On the device this output is not gener-
ally available. Fortunately, the behavior of the device is usually consistent
with the emulator. Several bugs found on a device when developing the
expense application were reproducible using the emulator.

To run an application on a wireless device, the MIDlet must first be
installed. The documentation for each device must be consulted for the
correct installation instructions.

5.2.9 Summary

We have demonstrated how an expense claim application can be written
and have shown some of the techniques that are essential to the success
of MIDlets.

As the number of devices that ship with MIDP 2.0 increases, it will
become a compelling platform. The inclusion of key features such as
custom items and enhanced networking now means that MIDP is ready
for the creation of enterprise applications in addition to the games that
are currently common.

Full source code for this application can be downloaded from www.
symbian.com/books.

282 MIDP 2.0 CASE STUDIES

5.3 The Demo Racer Game
In this case study we will look at a sample application using the Game
API. The Demo Racer MIDlet demonstrates how the Game API can be
used to build rich gaming content (see Figure 5.11).

This sample application illustrates the use of LayerManager to man-
age a complex composite scene of layers (a TiledLayerbackground and
Sprites) and also demonstrates the use of collision detection between
the sprites (the car with the puddle and the car with the start–finish line).
A UML class diagram of the application is shown in Figure 5.12.

We will discuss the application class by class, starting with the layers
that make up the scene.

Figure 5.11 The Demo Racer MIDlet running on a Nokia 6600.

5.3.1 The Background Class

package demoracer;

import javax.microedition.lcdui.game.*;
import javax.microedition.lcdui.*;
public class Background extends TiledLayer {

static final int WIDTH = 5;
static final int HEIGHT = 5;
static final int TILE_WIDTH = 60;

THE DEMO RACER GAME 283

static final int TILE_HEIGHT = 47;

static int xMove = -2;

static int yMove = 0;

public Background(int columns, int rows, Image image, int tileWidth,

int tileHeight) {
super(columns, rows, image, tileWidth, tileHeight);

// the array which is the tile map for the tiledlayer

int[] map = {
4,4,4,4,4,

5,5,5,5,5,

3,3,3,3,3,

1,2,1,2,1,

3,3,3,3,3

};

// insert the tiles into the tiled layer using the setCell() method

for (int i = 0; i < map.length; i++) {
int column = i % WIDTH;

int row = (i - column) / WIDTH;

setCell(column, row, map[i]);

}
}

public void tick(){
move(xMove,yMove);

if (this.getX() == (this.getCellWidth() * -2)) {
setPosition(0, 0);

}
}

}

javax.microedition.lcdui.game.GameCanvas javax.microedition.lcdui.game.Layer

javax.microedition.lcdui.game.TiledLayer javax.microedition.lcdui.game.SpriteRacerMidlet

StartFinishBackground

RacerLayerManager

CarPuddle
RacerCanvas

Figure 5.12 UML class diagram of the Demo Racer MIDlet.

284 MIDP 2.0 CASE STUDIES

Figure 5.13 The image used to build up the background layer.

Figure 5.14 The background layer.

The constructor takes the image shown in Figure 5.13, consisting of
five tiles, each of 60 × 47 pixels.

This is then used to construct the background layer (Figure 5.14),
which consists of a grid of 5 × 5 cells.

For each application redraw cycle, the tick() method is called to
move the position of the TiledLayer two pixels to the left (i.e. −2)
relative to the co-ordinate system of the object upon which it is ultimately
rendered (in this case the GameCanvas). When the TiledLayer has
been offset by an amount equal to the width of two cells of the background
grid (120 pixels requiring 60 redraw cycles – enough for the pattern to
repeat itself), the position of the TiledLayer is re-set to the origin of the
co-ordinate system of the rendering object.

5.3.2 The Puddle Class
A Puddle is an instance of Sprite to facilitate easy collision detection.
The Puddle Sprite is created from an image consisting of just one
frame (Figure 5.15).

Figure 5.15 The image used to build up the puddle Sprite.

THE DEMO RACER GAME 285

package demoracer;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.game.Sprite;

public class Puddle extends Sprite {

static final int FRAME_COLS = 1;

static final int FRAME_WIDTH = 1;

private int xInitial;

private int yInitial;

private int repPeriod

public Puddle(Image image, int width, int height, int x, int y) {
super(image, width, height);

setPosition(x, y);

xInitial = x;

yInitial = y;

repPeriod = 2*Background.TILE_WIDTH;

}

public void tick() {
if (repPeriod == 0) {

setPosition(xInitial, yInitial);

repPeriod = 2*Background.TILE_WIDTH;

} else{
move(Background.xMove, Background.yMove);

}

// set visible to false if it is off screen

if(getX() + getWidth() <= 0) {//definitely outside Canvas clip area

setVisible(false);

} else {
if(!isVisible()) {

setVisible(true);

}
}

repPeriod--;

}

}

The tick() method, called by the application clock, moves the
puddle Sprite in step with the background layer, so that the puddles
appear to remain stationary on the race track. The cycle length of 120
(repPeriod = 2*Background.CELL_WIDTH) is half that required to
complete a lap, so the puddle appears twice per lap. At the end of
the cycle the puddle is repositioned with setPosition(xInitial,
yInitial) (remember setPosition positions the Sprite in the
co-ordinate system of the painting object, here a GameCanvas). When
the puddle Sprite is definitely outside the clip area displayed by the
Canvas, its visibility is set to false.

286 MIDP 2.0 CASE STUDIES

Figure 5.16 The image used to build the Sprite for the start–finish line.

5.3.3 The StartFinish Class
This is similar to Puddle, again extending Sprite to facilitate ease of
collision detection. Once more, the Sprite is created from an image
consisting of a single frame (Figure 5.16).

package demoracer;

import javax.microedition.lcdui.Image;

import javax.microedition.lcdui.game.Sprite;

public class StartFinish extends Sprite {
static final int FRAME_COLS = 1;

static final int FRAME_WIDTH = 1;

private int xInitial;

private int yInitial;

private int repPeriod;

private boolean lapComplete = false;

public StartFinish(Image image, int width, int height, int x, int y) {
super(image,width,height);

this.setPosition(x,y);

xInitial = x;

yInitial = y;

repPeriod = 4*Background.TILE_WIDTH;

}

public boolean getLapComplete(){return lapComplete;}
public void setLapComplete(boolean bln){lapComplete = bln;}

public void tick() {
if (repPeriod == 0) {

setPosition(xInitial, yInitial);

repPeriod = 4*Background.TILE_WIDTH;

} else{
move(Background.xMove, Background.yMove);

}

// set to invisible if the sprite is off screen.

if(getX() + getWidth() <= 0) {//definitely outside Canvas clip area

setVisible(false);

} else {
if(!isVisible()) {

setVisible(true);

}
}

repPeriod--;

}

}

THE DEMO RACER GAME 287

Atick()method is called by the application clock to keep the position
of the start finish line in step with the background layer (and thus appear to
remain stationary on the race track). The cycle length of 240 (repPeriod
= 4*Background.CELL_WIDTH) defines the length of a lap.

5.3.4 The Car class

package demoracer;
import javax.microedition.lcdui.Image;
import javax.microedition.lcdui.game.Sprite;
public class Car extends Sprite {

static final int RAW_FRAMES = 4;
static final int DRIVE_NORMAL = 0;
static final int DRIVE_WET = 1;
private int frameOrder[][] = {{0, 1}, {2, 3}};
private StartFinish startFinish;
private Puddle puddle;
private RacerLayerManager layerManager;
private int puddleCount;
private boolean wet = false;

public Car(Image image, int width, int height, int x, int y,
RacerLayerManager layerManager) {

super(image, width, height);
setFrameSequence(frameOrder[DRIVE_NORMAL]);
setPosition(x, y);
defineCollisionRectangle(getWidth()-1,0,1,getHeight());
layerManager = layerManager;
puddle = layerManager.getPuddle();
startFinish = layerManager.getStartFinish();

}

public void tick() {
checkCollisions();
nextFrame();

}

public void checkCollisions() {
if(startFinish.isVisible()) {

if (this.collidesWith(startFinish, true)) {
startFinish.setLapComplete(true);

} else {
startFinish.setLapComplete(false);

}
}
if(puddle.isVisible()) {

if (!wet && this.collidesWith(puddle, true)) {
setFrameSequence(frameOrder[DRIVE_WET]);
puddleCount = puddle.getWidth()/2;
wet = true;

} else if (--puddleCount == 0) {
setFrameSequence(frameOrder[DRIVE_NORMAL]);
wet = false;

}
}

}
}

288 MIDP 2.0 CASE STUDIES

Figure 5.17 The image used to build up the car Sprite.

The constructor creates the Sprite from an image consisting of four
frames (Figure 5.17).

The top two frames generate the car moving in the dry. The bottom
two frames generate the car in the wet (as it moves through the puddle).

On each application cycle, the tick() method is invoked to check
for collisions with the Puddle and the StartFinish sprites. If the car
is in collision with the puddle the set of frames used to generate the
moving car is switched from the dry to the wet. If the car intersects with
the start–finish line, a flag is set. Collision detection is on a pixel level
basis, e.g. collidesWith(puddle, true). If opaque pixels within
the collision rectangle of the Sprite (by default the dimensions of the
Sprite unless explicitly set) collide with opaque pixels of the target
Sprite then a collision is detected.

5.3.5 The RacerLayerManager Class
Now that we have introduced the Layers that make up the application,
let’s look at the RacerLayerManager class that manages the rendering
of the composite scene.

package demoracer;
import javax.microedition.lcdui.game.*;
import javax.microedition.lcdui.*;
import java.io.IOException;
public class RacerLayerManager extends LayerManager {

private Background backGround;
private Car car;
private Puddle puddle;
private StartFinish startFinish;
private int xWindow;
private int yWindow;
private RacerGameCanvas gameCanvas;
private final String LAP_COMPLETE = "Lap Complete";
private final String PAUSED = "PAUSED";
private int yOffset = 0;
private int xOffset = 0;
private Font font = Font.getFont(Font.FACE_PROPORTIONAL,

Font.STYLE_BOLD, Font.SIZE_LARGE);

public RacerLayerManager(RacerGameCanvas gameCanvas)
throws IOException {

// get the GameCanvas and set it to full screen mode
this.gameCanvas = gameCanvas;

THE DEMO RACER GAME 289

gameCanvas.setFullScreenMode(true);
// create the sprites and then add them to the layer manager
backGround = createBackground();
startFinish = createStartFinishSprite();
puddle = createPuddleSprite();
car = createCarSprite();
append(car);
append(puddle);
append(startFinish);
append(backGround);

}

// move the sprite objects on to the next frame.
public void tick() {

backGround.tick();
car.tick();
puddle.tick();
startFinish.tick();

}

public Puddle getPuddle(){return puddle;}
public StartFinish getStartFinish(){return startFinish;}

// this draws all the Sprites to the display
public void draw(Graphics g) {

g.setClip(0,0,gameCanvas.getWidth(),gameCanvas.getHeight());
paint(g, xOffset, yOffset);
drawMessage(g);

}

private void drawMessage(Graphics g) {
int x;
int y;
g.setFont(font);
// draw a "lap complete" message on screen according to the
// toggle.
if(startFinish.getLapComplete()) {

g.setColor(200,0,0);
x = gameCanvas.getWidth()/2;
y = gameCanvas.getHeight()/2;
g.setClip(0,y, gameCanvas.getWidth(), font.getHeight());
g.drawString(LAP_COMPLETE,x,y,Graphics.TOP|Graphics.HCENTER);

}

if(!gameCanvas.isRunning()) {
g.setColor(200,0,0);
x = gameCanvas.getWidth()/2;
y = gameCanvas.getHeight() / 2;
g.drawString(PAUSED, x, y, Graphics.TOP | Graphics.HCENTER);

}

// draw the "Exit" button on the screen
x = 0;
g.setColor(0,0,0);
y = gameCanvas.getHeight()-font.getHeight();
g.setClip(0,y, gameCanvas.getWidth(), font.getHeight());
g.drawString("Exit",2,y,Graphics.TOP|Graphics.LEFT);

290 MIDP 2.0 CASE STUDIES

y = 20;
g.setClip(0,y, gameCanvas.getWidth(), font.getHeight());

}

private Background createBackground() throws IOException {
Image image = Image.createImage("/background.png");
return new Background(Background.WIDTH, Background.HEIGHT, image,

Background.TILE_WIDTH, Background.TILE_HEIGHT);
}

private Car createCarSprite() throws IOException {
Image image = Image.createImage("/car.png");
int width = image.getWidth() / 2;
int height = image.getHeight() / 2;
int x = gameCanvas.getWidth()/5;
int y = backGround.getCellHeight()*4-(int)(height*2);
return new Car(image, width, height, x, y, this);

}

public StartFinish createStartFinishSprite() throws IOException {
Image image = Image.createImage("/startfinish.png");
int width = image.getWidth() / StartFinish.FRAME_COLS;
int height = image.getHeight() / StartFinish.FRAME_WIDTH;
int x = backGround.getCellWidth() * 4;
int y = backGround.getCellHeight() * 3;
return new StartFinish(image, width, height, x, y);

}

public Puddle createPuddleSprite() throws IOException {
Image image = Image.createImage("/puddle.png");
int width = image.getWidth() / Puddle.FRAME_COLS;
int height = image.getHeight() / Puddle.FRAME_WIDTH;
int x = backGround.getCellWidth() * 3;
int y = backGround.getCellHeight() * 3;
return new Puddle(image, width, height, x, y);

}
}

The RacerLayerManager constructor creates the Background
instance, and instances of the Car, Puddle and StartFinish sprites.
These are appended to the RacerLayerManager instance, with the
Car Sprite being appended first (lowest z-value) and the Background
last (highest z-value).

The tick()method, invoked by the application clock, simply invokes
the corresponding tick() methods of the managed layers. The other
major function of the RacerLayerManager is to render the view of the
composite scene. This is performed in the draw() method:

public void draw(Graphics g) {
g.setClip(0,0,gameCanvas.getWidth(),gameCanvas.getHeight());
paint(g, xOffset, yOffset);
drawMessage(g);

}

THE DEMO RACER GAME 291

This takes a Graphics object, g (from the RacerGameCanvas) and
uses it to set the clip area equal to the dimensions of the Canvas. To
render the composite view, the paint() method of LayerManager is
invoked. Additionally, the drawMessage() method is called to add the
‘‘Lap Complete’’ message to the scene when a lap has been completed.

The scene is rendered to screen in the RacerGameCanvas class:

package demoracer;
import javax.microedition.lcdui.game.*;
import javax.microedition.lcdui.*;
import java.io.IOException;
public class RacerGameCanvas extends GameCanvas implements Runnable {

private RacerMidlet midlet;
private RacerLayerManager layerManager;
private Thread thread;
private boolean running;
private final int SLEEP = 0;

public RacerGameCanvas(RacerMidlet midlet) throws IOException {
super(false);
this.midlet = midlet;
layerManager = new RacerLayerManager(this);

}

public boolean isRunning(){return running;}

synchronized void start() {
running = true;
thread = new Thread(this);
thread.start();

}

public void run() {
Graphics graphics = getGraphics();
try {

while (running) {//repaints at equal time intervals
long start = System.currentTimeMillis();
// draw the current frame for each Sprite on screen
paint(graphics);
flushGraphics();
// set the next frame to be displayed.
layerManager.tick();
long end = System.currentTimeMillis();
long snooze = SLEEP-(end-start);
if (snooze > 0) {

Thread.sleep(snooze);
}

}
}catch(InterruptedException ie) {

System.out.println(ie.toString());
}

}

synchronized void stop() {
running = false;

}

292 MIDP 2.0 CASE STUDIES

public void paint(Graphics g) {
layerManager.draw(g);

}

public void keyPressed(int keyCode) {
if(keyCode == -6) {

midlet.releaseResource();
midlet.notifyDestroyed();

}
}

}

This class extends GameCanvas and hence renders the game onto a
Canvas using double buffering. The class renders the game in a new
Thread using the run() method. Each cycle renders the graphics and
then calls the tick() method of RacerLayerManager to move on
to the next frame of the scene. The way in which the while loop is
written ensures that the graphics are rendered at equal time intervals so
that the game speed does not depend on how long individual paint(),
flushGraphics() or tick() methods take to complete.

The implementation of the GameCanvas paint() method simply
calls the draw() method of LayerManager, passing in the Graphics
object.

The RacerGameCanvas also accepts user input via the keyPres-
sed() method of GameCanvas to exit the application.

5.3.6 The RacerMIDlet Class

package demoracer;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import java.io.IOException;
public class RacerMidlet extends MIDlet{

private RacerGameCanvas gameCanvas;
private Display display;
private Displayable displayable;

public RacerMidlet() {
// get the current display context.
display = Display.getDisplay(this);

}

protected void startApp() {
// get the Canvas and then set it as the current display
try {

getCanvasDisplay();
display.setCurrent(displayable);

}catch(Exception e) {
Alert alert = new Alert("Error", e.getMessage(), null,

THE DEMO RACER GAME 293

AlertType.ERROR);
display.setCurrent(alert);
try {

Thread.sleep(2000);
}catch (InterruptedException ie) {

}
notifyDestroyed();

}
}

protected void pauseApp() {
if(displayable != null) {

display.setCurrent(displayable);
}
releaseResource();

}

protected void destroyApp(boolean unconditional) {
releaseResource();

}

public void releaseResource() {
if(gameCanvas != null) {

gameCanvas.stop();
}

}

private void getCanvasDisplay() throws Exception{
try{

// if there is no canvas then create one
if(gameCanvas == null) {

gameCanvas = new RacerGameCanvas(this);
}
// if the canvas is not running then start it
if(!gameCanvas.isRunning()) {

gameCanvas.start();
}
//set the canvas as the "global" displayable object
displayable = gameCanvas;

}catch(IOException ioe) {
throw new Exception("Unable to load image!!");

}
}

}

This implements the MIDlet lifecycle methods in such a way as
to release resources (notably stopping the RacerGameCanvas clock
thread) when the AMS causes the MIDlet to move into the PAUSED
state. Similarly, calling startApp will cause the MIDlet to resume
where it left off if it was previously put into the PAUSED state by a call
to pauseApp.

The full source code for the Demo Racer MIDlet is available to
download from Symbian’s website at www.symbian.com/books.

294 MIDP 2.0 CASE STUDIES

5.4 The Picture Puzzle

This case study describes a simple game that uses the Mobile Media
API to take photographs using a camera phone. The sample MIDlet also
illustrates using the RMS store to save, load and delete persistent records
and makes use of a TiledLayer from the Game API.

The Picture Puzzle MIDlet is a variation on the familiar Mix Pix native
application that ships on Nokia Series 60 phones. In this sample MIDlet
we use the on-board camera to capture a snapshot that acts as the original
image. The MIDlet automatically displays this as a scrambled 4 × 4 grid
(Figure 5.18). The user has to unscramble the image by re-arranging the
tiles to complete the game (Figure 5.19).

The MIDlet stores newly captured images in the RMS record store so
that they are available for subsequent games, as shown in Figure 5.20.
The Picture Puzzle MIDlet comprises the classes shown in Figure 5.21.

Figure 5.18 The Picture Puzzle MIDlet running on a Nokia 6600.

Figure 5.19 The completed Picture Puzzle game.

THE PICTURE PUZZLE 295

Figure 5.20 Starting a new game: the user can create a new image or load an existing
image from the RMS.

javax.microedition.lcdui.Form javax.microedition.lcdui.TextBox javax.microedition.lcdui.Canvas

ImageNameBox

ChoiceForm

GameMIDlet

ApplicationException

Capturer

CaptureCanvas

HintCanvas

PuzzleCanvas

RMSHandler

Figure 5.21 A UML class diagram of the Picture Puzzle MIDlet.

5.4.1 The GameMIDlet Class

package picturepuzzle;
import javax.microedition.midlet.MIDlet ;
import javax.microedition.lcdui.* ;
import java.io.* ;

296 MIDP 2.0 CASE STUDIES

public class GameMIDlet extends MIDlet {
private Display display;
private ChoiceForm choiceForm;
private CaptureCanvas captureCanvas;
private PuzzleCanvas puzzleCanvas;
private Capturer capturer;
private RMSHandler rms;

public GameMIDlet() {
rms = new RMSHandler();
display = Display.getDisplay(this);
choiceForm = new ChoiceForm(this);

}

public void startApp() {
Displayable current = display.getCurrent();
try{

rms.openRecordStore();
}catch(ApplicationException ae){

showAlert(ae);
}

if (current == null) {
// first call
displayChoiceForm();

}else {
//called after a pause
display.setCurrent(current);
//player will have been discarded so recreate.
try{

capturer.createPlayer();
}catch(ApplicationException ae) {

showAlert(ae);
}

}
}

public void pauseApp() {
try{

rms.closeRecordStore();
}catch(ApplicationException ae){}
if(capturer != null){

capturer.discardPlayer();
}

}

public void destroyApp(boolean unconditional) {
try{

rms.closeRecordStore();
}catch(ApplicationException ae){}
if(capturer != null){

capturer.discardPlayer();
}

}

public void displayChoiceForm() {
try {

THE PICTURE PUZZLE 297

String[] imageNames = loadImageNames();
choiceForm.setImageNames(imageNames);

}catch(ApplicationException ae) {
showAlert(ae);

}
display.setCurrent(choiceForm);
}

public void displayHintCanvas(Image image){
HintCanvas hintCanvas = new HintCanvas(image);
display.setCurrent(hintCanvas);
try {

Thread.sleep(1500);
}catch (InterruptedException ie) {}
display.setCurrent(puzzleCanvas);

}

public void displayCaptureCanvas() {
if (captureCanvas == null) {

//create CaptureCanvas and associated player (Capturer)
captureCanvas = new CaptureCanvas(this);
try{

capturer = new Capturer(this, captureCanvas);
capturer.startPlayer();
display.setCurrent(captureCanvas);

}catch(final ApplicationException ae){
//set to null if unable to create player
captureCanvas = null;
showAlert(ae);

}
} else {

//CaptureCanvas and associated player (Capturer) already exist
display.setCurrent(captureCanvas);

}
}

public void displayPuzzleCanvas(byte[] imageData) {
Image image = Image.createImage(imageData, 0, imageData.length);
puzzleCanvas = new PuzzleCanvas(this, image);
display.setCurrent(puzzleCanvas);

}

public void takePhoto(){
try {

byte[] data = capturer.takeSnapshot();
capturer.stopPlayer();
ImageNameBox imageNameBox = new ImageNameBox(this, data);
display.setCurrent(imageNameBox);

}catch(final ApplicationException ae) {
showAlert(ae);

}
}

public void loadAndDisplayImage(String imageName){
try{

byte[] imageData = rms.retrieveImageFromStore(imageName);
displayPuzzleCanvas(imageData);

}catch(ApplicationException ae){

298 MIDP 2.0 CASE STUDIES

showAlert(ae);
}

}

public String[] loadImageNames() throws ApplicationException {
String[] images = rms.retrieveStoredImageNames();
return images;

}

public void saveImage(String imageName, byte[] data) {
try {

rms.addImageToStore(imageName, data);
}catch(ApplicationException ae) {

showAlert(ae);
}

}

public void deleteImage(String imageName) {
try{

rms.deleteImageFromStore(imageName);
}catch(ApplicationException ae){

showAlert(ae);
}

}

public void showAlert(final ApplicationException ae){
new Thread() {

public void run() {
Alert alert = new Alert(ae.getExceptionType(),

ae.getMessage(), null, AlertType.ERROR);
alert.setTimeout(1500);
display.setCurrent(alert);

}
}.start();

}

public void exit(){
try{

rms.closeRecordStore();
}catch(ApplicationException ae){}
if(capturer != null){

capturer.discardPlayer();
}
notifyDestroyed();

}
}

The GameMidlet class extends MIDlet and provides implementa-
tions for the MIDlet lifecycle methods. The startApp() and pause-
App() methods are worth looking at in more detail.

When the MIDlet is requested to move into the PAUSED state, the
pauseApp() method (listed below) closes the RMS record store and
releases any resources associated with the VideoPlayer used to capture
photos by calling the discardPlayer() method of the Capturer
class. This is important since no other application can access the camera
while the MIDlet holds the VideoPlayer.

THE PICTURE PUZZLE 299

public void pauseApp() {
try{

rms.closeRecordStore();
}catch(ApplicationException ae){}
if(capturer != null){

capturer.discardPlayer();
}

}

The startApp() method (listed below) opens the record store and
then determines whether the current invocation is the first call to star-
tApp(), in which case it displays the first application screen by calling
displayChoiceForm. If, on the other hand, startApp() has been
invoked after a previous call to pauseApp(), it sets the display to the
last Displayable that was shown prior to the MIDlet moving into
the PAUSED state. In addition, it recreates the VideoPlayer that was
discarded when the MIDlet moved into the PAUSED state.

public void startApp() {
Displayable current = display.getCurrent();
try{

rms.openRecordStore();
}catch(ApplicationException ae){

showAlert(ae);
}

if (current == null) {
// first call
displayChoiceForm();

}else {
//called after a pause
display.setCurrent(current);
//player will have been discarded so recreate.
try{

capturer.createPlayer();
}catch(ApplicationException ae) {

showAlert(ae);
}

}
}

The GameMIDlet class also acts as the application controller. It pro-
vides a number of callback methods that are invoked by the application’s
user interface objects in response to user interaction. This helps to isolate
the UI objects from tasks that are not related to the user interface, such
as accessing the RMS record store. The GameMIDlet class handles the
flow of control of the application using the following methods:

public void displayChoiceForm() {...}

public void displayHintCanvas(Image image){...}

300 MIDP 2.0 CASE STUDIES

public void displayCaptureCanvas() {...}

public void displayPuzzleCanvas(Image image) {...}

public void takePhoto(){...}

public void loadAndDisplayImage(String imageName){...}

public String[] loadImageNames() throws ApplicationException {...}

public void saveImage(String imageName, byte[] data) {...}

public void deleteImage(String imageName) {...}

public void showAlert(final ApplicationException ae){...}

public void exit(){...}

5.4.2 The ChoiceForm Class
The first action performed by the GameMIDlet when it starts is to call
the displayChoiceForm() method:

public void displayChoiceForm() {
try {

String[] imageNames = loadImageNames();
choiceForm.setImageNames(imageNames);

}catch(ApplicationException ae) {
showAlert(ae);

}
display.setCurrent(choiceForm);

}

This loads the names of any stored images and displays them in an
instance of ChoiceForm. The user has the option of creating a new
image or using a previous image stored in the RMS (if any exist). The
source code for ChoiceForm is listed below.

package picturepuzzle;
import javax.microedition.lcdui.*;
import java.io.*;
/**
* Displays names of images stored in the record store and provides the
* user with the option to create a new image.
*/

public class ChoiceForm extends Form implements CommandListener {

private GameMIDlet midlet;
private ChoiceGroup cg;
private Command startCommand;
private Command deleteCommand;
private Command exitCommand;

THE PICTURE PUZZLE 301

// Creates the ChoiceForm. Adds Commands and a ChoiceGroup.
public ChoiceForm(GameMIDlet midlet){

super("Saved Images");
this.midlet = midlet;
startCommand = new Command("Start" , Command.SCREEN , 2);
deleteCommand = new Command("Delete" , Command.SCREEN , 3);
exitCommand = new Command("Exit", Command.EXIT, 1);
addCommand(exitCommand);
addCommand(startCommand);
setCommandListener(this);
cg = new ChoiceGroup("Choose image option:",

ChoiceGroup.EXCLUSIVE);
append(cg);
cg.append("Create new image", null);

}

//Adds the names of the stored images to the ChoiceGroup.
public void setImageNames(String[] imageNames) {

while(cg.size() > 1){
cg.delete(1);

}
cg.setSelectedIndex(0, true);
if (imageNames != null) {

for (int i = 0 ; i < imageNames.length ; i++) {
cg.append(imageNames[i] , null);

}
addCommand(deleteCommand);

}
}

public void commandAction(Command command , Displayable displayable) {
if (command == exitCommand) {

midlet.exit();
} else if(command == startCommand) {

if (cg.getSelectedIndex() == 0) {
midlet.displayCaptureCanvas();

}else {
String imageName = cg.getString(cg.getSelectedIndex());
midlet.loadAndDisplayImage(imageName);

}
}else if(command == deleteCommand) {

int index = cg.getSelectedIndex();
if(index > 0) {

String imageName = cg.getString(index);
cg.setSelectedIndex(index - 1, true);
cg.delete(index);
midlet.deleteImage(imageName);

}
if(cg.size() == 1) {

removeCommand(deleteCommand);
}

}
}

}

This uses a ChoiceGroup to display the names of any previous
images stored by the user or allows the user to capture a new image.

302 MIDP 2.0 CASE STUDIES

If the user selects the ‘‘Create new image’’ option the ChoiceForm
instance calls the displayCaptureCanvas() method of GameMI-
Dlet (listed below).

public void displayCaptureCanvas() {
if (captureCanvas == null) {

//create CaptureCanvas and associated player
captureCanvas = new CaptureCanvas(this);
try{

capturer = new Capturer(this, captureCanvas);
capturer.startPlayer();
display.setCurrent(captureCanvas);

}catch(final ApplicationException ae){
//set to null if unable to create player
captureCanvas = null;
showAlert(ae);

}
} else {

//CaptureCanvas and associated player already exist
display.setCurrent(captureCanvas);

}
}

This creates an instance of theCapturer class encapsulating aVideo-
Player and an associated Canvas to display the output. It then calls the
startPlayer() method of the Capturer class to start the Video-
Player which renders the output of the phone’s camera to the Canvas.

5.4.3 The Capturer Class

package picturepuzzle;
import javax.microedition.media.*;
import javax.microedition.media.control.*;
import java.io.IOException;

// Creates the VideoPlayer used to capture a photo.
public class Capturer {

private GameMIDlet midlet;
private CaptureCanvas canvas;
private Player player = null;
private VideoControl videoControl = null;
private boolean active = false;

// Performs initialization and creates the VideoPlayer instance.
public Capturer(GameMIDlet midlet, CaptureCanvas canvas)

throws ApplicationException {
this.midlet = midlet;
this.canvas = canvas;
createPlayer();

}

// Creates a VideoPlayer and gets an associated VideoControl
public void createPlayer() throws ApplicationException {

THE PICTURE PUZZLE 303

try {
player = Manager.createPlayer("capture://video");
player.realize();
// Sets VideoControl to the current display.
videoControl =

(VideoControl)(player.getControl("VideoControl"));
if (videoControl == null) {

discardPlayer();
} else {

videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO,
canvas);

int cWidth = canvas.getWidth();
int cHeight = canvas.getHeight();
int dWidth = 160;
int dHeight = 120;
videoControl.setDisplaySize(dWidth, dHeight);
videoControl.setDisplayLocation((cWidth - dWidth)/2,

(cHeight - dHeight)/2);
}

} catch (IOException ioe) {
discardPlayer();
throw new ApplicationException("Unable to access camera",

ioe);
} catch (MediaException me) {

discardPlayer();
throw new ApplicationException("Unable to access camera", me);

} catch(SecurityException se) {
discardPlayer();
throw new ApplicationException("Unable to access camera", se);

}
}

public byte[] takeSnapshot() throws ApplicationException {
byte[] pngImage = null;
if (videoControl == null) {

throw new ApplicationException(
"Unable to capture photo: VideoControl null");

}
try {

pngImage = videoControl.getSnapshot(null);
}catch(MediaException me) {

throw new ApplicationException("Unable to capture photo", me);
}

return pngImage;
}

public void discardPlayer() {
if(player != null) {

player.close();
player = null;

}
videoControl = null;

}

public void startPlayer() throws ApplicationException {
if ((player != null) && !active) {

304 MIDP 2.0 CASE STUDIES

try {
player.start();
videoControl.setVisible(true);

} catch(MediaException me) {
throw new ApplicationException(

"Unable to start video player", me);
} catch(SecurityException se) {

throw new ApplicationException(
"Unable to start video player", se);

}
active = true;

}
}

public void stopPlayer() throws ApplicationException {
if ((player != null) && active) {

try {
videoControl.setVisible(false);
player.stop();

} catch (MediaException me) {
throw new ApplicationException(

"Unable to stop video player", me);
}
active = false;

}
}

}

The creation and initialization of the VideoPlayer takes place in
the createPlayer() method. We use the static createPlayer()
method of Manager to create the VideoPlayer instance using the
capture://video URI to indicate that the data source is the phone’s
camera. Next we call the realize() method to move the player to the
REALIZED state. We then get a VideoControl and initialize it with our
CaptureCanvas instance.

The photo is taken using the takeSnapshot() method. It calls the
VideoControl.getSnapshot() method which takes a snapshot of
the current contents of the display and returns it as a PNG image. The
takeSnapshot() method is called from the CaptureCanvas object.

5.4.4 The CaptureCanvas Class

package picturepuzzle;
import javax.microedition.lcdui.*;
/**
* A Canvas for rendering the output of the VideoPlayer. Also handles the
* user interaction to take the snapshot.
*/

public class CaptureCanvas extends Canvas implements CommandListener{

private Command captureCommand;
private GameMIDlet midlet;

THE PICTURE PUZZLE 305

//Creates the CaptureCanvas. Adds a "Capture" command.
public CaptureCanvas(GameMIDlet midlet){

this.midlet = midlet;
captureCommand = new Command("Capture", Command.SCREEN, 1);
addCommand(captureCommand);
setCommandListener(this);

}

// Paints a yellow background.
public void paint(Graphics g) {

g.setColor(0x00FFFF00); // yellow
g.fillRect(0, 0, getWidth(), getHeight());

}

//Responds to the "Capture" command and takes the photo.
public void commandAction(Command command , Displayable displayable) {

if(command == captureCommand){
midlet.takePhoto();

}
}

//Responds to the Joystick being pressed and takes the photo.
public void keyPressed(int keyCode) {

int key = getGameAction(keyCode);
if (key == Canvas.FIRE) {

midlet.takePhoto();
}

}
}

The CaptureCanvas class provides the Canvas onto which the
output of the camera is rendered. When the user is satisfied with the
scene, the snapshot is taken by selecting the ‘‘Capture’’ Command. The
commandAction() method makes a call back to the GameMIDlet
takePhoto() method:

public void takePhoto(){
try {

byte[] data = capturer.takeSnapshot();
capturer.stopPlayer();
ImageNameBox imageNameBox = new ImageNameBox(this, data);
display.setCurrent(imageNameBox);

}catch(final ApplicationException ae) {
showAlert(ae);

}

This calls the takeSnapshot() method of the Capturer, which
returns the captured image data. Once the photo has been taken the
VideoPlayer is then stopped using the stopPlayer() method. An
instance of ImageNameBox is created to enable the user to associate a
name with the new image.

306 MIDP 2.0 CASE STUDIES

5.4.5 The ImageNameBox Class
ImageNameBox extends TextBox and provides an area into which the
user can enter a name for the new image.

package picturepuzzle;
import javax.microedition.lcdui.*;
public class ImageNameBox extends TextBox implements CommandListener {

private GameMIDlet midlet;
private byte[] data;
private Command saveCommand;

public ImageNameBox(GameMIDlet midlet, byte[] data) {
super("Enter image name", "", 20, TextField.ANY);
this.midlet = midlet;
this.data = data;
saveCommand = new Command("Save" , Command.SCREEN , 2);
setCommandListener(this);
addCommand(saveCommand);

}

public void commandAction(Command command , Displayable displayable) {
if (command == saveCommand) {

midlet.saveImage(getString(), data);
midlet.displayPuzzleCanvas(image);

}
}

}

When the user selects the ‘‘Save’’ command, the image data and name
are saved to the RMS store via a call to the GameMIDlet saveIm-
age()method. The GameMIDlet displayPuzzleCanvas()method
is invoked to display the image.

public void displayPuzzleCanvas(byte[] imageData) {
Image image = Image.createImage(imageData, 0, imageData.length);
puzzleCanvas = new PuzzleCanvas(this, image);
display.setCurrent(puzzleCanvas);

}

The displayPuzzleCanvas() method creates the Image and a
new PuzzleCanvas instance and displays it.

5.4.6 The PuzzleCanvas Class
The game logic is encapsulated in the PuzzleCanvas Class:

package picturepuzzle;
import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;
import java.util.*;

THE PICTURE PUZZLE 307

/**
* The game Canvas. Displays the randomized image as a 4x4 grid of
* tiles. Allows the user to re-arrange the tiles. Indicates when the
* correct arrangement has been arrived at and the game is over.
*/

public class PuzzleCanvas extends Canvas implements CommandListener {

static final int IMAGE_WIDTH = 160;
static final int IMAGE_HEIGHT = 120;
static final int COLS = 4;
static final int ROWS = 4;
private TiledLayer imageLayer;
private Image image;
private int cursorX, cursorY;//position coordinates of cursor
private GameMIDlet midlet;
private boolean doublePaired;
private Command exitCommand;
private Command hintCommand;
private Command newCommand;
private int firstBlock = 0;
private int secondBlock = 0;
private int firstCol = 0;
private int firstRow = 0;
private int secondCol = 0;
private int secondRow = 0;

// Creates the scrambled puzzle from an image.
public PuzzleCanvas(GameMIDlet midlet, Image image) {

super();
this.midlet = midlet;
this.image = image;
exitCommand = new Command("Exit", Command.EXIT, 1);
hintCommand = new Command("Hint", Command.SCREEN, 2) ;
newCommand = new Command("New game", Command.SCREEN, 2);
addCommand(exitCommand);
addCommand(hintCommand);
setCommandListener(this);
createBoard();
cursorX = getWidthDiff() / 2;
cursorY = getHeightDiff() / 2;
imageLayer.setPosition(getWidthDiff() / 2, getHeightDiff() / 2);
doublePaired = true;

}
public int getWidthDiff() {

return getWidth() - IMAGE_WIDTH;
}
public int getHeightDiff() {

return getHeight() - IMAGE_HEIGHT;
}
// randomize the order of tiles in the image layer.
private void createBoard() {

imageLayer = new TiledLayer(COLS, ROWS, image, IMAGE_WIDTH/COLS,
IMAGE_HEIGHT/ROWS);

Random ran = new Random();
Vector v = new Vector(ROWS*COLS);
boolean b = true;
int i;
// get integer numbers from 1 to ROWS*COLS in random order

308 MIDP 2.0 CASE STUDIES

while (b) {
i = ran.nextInt()%(ROWS*COLS)+1;
if (i > 0 && i <= (ROWS*COLS)) {

if (!v.contains(new Integer(i))) {
v.addElement(new Integer(i));

}
if (v.size() == ROWS*COLS) {

b = false;
}

}
}
for (int m = 0; m < ROWS*COLS; m++) {

int integer = ((Integer) v.elementAt(m)).intValue();
imageLayer.setCell(m/ROWS ,m%ROWS, integer);

}
}
// Paints the current TiledLayer arrangement and draws the cursor.
// Also indicates "Game over" when the game is completed.
public void paint(Graphics g) {

g.setColor(255, 255, 255);// Paint a white background
g.fillRect(0, 0, getWidth(), getHeight());
imageLayer.paint(g);
g.setColor(255, 0, 0);
drawFrame(cursorX, cursorY, g);
if (isWinning()){

g.setFont(Font.getFont(Font.FACE_MONOSPACE, Font.STYLE_BOLD,
Font.SIZE_LARGE));

g.drawString("Game Over!!", getWidth() / 2, getHeight() / 2,
Graphics.HCENTER | Graphics.TOP);

}
}
// Responds to movement of the Joystick.
public void keyPressed(int keyCode) {

int key = getGameAction(keyCode);
if (key == LEFT) {

moveLeft();
} else if (key == RIGHT) {

moveRight();
} else if (key == UP) {

moveUp();
} else if (key == DOWN) {

moveDown();
} else if (key == FIRE && !doublePaired) {

setSecondBlock();
if (isWinning()) {

addCommand(newCommand);
}

} else if (key == FIRE && doublePaired) {
setFirstBlock();

}
repaint();

}
// Ascertains whether the current arrangement of tiles is equal to the
//original image and hence the game has been successfully completed.
public boolean isWinning() {

int count = 1 ;
for (int row = 0 ; row < imageLayer.getRows() ; row++) {

for (int col = 0 ; col < imageLayer.getColumns() ; col++) {

THE PICTURE PUZZLE 309

if (imageLayer.getCell(col, row) != count) {
return false ;

}
count++;

}
}
return true;

}

// Draws cursor.
private void drawFrame(int x, int y, Graphics g) {

g.drawRect(x, y, imageLayer.getCellWidth(),
imageLayer.getCellHeight());

}
// Moves cursor one tile up.
public void moveUp() {

cursorY = cursorY - imageLayer.getCellHeight();
if (cursorY < getHeightDiff() / 2) {

cursorY = getHeightDiff() / 2;
}

}
// Moves cursor one tile down.
public void moveDown() {

cursorY = cursorY + imageLayer.getCellHeight();
int yMax = IMAGE_HEIGHT + getHeightDiff()/2 -

imageLayer.getCellHeight();
if (cursorY > yMax) {

cursorY = yMax;
}

}
// Moves cursor one tile left */
public void moveLeft() {

cursorX = cursorX - imageLayer.getCellWidth();
if (cursorX < getWidthDiff() / 2) {

cursorX = getWidthDiff() / 2;
}

}

// Moves cursor one tile right.
public void moveRight() {

cursorX = cursorX + imageLayer.getCellWidth();
if (cursorX > IMAGE_WIDTH + getWidthDiff() / 2 -

imageLayer.getCellWidth()) {
cursorX = IMAGE_WIDTH + getWidthDiff() / 2 -

imageLayer.getCellWidth();
}

}
// Gets the initial tile that the user has selected for transposition.
public void setFirstBlock() {

firstCol = (cursorX - getWidthDiff() / 2) /
imageLayer.getCellWidth();

firstRow = (cursorY - getHeightDiff() / 2) /
imageLayer.getCellHeight();

firstBlock = imageLayer.getCell(firstCol, firstRow);
doublePaired = false;

}

// Gets the destination tile selected by the user.

310 MIDP 2.0 CASE STUDIES

// Then interchanges the initial and destination tiles.
public void setSecondBlock() {

secondCol = (cursorX - getWidthDiff() / 2) /
imageLayer.getCellWidth();

secondRow = (cursorY - getHeightDiff() / 2) /
imageLayer.getCellHeight();

secondBlock = imageLayer.getCell(secondCol, secondRow);
// interchange two cells
imageLayer.setCell(firstCol, firstRow, secondBlock);
imageLayer.setCell(secondCol, secondRow, firstBlock);
doublePaired = true;

}
public void commandAction(Command command, Displayable displayable) {

if (command == exitCommand) {
midlet.exit();

} else if (command == hintCommand){
new Thread() {//to avoid blocking despatcher

public void run(){
midlet.displayHintCanvas(image);

}
}.start();

} else if (command == newCommand) {
midlet.displayChoiceForm();
image = null;
midlet = null;

}
}

}

The createBoard() method takes the captured image and re-
arranges it. It uses the image to create a 4 × 4 TiledLayer. Re-arranging
the image then simply becomes a matter of successively calling the set-
Cell() method of the TiledLayer. The PuzzleCanvas handles all
user interaction itself either in the keyPressed() method (inherited
from Canvas) or the commandAction() method mandated by the
CommandListener interface which PuzzleCanvas implements. The
keyPressed() method listens for arrow key (or joystick, in the case of
the Nokia 6600) events and moves the cursor appropriately.

In response to FIRE key events (choosing ‘‘Select’’ in the Wireless
Toolkit or depressing the joystick on the Nokia 6600), the application
selects the tile from the first FIRE event and transposes it with the one
from the second FIRE event.

The commandAction() method provides options to exit the applica-
tion, start a new game (upon successful completion of the current game)
and display a hint screen.

The hint option calls the GameMIDlet method displayHintCan-
vas(), which creates a HintCanvas instance displaying the original
(unscrambled) image as a hint to the user. Note that this method should
be called from within a new Thread so that the commandAction()
method can return quickly and avoid blocking the single VM event
dispatcher Thread.

THE PICTURE PUZZLE 311

The exitCommand option calls the exit()method of GameMIDlet:

public void exit(){
try{

rms.closeRecordStore();
}catch(ApplicationException ae){}
if(capturer != null){

capturer.discardPlayer();
}
notifyDestroyed();

}

This closes the record store and discards the player, releasing its
resources, then calls notifyDestroyed() to indicate to the AMS that
the MIDlet has moved into the DESTROYED state and can be reclaimed.

5.4.7 The RMSHandler Class
The last class we should describe is the RMSHandler (shown below)
which handles loading previous images from storage, saving a new image
to storage and deleting images from storage.

package picturepuzzle;
import javax.microedition.rms.*;
import java.io.*;
import java.util.*;
// Used to store images in RMS storage.
// Stores images in the IMAGE RecordStore. Creates an INDEX record store
// to store the name of the image and its record id for easy retrieval.
public class RMSHandler {

//Name of record store for storing images
public static final String IMAGE_RECORD_STORE = "IMAGES";

//Name of record store for storing index entries
public static final String INDEX_RECORD_STORE = "KEYS";

private RecordStore indexRecordStore;
private RecordStore imageRecordStore;
private Hashtable hashTable;

public RMSHandler(){
hashTable = new Hashtable();

}

//Opens IMAGE and INDEX record stores
public void openRecordStore() throws ApplicationException {

try {
imageRecordStore =

RecordStore.openRecordStore(IMAGE_RECORD_STORE, true);
indexRecordStore =

RecordStore.openRecordStore(INDEX_RECORD_STORE, true);
} catch (RecordStoreException rse) {

312 MIDP 2.0 CASE STUDIES

throw new ApplicationException("Unable to open record store",
rse);

}
}

//Closes IMAGE and INDEX record stores.
public void closeRecordStore() throws ApplicationException {

try {
imageRecordStore.closeRecordStore();
indexRecordStore.closeRecordStore();

} catch (RecordStoreException rse) {
throw new ApplicationException("Unable to close record store",

rse);
}

}

//Adds an entry to the INDEX store
private int addKey(String name, int recordID) throws

ApplicationException {
try {

ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);
dos.writeUTF(name);
dos.writeInt(recordID);
byte[] data = baos.toByteArray();
int keyID = indexRecordStore.addRecord(data, 0, data.length);
return keyID;

} catch (IOException ioe) {
throw new ApplicationException(

"Unable to add key to record store", ioe);
} catch (RecordStoreException rse) {

throw new ApplicationException(
"Unable to add key to record store", rse);

}
}

//Deletes the index entry from the INDEX record store.
private void deleteKey(int keyID) throws ApplicationException {

try {
indexRecordStore.deleteRecord(keyID);

} catch (RecordStoreException rse) {
throw new ApplicationException(

"Unable to delete key from record store", rse);
}

}

//Adds Image data to IMAGE RecordStore.
private int addImageRecord(byte[] data) throws ApplicationException {

try {
int recordID = imageRecordStore.addRecord(data, 0,

data.length);
return recordID;

} catch (RecordStoreException rse) {
throw new ApplicationException(

"Unable to add record to record store", rse);
}

}

THE PICTURE PUZZLE 313

//Deletes Image data from IMAGE RecordStore.
private void deleteImageRecord(int recordID) throws

ApplicationException {
try {

imageRecordStore.deleteRecord(recordID);
return;

} catch (RecordStoreException rse) {
throw new ApplicationException(

"Unable to delete record from record store", rse);
}

}

//Adds an Image to the IMAGE RecordStore and its name and record ID
//to the INDEX record store.
public void addImageToStore(String name, byte[] imageData)

throws ApplicationException {
int[] recordIndices = new int[2];
recordIndices[0] = addImageRecord(imageData);
recordIndices[1] = addKey(name, recordIndices[0]);
hashTable.put(name, recordIndices);

}

//Deletes image from IMAGE store and associated entry in INDEX store
public void deleteImageFromStore(String name)

throws ApplicationException {
int[] recordIndices = (int[])hashTable.get(name);
if (recordIndices != null) {

deleteImageRecord(recordIndices[0]);
deleteKey(recordIndices[1]);
hashTable.remove(name);

}
}

//Retrieves an Image from the IMAGE RecordStore.
public byte[] retrieveImageFromStore(String name)

throws ApplicationException {
int[] recordIndices = (int[])hashTable.get(name);
byte[] imageData = null;
if (recordIndices != null) {

try {
imageData = imageRecordStore.getRecord(recordIndices[0]);

}catch(RecordStoreException rse) {
throw new ApplicationException(

"Unable to retrieve record from record store",
rse);

}
}
return imageData;

}

//Retrieves the names of images stored in the record store.
public String[] retrieveStoredImageNames()

throws ApplicationException {
String[] entries = null;
try {

if (indexRecordStore.getNumRecords() == 0) {

314 MIDP 2.0 CASE STUDIES

return null;
}
RecordEnumeration records =

indexRecordStore.enumerateRecords(null, null, false);
int numOfRecords = records.numRecords();
int[][] recordIndices = new int[numOfRecords][2];
entries = new String[numOfRecords];
for (int i = 0; i < numOfRecords; i++) {

int keyID = records.nextRecordId();
byte[] data = indexRecordStore.getRecord(keyID);
ByteArrayInputStream bais =

new ByteArrayInputStream(data);
DataInputStream dis = new DataInputStream(bais);
String imageName = dis.readUTF();
int recordID = dis.readInt();
recordIndices[i][0] = recordID;
recordIndices[i][1] = keyID;
entries[i] = imageName;
hashTable.put(imageName, recordIndices[i]);

}
return entries;

} catch (IOException ioe) {
throw new ApplicationException(

"Unable to read from record store", ioe);
} catch (RecordStoreException rse) {

throw new ApplicationException(
"Unable to read from record store", rse);

}
}

}

The RMS record store provides persistent storage of data in the form
of records within a RecordStore. In this example, we create two
RecordStores, one for storing the image data (the IMAGE Record-
Store) and a lightweight INDEX RecordStore. Why do we use a
separate INDEX record store? When we create a new record and save it in
a RecordStore with the addRecord() method, an integer record ID
is returned that uniquely identifies that record within the RecordStore.
This value can be cached by the MIDlet and used to retrieve the record
while the MIDlet is running. However, as soon as the MIDlet is shut
down the value of the record ID will be lost, unless, as we do here,
we also save the record ID in another RecordStore. By creating a
lightweight INDEX record store, which contains small records each con-
sisting only of the name of the saved image and the record ID of the saved
image, we can quickly retrieve the names (and record IDs) of the saved
images without having to enumerate through the large RecordStore of
image data.

As we saw earlier, when the GameMIDlet starts, it calls the display-
ChoiceForm, the first action of which is to call the loadImageNames()
method:

THE PICTURE PUZZLE 315

public String[] loadImageNames() throws ApplicationException {
String[] images = rms.retrieveStoredImageNames();
return images;

}

This calls the retrieveStoredImageNames() method of the
RMSHandler, which enumerates through the INDEX record store and
caches the image names, their record IDs and the ID of the respective
INDEX entry in a hashtable for use during the lifetime of the application.

To retrieve an image from the record store we invoke the retrieve-
ImageFromStore() method, which takes the name of the required
image as a parameter and uses it as the key to the hashtable, retrieving the
cached record indices. It uses the record ID of the image data to retrieve
the data from the IMAGE RecordStore.

To delete a record we use the deleteImageFromStore() method,
which takes the name of the image to be deleted as a parameter. It retrieves
the record indices from the hashtable and uses them to delete the image
data from the IMAGE RecordStore and the key entry from the INDEX
RecordStore. Finally, it removes the relevant entry from the hashtable.

The addImageToStore() method takes the image name and image
data as parameters and adds the image data to the IMAGE RecordStore.
The returned record ID and the image name are then stored in the INDEX
RecordStore. The returned index entry record ID and the image record
ID are cached in the hashtable as an integer array using the image name
as the hash key.

5.4.8 Summary

The Picture Puzzle MIDlet is a fully working example, however, note
that it was written primarily for pedagogic purposes, with clarity of code
regarded as a higher priority than efficiency or richness of features.
Adding extra bells and whistles, perhaps including a peer-to-peer mode
in which a newly captured and scrambled photo is transmitted over
Bluetooth (using JSR 82) for a friend to unscramble, is left as an exercise
for the reader.

The full source code for the Picture Puzzle can be downloaded from
Symbian’s website at www.symbian.com/books.

Section 2
Writing Quality Code for

Smartphones

6
Making Java Code Portable

6.1 Introduction

In this chapter and the next, we shall examine how to make applications
as portable as possible and how to write efficient code. Although Java
(particularly wireless Java) is not ”write once, run anywhere”, porting
Java MIDlets to different wireless devices is generally straightforward.
The problems associated with portability are due to the wide variation in
mobile phones: variations in heap memory, persistent storage, screen size
and resolution, and user input methods all contribute to an application’s
inability to execute consistently across a range of devices. Some devices
have optional APIs and there are network considerations specific to each
operator, such as permissible JAR file sizes.

This chapter will investigate how to develop MIDlets that are portable
across as wide a range of mobile phones as possible. We will look at how
we can use design patterns and coding guidelines to assist in portability,
enabling developers to maximize revenue-earning opportunities from
their endeavors.

The value of creating portable code is magnified by the number of
Java devices in the marketplace. Many of them are similar; for example,
the Series 60 Platform provides a way of creating applications for a broad
range of devices. Even among Series 60 devices, however, differences
exist in the development environment. Some phones include the Wireless
Messaging API (JSR 120) and Java APIs for Bluetooth (JSR 82). Newer Series
60 devices, such as the Nokia 6600, have MIDP 2.0, while earlier ones,
such as the Nokia 3650, have MIDP 1.0. Symbian OS devices have
diverse user interfaces. Screen sizes vary and, more significantly, so do
user input methods: the Sony Ericsson P900 uses a large touch screen
with a jog dial, whereas Series 60 phones have a smaller screen and use
a keypad and a four-way joystick.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

320 MAKING JAVA CODE PORTABLE

These variations do not, however, mean that an application has to
be totally rewritten to run on all these devices. Whether our application
uses high-level components, such as Forms, TextFields and Lists,
or does its own drawing and event handling using a Canvas (or indeed
uses a combination of these techniques), we can still do much to make
our MIDlet portable.

At the very least, the core application should remain the same across
devices and any differences should be expressed principally through
variations in the user interface. For example, graphics may have to be
adapted to cope with a smaller screen, or alternative menus may have
to be created for different methods of capturing user input. Making the
core application invariant requires separating it from the UI, based on a
suitable model.

As well as creating a portable architecture, the developer may have
to cater for individual device capabilities. This requires knowing which
APIs are supported by the device and adapting the MIDlet appropriately,
either at runtime or by creating different variations.

While examining programming models we shall also look at the
differences among Symbian OS devices and see how this will affect
application implementation.

6.2 Design Patterns

There are many types of structural design that can be adopted when
programming with an object-orientated language such as Java, and these
can be used to facilitate portable code. While we shall not be examining
the design theory in great detail, it is worth considering the broader
concepts for MIDlet development in general. These designs are tradition-
ally associated with desktop or server-based application development;
however, they will become more important for wireless applications as
these become more sophisticated and memory and processing power
become less of a constraint. Two useful design patterns are listed in the
following sections.

6.2.1 Model–View–Controller Design Pattern
This is an architecture commonly used for GUI applications. It breaks
the application into three specialized entities: a Model, a View and a
Controller. Each entity is reliant upon the others, but is self-contained.
The Model–View–Controller (MVC) pattern traces its roots to the UI
paradigm used in the Smalltalk programming language. The three entities
are as follows:

• the Model: also known (perhaps more appropriately) as the Engine
The model holds the application’s data. It processes instructions from

DESIGN PATTERNS 321

the controller to change the data. It has a relationship with the views,
notifying them when its data has changed, thus ensuring the latest
state of the data is reflected in the views. It responds to queries about
its state from the views. In short, it provides the core business logic
for the application.

• the View
The view is responsible for presenting the data to the user. In response
to a notification from the model, the view gets the current state of
the data and renders it to the screen. It also provides the interface for
accepting input from the user.

• the Controller
The controller is responsible for managing the flow of the application.
It responds to captured user input from the views, processing the
input and issuing instructions to the model to change its data state
accordingly.

A UML class diagram of a basic MVC implementation is shown in
Figure 6.1 and the interaction between the objects is shown in a UML
sequence diagram (Figure 6.2).

One of the ideas behind the MVC pattern is to promote loose coupling
between the components of the application. It allows the presentation of
the data (the views) to be decoupled from the engine and its data (the
model). It also allows for multiple (and simultaneous) views of the same
model (for instance, the same data might be presented as both a table and
a pie chart). In practice, implementations of the MVC pattern are more
complicated than the simplistic example shown in Figure 6.1, involving
multiple concrete View classes (all deriving from an abstract View class),
possibly each with an associated concrete Controller (deriving from
an abstract Controller).

notifyDataChanged()
repaint()

View

getState()
setState()

Model

notifyUserInput()

Controllernotify user input

set data state
notify data
changed

Figure 6.1 A simple example of the MVC pattern.

322 MAKING JAVA CODE PORTABLE

view : View controller : Controller model : Model

repaint()

getState()

notifyDataChanged()

setState()

process
inputnotifyUserInput()

process
data

Figure 6.2 The interaction of objects in the MVC pattern.

6.2.2 Model–View Design Pattern
The Model–View design pattern (MV) is a simplified version of the MVC
pattern. The MV pattern is a specific variant of the Observer pattern (also
known as the Publisher–Subscriber). In the MV pattern, the View class
combines the functionality of the View and Controller classes in the
MVC pattern. The View class in the MV paradigm will be familiar to
desktop Java GUI programmers (even if they don’t realize it), as typical
application UIs make use of it. For example, the UI class shown below is
essentially a View class in the MV pattern:

public class MyCanvas implements MouseListener, KeyListener {

public MyCanvas() {
...
addMouseListener(this);
addKeyListener(this);

}
...

}

DESIGN PATTERNS 323

Under the MV pattern, application classes may be classified into one
of the two component groups:

• the Model
The model manages the application’s data. It responds to queries from
the views regarding its state and updates its state when requested to
do so by the views. It notifies the views when the state of the data
has changed.

• the View.
The view presents a view of the model data. It responds to user input,
instructing the model to update its data accordingly. On notification
of changes to the model data, it retrieves the new model state and
renders a view of the latest state of the data.

This simpler pattern is perhaps more appropriate to simpler MIDlet appli-
cations. It does not overcomplicate the class structure, and the application
software (and, indeed, the developers working on the application) may
be organized into two distinct groups, one responsible for the UI and
the other for the core application logic. It also means that porting the
application between different MIDP devices that may utilize completely
different UI paradigms (for example, from a touch screen-based Sony
Ericsson P900 to a keypad-driven Nokia 6600) can be achieved without
having to touch the Model classes.

A UML class diagram for part of a hypothetical MV-based application
supporting a pointer-based view and a keypad-based view is shown in
Figure 6.3.

6.2.3 Practical Application of Design Patterns

The reality is that these design techniques should be applied cautiously
to wireless Java development. Limitations such as the overall application
size may restrict the purest implementation. Even the smallest class can
create an overhead of around 200 bytes and this will ultimately lead to a
larger JAR file; class abstraction may need to be reduced to keep JAR file
sizes realistic. However, the theories and approaches are definitely valid
and will become more so as devices become less resource-constrained.

A cursory look at Symbian OS devices based on MIDP 2.0 reveals
two user interface types. Phones such as the Series 60 Nokia 6600 offer
a keypad interface, whereas the UIQ-based Sony Ericsson P900 offers a
stylus-driven UI. In addition, the two phones also have different screen
sizes: 176 × 208 pixels for the Series 60 phone and 208 × 253 for the
UIQ phone. So porting an application from one device to the other may
involve changing the application code. By making use of the high-level
API, developers may be able to let the MIDP implementation itself take

324 MAKING JAVA CODE PORTABLE

javax.microedition.lcdui.Canvas

paint()
keyPressed()
keyReleased()

ViewOne

paint()
pointerPressed()
pointerReleased()

ViewTwo

getState()
setState()
addObserver()
removeObserver()

Model

notifyStateChanged()

<<Interface>>
ModelObserver

get state, set state

get state, set state

data state change

Figure 6.3 Multiple views supported by the Model–View design pattern.

care of the UI for some applications. Once the developer ventures into
the realm of action games, however, it is a different matter altogether.

Gaming applications generally require the use of low-level APIs, as
they give pixel-level control to the developer. Objects such as sprites and
layers give the developer the ability to create animations that represent the
virtual world to the user. However, the underlying image files need to be
optimized for screen size and resolution. Other changes may be necessary
as well. For example, a level-based game ported to a device with a smaller
screen may need to have smaller levels and less complexity.

Another issue with games is the capture of user input. Touch screen
devices, such as the UIQ-based P900, handle this differently from
those with a keypad. As well as being captured by different methods
(for example, in the Canvas class, by pointerPressed rather than
keyPressed), user input may need to be processed differently to ensure
the game still works correctly. In terms of design patterns this may require
an abstraction layer, such as the Controller in the MVC pattern, acting
as an intermediary between the UI (the View) and the application game
logic (the Model), ensuring that user input is processed appropriately
regardless of the UI type. Whatever design approach is adopted, it is
important that the user interface is separated from the core logic of the
application, allowing the game logic to remain the same across different
platforms and UIs.

DESIGN PATTERNS 325

getState()
setState()
addView()
removeView()

Model

paint()

ConcreteViewTwo
paint()

ConcreteViewOne

processInputOne()

ConcreteControllerOne

notifyUserInput()

<<Interface>>
AbstractController

processInputTwo()

ConcreteControllerTwo

notifyStateChanged()
addController()
removeController()
paint()

<<Interface>>
AbstractView

notify user input

set stateget state

notify data state changed

Figure 6.4 Separating the UI from the engine using abstraction.

This yields a model where the development team in charge of creating
the user interface can concentrate on recreating the UI for a new device
without having to understand the underlying game logic. They can
repurpose sprite graphics and make changes to user interaction classes
while leaving the core game classes untouched. Separating the UI can
be more easily approached with an abstraction of certain core classes
(for instance an abstract View and an abstract Controller in the MVC
design pattern). This provides a standard set of interfaces for the other
classes within the application model to use. Extended classes then provide
the implementation; for example, concrete View classes, possibly each
with a dedicated concrete Controller (see Figure 6.4).

This approach creates a set of reusable components that can be
implemented across a range of devices without having to rewrite the
application on a grand scale.

6.2.4 Summary

In this section, we have seen how applications may be designed using
architectures derived from established design patterns. These patterns are
largely used for server and desktop applications; however, the principles
still apply in the wireless world, although some of the roles may be
compressed to suit the constrained nature of the environment. While we
want to make sure we are not overcrowding the JAR file with unused
class abstractions, we need to make our MIDlets as portable as possible.

326 MAKING JAVA CODE PORTABLE

6.3 Portability Issues

This section looks at a number of specific portability issues associated
with the UI (both low-level graphics and higher-level UI components),
optional and proprietary APIs, and download size limitations.

To create a MIDlet that will run on a wide range of devices with
different form factors and functionality, it can be useful to identify the
device’s characteristics either when the MIDlet is run, so that it can adapt
its behavior dynamically, or when the MIDlet is provisioned, so that the
server can deliver an appropriately tailored JAR file.

Runtime support for device identification is fairly limited: we can use
System.getProperty() to identify the JTWI or MIDP version, and
we can identify the display characteristics using Canvas.getHeight(),
Canvas.getWidth(), Canvas.isDoubleBuffered, Display.
isColor() and Display.numColors().

Currently, when downloading an application, it is generally left to the
user to click on the link appropriate to their phone (e.g. ‘‘BoyRacer for
Sony Ericsson P800/P900’’ or ‘‘BoyRacer for Nokia 6600 or Series 60’’).
However, in every HTTP transaction, devices identify themselves in the
User Agent field (e.g. ”Sony Ericsson P900” or ”Nokia 6600”), and this
can be used by the provisioning server to deliver the correctly packaged
application. The Composite Capability/Preference Profiles (CC/PP, see
www.w3.org/Mobile/CCPP) UAProf standard for device identification is
slowly becoming established and will enable the provisioning server to
identify a phone’s characteristics in more detail.

The HTTP transaction includes a URI that points to details of the
phone, but can also include a set of differences that identify how the
individual’s phone may have been modified from the factory standard.
This potentially enables the provisioning server to dynamically create a
JAR file tailored for a specific phone.

In general, check out any style guides for target devices and try to
conform to the guides. Even though developers may implement whatever
GUI they wish in the low-level APIs, it is easier for the user to use a
familiar interface. So, in deference to the host device, try to emulate the
nomenclature of menus and commands as far as possible. Some devices
impose certain styles to provide the user with a consistent UI. On Nokia
phones, for example, the right soft key is generally used for ‘‘negative’’
commands, such as Exit, Back and Cancel, and the left soft key for
‘‘positive’’ commands, such as OK, Select and Connect.

6.3.1 Low-Level Graphical Content

The graphical content in gaming applications forms the basis of the
user experience.

PORTABILITY ISSUES 327

Although in a gaming environment the central character sprites can
usually remain the same size, this may not be true for the background
images. The background forms the backdrop to the game ‘‘world’’ and
has to vary in size with the size of the screen. For example, the Nokia
6600 display is 176 × 208 pixels, while the Sony Ericsson P900 display
is 208 × 253, reduced to 208 × 173 when the soft keypad is visible.

When the UI is initiated, it needs to query the width and height
of the device’s screen using Canvas.getHeight() and Canvas.
getWidth(). This gives it enough information to create the background
image. Using TiledLayer we can do one of two things:

• we can change the size of the tiles to reflect the screen size
This minimizes the impact on the MIDlet, though it puts a burden on
the graphic designer. More importantly, the tiles may now be out of
proportion to the rest of the game world.

• we can make the TiledLayer intelligent enough to query the device
for its screen dimensions on initialization and make the appropriate
changes to the background.
The new dimensions of the tiled background depend on the individual
tile and screen dimensions. This is a better approach that allows us to
adjust the viewport to reflect the differing screen dimensions, giving
the MIDlet user on a bigger device a larger view of the game world.
For example, a maze game would show more of the maze. The
LifeTime MIDlet in Section 7.14 takes this approach, showing more
of the playing field on devices with a larger screen.

The images used to construct the game usually have to be tailored to
the screen characteristics of the target phones, and possibly also to the
memory and performance characteristics of the phone. They may even
have to be adapted to cope with operator restrictions on download JAR
size. So we need small black and white images on some phones, but can
(and should) use larger color images for more capable phones with color
screens. It is generally necessary to create a JAR package for each target
device, or family of devices.

One of the more useful additions to MIDP 2.0 is the Game API. It
allows a Sprite to be created with one graphics file containing all the
frames for that character or screen object. In the Demo Racer MIDlet
in Chapter 5, we supplied a four-frame strip which encapsulated all the
frames required for animation.

The Sprite subclass is initiated with the PNG file and creates the
frames for itself by knowing its own dimensions. This means that if the
size of the screen changes and the number of frames remains the same,
we can change the frame strip rather than making code changes and the
sprite will remain in proportion.

328 MAKING JAVA CODE PORTABLE

We have talked about the need to adjust graphics to suit the device, but
the characteristics of the sprites may also need to be changed. If theSprite
classes are intelligent enough to determine their own size then all well and
good. They may move differently, however, and this means changing the
movement methods. Collisions between sprites may change. For example,
a smaller image may require a smaller collision area. In some cases using
the whole image for collision detection is too expensive on the processor,
so we define a smaller area using defineCollisionRectangle(). A
change in sprite size may mean a related change to this collision area.

A change in screen size may also require fewer copies of certain
sprites. There may be less room for enemy characters, or the frequency
with which they are to appear on the screen may drop. In the classic
Space Invaders game, for example, smaller screen dimensions may mean
fewer invaders attacking the player character. Do you allow them to
shoot as many bullets as on a larger screen? Do you ask the MIDlet
to work out at initialization time how many can comfortably fit on the
screen without compromising the game difficulty? Should there be fewer
or smaller barriers to hide behind? Some of these values may have been
hard-coded in the Sprite class members. Is it wiser to create a resource
bundle to supply these values, or perhaps add them to the JAD file and
then ask the MIDlet to query those properties at startup?

Use GameActions as far as possible. These provide a mapping
between commonly used gaming actions, such as Fire, Up, Down, Left,
and Right, and easily selectable buttons on a keypad, such as 2, 8, 4 and
6. A keypad with a different layout, such as that of the Siemens SX-1, a
MIDP 1.0 phone, may map these actions to different keys. Even though
the Sony Ericsson P900 is mainly a pointer-based device, the jog dial
facility can be used for Up and Down game actions. The game design
may have to be simplified, or it may be possible to make selections such
as game menus into scrollable choice lists.

Some devices provide the ability to poll a key to determine its state,
which can either be ‘‘depressed’’ or ‘‘released’’. Polling a key to check
whether it is currently depressed means we can give the user ‘‘rapid fire’’
functionality. Not all devices have this capability, so it is something to
watch for.

6.3.2 Variations in Input Methods
Developers need to be aware of the different input methods on different
devices. At the very least, they need to code defensively to allow for
variations. It may be wise to test for the presence of a pointer device or
keypad entry. If a MIDlet is being ported to the Sony Ericsson P900, for
instance, buttons may need to be put onto the screen, or graphics may
need to be expanded to make it easier for the user to select an item. On
keypad devices, such as the Nokia 6600, the user relies on the joystick to
navigate between items and the selection occurs automatically.

PORTABILITY ISSUES 329

The Sony Ericsson P900 provides a soft keyboard to compensate for
the missing keys. How will this affect game play for the users? Will they
still enjoy the same experience as users on a keypad phone? Instead
of catering for both input methods in a single user interface, should a
different user interface be developed? For example, instead of listening
for the left and right keys, the MIDlet could detect the part of the screen
on which the stylus has been pressed; if it is to the left or right of the hero,
the character could be moved in that direction. Pressing the stylus on the
character itself could invoke the fire mechanism. The jog dial could be
used in tandem with the pointer. In other words, instead of emulating the
keypad, try to look for other ways of interpreting user input.

Maybe the developers need to ask themselves whether pointer-based
devices appeal to a different set of users altogether. Should the game
designer be thinking about applications that utilize the features of the
device, rather than trying to port an unsuitable game? The best business
decision may be not to port at all, but to create a specially-developed
concept for that device.

6.3.3 High-Level User Interface Components

Using high-level UI components such as TextField, List and Form,
rather than drawing directly to a Canvas, generally provides a portable
UI. These components and their layout are abstracted, with the device
implementation handling the display of the components on the screen.
The application is not concerned with the capture of user input or with
individual keys, does not define visual appearance, and is unaware of
such actions as navigation and scrolling.

This works well for information-based applications, as the devel-
oper can be more concerned with organizing information into coherent
screens. The developer has little control over look and feel, so the UI
retains the look and feel of native applications.

One exception within the high-level API is CustomItem, a compo-
nent that allows developers to define their own Form object. Although
it is a high-level component derived from Item, it behaves more like a
Canvas. Whereas the other high-level Form objects let the implementa-
tion manage user interaction and object traversal, the class extending the
abstract CustomItem class is responsible for implementing this behavior.

The Sony Ericsson P900 and the Nokia 6600 implement CustomItem
differently, reflecting the different user interaction paradigms of the
two phones. It is possible to extend CustomItem by redefining the
keyPressed(), keyReleased(), and keyRepeated() methods for
the Nokia 6600 and the pointerPressed(), pointerDragged(),
and pointerReleased() methods for the Sony Ericsson P900. In
this way the extended CustomItem should behave correctly on both
platforms.

330 MAKING JAVA CODE PORTABLE

6.3.4 Adapting to Proprietary and Optional APIs
MIDP 2.0 has evolved to its current state with the co-operation of
many interest groups such as device manufacturers, network operators,
and operating system developers including Symbian. In some cases, in
order to facilitate the next generation and sometimes in anticipation of
forthcoming technology, devices are released with proprietary APIs which
provide developers with the ability to create more complex applications
using APIs which have not yet (or may never) be standardized. For
example, Nokia created a proprietary API for broadcasting SMS messages
and a proprietary UI API gave game developers for Nokia MIDP 1.0
devices control of a full-screen canvas. In both cases this functionality
has since been incorporated into the standards. JSR 120 supports SMS
and MIDP 2.0 provides Canvas.setFullScreenMode(). In these
circumstances, the Nokia UI API is deprecated, although implementations
still ensure backward compatibility.

Developers should be aware of the capabilities of the target device
before assuming that all the classes they have used are standard. Code
should be written defensively so that when an API is not available the
MIDlet will still run, while taking an appropriate action, and not just close
the application unexpectedly. It would be even better for the developer
to be aware of the device’s libraries and perhaps make positive decisions
about the functionality of an application prior to release on a new device.

This, however, leaves developers with a quandary. Do they only target
particular devices and operators that suit their needs, or do they try to
code around the limitations of devices to achieve the same result? Would
it be possible, for example, to change the screen layout or menu order to
reflect a smaller screen size?

Another area where devices differ in capability is their multimedia
support. For example, the MIDP 2.0 Media API (discussed in Chapter 3)
provides limited capabilities as a lowest common denominator. Where
devices have good native multimedia functionality, such as onboard
cameras and microphones, developers would reasonably expect to be
able to manipulate the media data. However, at present only some of
the more powerful phones, such as the Nokia 3650 and Nokia 6600,
implement the fully-featured Mobile Media API (JSR 135), which enables
rendering and recording of media data, such as audio and video playback
and photo capture. This API enables an application such as the Picture
Puzzle MIDlet discussed in Chapter 5 to capture an image from its
onboard camera, manipulate it and store it for future use. However, the
reach of the application is obviously limited to those devices that support
the MMAPI and implement the photo capture functionality (optional
under JSR 135).

Fragmentation in the CLDC/MIDP API space is widely acknowl-
edged as a serious issue. The Java Technology for the Wireless Industry
(JTWI) expert group was created to address this problem (http://jcp.org).

PORTABILITY ISSUES 331

Chapter 3 introduced the JTWI and concentrated on the component JSRs
that make up Release 1 of the JTWI roadmap. One of the goals of the JTWI
is to provide a lowest common denominator set of APIs and functionality
that compliant devices must implement. By targeting their applications
at the JTWI platform, developers can be confident that these applications
will run on the widest possible range of devices. JTWI also specifies
certain minimum requirements both in terms of performance and the
implementation of optional functionality within a specific component
JSR. This is discussed in more detail in Chapter 3, but here are a few
pertinent examples:

• devices should allow JAR files up to 64 KB, with a JAD file of 5 KB
and 30 KB of persistent storage

• for graphics, it adds JPEG format files to the PNG support, providing
greater flexibility

• a minimum screen size of 125 × 125 pixels with 12 bits of color depth
should be adopted

• devices on GSM/UMTS networks must support SMS push, which
works with the push registry to awaken MIDlets upon receipt of an
SMS message.

Symbian was a member of the JSR 185 expert group and Symbian’s
Java implementation is JTWI-compliant from Symbian OS Version 8.0.
The ratification of Release 1 of the JTWI postdates MIDP 2.0, but the
vast majority of MIDP 2.0 devices are expected to conform to the JTWI
initiative in the future.

6.3.5 Download Limitations

Symbian OS devices such as the Nokia 6600 and the Sony Ericsson
P900 do not specify limitations on the maximum MIDlet JAR file size;
rather, the JAR size is limited by the available persistent storage they
have on the device. Typically, Symbian OS devices start with 16 MB, but
after the operating system and applications have been added they have
around 8 MB. Some devices have memory sticks and MMC cards, so this
does, of course, vary. Other considerations include limitations imposed
by operators on WAP gateway downloads. An application that is too
large will not sell, as no one can download it! Obfuscation (discussed in
Chapter 7) provides one way to reduce JAR file size.

Looking further across the market, developers should be aware that
some devices impose a maximum download limit. Nokia Series 40
devices have a maximum 64 KB limit, while the Sony Ericsson T610
allows a JAR file size of 60 KB. This gives an idea of where final JAR file
sizes should be pitched for the best portability.

332 MAKING JAVA CODE PORTABLE

The size is, of course, governed by what is inside the file, so it’s worth
considering exactly what we include. Do sound files really need to be
added? For example, the new target device may not be capable of playing
certain sounds, or it may not be capable of rendering certain images. To
port to a different device we may be able to leave out these extras. Playing
a sound on a device with a lower specification may have unwanted side
effects on the speed of the MIDlet and the device memory.

It may be that a smaller JAR file size means a smaller game world.
Maybe we should consider cutting back on the number of levels for the
user to play?

Obfuscation, as well as scrambling the code from prying eyes, has the
side effect of reducing the final JAR file size and can improve efficiency,
particularly with older VMs. Some obfuscators are more efficient and can
reduce the JAR file more dramatically than others, so shop around and try
out different ones (Chapter 7 looks briefly at two that are supplied with
Sun ONE Studio, Mobile Edition).

6.3.6 Heap Memory
The developer needs to be aware of heap memory, especially when
porting to a different device. The heap memory holds all the runtime
code, graphics and other objects associated with the MIDlet. Failure
to keep within the limits will cause an OutOfMemory error and the
MIDlet will cease to execute. Too many graphics in a MIDlet may
mean not enough heap is left to execute the code. For example, a tiled
background needs to be optimized in terms of off-screen buffer for the
device in question.

Symbian OS devices typically do not specify a limit on heap memory,
leaving the developer with a lot of room to play with. Both the Nokia
6600 and the Sony Ericsson P900/P908 allow for expandable memory
up to an 8 MB heap. Of course, the phone’s other applications also share
that memory space and the application management software may take a
different view of what can and cannot be run at any one time. Developers
can adopt certain strategies to minimize memory usage. Flyweight design
patterns, object factories and object recycling minimize the number of
objects in memory at any one time and ensure memory is freed by the
application when objects are no longer used, rather than relying on the
garbage collector to manage memory.

Porting MIDlets to smaller or different devices may present a different
set of challenges. These devices may set a much lower limit on heap
memory and developers should be aware of this. An important point to
remember here is that the size of the graphics files used to create the
application images has a direct impact on the amount of heap used at
runtime. A compromise in graphical content may be needed to reduce
the overall memory consumption, for instance, by reducing the quality
and detail within sprite graphics.

SUMMARY 333

In addition, lower heap memory may cause the garbage collector to
kick in more frequently, adversely affecting the overall performance of
the MIDlet.

6.4 Summary

In this chapter we have reviewed the techniques and models you should
employ to maximize revenue generation by creating flexible and portable
applications for mobile devices. We have looked at some of the design
patterns you may choose to use and the porting issues you face when
writing MIDP 2.0 code. You need to consider the user interface and, in
particular, graphical content. We have also looked at some issues arising
from using the low-level APIs in game development.

In Chapter 7 we will investigate another important issue in devel-
oping applications for constrained devices: optimizing code for the
J2ME platform.

7
Writing Optimized Code

7.1 Introduction

This chapter looks at how wireless Java MIDlet developers can get
the most from their applications. Optimization is always important, but
especially so on mobile phones and other constrained devices such as
PDAs. We shall address both improving performance and minimizing
memory requirements.

In this chapter we try to help you develop high quality Java applications
for Symbian OS. The approach taken is to encourage you to think about
the issues involved and to make rational decisions, rather than attempting
to provide hard and fast rules for optimization.

We start with a number of general issues including current technology,
benchmarking and principles of optimization.

The next few sections discuss several specific areas for optimization:
object creation, method and variable modifiers, the use of Strings and
using containers sensibly. These ideas are brought together in an example
in Section 7.10.

We then look at some more advanced techniques, such as blocking
techniques to avoid polling and issues with graphics.

Section 7.14 provides a case study which explores optimization issues
in depth. The use of profiling tools is examined in the context of the
case study.

Subsequent sections discuss design patterns relevant to optimization,
memory issues on constrained devices and the need to cope with out-of-
memory situations, and JIT and adaptive compilation technologies.

Useful general references on Java optimization are:

• Practical Java Programming Language Guide by Haggar

• Java 2 Performance and Idiom Guide by Larman and Guthrie

• Java Performance Tuning by Shirazi.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

336 WRITING OPTIMIZED CODE

7.2 What Are We Starting With?

Mobile phones are, by their nature, memory-constrained. In comparison
to a desktop computer we have a small screen, a keypad or pointer for
input rather than a keyboard or mouse, restricted memory, restricted net-
work and IO performance, and restricted processing power. Of particular
concern in this chapter are memory, IO and processor performance.

Mobile phones running Symbian OS typically have between 8 and
16 MB of RAM. The desktop computer on which I am writing this has
512 MB of RAM!

Serial IO on a Symbian OS device is reasonable: both the IR and serial
ports operate at 115.2 Kbps. Bluetooth rates are slightly faster, typically
several hundred Kbps, but this is still far short of my office network, which
runs at 100 Mbps, and my wireless LAN, which operates at 10 Mbps.

Currently, mobile networking is more constrained. GSM provides
9.6 Kbps and GPRS 2.5G technology increases this to over 100 Kbps.
3G UMTS will provide a maximum of 2 Mbps, though typical data rates
will be much lower than this. 3.5G UMTS High Speed Downlink Packet
Access (HSDPA) could increase the maximum rate to 10 Mbps.

7.3 Benchmarking

Benchmarking wireless devices remains problematic. The Embedded
Microprocessor Benchmark Consortium (EEMBC, see www.eembc.
hotdesk.com) has created a suite of embedded Java benchmarks called
GrinderBench, and is working on UI and graphics benchmarks. Grinder-
Bench benefits from using engines from real-world applications, such as
cryptography, chess and XML parsing.

The table below gives overall results for AMark and CLDCMark tests.
AMark is a basic graphics benchmark which can be downloaded from
http://amark.nondove.it. AMark Version 1.3 is run at a standard size
frame, which overcomes the effect of screen size variability. CLDCMark
is a benchmark used internally within Symbian; it is purely embedded,
with no graphics tests. For both tests, the bigger the number, the faster the
device is running. As well as Symbian OS devices, we have included the
Motorola A760 (a Linux-based phone with a 200 MHz XScale processor)
and Sun’s Wireless Toolkit running on a 600 MHz laptop.

Sun
Wireless
Toolkit

2.1

Motorola
A760

Nokia
9210i

Nokia
7650

Nokia
6600

Sony
Ericsson

P800

Sony
Ericsson

P900

AMark 1.3 35.79 8.03 17.13 20.48 19.79 42.63
CLDCMark 248 4726 396 674 3320 4238 5013

GENERAL GUIDELINES FOR OPTIMIZATION 337

The table shows how rapidly Java performance has improved, through
faster clock rates and improved VM technology. Since the Nokia 9210,
the embedded tests have improved by well over a factor of 10, and the
graphics tests by a factor of five. The Nokia 6600 onwards use Sun’s
CLDC HI VM. The Wireless Toolkit results are intriguing: a very good
graphics performance but a very poor embedded performance.

Benchmarks should always be viewed with caution: the only real test
is running representative applications on representative hardware.

7.4 General Guidelines for Optimization

This section outlines some general principles for optimizing code. These
do not attempt to say anything new; however, restating the obvious is not
always a bad thing.

• get the design right
The biggest gains generally come from getting the overall architecture
and design right: how operations should be split between server and
client, what technologies to use (e.g. messaging, RMI, object database
or relational database), what hardware to use, even what languages
are used.

It is important to design to interfaces, not implementations. This
makes it easier to slot in a different or improved algorithm: for
example, depending on your data size and how it might already be
sorted, there are times when a pigeon sorting algorithm will be the
best choice, and times when a bubble sort will be appropriate.

• optimize late: optimizing too early in the process means that you will
produce intricate code that gets in the way of good design

• optimize only where necessary: find out where the bottlenecks are
and concentrate on sorting them out; this requires access to suitable
profiling and heap analysis tools

• do not over-optimize.
The more you optimize your code, the more highly tuned it becomes
to the particular environment. If the environment changes or you want
to use the code in a different application, it may run more slowly.
Compiler technology in particular can have a profound effect on the
benefits or otherwise of a particular optimization.

Optimization can often conflict with other goals for the code:

• clarity and maintainability: improving performance at the code level
generally (though not always) means writing more, and often quite
obscure, code (we shall see an example of this in the case study in
Section 7.14)

338 WRITING OPTIMIZED CODE

• reliability: the corollary of the previous point is that you run the risk
of introducing bugs when you optimize

• fast startup time and fast execution
We can frequently improve startup time by deferring a task until it
is required during execution. This is worthwhile if the task may not
always be required, and even then may still be worthwhile, especially
if the task can be carried out by a background thread.

• reducing memory usage: many of the optimizations require extra
code; caching is a vital tool in improving performance, but requires
extra memory.

Finally, the behavior of an optimization will vary with the platform. As a
Java developer for Symbian OS phones you are likely to be working with
three platforms: Java under Windows, the Emulator and a target device.
The first two platforms may give a rough idea of the benefits or otherwise
of an optimization; however, they cannot be used for a reliable analysis.
The performance of the Emulator in particular is very different to that of
target hardware, for reasons we shall discuss.

7.5 Feedback and Responsiveness

Performance is in the eye of the beholder, so as well as being fast as
measured by a stopwatch, our application also needs to be responsive to
the user and to provide feedback. The user should never be confronted
with an unresponsive screen that shows no indication that something
is happening. Large applications, in particular, can take a long time to
initialize. Rather than leave the user with a blank screen, pop up a
splash screen.

Unlike on desktop computers, there is generally no wait icon on
mobile phones. Therefore it is necessary to have a status area, animated
icon or some other way of conveying progress to the user.

Threads are an expensive resource and should therefore be used
judiciously; this is why native Symbian OS applications tend to be single-
threaded and to rely on cooperative multitasking. You might, however,
want to consider loading or saving data in a separate thread, which allows
the user to carry on with other work. Windows applications often lock
the user out while a file is being saved; this is frustrating and unnecessary.
While saving a file, the user should still be able to read it or edit another
file of the same type.

7.6 Object Creation

Object creation is an expensive process, so it is worth examining
your design to ensure you are not creating large numbers of objects,

OBJECT CREATION 339

Figure 7.1 DiceBox on P900.

particularly short-lived objects, and to consider reusing objects. The
AWT, for instance, is notorious for creating lots of short-lived objects; on
the other hand, the MIDP designers took great care to minimize object
creation, so very few event objects, for instance, are created.

Reusing objects means we do not waste time recreating objects
and there is less work for the garbage collector when they are no
longer needed.

Figure 7.1 shows the DiceBox MIDlet, which rolls a number of dice in
a similar way to a fruit machine rolling fruit.

The following is an extract from the DiceCanvas constructor used
to display the dice. We create a List to change the number of dice in
the constructor rather than recreate it every time it is displayed. We also
create a pool of dice, six in this case, rather than create new dice every
time we change their number.

class DiceCanvas extends Canvas implements CommandListener, Runnable{
...
List diceNumberList = new List("Select number of dice",

List.IMPLICIT, new String[] {"1","2","3","4","5","6"}, null);
int numberOfDice = 2;
Dice[] die = new Dice[6];
public DiceCanvas(DiceBox midlet){

for(int i = die.length; --i >=0;)
die[i] = new Dice();

...

340 WRITING OPTIMIZED CODE

A valid alternative would be to create just the first four dice for our
dice pool and then create additional dice only when we increase the
number of dice.

It should be emphasized that we have used the DiceBox MIDlet only to
illustrate a point. In a program as small as this, such decisions make little
practical difference and worrying about them too much should definitely
be regarded as over-optimization. Object creation is also less expensive
on Sun’s CLDC HI VM than on the original KVM.

Consider using object pools for such things as database connections
and server connections. For instance, a file server program waits for a
request from a client and on receipt of a request returns the appropriate
file. The program might use a class called FileRequestHandler to
listen for, and respond to, file requests from the client. It creates a
FileRequestHandler for each client it is serving, presumably on the
port returned by ServerSocketConnection.acceptAndOpen().
Alternatively it can create a pool of FileRequestHandler instances
at startup and reinitialize an instance with the appropriate port number
as needed.

The benefits of using a pool of FileRequestHandler instances will
be a faster connection time and an implicit limit on the number of clients.
This means a client is either guaranteed adequate bandwidth or has to
wait for a free FileRequestHandler. The downside could be a slower
startup time.

Object creation and pooling is discussed in detail in Smart object-
management saves the day by Sosnoski (www.javaworld.com/
javaworld/jw-11-1999/jw-11-performance.html).

7.7 Method Modifiers and Inlining

Java provides a number of modifiers to control the scope of meth-
ods and variables: private, protected, public, final, static
and volatile.

Methods or variables with no modifier have package scope, are non-
static (that is, belong to the instance of a class rather than the class
itself) and are non-final (that is, can be overridden in a derived class).
We tend to use the default without thinking too much about it; it is a
reasonably safe compromise. However, we should not be lazy. As good
designers we should keep things as private as possible and expose only
what we absolutely have to. Invariant data (constants) should, in any
case, be marked as static and final. Such an approach reduces the
risk of being stuck with an unsatisfactory public interface; we can always
open up our design later, but it is very hard to go back once we make
something public.

METHOD MODIFIERS AND INLINING 341

Performance will also be affected by the scope of our objects and
variables. Local variables remain on the stack and so can be accessed
directly by the VM (a stack-based interpreter). Static and instance variables
are kept on the heap, and can therefore take much longer to access.

static int sValue = 1;
int iValue = 2;
void lotsOfVariables(int arg1, int arg2) {

int value1;
int value2;

value1 = arg1;
value2 = arg2;
iValue = sValue;

}

In the above code snippet, sValue is a static and iValue is an
instance variable; both are stored in the heap. value1 and value2 are
local variables, arg1 and arg2 are method arguments, and all four are
stored on the stack.

The following table shows the performance difference in accessing
static, instance, and local variables (see the Microbench MIDlet in the
source code for the book, at www.symbian.com/books). In each case the
executed code was of the form:

value1 = value2;
value2 = value3;
value3 = value4;
value4 = value1;

where value<n> is either a static, an instance or a local variable. This
code was repeated 16 times in each loop, giving 64 read/write operations,
with the test looping one million times.

Sun
Wireless
Toolkit

2.1

Nokia
9210i

Nokia
7650

Nokia
6600

Sony
Ericsson

P900

Static variable 20.93 s 547.34 s 312.35 s 4.56 s 2.61 s
Instance variable 36.75 s 48.12 s 24.22 s 2.72 s 1.70 s
Local variable 18.93 s 19.85 s 10.32 s 0.29 s 0.20 s

As can be seen, accessing local variables can be an order of magnitude
faster than accessing variables declared on the heap, and static variables
are generally slower to access than instance variables.

342 WRITING OPTIMIZED CODE

However, note that for Sun’s Wireless Toolkit, access to static variables
is faster than to instance variables. This illustrates something we said
earlier: optimization behavior is platform-dependent.

Good design encourages the use of getter and setter methods to access
variables. As a simple example I might start with an implementation that
stores a person’s age, but later on change this to store their date of birth,
calculating their age from the current date. I can make this change if I
have used a getAge() method, but not if I have relied on a public age
field. But will getter and setter methods not be slower?

The following code is used to test the speed of getter and setter
methods:

private int instanceValue = 6;
final int getInstanceVariable(){

return instanceValue;
}
final void setInstanceVariable(int value){

instanceValue = value;
}
long instanceMethodTest(int loop){

long timeStart = System.currentTimeMillis();
for(int i = loop; --i >= 0;){

...
setInstanceVariable(getInstanceVariable());
...

}
return System.currentTimeMillis() - timeStart;

}

The line setInstanceVariable(getInstanceVariable());
was repeated 64 times inside the loop. Similar code was used to test
getter and setter methods for accessing a static, rather than an instance
variable. In this case, the getter and setter methods and the variable
being accessed were declared as static. Here are the results for a loop
count of one million (in the case of WTK, extrapolated from a loop count
of 100 000):

Sun
Wireless
Toolkit

2.1

Nokia
9210i

Nokia
7650

Nokia
6600

Sony
Ericsson

P900

Static
accessors

1362.55 s 743.44 s 457.81 s 41.69 s 26.07 s

Instance
accessors

1409.42 s 1045.16 s 628.28 s 2.72 s 1.78 s

STRINGS 343

Again we see platform-dependent differences in behavior. Sun’s WTK,
Nokia 9210i and Nokia 7650 are all KVM-based, and on all three the
static getter and setter accessors are slower than the instance accessors.

Of more interest, though, is comparing the time it takes to access an
instance variable directly against accessing it via getter and setter methods.
For KVM-based devices, getter and setter methods are very much slower
(by about a factor of 20!) However, for CLDC HI-based devices (Nokia
6600 and Sony Ericsson P900), there is no difference. So for the newer
devices, there is no excuse for not using getter and setter methods.

What is happening? All method calls are faster after their first execution;
the VM replaces lookup by name with a more efficient lookup: virtual
methods are dispatched using an index value into the method table for
the class, while non-virtual methods are dispatched using a direct link
to the method-block for the method. Both approaches offer a similar
improvement; however, non-virtual methods can also be inlined.

Public instance methods are virtual. Final methods may be virtual, but
can never be overridden. So, depending on the type of object reference
to make the call, inlining may still be allowed. Private methods are non-
virtual. Static methods are also non-virtual: they cannot be overridden by
a derived class, only hidden. In addition, static methods do not have a
‘‘this’’ parameter, which saves a stack push.

The VM attempts the actual inlining at runtime after the first execution.
It replaces the method call with an inline version of the method if the
method body can be expressed in bytecodes that fit into the method
invocation bytespace. In practice this means that simpler getter and setter
methods can be inlined by the VM.

This optimization was not implemented in the KVM, which explains
the poor performance of static methods on the earlier phones, but is
present on the later CLDC HI-based phones.

7.8 Strings

Java is very careful in how it handles Strings in order to minimize
storage requirements and increase performance. In particular, Strings
are immutable (that is, once a String is created it cannot be modified)
and the VM attempts to ensure that there is only one copy of any string
in the String literal pool. This section outlines a number of issues that
arise from this approach.

7.8.1 Comparing Strings
In general we use equals() to compare two Strings, for example:

if(stringA.equals(stringB)) {/* do something */}

344 WRITING OPTIMIZED CODE

However, the expression (stringA == stringB) will generally
return true, for example, given:

String stringA = "Now is the time";
String stringB = "Now is the time";

We have to say ‘generally’ because Java JDK 1.1 does not guarantee
to maintain a single copy of identical strings. We can, however, force the
issue by using String.intern(). This method returns a string which
is guaranteed to be unique within the pool.

We can therefore do string comparisons using the much faster equal-
ity operator:

string1 = string1.intern();
...
string2 = string2.intern();
...
if(string1 == string2)) {/* do something */}

If your application spends a lot of time comparing Strings (par-
ticularly common in database applications), this approach can be of
significant benefit.

Note that String.intern() is not in CLDC 1.0, but has reappeared
in CLDC 1.1.

7.8.2 Concatenating Strings

As we know, Strings are not mutable; in other words, a String cannot
be modified once it has been created. So although concatenating strings
is easy, it is also slow. It may be better to use StringBuffer instead.

The following code reads in characters one at a time from an In-
putStream and appends each character to a String:

String text = "";
while(true){

int value = inStream.read();
if(value == -1) break;
text = text + (char)value;

}

The highlighted line is doing a lot more work than is apparent. text
and value are both converted to StringBuffer, concatenated, then
converted back to a String. This can be quite a performance hit in a
tight loop.

STRINGS 345

The following is a better approach:

StringBuffer textBuffer = new StringBuffer(256);
while(true){

int value = inStream.read();
if(value == -1) break;
textBuffer.append((char)value);

}
String text = textBuffer.toString();

By default a StringBuffer is created with an initial length of
16 characters; however, we know we shall be reading at least 256
characters, so we set this as the initial capacity. The StringBufferwill
automatically grow if more characters than this are appended.

An alternative to using the + operator to concatenate strings is the
String.concat() method. Given strings s1, s2 and s3,

s3 = s1.concat(s2)

is more than twice as fast as:

s3 = s1 + s2

7.8.3 Using Strings as Keys in Hash Tables

Strings are often used as keys in hash tables. Every class, including
String, implements hashCode(), which returns the object’s hash
code and hash table lookups make use of the key’s hash code. How-
ever, String.hashCode() recalculates the hash code each time it is
called. To get around this problem, Larman and Guthrie suggest creat-
ing a wrapper class around String, called KeyString, which looks
like this:

public final class KeyString{
private String key;
private int hashCode;

public KeyString(String key){
setKey(key);

}

public void setKey(String key){
this.key = key;
hashCode = key.hashCode();

}

public int hashCode(){

346 WRITING OPTIMIZED CODE

return hashCode;
}

public boolean equals(Object obj){
// See later

}
}

The class caches the hash code rather than recalculating it each time.
The use of setKey() allows a KeyString instance to be reused,
potentially avoiding unnecessary object creation.

If we re-implement hashCode()we are also required to re-implement
equals(), and this suggests a further refinement that takes advantage of
the String.intern() method.

First we modify setKey():

public void setKey(String key) {
this.key = key.intern();
hashCode = key.hashCode();

}

Then we need to implement equals():

public boolean equals(Object obj) {
if((obj instanceof KeyString)

&& (key == ((KeyString)(obj)).key)) return true;
else return false;

}

The if statement first checks that we are comparing two KeyString
instances. Because the strings are interned, the if statement’s second
clause can very quickly check if the two KeyString instances are
equivalent by comparing the identities of the Strings used as keys.

7.8.4 The StringBuffer Memory Trap

Working with String and StringBuffer can result in large amounts
of memory being used unexpectedly. The problem is this: when String-
Buffer.toString() creates a String, the newly created String
uses the StringBuffer character array. This means that if a String-
Buffer with a 1 KB capacity only holds a 10-character string, the
new String will also use a 1 KB character array to store 10 charac-
ters. If the StringBuffer is modified, the StringBuffer array is
copied in its entirety and then modified. Now both the String and

STRINGS 347

StringBuffer have separate 1 KB character arrays. We have just lost
the best part of 1 KB of memory! Repeating the process will continue to
use excessive memory as we generate 10-character strings that use 1 KB
character buffers.

Here is some code from the Microbench MIDlet that can be run to
illustrate the problem:

static long bufferTest(int repeat){
StringBuffer buffer = new StringBuffer(1024);
String[] strings = new String[repeat];
Runtime runtime = Runtime.getRuntime();
long freeMemory;
long timeStart = System.currentTimeMillis();
long initialMemory = runtime.freeMemory();
for(int loop = repeat; --loop >= 0;){

buffer.insert(0, "" + loop);
strings[loop] = buffer.toString();
freeMemory = runtime.freeMemory();
Test.test.println("Used: " + (initialMemory -

freeMemory) + ", total: " +
runtime.totalMemory() + " " + strings[loop]);

initialMemory = freeMemory;
}
return System.currentTimeMillis() - timeStart;

}

A sensible value for the repeat argument is 10. This sets up an
array of 10 strings. Each pass through the loop inserts a character at the
beginning of the StringBuffer, creates a String, and inserts it into
the String array. It then prints out the amount of memory used and the
contents of the buffer, plus the total memory. (Test.test.println()
prints a String to a TextBox.)

What we find is that each pass through the loop uses 2088 bytes. There
are 2048 bytes for the 1 KB buffer (Java uses 16-bit Unicode characters),
24 bytes for the String (composed of a reference to the character array,
a count and an offset into the array) and 16 bytes left over!

There is a slight twist to this, though. If we replace the line:

buffer.insert(0, "" + loop);

with:

buffer.append("" + loop);

then each time we go through the loop we only use 24 bytes, instead
of 2088 bytes! What is happening in this case is that we are adding a

348 WRITING OPTIMIZED CODE

character at the end of the StringBuffer array on each pass through
the loop. This means that each new String can reuse the character array
from the previous String, but with its count value set one greater. (It
is instructive to watch what is happening in a debugger.)

7.9 Using Containers

CLDC provides four general-purpose containers: Vector, Stack (which
subclasses Vector), Hashtable and Array. The J2SE BitSet class,
which provides a container for storing arbitrary-length bit patterns, is not
supported. There are a few issues to be aware of.

You should avoid using the default constructors for Hashtable and
Vector. Java does not specify the default initial capacity and it could
be bigger than we need. If we only want to store a few items, we
do not want a 1 KB container; this would be of little concern on a
desktop computer, but is a serious issue on a mobile phone. Both
Vector and Hashtable provide constructors that can be used to specify
their initial size, respectively Vector(int initialCapacity) and
Hashtable(int initialCapacity).

The initial capacity for a Hashtable should be carefully considered.
First, the CLDC 1.0 documentation states that ”if many entries are to be
made into a Hashtable, creating it with a sufficiently large capacity may
allow the entries to be inserted more efficiently than letting it perform
automatic rehashing as needed to grow the table”. Secondly, as Larman
and Guthrie point out, to minimize clustering, the size of a Hashtable
should be a prime number and powers of two (e.g. 32, 64, 128) should
definitely be avoided. Given that a Hashtable grows by doubling and
adding 1, if we believe our Hashtable needs to grow we should choose
an initial capacity that can grow and still be prime. A good candidate is
89 (keep doubling and adding 1 and see how long it takes before you get a
non-prime number), though 89 may be too large for smaller applications.

Both Vector and Hashtable can grow indefinitely. We might
therefore be using far more memory than we expect and, perhaps worse,
using it unpredictably. We have another problem with the KVM, as used
for instance on the Nokia 9210 or 7650: although the container shrinks
as we remove elements from it or if the container is garbage collected,
the recovered memory is only available to our application. The KVM
garbage collector does not make this freed memory available to other
applications, Java or native. This has changed with the CLDC HI Java VM
used on more recent Symbian OS phones: freed memory is returned to
the system on a regular basis.

Adding or removing items from Vector and Hashtable can be slow.
These containers grow by copying their internal data into a larger array.

HOW NOT TO DO IT 349

Removing an item from the middle of a Vector using removeElemen-
tAt(n) is achieved by copying all elements from n to the end of the
array to the preceding slot.

Most of the comments we have made for Vector apply to Stack.
There is, however, no Stack constructor that sets its initial size, so you
need to use the setSize() method inherited from Vector.

A String is frequently used as a key to a Hashtable; however,
as we saw in Section 7.8.3, they are not without problems and we
suggested that a wrapper class that stores the hash value of the String
could provide faster lookup. Integers also make useful keys because
Integer.hashCode() simply returns the Integer value.

Finally, think about whether an Arraymight provide a faster and more
memory-efficient container than a Vector or a Hashtable. Vector
can be extremely slow if it is used incorrectly. In Wireless Java for
Symbian Devices, an example based on a first-in first-out queue is given:
a vector-based implementation was around 100 times slower than a
reasonably optimized array-based implementation.

7.10 How Not To Do It

We have discussed a number of ideas for improving the performance of
our code. This section brings several of these together in an example.

The following code is a slightly extreme example of how not to do it.
The code goes through a company database extracting information about
each employee:

1 float IMP_TO_MET = 1/2.2;
2 String nameList = "";
3 Vector employees = new Vector();
4 for(int id = 0; id < company.getNumberEmployees(); id = id+1){
5 nameList += company.getCompanyName() + "\t";
6 nameList += company.getEmployee(id).getName() + "\t";
7 nameList += company.getEmployee(id).getWeight() * IMP_TO_MET +

"\n";
8 // do something with nameList
9 nameList = "";

10 employees.addElement(company.getEmployee(id));
11 }

Here are the problems:

• Line 1: IMP_TO_MET should be declared static and final (ignor-
ing for the moment that floats are not available in CLDC 1.0, though
they are available in CLDC 1.1)

350 WRITING OPTIMIZED CODE

• Line 3: It is unnecessary to use a Vector, particularly as we can find
out the number of employees; an Array would be more appropriate;
if we do need to use a Vector, we should at least specify its
initial size

• Line 4: We should dereference company.getNumberEmployees
outside the loop and use a local variable

• Line 4: id++ may optimize better

• Line 5: getCompanyName() should be de-referenced outside
the loop

• Lines 6, 7, 10: company.getEmployee(id) should be obtained
only once inside the loop

• Line 6, 7: Should use a StringBuffer.

The following code shows how we might resolve these problems. We
have defined tab and nl as char rather than as StringBuffer:
appending one StringBuffer to another is no better than appending a
String to a StringBuffer, and significantly slower than appending
a char.

public final static float IMP_TO_MET = 1/2.2;
final char tab = '\t';
final char nl = '\n';
int numberEmployees = company.getNumberEmployees();
Employee[] employees = new Employee[numberEmployees];
StringBuffer nameList = new StringBuffer(128);
StringBuffer companyName

= new StringBuffer(company.getCompanyName()).append(tab);
for(int id = 0; id < numberEmployees; id++){

nameList.append(companyName);
Employee employee = company.getEmployee(id);
nameList.append(employee.getName()).append(tab);
nameList.append(employee.getWeight()*IMP_TO_MET).append(nl);
// Do something with nameList

Finally, we reuse the StringBuffer, though note that this does not
physically resize its internal store:

nameList.setLength(0);
employees[id] = employee;

}

COPYING AN ARRAY 351

7.11 Copying an Array

System.arraycopy() is a standard Java method which copies the
contents of one array into a second array, and is generally imple-
mented as a native method. However, rather than JNI, it uses the native
interface of the VM, which provides direct access to the array contents
and type data.

The following is part of a test used to compare arraycopy()with our
javaCopy()method for copying an array, taken from the Microbench
MIDlet:

...
private static Object[] sourceArray = new Object[1000];
private static Object[] destinationArray = new Object[1000];
private static int size;

private static void vmCopy(){
System.arraycopy(sourceArray, 0, destinationArray, 0, size);

}

private static void javaCopy(){
for(int i = size; --i >= 0;){

destinationArray[i] = sourceArray[i];
}

}
...

The number of elements copied is determined by size, which is set by
the user interface. javaCopy() and vmCopy() were called 3 200 000
times and the total durations compared:

size
(number of
elements
copied)

0 1 2 3 10

Nokia 7650:
arraycopy() 19.53 s 20.47 s 20.94 s 21.41 s 22.66 s
javaCopy() 6.25 s 11.09 s 15.78 s 20.47 s 52.81 s

Nokia 6600:
arraycopy() 3.30 s 3.83 s 4.28 s 4.78 s 8.13 s
javaCopy() 1.38 s 2.97 s 4.56 s 6.09 s 17.17 s

For small arrays of two or three elements, copying using Java code is
faster. For arrays larger than this, using arraycopy() is much faster. So,

352 WRITING OPTIMIZED CODE

in general, use arraycopy() unless you have a very large number of
small arrays to copy.

The results under the Emulator were qualitatively different. Native
copying was faster except for a zero-length array, emphasizing once
again that an optimization must be evaluated on target hardware.

It is not clear how meaningful the results are for zero-length arrays,
though dividing the total time of 3.3 s for native copying by the number
of calls (3 200 000) suggests a native overhead of about 1 µs per call for
the CLDC HI VM on the Nokia 6600.

7.12 Thoughts on Looping

In Section 7.10 we saw that we should not dereference variables inside a
loop. In this section we shall look at further issues to do with looping.

7.12.1 Loop Control Statements

In the previous section we used the following Java code to copy the
contents of an array:

private static void javaCopy(){
for(int i = size; --i >= 0;){

destinationArray[i] = sourceArray[i];
}

}

The loop control statement was originally written like this:

for(int i = 0; i < size; i++)

However, the loop termination comparison (>= 0) used in the final
code is built into the Assembler branch opcode and so is quicker. The
difference is significant: the final javaCopy() ran about 16 % faster than
the original.

7.12.2 Recursion

Recursion can be used to create compact code and, if used carefully,
code that is also clear. For instance, searching through the contents of
a directory structure lends itself to recursive code. In general, however,
recursive code is slow and memory-intensive. Each pass has the overhead
of a method call and the resulting stack space.

THOUGHTS ON LOOPING 353

Here is a recursive example that prints out the values of a binary tree
(each Node in the tree stores a value and references to the two Nodes
that branch from it):

class Node{
Object value;
Node smaller;
Node bigger;

}
class BinaryTree{

static void print(Node node){
if(node == null) return;
System.out.println(node.value);
print(node.smaller);
print(node.bigger);

}
...

}

The body of the print() method calls itself twice unless the Node is
null, in which case the call returns.

The Microbench MIDlet includes tests to compare recursive and non-
recursive implementations. The non-recursive test simply decrements a
number (value) until it reaches zero, and this is repeated repeat
times:

static long doNonRecursive(int repeat, int value){
long timeStart = System.currentTimeMillis();
for(int loop = repeat; --loop >= 0;) {

int count = value;
while (true){

if(--count == 0) break;
}

}
return System.currentTimeMillis() - timeStart;

}

In the recursive version, decrementCount() calls itself until count
is zero. doRecursive() does the timing and sets up the first call to
decrementCount():

private static void decrementCount(int n){
if (--count == 0) return;
else decrementCount(n);

}
static long doRecursive(int repeat, int value){

long timeStart = System.currentTimeMillis();
for(int loop = repeat; --loop >= 0;){

int count = value;

354 WRITING OPTIMIZED CODE

decrementCount(count);
}
return System.currentTimeMillis() - timeStart;

}

We can see from the results below that the recursive option with
a depth of 500, repeated 10 000 times, took 7.2 s on the Nokia 6600.
The non-recursive solution took just 0.6 s. The message is clear: avoid
recursion!

9210i
Personal

Java

9210i
MIDP 1.0

KVM

Nokia
7650

MIDP 1.0
KVM

Nokia
6600

MIDP 2.0
CLDC HI 1.0

SEMC
P900
CLDC
HI 1.0

Recursive 34.0 s 19.6 s 15.2 s 7.2 s 6.7 s
Non-recursive 4.6 s 3.4 s 3.1 s 0.6 s 0.4 s

7.12.3 Stack Size and Limits on Recursion Depth

The stack size available with PersonalJava on the Nokia 9210 and KVM
on the Nokia 9210 or 7650 is sufficient to allow a recursion depth in
excess of 5000 (at least 9000 with PersonalJava on the 9210).

For PersonalJava, the Java stack used to push Java method call frames
is set by default to about 400 KB. If you need a greater Java stack
depth, the -ossx parameter in the command line can be used. The
following command runs the Performance Tests application allowing a
huge recursion depth:

\epoc32\release\wins\udeb\pjava_g -oss32m -cd j:\examples\PerformanceTests
-cp PerformanceTests.jar
com.symbian.devnet.crystal.performance.PerformanceTests

The maximum depth that can be achieved with CLDC HI 1.0 is
around 500. This reflects the VM’s inability to support dynamic stack
extension: instead a fixed, albeit generous, stack size was chosen for use
by all threads. The unfortunate side effect is an increase in the dynamic
footprint per thread (this has been addressed in CLDC HI 1.1).

Sun’s KVM allowed thread stacks to be stretched in linked chunks
up to the capacity of the dynamic heap. CLDC HI 1.1 can also stretch
stacks, but requires a stack to be contiguous. It therefore has to perform a
copying realloc on each extension, which is a slower process.

THOUGHTS ON LOOPING 355

7.12.4 More Examples

Calculating Factorials
We can calculate n! either recursively or non-recursively. The recursive
code looks like this:

private static long factorialR(int value){
if(value < 2) return 1L;
else return value*factorialR(value - 1);

}

Here is the non-recursive version:

private static long factorial(int value){
long valueFactorial = value;
while (--value > 1){

valueFactorial *= value;
}
return valueFactorial;

}

These methods are called from doFactorialRecursive() and
doFactorialNonrecursive() respectively. doFactorialRecur-
sive() looks like this:

static long doFactorialRecursive(int repeat, int value){
long valueFactorial = 0;
long timeStart = System.currentTimeMillis();
for(int loop = repeat; --loop >= 0;){

valueFactorial = factorialR(value);
}
return System.currentTimeMillis() - timeStart;

}

doFactorialNonrecursive() is identical to doFactorialRe-
cursive() except that it calls factorial(), not factorialR().

Calculating 20! recursively one million times on a Nokia 6600 took
6.1 s. Calculating 20! non-recursively took 5.7 s.

However, there is a better way of calculating factorial numbers. The
maximum 64-bit long value is 9 223 372 036 854 775 807. The largest
factorial that can be calculated in a 64-bit long is only 20!, which is
2 432 902 008 180 000 000; 21! overflows and returns a negative value.
The obvious solution is to use a lookup table of 20 values.

First we need an array to store the factorials:

private static long[] factorials = new long[20];

356 WRITING OPTIMIZED CODE

Then a lookup method:

private static long factorialLookup(int value){
return factorials[value-1];

}

These are called by the doFactorialLookup() wrapper. This first
populates the array by calling the earlier factorial() method (this
could be done much more efficiently, but the startup time is insignificant),
then repeatedly calls factorialLookup():

static long doFactorialLookup(int repeat, int value){
for (int index = 0; index < 20; index ++){

factorials[index] = factorial(index + 1);
}
long valueFactorial = 0;
long timeStart = System.currentTimeMillis();
for(int loop = repeat; --loop >= 0;){

valueFactorial = factorialLookup(value);
}
return = System.currentTimeMillis() - timeStart;

}

Calculating 20! one million times using this lookup table took just 0.7 s
on a Nokia 6600. Here is a complete set of results:

9210i
MIDP 1.0

KVM

Nokia
7650 MIDP

1.0 KVM

Nokia 6600
MIDP 2.0
CLDC HI

1.0

SEMC
P900

CLDC HI
1.0

Recursive 39.4 s 26.6 s 6.1 s 4.5 s
Non-recursive 38.0 s 25.5 s 5.7 s 4.4 s
Lookup 3.8 s 2.5 s 0.7 s 0.5 s

Searching a Binary Tree
If a recursive method calls itself just once, then replacing the recursive
calls with a loop is trivial: the examples above do this. The problem is a
little harder when a method calls itself more than once; for instance, to
find a node with a particular value in a binary tree or searching through a
directory structure. You do not need recursion for searching if the binary
tree is sorted:

Node root;

boolean contains(Node nodeToFind){
Node node = root;

THOUGHTS ON LOOPING 357

while (true) {
if (node == null) return false;
if(node.compare(nodeToFind) == -1)

node = node.smaller;
else if(node.compare(nodeToFind) == 1)

node = node.bigger;
else return true;

}
}

Avoiding recursion in the print() example is harder. In this case we
need to maintain a stack containing the branches: we push nodes onto
the stack as we go down the tree, then pop them off the stack as we go
back up. Details of how to do this can be found in Section 2.3.1 of The
Art of Computer Programming, Volume 1 by Knuth.

These approaches to searching and enumerating are used in the
ordered binary tree container discussed in Section 7.14.

7.12.5 Polling

Avoid using loops that poll. The following is a snippet of code that polls
the keepRunning flag. (printText(String) just displays String
in a UI component.)

boolean keepRunning = false;
...
public void run(){

printText("Started");
while(keepRunning){

printText("In loop");
}
printText("Stopped");

}

Running the loop increased battery consumption from 66 mA to an
unacceptable 163mA on my Psion Series 5MX (unfortunately there is
no easy way of monitoring battery consumption on more recent mobile
phones). The battery consumption returned to 66 mA when keepRun-
ning was set to false. Further, loops like this will hog the CPU and
deprive other applications of CPU cycles.

In order to read from an InputStream we can sit in a loop polling
for the number of available bytes using InputSteam.available().
When data becomes available, we read it using InputStream.read().
However, it is far better to create a separate reader thread that calls
InputStream.read()directly. Because this method blocks, the thread
will wait until data is present and not consume any unnecessary CPU
bandwidth. Although both an event model and a wait–notify model
require an extra Thread, this is generally worthwhile.

358 WRITING OPTIMIZED CODE

7.13 Graphics

Graphics coders face two problems: speed and flicker. There are three
main causes of flicker:

• before drawing a new frame we need to clear the old frame by
painting in the background; we see flicker because the background
shows through between frames

• there is insufficient time to paint frames between paint requests, so
that we start drawing the new frame before the old frame has been
completely drawn

• the underlying OS buffers paint requests, so not every frame is drawn.

There are two main approaches we can take to reducing flicker. We
can use a clipping region, so that we only repaint the area that needs to
be updated, or we can create the new image in an off-screen buffer and
copy this into our graphics context as required.

Using a clipping region is generally faster and will reduce, but not
eliminate flicker. An off-screen buffer should eliminate flicker and improve
performance, but requires extra memory for the buffer.

However, the graphics on Symbian’s Java implementation are already
double-buffered so that flickering should not occur, and you should
not use double-buffering in your application. In general, you can use
Canvas.isDoubleBuffered() to check if the implementation is
double-buffered and code appropriately. Interestingly, the AMark 1.3
benchmark does not check but does the double-buffering itself. This
unfairly penalizes platforms like Symbian OS which provide double-
buffering.

7.13.1 The Popcorn Drawing Demonstrator
Popcorn is a test program used to investigate the different approaches
to painting. It moves a puck back and forth across the screen with-
out dropping frames (Figure 7.2). The code can be downloaded from
www.symbian.com/books.

The MIDlet is implemented with three strategies for painting (the user
can choose which one to use):

• on each repaint request, paint the whole background, then the puck

• on each repaint request, just paint the background that has changed,
then paint in the puck

• create separate images for the background and the puck; on each paint
request, paint in only the bits that have changed in the background
image and then the puck image.

GRAPHICS 359

Figure 7.2 Popcorn test program.

The squared background in the playing field gives paint() something
to do, as well as adding a bit of interest.

It is instructive to run Popcorn in the Wireless Toolkit emulator with
double-buffering enabled and then disabled. In the latter case the basic
playing field flickers so badly as to be unusable. The playing field with
a clipping region just flickers in the clipped region, which is interesting
because it makes the clipping region visible. None of the implementations
flicker when run on Symbian OS.

Popcorn is written for MIDP 1.0. The GameCanvas class of MIDP 2.0
can be used to simplify the program logic, and we shall see later how we
can modify the MIDlet to use this class.

7.13.1.1 Painting the Whole Background

The PlayingField class displays the puck (a filled circle) in a rect-
angular playing field. It is responsible for painting in the playing field
and the puck. Every time PlayingField.move() is called, the puck is
redrawn xDelta pixels to the left or to the right. The horizontal size of
the playing field is xMax pixels plus the size of the puck (PUCK_SIZE).

360 WRITING OPTIMIZED CODE

PlayingField is a Canvas. It implements Runnable so that we
can have a separate thread for the animation, and CommandListener
so that we can add Go and Back Command objects (menu entries)
to the display. We also define a few constants, including some basic
colors. xDelta is the amount we move the puck on each frame (+1
or −1 pixel). xMax is the playing width, the distance the puck moves.
paintCount is the number of times paint() is called in order to
redisplay the puck in a new position (ignoring paint() requests when
part of the screen has been obscured). paintCount should be the same
as the number of moves we request; if not, we know we have dropped
a frame.

class PlayingField extends Canvas implements Runnable, CommandListener{
private Command goCommand = new Command("Go", Command.SCREEN, 1);
private Command backCommand = new Command("Back", Command.BACK, 1);
protected static final int PUCK_SIZE = 30;
protected static final int Y_POS = 40;
protected static final int LOOP_COUNT = 500;
protected static final int BLACK = 0x00000000;
protected static final int RED = 0x00C12100;
protected static final int BLUE = 0x000000FF;
protected static final int GREEN = 0x00008800;
protected static final int WHITE = 0x00FFFFFF;
protected static final int GREY = 0x00808080;
int colourBackground = BLUE;
protected int xPos = 0;
protected int xPosOld = 0;
protected int xDelta = 1;
protected int xMax;
int paintCount = 0;

The constructor adds the commands and calculates xMax, the distance
the puck moves:

PlayingField(){
addCommand(goCommand);
addCommand(backCommand);
setCommandListener(this);
xMax = getWidth() - PUCK_SIZE;

}

commandAction() either takes us back to the start screen (which is
a simple menu for choosing a repaint method), or starts the animation:

public void commandAction(Command c, Displayable s) {
long timeElapsed = 0;

if (c == backCommand) {
Popcorn.popcorn.startApp();

}

GRAPHICS 361

else if (c == goCommand){
new Thread(this).start();

}
}

run() sits in a loop that repeats 500 times (the number of animations)
and records how long it takes. move() is called on each pass to do most
of the work. At the end, run()uses a class called OutputTextBox to
display the results:

public void run(){
paintCount = 0;
long timeStart = System.currentTimeMillis();
for(int i = LOOP_COUNT; --i >=0;){

move();
}
long timeElapsed = System.currentTimeMillis() - timeStart;
OutputTextBox.backScreen = this;
OutputTextBox.println("Time: " + timeElapsed);
OutputTextBox.println("Count: " + paintCount);

}

move() calculates the new position, modifies the direction if necessary
and then calls repaint() to request that the screen is repainted with
the puck in the new position:

public void move(){
xPosOld = xPos;
xPos += xDelta;
if((xPos <= 0) || (xPos > xMax)) xDelta = -xDelta;
repaint();
serviceRepaints();

}

paint() draws in first the background and then the puck. If the puck
has moved, paintCount is incremented:

public void paint(Graphics g){
drawBackground(g);
g.setColor(RED);
g.fillRoundRect(xPos, Y_POS, PUCK_SIZE, PUCK_SIZE, PUCK_SIZE,

PUCK_SIZE);
if(xPosOld != xPos) paintCount++;

}

drawBackground() is called by paint(). It fills in a background
color and then paints a pattern of filled and unfilled squares. Interest-
ingly, you get a marginal (1–2 %) increase in performance on Symbian’s

362 WRITING OPTIMIZED CODE

implementation if you do line and filled drawing separately, rather than
interlaced in the same loop as we have done:

void drawBackground(Graphics g){
int width = this.getWidth();
int height = this.getHeight();
int pitch = 12;
int size = 10;
g.setColor(WHITE);
g.fillRect(0, 0, width, height);
g.setColor(colourBackground);

for (int xPos = 0; xPos < width; xPos += pitch){
for (int yPos = 0; yPos < height; yPos += pitch){

g.fillRect(xPos, yPos, size-1, size-1);
g.drawRect(xPos, yPos, size, size);

}
}

}

As a general rule it is better to paint a few large areas rather than lots
of small areas, even if it means you have to paint in a significantly bigger
total area.

7.13.1.2 Using a Clipping Region

We use a clipping region so that we paint only what is needed. To define
a clipping region we simply need to modify move() so that we call
repaint() with a clipping rectangle (in fact, if you look at the Popcorn
source you will see a new class, PlayingFieldWithClipping, that
subclasses PlayingField):

public void move(){
int absXDelta = Math.abs(xDelta);
xPosOld = xPos;
xPos += xDelta;
if((xPos <= 0) || (xPos > xMax)) xDelta = -xDelta;
repaint(xPos - absXDelta, Y_POS, PUCK_SIZE + 2*absXDelta,

PUCK_SIZE);
serviceRepaints();

}

We need to ensure the clipping region encompasses the old position
and the new position of the puck irrespective of the puck’s direction,
which means we are repainting a bit more than we strictly need to.

Note that paint requests may be buffered so that the actual clipping
rectangle will be the union of the clipping rectangles requested by each
repaint().

GRAPHICS 363

7.13.1.3 Using an Image Buffer

There are various ways in which we could use an image buffer. In this
case we have created an image for the background and an image for the
puck. On each animation we draw in the background image, then the
puck image. To improve performance further, we again call repaint()
with a clipping region.

It is worth going through the whole PlayingFieldBuffered
class – there is not much to it, as it only has to add a bit to Play-
ingField.
puckImage and backgroundImage hold the two images:

class PlayingFieldBuffered extends PlayingField{
Image puckImage;
Image backgroundImage;

The constructor calls the PlayingField constructor so that the
commands are added to the canvas, sets a background color for later use
and calls makeImages():

PlayingFieldBuffered(){
super();
colourBackground = RED;
makeImages();

}

makeImages() makes the background and puck images. The first
three lines create our background image, making use of the superclass
drawBackground() method. For the puck it was easier to create a
PNG image and load it from the JAR file. This is because we needed a
solid circular disc, with the rest of the image transparent. Constructing
images with transparency or alpha blending is difficult with MIDP 2.0;
the closest method is probably Image.createRGBImage().

private void makeImages(){
backgroundImage = Image.createImage(this.getWidth(),

this.getHeight());
Graphics bG = backgroundImage.getGraphics();
drawBackground(bG);
try{

puckImage = Image.createImage("/res/puckSm.png");
}
catch (java.io.IOException ioe){

OutputTextBox.println("Couldn't find puck image");
}

}

364 WRITING OPTIMIZED CODE

paint() simply has to paint in the background image, then the puck
image in the correct position:

public void paint(Graphics g) {
g.drawImage(backgroundImage, 0, 0, Graphics.TOP|Graphics.LEFT);
g.drawImage(puckImage, xPos, Y_POS, Graphics.TOP|Graphics.LEFT);
if(xPosOld != xPos) paintCount++;

}

move() is identical to the move() method in PlayingFieldWith-
Clipping. We could have subclassed this class and saved ourselves
some code, though this approach is less flexible as it becomes harder to
change the two classes independently:

public void move(){
int absXDelta = Math.abs(xDelta);
xPosOld = xPos;
xPos += xDelta;
if((xPos <= 0) || (xPos > xMax)) xDelta = -xDelta;
repaint(xPos - absXDelta, Y_POS, PUCK_SIZE + 2*absXDelta,

PUCK_SIZE);
serviceRepaints();

}
}

7.13.1.4 Comparison of the Painting Strategies

Having gone through the details of the Popcorn MIDlet, it is time to look
at the results:

WTK no
buffer

WTK
buffered

7650 6600 P900
(full

screen)

P900
(with

keypad)

Full repaint 36.51 s 25.70 s 38.97 s 23.81 s 30.74 s 21.67 s
Clip region 35.24 s 22.74 s 16.58 s 8.06 s 12.52 s 9.95 s
Buffered 0.90 s 0.80 s 2.88 s 4.56 s 4.53 s 4.56 s

We have deliberately chosen a complex background that takes a long
time to draw. On Symbian OS, we can see the benefit of clipping: the
less background we have to draw, the faster we can redraw successive
screens. Using off-screen images together with a clipping region further
improves performance. Indeed, with complex background scenes, this
is the only option. The downside is the memory required to store the
background image.

GRAPHICS 365

The very fast buffered performance of the Nokia 7650 compared to the
Nokia 6600 or Sony Ericsson P900 is at least in part because the 7650 has
only 4096 colors, whilst the other devices have 65 536 colors. Without
buffering on the WTK, our first two options flickered badly.

7.13.1.5 Using GameCanvas in MIDP 2.0

The Popcorn MIDlet was written for MIDP 1.0. However, it is a simple
matter to rewrite it for MIDP2.0 to take advantage of the GameCanvas
class. Only a few changes are needed to PlayingField, which we
have renamed PlayingFieldGameCanvas. We extend GameCanvas,
not Canvas, and we need an instance variable for the Graphics object:

public class PlayingFieldGameCanvas extends GameCanvas
implements Runnable, CommandListener {

Graphics graphics;
...

Then we change move() so that it calls the paint()method directly,
rather than via repaint() (we should really rename the paint()
method to save confusion). paint() updates the Graphics object,
then we call flushGraphics() to render it to the screen:

public void move(){
xPosOld = xPos;
xPos += xDelta;
if((xPos <= 0) || (xPos > xMax)) xDelta = -xDelta;
paint(graphics);
flushGraphics();

}

Even though in this case we have not saved any code, the logic is now
simpler. For instance, I could easily check when the puck hits the edge of
the screen, perhaps to change its color or shape, or to add another item
to the Graphics object.

However, whether using Canvas or GameCanvas, the implementa-
tion has to do broadly the same amount of work, so using GameCanvas
made no significant difference to the execution time.

7.13.2 Collision Detection

Figure 7.3 shows a rocket about to collide with an asteroid. How can
we tell if they do indeed collide? The MIDP 2.0 Sprite class provides

366 WRITING OPTIMIZED CODE

Figure 7.3 Sprites overlapping, but not colliding.

methods for converting an Image to a Sprite and for detecting whether
two sprites are in collision.

In this case the bounding boxes for the sprites overlap. However, the
images have not actually collided.
boolean Sprite.collidesWith(Sprite s, boolean pix-

elLevel) returns true if the sprites overlap. If pixelLevel is false,
only the bounding boxes are checked. This is fast, but not accurate. If
pixelLevel is true, first the bounding boxes are checked, then if these
overlap, the method checks to see if any non-transparent pixels overlap.

There is no need for you to do a quick check with pixelLevel set to
false followed, if necessary, by an accurate check with pixelLevel
true; just use collidesWith()with pixelLevel set to true. If you
need to check collisions between lots of simple sprites, pixelLevel
should probably be false; if you need to check collisions between a few
complex objects, pixelLevel should probably be true. On the other
hand, if you have lots of complex objects things can get very complicated.

The number of potential collisions increases with the square of the
number of sprites (n sprites means n(n-1)/2 possible collisions). A way to
cut this down is to divide the screen into tiles. For each tile you only need
to go through all the sprites that are completely enclosed by the tile, or
that cross the boundary of the tile.

7.14 LifeTime Case Study

The LifeTime MIDlet is an implementation of Conway’s Game of Life.
The action takes place on an unlimited field of squares, or cells.

LIFETIME CASE STUDY 367

From generation to generation, cells live or die according to three
simple rules:

• a cell is created (from nowhere!) if it has 3 neighbors

• a cell stays alive if it has 2 or 3 neighbors

• otherwise a cell dies (of overcrowding or loneliness!) or remains
empty.

Near the bottom of Figure 7.4, you can see a block of four cells,
a column of three cells and a block of two cells. You might like to
convince yourself that in the next generation, using the rules above,
the block of four cells remains unchanged because each cell has three
neighbors, the column of three changes to a row of three, and the block
of two disappears. If you want to know more, The Recursive Universe by
Poundstone gives an excellent insight into the Game of Life as well as
being a thoroughly good read.

Probably the most famous pattern is the r Pentomino. This starts as
in Figure 7.5 but explodes into the most amazing patterns. Figure 7.4 is
a detail from this pattern after some 70 generations. After 1103 gen-
erations, it stabilizes into a predictable, dynamic pattern. Figure 7.6
shows the pattern after 1103 generations at the four zoom levels
offered by the program. In the first we see the entire pattern, except
for four ”gliders” which have traveled beyond the screen and will con-
tinue to move out indefinitely. Each cell is represented by a single pixel.
At the next zoom level, each cell is represented by a 2 × 2 block of

Figure 7.4 Detail of LifeTime.

368 WRITING OPTIMIZED CODE

Figure 7.5 Start of r Pentomino.

Figure 7.6 Views of the LifeTime population at four different zooms.

pixels, then by a 3 × 3 block, then by a 5 × 5 block at the greatest
zoom level.

Figure 7.7 shows the UML class diagram for the LifeTime MIDlet. The
classes of particular interest to us are:

• LifeCanvas: renders the state of the game to the screen and is
responsible for housekeeping functions such as loading and saving
games, pan and zoom, and editing functions

• LifeEngine: holds the algorithm that interprets Conway’s rules to
construct a new generation from the old generation

• GenerationMap: defines an interface for storing and accessing the
data for each generation.

LIFETIME CASE STUDY 369

MIDlet

LifeTime

+LifeTime()

~startApp()
~pauseApp()
~destoryApp()

display:Display

Runnable

LifeEngine

+run()
-createNewCell(Cell)

LifeCanvas
~paint(Graphics)

(plus UI and
record store
stuff)

1
1

canvas

GameCanvas

CommandListener
commandAction(Command, Displayable)

~thisGeneration:GenerationMap
~lastGeneration:GenerationMap
-testedCells:GenerationMap

GenerationMap
create(cell)
kill(cell)
clear()
isAlive(cell):boolean
getCount():int
getNeighbourCount(cell):int
getEnumeration():Enumeration

TwoDByteArray

LinkedListGM

BinaryTreeGM

HashGM

VectorGM

Cursor

LoadDeleteList

OutputTextBox

SetupForm

SaveGameForm

TextBox

List

Form

Cell
Cell(x, y)
Cell(position: int)
getX():int
getY():int
equals(obj): boolean
hashcode():int

1

Figure 7.7 UML class diagram for the LifeTime MIDlet.

Four different implementations were tested (the TwoDByteArray was
not a strict implementation of the interface). In general the location of a
cell was stored as one 32-bit integer value, with the top 16 bits holding
the y-coordinate and the bottom 16 bits holding the x-coordinate. This
meant that the field was limited to 64 K by 64 K, but still much bigger
than any screen!

Design choices are driven by the requirements of the game itself,
in particular:

• an unlimited playing field; this means that a fixed-size two-dimensional
array is not a real option

• maximizing performance

• minimizing memory requirements.

All three classes have to be optimized. LifeCanvas needs to paint
as fast as possible, not just during a run but also at different zooms,
while panning and during editing. The LifeEngine algorithm needs
to be as quick as possible, at the same time ensuring that the code
is straightforward and understandable (a search on the Internet will
reveal some very complex, and very fast, Game of Life algorithms). The

370 WRITING OPTIMIZED CODE

GenerationMap implementation needs to provide fast access to the
game within a reasonable footprint.

Various auxiliary classes manage loading, saving and deleting games,
displaying status information and setting up parameters. They are all
implemented as Singletons.

• OutputTextBox: displays status text

• LoadDeleteList: loads a game from the RMS and deletes games
from the RMS

• SaveGameForm: saves the current game to the RMS

• SetupForm: sets parameters, such as reporting intervals

• Cursor: simply stores the location of the cursor for editing cells; the
MIDlet goes into edit mode when a game is stopped or paused.

When testing different ideas, our standard benchmark is the time taken to
generate the first 150 generations starting with the r Pentomino.

7.14.1 Optimizing the LifeCanvas Class

We start our case study by repeating a lesson: optimization is platform-
dependent. The main responsibility of the LifeCanvas class is to render
the game to the screen when a new generation has been constructed.

The design goal is to ensure fast rendering at all zooms, with rendering
independent of screen size (though accepting that rendering could slow
down with the number of live cells to be displayed), fast pan and zoom,
and fast redraw after editing.

An unsuitable approach is to go through each cell on the screen, check
if it is empty or alive, and paint it in accordingly. However, out of interest
I recently tried this approach to see how bad it would be. On the Wireless
Toolkit using the default color phone emulator it took 109 s to calculate
the first 150 generations of the r Pentonimo evolution. This compares to
about 48 s using our default rendering.

Version 1
LifeTime was originally developed on the Nokia 9210 using an early
implementation of the Wireless Toolkit. Rendering was clearly a bottle-
neck. As a consequence a great deal of effort went into ensuring that
paintCanvas() only updated what had changed; so, for instance, if a
cell was alive in both the old generation and the new generation, that
location was not updated.

LIFETIME CASE STUDY 371

Each call to the painting method carries out the following steps:

1. Fill the whole screen with the background color if we need to repaint
the whole screen (e.g. after displaying a dialog or when just started),
or if there is no grid (that is, if the zoom is 0 or 1).

2. Paint in the grid lines if we need to repaint the whole screen and the
zoom is 2 or 3.

3. Work out the offset of the screen in relation to our origin (the visible
area can be panned around the virtual game field).

4. If we did not fill the whole screen with the background color in step
1, then enumerate through the old GenerationMap: for each cell, if it
is in the visible area and it does not exist in the new GenerationMap,
paint it out with the background color (in fact, because painting was
such a bottleneck, it was slightly faster to paint in a prepared image
of the empty cell using Graphics.drawImage()).

5. Enumerate through the new GenerationMap; for each cell, if it is in
the visible area and it did not exist in the old GenerationMap, paint
in the live cell image.

6. The cursor may have moved between generations, so paint out the
cursor at the old position and paint it in at the new position. The
cursor cell is green if there is a live cell at that location and red if the
cell is empty.

Version 2
However, on the newer Wireless Toolkit emulator (WTK 2.1) and on
Symbian OS phones running the CLDC HI VM, a more straightforward
implementation of paint() ran just as fast on small screens, and only
slightly slower on larger screens.

On each call to our painting method, it carries out the following steps:

1. Fill the whole screen with the background color.

2. Paint in the grid lines if the zoom is 2 or 3.

3. Work out the offset of the screen in relation to the origin (the visible
area can be panned around the virtual game field).

4. Enumerate through the new GenerationMap; for each cell, if it is
in the visible area, call Graphics.fillRect() to paint in the
live cell.

5. The cursor may have moved between generations, so paint out the
cursor at the old position and paint it in at the new position. The
cursor cell is green if there is a live cell at that location and red if the
cell is empty.

372 WRITING OPTIMIZED CODE

7.14.2 Optimizing the LifeEngine Class

LifeEngine contains the algorithm that creates the new generation
from the old generation. Rather than go through the code line by line, it
is probably less painful to give a description.

The initial implementation used two GenerationMaps: one to hold the
new generation (thisGeneration), and one to hold the old generation
(lastGeneration).

• looking at the Game of Life rules, we have to examine each live cell;
if it has two or three neighbors it lives, so we create a new cell in
thisGeneration at the old cell location

• we also have to examine empty cells that have three neighbors. The
way the program does this is to examine every cell adjacent to every
live cell; if it is empty and has three live neighbors, we create a new
cell in thisGeneration at the empty location

• having calculated and displayed the new generation, the new gen-
eration becomes the old generation and the new generation map
is cleared

• run() loops once per generation; it goes through all the cells in
lastGeneration and calls createNewCell() to check whether
the cell should live or die and to check if the eight neighbor-
ing cells should live or die; this translates to a lot of calls to
isAlive()!

One significant optimization was applied. testedCells is a Gener-
ationMap used to hold the tested cells. So, whenever a cell is checked,
whether it is empty or not, a cell with the same position is created
in testedCells. So before testing if a cell should live or die, cre-
ateNewCell() first checks in testedCells to see if it has already
been tested; if so, it does not test it again. This optimization improved
the speed of LifeTime by over 30 % (57 s down to 34 s). However, the
extra memory required is significant: if there are 200 live cells in a gen-
eration, there will be some 800 tested cells. At 23 bytes per cell, that is
about 18 KB.

7.14.3 Tools for Optimization: a Diversion

Taking a guess and test approach to improving performance or reducing
memory requirements can work, but is likely to be slow and tedious. We
need tools and techniques to help us quickly and accurately identify the
bottlenecks.

We shall discuss two tools in this section: profiling and heap analysis.
Arguably, the ability to carry out on-target profiling or heap analysis

LIFETIME CASE STUDY 373

is more important to most wireless application developers than on-
target debugging.

The Sun Wireless Toolkit emulator includes a basic profiler and a
heap analysis tool. Why these are built into the emulator and not part
of the IDE is a mystery. It means we can only profile MIDlets running
under the WTK emulator, not under a Symbian OS or any other general
emulator, and certainly not on a real device. Perhaps in the not too distant
future we can look forward to an extension of the Universal Emulator
Interface (UEI). This is currently used to control debug sessions from an
IDE in a standardized way, but could be enhanced to cover profiling and
heap analysis.

7.14.3.1 Profiling

Profiling tools allow us to see how much time is spent in a method and
in a line of code in a method, to understand the calling tree, and to see
how much time a called method spent servicing calling methods.

The Wireless Toolkit gathers profiling information during a run with
no great impact on performance. The results are displayed when the
emulator exits. The display is split into two halves:

• on the right is a list of all methods and the statistics for each method:
the number of times the method was called, the total number of
cycles and the percentage of time spent in the method, and the
number of cycles and the percentage excluding time spent in child
methods

• on the left is the calling tree, which we can use to drill down and
see how much time each method spent executing on behalf of the
method that called it.

Figures 7.8, 7.9 and 7.10 show the results from profiling LifeTime on a
single run. All three show the same data, rearranged to bring out different
aspects. In Figure 7.8, the display has been arranged to show the methods
in order of the total execution time. We can immediately see that most
of our time was spent in LifeEngine.run(). The bulk of this, 73 %
overall, was spent in LifeEngine.createNewCell(). This method
represents the bulk of the Game of Life algorithm. The fact that this
method was also called more than 136 000 times suggests that there is
room for improvement.

The rendering is handled by LifeCanvas.paintCanvas1(). This
accounts for only 13 % of the total execution time, so the benefits of
optimization here are limited (as we discovered earlier).

We get a different picture if we order methods by the time spent in the
method, excluding calls to child methods. Figure 7.9 shows that the most

374 WRITING OPTIMIZED CODE

Figure 7.8 Profiling LifeTime by total execution time of the methods.

Figure 7.9 Profiling LifeTime by time spent in the methods.

expensive method is java.util.Hashtable.containsKey(). The
method itself is fairly quick (unfortunately the profiler does not show the
average time spent in each method invocation); however, we called it
nearly 600 000 times because we are constantly checking to see if a cell
is alive or empty.

As we saw in Figure 7.8, some 13 % of the time was spent in LifeCan-
vas.paintCanvas(). However, from the calling graph in Figure 7.10,

LIFETIME CASE STUDY 375

Figure 7.10 Profiling LifeTime by calling tree.

we can see that most of that time was spent in nextElement() from
the Hashtable Enumerator.

53 % of the time was spent in HashGM.getNeighbourCount().
The main culprits are Hashtable.containsKey() and the Cell
constructor.

7.14.3.2 Heap Analysis

Heap analysis is the other side of profiling. Profiling is used to identify
performance issues; heap analysis to identify memory issues. Sun’s Wire-
less Toolkit heap analyzer displays running data, though with a serious
impact on performance, by a factor of about 50.

The tool provides two displays. The first is a graph of overall memory
usage (see Figure 7.11). This shows memory gradually increasing, then
dropping as the garbage collector kicks in. Remember that this is the KVM
garbage collector. It would be quite fascinating to see a similar graph for
CLDC HI behavior.

The graph view reports that at the point the emulator was shut down,
which was soon after the garbage collector ran, there were 1790 objects,
occupying around 52 KB of heap.

376 WRITING OPTIMIZED CODE

Figure 7.11 Graph of LifeTime memory usage.

The objects view (see Figure 7.12) provides a more detailed break
down of the heap utilization. Top of the list are the Cell objects: just
over 1500, at 23 bytes each. Again this points to the inefficiency of the
algorithm, given that there are typically a few hundred live cells in each
generation. Character arrays and Strings are next on the list: these are
good targets for obfuscators. The hash tables do not take up as much
memory as might be expected.

7.14.3.3 Debugging Flags

What will the compiler do with this code?

boolean debug = false;
if(debug){

debugStream.println("Debug information");
// other statements
debugStream.println("Status: " + myClass);

}

The compiler will not compile this obviously dead code. You should
not be afraid of putting in debug statements in this manner as, provided
the debug flag is false, the code will not add to the size of your class
files. You do have to be careful of one thing: if the debug flag is in a
separate file, ensure that you recompile both files when you change the
state of the debug flag.

LIFETIME CASE STUDY 377

Figure 7.12 Heap Analysis of LifeTime.

7.14.3.4 What We Should Look Forward To

The tools for wireless development are still fairly immature. Despite the
prospect of more mobile phones running Java than the total number of
desktop computers, Wireless IDEs (such as those from IBM, Sun, Borland,
Metrowerks and others) are heavyweight J2SE environments modified for
wireless development.

We also need real-time tools that work with any emulator and on
target devices. To assist this, it is likely that Java VMs on Symbian OS will
be at least debug-enabled in the near future, with support for on-target
profiling and heap analysis to follow.

Better profiling is needed, for instance to see how much time a method
spends servicing each of the methods that call it and how much time is
spent on each line of code.

Heap analysis that gives a more detailed snapshot of the heap is
required. For instance, the J2SE profiling tools provide a complete dump
of the heap so that it is possible to trace and examine the contents of each
heap variable.

7.14.4 Implementing the GenerationMap Class

The most successful container in LifeTime used a sorted binary tree.
Under the Wireless Toolkit emulator (running on a 500 MHz Windows
2000 laptop), LifeTime took about 33 s to calculate and render the first

378 WRITING OPTIMIZED CODE

150 generations of the r Pentomino. As we saw, most of this time was
spent in the algorithm.

On a Sony Ericsson P800 and a Nokia 6600 the MIDlet ran dramatically
faster, taking around 6 s. Again, most of this was spent in the Game of Life
algorithm. We know this because we can disable the rendering (using
the LifeTime setup screen); doing so took the execution time down from
about 6 s to 4 s, so only about 2 s of the 6 s is spent in rendering.

Here is a summary of some results, all running under the Wire-
less Toolkit.

GenerationMap
implementation

Time Comparative
memory

requirements

Comment

2D array 200 s big! Need to inspect every cell; limited
playing area; not scalable

Linked list >500 s 3 Fast creation and enumeration, but
searching is slow

Vector >500 s 2 Fast creation and enumeration, but
searching is slow

Binary tree 34 s 4 Quite fast creation and searching;
enumeration is slow but there is
room for improvement
Easy access to the source code gave

more opportunity for optimization. In
particular, we dramatically cut the
number of cells created by the Gener-
ationMap.getNeighbourCount()
method.

Hash table 42 s 7 Searching, enumeration and creation is
quite fast but memory-hungry:

• a HashTable is sparsely populated

• we store a value and a key, when
we only need the key.

Hashtable.containsKey(obj)
first checks the obj hash code and
then checks for equality. In our case,
we only need to do one or the other,
not both (it would be interesting to
download the Hashtable source
code and reimplement it to meet our
requirements).

LIFETIME CASE STUDY 379

The linked list and vector implementations performed similarly, and
very badly. This is because the searches are linear, with the result that
over 90 % of the execution time is spent in the GenerationMap.
isAlive() implementation. On the other hand, the binary tree is sorted
and the hash table uses hashing for faster lookup. Running on actual
phones, the hash table version took 7.5 s on a Nokia 6600 and the
binary tree version took 7 s on a Nokia 6600 and 6.5 s on a Sony
Ericsson P900.

It is worth looking at the BinaryTreeGM class, but we need to
start with the Cell class, which is very straightforward. position
combines the x and y coordinates into a single 32-bit integer. next
and previous point to the two branches at each node of the tree
(LinkedListGM just uses the next pointer and HashtableGM uses
neither):

package com.symbiandevnet.lifetime;
public class Cell {

int position;
Cell next;
Cell previous;

There are two constructors: one takes the packed integer position, the
other combines separate x and y coordinates.

Cell(int position) {
this.position = position;

}

Cell(int x, int y) {
position = (x & 0x0000FFFF) + (y << 16);

}

Getter methods for the x and y coordinates:

public final int getX() {
return (short) position;

}

public final int getY() {
return position >> 16;

}

equals() and hashCode() are needed to allow correct searching
within a hashtable. In general, equals() should check that obj is not
null, returning false if it is. However, we can skip this check because
we know this will never be the case.

380 WRITING OPTIMIZED CODE

public final boolean equals(Object obj) {
if ((((Cell)obj).position) == position) return true;
else return false;

}

public final int hashCode() {
return position;

}
}

The BinaryTreeGM class implements the GenerationMap inter-
face. root is the Cell at the start of our binary tree and size tracks the
number of cells held in the tree. clear() clears the tree by simply setting
size to zero and the root to null. getCount() just has to return size:

package com.symbiandevnet.lifetime;
import java.util.*;
import java.io.*;

class BinaryTreeGM implements GenerationMap {
private Cell root;
private int size;

public final void clear() {
root = null;
size = 0;

}

public final int getCount(){
return size;

}

create(Cell) inserts a Cell in the correct location in the tree. It
returns silently if the tree already contains a Cell in the same position.
The algorithm can be found in Section 6.2.2 of The Art of Computer
Programming, Volume 3 by Knuth:

public final void create(Cell aCell) {
Cell cell = new Cell(aCell.position); // Clone cell
int position = cell.position;

if (root == null) {
root = cell;
size++;
return;

}
Cell node = root;

while (true) {
if (node.position < position) {

if (node.previous == null) {
node.previous = cell;
size++;

LIFETIME CASE STUDY 381

return;
}
else {

node = node.previous;
continue;

}
}
else if (node.position > position) {

if (node.next == null) {
node.next = cell;
size++;
return;

}
else {

node = node.next;
continue;

}
}
else return;

}
}

isAlive(Cell) returns true if the tree contains a cell with the same
position. Because the tree is sorted it is a fast and simple method:

public final boolean isAlive(Cell cell) {
int position = cell.position;
Cell node = root;
while (node != null) {

if(node.position < position)
node = node.previous;

else if(node.position > position)
node = node.next;

else return true;
}
return false;

}

getNeighbourCount(cell) returns the number of live cells adja-
cent to cell. It checks whether each of the eight neighboring positions
contains a live cell or is empty:

public final int getNeighbourCount(Cell cell) {
int x = cell.getX();
int y = cell.getY();
return getAlive(x-1, y-1)

+ getAlive(x, y-1)
+ getAlive(x+1, y-1)
+ getAlive(x-1, y)
+ getAlive(x+1, y)
+ getAlive(x-1, y+1)
+ getAlive(x, y+1)
+ getAlive(x+1, y+1);

}

382 WRITING OPTIMIZED CODE

getAlive(int x, int y) is called from getNeighbourCount().
It is similar to isAlive(), but is a private method that returns 0 or 1. It
is used to count the number of neighboring cells:

private int getAlive(int x, int y) {
int position = (x & 0x0000FFFF) + (y << 16);
Cell node = root;
while (node != null) {

if(node.position < position)
node = node.previous;

else if(node.position > position)
node = node.next;

else return 1;
}
return 0;

}

The remaining methods implement an Enumeration. copyTreeTo-
Vector() copies the contents of the binary tree to the Vector listV;
getEnumeration() then returns the Enumeration for listV:

private Vector listV;
public final Enumeration getEnumeration() {

copyTreeToVector();
return listV.elements();

}
private void copyTreeToVector() {

listV = new Vector(size);
addToListV(root); // recursive call

}

copyTreeToVector() initializes listV to the correct size (to
save resizing during copying, which is expensive) and then calls
addToListV(Cell). This is a recursive method which wanders down
the tree, adding the Cell at each node to the Vector ListV.

private void addToListV(Cell node) {
if(node == null) return;
listV.addElement(node);
addToListV(node.previous);
addToListV(node.next);

}
}

7.14.5 Recursion: A Second Look

In Section 7.12.2, we looked at the cost of recursion, both in terms of
memory and performance. We showed how we could avoid recursion
when a method called itself once, but said that even if a method

LIFETIME CASE STUDY 383

called itself twice (for instance to enumerate a binary tree) we could
avoid recursion.

In the LifeTime BinaryTreeGM class, copyTreeToVector() used
a recursive call to traverse the tree. As promised, here is how we can do
it non-recursively:

private Vector listV;
private Stack stack = new Stack();

private void copyTreeToVector() {
listV = new Vector(size);
if(size == 0) return;
int count = size;

Cell node = root;
while(true) {

stack.push(node);
node = node.previous;
while(node == null) {

node = (Cell)stack.pop();
listV.addElement(node);
count--;
node = node.next;
if(count == 0) break;

}
if (count == 0) break;

}
}

To explain what is going on, it is easier to think in terms of left and
right, rather than next and previous, to describe the branches of the
binary tree.

We start at the root and go as far down as we can taking left (previous)
branches. Each time we go down, we push that node onto a stack. When
we can go no further, we:

1. Pop a node from the stack.

2. Add the node to the listV.

3. Decrement count.

4. Attempt to take a right branch. If we can, we take the right branch but
then continue taking left branches as far as possible. if we cannot,
we continue steps 1 to 4 until we can take a right branch, or until we
have copied the whole tree to the vector.

5. When count is zero we know we have gone through the whole tree,
so we return.

This approach is a little ugly because we are copying the whole of the
binary tree to a vector. An alternative worth exploring is to take advantage

384 WRITING OPTIMIZED CODE

of the fact that the tree is sorted. We would write our own implementation
of Enumeration.nextElement() that would use the previous Cell
returned by nextElement() as the starting point for a new search. The
search would return the next biggest Cell.

7.14.6 Summary

There is a further optimization we can consider. The use of Cells was
driven by the desire to work with standard containers (Hashtable and
Vector), which hold objects, not primitive types. However, we are
not interested in the cells themselves, but just their positions (a 32-
bit integer). This means we could reduce the number of Cell objects
created by changing the signatures in the GenerationMap interface to
take integer values, rather than cells. We would also have to implement
our own enumerator interface to return integers, not objects. The result
would be a sorted binary tree implementation that was great for our
application, but not much use for anything else. However, the goal of
this case study is not to make the LifeTime MIDlet as fast (and as memory
efficient) as possible, but rather to encourage good design practice in
general and consideration of the wider issues.

Each container has its strengths and weaknesses. If insertion is the bot-
tleneck, then a Vector would be a good choice; for general ease of use,
a Hashtable is probably the best choice. GenerationMap.kill()
was only used during editing, so its performance is not critical. If remov-
ing objects has to be done quickly, then Vector is a bad choice and
Hashtable or the sorted binary tree the best choice.

If we have to draw a conclusion from this exercise, it is the need for
better containers on wireless devices if we are to run more complex algo-
rithms. Rolling our own containers is a tricky and error-prone business.
The ease with which we can optimize our own container has to be offset
against the risk of bugs.

The study has hopefully demonstrated a few of our optimization
guidelines:

• the benefit of working to interfaces: the GenerationMap interface
allows us to easily try out different implementations

• reasonably clean architecture and straightforward code: in the interests
of maintainability, we have avoided the more exotic Game of Life
algorithms and not overspecialized the containers

• the use of profiling and heap analysis tools to identify performance
and memory hotspots: we have concentrated our efforts on fixing
these areas.

ARITHMETIC OPERATIONS 385

7.15 Arithmetic Operations

Currently there is no hardware assistance available for division and mod-
ulo arithmetic in the CPUs used by mobile phones. For an arithmetically-
intensive application (such as image analysis or speech decoding), see
if you can arrange your divisions so that they are a power of two: you
can then use the shift right operator for division. Similarly, for modulo
arithmetic you can use a masking operation if the modulus is a power
of two.

As an example, you might be using an array as a re-circulating buffer,
with read and write pointers. The read and write methods will need to
wrap their respective pointers when they reach the end of the array. If
size is the size of the array, then on a write we would wrap the pointer
with this line of code:

writePointer = (++writePointer) % size;

Similarly, on a read:

readPointer = (++readPointer) % size;

If size is a power of two, e.g. 512, we can replace these lines with
something a bit faster:

writePointer = (++writePointer) & 0x1ff;
readPointer = (++readPointer) & 0x1ff;

We can also use a shift right operator to multiply by a power of two.
In LifeTime we arranged the cell pitch (increment) to be a power of
two. In fact, it is equal to two to the power of the zoomFactor, where
zoomFactor is 0, 1, 2, or 3. We could thus replace:

g.fillRect(xPos * increment, yPos * increment, cellSize, cellSize);

with:

g.fillRect(xPos << zoomFactor, yPos << zoomFactor, cellSize, cellSize);

There was no measurable performance gain in this case because this
line of code was not a bottleneck and because all mobile phone CPUs
have hardware multipliers.

386 WRITING OPTIMIZED CODE

7.16 Design Patterns

In Section 7.4, we stated that one of the most important rules for optimiza-
tion was getting the design right. For instance, it should be possible to
defer the choice of sorting algorithm until the trade-offs between bubble
sort, quick sort, or some other algorithm can be made intelligently on the
basis of performance, memory requirements and the size and distribution
of the data set to be sorted. However, this requires designing your code
such that substituting one sorting algorithm for another is painless.

This section looks at a couple of patterns that can help achieve a
better design.

7.16.1 Caching
Caching can produce very significant improvements in performance. The
World Wide Web would probably be unusable if your desktop computer
did not cache pages. Disk performance relies on read-ahead caching.
Virtual memory is a form of caching. Almost all modern processors use
data caches because these can be accessed far more quickly than main
memory. Sun’s Hot Spot compiler technology, e.g. the CLDC HI VM used
by Symbian, caches bytecode as optimized native code.

There are a number of issues to consider when designing a cache (see
A System of Patterns by Buschmann et al.):

• what to cache
Cache objects which are likely to be reused, are not too big, and are
slow to create or to access. A cache will be of most benefit if there
is some pattern to the way objects are accessed, e.g. having accessed
a web page there is a good chance I shall want to access it again,
or having read one sector on a disc there is a good chance the next
sector will be wanted.

• how much to cache
The 80:20 rule applies. Look for the 20 % that is used 80 % of the time.
In practice even a small cache can significantly improve performance.
On the other hand, a cache that is a similar size to the data set is
wasting memory.

• which objects to delete from the cache
When the cache becomes full, you will have to throw away old items.
Strategies include first in–first out, least recently used, least frequently
used and random. A random policy works surprisingly well because
it is immune to pathological patterns.

• how to maintain integrity between cached data and the data source.
This takes some thought, as you will be writing data into the cache as
well as reading data from the cache. You can maintain cache integrity

DESIGN PATTERNS 387

0 10050
Cache size as %
of the data-set

Performance
accesses/second

Cache
performance

Primary data
performance

Figure 7.13 Achieving optimum cache size.

using an observer–observable model: read integrity is maintained
by making the cache an observer of changes made to the primary
data (the cache can also be an observable that is observed by the
application), while write integrity is maintained either by using a
write-through policy such that data written by the application to the
cache is simultaneously written to the primary data source, or by
making the primary data an observer of the cache.

Figure 7.13 shows how the optimum cache size depends on the speed
of the cache versus the speed of the primary data source, and the size of
the primary data set.

The reason for having a cache is that it is faster to access objects in the
cache. In this case, the cache is about five times faster to access than the
primary data set. Our actual performance (in accesses per second) will
not quite reach the cache performance because we shall have to spend
some time looking for the object in the cache. Also, of course, the larger
the cache the longer it takes to search, so overall performance might even
deteriorate with increasing cache size.

The object access pattern implied by this curve suggests a cache size
that is 30 % of our primary data set. The lighter-colored straight line gives
the performance if objects were accessed randomly.

www.javaworld.com/javaworld/jw-07-2001/jw-0720-cache p.html
provides useful ideas on caching.

7.16.2 Caching Results From a Database
We often want to scroll through records obtained from a database. This
might be a remote or local database, or we might be using the PIM APIs
(JSR 75) to access our address book.

It is impractical on a constrained device to hold all the data in memory
from even a moderate-sized database. Therefore, consider using a cache

388 WRITING OPTIMIZED CODE

to hold data already read from the database and predictively load data.
The latter can be carried out in a background thread.

For instance, the PIM APIs from JSR 75 access the address book or
calendar databases using an Enumeration. Caching ahead will allow
the user to look at an entry then quickly iterate through the next few
entries. Keeping a small cache of entries that have already been scrolled
through will allow the user to scroll back. If the user scrolls back to
the beginning of your cache then you have little choice but to reset the
Enumeration and read through the database again (which can also be
performed in a background thread).

7.16.3 Early or Lazy Instantiation
The Dice Box created its dice at startup time, which is known as early
instantiation. Alternatively, we could have created the dice as needed and
added them to a pool, which is known as just in time or lazy instantiation.
This would reduce startup time at the cost of increasing the time taken
to add more dice the first time round. A third alternative would be to
create new dice every time we change their number, but being good
programmers, we do not give this option too much consideration.

We talked earlier about creating object pools for things like database
connections or server connections; we can either create a pool at startup
(early instantiation), or build up the pool to some maximum as needed
(lazy instantiation).

7.16.4 Larger-Grained Operations
Setting up and tearing down an operation can take a long time compared
to the time the operation spends doing real work. It is therefore worth
seeing if we can do more in a given operation.

JAR files are used to transfer multiple objects in one HTTP request.
Using buffered streams means that we transfer multiple items of data at
one time, rather than item by item or byte by byte. It is rare that unbuffered
IO is required; buffered IO should always be the default.

7.17 Memory Management

7.17.1 The Garbage Collector
It is rare that a Java application will run out of memory on a desktop
computer; however, this is not the case for mobile phones and other
constrained devices. We should regard memory exceptions as the rule
and handle them gracefully.

The KVM garbage collector does not return memory to the system.
Freed memory will only be available to your application: it will not

MEMORY MANAGEMENT 389

be available to other Java or native applications. If you know you are
running on the KVM, do not grab memory just in case you need it; you
will deprive other programs of this scarce resource. Even if you are on
the CLDC HI VM, it is more socially acceptable to request memory only
when you need it. Of course, once your application quits and the KVM
exits, the memory it used will become available to other applications.
Also remember that Vectors and recursive routines have unconstrained
memory requirements.

7.17.2 Memory Leaks
Java has a different notion of a memory leak to C++. In C++, a memory
leak occurs when a reference to an allocated object is lost before
delete() is called on the object. If an object is no longer referenced
in Java it will be garbage collected, so C++ style memory leaks cannot
occur.

However, a similar effect is created by a Java object that is no longer
used but is still referenced by another Java object. Care should therefore be
taken to de-reference such objects. It is particularly easy to leave objects
hanging around in containers. CLDC 1.1 introduces weak references for
just this sort of situation.

7.17.3 Defensive Coding to Handle Out-Of-Memory Errors
How can we protect users of our applications from out-of-memory errors?
The previous section has highlighted the problem in picking up heap
allocation failures. Fortunately, under Java, out-of-memory errors are
unlikely to be caused by short-lived objects: the garbage collector should
kick in before this happens. Here are some pointers:

• once your application has started, check how much free memory is
available (you can use freeMemory() from java.lang.Runtime)
If there is insufficient memory (and only you can judge what that
means), give the user the opportunity to take appropriate action
such as closing down an application. However, freeMemory() and
totalMemory() should be treated with caution because as memory
runs out, more memory will be provided to the MIDlet, up to the limit
set at runtime or available in the phone.

• create large objects or arrays in try–catch blocks and catch any
OutOfMemoryError exception that might be thrown; in the catch
clause, do your best either to shut down gracefully or to take some
action that will allow the user to carry on

• never call Runtime.gc(): there is no guaranteed behavior for this
method; also, the garbage collector knows more about the memory
situation than you do, so leave it to get on with its job!

390 WRITING OPTIMIZED CODE

7.18 JIT and DAC Compilers

Most applications benefit from improved compiler technology. This
should not be seen as a panacea, though, because Java applications
spend a lot of their time executing native code. Many JSRs, for example
the Mobile Media API (JSR 135) and Bluetooth APIs (JSR 82), are compar-
atively thin veneers over native technology.

7.18.1 Just In Time Compilers

JITs have proved popular in enterprise and desktop applications where
a lot of memory is available. A JIT is a code generator that converts
Java bytecode into native machine code, which generally executes more
quickly than interpreted bytecodes. Typically most of the application
code is converted, hence the large memory requirement.

When a method is first called, the JIT compiler compiles the method
block into native code which is then stored. If code is only called once
you will not see a significant performance gain; most of the gain is
achieved the second time the JIT calls a method. The JIT compiler also
ignores class constructors, so it makes sense to keep constructor code to
a minimum.

7.18.2 Java HotSpot Technology and Dynamic Adaptive Compilation

Java HotSpot virtual machine technology uses adaptive optimization and
better garbage collection to improve performance. Sun has created two
HotSpot VMs, CDC HI and CLDC HI, which implement the CDC and
CLDC specifications respectively. HI stands for HotSpot Implementation.

A HotSpot VM compiles and inlines methods that it has determined
are used the most by the application. This means that on the first pass Java
bytecodes are interpreted as if there were no enhanced compiler present.
If the code is determined to be a hotspot, the compiler will compile the
bytecodes into native code. The compiled code is patched in so that it
shadows the original bytecode when the method is run and patched out
again when the retirement scheme decides it is not worth keeping around
in compiled form.

CLDC HI also supports ”on-stack replacement”, which means that a
method currently running in interpreted mode can be hot-swapped for
the compiled version without having to wait for the method to return and
be re-invoked.

An advantage of selective compilation over a JIT compiler is that the
bytecode compiler can spend more time generating highly-optimized
code for the areas that would benefit most from optimization. By the
same token, it can avoid compiling code when the performance gain,
memory requirement, or startup time do not justify doing so.

OBFUSCATORS 391

The HotSpot garbage collector introduces several improvements over
KVM-type garbage collectors:

• the garbage collector is a ‘‘fully-accurate’’ collector: it knows exactly
what is an object reference and what is just data

• the garbage collector uses direct references to objects on the heap
rather than object handles: this reduces memory fragmentation, result-
ing in a more compact memory footprint

• the garbage collector uses generational copying
Java creates a large number of objects on the heap, and often these
objects are short-lived. By placing newly-created objects in a memory
”nursery”, waiting for the nursery to fill, and then copying only the
remaining live objects to a new area, the VM can free in one go the
block of memory that the nursery used. This means that the VM does
not have to search for a hole in the heap for each new object, and
that smaller sections of memory are being manipulated.

For older objects, the garbage collector makes a sweep through the
heap and compacts holes from dead objects directly, removing the
need for a free list as used in earlier garbage collection algorithms.

• the perception of garbage collection pauses is removed by staggering
the compacting of large free object spaces into smaller groups and
compacting them incrementally.

The Java HotSpot VM improves existing synchronized code. Synchronized
methods and code blocks have always had a performance overhead
when run in a Java VM. HotSpot implements the monitor entry and
exit synchronization points itself, rather than depending on the local OS
to provide this synchronization. This results in a large improvement in
speed, especially for heavily-synchronized GUI applications.

7.19 Obfuscators

Class files carry a lot of information from the original source file, needed
for dynamic linking. This makes it fairly straightforward to take a class
file and reverse-compile it into a source file that bears an uncanny
resemblance to the original, including names of classes, methods and
variables.

Obfuscators are intended to make this reverse compilation process
less useful. However, they also use a variety of techniques to reduce
code size and, to a lesser extent, enhance performance, for example by
removing unused data and symbolic names from compiled Java classes
and by replacing long identifiers with shorter ones.

392 WRITING OPTIMIZED CODE

Sun ONE Studio Mobile Edition gives access to two obfuscators:
RetroGuard and Proguard. RetroGuard is included with the IDE. Proguard
has to be downloaded separately (see proguard.sourceforge.net), but the
IDE provides clear instructions. As an example, the size of the ‘‘straight’’
LifeTime JAR file is 13 609 bytes; JARing with RetroGuard reduced this
to 10 235 bytes and with Proguard to 9618 bytes. The benefits are faster
download time and less space needed on the phone.

7.20 Summary

We have looked at a various ideas for improving the performance of
our code, and in Section 7.4 we listed a number of guiding principles.
Perhaps the most important are these:

• always optimize, but especially on constrained devices

• identify the performance and memory hotspots and fix them

• get the design right.

It is possible on a desktop machine to get away with a poorly-designed
Java application. However, this is not true on mobile phones. The
corollary is also true: a well-designed Java application on a mobile phone
can outperform a badly-designed application on a desktop machine.
By thinking carefully about design and optimization we can create
surprisingly complex Java applications that will perform just as effectively
as an equivalent C++ application.

Finally, an anonymous quote I came across: ‘‘I’ve not seen a well-
architected application that was both fast and compact. But then I’ve
never seen a fast and compact application that was also maintainable.’’

This is perhaps an extreme view, but it is certain that if you have any
intention of maintaining your application into the future, or reusing ideas
and components for other applications, you should ensure that you have
architected it well!

Section 3
The Evolution of the Wireless Java

Market

8
The Market, the Opportunities

and Symbian’s Plans

8.1 Introduction

Much of this book has dealt with deeply technical aspects of Java
development on Symbian OS phones, with the broad goal of helping you
to write better and more useful MIDlets for Symbian OS. This chapter
looks at the market for Java technology on mobile phones in general and
Symbian OS in particular; in other words, at the opportunities you have
as a Symbian OS Java developer. It provides estimates for the value of the
market, discusses the needs of the various market segments and looks at
market opportunities, especially for advanced consumer services.

We will discuss Symbian’s approach to Java and how the company
is responding to market requirements. This includes a detailed look at
Symbian’s plans for implementing Java technology over the next couple
of years.

We end the chapter with some thoughts on what might be the signifi-
cant technology trends and related market trends.

8.2 The Wireless Java Market

8.2.1 Market Size

This section looks at what is happening, and what is likely to happen,
in the wireless Java market. The rapid growth in the market for mobile
phones is legendary. In 2003, there were over a billion mobile phones
in use and, for the first time, the number of mobile phones exceeded
the number of fixed phones. As shown in Figure 8.1, annual sales are
around 400 million (sales dipped in 2002, but picked up again in 2003).

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

396 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

0

100

200

300

400

500

600

700

800

2002 2003 2004 2005 2006 2007

Ja
va

 m
ob

ile
 p

ho
ne

 s
al

es
/m

ill
io

ns

Total mobile phones

Total Java

Asia/Pacific

Europe

North America

Africa/Middle East

South America

Figure 8.1 Annual sales of mobile phones: total, by region and Java-compatible (source: ARC group).

0

50

100

150

200

250

2002 2003 2004 2005 2006 2007

Ja
va

 a
n

d
 t

o
ta

l r
ev

en
u

e
b

y
ap

p
lic

at
io

n
 g

ro
u

p
/$

b
n

Total Java and
non Java

Java total

Java content

Java messaging

Java commerce

Java LBS

Java industry
apps

Java intranet
access

Java information
services

Figure 8.2 Revenue by application group (source: ARC group).

Of particular interest to us, however, is that by 2006 we can expect the
vast majority of mobile phones to support Java execution environments.

These figures compare with PC sales of around 130 million per year
and an installed base of around 400 million, according to eWeek.com.

Mobile phone manufacturers are including Java functionality in order
to generate revenue, which in turn requires that Java content is attractive
to end-users. Figure 8.2 shows predictions for worldwide wireless data
revenues in excess of $100 billion by 2006 and that most of these revenues
will be generated by Java services and applications.

THE WIRELESS JAVA MARKET 397

It is worth making a few comments on the above revenue estimates:

• content covers areas such as standalone and multiplayer games,
download, storage and playback of music, and video streaming
and messaging

• the market for location-based services (LBS) is significantly underes-
timated: a conservative estimate is that it will be worth more than
$30 billion in 2007 (Location Based Services 2002, ARC Group)

• games will be worth $4 billion in 2005 (the worldwide games market
for PCs and consoles is $25 billion) according to The Times, 18
April 2003.

The above statistics suggest that Java consumer services will be worth
around $25–30 billion in 2005 (we’ll talk about such services in more
detail later).

Generating the predicted revenues requires cooperation amongst the
players in the value chain: content providers, operators, mobile phone
manufacturers and key technology providers must work together.

8.2.2 Java’s Significance

The following pie charts indicate the importance of Java as a development
language on wireless devices in general and Symbian OS in particular.

Figure 8.3 shows that the industry expects Java to be the most widely
used language on wireless devices in 2004. Figures 8.4, 8.5 and 8.6 show

Java
34%

Microsoft
22%

Symbian
13%

Palm
11%

BREW
9%

Linux
8%

Propriatary OS
3%

Figure 8.3 Wireless applications to be developed in 2004, by language.

398 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

Consumer
40%

Games
38%

Business
13%

Comms
7%

Developer
2%

Figure 8.4 Types of application on Symbian OS (all languages), at end of 2003.

C++
55%

MIDP
19%

Visual Basic
18%

PersonalJava
5%

OPL
3%

Figure 8.5 Languages used to develop Symbian OS applications, at end of 2003.

the applications and languages on Symbian OS, from internal Symbian
data. Note that numbers for MIDP only cover MIDlets specifically sold
or marketed for a Symbian OS phone: MIDlets that are not specifically
designed for Symbian devices are not included.

Figures 8.5 and 8.6 show that most Symbian applications today are
written in C++, with MIDP 1.0 the second most common language.
However, MIDP 2.0 is the preferred developer environment and its pop-
ularity can only increase as Symbian makes more functionality available
to Java developers.

THE WIRELESS JAVA MARKET 399

C++
30%

MIDP 2.0
31%

MIDP 1.0
20%

PersonalJava
8%

OPL
6%

Visual Basic
5%

Figure 8.6 Preferred languages used to develop Symbian OS applications.

8.2.3 The Enterprise Market and the Correct Java Configuration
When Symbian was first formed its main focus was on the consumer
market, simply because vastly more phones are sold to consumers than
to enterprises. However, in the last few years Symbian has been investing
heavily in enterprise opportunities.

Here are a few (non rigorous!) features of the enterprise market:

• enterprise projects are high value for middleware vendors (such as
IBM Websphere, BEA Weblogic, Oracle Application Server, Sun J2EE)

• for the operators, mobile phone business users are low volume but
high average revenue per user (ARPU); consumers are higher volume
but lower ARPU

• although the enterprise market is large, manufacturers do not sell
many mobile phones into it

• in the US, the growth in wireless devices is being driven by enter-
prise opportunities; growth in Europe and Asia was driven by the
consumer market

• the popularity of WiFi in the US is fueled by business needs for mobile
connectivity, email in particular; Europe is promoting Bluetooth as a
lower cost, lower power, consumer-oriented alternative; adoption of
WiFi in Europe is less than in the US because of the focus on higher
bandwidth wide area solutions such as UMTS rather than LAN.

Symbian’s Java development is concentrated on MIDP and CLDC,
together with the CLDC-compatible wireless Java profiles. This approach
is well-suited to the consumer market, even though Symbian OS phones

400 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

have the power and memory to run CDC-based Java technologies. The
emphasis on CLDC rather than CDC is for a number of reasons:

• simpler, fewer and more consistent APIs reduces complexity for the
developer and increases developer productivity

• the smaller number of APIs reduces the footprint, which helps to
reduce manufacturing and maintenance costs.

Nonetheless, the CDC stack (CDC, Foundation Profile and Personal
Profile or Personal Basis Profile) has a couple of significant roles:

• porting existing enterprise applications from desktop to wireless
devices, thus extending middleware, such as SAP or Oracle, out
to mobile employees, which is made easier by the close relationship
between CDC and J2SE

• creating vertical applications where CLDC does not provide the
necessary functionality.

Both of these are relatively short-term opportunities; it is hard to see any
technical limitations in CLDC that prevent its long-term use for consumer
or enterprise segments.

CLDC-based functionality is increasing as wireless JSRs are imple-
mented, to the extent that there is very little functionality in CDC that
does not have a CLDC equivalent. This, of course, implies that there are
some gaps and we will look at them later in Section 8.7.1.

8.3 Meeting Market Needs
This section identifies some of the key market requirements and Symbian’s
approach to meeting those requirements. We’ll look at these requirements
in terms of the value chain comprising consumers, enterprise users, mobile
phone manufacturers, developers, operators and service providers.

Consumer Requirements

• games, utilities and simple services

• more advanced added value services.

Enterprise User Requirements

• extension of the organization’s information systems to mobile workers.

Service and Content Provider Requirements

• cross-platform standards to maximize the market

• rapid and reliable deployment of new services

MEETING MARKET NEEDS 401

• security, PKI and Digital Rights Management solutions

• a provisioning infrastructure.

Developer Requirements

• first class tools and SDKs

• access to necessary functionality

• performance.

Operators

• return on investment

• personalization and branding.

Mobile Phone Manufacturer Requirements

• mass-market compatibility

• time-to-market

• a low bill of materials (this means keeping royalties down, minimizing
memory requirements and maximizing performance to allow a slower,
and hence lower cost, processor).

So how do we meet the needs of our customers? (If you are a developer,
this means your customers as well as Symbian’s customers!) Here are few
ideas to think about:

• any application or service must add real value, either to the user’s
leisure time by enhancing their lifestyle, or to their work

• a service that expects the user to spend new money is a harder
proposition to sell than one which displaces existing expenditure,
even though disposable income is increasing
For example, young people spend less on confectionery and tobacco
to fund mobile phones and messaging in particular. News services
may reduce the amount we spend on newspapers. Wireless shopping
will reduce the amount we spend on fuel and car parking.

• exploit untapped markets with higher disposable incomes
Mobile phone services have, at least in Europe and Japan, been
driven by the youth market downloading ringtones, wallpapers and
games. However, the disposable income of young people is relatively
limited. Middle-aged, middle-income groups have a higher disposable
income, though are generally more discerning in their expenditure
and (usually!) look for clear benefits before purchasing a service.

402 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

Also, do not forget older age groups: they have specific needs which
are not met by current mobile phones nor the associated services.
On the other hand they frequently have access to funds, fewer
financial commitments and significant leisure time. Key requirements
are simplicity in getting going, ease of use and, most importantly, the
service must have a clear, easily understood, benefit and purpose.

• look for subsidies for the service, perhaps through advertising by
financial institutions or travel companies

• deliver the service on all available channels: mobile phone, TV,
set-top box, Web, etc. This provides the user with task continuity,
allowing them to choose when and how to engage with the service.

8.4 Providing Advanced Services

We’ve seen that simple games and utilities are expected to generate
only limited revenue. However, by looking at the market needs and
opportunities we’ve discussed, we can tap into more significant revenue
opportunities.

The exciting applications and services, which include multi-user
games, location-based services for route planning or localized adver-
tising, entertainment services and wireless commerce, will be those that
bring together a wide range of resources and which bring people together.
They will be networked, but not reliant on the network, in order that the
user can be productive whether online or offline. So a sales application
might use a product catalog, route planning services, a timetable and
location services.

Figure 8.7 attempts to capture these ideas. Web and WAP browsers
present essentially static data, whilst smartphones enable far richer provi-
sioning models. Services are delivered by application providers through
channels that include UMTS and Bluetooth, as well as SMS, WAP and
Web browsers. Services will have access to data and information that
may come from the application provider, but could also come from a
variety of other sources.

Providers will use information about the client’s capabilities to config-
ure applications for the client device and data will need formatting for
both the client and the provisioning channel. Operators will have their
own data stores and may also control the services provided to the client.
Applications and data will be both pulled by the client and pushed by
the operator or service provider.

Client devices will cache data locally, only connecting to the data
source to update and synchronize their information. Thus, users will be
able to make use of services both offline and online.

PROVIDING ADVANCED SERVICES 403

Provisioning channels
GPRS, UMTS, SMS,
WAP, Web, Bluetooth

Data provider

Application
provider

Client applications

Information and data

Client capability information

Operator

Client device
and user

Data
formatting

Application
configuring

Client
application

Client
app
Client
app
Client
app

Figure 8.7 The advanced client will be able to work offline and online.

Advanced Consumer Services

• multi-user games: even a simple game like ”Snake” can be made
more valuable if it allows me to play against my children when I am
overseas with a few minutes between meetings

• route planning: routes are stored in a local database and generally
accessed offline; if a route is not available, the missing information is
downloaded from a server

• localized advertising: receiving information where and when it is
relevant

• travel and holiday services

• entertainment services: searching for venues, downloading music; the
phone’s camera can be used to read a bar code, which takes the user
to a relevant web site where the user can download music or video,
purchase tickets, or just find more information

• wireless commerce: buying and selling, banking, insurance

• supermarket shopping: the supermarket’s stock information would
be stored on the mobile phone, allowing me to create a shopping
list offline or I could register with a number of supermarkets so
that my shopping MIDlet can compare prices and create individual
shopping lists; when I am ready to place my order, I synchronize with
the supermarkets and my mobile phone is updated with the latest
stock details.

404 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

Advanced Enterprise Services

• support for mobile employees
Day-to-day decisions within an organization are typically made by
middle management, who also spend much of their time away from the
office. They therefore need mobile, and secure, access to a company’s
systems in general, and communication services in particular. This
includes email, calendaring, conference call set up, whiteboarding
and document services. So a meeting planner would coordinate
meetings by using calendar APIs, contact APIs and messaging APIs to
negotiate a suitable time and venue with the attendees.

• sales force automation
Product catalogs, route planning and timetable information can be
stored on the mobile phone.

• field service support.
Field service applications can use the camera for taking photographs
and for reading equipment bar codes, patient bar codes, etc. Email
and communications services can be used for transferring and syn-
chronizing records. A touch screen is great for signature capture.

Location-Based Services
Location-based services are rightly regarded as an important source of
revenue by operators, service providers and mobile phone manufacturers.
Take up will not be as rapid as some have predicted: both mobile
phones and infrastructure have to be in place. However, as discussed
in Section 8.2.1, the market is expected to be worth over $30 billion
in 2007.

At the simplest level, location-based services will allow the user to
establish their own location; however, this is merely an enabler for more
interesting possibilities:

• how do I get from Paris to Amsterdam? Should I drive, fly, or go
by train?

• how do I get from my favorite restaurant back to Joe’s place?

• how far is Cambridge?

• where am I? I need an address in the form of town, street, building,
company, office and floor (not map coordinates!)

• where is the nearest cinema playing a specific film? Or where are the
nearest cinemas in my area?

• what’s the weather forecast in my area?

• where is the nearest color printer? The answer might be ”4th floor,
East end”; the user’s coordinates are thus needed in 3D space and

PROVIDING ADVANCED SERVICES 405

probably in the form of an address, rather than numerically; Bluetooth
already supports the idea of location ”beacons”

• where are my colleagues/family/friends?

• asset tracking: as well as family and friends, non-human assets can be
tracked, such as pets or vehicles; this is either for protection against
theft or for management

• location-based ”to-dos”: remind me when I am near home/passing
the dry-cleaners/next in Cambridge or when I am near a colleague
(this is more challenging because both target and user are mobile)

• location stamping (like time stamping) of user data.
Knowing where a data item was created will help with searching and
sorting photos, video recordings, voice recordings, etc.; for instance,
I could quickly search for all photos of Niagara Falls. Logging calls
and messages with a location as well as a time makes them easier to
identify and check: ”oh yes, I did make that one hour call to Beijing
from the Eiffel Tower”.

However, there is a danger that the LBS market could fail to achieve its
potential if mobile phone manufacturers or operators try to control access
to such services. Symbian is taking an agnostic approach to implementing
support for location-based services (see Figure 8.8).

Symbian’s design means that any location-based service, whether
supplied by an operator, a mobile phone manufacturer or a third party,
can use any available acquisition technology (A-GPS, translated Cell ID,

Location
services

Mobile
Phone

Buddy
finder

Network

TrackerMapping
Route

planning
JSR179
Location

A
G

P
S

G
P

S

M
anual

D
T

V

Maths
library

Privacy
manager

Request
logging

Landmarks
framework

C
ell ID

Location
framework

Figure 8.8 Symbian’s approach to location-based services.

406 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

etc.). Further the service is unaware of whether data such as named
landmarks or privacy lists are stored on the network, the mobile phone,
or both. Crucially Symbian’s implementation of the Location Services API
for J2ME (JSR 179) also makes use of this underlying flexibility.

8.5 Why Java?

Sections 8.3 and 8.4 looked at the market segments and opportunities
for consumer and enterprise services and identified important market
requirements. Let us look at the principal benefits of the Java language
for services development and how these meet market needs:

• security: services and applications cannot be subverted

• standardization: more developers and tools mean that more services
can be developed

• robustness: fewer faults, fewer recalls

• fast development: faster time-to-market

• ease of porting: service providers can deploy on as many mobile
phones as possible.

8.5.1 Security

Wireless services depend on the secure delivery of trusted applications
and the secure exchange of information. Security was, and is, one of
Java’s critical design goals and it is built into Java from the ground
up. Features such as the bytecode verifier, preventing random memory
accesses and disallowing inappropriate casting, ensure that Java can be
used to develop secure systems. Achieving the same watertight security
with other languages is much harder.

The absence of pointers and the use of Array objects means that Java
code cannot point to either a non-existent object or to the wrong sort
of object. It is too easy in C++ code to write or read from an incorrect
area of memory (e.g. off the end of an array). The real problem is that the
mistake will not be identified immediately, but can generate apparently
unrelated misbehavior, frequently a crash, hours or even months later. If
a Java application attempts to access an inappropriate object or a non-
existent element in an array, an exception will be thrown immediately
that identifies both the cause of the problem and where in the source
code the problem occurred.

Java’s automatic garbage collection results in fewer, or no, memory
leaks. In C++, we must be careful to match object construction with
object destruction: failing to destroy an object results in a memory leak

WHY JAVA? 407

and attempting to destroy an object twice will cause the program to crash.
(As in C++ we must ensure that our Java code does not keep hold of
references to unwanted objects; such objects cannot be garbage collected
and will effectively cause a memory leak.)

8.5.2 Standardization
At around 3 million, Java developers have overtaken C++ programmers.
As a consequence a wide range of development tools, documentation,
books, technical support and training is available. Java is the preferred
teaching language, and certainly the preferred object-oriented language,
in an increasing number of computer science courses.

8.5.3 Robustness and Fast Development
Java code can be developed more quickly and is easier to maintain than
C++ code and at the same time is likely to be more robust and contain
fewer faults than the equivalent C++ code.

Fewer Faults
Here’s an example. This snippet of C++ code is intended to reverse the
contents of an array, ar:

#include <stdlib.h>
void reverseArray(int ar[]) {

if(ar = NULL) return;
unsigned int len = sizeof(ar);
for(unsigned int index = len-1; index >= 0; index--) {

int temp = ar[index];
ar[index] = ar[len-index-1];
ar[len-index-1] = temp;

}
}

The example is based on a genuine piece of code. It actually contains
four mistakes: three are coding errors and the fourth is an algorithmic
error. These are mistakes which will not generate compiler errors but will
cause runtime errors. Let us go through them:

• if(ar = NULL) return; is intended to check that ar is a valid
array; however because the assignment (=) operator has been used
rather than the equality (==) operator, ar will be set to null; the
condition evaluates to false, so the program will carry on with ar
equal to null

• sizeof(ar) is intended to return the number of elements in the
array; in fact, it returns the size of an object in bytes so, at best, it
will return the size of the array in bytes, not the number of elements;
however, even though ar[] looks like an array, it is actually a pointer

408 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

and sizeof(ar)will return the size of the pointer, which is typically
4 for a 32-bit machine

• an unsigned integer, index, was used for the loop counter; this
means index will never go negative and therefore the loop will
not terminate

• the number of times the code was intended to go through the loop is
equal to the number of elements in the array; think about an array of
five elements: I want to swap the first with the last, the second with
the second to last and the third, or middle element, can stay where it
is; in other words, I want to make two swaps, not five!

This is the equivalent Java code:

void reverseArray(int[] ar) {
if(ar == null) return;
int len = ar.length;
for(int index = len-1; index >= 0; index--) {

int temp = ar[index];
ar[index] = ar[len-index-1];
ar[len-index-1] = temp;

}
}

The Java compiler expects the argument of an if statement to be a
boolean, therefore we have to use the equality operator. Java arrays are
first-class objects and so ar.length will return the number of elements
in the array. Primitive types in Java (bytes, ints, longs) are always signed
so my loop counter will go negative.

We’ve removed three out of four faults by using Java, allowing us to
concentrate on the algorithmic error. Arguably a four-fold improvement
in productivity!

Less Code to Write (and Less Code to Deliver)
Java applications also require fewer lines of source code. The following
EPOC C++ code sends the message ”Hello Imperial” to the server
193.63.255.1 (which belongs to Imperial College in London) on port 7,
which is the echo port. The code then reads the echoed reply:

RSocketServ ss;
err=ss.Connect();
RSocket sock;
err=sock.Open(ss, KAfInet, KSockStream, KUndefinedProtocol);
const TInt KEchoPort = 7;
TInetAddr imperial(INET_ADDR(193,63,255,1), KEchoPort);
TRequestStatus stat;
sock.Connect(imperial, stat);
User::WaitForRequest(stat);

SYMBIAN AND JAVA 409

TBuf8<14> text = _L("Hello Imperial");
sock.Write(text, stat);
User::WaitForRequest(stat);
sock.Read(text, stat);
User::WaitForRequest(stat);
sock.Close();

Although this is Symbian OS C++ code, WIN32 code is very similar.
Here’s the equivalent Java code:

SocketConnection socket
= (SocketConnection)Connector.open("socket://193.63.255.1:7");

DataOutputStream out = socket.openDataOutputStream();
DataInputStream in = socket.openDataInputStream();
out.writeUTF("Hello Imperial");
out.flush();
String echoedText = in.readUTF();
socket.close();

Not only is the code shorter (seven lines rather than 14), but it’s a lot
clearer as well.

This is not quite the end of the story. Java bytecode itself is compact so
that, in general, a line of Java source will generate less code than a line
of C++. This is because add, new, etc. are expressed as single bytecodes
whereas the C equivalent will expand into word instructions or multiple
assembler instructions. On the other hand, we need to be aware of the
higher overhead associated with each Java class and that JAR files, if not
obfuscated, can be very wordy.

However, in general the consequence of compact bytecode and fewer
lines of source is that Java downloads are smaller than C++ equivalents.
This is important for over-the-air (OTA) delivery.

8.5.4 Ease of Porting
Java is not a guarantee of success when it comes to device-independence
and coping with the huge range of mobile phones; however, it is the
least painful solution. APIs are compact and standard user interface
classes reduce the worst of the variability. Expert groups such as the Java
Technology for the Wireless Industry (JSR 185) initiative are helping to
improve portability and reduce fragmentation across mobile phones.

8.6 Symbian and Java

Symbian uses Java to expose the advantages and strengths of Symbian
OS through APIs, that, by and large, are standard. Many of the newer
wireless Java APIs, such as multimedia, Bluetooth and PIM, are interfaces
onto native functionality, which means that a Java implementation is only

410 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

as good as the underlying platform. Rather than just delivering a vanilla
MIDP implementation, Symbian is providing a Java environment that will
enable operators and services providers to create revenue through rich,
exciting, value-added services.

8.6.1 Current Implementation
Symbian’s approach is not only to provide a best of breed environment for
standard games and MIDlets (and even here the extra color depth, large
screens and good performance will add value as shown in Figures 8.9
and 8.10), but also to enable the large and complex applications and
services we discussed earlier.

Symbian’s Java implementation ensures that MIDlets are treated in
the same manner as native applications (they are ‘‘first class citizens’’)
of the platform and, as far as possible, have the appearance of and are
managed in the same way as native applications. Here are a few features
of Symbian’s implementation:

• MIDlets are installed, run and removed like native applications

• MIDlets use native UI components, which are faster and smaller and
help to maintain a native look and feel

(a) (b) (c)

Figure 8.9 Goldminer by Macrospace on a. Siemens SL45i, b. Trium Eclipse and c. Nokia
7650.

Figure 8.10 FunnyBalls by Cybiko, designed for the 9200; good use is made of the screen
and the array of control buttons make game play much easier.

SYMBIAN AND JAVA 411

• there are no limits on heap size

• there are no limits on characters in a text field or text box, etc.

• there are no limits on the RMS

• the heap can grow and shrink

• there is support for the native color depth

• there is one VM instantiation per MIDlet suite.

Although Symbian’s main focus is on CLDC, the Java VM must nonetheless
provide uncompromising performance and advanced memory manage-
ment to deliver the richer services and games we’re interested in. Here’s
a summary of Symbian’s VM progress:

• Symbian’s first CLDC 1.0 implementation was based on Sun’s original
KVM, but with the addition of ARM’s VTK software acceleration and a
heap that can grow; a stack that can grow allows very deep recursion

• Sun’s CLDC HI 1.0 uses a dynamic adaptive compiler (DAC) for
improved performance
No debug version is available, so the emulator uses the original KVM
configured for debugging. The heap can both grow and shrink, with
the heap shrunk on the basis of the percentage used after major
garbage collection. This means, on the one hand, that applications
should not run out of memory (within the limits of the available system
memory) but, on the other, that memory no longer needed by a MIDlet
can be recovered by the system for use by other applications.

• CLDC HI 1.1: improves the static and ROMization footprint, which
reduces the size of all preinstalled JSRs
Changing from native to lightweight threads also reduces the footprint.
There are small performance gains, around 10 % measured against
EEMBC benchmarks. The heap and stacks have associated grow
and shrink heuristics, with shrink heuristics applied during garbage
collection. In addition, ARM is developing the Jazelle technology for
use with CLDC HI 1.1, which is a promising combination.

It is worth noting that there is a close correlation between Symbian
OS functionality and the wireless JSRs, to the extent that is there is
little significant Symbian technology that cannot be exposed via the
appropriate JSR.

8.6.2 Future Plans

Having looked in depth at the market and opportunities, it’s now time
to consider Symbian’s plans and how they meet market needs. The

412 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

v7.0s
(now)

Messaging (JSR 120)
Bluetooth (JSR 82) CLDC HI 1.0

MIDP 2.0
(JSR 118)

Provisioning

Games support

Enhanced UI

Security

Figure 8.11 Java technology in Symbian OS Version 7.0s.

markets of interest are, broadly, games, location services, web and
advanced consumer services, enterprise mobility and mobile commerce.
This discussion should be seen as a rough guide only!

Symbian OS Version 7.0s (see Figure 8.11) is used, for instance, on the
Nokia 6600 and provides the basic requirements for connected games
and utilities. There are many thousands of simple games and utilities
running on MIDP 1.0; however, the number of Java APIs in Symbian
OS Version 7.0s is an order of magnitude greater than in MIDP 1.0. It
will be interesting to see how the number of MIDlets will increase as a
consequence.

8.6.2.1 Bluetooth

Java APIs for Bluetooth (JSR 82) enables MIDlets to communicate over
Bluetooth. However mobile phones can also use these APIs to host and
share services, such as games, printer controllers and rendering services.
A Java MIDlet registers itself as a Bluetooth service using the Service
Discovery Protocol (SDP). Applications on other mobile phones (either
MIDlets using the Java Bluetooth APIs or native applications) can then
‘‘discover’’ the registered MIDlet. The Java APIs return an array of URIs
of discovered devices and then an array of URIs for services registered
on a particular device. If the registered MIDlet is not already running, the
Bluetooth push implementation will launch it. It will even be possible to
enable mobile code: the Bluetooth OBEX APIs can be used to transfer
a MIDlet from one device to the inbox of a Symbian OS phone, from
where the user can install it on their phone. Here is Symbian’s roadmap
for Bluetooth:

• basic Bluetooth APIs: now

• Bluetooth push: next release (Version 8.0)

• Bluetooth OBEX: end 2004 or early 2005.

8.6.2.2 Symbian OS Version 8.0

Symbian OS Version 8.0 (see Figure 8.12) was released to Symbian
licensees early in 2004. Multimedia and 3D graphics were added to
the platform, enabling more exciting games and entertainment services.

SYMBIAN AND JAVA 413

Multimedia (JSR 135)
File GCF (JSR 75)
3D graphics (JSR 184)

CLDC HI 1.1v8.0
UEI,
JTWI R1

Figure 8.12 Java technology in Symbian OS Version 8.0.

Symbian’s implementation of Mobile Media API (JSR 135) gives devel-
opers access to all natively supported media types, which in general
will also include dynamically installed codecs. The Mobile 3D Graph-
ics API for J2ME (JSR 184) sits on top of the native OpenGL ES API
(www.khronos.org/opengles), so that it will benefit from any native
hardware graphics acceleration.

The File Generic Connection Framework (GCF) provides access to
media files (audio, video, etc.), shared areas and private scratch areas. It
is important for both generic consumer applications and services as well
as enterprise applications.

Symbian OS Version 8.0 is compatible with Java Technology for
the Wireless Industry (JSR 185). It also implements the UEI (Universal
Emulator Interface), enabling any Symbian OS phone emulator to be
debugged with any UEI-compliant IDE.

8.6.2.3 Symbian OS Version 8.x

Symbian will release the next version of Symbian OS in 2004 (see
Figure 8.13). PIM provides access to contacts and calendaring informa-
tion. This can be used to enhance games, provide additional services
and deliver mobile support for enterprises. 2D graphics provide vector
drawing facilities appropriate for mapping, engineering drawings and
kitchen designs.

In the same time frame, Symbian is working on improved Java tools,
e.g. for debugging, profiling and heap analysis.

Towards the end of 2004 and into 2005 Symbian will add Java APIs
needed to meet the essential needs of the market sectors we identified
earlier (see Figure 8.14), making it easier to create advanced consumer
and enterprise services. In particular, the example services we’ve looked
at had a number of common themes:

• interaction with back-end services

• the need for local persistence and data storage

• the need to synchronize data with remote services.

v8.x
Enhanced

PIM (JSR 75)

2D vector graphics (JSR 226)
WMA 2.0 (JSR 205)

Figure 8.13 Java technology in Symbian OS Version 8.x.

414 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

end '04
mid '05

Web services enabling (JSR172)
Security and trust (JSR177)
Location (JSR179)
Content handling framework (JSR211)
Data sync (JSR230)
Payment API (JSR229)
SIP/JAIN (JSR180 etc)

Symbian specific:
Telephony
Persistence
"Send as"
Common clipboard

Figure 8.14 Forthcoming Symbian Java technology.

JSR 172
The J2ME Web Services Specification (JSR 172) will be used to interact
with net-based consumer and enterprise services. In general, clients for
web services tend to be fairly thin, providing little more than a browser
interface. The possibilities are wider on Symbian OS, where different web
services, for instance weather forecasting and traffic flow information,
may be aggregated in the same application. JSR 172 relies on Simple
Object Access Protocol (SOAP). This is a wire protocol similar to the
IIOP for CORBA, ORPC for DCOM, or Java Remote Method Protocol
(JRMP) for Java Remote Method Invocation (RMI). However, while IIOP,
ORPC and JRMP are binary protocols, SOAP is a text-based protocol that
uses XML. It therefore remains to be seen in practice whether SOAP’s
wordiness will cause bandwidth problems on wireless networks.

The RMS provides a very basic persistent store in a flat structure.
However, there is no CLDC-compatible JSR for persistent object storage
or database access. JDBC Optional Package for CDC/Foundation Profile
(JSR 169) provides a JDBC subset for CDC; however, a CLDC-compatible
API is yet to be defined. We should also carefully look for the right model:
JDBC supports industry standard SQL, however an object database may
be more natural for the Java language.

JSR 230
Data Sync API (JSR 230) is currently being defined. It should allow
applications to synchronize data with back-end stores and take part in
platform data sync operations. It should be independent of the com-
munication protocol, though SyncML is likely to be the most common
implementation.

JSR 177
Security and Trust Services (JSR 177) is important for wireless commerce,
micropayments, billing, etc. It provides access to a smart card (usually a
SIM) using either Application Protocol Data Unit (APDU) commands or
RMI access. It also provides a certificate store and cryptography library.

SYMBIAN AND JAVA 415

JSR 179
We’ve touched on Location API for J2ME (JSR 179). The Location APIs will
allow many location-based services to be developed in Java. It gives Java
developers access to whatever location acquisition methods are provided
on the mobile phone, such as A-GPS, GPS, or basic translated Cell ID.
The Criteria class is used to select an acquisition method based on
criteria such as accuracy, speed of fix, cost and power. It also provides a
Landmarks store that stores coordinate–name pairs: location positions are
stored and handled internally as WGS 84 latitude–longitude coordinates,
so the ability to convert between a named location and coordinates is
essential as users generally work with named locations, for instance,
‘‘How far is the Bowling Alley from the supermarket?’’

JSR 180
Session Initiation Protocol (SIP) is an application-layer control protocol
that can establish, modify and terminate multimedia sessions, as well
as inviting participants to join existing sessions. SIP transparently sup-
ports name mapping and redirection services, enabling personal mobility
whereby users can maintain a single externally visible identifier regardless
of their network location.

Five facets of establishing and terminating multimedia communications
are supported:

• user location: determining the end system to be used for communi-
cation

• user availability: determining the willingness of the called party to
engage in communication

• user capabilities: determining the media and media parameters to
be used

• session setup: establishing session parameters for both called and
calling party

• session management: including session transfer and termination, mod-
ifying session parameters and invoking services.

A useful summary of Java, SIP, and JAIN can be found at www.cs.colum-
bia.edu/sip/Java-SIP-Specifications.pdf. SIP is probably best known for
Instant Messaging and Presence (IM&P) session control. SIP has been
adopted as the baseline signaling protocol for the 3GPP IP Multimedia
Subsystem (IMS), which will be available in 3GPP Release 5. SIP could
be used for mobile phone management, a new application area.

There are other use cases, though these assume that the operators have
built the corresponding infrastructure:

• IP telephony applications and IP-based telephone networks

416 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

• game billing
In a multiplayer game, the game could send a SIP signal to the
back-end server saying who lost the game, supporting a ‘‘loser pays’’
payment model. In many cases, only the MIDlet running on the mobile
phone knows about the status of the game, so that SIP signaling is the
only way to use this knowledge for charging.

• game management
SIP can be used to maintain a game play session until the game is
over, even if the mobile phone was turned on and off several times
between. The charge applied can still be a fixed fee for the game,
independent of time.

• charging and billing for SIP-unaware applications.
Games and services may not use SIP interfaces directly, but instead
could be using open connection, or send message APIs. Under-
neath, the mobile phone would use SIP signaling appropriate to the
application and the API, so enabling SIP-based charging and billing
integration even for legacy applications.

The SIP for J2ME (JSR 180) specification extends the GCF pattern, which
means new SIP connections are obtained through the Connector factory.
The specification follows the same simple and lightweight structure
as all other MIDP protocol frameworks, e.g. HttpConnection and
SocketConnection. SIP for J2ME is defined at the transaction level in
the same way as HttpConnection. This makes the API specification
multipurpose, without any assumptions about its intended usage. As a
consequence, a MIDlet that is implemented at the transaction level must
handle message flow. This HTTP-like functionality has been extended
to support receiving Requests that exist in SIP and HTTP, so blocking
calls are extended with an event mechanism that allows application
developers to choose their optimal programming style.

Java APIs for Integrated Networks
Java APIs for Integrated Networks (JAIN) provides wireless devices with
a uniform interface to a variety of networks such as wireless, proprietary
Internet, the public switched telephone system, and Asynchronous Trans-
fer Mode (ATM) networks. JAIN is used to reshape proprietary interfaces
into uniform Java interfaces, enhancing application portability.

There are four CLDC-compatible APIs for IM&P that use the JAIN
APIs. Whereas the SIP APIs are very low level, these are high-level
service-oriented APIs:

• JAIN Presence (JSR 164) provides a standard, portable and secure
interface to manipulate presence information between a SIMPLE
client (known as a watcher) and a presence server (known as a

SYMBIAN AND JAVA 417

presence agent); SIMPLE extends SIP with support for presence and
instant messaging

• JAIN SIMPLE Instant Messaging (JSR 165) provides an interface
to exchange messages between SIMPLE clients; it is a peer-to-
peer protocol

• JAIN Presence (JSR 186) is a generic API for presence that is inde-
pendent of the communication protocol (whereas JSR 164 is based
on SIMPLE)

• JAIN Instant Messaging (JSR 187) is an API for instant messaging that
is independent of the communication protocol, whereas JSR 165 is
based on SIMPLE, and it uses a presence server for message handling.

JSR 186 and 187 require underlying protocol support for specific IM&P
services. Some popular choices are OMA Wireless Village, IETF SIP and
IETF XMPP, which are all standard protocols. There are also proprietary
protocols such as AOL, Yahoo and MSN. The selection of protocol
stacks (which all run over TCP/IP) is implementation-specific: a mobile
phone which is to be used with specific ISP services should provide the
appropriate protocol stacks.

JSR 229
Payment API (JSR 229) enables application developers to initiate mobile
payment transactions in MIDlets. It defines a generic API to initiate pay-
ment transactions and the syntax to describe the associated provisioning
information. This enables different payment instruments to be supported,
such as operator charging, stored value accounts, or third-party payment
services. Transactions can take place over a variety of transports, such as
SMS or the Internet, though the JSR assumes a secure channel is available.

JSR 211
Content Handler API (JSR 211) will allow MIDlets to handle actions on
a URI based on the MIME type or scheme. So, for instance, clicking on
a specialist audio file in a browser starts up the appropriately registered
MIDlet decoder. Further, an application can use the URI and/or MIME
type to invoke another application. This will allow the applications to run
sequentially, passing parameters and returning results.

8.6.3 Symbian-Specific Extensions

Figure 8.14 listed a number of potential Symbian specific extensions: tele-
phony, persistence, ‘‘Send as’’ and common clipboard. Synchronization
used to be on this list, but fortunately Siemens initiated JSR 230, the Data
sync APIs! Ideally all these APIs should be defined by standard JSRs.

418 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

We have already discussed the need for persistence or database access.
This could either be straight SQL, i.e. a subset of JDBC, or an object store.

Telephony APIs are needed to provide access to telephony-related
features (we are not discussing APIs needed to create a telephony client:
that was the purpose of JTAPI). The functionality would include:

• access to IMEI and IMSI numbers, which uniquely identify a mobile
phone; this is especially useful for games and DRM – currently the
best a game can do is use the Wireless Messaging APIs to obtain the
phone number

• reacting to telephony events, e.g. to detect ringing events, call pickup,
call termination and, importantly, caller id; this enables a MIDlet to
identify a caller and display a relevant contact card or other related
information

• providing information such as signal strength, battery level and power
status, IR and Bluetooth status

• launching the mobile phone’s telephony application: this should not
require a separate API as it should be achievable either from the user
interface using a TextBox or TextField with a PHONENUMBER
constraint, or programmatically using platformRequest().

A ”Send as” menu option is provided in many Symbian OS applica-
tions, e.g. Word, and is used to send the document via IR, Bluetooth,
email, SMS, etc. The ”Send as” API would provide a MIDlet with the
same functionality and is part of making MIDlets first class citizens.

The common clipboard API continues the theme of making MIDlets
first class citizens. As the name suggests, it allows MIDlets to copy data to
and from the system clipboard, in the same manner as native applications.

8.7 Java and Digital Rights Management

Increasingly, suppliers of content such as games, videos, audio, other
multimedia material and applications in general, are keen to prevent
illegal use of the content or to control its use. Digital Rights Manage-
ment (DRM) is about how rights of use can be associated with content.
Such rights could prevent a MIDlet suite being passed on to another
mobile phone, allow the game to be played only until a certain date,
or allow a piece of music to be played only a set number of times. See
www.openmobilealliance.org/tech/release.html for the specification, or
www.openmobilealliance.org/docs/DRM%20Short%20Paper%20DEC
%202003 %20.pdf for a top level description.

JAVA AND DIGITAL RIGHTS MANAGEMENT 419

The first phase, OMA DRM Version 1.0, is moderately easy to break
and is intended for low value content (simpler games and applications,
or ringtones). It consists of three options:

• forward lock, which prevents content from being forwarded to
other phones
The content is downloaded within a wrapper and the wrapper has a
MIME type which indicates that this content should not be forwarded
(the wrapper header includes the MIME type of the content, for
instance, a video clip). It is then up to the platform to decide how to
handle this content to prevent forwarding, for instance by ensuring
that it is not installed in a user-accessible location or by encrypting it
with a hidden key.

• combined delivery, which is similar to forward lock, except that the
wrapper includes a rights object
The rights object defines in detail how the content can be used, for
example the number of hours for which a game can be played, or
how many times a music track can be listened to. Again how this is
implemented is down to the platform.

• separate delivery, in which content and the rights object are sent
separately.
The content is encrypted into a DRM Content Format (DCF) file using a
Content Encryption Key (CEK) – a symmetric key using the Advanced
Encryption Standard (AES) – and can then be downloaded over an
insecure channel such as the Internet. However the rights object must
be downloaded over a secure channel, for instance SMS, because it
contains the CEK (a bit like whispering a password in someone’s ear).
The CEK is then used to decrypt the DCF file.

MIDlet suites already come with JAD and JAR files, so that separate
delivery, for instance, would work like this:

1. The user clicks on a URL in a browser, which, as for an unprotected
MIDlet suite, initiates the JAD download.

2. The user decides whether to download the application based on the
information from the JAD (cost, size, required support, etc.) as they
would for an unprotected suite.

3. The JAD, rather than pointing to a JAR file, points to the DCF file
containing the JAR, which is then downloaded by the platform’s
DCF recognizer.

4. Meanwhile, WAP push is used to send the rights object to the phone,
where it is used by the installer to decrypt the DCF file, extract the
JAR file and install the MIDlet suite.

420 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

The second phase of OMA DRM should be finalized by the middle
of 2004. It will offer more security, making it suitable for higher value
content. It will encrypt both the rights object and the content encryption
key with the phone’s public key, binding them to the phone. Both the
content and the rights object will protected against tampering through the
use of hash keys.

Symbian provides APIs for the OMA DRM Version 1 specification.
Content publishing tools for use with the Nokia 6600 and Sony Ericsson
P800 and P900 are available from the respective manufacturer’s website.

8.8 The Java Verified Program

The Java Verified program (www.javaverified.com) is intended to test
the basic functionality of a MIDlet: does it start, does it stop and exit
gracefully, does it hog bandwidth or other resources? It does not check
conformance with corporate branding, nor does a pass or fail depend on
whether or not the MIDlet is socially acceptable, though unacceptable
content will not be allowed to use the Java logo.

The members of the program are Sun, Motorola, Nokia, Siemens
and Sony Ericsson. Sun host a portal where developers can register
information about the MIDlet they want verified. The program will not
generate revenue, indeed the only transactions are between the developer
and the test house (the website provides details of test houses and pricing).
Most of the verification can be carried out by the test house and this is
where most of the work has to be done. However, the last 10 % is
carrier-specific, e.g. the type of download server, billing wrapper, or any
DRM implementation.

The scope of the program is currently limited: it is for untrusted
MIDlets only and is aimed at the service provider, operator, or aggregator
who wants to provision the MIDlet. The provider receives the MIDlet
encrypted and uses a public key supplied by the program to decrypt it
before publishing it. The provider is thus assured that the MIDlet has been
through the Java Verified program, that the author is who he claims to be
and that the MIDlet has not been tampered with since testing.

The end-user downloads the unencrypted MIDlet to a mobile phone
and may have no knowledge that the MIDlet has been through the
program. This is in contrast to the Symbian signing program for native
applications, which delivers signed MIDlets to the mobile phone.

It is to be hoped that in the near future the program will create a
Public Key Infrastructure (PKI) that will be agreed by all parties: operators,
mobile phone manufacturers and developers. This will provide a signing
mechanism so that developers can create trusted, signed, MIDlets that
can offer more interesting services.

TRENDS IN TECHNOLOGY 421

8.9 Beyond Advanced Consumer Services

We’ve talked about services mainly in the context of a client running on
a mobile phone talking to back-end services (JSR 172 will be important
in delivering such services). However there is potentially a bigger oppor-
tunity for what might be called ‘‘ubiquitous services’’, where services are
provided by many small embedded devices such as home appliances,
drinks machines, teller services, even light switches. The service might
be executed on the device, or loaded onto the mobile phone and run as
a MIDlet. There is also no reason why mobile phones themselves cannot
host and share services.

To achieve these ubiquitous services we need an infrastructure that
covers:

• service registration: the ability to register a service for discovery by
other devices, mobile or otherwise

• service discovery: this could be by the user searching through a
browser type interface, or by an application searching for a particular
type of service

• remote service access: this can be achieved by JSR 172 and SOAP
(though SOAP may require too much bandwidth for wireless networks)

• service lifecycle: existing technologies are probably adequate for
service start up (e.g. push technology from Bluetooth, WAP or MIDP),
however, many services will be transient and should be deleted after
use; this would have to handled by the system AMS, perhaps in
response to a message

• transfer of executable content: once a service has been discovered, it
can be transferred as a MIDlet using OTA-type protocols and executed
on the mobile phone.

OSGi provides a partial answer (see, for instance, Mobile Operational
Management (JSR 232)). However, this is a very heavyweight option and
is only applicable to CDC. The Bluetooth discussion in Section 8.6.2.1
gives an idea of how we can enable ubiquitous services today or in the
near future.

8.10 Trends in Technology

To end this chapter (and the book), let us gaze into a crystal ball, starting
with the technology:

• CPU power will continue to increase in accordance with Moore’s law

• combinations of software and hardware acceleration will remove the
gap between Java and native performance

422 THE MARKET, THE OPPORTUNITIES AND SYMBIAN’S PLANS

• network bandwidth will improve, though not so dramatically

• network connections will always be available, reducing latency

• costs for persistent storage will continue to tumble and access speeds
will increase dramatically as new memory technologies, such as
Ferroelectric RAM, Magnetic RAM and Ovonic memory, replace
NOR and NAND flash

• the resolution of screen displays will continue to improve, through a
decrease in dot pitch as screen sizes will be limited by overall mobile
phone ergonomics.

There will also be market changes:

• ”smart houses” will become a reality: climate control, entertainment
and security systems will be controlled by a variety of devices,
including mobile phones

• digital consumer goods will converge.

Today, video cameras can take still images and digital cameras can record
video, and quite often both include MP3 players. These capabilities are
moving into mobile phones: the current phones only support VGA,
however the next generation of mobile phones will have megapixel
resolution cameras (indeed a number of Japanese cameras already do).
Many of today’s mobile phones come with FM radios and in the future
we are likely to see the inclusion of Digital Audio Broadcast radios. In
Korea, people can now use their mobile phones for credit card purchases.
The consequence will be an explosion in the amount of data users store
on their mobile phone: audio, video, images, email and messaging. This
will amount to gigabytes of storage.

So, we leave you with a simple challenge: to use your development
skills, and the knowledge and insight that we hope you have gained
from this book, to create the next killer Java service or application on
Symbian OS.

Appendix 1
CLDC Core Libraries

System Classes

java.lang.Class Instances of Class represent classes
and interfaces in a running application.

java.lang.Object The Object class is the root of classes.
java.lang.Runtime Every Java application has a single

instance of the Runtime class, which
allows the application to interface with
the environment in which it is running.
Note that the Exit() method always
throws a java.lang.
SecurityException.

java.lang.System The System class contains several
useful fields and methods and it cannot
be instantiated. Note that the Exit()
method always throws a java.lang.
SecurityException.

java.lang.Thread A Thread is a unit of execution in a
program. Multiple threads may be
executed concurrently.

java.lang.Runnable (interface) This interface should be implemented
by any class which is intended to be
executed as threads. A run() method
must be defined by such a class.

java.lang.Throwable The Throwable class is the superclass
of all errors and exceptions.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

424 CLDC CORE LIBRARIES

Data Type Classes

java.lang.Boolean The Boolean class wraps a value of
the boolean primitive type in an object.

java.lang.Byte The Byte class wraps a value of the
byte primitive type in an object.

java.lang.Character The Character wraps a value of the
char primitive type in an object.

java.lang.Integer The Integer class wraps a value of
the int primitive type in an object.

java.lang.Long The Long class wraps a value of the
long primitive type in an object.

java.lang.Short The Short class wraps a value of the
short primitive type in an object.

java.lang.String The String class represents character
strings.

java.lang.Stringbuffer A StringBuffer implements a
mutable sequence of characters.

Collection Classes

java.util.Vector The Vector class implements an array
of objects that can grow.

java.util.Stack The Stack class represents a last in
first out stack of objects.

java.util.Hashtable This class implements a hashtable,
which maps keys to values.

java.util.Enumeration (interface) An object that implements the
Enumeration interface generates a
series of elements, one at a time.

Input/Output Classes

java.io.InputStream This abstract class is the superclass of
all classes representing an input stream
of bytes.

java.io.OutputStream This abstract class is the superclass of
all classes representing an output
stream of bytes.

java.io.ByteArrayInputStream A ByteArrayInputStream has an
internal buffer that contains bytes that
may be read from the stream.

CALENDAR AND TIME CLASSES 425

java.io.ByteArrayOutputStream This class implements an output
stream in which the data is written into
a byte array.

java.io.DataInput (interface) The DataInput interface provides for
reading bytes from a binary stream and
reconstructing from them data in any
of the primitive types.

java.io.DataOutput (interface) The DataOutput interface provides
for converting data from any of the
primitive types to a series of bytes and
writing to a binary stream.

java.io.DataInputStream A DataInputStream lets an
application read primitive data types
from an underlying input stream in a
machine-independent way.

java.io.DataOutputStream A DataOutputStream lets an
application write primitive data types
to an output stream in a portable way.

java.io.Reader An abstract class for reading character
streams.

java.io.Writer An abstract class for writing character
streams.

java.io.InputStreamReader An InputStreamReader is a bridge
from byte streams to character streams.
It reads bytes and translates them into
characters according to a specified
character encoding.

java.io.OutputStreamReader An OutputStreamReader is a
bridge from character streams to byte
streams. Characters written to it are
translated into bytes according to a
specified character encoding.

java.io.PrintStream A PrintStream adds functionality to
another output stream, namely the
ability to print representations of
various data values conveniently.

Calendar and Time Classes

java.util.Calendar The Calendar is an abstract class for
getting and setting dates using a set of
integer fields such as YEAR, MONTH,
DAY, etc.

426 CLDC CORE LIBRARIES

java.util.Date The Date class represents a specific
instant in time with a millisecond
precision.

java.util.TimeZone The TimeZone class represents a time
zone offset and also works out daylight
savings.

Additional Utility Classes

java.util.Random An instance of this class is used to
generate series of pseudo-random
numbers.

java.lang.Math The Math class contains methods for
performing basic numeric operations.

Exception Classes

java.lang.Exception The Exception class and its
subclasses are a form of Throwable
that indicates conditions that a
reasonable application might want to
catch.

java.lang.ClassNotFoundException Thrown when an application tries to
load in a class through its string name
using the forName() method in
Class class.

java.lang.IllegalAccessException Thrown when an application tries to
load in a class but the executing
method does not have access to the
class definition, because the class is in
another package and is not public.

java.lang.InstantiationException Thrown when an application tries to
create an instance of a class using the
newInstance() method in Class
class, but cannot instantiate it because
it is an interface or an abstract class or
it doesn’t have a default constructor.

java.lang.InterruptedException Thrown when a thread is waiting,
sleeping or otherwise paused and
another thread interrupts it.

java.lang.RuntimeException This is the superclass of exceptions that
can be thrown during the normal
operation of the Java Virtual Machine.

EXCEPTION CLASSES 427

java.lang.ArithmeticException Thrown when an exceptional
arithmetic condition occurs.

java.lang.ArrayStoreException Thrown to indicate that an attempt has
been made to store the wrong type of
object in an array of objects.

java.lang.
ArrayIndexOutOfBoundsException

Thrown to indicate that an array has
been accessed with an illegal index.

java.lang.ClassCastException Thrown to indicate that the code has
attempted to cast an object to a
subclass of which it is not an
instance.

java.lang.
IllegalArgumentException

Thrown to indicate that a method has
been passed an illegal or inappropriate
argument.

java.lang.
IllegalThreadStateException

Thrown when starting a Thread for
the second time.

java.lang.NumberFormatException Thrown when trying to read an
Integer from a malformed String.

java.lang.
IllegalMonitorStateException

Thrown to indicate that a thread has
attempted to wait on an object’s
monitor or to notify other threads
waiting on an object’s monitor without
owning the specified monitor.

java.lang.
IndexOutofBoundsException

Thrown to indicate that an index of
some sort (such as an index to an
array, to a string, or to a vector) is out
of range.

java.lang.
StringIndexOutOfBoundsException

Thrown by the charAt() method in
class String and by other String
methods, to indicate that an index is
either negative or greater than or equal
to the size of the string.

java.lang.
NegativeArraySizeException

Thrown if an application tries to create
an array with negative size.

java.lang.NullPointerException Thrown when an application attempts
to use null in a case where an object is
required.

java.lang.SecurityException Thrown by the security manager to
indicate a security violation.

java.util.EmptyStackException Thrown by methods in the Stack class
to indicate that the stack is empty.

java.util.NoSuchElementException Thrown by the methods of an
Enumeration to indicate that there
are no more elements in the
enumeration.

428 CLDC CORE LIBRARIES

java.io.EOFException Signals that an end of file or end of
stream has been reached unexpectedly
during input.

java.io.IOException Signals that an I/O exception of some
sort has occurred.

java.io.InterruptedIOException Signals that an I/O operation has been
interrupted.

java.io.
UnsupportedEncodingException

Signals that the character encoding is
not supported.

java.io.UTFDataFormatException Signals that a malformed UTF8 string
has been read in a data input stream or
by any class that implements the data
input interface.

Error Classes
In contrast to the exception classes, the error-handling capabilities of
CLDC are limited to just three:

java.lang.Error Error is a subclass of Throwable
that indicates serious problems that a
reasonable application may not try to
catch.

java.lang.VirtualMachineError Thrown to indicate that the Java Virtual
Machine is broken or has run out of
the resources necessary for it to
continue operating.

java.lang.OutOfMemoryError Thrown when the Java Virtual
Machine cannot allocate an object
because it is out of memory and no
more memory can be made available
by the garbage collector.

Catching an OutOfMemoryError is very good practice when devel-
oping for a resource-constrained device. It allows the developer to try
to free all the memory he can and maybe give the application another
chance to perform the requested action. In the worst case scenario, the
application should be able to display a previously allocated dialog box
to inform the user that the application cannot continue.

Appendix 2
MIDP Libraries

Networking Package

javax.microedition.io.Connection This interface is the most
basic type of generic
connection.

javax.microedition.io.Connector This class is a placeholder for
the static methods used to
create all the connection
objects.

javax.microedition.io.CommConnection This interface defines a
logical serial port connection.

javax.microedition.io.ContentConnection This interface defines the
stream connection over
which content is passed.

javax.microedition.io.Datagram This is the generic datagram
interface.

javax.microedition.io.DatagramConnection This interface defines the
capabilities that a datagram
connection must have.

javax.microedition.io.HttpConnection This interface defines the
necessary methods and
constants for an HTTP
connection.

javax.microedition.io.HttpsConnection This interface defines the
necessary methods and
constants to establish a secure
network connection.

javax.microedition.io.InputConnection This interface defines the
capabilities that an input
stream connection must have.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

430 MIDP LIBRARIES

javax.microedition.io.OutputConnection This interface defines the
capabilities that an output
stream connection must have.

javax.microedition.io.PushRegistry This class maintains a list of
inbound connections.

javax.microedition.io.SecureConnection This interface defines the
secure socket stream
connection.

javax.microedition.io.SecurityInfo This interface defines the
methods for accessing
information about a secure
connection.

javax.microedition.io.
ServerSocketConnection

This interface defines the
server socket stream
connection.

javax.microedition.io.SocketConnection This interface defines the
socket stream connection.

javax.microedition.io.StreamConnection This interface defines the
capabilities that a stream
connection must have.

javax.microedition.io.
StreamConnectionNotifier

This interface defines the
capabilities that a connection
notifier must have.

javax.microedition.io.
UDPDatagramConnection

This interface defines a
datagram connection which
knows the local end point
address.

Exception
javax.microedition.io.
ConnectionNotFoundException

Signals that the protocol for
the connection is not
supported by the device.

User Interface Classes
javax.microedition.lcdui.Alert A screen that shows data to

the user and waits for a
certain period of time
before proceeding to the
next screen.

javax.microedition.lcdui.AlertType Provides an indication of
the nature of alerts.

USER INTERFACE CLASSES 431

javax.microedition.lcdui.Canvas The base class for writing
applications that need to
handle low-level events
and to issue graphics
calls for drawing to the
display.

javax.microedition.lcdui.Choice This interface defines an API
for user interface components
that enable the user to select
from a predefined number of
choices.

javax.microedition.lcdui.ChoiceGroup A group of selectable
elements intended to be
placed within a Form.

javax.microedition.lcdui.Command A construct that encapsulates
the semantic information of
an action.

javax.microedition.lcdui.CommandListener This interface is used by
applications which need to
receive high-level events from
the implementation.

javax.microedition.lcdui.CustomItem A customizable element
which can be subclassed to
introduce new visual and
interactive elements to a
Form.

javax.microedition.lcdui.DateField An editable component for
presenting date and time
(calendar) information that
may be placed in a Form.

javax.microedition.lcdui.Display Represents the manager of the
display and GUI capabilities
of the system.

javax.microedition.lcdui.Displayable An object that can be placed
on the display.

javax.microedition.lcdui.Font Represents fonts and font
metrics.

javax.microedition.lcdui.Form A Screen that contains an
arbitrary mixture of items:
read-only text fields, editable
text fields, editable date
fields, gauges, choice groups
and custom items.

432 MIDP LIBRARIES

javax.microedition.lcdui.Gauge Implements a graphical
display, such as a bar graph,
of an integer value.

javax.microedition.lcdui.Graphics Provides simple 2D geometric
rendering capability.

javax.microedition.lcdui.Image Used to hold graphical image
data.

javax.microedition.lcdui.ImageItem An Item that contains an
image.

javax.microedition.lcdui.Item A superclass for components
that can be added to a
Form.

javax.microedition.lcdui.
ItemCommandListener

This interface is a listener type
for receiving notification of
commands that have been
invoked on Item objects.

javax.microedition.lcdui.
ItemStateListener

This interface is used by
applications which need to
receive events that indicate
changes in the internal state of
the interactive items within a
Form screen.

javax.microedition.lcdui.List A screen containing a list of
choices.

javax.microedition.lcdui.Screen The common superclass of all
high-level user interface
classes.

javax.microedition.lcdui.Spacer A blank, non-interactive Item
that has a settable minimum
size.

javax.microedition.lcdui.StringItem A non-interactive Item that
can contain a string.

javax.microedition.lcdui.TextBox A screen that allows the user
to enter and edit text.

javax.microedition.lcdui.TextField An editable text component
that may be placed in a Form.

javax.microedition.lcdui.Ticker Implements a ”ticker tape”, a
piece of text that runs
continuously across the
display.

Game API
java.microedition.lcdui.game.GameCanvas This class provides the basis

for a game user interface.

MIDLET CLASSES 433

java.microedition.lcdui.game.Layer An abstract class
representing a visual
element of a game.

java.microedition.lcdui.game.
LayerManager

The LayerManager
manages a series of Layers.

java.microedition.lcdui.game.Sprite A basic visual element that
can be rendered with one
of several frames stored in
an image; different frames
can be shown to animate
the Sprite.

java.microedition.lcdui.game.TiledLayer A visual element composed
of a grid of cells that can be
filled with a set of tile
images.

Media API
java.microedition.media.Control A superclass for objects

used to control some media
processing functions.

java.microedition.media.Controllable An interface for obtaining
the Controls from an
object.

java.microedition.media.Manager The access point for
obtaining
system-dependent
resources such as Players
for multimedia processing.

java.microedition.media.MediaException Indicates an unexpected
error condition in a
method.

java.microedition.media.Player Controls the rendering of
time-based media data.

java.microedition.media.PlayerListener An interface for receiving
asynchronous events
generated by Players.

java.microedition.media.control.
ToneControl

An interface that enables
the playback of
user-defined monotonic
tone sequences.

java.microedition.media.control.
VolumeControl

An interface for
manipulating the audio
volume of a Player.

434 MIDP LIBRARIES

Midlet Classes
javax.microedition.midlet.Midlet Superclass for all MIDP

applications.
javax.microedition.midlet.Midlet.
StateChangeException

Signals that a requested
MIDlet state change failed.

Persistent Storage
javax.microedition.rms.
InvalidRecordIDException

Thrown to indicate an
operation could not be
completed because the
record ID was invalid.

javax.microedition.rms.RecordComparator An interface used to
compare two records. An
implementation checks
whether they match or what
their relative sort order is.

javax.microedition.rms.RecordEnumeration An interface representing a
bi-directional record store
record enumerator.

javax.microedition.rms.RecordFilter An interface used to filter
records matching a
criterion

javax.microedition.rms.RecordListener A listener interface for
receiving record changed,
added or deleted events
from a RecordStore.

javax.microedition.rms.RecordStore A class representing a
record store.

javax.microedition.rms.
RecordStoreException

Thrown to indicate a
general exception was
encountered in a
RecordStore operation.

javax.microedition.rms.
RecordStoreFullException

Thrown to indicate that the
operation could not be
completed because the
RecordStore is full.

javax.microedition.rms.
RecordStoreNotFoundException

Thrown to indicate that the
RecordStore could not
be found.

javax.microedition.rms.
RecordStoreNotOpenException

Thrown to indicate that the
operation was attempted on
a closed RecordStore.

CORE PACKAGES 435

End-to-End Security
java.microedition.pki.Certificate Interface common to

certificates.
java.microedition.pki.
CertificateException

Encapsulates an error that
occurred while a certificate
is being used.

Core Packages
java.io Provides the system input

and output through data
streams and serialization.

java.lang Provides the classes that are
fundamental to the design
of the Java language. For
example, Object, which is
the root of the class
hierarchy.

java.lang.ref Provides the reference
object classes, which
support a limited degree of
interaction with the
garbage collector.

java.lang.reflect Provides the classes and
interfaces for obtaining
reflective information
about classes and
objects.

java.math Provides classes for
performing
arbitrary-precision integer
(BigInteger) and decimal
arithmetic (BigDecimal).

java.net Provides classes for
implementing networking
applications.

java.security Provides classes and
interfaces for the security
framework.

java.security.cert Provides classes and
interfaces for parsing and
managing certificates.

436 MIDP LIBRARIES

java.text Provides classes and
interfaces for handling text,
dates, numbers and
messages in a manner
independent of natural
languages.

java.util Provides classes which
contain the collections
framework, legacy
collection classes, event
model, date and time
facilities,
internationalization and
miscellaneous utility classes
such as string tokenizer and
random number generator.

java.util.jar Provides classes for reading
and writing the JAR file
format, which is based
upon standard ZIP file
format with an optional
manifest file.

java.util.zip Provides classes for reading
and writing the standard
ZIP and GZIP file formats.

javax.microedition.io Provides classes for the
generic connection
framework.

Appendix 3
Using the Wireless Toolkit Tools

at the Command Line

This appendix provides developers with an insight into how the compile,
pre-verify and packaging process works when using the Wireless Toolkit
at the command line.

In the first instance we should make sure we have all the relevant
binaries within the view of our command line. Some paths, therefore, need
to be set. Assuming the J2ME Wireless Toolkit 2.1 has been installed to
C:\WTK21 we should set the development platform’s PATH environment
variable to that directory. On a Windows desktop computer, the path to
the binaries should be set as follows:

C:> SET PATH=%PATH%;<install dir>\WTK21\bin

We will also need a Java compiler. We should already have the latest
J2SE SDK installed on the machine, so we can use that compiler. Set
PATH as follows:

C:> SET PATH=%PATH%;<install dir>\JavaSoft\j2sdk1.4.2\bin

Now we should be able to use both the compiler and pre-verifier quite
easily. However, before we proceed we should also add a couple of
environment variables to make MIDlet creation a little easier. We need to
direct the commands towards the MIDP API and the other J2ME classes.
Therefore we should set the following variables:

C:> SET J2MEHOME=<install dir>\WTK21
C:> SET MIDPAPI=%J2MEHOME%\lib\midpapi20.jar
C:> SET J2MECLASSPATH=%J2MEHOME%\wtklib\kenv.zip;

%J2MEHOME%\wtklib\kvem.jar;%J2MEHOME%\wtklib\lime.jar;
%J2MEHOME%\lib\cldcapi10.jar

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

438 USING THE WIRELESS TOOLKIT TOOLS AT THE COMMAND LINE

Now that some handy variables have been set, we can try to create
a MIDlet suite. Once the classes have been written, they need to be
compiled. The following command should be used to compile all the
classes in the current directory and then put them in a previously created
directory, tmpclasses. Note that we have specified the classpath of the
MIDP API to make sure the compiler knows to compile against the CLDC
and MIDP classes, otherwise the classes may be compiled against the
J2SE SDK.

C:\WTK20\apps\Example\src>javac -d tmpclasses -bootclasspath %MIDPAPI%
-classpath %J2MECLASSPATH% *.java

Once this has been completed, all the compiled class files can be
seen in the tmpclasses directory. We should now pre-verify them. By
typing the word preverify at the command line the following help
information appears showing the options available.

Usage: preverify [options] classnames|dirnames ...

where options include:

-classpath <directories separated by ';'> Directories in which to look

for classes

-d <directory> Directory in which output is written (default is

./output/)

-cldc Checks for existence of language features prohibited by

CLDC (native methods, floating point and finalizers)

-nofinalize No finalizers allowed

-nonative No native methods allowed

-nofp No floating point operations allowed

@<filename> Read command line arguments from a text file Command line

arguments must all be on a single line; directory names must be enclosed in

double quotes(")

There are two options of interest to us here. The -classpath option,
which will specify which target API should be verified against, and the -d
option, which specifies the output directory for these verified files. The
following command should be issued in the current directory:

C:\WTK20\apps\Example\src > preverify -classpath %MIDPAPI%;tmpclasses
-d classes tmpclasses

The pre-verified files will now be in the classes directory. These
files are ready for packaging into a MIDlet suite. For this we use the jar
command:

C:\WTK20\apps\Example\src> jar -cvf MyMidlet.jar classes/*

In this case we have asked the jar command to create a JAR file
called MyMidlet.jar from all the files stored in the directory structure
under classes/.

Appendix 4
Developer Resources and Bibliography

Download code for this book from
www.symbian.com/books/pjso/pjso-source.html

Symbian
Corporate www.symbian.com
Developer www.symbiandevnet.com

Symbian Licensees
Arima www.arima.com.tw
BenQ www.benq.com
Fujitsu www.fujitsu.com
Lenovo www.legendgrp.com
LG

Electronics
www.lge.com

Motorola www.motorola.com
Nokia www.nokia.com
Panasonic www.panasonic.com
Psion www.psion.com
Samsung www.samsung.com
Sanyo www.sanyo.com
Sendo www.sendo.com
Siemens www.siemens.com
Sony Ericsson www.sonyericsson.com

Online Developer Resources
Motorola

http://idenphones.motorola.com/iden/developer/developer home.jsp
Nokia

www.forum.nokia.com

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

440 DEVELOPER RESOURCES AND BIBLIOGRAPHY

NTT DoCoMo
www.nttdocomo.com/corebiz/imode/why/tech.html

Sendo
www.sendo.com/dev

Siemens
www.siemens-mobile.com/developer

Sony Ericsson
http//developer.sonyericsson.com and

www.sonyericsson.com/developer
Sun Microsystems

http://java.sun.com/j2me
UIQ

www.uiq.com/developer

Tools manufacturers

AppForge
www.appforge.com

Borland
http://bdn.borland.com

Metrowerks
www.metrowerks.com/MW/Develop/Wireless/Default.htm

Resources Mentioned in This Book and Additional Material

Chapter 1
Java Community Process, JSR 30: CLDC

http://jcp.org/en/jsr/detail?id=30

Chapter 2
Antenna

http://antenna.sourceforge.net
Apache, Jakarta project

http://jakarta.apache.org
Apache, Ant download

http://ant.apache.org/srcdownload.cgi
Apache, Ant project

http://ant.apache.org/index.html
Borland, Jbuilder

www.borland.com/products/downloads/
download jbuilder.html
Eclipse

www.eclipse.org

RESOURCES MENTIONED IN THIS BOOK AND ADDITIONAL MATERIAL 441

Forum Nokia
www.forum.nokia.com

jEdit
www.jedit.org

Proguard
http://proguard.sourceforge.net

Retrologic Systems
www.retrologic.com

Sony Ericsson Developer Network, P900 Emulator for the
Wireless Toolkit

http//developer.sonyericsson.com
Sun, J2ME Wireless Toolkit 2.1 Download

http://java.sun.com/products/j2mewtoolkit/download-2 1.html
Sun, J2SE downloads

http://java.sun.com/j2se/downloads.html
Sun ONE Studio 4

www.sun.com/software/sundev/jde/studio me/index.html
Symbian Developer Network, UIQ2.1 SDK

www.symbian.com/developer/sdks uiq21.asp
Xinox Software, Jcreator

www.jcreator.com

Chapter 3
Forum Nokia, Camera MIDlet: A Mobile Media API Example

http://ncsp.forum.nokia.com/csp
Forum Nokia, Known Issues in the Nokia 6600 MIDP 2.0

Implementation Version 1.2,
www.forum.nokia.com

Java Community Process, JSR 30: CLDC 1.0 specification
http://jcp.org/en/jsr/detail?id=30

Java Community Process, JSR 118: MIDP 2.0 specification
http://jcp.org/en/jsr/detail?id=118

Java Community Process, JSR 120: Wireless Messaging API specification
http://jcp.org/en/jsr/detail?id=120

Java Community Process, JSR 135: Mobile Media API specification
http://jcp.org/en/jsr/detail?id=135

Java Community Process, JSR 139: CLDC 1.1 specification
http://jcp.org/en/jsr/detail?id=139

Java Community Process, JSR 185: JTWI specification
http://jcp.org/en/jsr/detail?id=185

Java Verified Program for J2ME
www.javaverified.com

Sony Ericsson, Developer Guidelines: Java MIDP 2.0 for P900/908
Version R3A
http://developer.sonyericsson.com

442 DEVELOPER RESOURCES AND BIBLIOGRAPHY

Sun (2003) The CLDC HotSpot Implementation Virtual Machine,
White Paper

http://java.sun.com
Symbian, Symbian on Java

www.symbian.com/technology/standard-java.html
Symbian Phones

www.symbian.com/phones

Chapter 4

Bluetooth SIG, Assigned numbers: Bluetooth baseband
https://www.bluetooth.org/foundry/assignnumb/document/
baseband

Bluetooth SIG, Specification of the Bluetooth System, Volume 1.
www.bluetooth.com

Casira Development System for Bluetooth
www.csr.com

Forum Nokia, Nokia Developer’s Suite for J2ME 2.0
http://forum.nokia.com

Forum Nokia, Series 60 MIDP SDK 1.2.1 for Symbian OS, Nokia Edition
http://forum.nokia.com

Forum Nokia (2003) Setting Up and Using the Bluetooth Testing
Environment for Series 60 Platform

http://forum.nokia.com
Hopkins, B. and Anthony, R. (2003) Bluetooth for Java, Apress.
Java Community Process, JSR 82: Java APIs for Bluetooth Wireless

Technology
http://jcp.org/en/jsr/detail?id=82

Rococo Impronto Simulator
www.rococosoft.com

Symbian, UIQ 2.1 SDK
www.symbian.com

Chapter 5

kXML library
http://xmlpull.org

Nokia, Wireless Toolkit
http://forum.nokia.com

Proguard Obfuscation Library
http://proguard.sourceforge.net
Sony Ericsson Developer Network, P900 Emulator for the Wireless
Toolkit

http//developer.sonyericsson.com

RESOURCES MENTIONED IN THIS BOOK AND ADDITIONAL MATERIAL 443

Sun, J2ME Wireless Toolkit 2.1 Download
http://java.sun.com/products/j2mewtoolkit/download-2 1.html

Sun, Java Web Services Toolkit
http://java.sun.com/webservices/webservicespack.html

Chapter 6
Java Community Process, JSR185: JTWI specification

http://jcp.org/en/jsr/detail?id=185
W3, CC/PP information

www.w3.org/Mobile/CCPP

Chapter 7
Allin, J. (2001) Wireless Java for Symbian Devices, Wiley.
Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P. and Stal, M.

(1996) Pattern-Oriented Software Architecture: A system of patterns,
Wiley.

Embedded Microprocessor Benchmark Consortium, GrinderBench
www.eembc.hotdesk.com

Grand, M. and Knudsen, J. (1997) Java Fundamental Classes Reference,
O’Reilly

Haggar, P. (2000) Practical Java Programming Language Guide, Addison-
Wesley.

Knuth, D. E. (1997) The Art of Computer Programming Addison Wesley.
Larman, C. and Guthrie, R. (1999) Java 2 Performance and Idiom Guide.

Prentice Hall.
Lurie, J. (2001) Develop a Generic Caching Service to Improve Perfor-

mance, Java World
www.javaworld.com/javaworld/jw-07-2001/jw-0720-

cache p.html
Nondove, Amark 1.3

http://amark.nondove.it
Poundstone, W. (1985) The Recursive Universe: Cosmic complexity and

the limits of scientific knowledge, William Morrow.
Proguard

http://proguard.sourceforge.net
Shirazi, J. (2003) Java Performance Tuning, O’Reilly.
Sosnoski, D. M. (1999) Smart Object-management Saves the Day

www.javaworld.com/javaworld/jw-11-1999/jw-11-
performance.html

Chapter 8
ARC Group

www.arcgroup.com

444 DEVELOPER RESOURCES AND BIBLIOGRAPHY

eWeek, Enterprise news and reviews
www.eweek.com/article2/0,4149,893492,00.asp

Java Community Process, JSR 75: PDA Optional Packages for the J2ME
Platform
http://jcp.org/en/jsr/detail?id=75

Java Community Process, JSR 135: Mobile Media API
http://jcp.org/en/jsr/detail?id=135

Java Community Process, JSR 172: J2METM Web Services Specification
http://jcp.org/en/jsr/detail?id=172

Java Community Process, JSR 177: Security and Trust Services API for
J2ME
http://jcp.org/en/jsr/detail?id=177

Java Community Process, JSR 179: Location API for J2ME
http://jcp.org/en/jsr/detail?id=179

Java Community Process, JSR 180: SIP API for J2ME
http://jcp.org/en/jsr/detail?id=180

Java Community Process, JSR 184: Mobile 3D Graphics API for J2ME
http://jcp.org/en/jsr/detail?id=184

Java Community Process, JSR 205: Wireless Messaging API 2.0
http://jcp.org/en/jsr/detail?id=205

Java Community Process, JSR 211: Content Handler API
http://jcp.org/en/jsr/detail?id=211

Java Community Process, JSR 226: Scalable 2D Vector Graphics API for
J2ME
http://jcp.org/en/jsr/detail?id=226

Java Community Process, JSR 229: Payment API
http://jcp.org/en/jsr/detail?id=229

Java Community Process, JSR 230: Data Sync API
http://jcp.org/en/jsr/detail?id=230

Java Community Process, JSR 232: Mobile Operational Management
http://jcp.org/en/jsr/detail?id=232

Java Verified Program
www.javaverified.com

Khronos Group, OpenGL ES
www.khronos.org/opengles

Macrospace
www.macrospace.com

O’Doherty, P. (2003) SIP Specifications and the Java Platforms, Sun
www.cs.columbia.edu/sip/Java-SIP-Specifications.pdf

OMA DRM Version 1.0, Specification
www.openmobilealliance.org/tech/release.html

OMA DRM Version 1.0, Top-level description
www.openmobilealliance.org/docs/DRM%20Short%

20Paper%20DEC%202003 %20.pdf

Appendix 5
Specifications of Symbian OS Phones

Additional technical information on a range of phones can be found at
www.symbian.com/phones.

Please note that this is a quick guide to Symbian OS phones. For full
specifications, C++ developers retrieve extended information using HAL
APIs or check the manufacturer’s website.

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

446 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 9210i

Java APIs CLDC 1.0
MIDP 1.0
PersonalJava 1.1.1
JavaPhone

OS Version Symbian OS v6.0
UI/Category Series 80
Memory available to user 40 MB
Storage media Yes

Screen 640 × 200; 4096 colors
Pointing device No
Camera No

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 No (GSM 900/1900 on 9290)
HSCSD Yes
GPRS No
3G No

Connectivity
Infrared Yes
Bluetooth No
USB No
Serial Yes

Browsing
WAP WAP 1.1
XHTML (MP) Yes
Browser available Yes (built-in and third-party)

SPECIFICATIONS OF SYMBIAN OS PHONES 447

Nokia 7650

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 4 MB NOR flash user data storage
Storage media No

Screen 176 × 208; 4096 colors
Pointing device No
Camera Yes; 640 × 480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 No
HSCSD Yes
GPRS Yes (2 + 2, 3 + 1, class B and C)
3G No

Connectivity
Infrared Yes
Bluetooth Yes
USB No
Serial No

Browsing
WAP WAP 1.2.1
XHTML (MP) No
Browser available Yes (third-party)

448 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 3600/3650

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
WMA
MMAPI

OS Version Symbian OS v6.1
UI/Category Series 60 (v1)
Memory available to user 3.4 MB
Storage media Yes; MMC

Screen 176×208; 4096/65 536 colors
Pointing device No
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (2 + 2, 3 + 1, class B and C)
3G No

Connectivity
Infrared Yes
Bluetooth Yes
USB No
Serial No

Browsing
WAP WAP 1.2.1
XHTML (MP) Yes
Browser available Yes (third-party)

SPECIFICATIONS OF SYMBIAN OS PHONES 449

Nokia 3620/3660

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
MMAPI
WMA

OS Version Symbian OS v6.1
UI/Category Series 60 (v1)
Memory available to user 4 MB
Storage media Yes; MMC

Screen 176 × 208; 4096/65 536 colors
Pointing device No
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 850 Yes
GSM 1800 No
GSM 1900 Yes
HSCSD Yes
GPRS Yes
3G No

Connectivity
Infra-red Yes
Bluetooth Yes
USB No
Serial No

Browsing
WAP WAP 1.2.1
XHTML (MP) Yes
Browser available Yes

450 SPECIFICATIONS OF SYMBIAN OS PHONES

Siemens SX1

Java APIs MIDP 1.0
WMA
MMAPI

OS Version Symbian OS v6.1
UI/Category Series 60
Storage media Yes; MMC

Screen 176 × 208; 65 536 TFT
Pointing device No
Camera Yes; 640 × 480 and 160 × 120 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (class 10, B (2Tx, 4Rx))
3G No

Connectivity
Infra-red Yes
Bluetooth Yes
USB Yes
Serial No

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes (third-party)

SPECIFICATIONS OF SYMBIAN OS PHONES 451

Nokia N-Gage

Java APIs MIDP 1.0
CLDC 1.0
Nokia UI
WMA
MMAPI

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 4 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176 × 208; 4096 colors
Pointing device No
Camera No

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (2 + 2, 3 + 1, class B and C)
3G No

Connectivity
Infra-red No
Bluetooth Yes
USB Yes
Serial No

Browsing
WAP WAP 1.2.1
XHTML (MP) Yes
Browser available Yes (third-party)

452 SPECIFICATIONS OF SYMBIAN OS PHONES

Sendo X

Java APIs MIDP1.0
WMA
Bluetooth
Nokia UI
MMAPI

OS Version Symbian OS v6.1
UI/Category Series 60
Memory available to user 12 MB
Storage media Yes; MMC and SD

Screen 176×220; 65 536 colors
Pointing device No
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD No
GPRS Yes, Class 8 (4 + 1)
3G No

Connectivity
Infrared Yes
Bluetooth Yes
USB Yes
Serial Yes

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes (third-party)

SPECIFICATIONS OF SYMBIAN OS PHONES 453

BenQ P30

Java APIs MIDP 2.0
PersonalJava 1.1.1
BTAPI
WMA

OS Version Symbian OS v7.0
UI/Category UIQ 2.1
Storage media Yes; MMC and SD

Screen 208×320; 65 536 colors TFT
Pointing device Yes
Camera Yes; 604×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (4 + 2, class 10)
3G No

Connectivity
Infrared Yes
Bluetooth Yes
USB Yes
Serial No

Browsing
WAP Yes 2.0
XHTML (MP) Yes
Browser available Yes

454 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P800

Java API CLDC 1.0
MIDP 1.0
PersonalJava 1.1.1

OS Version Symbian OS v7.0
UI/Category UIQ
Memory available to user 12 MB
Storage media Yes; Sony MS Duo

Screen 208×320 (Flip Open); 208×144 (Flip Closed);
4096 colors

Pointing device Yes
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (4 + 1)
3G No

Connectivity
Infra-red Yes
Bluetooth Yes
USB Yes (high speed serial connector with a

USB->Serial adapter built into the desk stand)
Serial Yes

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes (inbuilt and third-party)

SPECIFICATIONS OF SYMBIAN OS PHONES 455

Motorola A920/A925

Java APIs MIDP 1.03
PersonalJava 1.1.1a

OS Version Symbian OS v7.0
UI/Category UIQ
Memory available to user 8 MB
Storage media Yes; MMC and SD

Screen 208×320; 65 536 colors TFT
Pointing device Yes
Camera Yes

GSM/HSCD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCD Yes
GPRS Yes
3G Yes

Connectivity
Infrared Yes
Bluetooth A920 No/A925 Yes
USB Yes
Serial Yes

Browsing
WAP No
XHTML (MP) Yes
Browser available Yes (third-party)

456 SPECIFICATIONS OF SYMBIAN OS PHONES

Sony Ericsson P900

Java APIs MIDP 2.0
PersonalJava 1.1.1
BTAPI
WMA

OS Version Symbian OS v7.0 (+ security updates
and MIDP2.0)

UI/Category UIQ 2.1
Memory available to user 16 MB
Storage media Yes; Sony MS Duo

Screen 208 × 320 (Flip Open); 208 × 208 (Flip
Closed); 65 536 colors TFT

Pointing device Yes
Camera Yes; 640 × 480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes
3G No

Connectivity
Infrared Yes
Bluetooth Yes
USB Yes (high speed serial connector with a

USB->Serial adapter built into the
desk stand)

Serial No

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes

SPECIFICATIONS OF SYMBIAN OS PHONES 457

Nokia 6600

Java APIs MIDP 2.0
CLDC 1.0
Nokia UI
MMAPI
WMA
BTAPI

OS Version Symbian OS v7.0s
UI/Category Series 60 (v2)
Memory available to user 6 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176×208; 65 536 colors TFT
Pointing device No
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes (2 + 2, 3 + 1, class B and C)
3G No

Connectivity
Infra-red Yes
Bluetooth Yes
USB No
Serial No

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes

458 SPECIFICATIONS OF SYMBIAN OS PHONES

Nokia 6620

Java APIs MIDP 2.0
CLDC 1.0
Nokia UI
MMAPI
WMA
BTAPI

OS Version Symbian OS v7.0s
UI/Category Series 60 (v2)
Memory available to user 6 MB NOR flash user data storage
Storage media Yes; MMC

Screen 176 × 220; 65 536 colors TFT
Pointing device No
Camera Yes; 640 × 480 resolution

GSM/HSCSD/GPRS/3G
GSM 850 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD No
GPRS No
3G No
EDGE Yes

Connectivity
Infra-red Yes
Bluetooth Yes
USB Yes
Serial No

Browsing
WAP WAP 2.0
XHTML (MP) Yes
Browser available Yes

SPECIFICATIONS OF SYMBIAN OS PHONES 459

Nokia 7700

Java APIs MIDP 2.0
CLDC 1.0
Nokia UI
WMA
MMAPI
BTAPI

OS Version Symbian OS v7.0s
UI/Category Series 90
Memory available to user 64 MB
Storage media Additional memory slot

Screen 640 × 320; 65 536 colors
Pointing device Yes
Camera Yes; 640×480 resolution

GSM/HSCSD/GPRS/3G
GSM 900 Yes
GSM 1800 Yes
GSM 1900 Yes
HSCSD Yes
GPRS Yes
3G No
EDGE Yes

Connectivity
Infra-red Yes
Bluetooth Yes
USB Yes
Serial No

Browsing
XHTML (MP) Yes (+ HTML)
Browser available Yes

Index

Abstract Window Toolkit (AWT)
7, 29

access codes 215
access control 405
additional utility classes 426
advanced services 402–6, 421
alarms, Push Registry 122
Alert objects 34–5
<AllowedSender> field 120
alpha blending 146–9
AMark test 336–7
AMS see application management

software
animation

Game API 136–9
Helloworld – Turbo Edition

46–54
synchronization forms 269–70
threading 42–3

annual sales of mobile phones
395–6

Ant see Apache Ant
Antenna 59–63
Apache Ant 59–63
APIs

protected 96, 187–8
see also individual APIs

application controller 299
application management software

(AMS) 23–7, 86–9

application types, Symbian OS
398

arithmetic operations 385
Array

copying 351–2
optimizing code 348, 349,

350, 351–2
arraycopy() method 351–2
Array Objects 406
asset tracking 405
audio media 155–72
Audio Player MIDlet 164–72
authentication 227–8
authorization 100–1, 228–9
automatic garbage collection

406–7
AWT see Abstract Window

Toolkit

backgrounds
code portability 327
painting 358–65

battery consumption 357
benchmarking 336–7
BenQ P30 453
bibliography 439–4
billing 416
bill of materials 401
binary trees 356–7

Bitmap (BMP) formats 183
blanket interaction mode 101
blended images 146–9
Bluetooth Wireless Technology

205–45
access codes 215
authentication 227–8
authorization 228–9
BT demo sample code 230–40
CoD records 217
development tools 241–4
device discovery 214–18
encryption 229
future plans 412
JSR 82 206, 207–8, 244, 412
L2CAP service connections

226
master–slave roles 222
MIDlet installation 84–5
MIDP 2.0 security model

229–30
profiles 207
protocol stack 206–7
‘‘quick and dirty’’ service

connection 222–3
RFCOMM service connections

222–3
security 227–30
Sendo X 452
server creation 212–14

Programming Java 2 Micro Edition on Symbian OS: A developer’s guide to MIDP 2.0. Martin de Jode
 2004 Symbian Ltd ISBN: 0-470-09223-8

462 INDEX

Bluetooth Wireless. . . (continued)
service discovery 218–21
service records 209–11
service registration 208–14
UUIDs 211–12

Borland 66–8
BREW 397
BTAPI

BenQ P30 453
Nokia 6600 460
Nokia 6620 461
Nokia 7700 462
Sony Ericsson P900 459

BT Demo MIDlets 230–40
business logic/presentation code

separation 263
bytecode 409

C++
memory leaks 389
preferred languages on Symbian

OS 399
Symbian OS applications

proportion 398
CA see certificate authorities
caching and cached devices

223–4, 386–8
calculating factorials 355–6
calendar classes 425–6
callback methods 172
called methods 373–5
calling trees 373–5
camera phones 178–9, 182–3,

188, 294
Canvas 31, 41, 291–2
Canvas.isDoubleBuffered()

method 358
capture 159, 160
captured images 294, 302–5,

311–15
case studies

Demo Racer game 247,
282–93

expense application 247,
248–81

Life Time 366–84
Picture Puzzle 248, 294–315

CC/PP see Composite
Capability/Preference Profiles

CDC (Connected Device
Configuration) 16–20

core packages 17–18
device specifications 17
HotSpot Implementation 390
JSR 36 16
optional packages 18–19
Personal Profile 19–20
stack 400
uses 5

certificate authorities (CA)
97–100, 103–4

certificate management 56
charging and billing 416
ChatMIDlet 193–9
checkPermission() method

146
ChoiceForm class 300–2
ChoiceGroup objects 37
Choice interface 40, 126
Class of Device/Service (CoD)

records 217
classes

additional utility 426
calendar 425–6
collection 424
data type 424
error 428
exception 426–8
input/output 424–5
Midlet 434
system 423
time 425–6
user interface 430–2

CLDC (Connected Limited Device
Configuration) 7–12

classes 9–11
core libraries 423–8
device capabilities 7–8
differences from CDC 8–9
functionality based on 400
general-purpose containers

348–9
HotSpot Implementation 94–5,

354, 390
JSR 30 7
JTWI 92

MIDlet creation 27
networking 11–12
Nokia 3600/3650 448
Nokia 3620/3660 449
Nokia 6600 460
Nokia 6620 461
Nokia 7650 447
Nokia 7700 462
Nokia 9210i 446
Nokia N-Gage 451
portability 8
Sony Ericsson P800 454
Symbian OS 94–5
uses 5
virtual machines 8–9

CLDCMark test 336–7
ClientConnection class

117–18
client devices 402–3
client mode connection formats

190
clipping region 358, 362
close() method 162
CoD see Class of Device/Service
code

different device platforms
263–4

Java benefits 408–9
optimized 335–92
see also portable code

CodeWarrior Wireless Studio 7
68–71

collection classes 424
collision detection 139, 286, 288,

328, 365–6
combined delivery 419
commandAction() method

170, 310, 360
Command class 33–4
command line 437–8
CommandListener 40, 42, 360
comparing strings 343–4
compilation 390–1, 437–8
Composite Capability/Preference

Profiles (CC/PP) UAProf
standard 326

concatenation 344–5

INDEX 463

configurations
uses 5
see also CDC; CLDC

Connected Device Configuration
see CDC

Connected Limited Device
Configuration see CLDC

connecting to services 222–3,
226

connection framework 108–19
<ConnectionURL> field 120
constrained devices 3, 5
consumers 399–400, 403
containers, optimizing code

348–9
Content Handler API (JSR 211)

417
content provider requirements

400–1
Control 158, 162–3
Controller see

Model–View–Controller
design pattern

Conway’s Game of Life 366, 367
copying an Array 351–2
core functionality 14–16
core game classes 324–5
core libraries 9–11, 17–18
core packages 435–6
correct Java configuration

399–400
createRGBImage() method

146–7
cryptography 96, 229
CustomItem

class 37–8, 125
event handling 258–62
expense application case study

253–64
item painting 257–8
item size 257
KeyPad MIDlet 130–131
series 60/UIQ interfaces

253–6, 262–4

DAC see Dynamic Adaptive
Compilation

data access objects (DAOs)
264–9

databases 16, 387–8
datagram support 113–14
data providers 402–3
data storage 44–5
Data Sync API (JSR 230) 414
data type classes 424
DateField 38
deallocate() method 162
debugging 376, 377
decrementCount() 353–4
defensive code 330, 389
defineCollisionRect-

angle() 328
delay 111
delivery, OMA DRM Version 1.0

419
Demo Racer game

background 282–4
case study 247, 282–93
layer manager 288–92
MIDlet lifecycle 292–3
sprites 284–8

design, optimizing code 337
design patterns

Model–View 322–3
Model–View–Controller

320–2
optimizing code 386–8
portable code 320–5
practical application 323–5

desktop applications 29
destroyApp() method 170
Developer’s Suite see Nokia

Developer’s Suite
development

expense application case study
249

resources 439–4
time 407–9
tools 54–66, 241–4, 249

device 159–60
deviceDiscovered() method

214
device discovery 214–18
device emulators 76–82
device identification 326
device look and feel 262–3
DiceBox MIDlet 339–40

Digital Rights Management (DRM)
418–20

digital signatures 96–8, 102–5
DiscoveryAgent class 215,

223–4
DiscoveryListener interface

214–15, 218–21
discType values 214
Displayable objects 31
Display class 123–4
Display object 252
disposable incomes 401–2
DoJa 6, 456, 457, 458
doRecursive() method 353
double buffering 358
download limitations 331–2
drawBackground() method

361–2, 363
drawImage() method 41
drawRGB() method 147, 148–9
DRM see Digital Rights

Management
Dynamic Adaptive Compilation

(DAC) 390–1

early instantiation 388
EEMBC see Embedded

Microprocessor Benchmark
Consortium

embedded devices 421
Embedded Microprocessor

Benchmark Consortium
(EEMBC) 336

embedded tests 336–7
employees, advanced enterprise

services 404
emulators

device emulators 76–82
Sony Ericsson P900 J2ME SDK

81–2
UIQ SDK 76–82
Unified Emulator Interface

74–6
encoding records 265–7
encryption 96, 229
end-to-end security 16, 435
Engine see Model
enterprise market 399–400

464 INDEX

enterprise services, advanced 404
enterprise user requirements 400
entertainment services 403
Enumeration 388
Enumeration.nextElement()

method 384
enumeration of records 267–9
error classes 428
event handling 258–62
event model 32–3
exception classes 426–8
expense application

case study 247, 248–81
custom items 253–64
development environment 249
MIDlet 251–3, 279–81
record stores 264–9
requirements 249–51
synchronization 269–77
Web Server implementation

277–8
extensions, Symbian-specific

417–18
extensive connectivity 15

factorials 355–6
fast development 407–9
faults, Java benefits 407–8
feedback, optimizing code 338
field service support 404
FileRequestHandler class

340
final methods 343
FIRE key events 310
flicker 358
flushGraphics() 365
form-based applications 253–64
Form class 124–5
Form object 36
forward lock 419
Foundation Profile 6–7, 19–20
fragmentation 330
frames 136–9
freeMemory() method 389
Fujitsu F900i 458
Fujitsu F2051 456
Fujitsu F2102V 457
FullCanvas class 182

function groups 106, 114–15
future plans 411–17

GameActions 328
Game API 14–15, 43–4, 46–54,

131–44, 282, 432–3
GameCanvas class 43, 49–51,

132, 358, 365
Game of Life 366, 367
GameMIDlet class 295–300
games

actions 42
advanced consumer services

403
billing 416
Demo Racer 282–93
design patterns 324–5
functionality 14–15
logic 306–11, 324–5
low-level API 30–1
management 416
worldwide revenue predictions

397
garbage collection 388–9, 391,

406–7
GCF see Generic Connection

Framework
General/Unlimited Inquiry Access

Codes (GIAC) 215
GenerationMap class 368, 369,

370, 377–82
Generic Connection Framework

(File GCF) 11, 413
getConnectionURL() method

222, 226
getControls() method 163–4
getMajorDevice() method

217
getMinContentHeight()

method 130
getMinContentWidth()

method 130
getMinimumHeight() method

124
getMinimumWidth() method

124
getPrefContentHeight()

method 130

getPrefContentWidth()
method 130

getPreferredHeight()
method 124

getPreferredWidth() method
124

getter methods 342–3
GIAC see General/Unlimited

Inquiry Access Codes
graphics

benchmarks 336–7
collision detection 365–6
LCDUI low-level API 40–2
low-level graphical content

portability 326–8
optimizing code 358–66
Popcorn Drawing demonstrator

358–65
Graphics.drawImage()

method 371
Graphics.fillRect() method

371
GrinderBench 336

hashCode() method 345–6
Hashtable containers 348–9
hash tables 345–6
HCI see Host Controller Interface
heap analysis 375–6, 377
heap memory 332–3
‘Helloworld’ – , Turbo Edition

46–54
high-level API 30, 33–40
high-level user interface

components 329
Host Controller Interface (HCI)

206–7
HotSpot garbage collector 391
HotSpot technology 94–5, 354,

390–1
HTTP 45, 108–9, 272, 326
HTTPS 109

IDEs see integrated development
environments

image buffer 363–4

INDEX 465

image capture 178–9, 182–3,
188, 294, 302–5

Image.createRGBImage()
method 363

ImageItem 38–9
image manipulation 294, 306–11
IMP see Information Module Profile
Impronto Simulator see Rococo

Impronto Simulator
Information Module Profile (IMP)

6
infrared, MIDlet installation 83–4
initDisplayMode() method

176
inlining 340–3
input classes 424–5
input devices 29
input methods 328–9
InputStream 357
instance accessors 342–3
instance variables 341–3
instantiation time 388
integrated development

environments (IDEs)
CodeWarrior Wireless Studio 7

68–71
JBuilder 9 66–8
NDS integration 65–6, 72
Sun ONE Studio 4 72–4
Unified Emulator Interface

74–6
I/O implementation 11–12
isAuthenticated() method

228
isAuthorized() method 229
isDoubleBuffered() method

358
isEncrypted() method 229
Item class 36–7, 124–5
ItemCommandListener 40,

126, 130–1
Item painting 257–8
Item size 257
ItemStateChanged() method

171–2
ItemStateListener interface

40

J2EE (Enterprise Edition) 3–4
J2ME Connected Device

Configuration see CDC
J2ME Connected Limited Device

Configuration see CLDC
J2ME Web Server access 56
J2ME Web Services Specification

(JSR 172) 414
J2ME Wireless Toolkit 2.1 see

Wireless Toolkit
J2SE relationship 3–4
JAD files

expense application case study
280

MIDlet creation 27–8
over-the-air MIDlet installation

84–5
JAIN, future plans 416–17
JAIN Instant Messaging (JSR 187)

417
JAIN Presence (JSR 164) 416–17
JAIN Presence (JSR 186) 417
JAIN SIMPLE Instant Messaging (JSR

165) 417
Jakarta 59–63
JAR files 99, 100, 331–2
Java

benefits for services
development 406–9

wireless applications
significance 397–9

wireless devices proportion
397

Java APIs for Bluetooth (JSR 82)
412

Java APIs for Integrated Networks
see JAIN

Java API for XML Binding see JAXB
Java application descriptor see JAD

files
javaCopy() method 351, 352
Java Developer Kit 1.4 249
Java HotSpot technology 94–5,

354, 390–1
java.lang.runnable interface

270–3
JavaPhone 446
Java Technology for the Wireless

Industry see JTWI

Java Verified Program 420
JAXB 273, 277–8
JBuilder 9 66–8, 69
JIT see Just In Time
JSR 30 (J2ME Connected Limited

Device Configuration) 7, 92
JSR 36 (J2ME Connected Device

Configuration) 16
JSR 37 (Mobile Information Device

Profile for the J2ME Platform)
29

JSR 82 (Java APIs for Bluetooth)
206, 207–8, 244, 412

JSR 118 (Mobile Information
Device Profile 2.0) 12, 92

JSR 120 (Wireless Messaging API)
92

JSR 135 (Mobile Media API) 92
JSR 164 (JAIN Presence) 416–17
JSR 165 (JAIN SIMPLE Instant

Messaging) 417
JSR 172 (J2ME Web Services

Specification) 414
JSR 177 (Security and Trust

Services) 414
JSR 179 (Location API for J2ME)

415
JSR 180 (SIP API for J2ME)

415–16
JSR 185 (JTWI deliverables) 93
JSR 186 (JAIN Presence) 417
JSR 187 (JAIN Instant Messaging)

417
JSR 211 (Content Handler API)

417
JSR 229 (Payment API) 417
JSR 230 (Data Sync API) 414
JTWI

code portability 331
component JSRs 92
deliverables 93
introduction 91–4
optional APIs 155–201
specification requirements

92–3
Symbian 93–4

Just In Time (JIT) compilers 390
just in time instantiation 388

466 INDEX

Kauai/Kilo Virtual Machine (KVM)
8

keepalive 111
keypad entry 328, 329
KeyPad MIDlet 126–31
keyPressed() method 41, 42,

310
keys

in hash tables 345–6
MIDP 2.0 security model

96–8, 102–5
KeyString wrapper class

345–6
KToolbar 27, 29
KVM see Kauai/Kilo Virtual

Machine
KVM garbage collector 388–9
kXML parsing 274–5

L2CAP protocol 206–7, 224–6
Landmarks store 415
larger-grained operations 388
Layer 44
LayerManager class 44,

140–4, 282
layout 124–5
lazy instantiation 388
LBS see location-based services
LCDUI 13–14

architecture 33
Displayable objects 31–2
event model 32–3
expense application 251
high-level API 30, 33–40
interfaces 40, 42
low-level API 30, 40–4
MIDP 2.0 123–31
model 31–2
origins 29–30
structure 30–1
threading animation 42–3

LIAC see Limited Dedicated Inquiry
Access Codes

libraries
CLDC core 423–8
MIDP 429–36

licensees, websites 439
LifeTime case study 366–84

Limited Dedicated Inquiry Access
Codes (LIAC) 215

linger 111
Linux 397
List object 35
localized advertising 403
local variables 341
Location API for J2ME (JSR 179)

415
location-based services (LBS)

advance services provision
404–6

Symbian’s approach 405–6
worldwide revenue predictions

397
location-based ‘‘to dos’’ 405
location stamping of user data

405
lookup method 356
looping 352–7
low-level API 30, 40–4
low-level graphical content

326–8

major device bit values 217
makeImages () method 363
Manager 158
manufacturers

requirements 401–2
tools (websites) 440

mapping 42
market issues 395–402
master–slave roles 222
maximum transmission unit (MTU)

224–5
Media API 15, 45, 145, 433
media players 158
memory

constraints 336
heap analysis 375–6, 377
leaks 389, 406–7
management 388–9
mobile phones versus computers

336
traps 346–8

messages
exchange 275–7
receiving of SMS 191–2

sending using WMA 190–1
method modifiers 340–3
Metrowerks 68–71
Microsoft, wireless devices

proportion 397
middleware vendors 399
MIDlet class, MIDP 2.0 145–6
MIDlet-Jar-RSA-SHA1 attribute

100
MIDlet-Permissions attribute

100–1, 122, 187–8, 200, 229
MIDlet-Permissions-Opt

attribute 100–1
MIDlets

AMS interaction 25
application management

software installation 86–9
building 279–81
classes 434
creating 27–9
current implementation 410
DESTROYED state 311
Helloworld.java 47–9
Java Verified Program 420
lifecycle 25, 26, 292–3
model 23–9
running on devices 82–9
running on emulators 74–83
signing 55
states 24–6
structure 27
transfer to devices 83–5
untrusted 105–6, 188, 200
see also individual MIDlets

MIDlet suites
authentication of signed 100
separate delivery 419
signing 98–100, 102–5
trusted 96

MIDP (Mobile Information Device
Profile) 12–16, 23

libraries 429–36
Symbian OS applications

proportion 398
toolkits 54–66
user interfaces 29–43
uses 6

MIDP 1.0 (Mobile Information
Device Profile) 12–16

INDEX 467

BenQ P30 453
classes 13–15
core functionality 14–16
Game API 43–4
GameCanvas class 365
JSR 37 29
JSR 118 13
limitations 95, 155–6
Networking 45
Nokia 3600/3650 448
Nokia 3620/3660 449
Nokia 6600 460
Nokia 6620 461
Nokia 7650 447
Nokia 7700 462
Nokia 9210i 446
Nokia N-Gage 451
OTA provisioning 15–16
packages 13–14
preferred languages on Symbian

OS 399
Sendo X 452
Siemens SX1 450
Sony Ericsson P800 454
Sony Ericsson P900 459
Sprite class 365–6
Symbian OS phones 89
user interfaces 29
WMA 192–3

MIDP 1.03 (Mobile Information
Device Profile) 455

MIDP 2.0 (Mobile Information
Device Profile) 95–155

audio subset 181–2
Bluetooth security model

229–30
case studies 247–315
connection framework 108–19
JTWI 92
LCDUI additions 123–31
Media API 45
Networking 45–6
new features 95, 145–55
Push Registry 119–23
Recommended Security Policy

for GSM/UMTS Compliant
Devices addendum 230

security model 96–107,
187–9, 200–1

Symbian OS phones 89, 201–2
minor device bit values 218
MMAPI (Mobile Media API)

14–15, 155–80
architecture 158–9
J2ME Wireless Toolkit 56
MIDP 1.0 security model

187–9
Nokia 3600/3650 448
Nokia 3620/3660 449
Nokia 6600 460
Nokia 6620 461
Nokia 7700 462
Nokia N-Gage 451
Picture Puzzle application 294
Sendo X 452
Siemens SX1 450
Symbian OS phones 180–7

mobile employees 404
Mobile Information Device Profile

see MIDP
Mobile Media API see MMAPI
Mobile User Interface (LCDUI) 14
Model–View–Controller (MVC)

design pattern 320–2
Model–View (MV) design pattern

322–3
modifiers, optimizing code

340–3
Monty (CLDC HI) 94–5, 354, 390
Motorola A920/A925 455
MTU see maximum transmission

unit
multimedia functionality 14–15
multimedia support 330
multi-user games 403
mustBeMaster argument 222
MV see Model–View
MVC see Model–View–Controller

NDS see Nokia Developer’s Suite
Net Access function group

114–15
Network Address Translation (NAT)

gateways 115–16
networking 11–12, 45–6,

429–30
Nokia 3600/3650 448

Nokia 3620/3660 449
Nokia 6600

MIDP 2.0 Symbian OS 89,
93–4, 107, 201, 202

Push Registry 123
security policy 115
specifications 460

Nokia 6620 461
Nokia 7650 447
Nokia 7700 462
Nokia 9210 370
Nokia 9210i 446
Nokia

MMAPI implementation on
Symbian OS phones
180–1, 182–5

Series 60 MIDP Concept SDK
63

Nokia Developers’ Suite for J2ME
2.0 (NDS) 63–6, 241–2

Nokia N-Gage 451
Nokia UI

Nokia 3600/3650 448
Nokia 3620/3660 449
Nokia 6600 460
Nokia 6620 461
Nokia 7650 447
Nokia 7700 462
Nokia N-Gage 451
Sendo X 452

notifyIncomingMessage
interface 195–6

OBEX see Object Exchange
Protocol

obfuscation
CodeWarrior 69
expense application case study

279–80
J2ME Wireless Toolkit 56
JAR file size 331, 332
JBuilder 67
optimizing code 391–2

object creation, optimizing code
338–40

Object Exchange Protocol (OBEX)
208, 244

object interaction 321, 322

468 INDEX

object pools 340
Observer pattern 322
OMA DRM Version 1.0 419–20
oneshot interaction mode 102
online developer resources

439–40
on-stack replacement 390
opening recordstores 149–50,

264–5
openRecordStore() method

149–50
operating systems 54–5
operators 401, 402–3
OPL 398, 399
Optimization test MIDlet 351
optimizing code 335–92

arithmetic operations 385
Array copying 351–2
benchmarking 336–7
design patterns 386–8
Dynamic Adaptive Compilation

390–1
feedback 338
general guidelines 337–8
graphics 358–66
Just In Time compliers 390
LifeTime case study 366–84
looping 352–7
memory management 388–9
method modifiers and inlining

340–3
obfuscators 391–2
object creation 338–40
responsiveness 338
strings 343–8
tools 372–7
using containers 348–9

optional APIs 330–1
-ossx parameter 354
OTA see over-the-air
out-of-memory errors 332, 389,

428
output classes 424–5
OutputTextBox class 361
over-optimization 337
over-the-air (OTA)

emulation 55
MIDlet installation 84–5
provisioning 15–16, 107

packages
core 435–6
networking 429–30

packaging process 437–8
packet based protocols 224
paintCanvas() method 370–1
paintCount 360, 361
painting

clipping region 362
image buffer 363–4
Popcorn drawing demonstrator

358–65
strategies comparison 364–5
whole background 359–62

paint() method 41
alpha blending 148–9
code optimization 364, 365
KeyPad class 130
LifeTime 372
Popcorn test program 359
SpriteCanvas 138

paired remote devices 228–9
Palm OS 6, 397
parsing XML, synchronization

274–5, 277
patterns, game of life 366–70
pauseApp() method 48,

169–70, 293, 298
paused states 47–8, 53–4, 293,

298
Payment API (JSR 229) 417
PC operating systems 54–5
performance issues, profiling

373–5, 377
persistent storage 16, 44–5, 422,

434
see also Record Management

system
Personal Basis Profile 7, 20
PersonalJava 398, 399

BenQ P30 453
Nokia 9210i 446
Sony Ericsson P800 454
Sony Ericsson P900 459
Motorola A920/A925 455
PersonalJava technology 7,

398, 399
Personal Profile 7, 19–20
Picture Puzzle MIDlet

case study 248, 294–315
choice form 300–2
game logic 306–11
image capture 178–9, 302–5
image names/IDs 306, 314–15
image record stores 311–15
MIDlet lifecycle 295–300

PIN codes 227–8
pixelLevel 366
PKI see Public Key Infrastructure
platformRequest() method

145–6
Player 159, 160–1
PlayerListener interface 158,

164
playerUpdate() method 171
playing media content 161–4
PNG see Portable Network

Graphics
pointer-based devices 328, 329
pointerDragged() method

130
pointerPressed() method

41, 42, 130
pointerReleased() method

130
polling 328, 357
Popcorn drawing demonstrator

358–65
portable code 319–33

CLDC 8
design patterns 320–5
download limitations 331–2
heap memory 332–3
high-level user interface

components 329
input methods variation 328–9
key codes 42
low-level graphical content

326–8
Model–View–Controller design

pattern 320–2
Model–View design pattern

322–3
portability issues 326–33
problems 319
proprietary and optional APIs

330–1
user interfaces 29, 30–1

INDEX 469

Portable Network Graphics (PNG)
183

porting
design patterns 323–4
heap memory 332
Java benefits 409

predicted worldwide revenue
396–7

prefetch() method 161, 162
PREKNOWN devices 223–4
presentation code/business logic

separation 263
pre-verification 280, 437–8
privacy 340, 343
profiles 5–6, 207
profiling tools 372–5, 377
ProGuard obfuscation 56,

279–80
proprietary APIs 330–1
proprietary operating systems 397
protected APIs 96, 187–8
protection domains 101–2, 106,

107, 113
protocol monitoring 56
protocol stack 206–7
provisioning channels 402–3
public instance methods 343
Public Key Infrastructure (PKI)

96–8, 420
Publisher–Subscriber pattern 322
pucks 358–65
Push Registry

Bluetooth 244
J2ME Wireless Toolkit 56
MIDP 2.0 119–23
Networking 46
WMA 192–3, 195, 199

‘‘quick and dirty’’ Bluetooth service
connection 222–3

racing game see Demo Racer game
RAM see memory
rcvbuf socket option 111
realize() method 161, 162
realloc 354
Real Time Protocol (RTP) 160

Receiver class 196–8
receiving messages 191–2
Recommended Security Policy

(RSP) for GSM/UMTS
Compliant Devices 106–7,
230

RecordControl 184–5, 186
record IDs 314–15
Record Management System (RMS)

44–5
captured images 294, 311–15
expense application case study

264–9
MIDP 2.0 149–55
Picture Puzzle application

311–15
RecordStore 45
recursion 352–7, 382–4
registerAlarm() method 122
registerConnection()

method 121
registration 208–14
rendering 370–1
repaint() method

alpha blending 149
clipping region painting 362
image buffer painting 363
sprite animation 138
whole background painting

361
repaint strategies 358
requirements overview 249–51
resources 439–44
responsiveness 338
retrieveDevices() method

223–4
revenue predictions, worldwide

396–7
RFCOMM protocol 206–7, 213,

224
RMS see Record Management

System
RMSReader MIDlet 153–5
RMSWriter MIDlet 150–2
robustness 407–9
Rococo Impronto Simulator 241
root certificates 98
root keys 98
route planning 403

r Pentomino pattern 367, 368
RSP see recommended security

policy
RTP see Real Time Protocol
run() method
AudioPlayer class 166–7
MIDlet animation 143–4
Receiver class 197–8
synchronization worker threads

270–3
VideoPlayer class 175

run scripts 281
Runtime.gc() method 389
runtime support 326

sales, annual 395–6
sales force automation 404
sample applications 46–54,

247–315
screen display resolution 422
Screen objects 34
screen size 327–8
SDDB see Service Discovery

Database
SDKs 63, 76–82, 242–4
SDP see Service Discovery Protocol
searchServices() method

219
secure socket support 112–13
security

Bluetooth 227–30
CLDC devices 12
end-to-end 435
Java benefits 406–7
MIDP 2.0 96–107, 187–9,

200–1, 230
MIDP 16
network connections 114–15
Push Registry 122–3
Recommended Security Policy

for GSM/UMTS Compliant
Devices 230

Security and Trust Services (JSR
177) 414

selector item 253–6
selectService() method 223
sending SMS messages 190–1
Sendo X 452

470 INDEX

separate delivery 419
Series 60 Developer Platform

1.0/2.0 182–5, 188
Series 60 MIDP SDK 63, 242–3
series 60 phones 253–6
server creation 212–14, 225
ServerSocketConnection

interface 111
server socket support 110–12
service connection 222–3, 226
service discovery 218–21
Service Discovery Database

(SDDB) 209, 219
Service Discovery Protocol (SDP)

412
service provider requirements

400
ServiceRecords 209–11, 219,

226
service registration 208–14
servicesDiscovered()

method 218
Session Initiation Protocol (SIP)

415–16
session interaction mode 102
setCell() method 136
setLayout() method 124
setPosition() method 138
setter methods 342–3
short-lived objects 339
Siemens SX1 specifications 450
signatures, digital 96–8, 102–5
SIMPLE clients 416–17
SIP see Session Initiation Protocol
SIP API for J2ME (JSR 180)

415–16
SIP-unaware applications 416
slave-master roles 222
‘‘smart houses’’ 422
SMS messages 189–201
sndbuf socket option 111
SocketConnection interface

111
Socket Demo MIDlet 116–19
socket support 109–10
Sony Ericsson P800 454
Sony Ericsson P900

J2ME SDK 81–2

MIDP 2.0 89, 93–4, 107, 182,
201, 202

Push Registry 123
security policy 115
specifications 459
UIQ SDK 76

Sony Ericsson P908
MIDP 2.0 89, 93–4, 107, 182,

201, 202
Push Registry 123
security policy 115

sound download limitations 332
Spacer class 39, 126
specifications, Symbian OS phones

445–62
speed, graphics problem 358
Sprite class 44

code portability 327–8
collision detection 365–6
Demo Racer game 284–8, 290
Game API 136–9
Helloworld 51–3

Stack containers 348–9
stack size 354
standardization, Java benefits 407
startApp() method

paused states 47–8, 169, 293,
298

Push Registry 121
SMS ChatMIDlet 195
use 299

start() method 161, 162
startPlayer() method 167
startup time, optimizing code

338
static variables, optimizing code

341–3
stop() method 162
storage

persistent 16, 44–5, 422, 434
see also Record Management

system
stream based protocols 224
StringBuffer 344–5, 346–8,

350
StringItem class 39, 125
strings

comparing 343–4
concatenating 344–5

keys in hash tables 345–6
optimizing code 343–8
StringBuffer memory trap

346–8
Sun

Java history 21
Java Verified Program 420
virtual machines 8

Sun J2ME Wireless Toolkit, see also
Wireless Toolkit

Sun ONE Studio 72–6, 392
supermarket shopping 403
support capability determination

186–7
Symbian

specific extensions 417–18
websites 439
wireless devices proportion

397
Symbian OS

CLDC 94–5
Java history 21
JTWI 93–4
push architecture 123
Version 8.0 185–6, 412–13
Version 8.x 413–14

Symbian OS phones
MIDP support 89
Mobile Media API 180–7
security model 107
specifications 445–62
WMA 201

synchronization 269–77
System.arraycopy() method

351–2
system classes 423

task continuity 402
technology trends 421–2
telephony APIs 418
TextBox object 36
TextField 39–40
thisGeneration 372
threading 42–3, 338
Ticker 40
TiledLayer class 44, 132–6,

284, 310, 327
time classes 425–6
time issues 407–9

INDEX 471

Timer Task 269–70
tone generation 157, 179–80
tools

MIDP 54–66
optimization 372–7
websites 440
see also Wireless Toolkit

totalMemory() method 389
touch screen devices 324
transparency 146–9
trends in technology 421–2
trust anchors 98, 99
trusted MIDlet suites 96
trusted protection domain 230

ubiquitous services 421
UEI see Unified Emulator Interface
UIQ SDK 76–82, 242–4
UIQ user interface 253–6, 262–4
UML class diagrams 321, 323,

324, 369
UML sequence diagrams 322
Unified Emulator Interface (UEI)

74–6
Universally Unique Identifiers

(UUIDs) 211–12, 219, 223
untapped markets 401–2
untrusted MIDlets 105–6, 188,

200
untrusted protection domain 230
user interfaces

business logic separation 263
classes 430–2

design patterns 324–5
MIDP 29–44
UIQ 253–6, 262–4
see also LCDUI

UUIDs see Universally Unique
Identifiers

value-added services 410
variables, optimizing code 340–3
Vector 348–9, 350
verification 420
video media 157, 172–8

image capture 302–5
paused states 298

Video Player MIDlet 172–8
View see Model–View–Controller

design pattern; Model–View
design pattern

virtual machines 8–9
Visual Basic 398, 399
vmCopy() method 351
VM progress 411

Web Server components 277–8
website resources 439–44
whole background painting

359–62
WiFi 399
wireless Java market 395–400
Wireless Messaging API (WMA)

189–201

BenQ P30 453
emulation 55
JTWI 92
Nokia 3600/3650 448
Nokia 3620/3660 449
Nokia 6600 460
Nokia 6620 461
Nokia 7700 462
Nokia N-Gage 451
Sendo X 452
Siemens SX1 450
Sony Ericsson P900 459

wireless networking 115–16
Wireless Toolkit (WTK) 54–9,

104–5, 371–2
benchmarking 336–7
command line 437–8
expense application case study

249
heap analysis 375–6, 377
LifeTime 370–1
limitations 29
profiling 372–5

WMA see Wireless Messaging API
worker threads 270–3
wrappers, OMA DRM 419
WTK see Wireless Toolkit

X.509 PKI 96–8
XML parsing 274–5, 277

zoomFactor 385

	Programming the Java 2 micro edition for symbian OS
	Cover

	Contents
	About This Book
	Author Biographies
	Foreword
	Innovation Through Openness
	Section 1: J2ME and MIDP
	1 Introduction to J2ME
	1.1 Configurations and Profiles
	1.2 CLDC and MIDP
	1.3 CDC and Personal Profile
	1.4 J2ME on Symbian OS
	1.5 Summary

	2 Getting Started
	2.1 Introduction to MIDP
	2.2 Helloworld, Turbo Edition
	2.3 Introduction to Tools for MIDP
	2.4 Installing and Running a MIDlet
	2.5 MIDP on Symbian OS Phones
	2.6 Summary

	3 MIDP 2.0 and the JTWI
	3.1 Introduction to the JTWI
	3.2 The CLDC on Symbian OS
	3.3 MIDP 2.0
	3.4 Optional J2ME APIs in the JTWI
	3.5 MIDP 2.0 and Symbian OS Phones
	3.6 Summary

	4 Java APIs for Bluetooth Wireless Technology
	4.1 Introduction to Bluetooth
	4.2 Introduction to the Bluetooth APIs
	4.3 Programming the Bluetooth APIs
	4.4 L2CAP Protocol
	4.5 Security
	4.6 Java Bluetooth API and the MIDP 2.0 Security Model
	4.7 Sample Code
	4.8 Development Tools
	4.9 Java Bluetooth APIs and Symbian OS
	4.10 Summary

	5 MIDP 2.0 Case Studies
	5.1 Introduction
	5.2 The Expense Application
	5.3 The Demo Racer Game
	5.4 The Picture Puzzle

	Section 2: Writing Quality Code for Smartphones
	6 Making Java Code Portable
	6.1 Introduction
	6.2 Design Patterns
	6.3 Portability Issues
	6.4 Summary

	7 Writing Optimized Code
	7.1 Introduction
	7.2 What Are We Starting With?
	7.3 Benchmarking
	7.4 General Guidelines for Optimization
	7.5 Feedback and Responsiveness
	7.6 Object Creation
	7.7 Method Modifiers and Inlining
	7.8 Strings
	7.9 Using Containers
	7.10 How Not To Do It
	7.11 Copying an Array
	7.12 Thoughts on Looping
	7.13 Graphics
	7.14 LifeTime Case Study
	7.15 Arithmetic Operations
	7.16 Design Patterns
	7.17 Memory Management
	7.18 JIT and DAC Compilers
	7.19 Obfuscators
	7.20 Summary

	Section 3: The Evolution of the Wireless Java Market
	8 The Market, the Opportunities and Symbian's Plans
	8.1 Introduction
	8.2 The Wireless Java Market
	8.3 Meeting Market Needs
	8.4 Providing Advanced Services
	8.5 Why Java?
	8.6 Symbian and Java
	8.7 Java and Digital Rights Management
	8.8 The Java Verified Program
	8.9 Beyond Advanced Consumer Services
	8.10 Trends in Technology

	Appendix 1: CLDC Core Libraries
	Appendix 2: MIDP Libraries
	Appendix 3: Using the Wireless Toolkit Tools at the Command Line
	Appendix 4: Developer Resources and Bibliography
	Appendix 5: Specifications of Symbian OS Phones
	Index
	Team DDU

