
Enterprise Java™
with UML™

CT Arlington

Wiley Computer Publishing

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

To my beautiful wife Anne, you were sooo worth the wait!

Always and forever,

To Bethany Carleen, our precious daughter, and my
personal trainer.

To Anne Burzawa, my best friend from cradle to grave.

Publisher: Robert Ipsen
Editor: Theresa Hudson
Developmental Editor: Kathryn A. Malm
Managing Editor: Angela Smith
Text Design & Composition: Publishers' Design and Production Services, Inc.

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks
and registration.

This book is printed on acid-free paper. ©

Copyright © 2001 by CT Arrington. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought-

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-38680-4

Printed in the United States of America.

10 9 8 7 6 5 4 3 2

Contents

OMG Press Advisory Board xvii

OMG Press Books in Print xix

About the OMG xxi

Chapter 1 Introduction to Modeling Java with the UML 1

What Is Modeling? 2
Simplification 3
Varying Perspectives 3
Common Notation 4

UML 4
The Basics 4

Modeling Software Systems with the UML 13
The Customer's Perspective 13
The Developer's Perspective 14

Modeling Process 14
Requirements Gathering 15
Analysis 15
Technology Selection 15
Architecture 15
Design and Implementation 16

The Next Step 16

Chapter 2 Gathering Requirements with UML 17

Are You Ready? 18
What Are Good Requirements? 18

Find the Right People 19
Listen to the Stakeholders 20
Develop Accessible Requirements 21
Describe Detailed and Complete Requirements 24

III

iv Contents

Refactor the Use Case Model 27

Guidelines for Gathering Requirements 34
Focus on the Problem 34
Don't Give Up 35
Don't Go Too Far 35
Believe in the Process 36

How to Detect Poor Requirements 37
Path 1: Excessive Schedule Pressure 38
Path 2: No Clear Vision 39
Path 3: Premature Architecture and Design 40

The Next Step 40

Chapter 3 Gathering Requirements for the Timecard Application 41

Listen to the Stakeholders 42

Build a Use Case Diagram 44
Find the Actors 44
Find the Use Cases 45
Determine the Actor-to-Use-Case Relationships 47

Describe the Details 48
Guidelines for Describing the Details 48

Gathering More Requirements 58

Revising the Use Case Model 61
Revise the Use Case Diagram 61
Revising the Use Case Documentation 63

The Next Step 75

Chapter 4 A Brief Introduction to Object-Oriented Analysis
with the UML 77

Are You Ready? 78
Solid Requirements 78
Prioritizing Use Cases 78

What Is Object-Oriented Analysis? 80
The Analysis Model 80
Relationship to Use Case Model SO
Steps for Object-Oriented Analysis 81

Discover Candidate Objects 81
Guidelines for Discovering Objects 81
Process for Discovering Objects 83

Describe Behavior 90
Guidelines for Finding Behavior 90

Contents v

A Process for Describing Behavior 92

Describe the Classes 95
Guidelines for Describing Classes 95
Process for Describing Classes 97

The Next Step 101

Chapter 5 Analysis Model for the Timecard Application 103

Prioritizing the Use Cases 103
The Ranking System 104
Evaluation of the Export Time Entries Use Case 107
Eva uation of the Create Charge Code Use Case 108
Eva uation of the Change Password Use Case 109
Eva uation of the Login Use Case 109
Eva uation of the Record Time Use Case 110
Eva uation of the Create Employee Use Case 111
Select Use Cases for the First Iteration 112

Discover Candidate Objects 112
Discover Entity Objects 113
Discover Boundary Objects 116
Discover Control Classes 118
Discover Lifecycle Classes 118

Describe Object Interactions 118
Add Tentative Behavior for Login 119
Build Sequence Diagrams for Login 119
Validate Sequences for Login 122
Sequence Diagrams and Class Diagrams for the

Remaining Use Cases 124

Describe Classes 126
Find Relationships for Login 127
Find Relationships for Export Time Entries 128
Find Relationships for Record Time 129

The Next Step 131

Chapter 6 Describing the System for Technology Selection 133

Are You Ready? 134

Group Analysis Classes 134
Boundary (User Interface) 134
Boundary (System Interface) 136
Control, Entity, and Lifecycle 136

Describe Each Group 136
User Interface Complexity 137

vi Contents

Deployment Constraints for User Interfaces 138
Number and Type of Users 140
Available Bandwidth 141
Types of System Interfaces 142
Performance and Scalability 143

Technology Requirements for the Timecard Application 144
Find Groups of Analysis Classes 144
User Interface Complexity 144
Deployment Constraints for User Interfaces 146
Number and Type of Users 147
Available Bandwidth 148
Types of System Interfaces 148
Performance and Scalability 148

The Next Step 152

Chapter 7 Evaluating Candidate Technologies for Boundary Classes 153

Technology Template 153

Swing 154
Gory Details 155
Strengths 165
Weaknesses 165
Compatible Technologies 165
Cost of Adoption 166
Suitability 167

Java Servlets 168
Gory Details 170
Strengths 172
Weaknesses 172
Compatible Technologies 172
Cost of Adoption 172
Suitability 173

XML 175
Gory Details 176
Strengths 178
Weaknesses 178
Compatible Technologies 178
Cost of Adoption 178
Suitability 179

Contents vii

Technology Selections for the Timecard System 180
User Interface Classes 180

Conclusion 181

The Next Step 182

Chapter 8 Evaluating Candidate Technologies for Control and
Entity Classes 183

RMI 183
Gory Details 184
Common Uses of RMI 188
Strengths 192
Weaknesses 192
Compatible Technologies 192
Cost of Adoption 192

JDBC 193
Gory Details 193
Strengths 196
Weaknesses 197
Compatible Technologies 198
Cost of Adoption 198
Suitability of RMI and JDBC 198

ETB 1.1 199
Gory Details 202
Strengths 205
Weaknesses 206
Compatible Technologies 206
Cost of Adoption 206
Suitability 207

Sampie Technology Selection 208
Technology Requirements 208

The Next Step 210

Chapter 9 Software Architecture 211

Are You Ready? 212
Clear Understanding of the Problem 212
Clear Understanding of the Technology 212

Goals for Software Architecture 213
Extensibility 213
Maintainability 213

viii Contents

Reliability 214
Scalability 214

UML and Architecture 214
Packages 214
Package Dependency 217
Subsystems 219

Guidelines for Software Architecture 221
Cohesion 222
Coupling 222

Creating a Software Architecture 222
The Architect 222
A Process 223

Sample Architecture for the Timecard System 225
Set Goals 225
Group and Evaluate Classes 226
Show Technologies 233
Extract Subsystems 233
Evaluate against Guidelines and Goals 233

The Next Step 237

Chapter 10 Introduction to Design 239

What Is Design? 239

Are You Ready? 240

The Need for Design 240
Productivity and Morale 240
A Malleable Medium 241
Scheduling and Delegation 241

Design Patterns 241
Benefits 242
Use 243

Planning for Design 243
Establish Goals for the Entire Design 244
Establish Design Guidelines 245
Find Independent Design Efforts 246

Designing Packages or Subsystems 246

Design Efforts for the Timecard Application 247

The Next Step 248

Chapter 11 Design for the TimecardDomain and
TimecardWorkflow 249

Contents IX

Establish Goals for the Effort 250
Performance and Reliability 250
Reuse 250
Extensibility 250

Review Prior Steps 251
Review of the Analysis Model 251
Review Architectural Constraints 257
Design for Goals 258

Apply Design for Each Use Case 262
Design for the Login Use Case 262
Design for the Record Time Use Case 266
Design for the Export Time Entries Use Case 271

Evaluate the Design 273

Implementation 277
User Entity Bean 277
Timecard Entity Bean 283
LoginWorkflow Stateless Session Bean 292
RecordTimeWorkflow Stateful Session Bean 296
Supporting Classes 301
ChargeCodeHome 308

ChargeCodeWrapper.java 319
Node.java 320

The Next Step 321

Chapter 12 Design for HTML Production 323

Design Goals 324
Goal 1: Support Modular Construction of Views 324
Goal 2: Keep HTML Production Simple 324
Goal 3: Support Preferences 326
Goal 4: Extensibility and Encapsulation 326

Design to Goals 327
Design for Goal 1: Support Modular Construction

of Views 327
Design for Goal 2: Keep HTML Production Simple 330
Design for Goal 3: Support Preferences 335
Design for Goal 4: Extensibility and Encapsulation 338

Filling in the Details 339

Implementation 346
IHtmlProducer.java 346
ComboBoxProducer.java 347

X Contents

FormProducer.java 348
PageProducer.java 350
SubmitButtonProducer 351
TableProducer.java 352
TabularlnputFormProducer.java 354
TextFieldProducer.java 356
TextProducer.java 358
IConcreteProducer.java 359

ProducerFactory.java 360
FormProducerGeneric.java 364
PageProducerGeneric.java 366
TableProducerGeneric.java 368

TabularTnputFormProducerGeneric.java 369

The Next Step 371

Chapter 13 Design for the TimecardUl Package 373

Establish Design Goals 373
Extensibility 373
Testability 374

Review Prior Steps 374
Review Architectural Constraints 374
Review Analysis Model 375

Design to Goals 379

Design for Each Use Case 381
Create Design for the Login Use Case 381
Create Design for the Record Time Use Case 383

Implementation 387
LoginServlet.java 387
RecordTimeServlet.java 392
BaskServlet.java 397

The Next Step 399

Chapter 14 Design for Bill! ngSystem Interface 401

Identify Goals 401
Clarity 402
Performance and Reliability 402
Extensibility 402

Reuse Potential 402

Review of Analysis Model 402

Review of Architecture 402

Contents XI

Design 403
Sequence Diagram for Export Specific Users 406
Sequence Diagram for Export All Users 406
Participating Classes 406

Implementation 407
ExportCriteria.java 407

ExportFile.java 412
Exp or tTimeEntr ie s A pplic ation.java 414

Conclusion 417

Appendix A Visual Glossary 419

Appendix B Additional Resources 435

Appendix C The CD-ROM 439

Index 441

Acknowledgments

Thanks to all of my former coworkers and bosses at Number Six Software,
for their support, reviews, and insights. Special thanks are due to the
cofounders, Rob Daly and Brian Lyons, for creating an amazing environ-
ment in which to work and to stretch professionally. Special thanks to
Susan Cardinale, Greg Gurley, Kevin Puscas, Hugo Scavino, and Eric
Tavella for their feedback and encouragement.

Thanks to John Haynes for his careful review and commentary.

Thanks to Mike Janiszewski and Jennifer. Horn, for their review, encourage-
ment, and support. Friends in need are friends in deed.

Many thanks to the fine professionals from John Wiley and Sons; Terri Hud-
son, Kathryn Malm, Angela Smith, Janice Borzendowski, and Brian
Snapp. Kathryn deserves special recognition for her ability to edit techni-
cal material while keeping an exhausted author motivated.

Thanks to the Wrights, for their consistent friendship, encouragement, and
lawn advice. We couldn't ask for better neighbors.

Thanks to my parents, for fostering a lifetime obsession with the printed
word.

I will never be able to sufficiently thank my family for permitting me this
most selfish endeavor. How many evenings and weekends did I take
away? How many mornings did T wake bleary eyed and grumpy from too
little sleep and too little progress? This book truly was a once in a lifetime
opportunity for the skinny (formerly) kid who read too much, and you
two made it possible. Thank you!

xiii

About the Author

CT Arlington has spent the last nine years developing client-server software
systems ranging from currency options valuation to barge scheduling to com-
plex corporate intranets. Over the last five years, he has become convinced
that the combination of Object Oriented Analysis and Design and good Soft-
ware Engineering practices can yield excellent systems in a sane work
environment.

CT's focus over the last few years has been architecting and developing sys-
tems in Java. These tended to be 3+ tier server side applications for use in cor-
porate intranets. His favorite technologies for such systems include Servlets,
XML, EJB, and Object to Relational persistence frameworks. He also had the
good fortune to be the lead developer for a slick Java data visualization tool for
barge scheduling. This project used Swing and a commercial 2D graphics
framework and convinced him that Java applications can meet demanding
performance goals.

In these pursuits, CT has depended heavily on books on OO design, design
patterns, software engineering, Java, CORBA, EJB, and XML. While he has
read and enjoyed many great books over the years, he cannot imagine devel-
oping software without Grady Booch's OOAD with Applications, the Gang of
Four's Design Patterns, Steve McConnell's Rapid Development and of course,
Patrick Chan's The Java Class Libraries.

CT is an architect and development manager with Capital One in Northern
Virginia.

CT is a former Rational Software certified instructor and a Sun certified Java
Programmer, Developer, and Architect. He holds a Bachelor's in Applied
Mathematics from the University of Maryland at Baltimore County.

xv

OMG Press Advisory Board

Karen D. Boucher
Executive Vice President
The Standish Group

Carol C. Hurt
President and Chief Executive Officer
2AB, Inc.

Ian Foster
Business Director
Concept Five Technologies

Michael Gurevich
Chief Architect
724 Solutions

V. "Juggy" Jagannathan, Ph.D.
Senior Vice President of Research and Development

and Chief Technology Officer
CareFlow! Net, Inc.

Cris Kobryn
Chief Scientist and Senior Director
Inline Software

Nilo Mitra, Ph.D.
Principal System Engineer
Ericsson

Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer
Object Management Group, Inc.

xvii

Introduction to Modeling
Java with the UML

As Java completes its move from a novelty language to the language of choice for Web-
enabled enterprise computing, Java developers are faced with many opportunities as
well as many challenges. We must produce systems that scale as the underlying busi-
ness grows and evolves at Web speed. Our customers' appetite for functionality, scala-
bility, usability, extensibility, and reliability rises each year.

Fortunately, Java provides a lot of support as we struggle to meet these demands.
First and perhaps foremost, Java is a small, tightly written object-oriented language
with excellent support for exception handling and concurrency built in. Of course, this
language runs on a pi a tform-independent virtual machine that allows Java systems to
run on everything from a PalmPilot to a Web browser to an AS400, with about a dozen
operating systems in between. From this solid foundation. Sun built and evolved one
of the most impressive class libraries you could ever ask for, including support for
internationalization, calendar management, database access, image manipulation, net-
working, user interfaces, 2D and 3D graphics, and more. Finally, Enterprise JavaBeans
and Java 2 Enterprise Edition provide specifications for true cross-platform enterprise
computing. Many of the problems that have plagued enterprise developers for decades,
such as object-to-relational persistence, object caching, data integrity, and resource
management are being addressed with newfound vigor. These specifications, and the
application servers that implement them, allow us to leverage a wealth of academic
research and practical experience. We are better equipped to develop enterprise sys-
tems than ever before.

1

2 Enterprise Java with UML

However, powerful tools do not guarantee success. Before developers can harness
the enormous power of enterprise Java technology, they need a clear understanding of
the problem and a clear plan for the solution. In order to develop this understanding,
they need a way to visualize the system and communicate their decisions and creations
to a wide audience. Fortunately, the last few decades have also seen dramatic progress
in our ability to understand and model object-oriented systems. The Unified Modeling
Language (UML) is an open standard notation that allows developers to build visual
representations of software systems. These models enable developers to devise elegant
solutions, share ideas, and track decisions throughout the entire development cycle.
Also, tools for creating, reverse-engineering, and distributing software models in UML
have matured greatly over the past two years, to the point where modeling can be a
seamless part of a development lifecycle.

This book describes software modeling with the UML, and demonstrates how devel-
opers can use UML throughout the software development process to create better enter-
prise Java systems and more livable enterprise Java projects. The remainder of this
chapter discusses software modeling in more detail and presents some object-oriented
terminology and UML notation as a foundation for the rest of the book.

What Is Modeling?

A model is a simplification with a purpose. It uses a precisely defined notation to
describe and simplify a complex and interesting structure, phenomenon, or relation-
ship. We create models to avoid drowning in complexity and so that we can under-
stand and control the world around us. Consider a few examples from the real world.
Mathematical models of our solar system allow mere mortals to calculate the positions
of the planets. Engineers use sophisticated modeling techniques to design everything
from aircraft carriers to circuit boards. Meteorologists use mathematical models to pre-
dict the weather.

When you finish this book, you will be able to:

• Communicate an understanding of OO modeling theory and practice to others.

• Communicate an understanding of UML notation to others.

• Critically review a wide variety of UML software models.
• Use UML to create a detailed understanding of the problem from the user's per-

spective.

• Use UML to visualize and document a balanced solution using the full suite of
Java technologies.

• Use UML to describe other technologies and class libraries.

This is a book for Java developers who are interested in modeling

software before they build it. It is based on my own practical experience as a

software developer, both painful and euphoric.

Introduction to Modeling Java with the UML 3

Models of software systems help developers visualize, communicate, and validate a
system before significant amounts of money are spent. Software models also help
structure and coordinate the efforts of a software development team. The following
sections describe some characteristics of models and how they contribute to software
development.

Simplification
A model of a system is far less complex, and therefore far more accessible, than the
actual code and components that make up the final system. It is much easier for a
developer to build, extend, and evaluate a visual model than to work directly in the
code. Think of all the decisions that you make while coding. Every tune you code, you
must decide which parameters to pass, what type of return value to use, where to put
certain functionality, and a host of other questions. Once these decisions are made in
code, they tend to stay made. With modeling, and especially with a visual modeling
tool, these decisions can be made and revised quickly and efficiently. The software
model serves the same purpose as an artist's rough sketch. It is a quick and relatively
cheap way to get a feel for the actual solution.

The inherent simplicity of models also makes them the perfect mechanism for col-
laboration and review. It is very difficult to involve more than one other developer dur-
ing the coding process. Committing to regular code reviews requires a great deal of
discipline in the face of ubiquitous schedule pressure. A particular piece of a software
model can be reviewed for quality, understand ability, and consistency with the rest of
the model. Preparation time for reviews of a model is dramatically lower than for a
comparable code walkthrough. An experienced developer can assimilate a detailed
model of an entire subsystem in a day. Assimilating the actual code for the same sub-
system can easily take weeks. This allows more developers to collaborate and review
more of the whole model. In general, collaboration and review of software models
leads to lower defect rates and fewer difficulties during integration. Also, software
models dramatically decrease the tune required to assimilate and review code.

Varying Perspectives
A single model of a software system can describe the system from different perspec-
tives. One view might show how major parts of the system interact and cooperate.
Another view might zoom in on the details of a particular piece of the system. Yet
another view might describe the system from the users' perspective. Having these dif-
ferent views helps developers manage complexity, as high-level views provide context
and navigation. Once the developer has found an area of interest, he or she can zoom
in and assimilate the details for that area. Newly acquired developers find this espe-
cially useful as they leam their way around a system.

We use this technique in the real world. Consider the common street map, which
models the streets and buildings of a city. One part of the map might show the major
highways and thoroughfares of the entire city, while another part might zoom in on the
downtown area to show each street in detail. Both views are correct and valuable, in
different ways.

4 Enterprise lava with UMl

Common Notation

proposed solution and focus on the merits of the solution. Of course, this requires con-
sistent use and understanding of the common notation. Many other disciplines use a
common notation to facilitate communication. Experienced musicians do not argue
over the meanings of their symbols. They can depend on the notation to provide a pre-
cise description of the sounds, which frees them to collaborate to find the right sounds.

A precise software model in a common notation allows developers to combine their
efforts and to work in parallel. As long as each contribution fits the model, the parts
can be combined into the final system. Modern manufacturing uses this technique to
lower costs and decrease production schedules. Based on a vehicle design, an automo-
tive manufacturer can purchase parts from hundreds of suppliers. As long as each part
meets the specifications described in the design model, it will fit nicely into the final
product.

UML

The Unified Modeling Language (UML) is a language for specifying, visualizing, con-
structing, and documenting the artifacts of software systems. UML provides the pre-
cise notation that we need when modeling software systems. It is important to note
that the UML is not just a way to document existing ideas. The UML helps developers
create ideas, as well as communicate them.

The UML was not the first notation for modeling object-oriented software systems.
In fact, UML was created to end the confusion between competing notations. Many of
the best and brightest academics and practitioners in the field of object-oriented soft-
ware development joined together in the mid- to late-1990s to create a common nota-
tion. It is now the international standard for modeling object-oriented systems.

The UML is an open standard controlled by the Object Management Group (OMG),
rather than any one individual or company. This book uses and discusses version 1.3
of the UML, which is the current version. The next major release of UML, 2.0, is
expected sometime in 2002.

The Basics
Before we dive into modeling your system using UML, there are a few object-oriented
concepts that you need to understand before you start.

Abstraction

An abstraction is a simplification or model of a complex concept, process, or real-world
object. As humans, we need abstractions to survive. Abstractions allow us to simplify
our understanding of the world so that our understanding is useful without becoming
overwhelming. Do you thoroughly understand personal computers, televisions, CD
players, or even a simple transistor radio? Can the same person understand these elec-

Introduction to Modeling lava with the UML 5

tronic devices and also conquer the mysteries of cellular biology and human physiol-
ogy? How about the details of any two human endeavors, such as coal mining and pro-
fessional football?

An abstraction is a simplification or mental model that helps a person understand
something at an appropriate level. This implies that different people would build rad-
ically different abstractions for the same concept. For example, I see my refrigerator as
a big box with a door, some food inside, and a little wheel that lets me set the temper-
ature. A design engineer sees my refrigerator as a complex system with an evaporator
fan, an evaporator, a defrost heater, a compressor, and a condenser fan, all working
together to move heat from the inside of the equipment to my kitchen. The design engi-
neer needs this rich view of the fridge to design an efficient and effective refrigerator.
I, on the other hand, am needlessly burdened by such details. I just want a cold glass of
soda.

A good abstraction highlights the relevant characteristics and behavior of some-
thing that is too complex to understand in its entirety. The needs and interests of the
abstraction's creator determine the level of detail and emphasis of the abstraction.

Abstractions are even more useful when they help us understand how different
parts of a larger model interact together. In the object-oriented world, the interacting
parts of a model are called objects.

Encapsulation

According to my dusty old copy of Webster's, to encapsulate means "to enclose in or
as if in a capsule." For object-oriented systems, the specifics of the data and behavioral
logic are hidden within each type of object. Think of encapsulation as a counterpoint to
abstraction. An abstraction highlights the important aspects of an object, while encap-
sulation hides the cumbersome internal details of the object. Encapsulation is a very
powerful tool in our effort to make reusable, extensible, and comprehensible systems.

First, encapsulating the nasty details inside of a system makes the system easier to
understand and to reuse. In many cases, another developer may not care how an object
works, as long as it provides the desired functionality. The less he or she needs to know
about the object in order to use it, the more likely that developer is to reuse it. In short,
encapsulation reduces the burden of adopting a class or class library for use in a system.

Also, encapsulation makes a system more extensible. A well-encapsulated object
allows other objects to use it without depending on any internal details. Consequently,
new requirements may be met by changing the encapsulated details, without affecting
the code that uses the object.

Object

An object is a particular and finite element in a larger model. An object may be very
concrete, such as a particular automobile in a car dealer's inventory system. An object
may be invisible, such as an individual's bank account in a banking system. An object
may have a short life, such as a transaction in a banking system.

It is important to distinguish between the abstraction that similar objects in a system
share and the objects themselves. For example, the abstraction comprising cars in a
dealer's inventory system certainly includes the make, model, mileage, year, color,

6 Enterprise Java with UML

purchase price, and condition. The object, which is a particular car in the inventory,
might be a light blue 1996 Honda Accord, in good condition, with 54,000 miles on the
odometer.

All objects have state, which describes their characteristics and current condition.
Some characteristics, such as make and model for the car, never change. Other parts of
a car's state, such as mileage, change over time.

Objects also have behavior, which defines the actions that other objects may perform
on the object. For instance, a bank account may allow a customer object to withdraw
money or deposit money. A customer initiates a withdrawal, but the logic for perform-
ing the withdrawal lives inside of the account object. Behavior may depend on an
object's state. For example, a car with no gas is unlikely to provide desirable behavior.

Moreover, each object in a system must be uniquely identifiable within the system.
There must be some characteristic or group of characteristics that sets each object apart.
To continue the car example, each car has a unique vehicle identification number.

In the UML, an object is represented as a rectangle with the name underlined, as in
Figure 1.1

The work in an object-oriented system is divided up among many objects. Each
object is configured for its particular role in the system. Since each object has a fairly
narrow set of responsibilities, the objects must cooperate to accomplish larger goals.
Consider a customer who wants to transfer money from one account to another at an
ATM. This fairly trivial example requires a user interface object, a customer object, a
checking account object, and a savings account object. This combination of narrow spe-
cialization and cooperation allows the objects to stay simple and easy to understand. A
method is a service or responsibility that an object exposes to other objects. Thus, one
object can call another object's methods. A method is loosely analogous to a function or
subroutine in procedural programming, except that the method is called on a specific
object that has its own state. This tight integration between data and behavior is one of
the key distinguishing features of object-oriented software development.

Class

A class is a group of objects that have something in common. A class captures a partic-
ular abstraction and provides a template for object creation. By convention, class
names start with an uppercase letter and use mixed case to mark word boundaries.
Each object created from the class is identical in the following ways:

• The type of data that the object can hold. For instance, a car class might specify
that each car object have string data for the color, make, and model.

• The type and number of objects that the object knows about. A car class might
specify that every car object know about one or more previous owners.

• The logic for any behavior that the object provides.

Figure 1.1 A car object.

Introduction to Modeling Java with the UML 7

The actual values for the data are left to the objects. This means that one car may be
a blue Honda Accord with one previous owner, while another car might be a green
Subaru Outback with two previous owners. Also, since the behavior may be state-
dependent, two different objects may respond differently to the same request. How-
ever, two objects with identical state must respond identically.

Consider a more detailed and completely silly analogy. Toy soldiers are created by
melting either green or brown plastic and injecting the molten plastic into little molds.
The shape of the mold determines the height and shape of the toy soldier, as well as its
ability to grasp a tiny rifle and carry a radio on its back. The purchaser cannot change
the height of the toy or outfit it with a flamethrower. The class—I mean mold—does
not support these configurations.

However, there is still work for purchasers of the toy soldier. They may provide or
withhold the rifle and radio, and they may organize the toys into squads for deploy-
ment against the hated Ken doll. They are configuring the objects—oops, I mean
soldiers—and determining the associations between them.

Objects provide the real value in an object-oriented system. They hold the data and
perform the work. Classes, like molds, are important for the creation of the objects,
though no one ever plays with them.

In the UML, a class is represented as a rectangle with the name in the top compart-
ment, the data hi the next compartment, and the behavior in the third compartment.
Figure 1.2 shows a UML representation of the ToySoldier class. Notice that unlike the
UML representation of an object, the name is not underlined.

Relationships between Objects

Object-oriented systems are populated by many distinct objects that cooperate to
accomplish various tasks. Each object has a narrowly defined set of responsibilities, so
they must work together to fulfill their collective goals. In order to cooperate, objects
must have relationships that allow them to communicate with one another.

Recall that the state and behavior for an object is determined and constrained by the
object's class. The class controls the state that the object possesses, the behavior that it
provides, and the other objects that it has relationships with. With this in mind, it is
logical to describe the relationships between objects in a class diagram.

There are four types of relationships:

• Dependency
• Association

Figure 1.2 The ToySoldier class in the UML.

» Enterprist Java with UML

- Aggregation

• Composition

Dependency
Dependency is the weakest relationship between objects. An object depends on an
object if it has a short-term relationship with the object. During this short-lived rela-
tionship, the dependent object may call methods on the other object to obtain services
or configure the object. Real life is full of dependency relationships. We depend on the
cashier at the grocery store to sell us food, but we do not have a long-term relationship
with that person. In the UML, dependency is represented by a dashed line with an
arrow pointing to the depended upon class.

Dependency relationships in object-oriented systems follow a few common pat-
terns. An object may create an object as part of a method, ask it to perform some func-
tion, and then forget about it. An object may create an object as part of a method,
configure it, and pass the object to the method caller as a return value. An object may
receive an object as a parameter to a method, use it or modify it, then forget about it
when the method ends.

Figure 1.3 shows a dependency relationship between the Customer class and the
Cashier class. This relationship reads as: "Each Customer object depends on Cashier
objects," Changes to interface of the Cashier class may affect the Customer class.

Association
An association is a long-term relationship between objects, hi an association, an object
keeps a reference to another object and can call the object's methods, as it needs them.
Real life is replete with association relationships. Consider people with their automo-
biles. As long as they remember where they left their car, the car will let them in and
take them to their destination. In the UML, association is represented by a solid line
between the two classes.

hi some cases an object may instantiate another object and keep a reference to it for
future use. An object may also receive an object as a parameter to a configuration
method and keep a reference to the object.

Figure 1.4 shows an association relationship between the Person class and the Car
class. The relationship is read as: "Every Person object is associated with an unspeci-
fied number of Car objects," and "every Car object is associated with an unspecified
number of Person objects." It may help to think of this as a "knows-about-a" relation-
ship, as in "each Person object knows about some Car objects."

Figure 1.3 Sample dependency relationship.

Introduction to Modeling Java with the UML 9

Figure 1.4 Sample association relationship.

Aggregation

An aggregation relationship indicates that an object is part of a greater whole. The con-
tained object may participate in more than one aggregation relationship, and exists
independently of the whole. For example, a software developer may be part of two
project teams and continues to function even if both teams dissolve. Figure 1.5 shows
this aggregation relationship.

In the UML, aggregation is indicated by decorating an association line with a hollow
diamond next to the "whole" class. The relationship is read as: "Each ProjectTeam
object has some SoftwareDeveloper objects," and "each SoftwareDeveloper object may
belong to one or more ProjectTeam objects."

Composition
A composition relationship indicates that an object is owned by a greater whole. The
contained object may not participate in more than one composition relationship and
cannot exist independently of the whole. The part is created as part of the creation of
the whole, and is destroyed when the whole is destroyed. In the UML, composition is
indicated by decorating an association with a solid diamond next to the "whole" class.

Consider a small gear deep in the oily bowels of an internal combustion engine. It is
inextricably part of the engine. It is not worth the cost of removal when the engine
finally expires, and it is not accessible for replacement. Figure 1.6 shows this composi-
tion relationship. The relationship is read as: "Each Engine object always contains a
SmallGear object," and "Each SmallGear object always belongs to a single Engine
object."

Figure 1.5 Sample aggregation relationship.

Figure 1.6 Sample composition relationship

10 Enterprise Java with UML

It may be difficult to remember which relationship is aggregation and
which is composition. I offer a simple and somewhat silly mnemonic device for
aggregation. Aggregation sounds a lot like congregation, as in members of a
church. People may exist before joining a church. People may belong to more
than one church, or they may change churches. Likewise, people continue to
exist after leaving the church or after the church disbands or merges with
another church. As for composition, well, it is the other one. Sorry.

Navigability

Relationships between objects are often one-sided. For instance, in any car that I can
afford, the Car object controls the Wheel objects, but the Wheel objects are unable to
control the Car. Figure 1.7 shows an association relationship between the Car class and
the Wheel class. The arrow pointing to the Wheel class indicates that the Car may send
messages to the Wheel but that the Wheel cannot send messages to the Car. This means
that a Car object may call the getSpinSpeed method on its Wheel objects and that the
Wheel object may return a value from that method; but the Wheel does not have a ref-
erence to the Car object, so it cannot call the startEngine method.

According to the UML specification, an association line with no arrows can have one
of two meanings. Developers on a project may agree that the absence of arrows means
that the association is not navigable. Alternatively, developers on a project may agree
that the absence of arrows means that the association is bidirectional.

Since there is no reason to have an association that is not navigable, the first inter-
pretation of an association with no arrows generally means that the navigability has
not been determined. In this case, an arrow on each side of the line indicates bidirec-
tional navigability.

Developers on a project may agree that a tine with no arrows represents bidirec-
tional navigability. In this case, the double-arrow notation is never used and there is no
way to indicate an unspecified or not-navigable association.

For this book, I use double arrows to indicate bidirectional navigability. I prefer this
option because it allows me to defer consideration of the navigability of an association

Multiplicity
One object may have an association with a single object, with a certain number of
objects, or with an unlimited number of objects. Figure 1.8 shows several relationships

Figure 1.7 Sample association with one-way navigability.

Introduction to Modeling lava with the UML 11

Figure 1.8 Sample associations with multiplicity.

with the multiplicity determined. In the UML, the multiplicity describes the object that
it is next to. So, an Engine object may have many SmallGear objects, but each Small-
Gear object belongs to exactly one Engine object. Each Car object is associated with one
or more Person objects, and each Person object may be associated with several Car
objects. Also, each Car object has exactly one Engine object, arid different Car objects
never share an Engine object.

There is no default multiplicity. The absence of a multiplicity for an
association indicates that the multiplicity has not been determined.

Interface

An interface defines a set of related behavior, but does not specify the actual implemen-
tation for the behavior. To be more specific, each interface completely specifies the sig-
nature of one or more methods, complete with parameters and return type. An interface
captures an abstraction, without addressing any implementation details.

A class realizes an interface by implementing each method in the interface. The
interface defines a set of behavior. The class makes it real.

Interfaces provide flexibility when specifying the relationship between objects.
Rather than specifying that each instance of a class has a relationship with an instance
of a specific class, we can specify that each instance of a class has a relationship with an
instance of some class that realizes a particular interface. As we will see throughout
this book, creative use of this feature provides an amazing amount of flexibility and
extensibility.

For instance, a game might contain a sound simulator object that is responsible for
collecting and playing the sounds that emanate from various objects in a virtual world.
Each SoundSimulator object is associated with zero or more objects whose classes real-
ize the INoiseMaker interface. From the Sound Simulator's perspective, the specific
type of noisemaker is completely irrelevant. Figure 1.9 shows this relationship.

Figure 1.9 Sample interface.

12 Enterprise Java with UML

Polymorphism

Polymorphism, according to my dictionary, means having more than one form. In
object-oriented circles, polymorphism refers to multiple implementations of a single
abstraction. Abstractions are captured in classes and in interfaces. So, we can get poly-
morphism by having more than one class inherit from a base class. Each class could
simply override the default implementation provided by the base class. We can also get
polymorphism by having more than one class realize an interface. Each class must pro-

To continue our sound simulator example for polymorphism through inter-
faces, consider two classes that make noise, Trumpet and Tiger. Both implement the
makeNoise method and realize the INoiseMaker interface. Each SoundSimulator
object is associated with some objects whose classes realize INoiseMaker. The sound
simulator does not need to know the specific class for each object. Instead, the sound
simulator just asks the object to make some noise. Figure 1.10 shows the two classes
that realize the INoiseMaker interface and the relationship between SoundSimulator
and INoiseMaker.

Multiple implementations of an abstraction can also be achieved by having more
than one subclass override the default implementation provided by the base class.
Figure 1.11 shows an alternative approach in which each SoundSimulator object is
associated with some objects that instantiate SimulationElement or a subclass of
SimulationElement. As before, the SoundSimulator knows that the object on the other
end of the association implements the makeNoise method, but does not know what
sound to expect.

Polymorphism has two very significant benefits. First, polymorphism allows unlim-
ited flexibility within a running system. Different implementations of an abstraction
can be mixed and matched to achieve very interesting affects. The second benefit is
long-term extensibility for the system. As long as the abstraction is unchanged, new
implementations can be introduced without affecting the code that depends on an
interface. For example, adding a new class that realizes INoiseMaker does not affect
the SoundSimulator class in any way.

Figure 1.10 Polymorphism through realization.

Introduction to Modeling Java with the UML 13

Figure 1.11 Polymorphism through inheritance.

Modeling Software Systems with the UML

UML enables developers to build a single coherent model that describes a software
system from several perspectives. This combination of internal consistency and dis-
tinct views means that a variety of participants can use the same model and speak the
same language throughout the development process. Granted, some participants will
only use part of the model, but they can still follow the overall structure of the model.

The Customer's Perspective

Most customers are relatively disinterested in technology. They are far more interested
in the value that the system provides for them, that is, how it increases their produc-
tivity and makes their lives easier. Developers should gather requirements from the
customer's perspective, considering how the customer will interact with the system to
obtain value. This allows the customer to review and validate the requirements from a
very natural perspective, his or her own. The customers can also measure development
progress from an individual perspective.

UML provides several mechanisms for documenting system requirements from the
user's perspective. They are the use case diagram, a text description for each use case,
and an activity diagram for each use case.

• A use case defines and describes a discrete way in which users get value from the
system. A user might perform a series of fairly complex steps to obtain a desir-
able result, such as withdrawing funds from an ATM or purchasing a book
online. Alternatively, a user may simply press a large red button labeled Run
Quarterly Sales Report. User effort is not the determining factor. Instead, the
independent usefulness of the result is the key. A use case diagram models all
interactions between the user and a system in a single high-level diagram. This
diagram allows customers and developers to capture the intent and scope of the
system in a very accessible format. The use cases can then be used to track devel-
opment progress and to guide development activities.

14 Enterprise Java with UML

• The text description of each use case describes the use case, including the details
of the interactions between the user and the system.

• An activity diagram is a visual description of the interactions between the system
and the user for a use case.

Together, these diagrams help the customers and developers to fully understand the
system problem from the customer's perspective.

The Developer's Perspective
Developers must first understand the problem, then the solution, from their own per-
spective. Object-oriented systems force developers to describe a system in terms of
objects that cooperate to provide functionality to the users, so object-oriented develop-
ers focus on the objects that populate the system and the classes that define the objects.

UML provides several mechanisms for documenting a system from the developer's
perspective: class diagrams, state chart diagrams, package diagrams, sequence dia-
grams, and collaboration diagrams.

• A class diagram defines and constrains a group of objects in detail. It shows the
state, behavior, and relationships with other objects that are mandated for each
object that instantiates the class.

• A state chart describes the state-dependent behavior for a class. Specifically, it
describes how an object responds to different requests depending on the object's
internal configuration.

• A package diagram describes how different parts of a system depend on one
another based on the relationships between objects that reside in different parts
of the system.

• A sequence diagram shows how objects interact with one another to provide func-
tionality. A sequence diagram clearly indicates the order of the interaction; it is
less useful for determining the relationships between objects.

" A collaboration diagram also shows how objects interact with one another to pro-
vide functionality. Collaboration diagrams provide a counterpoint to sequence
diagrams by clearly revealing the relationships between objects. However, they
are less useful for determining the sequence of interactions.

Modeling Process

UML is used to gradually evolve the understanding of a system. First, the developers
and customers use the UML to understand the problem from the customer's point of
view. Next the developers use UML to understand the problem from their own point
of view. This clear understanding of the problem allows the developers to use UML as
they invent a solution to the problem. Finally, the UML model is used as a resource by
the implementers of the system. The chapters in this book mimic the stages of the mod-
eling process.

Introduction 1° Modeling lava with the UHL 15

Requirements Gathering
When gathering requirements, developers seek to understand the problem from the
customer's perspective, without concern for technology or system design. This ensures
that the developers are focused on the correct problem. While no system is immune to
requirements change or "scope creep," adopting this perspective can prevent misun-
derstandings and dramatically reduce the severity of requirements changes.

In this process, developers create use case diagrams, text use case descriptions, and
activity diagrams. I introduce requirements gathering in Chapter 2, "Gathering
Requirements with UML." In Chapter 3, "Gathering Requirements for the Timecard
Application," I begin gathering requirements for a sample application.

Analysis
In analysis, developers seek to understand the problem from their own perspective,
still without concern for technology. Building on the understanding of the problem cre-
ated during requirements gathering, they discover the roles and responsibilities that
must be filled in the system. This builds a solid foundation for technology selection
and design of the system.

In the analysis process, developers create class diagrams, sequence diagrams, and
collaboration diagrams. I introduce analysis in Chapter 4, "A Brief Introduction to
Object-Oriented Analysis with the UML." In Chapter 5, "Analysis Model for the Time-
card Application," I demonstrate analysis in an example.

Technology Selection

During technology selection, developers categorize the system in terms of its techno-
logical requirements, then select the most appropriate technologies to fulfill these well-
defined needs. This orderly and disciplined approach to selecting technology trades a
fairly large upfront effort for decreased risk over the life of the project.

In the technology selection process, developers use all of the existing documents
and diagrams. They produce a high-level summary of the technological requirements
and a list of appropriate technologies for the system. No additional UML diagrams are
produced.

Technology selection is covered in several chapters. In Chapter 6, "Describing the
System for Technology Selection," I explain the process for describing the technology
needs of a system, and reinforce these ideas by example. In Chapters 7 ("Evaluating
Candidate Technologies for Boundary Classes") and 8 ("Evaluating Candidate Tech-
nologies for Control and Entity Classes"), I present different technologies and describe
their suitability, before selecting appropriate technologies for the example system.

Architecture
In architecture, developers describe the system at a high level, and decompose the sys-
tem into smaller parts, such as subsystems. Relationships between parts are high-
lighted, while the details of each part are deferred. Technology selections are clearly

16 Enterprise Java with UM1

shown as part of the architecture. Providing a high-level view of the system and its
component parts makes it possible for a large number of participants to evaluate the
feasibility of the architecture. Also, during design and implementation, the architec-
ture serves as an invaluable high-level guide to developers as they struggle to under-
stand the system as a whole.

Architecture builds on the cumulative understanding of the system as described in
the use case model and in the technology selection. During architecture, developers
produce primarily class diagrams and package diagrams.

I cover architecture in a single chapter: Chapter 9, "Software Architecture," explains
the process and demonstrates it through the sample system.

Design and Implementation
In design, developers use all of the results from the previous steps as they create an
intricate model of the objects that interact to provide the system's functionality. A
detailed design provides the last chance to validate the solution before the extremely
expensive and labor-intensive implementation process begins. In about a day, a small
group of developers who are familiar with UML and with the system can prepare for a
thorough design review of a major subsystem. Compare this to the weeks that are
required to read and understand the code for a major subsystem. A detailed design can
be created, reviewed, and revised in a fraction of the time it takes to write the code.

Once the design is complete, it serves as a valuable foundation for implementation.
Developers are free to focus their efforts on the details of the implementation tech-
nologies, without constantly worrying whether their efforts will fit within the larger
system. As long as they follow the design, or reconcile any changes to the design with
other developers, their work will not be wasted. I cover design and implementation in
the remainder of the book: in Chapter 10, "Introduction to Design," I explain the
process; I dedicate Chapters 11 ("Design for the Timecard Domain and Timecard Work-
flow"} and 12 {"Design for HTML Production") to designs for different parts of the sys-
tem.

The Next Step

Now that we have established a basic understanding of the terminology and the
processes involved, we can start with requirements gathering, which seeks to under-
stand the problem from the customer's perspective.

Gathering Requirements
with UML

The first step to designing any enterprise application is to gather requirements for the
system. A system's requirements consist of a document (or a collection of documents)
that describes the functionality that the system provides. It is an agreement between
the end user, the developer, and the system's sponsor as to what the system should and
can do.

Requirements gathering is an interactive process whereby business analysts and
developers gather system requirements by interacting with end users, domain experts,
and other stakeholders. This highly iterative process is a combination of problem dis-
covery and consensus building that lays the foundation for the project's success.

In this chapter, I'll show you how the Unified Modeling Language (UML) can be
used in a requirements-gathering process, I'll outline several classic paths that lead to
poor requirements, then suggest ways that you can detect and avoid them.

The UML notation and requirements-gathering techniques introduced
here will be used to capture requirements for a sample application in Chapter

3, "Gathering Requirements for the Timecard Application." I use this sample
application throughout the book, so even if you are an expert in requirements
gathering, it might be useful to skim this chapter and read Chapter 3.

18 Enterprise Java with UML

Are You Ready?

Before you can gather requirements, you need to do two things:
1. Create a clear vision of the system.

2. Determine who has the decision-making authority for the project.

The first step is to create a clear vision for the system. This vision is described in the
vision document, a text document that presents an extremely high-level explanation of
the goals and scope of the system. The vision document can be in any format. In one
company, the vision document may be two paragraphs transferred from the napkins
that were handy during the dinner when the principals spawned the idea for the com-
pany. In another organization, it may be a formal document that presents an exhaustive

and four-color graphs on fancy paper. However it is presented, a successful vision doc-
ument describes the system, its goals, and how the organization benefits from it. The
system goals are described at a fairly detailed level to give the developers and the cus-
tomers the flexibility to clarify the system vision. The document also highlights any
known scope limitations.

The second step is to identify a sponsor or sponsors for the project. Gathering require-
ments without sponsors is painful at best and disastrous at worst, because they are the
people who make final decisions regarding budget, features, and schedule. Ideally, the
sponsors form a small decisive group that has the authority and vision needed to set-
tle disputes and to keep a clear focus for the project. In any system, compromises must
be made. For example, some desired functionality might be deferred to a later release
to meet the schedule. Different groups of users may have different needs and goals that
pull the system in different directions. Without a clear decision-making authority, it is
difficult to resolve issues and to keep them resolved. When decisions are made and
remade in a frustrating cycle in an attempt to please everyone, developers often end up
over-committing themselves and, subsequently, end up disappointing everyone.

What Are Good Requirements?

Good requirements clearly and unambiguously state what the system does and for
whom. They answer questions such as: Who uses the system? What value do users
receive from their use of the system? These questions must be answered before con-
sidering technology selection, architecture, and design, otherwise, developers will be
doomed to solve the wrong problems and be unable to make informed decisions about
technology and architecture.

Requirements gathering involves five key steps:

1. Find the people who can help you understand the system.
2. Listen to these stakeholders and understand the system from their perspective.

3. Capture the way customers want to use the system, along with the value pro-
vided, in an accessible model.

Gathering Requirements with UML 19

4. Create a detailed description of the interactions between the system and the cus-
tomers and between the system and other external systems.

5. Refactor the detailed descriptions to maintain readability and accessibility.

These steps are repeated until a solid consensus on what the system should do is
reached. Notice that the goal is a solid consensus, not a 100 percent, perfect, consensus.
Gathering requirements, like any creative and collaborative endeavor, never reaches a
dear conclusion, as each iteration raises new subtleties and a new layer of details.
Requirements must not become an end in themselves. Requirements are useful only as
a form of communication and as a consensus-building process; they are not artistic
works with intrinsic value. Each additional refinement of the requirements yields less
and less value. At some point, the project must move on.

Find the Right People
In order to gather requirements, you must solicit input from people at different levels
within the organization or user group. One group may understand the problem
domain and strategic goals, but they may not actually use the system. Another group
may not see the big picture, but may be intimately familiar with the day-to-day activi-
ties. These people are the system's stakeholders, those who have a significant interest
in the project's direction and success. Stakeholders include everyone from the end user
to the development team to the senior managers who control the budget. It is up to you
to establish a reasonable rapport with a wide variety of stakeholders, for they will pro-
vide you with the information you'll need to develop the requirements document.

Domain Experts

The domain experts are the strategic thinkers. They understand the organization and
the system. They set the goals for the system as well as lend insight to their particular
domain. These people are usually easy to identify, as they generally have a high profile
and occupy nice offices. They may have advanced degrees, many years of experience
in their field, and a senior position, such as CEO, vice-president, or senior research fel-
low. Unfortunately, they also tend to be incredibly busy, talk too fast, and assume that
everyone else knows and loves their field. To build the system that they need, you
must understand them. To achieve that, you must make sure that they appreciate this
simple truth and be confident that you will treat their time with care. Whenever possi-
ble, prepare by learning the relevant terminology and concepts inherent to their field
before meeting with them, then baseline their expectations by explaining your limited
background.

Subsequently, it is a good idea to verify your understanding of the conversations by
paraphrasing them back to the source, preferably both verbally and in writing. Persis-
tence and humility are key ingredients to your success.

End Users

Another important source of information is the actual end user. After all, it is the end
users who must accept and use the final product. Their importance seems obvious, yet,

20 Enterprise Java with UML

remarkably, many organizations fail to solicit their input. Therefore, in some cases, you
may need to push for access to a representative group of users. Sometimes the reluc-
tance of management to grant access to the end users is evidence of an honest effort to
protect the end users' time. In other cases, institutional traditions and rigid hierarchies
erect the barrier. A medical doctor, for example, may balk at the idea that a licensed
practical nurse may have valuable insights into the actual use of a medical data-track-
ing system. A manager with 20 years of experience may not realize that it has been 15
years since he or she actually did the work, and that a new hire may have a valuable
perspective.

Be firm; excluding the actual users is not a viable option. Remember, developers
must understand the day-today pragmatics as well as the strategic value of the system.

•WARNING Never forget the end user.

Listen to the Stakeholders
Developers need insight and knowledge from the stakeholders. To facilitate this dia-
logue, you must temporarily suppress your own perspective and inclinations so you
can hear these stakeholders. In most cases, domain experts and end users are not con-
cerned with cool technologies or object-oriented design principles; they want to know
how they will benefit from the system. They are not interested in scarce technical
resources or the risks of adopting new technology; they need a solid schedule that they
can plan around. They are not interested in user interface design techniques; they just

Until you can clearly restate the customer's needs in your own words, do not plan
the solution or consider the impact on the schedule. Above all, be positive, and try to
think of the system in terms of the value that it provides to people. This is not an intu-
itive perspective for most developers, myself included. Our training and natural incli-

natural tendency to consider the impact on our personal and professional lives. We
must overcome this mind-set—at least long enough to understand the needs of the
people on the other side of the table.

It is important to remember that considering the other stakeholders' perspective
does not mean committing to an impossible system or schedule. It means that devel-
opers are obligated to completely understand the requests and needs before contem-
plating feasibility and negotiating schedule.

Gathering requirements sets the stage for development and makes-or
breaks-every development team's relationship with the customer and domain

experts.

Considering the customer's point of view in this initial stage often yields amazing
dividends, in addition to high-quality requirements, you can gain the trust and good-
will of the stakeholders. Then, later in the process, stakeholders may consider the devel-
oper's perspective when considering requests to defer features or adjust the schedule.

The dialogue between you and the clients should be captured via meeting notes or

Gathering Requirements with UML 21

transcribed recordings. Transcribed recordings are more accurate, but may make many
people uncomfortable. In any case, a written dialogue that can be verified and built
upon is an essential tool.

Develop Accessible Requirements
Requirements are useful if and only if people use them. If the user finds them turgid
and/or incomprehensible, then they cannot tell you if you are specifying the right sys-
tem. If developers find them obtuse and irrelevant, then the actual system will radi-
cally deviate from the requirements. While even the best requirements document is
unlikely to find itself on the New York Times best-seller list, a requirements document
must be readable and accessible to a wide audience. Describing how the system is used
at a high level is an important step toward this goal.

Requirements are useful if and only if people use them.

The high-level diagrams within the use case model in UML provide an excellent
mechanism for this purpose. Use case diagrams show discrete groups of system users as
they interact with the system. There are three steps to creating a use case model.

1. Identify the groups of people who will use the system.

2. Determine how these groups of people will get value from the system.

3. Provide a simple and accessible view of the users and their use of the system.

The next sections take a closer look at each of these steps.

Find Actors

The first step to requirements gathering is to identify the distinct groups of people who
will use the system. In UML, a distinct group is referred to as an actor. Other systems
that use the system or are used by the system are also actors. So, an actor is a group of
people or a system that is outside of the system and interacts with the system. To qual-
ify as an actor, the group must use the system in a different way.

It is important to note that differences in the real world may not be relevant within
the system requirements. For example, managers often are considered a distinct
group of people in the real world, whereas in many systems, they are not separate
actors because they do not use the system in a manner that is different from the way
an employee uses the system. Consider a simple timecard system, in which every
employee enters his or her hours. A select few add valid charge codes. It is possible that
some employees who add charge codes are managers, but that some are not. So man-
agers, in this case, do not need separate representation. Examples of reasonable actors
from various domains will help clarify this distinction. The following groups are sepa-
rate actors in the given problem domain.

• Bank customers and bank tellers are separate actors because they have very dif-
ferent needs and privileges in a banking system. For instance, customers cannot
see other customers' records.

22 Enterprise Java with UML

• Traveling salespeople and back-office personnel are separate actors because they
have different needs and different access methods for a sales-tracking system.

• Students and the registrar are separate actors because they have very different
needs and privileges in a course registration system.

The following groups do not need to be treated as separate actors.

• Republicans and Democrats do not need to be treated as separate actors in a sys-
tem that gathers votes for an election. Party affiliation might be noted for each
voter, but it does not change the way voters use the system.

• Doctors and nurses do not need to be treated as separate actors in a system that
records quantitative medical data, such as heart rate, blood pressure, and tem-
perature. Both groups are well qualified to obtain and record the information,
and there are no differences in the way that they perform the activities,

• Men and women do not need to be treated as separate actors in most computer

Once you have identified the actors, you are ready to move on to the next step.

Find Use Cases

The next step is to identify the ways the actors get value from the system. In the UML,
the manner in which the system provides a discrete value to an actor is called a use case.
A user might perform a series of fairly complex steps to obtain a desirable result, such
as withdrawing funds from an ATM or purchasing a book online. Alternatively, a user
may simply press a large red button labeled Run Quarterly Sales Report. User effort is
not the determining factor. Rather, the independent usefulness of the result is the key.

It is important to keep each use case well focused, with a single, clear purpose. Use
cases divide the requirements into sections, so focused use cases make the documents
easier to navigate and to understand. Use cases are also used for scheduling and esti-
mation, so rightly focused use cases facilitate accurate estimation and precise tracking.
Each use case is also used as a basis for a test case, so well-focused use cases convert
nicely to a useful test plan and provide the basis for objective progress tracking. Mono-
lithic use cases mean fewer divisions in the requirements documents and fewer mile-
stones.

If you can answer yes to the following questions, a use case is well focused. Other-
wise, the use case may need to be split into several use cases.

• Does the use case provide a single discrete benefit?

• Can you describe that benefit in 20 to 30 words, without adding several occur-
rences of "and" or "or"?

• Does the actor tend to complete the use case in a single session or sitting?
• Can you imagine the use case as a single test case in a coherent test plan?

Each use case must be significant and provide value in isolation. A use case may
depend on other use cases or be part of a larger workflow, but the user must obtain a
significant value from the use case alone. Individual steps, such as accepting user

Gathering Requirements with UML 23

input, validating user input, retrieving data from a database, and formatting a result
are not good candidates for use cases. They simply do not make sense separately.

If you can answer yes to the following questions, then the use case is probably sig-
nificant and well isolated. Otherwise, the use case may really be part of some other use
case.

• Does the actor either gain significant information or change the system in some

• Could an actor perform the use case and then stop using the system for a signif-
icant time? This may not be the normal case, but it must be plausible.

Let's take a look at the use cases for a banking system as an example. A banking sys-
tem with the functions enter amount, select account, withdraw funds, deposit funds,
select source account, select destination account, and transfer funds as separate use
cases is too granular. The use cases do not make sense in isolation. For example, no
user would select an account and then walk away satisfied. Each of these activities is

The same system with a single use case—manage money—is too ambiguous. A good
use case provides specific value to one or more specific actors. Manage money sounds
like a vision for any number of systems, not a particular use case in a banking system.

Instead, a bank system might reasonably have these use cases: deposit funds, with-
draw funds, and transfer funds. Each of these use cases provides concrete benefit to the
bank customer, as each moves the customer's money around in a useful and distinct
way. Each of these use cases makes sense in isolation. For instance, the user might com-
fortably walk away from the system after depositing money, and return some other
day to withdraw funds.

Describe Actors and Use Cases

Once you have identified the actors and use cases for the system, the next step is to
indicate which actors depend on which use cases. In the UML, a stick figure represents
an actor, and a labeled oval represents a use case. A solid arrow pointing from an actor
to a use case indicates that the actor initiates the use case. Figure 2.1 shows that the
Customer actor uses the Purchase Book use case.

This type of diagram serves as a very accessible view of the overall use of the sys-
tem. It allows developers and stakeholders to keep their bearings as they navigate
through a large requirements document. It also helps end users to identify areas that
affect them, so they can efficiently contribute to those areas. As we will see in the next
section, the full requirements document contains a wealth of information for each use
case.

Customer

Figure 2.1 An example use case diagram.

24 Enterprise Java with UML

Describe Detailed and Complete
Requirements
There are two ways to describe the requirements: use a text document to describe the
use case in detail, along with the interactions between the actor and the system for each
use case; or describe the requirements using a UML activity diagram. The UML activity
diagram shows the same interactions as described in the text document, but in a visual
form. The two documents have a similar purpose and contain similar information, and
reinforce one another quite well. Certainly, different people learn in very different ways,
so having a readable text description and a highly precise visual description is an
advantage.

Each use case includes three elements:

• Use case description

• One or more flow of events
• Activity diagram

Let's take a look at each of these elements.

Use Case Description

A use case description provides an overview of the use case, and specifies any special
features, such as preconditions, postconditions, performance requirements, security
requirements, and deployment constraints. Preconditions include any use cases that
must be completed before the actor may start the use case. Postconditions include any
changes to the system that must be accomplished during the use case. Finally, deploy-
ment constraints describe limitations on how the use case is accessed. For instance, the
actor may need to interact with the system through a firewall or from a highly portable
device. These constraints specify needs while leaving the solution as open as possible.

Flow of Events

A flow of events describes a sequence of interactions that occurs as the actor attempts to
complete the use case. A flow of events does not describe different variations; instead, it
follows a single path all of the way through the use case. Other paths through the use
case are described by other flows of events.

Each interaction in the flow is a text description of the actor's input and the response
from the system. Consider the interactions involved in the Withdraw Funds use case
from a banking system when the actor does everything right and the system performs
as expected.

1. Customer inserts card and enters his or her personal identification number. The
system greets the customer by name, and presents a list of options, consisting of
withdraw funds, deposit funds, and transfer funds.

2. User selects withdraw funds. The system presents a list of accounts for the cus-
tomer to choose from.

Gathering Requirements with UML 25

3. The customer chooses an account. The system asks the user to enter the amount
of money for withdrawal.

4. The customer enters a positive multiple of $20. The system asks the customer if
the amount is correct.

5. The customer responds that the amount is correct. The system thanks the user,
distributes the money, prints a receipt, and returns the customer's card.

To restate: This first flow of events describes the interactions when everything goes
well. Certainly, there are other less favorable possibilities, but it is often best to describe
the normal flow before tackling the details of other possible flows, including disaster
scenarios. For example, think about when you give driving directions to a new arrival
to your town or city. Most people describe the most direct route first, then provide
alternative routes on request. This logic holds for use cases. Someone who is new to the
system needs to understand the normal flow before he or she considers more complex
flows.

There are three types of flows through every use case:

Normal, or baseline flow. Captures the purpose of the use case by describing the
interactions when everything proceeds according to plan. The flow above for the
Withdraw Funds use case is an example of a normal flow.

Alternative flows. Describes variation by the actor. For example, the actor may
abort the session or become confused and wander through the system for a while.
Or the actor may enter invalid data and be forced to correct it before he or she can
continue. One use case may require several alternative flows. Alternative flows
for the Withdraw Funds use case include the entry of an invalid PIN and a
request to overdraw the account.

Exception flows. Describes variation by the system. Since systems are generally
prized for their consistency, these variations are errors. For example, the system
may be prevented from completing its normal response due to network failure,
disk errors, or resource limitations. Most use cases have at least a few exception
flows.

Activity Diagrams

An activity diagram is a UML diagram that shows all of the flows of events for a use
case in one place. To accomplish this, activities diagrams show different activities that
the system performs and how different results cause the system to take different paths.
Activity diagrams depict a start state, activities that the system performs, decisions
that determine which activity is performed next, and one or more end points. Activity
diagrams also have notation to describe activities that are performed in parallel.

Figure 2.2 shows the activity diagram for the Withdraw Funds use case. The solid
circle represents the start of the use case; the round-corner rectangles represent activi-
ties that the system performs. Each arrow represents a transition from one activity to
another. So, the first activity is the system asking the actor to enter his or her pin, as
shown in the Ask for PIN activity. The labeled arrow from the Ask for PIN activity to

26 Enterprise Java with UML

the Validate PIN activity represents the transition between the two activities that
occurs when the actor enters his or her PIN. Since there are two outcomes from the Val-
idate PIN activity, the next transition includes a diamond-shaped decision symbol.
Each of the outcomes is labeled with the associated decision criteria. If the PIN is valid,
the transition goes to the Present Accounts activity; otherwise, the transition goes to
the Check for Too Many Retries activity. Following the path straight down, the actor
selects an account to transition from the Present Accounts activity to the Request
Amount activity. From there, the actor enters an amount to cause the transition from
the Request Amount activity. This transition contains a decision, with one outcome

Gathering Requirements with UML 27

leading back to the Request Amount activity and the other outcome leading down to
the Dispense Money activity.

The straight path from the Ask for PIN activity to the Dispense Money activity is the
normal flow. The side paths for invalid logins and for overdrawn accounts are alterna-
tive flows. No exception flows are shown.

An activity diagram is not a flowchart While they look very similar and

share much of the same notation, they have very different purposes. Flowcharts

help implementers develop code by precisely describing the control logic for the

code. An activity diagram helps stakeholders understand the requirements at a

very precise level, and helps developers design the system, by precisely

describing how the actor uses the system and how the system responds.

Flowcharts describe the solution; activity diagrams describe the problem.

Some project teams limit the creation of activity diagrams to very complex use cases.
This is generally not a good idea. If the use case really is simple, developing an activity
diagram is straightforward and does not consume much time. Also, creating the activ-
ity diagram often unearths interesting issues that might not surface in a text descrip-
tion of the interaction. Finally, creating activity diagrams for the simple use cases also
familiarizes developers and stakeholders with the mechanism on easy use cases.

Refactor the Use Case Model
After each use case is fleshed out, the requirements gatherers must revisit and often
revise the use case model as a whole. Using the guidelines for isolation and focus, use
cases may need to be split up, merged, or clarified. Excessively complex use cases must
be identified and fixed.

In some cases, a use case may seem well focused and isolated, but still be too com-
plex. This is often found in use cases that consist of complex workflows. The system
may not provide any value unless the entire workflow is completed, yet it may be dif-
ficult to comprehend the entire process at once. For example, consider the process of
ordering a book online. The use case that provides the value is Purchase Book. That
does not, however, specify the steps involved: The customer must find a book, con-
sider any reviews, enter his or her payment information and shipping information,
and, finally, purchase the book. No mere mortal could understand the activity diagram
for this monolithic use case. Few organizations own a sufficiently large plotter to print
it. Writing or even reading this huge flow of events from the beginning to the end
would be exhausting. Finding a specific issue in a flow of events would be difficult.
Despite the theoretical correctness of the use case, it fails the ultimate test; it is not use-
ful to the stakeholders.

There are several mechanisms that manage this sort of complexity. The first splits up
the use case and uses preconditions to describe the workflow. Another mechanism
uses the include and extend relationships as specified by the UML. Also, variability can
be expressed by actor and use case generalization. Let's consider these mechanisms as
applied to a simple book-ordering example.

28 Enterprise Java with UML

Split Up the Use Case

First, an unwieldy use case may be deleted and its functionality split into several use
cases. These use cases are connected by preconditions and postconditions. Precondi-
tions include any use cases that must be completed before the actor may start the use
case. Postconditions include any changes to the system that must be accomplished
during the use case. Figure 2.3 shows the Purchase Book use case split into many use
cases. Find a Book allows the customer to search for a book by different criteria; it has
no preconditions. View Reviews displays the reviews for a selected book; it has suc-
cessful completion of Find a Book as a precondition. Since each customer must enter
payment information at least once and each customer may buy many books, the Enter
Payment Information use case is an optional part of the workflow. The same is true of
Enter Shipping Information. The Complete Purchase use case has completion of the
Enter Payment Information use case and the Enter Shipping Information use case as
preconditions. All preconditions for a use case are described in the description of that
use case.

This approach has several advantages. First and foremost, it breaks the use case
model into manageable pieces. Each new use case has significantly smaller flows of
events. The activity diagrams for the use cases no longer require an expensive plotter
and a magnifying glass. The overall use case model is far easier to navigate and to
understand.

Unfortunately, some information is hidden in this process. A reviewer must check
the preconditions to determine the order and dependencies of the use cases in the
workflow. There is no way to determine which use cases are optional and which use
cases are essential to the workflow. While the layout of the diagram provides some
visual clues, it is not a precise or clear description.

Figure 2.3 Use cases for the Purchase Books workflow.

Gathering Requirements with UML 19

Use of Include and Extend Relationships

The UML provides two powerful and, at times, confusing relationships between use
cases. The extend relationship allows a use case to be included as an option in another,
or base, use case. The other relationship, include, allows a use case to always include
another base use case.

Include
In an include relationship, the base use case depends on the included use case because
it absorbs its behavior. An include relationship is represented by a dashed arrow point-
ing from the base use case to the included use case. The relationship is stereotyped by
enclosing the word "include" within double angle brackets. The flow of events pro-
ceeds along in the base use case until the inclusion point is reached. At this point, the
flow of events tor the included use case is followed until it completes. After completion
of the included use case, the rest of the base flow of events is followed to completion.
The inclusion is not optional; when the base use case reaches the inclusion point, the
included use case takes over the flow. Also, the included use case may be abstract, such
that different forms of the use case can be included without changing the base use case.

Include has two major advantages. First, the base use case is simplified, since the
included use case is pulled out. Second, a use case may be included in more than one
base use case, so that common flows can be abstracted out. However, in order to qual-
ify, the included use case must fit the definition of a use case. Specifically, it must pro-
vide some isolated value to the actor.

Extend
In an extend relationship, the base use case does not include the subordinate use case.
Instead, the extension use case depends on the base use case and optionally adds its
flow of events to the base use case's flow of events. An extend relationship is repre-
sented by a dashed arrow pointing from the extension case to the base use case. The
relationship is stereotyped by enclosing the word "extend" within double angle brack-
ets. The base use case defines one or more extension points in its flow of events. Each
extension use case specifies the extension point at which it may be inserted, along with
the conditions that must hold for the insertion to take place. As the base use case's flow
of events progresses to an insertion point, the conditions are checked for the extension
use case. If the conditions are met, the extension use case's flow of events is followed
to completion. Next, the base use case's flow of events picks up just after the extension
point.

In an extend relationship, the dependency is from the extension use case to the base
use case, as opposed to an include relationship, in which the dependency is from the
base use case to the included use case. Extend use cases are optional, while included
use cases must take over the flow if the base use case reaches the inclusion point.

Example
Let's take a look at an example. Figure 2.4 shows the Customer actor initiating the Pur-
chase Book use case. The include relationship between the Purchase Book use case and
the Find a Book use case indicates that the flow of events for the Purchase Book use

10 Enterprise Java wilh UML

case always includes the flow of the Find a Book use case. Similarly, the include rela-
tionship between the Purchase Book use case and the Complete Purchase use case indi-
cates that the flow of events for the Complete Purchase use case is always followed, if
the flow of events for the Purchase Book use case reaches the inclusion point.

The extend relationships between the Purchase Book use case and the remaining use
cases indicate that they are optional. For instance, the customer may have already
entered shipping and payment information and be quite content with it.

There are advantages to using the include and extend relationships. The original use
case is simplified because the flows of events in the base use case implement the
included or extended use cases. Also, the relationships between the original use case
and the subordinate use cases are far more precise and visually apparent than is the
case for independent use cases and preconditions.

However, the precision of Include and extend comes with a price. It is not always
easy to explain the concepts; and, as noted earlier, a use case must be written for a wide
audience. Imagine a requirements review with 30 people in attendance. Now picture
trying to explain the include and extend relationships on the spot. If your use case
model benefits from this more advanced notation, then it may be necessary to educate

Gathering Requirements with UML 31

the stakeholders in small groups. Alternatively, it may be possible to show a simplified
use case model that omits the inclusion and extension use cases to the wide audience,
and reserve the more complex model for carefully targeted groups.

Use Case Generalization

In some situations, a use case may have several distinct paths. For example, there may
be two ways in which to find a book. Customers who have a clear idea of their needs
can search by title, subject, or even ISBN. Otherwise, customers browse in broad cate-
gories, such as mystery novels or home and garden. They may jump from book to
book, by following links to similar books.

This combination of searching and browsing in one use case makes the Find a Book
use case very difficult to develop and to understand. Fortunately, UML provides a
mechanism for exactly this situation. The Find a Book use case is converted into an
abstract use case, which means that it defines the value that is obtained by the actor,
but does not specify the interactions that are used to reach the goal. Next, multiple con-
crete use cases are written, with each one specifying a set of interactions that reach the
goal defined by the abstract use case. For the Find a Book use case, one concrete use
case might be Search for a Book and the other might be Browse for a Book. Figure 2.5
shows the abstract Find a Book use case as a generalization of the two concrete use
cases.

Use case generalization can help divide a complex use case into more manageable
pieces. In many cases, just the act of creating the activity diagram identifies good can-
didates for use case generaJization. Look for parallel paths that have the same basic
purpose.

Do not implement use case generalization based on use case
size and complexity alone.

It is often tempting to split up a use case as the activity diagram and flow of events
becomes unwieldy. Discipline and an understanding of the different mechanisms must
temper this natural instinct. Arbitrary use of sophisticated mechanisms leads to confu-
sion and eliminates many of the benefits of use cases.

When appropriate, use case generalization makes a use case model more precise
without making it much more complex. It is an excellent mechanism when there are
high-level alternatives in a use case, but both alternatives serve the same basic pur-
pose.

That said, as with include and extend, use case generalization requires more sophis-
tication from the consumers of the use case model. In my experience, the concept is sig-
nificantly easier to explain than include and extend. Also, it is very easy to produce a
high-level use case model that simply excludes the concrete use cases.

Actor Generalization

In many use case models, one actor is very similar to another actor, yet still has addi-
tional obligations or responsibilities. In the UML, an actor is shown as a special type of

52 Enterprise lava with UML

Complete Purchase

Figure 2.5 The Find a Book use case with use case generalization.

another actor by drawing a generalization arrow to the more general actor. The gener-
alization relationship is intended to document real-world differences and similarities
between user groups. The more specific actor must initiate all of the use cases that the
more generic actor initiates; thus the more specific actor is actually a type of the gener-
alized actor.

Consider a simple hiring process, in which managers and employees both participate
in the interview and selection processes, but in which only the manager discusses salary
and makes the final hiring decision. Both perform the Interview Candidate and Evalu-
ate Candidate use case, but only the manager performs the Tender Offer and Reject Can-
didate use cases. Figure 2.6 shows the first two use cases initiated by the Employee actor
and the second two use cases initiated by the Manager actor. But note, since the

Interview Candidate

Gathering Requirements with UML 33

Evaluate Candidate

Manager

Reject Candidate

Figure 2.6 Use of actor generalization.

Employee actor is a generalization of the Manager actor, the Manager actor also initiates
the Interview Candidate and Evaluate Candidate use cases.

Actor generalization is appropriate only if the actor uses all of the use cases that the
generalized actor uses, thus really is a special type of the generalized actor. Consider
an example with technical experts and managers. In most companies, there is no gen-
eralization relationship between the actors. Not all managers are technical experts and
not all technical experts are managers. There is no reason to force this into a general-
ization relationship. Instead, simply show the actors separately, as in Figure 2.7,

Actor generalization can become needlessly complex. Don't

impose a relationship where none exists. Remember, you can always eliminate
the actor generalization and simply show the relationships between each actor

and use case.

Actor generalization can simplify a use case model, especially if a new version of an
actor adds a few use cases while initiating many existing use cases. However, actor
generalization does add complexity and demand some incremental sophistication
from the consumers of the use case model. If the actors' names are well chosen, and the

54 Enterprise Java with UML

Technical Expert

Determine Technical Qualifications

Figure 2.7 Separate actors, no generalization.

Reject Candidate

relationships are not excessively complex, most stakeholders find the underlying idea
quite reasonable. After all, the relationships between actors reflect and highlight real-
world differences and similaritics between user communities.

Guidelines for Gathering Requirements

It is important to keep the requirements at a consistent level of detail and to be thor-
ough. That said, it is also important to make sure the requirements-gathering process
does not become an end unto itself. Striking this balance between too little and too
much will result in a solid foundation for the entire development process. The follow-
ing guidelines give general advice on the requirements-gathering process as a whole.

Focus on the Problem
Remember to concentrate on what the system does, and ignore questions about how it
works. For example, it is inappropriate to choose between two competing technologies
in a requirements document, but it is necessary to include any known deployment con-
straints. The customer may require access to certain functionality from a Web browser,
which is a requirement and so must be noted for each use case. However, the decision
to use Java servlets as opposed to JavaServer Pages (JSP) is inappropriate in a require-
ments document. Later, when the project focuses on technology selection and architec-
ture, the requirements provide valuable information that shapes these difficult and
crucial decisions. Attempting to make the decisions while still gathering requirements
leads to hasty decisions that are based on incomplete information.

Gathering Requirements with UML 35

Don't Give Up

Perseverance is often the hardest part of use case modeling. A large system may have
dozens of use cases with several flows of events for each use case. There is an activity
diagram for each use case. Be complete, and strive to maintain a consistent level of
quality and detail. The collective understanding of every system evolves over time,
and requires countless hours of review of the meeting notes and updates to the use
case model.

It often helps to develop the requirements in stages. First, develop the high-level use
case model, which identifies the actors and use cases. Validating this model with the
user builds consensus and clarifies the boundaries of the system. Next, develop
descriptions and flows of events for some strategically important use cases. It may be
appropriate to review this material with some of the stakeholders as you proceed. Con-
tinue this process until you have at least a description and the normal flow for each use
case in the model. After validating this model with the stakeholders, identify a few use
cases for further exploration and dig in. At this stage, it is appropriate to spend several
days on each use case, developing alternate and exception flows of events and consol-
idating the flows in an activity diagram. After a few use cases have elaborated, it may
be necessary to refactor the high-level use case model, using techniques such as the
include and extend relationships between use cases or use case generalization. After
reviewing this block of work with the stakeholders, you must decide to design and
develop the well-defined use cases or elaborate additional use cases.

A commitment to complete requirements does not preclude other concurrent efforts.
For instance, once each use case has been described and reviewed, parallel efforts for
screen design, technology selection, and architecture may coexist with refinement of
the use case model. Obviously, these processes must not start too early; but judicious
overlapping of these activities is relatively safe and often provides valuable insight. On
the other hand, it is very dangerous to consolidate the various documents or consoli-
date the efforts. Each effort has separate goals and deserves a separate schedule and
separate reviews.

Don't Go Too Far

Authors and speakers, myself included, use statistics to frighten developers into gath-
ering comprehensive requirements. Having seen the effects of inadequate require-
ments, I believe that this tactic is justifiable. Nevertheless, requirements gathering can
be over-emphasized and drawn out past its usefulness. Remember, requirements are
not an end unto themselves. They are a foundation for the rest of the development
process. Foundations must be strong and durable; they do not need to be artistic mas-
terpieces.

In some cases the requirements-gathering process drags on and on due to a reluc-
tance to move forward or a desire to achieve perfect requirements. This tendency may
be exacerbated fay a demanding or indecisive customer or by uncertainty about the next

dally vulnerable on their first project with s new methodology
I have seen some projects become mired in requirements long

stopped, because it was easier to continue to impress the stakeholders

36 Enterprise Java with UML

with another round of requirements than to face an uncertain future. Of course, this
never works out well, as the next step must eventually be taken, and time spent end-
lessly refining requirements cannot be used on prototyping or technology training that
might remove some of the uncertainty.

Believe in the Process
Solid requirements are essential to your project's success. Without them, you are
doomed to solve the wrong problems, repeat your efforts, and anger your customer.
Attempting to save time by neglecting requirements invariably leads to extending the
duration of the project and higher costs. As Benjamin Franklin put it, "Haste makes
waste." Discovering a missing or misunderstood requirement during system test is
often catastrophic. Fixing an omission or mistake may require weeks or months of
development. In the meantime, marketing schedules are destroyed, expensive produc-
tion hardware sits unused, business opportunities are missed, and credibility is lost
forever, hi some cases, projects, jobs, even entire companies are lost. At best, develop-
ers pour their hearts into a year's effort and produce a system that the customers think
they can live with, although they don't really see what that one screen is for and they
really wish that it worked differently.

Poor requirements lead to project failure in several ways:

Customer confidence in the development process and the developers erodes with
each misunderstanding. Each failure raises the pressure for the next attempt;
hence, communication between developers and stakeholders deteriorates rapidly.
Once communication breaks clown, the misunderstandings grow, and an adver-
sarial cloud settles over the project. It is very difficult to reverse this trend once it
starts.

The software base bloats as it expands to accommodate an ever-changing view of
the system. New requirements and new understandings of existing requirements
add layer after layer to the implementation. Continued over months and years,
this process can mean a tedious death of a project by a thousand cuts.

Developer morale collapses as they realize that they are spending more and more
time but accomplishing less and less. Each time a developer spends time solv-
ing the wrong problem, his or her faith in the process and hope for success
diminishes.

On the other hand, a good use case model is a solid foundation for the rest of the
project;

Developers begin analysis, architecture, and design with confidence. They know
that the requirements will not shift radically beneath their feet, and they have a
clear source of information as they proceed. Certainly they expect to ask questions
and refine the requirements as they go, but the core value is complete. This allows
them to focus their attention on the solution. Technology selection and architecture
decisions are based on complete information. Also, since the overall problem is
well understood, developers may comfortably focus on a few use cases at a time.

with UML 37

Project managers treat each use case as a unit of work for scheduling, risk tracking,
and estimation. Developers produce effort estimates and identify risks for each
use case in turn. This allows the project manager and the senior technical staff to
develop a very sophisticated project plan that identifies and attacks risks early in
the project, by targeting particular use cases. For example, one use case may be
identified as a high priority due to its complex processing or to a challenging user
interface. Also, many project teams are new to the solution technologies. Selecting
simple use cases for the initial development effort may help alleviate this common
and serious risk. It is better to build on success than to overreach and live with
failure. So, project managers should leverage the use case model as they estimate
and schedule development, manage risks, and grow their team.

Testers treat each use case as a basis for a section in the test plan. A well-written
flow of events form easily evolves into a test case. Remember, the flow of events
describes the interactions between the actor and the system. In the test case, the
actor's requests and inputs become test directions, and the system's responses
become the expected result. Of course, the use case is written without considera-
tion for particular screens or technology, so additional instructions must be
added. However, the basic structure and narrative flow often remains unchanged
in the evolution from flow of events to test case. This creates an interesting side
effect: People with experience developing test plans may be very proficient at
reviewing and writing use cases.

Stakeholders track progress objectively; either the latest release supports a use
case or it doesn't. Objective measurement tends to reduce tensions between
developers and stakeholders. Clearly understood bad news is still better than
being completely in the dark. Completing three out of the five use cases is a clear,
if partial, success. Everyone knows what is complete and what is not complete.
Compare this to the equivalent measurement of a milestone being 60 percent
complete. Stakeholders tend to feel frustrated and mislead, as the system
progress is a mystery to them, and the percent-complete numbers never quite
move as expected.

How to Detect Poor Requirements

If gathering requirements is key to project success, then everyone must be doing it.
Tragically, this is not the case. Many organizations, both large and small, skim past
requirements or develop them so poorly that all benefit is lost. There are several com-

• Excessive schedule pressure

• Premature architecture and design

The following sections describe these common paths to poor requirements, including
symptoms and remedies.

38 Enterprise Java with UML

Path 1: Excessive Schedule Pressure
Excessive schedule pressure is the most common rationale for skipping or skimming
through the requirements-gathering process. It is also the worst possible combination:
The development team does not know what it is trying to accomplish, but they are
working too fast to notice. The pressure to get something, anything, out the door is
overwhelming. In the end, very bright people spend nights and weekends paying the
price.

There are two distinct variants on this path. In one, management is almost com-
pletely uninvolved. Their only concern is the final milestone, so the constant refrain is
"When will you be done?" The alternative version is micromanaged pressure. In this
version, management obsessively tracks the schedule and misuses schedule-oriented
practices, such as commitment-based scheduling and time-boxing.

Symptoms

• Hard deadlines are determined before the objectives are defined.
• Developers make feature decisions as they code.
• Everyone is coding, but there is no coherent or readable requirements document.

Solution

Education, redirection of energy, and verification are the keys to avoiding this path.
Managers, developers, and the stakeholders must understand the process and impor-
tance of gathering requirements; and requirements reviews must be used to ensure
that requirements are complete before moving forward. If the schedule is truly impor-
tant, managers and the entire development staff must redirect their energies toward
practices that do work.

First, both developers and managers need to understand that trying to save time by
skimping on requirements is a dangerous and counterproductive practice. Reinforce
the following points:

• Incomplete requirements lead to expensive and time-consuming rework.
• Work that is invalidated by a new requirement or a new interpretation is com-

pletely wasted.
• The longer it takes to catch missing or incorrect requirements, the longer it will

take to undo the damage.
• Committing to gathering solid requirements prevents rework, thereby shorten-

ing the actual schedule.
• Fostering positive relations with the other stakeholders during requirements

gathering sets the stage for win-win compromises on schedule and features.

Once everyone understands the need for good requirements, they must commit to
producing them. Specifically, managers must schedule time for requirements gather-
ing, and ensure that the requirement gatherers have access to the right stakeholders.

Gathering Requirements with UML 39

reviewed for quality and completeness at scheduled intervals. At least some of these
reviews must include a wide range of stakeholders. Gathering requirements takes skill
and a great deal of persistence.With a little practice and a lot of willpower, every pro-
ject team can excel at this process.

Path 2: No Clear Vision
In this situation, the development team gathers requirements for a poorly defined
system. Without a solid system scope and vision, requirements tend to change and
grow at each requirements meeting. If there is no clear system sponsor, require-
ments change as developers attempt to please various potential sponsors. A lack of
vision often leads to requirement artifacts of unusually large size. These intricate
creations grow, but rarely improve. I have seen over $1 million (U.S.) spent gather-
ing requirements and prototyping, all without a clear vision of the system. At best,
the time is simply wasted. At worst, the final set of requirements actually impedes
progress because it is burdened by obsolete or contradictory requirements. Ironi-
cally, the requirements-gathering process and the developers often receive the
blame.

Symptoms

• Requirements documents are very large and very convoluted.
• Requirements are contradictory.
• Frequent changes are made to requirements.
• Requirements are unstable: They are included, excluded, and reinstated in a

bizarre birth, death, and reincarnation cycle.
• Corporate politics are an integral part of requirement meetings.

Solution

Developers can raise awareness of the risks associated with gathering requirements
without a clear vision. Unfortunately, the underlying political barriers to commitment
may be very real. Perhaps the budget is fragmented among different departments. Per-
haps the most likely sponsor swore off commitment to risky software development
projects as part of a New Year's resolution.

The first goal is to find or create a sponsor. In some cases, there are stakeholders who
face severe consequences if the project does not succeed. These stakeholders may listen
to reason and become the sponsor. As always, finding receptive people and educating
them about risks and dangers is a delicate task. But the alternative is worse.

If no sponsor can be found, the developers may still be able to bring some order to
the chaos. Rather than having one set of requirements that has pieces of each vision, try
to maintain a distinct document for each major vision. This may help the stakeholders
see the dilemma. At the very least, the developers' lives will improve, as each docu-
ment stays relatively simple.

10 Enterprise Java with UML

Path 3: Premature Architecture and Design
hi times of adversity, we revert to what we know and believe. Is it surprising when
developers forsake tedious and often contentious requirements meetings in favor of
technology selection, design, and code? It is difficult to spend endless hours establish-
ing the details of the system requirements when design and code beckon with the
promise of quick progress, objective results, and intellectual stimulation. As a result,
requirements documents either atrophy from neglect or evolve to resemble architec-
ture and design documents. Either way, the quick progress is often illusory, because it
is progress in a poorly defined direction.

Symptoms

• The requirements-gathering process ends, with no closure or consensus.
• Requirements documents contain implementation details.

Solution

There are two solutions to this situation, first, educate and encourage developers to
make requirements a priority. Second, make gathering requirements as easy as possi-
ble for developers.

Developers must understand the benefits of requirements and the dangers of devel-
oping software without them.

Reinforce the following points at every opportunity:

• Incomplete requirements lead to poor technology selection and architecture
decisions. The time spent making these decisions and implementing them can-
not be recovered.

• Solid requirements make estimation, scheduling, and testing possible. All of
these activities help the developer coexist with the other stakeholders, by base-
lining expectations and providing project visibility.

These messages are especially powerful when combined with commitment-based
scheduling. In this scenario, a developer develops requirements for part of a system,
then produces an effort estimate based on the requirements. This allows developers to
benefit from their own diligence.

hi many organizations, gathering requirements is unnecessarily burdensome for
developers. For instance, tedious formatting standards can be relaxed or the work may
be shifted to other personnel. Dedicated business analysts can interact with the cus-
tomer and start the process.

The Next Step

This chapter established a number of steps and guidelines for gathering requirements,
including gathering raw requirements, creating a high-level view of the requirements,
and describing the details of the requirements. Chapter 3 introduces a simple sample
application to demonstrate how you can use these techniques.

Gathering Requirements for
the Timecard Application

For the purposes of this book, I had to keep the example simple, so
please keep in mind that while this book describes techniques that are

appropriate for much larger systems, demonstrating these real-world
techniques against a fairly small problem often forced me to over-engineer the
sample solutions. Another caveat; To keep the example small, the simulated

customer is unbelievably compliant and helpful.

In this example, the developer discovers that the primary stakeholder is the opera-
tions manager who manages the time-tracking process for the client organization.
Next, the developer works with the operations manager and an end user to under-
stand the system, then describes the system in a high-level use case model. Based on
feedback from the customer, the developer refines the use case model and increases the
level of detail. Finally, die developer refactors the use case model to improve readabil-
ity and accessibility.

The final product of this chapter is a use case model, complete with a high-level use
case diagram for navigation, as well as a detailed description of each use case. Together,
these elements combine to form a model that is both accessible and complete. Both fac-

In this chapter, we'll simulate the requirements -gathering process for a simple time-
tracking application, using the process introduced in Chapter 2, "Gathering Require-
ments with UML." We'll use this example throughout this book.

42 Enterprise Java with UML

tors are critical, as stakeholders review the use case model to validate the proposed
system, and the development team treats the use case model as a basis for the entire
development process, from effort estimation to design and test.

Listen to the Stakeholders

Remember, a system is defined by the value that it provides to people. So, our goal dur-
ing this phase is to understand the system from the customer's perspective. This sec-
tion describes a somewhat idealized dialogue between a developer, the operations
manager who is responsible for time tracking, and an employee who uses the system.
Their goal is to describe the system's functionality and purpose. Certainly, in the real
world, such a meeting would involve 5,10, or even 20 people, all with different needs
and perspectives. It might take many meetings over several weeks to reach the first
solid understanding of the system.

Raw requirements are the foundation for the whole development
process. There is only one way to get them: Co forth and ask-nicely. Then ask if

you got it right

DEVELOPER; Who will use the application?

CUSTOMER: Employees will use it to record their billabie and nonbilable hours,

DEVELOPER: From where? Here and home and client sites? Behind firewalls?

CUSTOMER: Here at the office. Sometimes from home. Definitety frorn client

sites that are behind firewalls.

DEVELOPER: Okay, thai helps. Well, what does the timecard application look

like now?
CUSTOMER: It is an Excel spreadsheet tar each half-month. Each employee fills

in his or her copy and then emais it to me. It is pretty standard: charge
codes down the side and days across the top. The employee is able to
comment any entry.

DEVELOPER: Where do the charge numbers come from?

CUSTOMER: A separate spreadsheet has a list of valid charge codes, organized
by client and activity,

DEVELOPER: So, each charge code has a name, a client, and a project?

CUSTOMER: Yes, and also a type, like billabie or nonbillable.

DEVELOPER: Do you think you would ever need & deeper hierarchy?

Gathering Requirements for the Timecard Application 43

CUSTOMER: What?

DEVELOPER: Sorry, right now you ham client, project, and activity. Would you
ever need subprojects or subactivities?

CUSTOMER: No, I wouldn't think so.

DEVELOPER: Who manages charge codes?

CUSTOMER: Well, I add them as needed, and individual managers tell their
people what to bill to. They never really go away.

DEVELOPER: Are there any special cases you can think of? For instance, do
employees fill in ahead of time or anything like that?

CUSTOMER; oh, t see. The employee doesn't. If someone is going to be on
vacation for a long time, or in the hospital, I take care of his or her
timesheets.

DEVELOPER: How will the data be used once it is collected?

CUSTOMER: I'm going to export each month's hours to our new billing system.

DEVELOPER: Should the system automatically select the data range and all of
the employees?

CUSTOMER: If possible, I would like to select the date range, clients, and
employees that are included in the export.

DEVELOPER: Okay- The billing system lias an existing data format?

CUSTOMER: Ties, It expects XML.

PEVELOPER: Okay; we should be able to handle that. I'll see if can track down
the details for that.

DEVELOPER: Thank you very much for your time; 1 think we have something to
work with.... Can we meet again on Tuesday?

CUSTOMER: Sounds good.

In this dialogue, the customer and the developer discovered and refined the cus-
tomer's needs for the system. Notice that the developer asks a question, listens to the
answer, then either summarizes the response or asks a clarifying question, hi most
cases, the customer does not know exactly what he or she wants, and certainly is not
expected to anticipate the level of detail required for software development. So, it is up
to the developer or requirements analyst to shape the discussion and ensure that the
necessary information is gathered.

Based on this dialogue, the developers can begin creating the actual system require-
ments documents, starting with a high-level use case diagram.

44 Enterprise Java with UML

Build a Use Case Diagram

Building a high-level use case diagram has three steps: identify the actors, identify the
use cases, and finally determine the relationships between the actors and use cases.

Remember from Chapter 2:

• An actor usually represents a group of people who gain value by interacting
with the system. An actor may also represent a system that is outside of the sys-
tem and that gams value or provides value by interacting with the system. In the
UML, actors are shown as stick figures. There is no distinction between human
actors and external systems.

• A use case describes a set of interactions between an actor and the system that
provides a discrete benefit or value to the actor. The value must be independently
significant, yet well focused. In the UML, a use case is shown as a labeled oval.

• There are only two reasons for an actor to be associated with a use case. First, all
use cases are initiated by at least one actor. In order to initiate a use case, the actor
must be associated with it. In the UML, this is shown by a solid arrow from the
actor to the use case. Once a use case is initiated, it may send notifications to
other actors or request information from other actors. This dependence on the
other actor(s) is represented in the UML by a solid arrow drawn from the use
case to the actor.

Find the Actors
Actors are discovered by reading the raw requirements notes, culling out participants,
and determining the distinct groups of users. This first attempt invariably contains
redundant names for the same actor, and may miss some actors entirely.

Find Candidate Actors

From the raw notes, the developer highlights the following dialogue:

From these excerpts, it appears that the candidate actors are employee, operations

Gathering Requirements for the Timecard Application 45

Refine the Actors

Refining the list of actors is an interactive process. In many cases, the customers have a
dear view of the roles within their organization. Subsequent meetings will be greatly
simplified if developers adopt the users' terminology. Also, developers may need to
probe a bit to determine whether there are differences in the way different types of peo-
ple use the system. Remember, actors are determined by their use of the system, not by
differences in job title or organizational hierarchy.

The first actor seems clear. Employees use the system to record their time. The next,
operations manager, seems essential, but the name indicates a single person in the orga-
nization. What if that person goes on vacation or needs to delegate his or her responsi-
bilities as the organization grows? A brief flurry of emails with the operations manager
determines that the actor's real name is "administrative user," with the understanding
that currently only one person is filling this role.

A face-to-face meeting is needed to decide whether managers are separate actors.
They certainly have a role in the process, as employees must know which projects they
can bill to. However, under the current requirements, the managers do not use the sys-
tem to enforce these decisions. After some discussion, the customers agree that deter-
mining who has permission to bill to a charge code is not a requirement for the system.
So, managers are eliminated as an actor.

This leaves the following actors: employee and administrative user.

Find the Use Cases
Use cases are found by identifying candidate use cases from the raw notes and asking
what additional use cases are needed to support the obvious use cases. Then the guide-
lines established in Chapter 1, "Introduction to Modeling Java with the UML," are
applied to the candidates. These guidelines lead developers to split, merge, and elimi-
nate use cases until a solid set of use cases is identified.

Find Primary Use Cases

These are the use cases that characterize the system. From the raw notes, the developer
highlights the following dialogue:

46 Enterprise lava with UML

The first excerpt leads to the Record Time use case. The second leads to the Com-
ment Time Entry use case. The third excerpt leads to the Create Charge Code use case.
Finally, the last excerpt leads to the Export Time Entries use case.

Use short active phrases when naming a use case. When reading the use
case diagram, a reviewer should be able to say the name of the actor followed

by the use case and have it sound almost like a sentence. For example, a
diagram that shows the Employee actor initiating the Record Time use case

reads as "the employee records time."

Find Supporting Use Cases

Supporting use cases are not mentioned in the dialogue. They are found by asking what
the system needs before it can accomplish each use case. Consider the Record Time use
cast. Before an employee can record his or her hours, the system needs a list of charge
codes and a list of employees. The first part, the charge codes, is already provided by the
Create Charge Code use case, but the existence of the employee is unexplained. So, a
new use case, Create Employee, is needed. The other use cases, Comment Time Entry
and Export Time Entries are supported by the Record Time use case.

The new list of candidate use cases includes Create Employee, Create Charge Code,
Record Time, Comment Time Entry, and Export Time Entries.

Evaluate Use Cases

Each use case must meet the isolation and focus guidelines as described in Chapter 2.
To summarize, each use case must be significant, so that it has value in isolation. How-
ever, it must also be well focused, so that it does not provide more than one distinct

Gathering Requirements for the Timecard Application 47

benefit to the actor. Each use case is considered independently before checking the
whole use case model for consistency.

The Create Employee use case has a single benefit, as it only allows an administra-
tor to add an employee to the system. So, the Create Employee use case meets our
guidelines for focus. It is easy to imagine an administrative user receiving a request
from a new hire's manager and adding the new hire to the system as a single task. Also,
the system is significantly changed, as it has gained a new end user, so the Create
Employee use case meets our guidelines for independent value.

The Create Charge Code use case also has a single benefit, as it only allows the
administrative user to add a charge code to the system. It is easy to imagine the admin-
istrative user receiving a request from a project manager and adding the new charge
code as a single task. Also, the system is significantly changed, as it has gained a new
charge code that may be used by the end users. So, the Create Charge Code use case
meets our guidelines.

The Record Time use case seems slightly less focused, as it allows an employee to
view, update, and add time entries. However, none of these activities seems indepen-
dently valuable. Record Time has a single distinct value, despite its distinct subactivi-
ties. When a use case seems too large, but the subactivities are clearly too small, it is
wise to keep the high-level use case. As we will see later in this chapter, there are sev-
eral techniques that simplify complex use cases without losing their coherence. Cer-
tainly the Record Time use case has value in isolation, as it is the motivation for the
entire system.

The Comment Time Entry use case certainly meets the guidelines for focus, as it has
a very concrete benefit. However, it fails the test for value in isolation. Commenting an
entry is part of a larger activity, recording time. So, the Comment Time Entry use case
is deleted as a use case and becomes part of the details for the Record Time use case.

The Export Time Entries use case clearly has a well-defined and valuable purpose,
as it allows the administrative user to export the system's data

This process trims our list of use cases to Create Employee, Create Charge Code,
Record Time, and Export Time Entries.

Determine the Actor-to-Use-Case
Relationships
Each actor initiates one or more use cases, and each use case is initiated by one or more
actors. Our final step in creating the high-level use case diagram is to describe these
relationships for the actors and use cases. A solid arrow from the actor to the use case
indicates that the actor initiates the use case.

Consider each actor in turn. Based on the dialogue with the customers, the Employee
actor cannot initiate the Create Employee, Create Charge Code, or Export Time Entries
use cases. Certainly, the Employee actor must initiate the Record Time use case on a
regular basis.

The Administrative User actor clearly initiates the Create Employee, Create Charge
Code, and Export Time Entries. The person who fills the role of the Administrative
User actor is almost certainly an employee of the organization and therefore must
record his or her time. However, he or she does so in the role of an employee. The on!y

48 Enterprise Java with UML

Administrative '
User

Billing System

Figure 3.1 High-level use case diagram for the timecard system

reason a person would need to record time as an Administrative User would be to
record another employee's time. Revisiting the meeting notes, it is clear that this is a
requirement, as the administrative user records time for sick or vacationing employees.

Figure 3.1 shows these relationships; it is the first draft of the high-level use case dia-
gram. At this point, you should confirm the accuracy of the model with the customer.
The customer must recognize all of the actors and use cases. At this meeting, your cus-
tomer should provide a valuable sanity check, and point out any missing features.
Remember, a good use case model serves as a friendly and readable entry point into
your requirements. Your customer must be able to easily understand it.

Describe the Details

Ause case diagram provides a high-level view of the entire system, but this is not a suf-
ficient foundation for design. For each use case, you need to determine exactly how the
customer uses the system. Again, the emphasis is on the value and the workflow, not
on specific solutions.

Guidelines for Describing the Details
Any known deployment constraints are included at this point. For instance, if the end
user accesses the system from behind a firewall or from a portable device, you must

Gathering Requirements for the Timecard Application 49

capture that requirement for any affected use cases. However, technology selection
decisions are not included, so it would be inappropriate to propose solutions to the
deployment constraints. Another common mistake is to think of a use case in terms of
screen design. This is dangerous, because some screens may support many use cases
and one use case may use several screens in the final design.

Developing a flow of events requires a developer or requirements analyst to play the
role of the end user and ask a series of questions. How does the flow start? What infor-
mation does the system demand from the actor? How does the system respond? How
does the flow end? The answers are captured in a list of inputs to the system and
responses from the system. A flow of events resembles a test plan without any details
about the screens or the format of the responses, hi some cases, the developer can inter-
act with the end users during this process, understanding their needs for each use case.
Otherwise, the developer must develop reasonable flows of events and have the end
users validate them.

It is a common belief that you come away with a very clear understanding of the
system after the initial meeting with the customer. In fact, often, filling in the details for
each use case is a humbling and enlightening experience. As you develop each flow of
events and attempt to describe the preconditions and deployment constraints, you will
discover relevant questions and open issues. These can be listed as part of the use case
documentation and resolved at the first review of the entire use case model.

Each use case should follow a template. Though no two projects follow the same
template, it should look something like this:

Name of use case. A brief active phrase that captures the purpose of the use case.

Description. A brief paragraph that explains the purpose of the use case, with an
emphasis on the value to the actors. If this information cannot be conveyed in a
brief paragraph, the use case may not be clearly focused.

Preconditions. A brief paragraph that lists any use cases that must be succeed before
the use case is initiated and that describes the dependency.

Deployment constraints. A brief paragraph that describes how the system will be
used to fulfill the use case. For instance, a particular use case may be initiated by
an Employee actor who is behind the firewall that protects the employee's client.
As neglecting this sort of constraint can have serious consequences, the informa-
tion must be captured as early as possible.

Normal flow of events. An ordered list of interactions that describes all inputs to
the system and responses from the system that make up the normal path through
the use case. The normal flow of events captures the intent of the use case by
showing the interactions when everything proceeds according to plan. This flow
of events is also referred to as the happy flow.

Alternate flow of events. An ordered list of interactions that describes all inputs to
the system and responses from the system that make up a single alternative path
through the use case. An alternative flow of events captures the system's
response to variations by the user, such as entering invalid data or attempting to
perform steps in a workflow in an unusual order. This section is repeated for each
alternate flow of events.

50 Enterprise Jav

Exception or error flow of events. An ordered list of interaction that describes all
inputs to the system and responses from the system that make up a single excep-
tion path through the use case. An exception flow of events captures the system's
response to errors, such as unavailable system or external resources. This section
is repeated for each exception flow of events.

Activity diagram. Shows all of the flows of events for the use case in one diagram.
It complements the flows of events and provides a valuable way to measure the
complexity of a use case.

Nonfunctional requirements. A brief paragraph or two that describes any success
criteria for the use case that are not easily embedded in the flows of events. For
instance, the system might need to provide a response for the use case in less than
three seconds; or there might be an upper limit of seven mouse clicks to navigate
through any flow of events for the use case.

Notes (optional). A list of resolved issues that don't fit well in any other category.
These may include restrictions on the system's functionality.

Open issues (optional). A list of questions for the stakeholders.

Let's take a look at the use case documentation for our timecard application.

Sample Use Case Documentation
for Create Charge Code

Name of use case. Create Charge Code
Description. The administrative user actor uses the Create Charge Code use case to

populate the time-tracking system with charge codes. Once added, a charge code
is available to all employees as they enter their hours.

Preconditions. None
Deployment constraints. None
Normal flow of events. Add a charge code to an existing project.

1. The administrative user sees a view of existing charge codes. Charge codes are
activities organized by client and project.

2. The administrative user adds a charge code to an existing project. The new
charge code appears in the view, and may be used by employees.

Alternate flow of events. New charge code for a new project for a new client.
1. The administrative user sees a view of existing charge codes. Charge codes are

activities organized by client and project.
2. The administrative user adds a client. The new client appears in the view.
3. The administrative user adds a project to the new client. The new project

appears in the view.
4. The administrative user adds a charge code to the new project. The new charge

code appears in the view and may be used by employees.
Alternate flow of events. Duplicate charge code.

Gathering Requirements for the Timeiard Application 51

1. The administrative user sees a view of existing charge codes. Charg
activities organized by client and project.

2. The administrative user adds a charge code to an existing project. The charge
code already exists for the project.

3. The system informs the administrative user that the charge code already
exists. NLI change to the view.

Exception flow of events. System is unable to add the charge code due to a system
or communication error.
1. The administrative user sees a view of existing charge codes. Charge codes are

activities organized by client and project.
2. The administrative user adds a charge code to an existing project. The system

is unable to complete the addition, due to a system or communication error.
3. The system informs the administrative user of the error, complete with avail-

able details. The view reverts to the previous state.
4. If possible, an error is added to a log.

Activity diagram. See Figure 3.2.
Nonfunctional requirements. None
Open Issues.

» Is there a default set of activities?
• Can an employee bill to a project without specifying the activity?
• Is there information other than the name of the client, project, or activity?

Sample Use Case Documentation
for Create Employee

Name of use case. Create Employee
Description. The Create Employee use case allows the administrative user to add an

employee to the time-tracking system. Once employees have been created, they
are able to use the system to record their time.

Preconditions. None
Deployment constraints. None.
Normal flow of events. The administrative employee adds an employee.

1. The administrator sees a view of all existing employees by name.
2. The administrator adds an employee, with a name, email address, and pass-

word.
3. The new employee appears in the view. The employee can record his or her

hours.
Alternate flow of events. Employee exists.

1. The administrative user sees a view of all existing employees by name.
2. The administrative user adds an employee, with a name, email address, and

52 Enterprise Java with UML

password.
3. The administrative user is notified of the conflict. No change to existing data.

Exception flow of events. System is unable to add the employee due to a system or
communication error.

1. The administrative user sees a view of all existing employees by name.

2. The administrative user adds an employee, with a name, email address, and
password. The system is unable to complete the addition, due to a system or

Gathering Requirements tor the Timecard Application 53

3. The system informs the administrative user of the error, complete with avail-
able details. The view reverts to the previous state.

4. If possible, an error is added to a log.
Activity diagram. See Figure 3.3.
Nonfunctional requirements. None
Open issues.

• Is there information other than the employee's name and password?
• Will the employee need to change his or her password?
• Are employees organized by department or category?

Sample Use Case Documentation for Record Time

Name of use case. Record Time
Description. The Record Time use case allows employees to track the hours that

they work. The Record Time use case allows an administrative user to record
hours for any employee.

Preconditions. None

54 Enterprise lava with UML

Deployment constraints. The Record Time use case must be accessible from client
sites and the employees' homes. In the case of client sites, they will often be
behind the client's firewall.

Normal flow of events. An employee records his or her time.
1. The employee sees previously entered data for the current time period.

2. The employee selects a charge number from all available charge numbers,
organized by client and project.

3. The employee selects a day from the current time period.
4. The employee enters the hours worked as a positive decimal number.
5. The new hours are added to the view and are seen in any subsequent views.

Alternate flow of events. An employee updates his or her time.
1. The employee sees previously entered data for the current time period.

2. The employee selects an existing entry.
3. The employee changes the hours worked.

4. The new information is updated in the view and is seen in any subsequent

Alternate flow of events. An administrative user records time for an employee.

1. The administrative user is presented with a list of employees, sorted by name.

2. The administrative user selects an employee and sees previously entered data
for the current time period.

3. The administrative user selects a charge number from all available charge
numbers, organized by client and project.

4. The administrative user selects a day from the current time period.

5. The administrative user enters the hours worked as a positive decimal num-
ber.

6. The new hours are added to the view and are seen in any subsequent views.
Exception flow of events. System is unable to add the update to the timecard due to

1. The employee sees previously entered data for the current time period.
2. The employee selects a charge number from all available charge numbers,

organized by client and project.

3. The employee selects a day from the current time period.
4. The employee enters the hours worked as a positive decimal number. The sys-

tem is unable to complete the addition, due to a system or communication
error.

5. The system informs the administrative user of the error, complete with avail-
able details. All additions and edits are undone together. The view reverts to
the previous state.

6. If possible, an error is added to a log.

Activity Diagram. See Figure 3.4.

Gathering Requirements for the Timecard Application 55

56 Enterprise Java with UML

Nonfunctional requirements. None
Open issues.

• Can an employee enter hours or edit hours in a future timecard, for example,
just before a vacation?

Sample Use Case Documentation
for Export Time Entries

Name of use case. Export Time Entries
Description. The Export Time Entries use case allows the administrative user to

save specified time-tracking data to a formatted file.
Preconditions. None

Normal flow of events. The administrative user exports the data.
1. The administrative user selects a range of dates.
2. The administrative user selects a subset of clients or all.
3. The administrative user selects a subset of employees or all.
4. The administrative user selects a target file.
5. The data is exported to the file as XML. The administrator is notified when the

process is complete.
Exception flow of events. System is unable to export the data due to a system error.

1. The administrative user selects a range of dates.
2. The administrative user selects a subset of clients or all.
3. The administrative user selects a subset of employees or all.
4. The administrative user selects a target file.
5. The system is unable to export the data. The administrative user is notified of

6. If possible, the error is recorded to a log.
Activity Diagram. See Figure 3.5.
Nonfunctional requirements. None
Open issues.

• Are the data selection criteria sufficient?
•• Are the data selection criteria unnecessarily complex?
• Do other export formats exist?

Gathering Requirements for the Timecard Application 57

58 Enterprise Java with UML

Gathering More Requirements

Creating the detailed flow of events for use cases clarifies your understanding of the
problem domain and raises many issues. At some point, you accumulate enough new
questions to justify a requirements review meeting with the customer. This meeting
has two goals:

• To validate and improve the current use case model, which includes the flows of

•i To resolve most of the outstanding questions and open issues.

The key is to understand the system from your customer's perspective. It is impor-
tant to stay focused on how the system provides value to the customer. But as you
describe the system at a lower level of detail, it is easy to start contemplating possible
solutions, so it is essential to be disciplined; resist the tendency to start architecture and
design at this point. To this end, it is very helpful to avoid user interface design. Dis-
cussions concerning the look and feel of the system can easily become discussions of
what is and is not possible with particular technologies. Remember, focus on what the
customer needs from the system.

This requirements review meeting covers all of the use cases that have been devel-
oped. Participants must be prepared to discuss the details of the use cases, including
the flows of events, the activity diagram, the deployment constraints, and any open
issues. In order to ensure this level of preparedness, the participants must have time to
review the documents before the review meeting.

In many cases, the sheer volume of requirements forces the review to be split over
several meetings. Marathon meetings, with consecutive 8- to 10-hour days, are impres-
sive-sounding, but result in uneven coverage of the requirements. By the end of the
second day, the participants are either worn out and apathetic or exhausted and com-
bative. Either way, the time is not well spent. Consider instead meeting every other day
or performing smaller more frequent reviews throughout the requirements-gathering

As before, the results of the meeting should be captured in written meeting notes,
which should be validated by the participants. These notes will form the foundation
for the common understanding of the system.

Gathering Requirements for the Timecard Application 59

60 Enterprise Java with UML

Gathering Requirements for the Timecard Application 61

In this dialogue, the customers and the developer refined their collective under-
standing of the system. Specifically, they discovered some missing functionality,
excluded other functionality, and validated a significant portion of the use case model.
Following the meeting, the use case model must be updated to reflect the new under-
standing of the system.

Revising the Use Case Model

In many cases, a healthy dialogue with the customer will completely change your
understanding of the system. Remember, bom you and the customer are discovering
and inventing the system as you go. You should notice a shift from discussing basic
terms to delving into relatively subtle points. The first meeting and use case model
builds a common vocabulary and reaches a consensus on what the system should and
should not do. The second meeting uncovers missing pieces and resolves the special
cases. This section shows how the use case diagram and the details for each use case
are updated from the dialogue.

Revise the Use Case Diagram
Adding new information to the use case diagram follows the same pattern as during
its original. First, mine the dialogue for new actors and new use cases. Then validate
the candidate use cases against the guidelines for narrow focus and independent
value. Finally, look for new relationships between actors and use cases.

For this example, the dialogue does not reveal any new actors, so we'll move on to
the new use cases.

Find New Use Cases

The following excerpts indicate a need for some new use cases.

CUSTOMER: We haven't thought much about passwords or security. I know I
personally hate assigned passwords; people always write them down and
post them on their monitors.

DEVELOPER: So, should employees be able to change their passwords? Should
they be required to do so on their first login?

CUSTOMER: That would be great And most of them will be used to that flow
from other systems.

The new candidate use cases are Login and Change Password

Evaluate Candidate Use Cases

Change Password is well focused and certainly has value in isolation, as it protects the
employee's privacy and security. So we add the Change Password use case to the
model.

62 Enterprise Java with UML

Login is less clear. It is well focused, but it does not provide much value on its own.
In general, employees log in as a precursor to some more interesting task, such as
recording their time. On the other hand, most people describe it as a separate step, as
in "I log in, then record my time." Many development teams and UML gurus have
spent many hours disputing the status of Login as a use case. That said, no project has
ever failed because the wrong choice was made. For now, we'll consider it as a separate
use case that is used as part of many more valuable use cases.

Find New Relationships

The following excerpts provide insight into the interactions between the system and
the actors.

The first excerpt indicates that the Create Employee use case interacts with the
Employee actor by sending him or her an email. This is represented in Figure 3.6 by the
solid line from the Create Employee use case to the Employee actor. You can verbalize
this as, "The Administrative User actor initiates the Create Employee use case. As part
of the use case, the system sends information to the Employee actor."

The second excerpt shows that the Employee actor initiates the Change Password
use case. Also, the Change Password use case is always included in the Login use case
if it is the employee's first login. This is shown by the include relationship (dashed line)
from the Login use case to the Change Password use case. Remember, the extend rela-
tionship indicates that the subordinate use case is optional. An included use case is
always performed if the flow of events reaches the inclusion point.

The second excerpt also reveals that the Employee actor initiates the Login use case.
While it is not explicitly stated, it is reasonable to expect administrative users to log in
and change their passwords.

At this point, you update the use case diagram to match your new understanding of
the system. The updated high-level use case diagram is shown in Figure 3.6.

Gathering Requirements for the Timecard Application 63

Revising the Use Case Documentation
In many cases, the flow of events for a use case evolves radically from the initial draft.
Oddly enough, they never get shorter. Updating a flow of events is a fairly mechanical
process of reviewing meeting notes and incorporating the changes. Perseverance is the
key. If the list of open issues does not shrink over time, it may be a sign that you lack a
clear and stable system vision.

The discussion of the Create Charge Code use case clarified the system scope. The
customer clearly sees the timecard system as a simple and isolated system. It may seem
odd to explicitly exclude functionality in requirements. After all, requirements
describe what the system does, right? In my experience, it is well worth the effort to
document any known limitations of the system as they are discovered. This simple dis-
cipline avoids countless arguments in which the customer contends that certain func-
tionality is clearly within the current schedule while the developers stare blankly as
they consider weekends about to be lost. The flow of events for the Create Charge
Code use case limits each client to a name and a list of projects. Each project consists of
a name and a charge code. Nothing else is included—no purchase orders, no contact
information. This sort of restriction encourages precise thinking by developers and
customers. The message should be "speak now or be willing to talk schedule later."

64 Enterprise Java with UML

Review of a flow of events may introduce completely new requirements. For exam-
ple, the Administrative User Actor now is able to pick charge codes from a list of pre-
viously defined activities. This must be added to the flow of events.

You can see how discussions with the user can lead us to revise existing use cases,
add new use cases, place limits on system functionality, and add completely new
functionality. In general, this is a positive sign. Hopefully, by this point, everyone's
understanding of the system is maturing and converging to a common view. Conver-
sations are increasingly productive, as different parties agree on general principles
and common meanings for domain terms. The following samples demonstrate how
requirements evolve; they also serve as a foundation for the ongoing sample timecard
application.

Sample Use Case Documentation for Login (New)

Name of use case. Login

Description. The Login use case allows employees and the administrative user to
access the system.

Preconditions. None

Deployment constraints.

1. Employees must be able to log in from any computer, including home, client
sites, and on the road. This access may be from behind a client's firewall.

Normal flow of events. The administrative user or employee's username and pass-
word are valid.

1. The administrator or employee supplies a username and password.

2. The user is authenticated as either an administrator or an employee. This is not
a choice during the login; it is determined by the username.

Alternate flow of events. First Login

1. The administrator or employee supplies a username and password.

2. The user is authenticated as either an administrator or an employee. This is not
a choke during the login; it is determined by the username.

3. The user is instructed to change his or her password.

4. Include the Change Password use case at this point.

Alternate flow of events. Invalid authentication information.

1. The administrator or employee supplies a username and password.

2. The user is notified that he or she has entered incorrect login information.

3. The failure is logged by the system.

4. The user is allowed to try again indefinitely.

Activity diagram. See Figure 3.7.

1. The user's password must not be passed as plaintext.

Open Issues. None

I

Gathering Requirements tor the Timeeard Application 65

Sample Use Case Documentation: Change
Password (New)

Name of use case. Change Password
Description. The Change Password use case allows employees and administrative

users to change their password.

66 Enterprise Java with UML

Preconditions.
1. The user must have logged in to the system.

Deployment constraints.
1. Employees must be able to log in from any computer, including home, client

sites, and on the road. This access may be from behind a client's firewall.
Normal flow of events. Employee changes his or her password.

1. The user enters his or her current password and new password twice.
2. The user is notified that his or her password has been changed.

Alternate flow of events. Invalid current password.
1. The user enters his or her current password and new password twice.
2. The user is notified that his or her attempt failed.
3. The failure is logged by the system.
4. The user is allowed to try again indefinitely.

Alternate flow of events. New passwords do not match.
1. The user enters his or her current password and new password twice,
2. The user is notified that his or her attempt failed.
3. The user is allowed to try again indefinitely.

Exception flow of events. System is unable to store new password due to a system
or communications error.
1. The user enters his or her current password and new password twice.
2. The user is notified of the error, complete with any available details.
3. The failure is logged by the system.

Activity Diagram. See Figure 3.8.

1. The user's password must not be passed as plaintext.
Open Issues. None

Sample Use Case Documentation for the Create
Charge Code Use Case (Revised)

Name of use case. Create Charge Code
Description. The Create Charge Code use case allows the administrative user to add

a new charge code to the system so that employees can bill to the charge code.
Since each charge code is specific to a client and a project, the administrative user
may need to add a client or project first.

Preconditions.
1, The user must be logged in as an administrative user.

Deployment constraints. None

Gathering Requirements for the Timecard Applkation 67

Ask for Current Password, New Password Twice)<

Figure 3.8 Activity diagram for the Change Password use case.

Normal flow of events. Add a charge code to an existing project.

1. The administrator sees a view of existing charge codes for a selected project.
Charge codes arc activities organized by client and project.

2. The administrator selects from a list of common activities or enters a new
activity to create a new charge code for the selected project.

3. The new charge code appears in the view and may be used by employees.

68 Enterprise Java with UML

Alternate How of events. Administrator adds a new client and project.
1. The administrator sees a view of existing clients.
2. The administrator enters the name of a new client.
3. The administrator selects the new client and enters the name and description

for a new project.
4. Employees will not be able to bill to the project until the administrator adds a

charge code.
Alternate flow of events. Duplicate data; input charge code already exists at the

specified level.
1. The administrator sees a view of all existing charge codes. Charge codes are

activities organized by client and project.
2. The administrator attempts to add a charge code that has the same activity as

another charge code for the project. Once the list of common activities that
does not include duplicates is created, this will be less likely to happen.

3. The administrator is notified of the conflict. No change to existing data.
Exception flow of events. System is unable to store data due to system or commu-

nications failure.
1. The administrator sees a view of existing charge codes for a selected project.

Charge codes are activities organized by client and project.
2. The administrator selects from a list of common activities or enters a new

activity to create a new charge code for the selected project.
3. The system is unable to store the new charge code.
4. The user is notified of the error, complete with any available details.
5. The failure is logged by the system.

Activity diagram. See Figure 3.9.
Nonfunctional requirements. None
Notes.

1. Client and projects have a name and description. Other information, such as
contact information, billing rates, and purchase orders are kept elsewhere.

Open issues. None

Sample Use Case Documentation for Create
Employee (Revised)

Name of use case. Create Employee
Description. The Create Employee use case allows the administrative user to add an

employee to the system, so that the employee may enter his or her hours into the
time-tracking system.

Preconditions.
1. The user must be logged in as an administrative user.

Gathering Requirements for the Timecard Application 69

inlerprise lava with UML

Deployment constraints. None
Normal flow of events. The administrative user adds a new employee.

1. The administrator sees a view of all existing employees by name.
2. The administrator adds an employee, with a name and password.
3. The new employee appears in the view.
4. An email is sent to the employee, instructing him or her to log in and change

his or her password.
5. The employee can log in.

Alternate flow of events. Duplicate data; employee already exists.
1. The administrator sees a view of all existing employees by name.
2. The administrator adds an employee, with a name and password.
3. Administrator is notified of the conflict. No change to existing data.

Exception flow of events. System is unable to add the employee due to a system or

1. The administrative user sees a view of all existing employees by name.
2. The administrative user adds an employee, with a name and a password. The

system is unable to complete the addition, due to a system or communication
error.

3. The system informs the administrative user of the error, complete with avail-
able details. The view reverts to the previous state.

4. If possible, an error is added to a log.
Activity diagram. See Figure 3.10.
Nonfunctional requirements. None
Open issues. None
Notes.

1, Each employee has a name and password. All other information, such as con-
tact information or billing rates is kept elsewhere.

2. Employees will not be organized by department.

Sample Use Case Description for Record Time
(Revised)

Name of use case. Record Time
Description. The Record Time use case allows any employee to track his or her own

Preconditions.
1. The user must be logged in.

Deployment constraints.
The Record Time use case must be accessible from client sites and the employees'
homes. In the case of client sites, they will often be behind the client's firewall.

Gathering Requirements for the Timetard Application 71

Normal flow of events. An employee records his or her own time.

1. The employee sees any previously entered data for the current time period.
2. The employee selects a charge number from all available charge numbers,

organized by client and project.

3. The employee selects a day from the time period.
4. The employee enters the hours worked as a positive decimal number.
5. The new hours are added to the view and are seen in any subsequent views.

Alternate flow of events. Employee edits existing data.

1. The employee sees previously entered data for the current rime period.
2. The employee selects an existing entry.
3. The employee changes the charge number and/or the hours worked.
4. The new information is updated in the view and is seen in any subsequent

Alternate flow of events. Employee submits timecard as complete.

72 Enterprise lava with UML

1. The employee sees any previously entered data for the current time period.
2. The employee elects to submit the timecard.
3. The employee is asked to confirm his or her choice and warned that he or she

will not be able to edit his or her entries.
4. The timecard is submitted; it is no longer available for editing.

Alternate flow of events. Administrator edits an employee's timecard.
1. The administrator selects an employee from a list.
2. The administrator sees previously entered data for the current time period.
3. The administrator selects an existing entry.
4. The administrator changes the charge number and/or the hours worked.
5. The update is logged as an unusual activity
6. The new information is updated in the view and is seen in any subsequent

views.
Alternate flow of events. Administrator submits an employee's timecard as com-

plete.
1. The administrator selects an employee from a list.
2. The administrator sees any previously entered data for the current time

period.
3. The administrator elects to submit the timecard.
4. The administrator is asked to confirm his or her choice and warned that he or

she will not be able to edit his or her entries.
5. The submission is logged as an unusual activity
6. The timecard is submitted; it is no longer available for editing.

Activity diagram. See Figure 3.11.
Nonfunctional requirements. None
Notes.

1. The employee can. only enter data for one timecard at a time. If he or she has
not submitted a previous timecard, he or she will not be able to enter hours for
the current timecard.

2. Once a timecard has been submitted, it cannot be edited again.
3. Employees cannot enter time for days that have not started.

Open issues. None

Sample Use Case Documentation for Export Time
Entries (Revised)

The only change for this use case is the addition of Login as a precondition.
Name of use case. Export Time Entries
Description. The Export Time Entries use case allows the administrative user to

save specified time-tracking data to a formatted file.

Gathering Requirements for the Timecard Application 73

74 Enterprise Java with UML

Preconditions.

1. The user must be logged in as an administrative user.

Deployment constraints. None

Normal flow of events. The administrative user exports the time entries.

1. The administrative user selects a range of dates.

2. The administrative user selects a subset of clients or all.

Gathering Requirements for the Timecard Application 75

3. The administrative user selects a subset of employees or all.

4. The administrative user selects a target file.
5. The data is exported to the file as XML. The administrator is notified when the

process is complete.

Exception flow of events. System is unable to export the entries due to a system
error.

1. The administrative user selects a range of dates.
2. The administrative user selects a subset of clients or all.
3. The administrative user selects a subset of employees or all.

4. The administrative user selects a target file.
5. The system is unable to export the entries. The administrative user is notified

of the error.

6. If possible, the error is recorded to a log.
Activity diagram. See Figure 3.12.

Open issues. None

The Next Step

This chapter demonstrated the power of the UML for gathering requirements. A high-
level use case diagram makes it fairly easy to understand the system's purpose and its
benefit to the people who use it. At a far lower level of detail, the flows of events and
activity diagrams for each use case allow developers and stakeholders to reach a con-
sensus on the behavior of the system. The UML provides a precise and expressive nota-
tion for building and sharing a collective understanding of the problem that the system
must solve.

Now that the problem is well understood from the customer's point of view, the
developers can continue development from a solid foundation. There will always be
misunderstandings and requirements changes due to new business needs, but the
number of surprises can be contained to a reasonably low level. This enables develop-
ers to work in a more stable and successful environment, hi the next step, analysis, the
developers build an understanding of the problem from a developer's perspective.

A Brief Introduction to Object-
Oriented Analysis with the UML

The preceding chapters demonstrated how the UML is used to view a problem from
the customer's and end-user's perspective. During analysis, though the focus is still on
the problem, it is from the developer's perspective. Analysis describes what the system
needs to do; it does not determine how it will do it. Thus the emphasis is still on under-
standing the problem, rather than selecting technology to solve the problem. These
details are determined later, in architecture, technology selection, and detailed design.

Performing analysis for a system is somewhat analogous to staffing a brand new
company. Before collecting resumes and performing interviews, you have to figure out
what roles need to be filled. In analysis, you determine the roles and responsibilities of
different parts of the system before you evaluate candidate technologies and actually
build or purchase the parts.

in this chapter, we will walk through the analysis phase of the project. In Chapter 5,
"Analysis Model for the Timecard Application," we'll use the concepts introduced here
when we create the analysis model for the Timecard application.

77

MY view of object-oriented analysis and design is influenced by the
Rational Unified Process, my experiences teaching Rational'* object-oriented
analysis and design course, and many fine texts by Crady Booch, Martin Fowler,

and Peter Coad. Any misinterpretations or oversimplifications are, of course, my
own.

78 Enterprise lava with UML

Are You Ready?

that cooperate to meet the system's goal. In analysis, this effort is limited to determin-
ing the responsibilities of each object and the interactions among the objects. Analysis
is a technology- and implementation-independent description of the objects' roles and
interactions, which is then used as a basis for technology selection, architecture, and
design.

There are two key steps to prepare to begin analysis. First, you must ensure that the
requirements are solidly and consistently defined. Next, if the project is large enough
to merit multiple iterations, you must prioritize the use cases based on risk, signifi-
cance, and the abilities of your project team.

Solid Requirements
To begin analysis, the requirements must be solid, with a high-level use case diagram
and documentation for each use case. At a minimum, the documentation for each use
case must contain the normal flow of events. Many use cases should be fully specified,
with alternate and exception flows of events. However, it is important to recognize that
though the requirements are solid, they are not complete.

Working with poorly formed requirements or attempting to achieve perfect require-
ments ensures failure. Balance is the key. If you discover radically new use cases dur-
ing analysis, it means you quit the requirements-gathering phase too soon and that
your requirements were not solid. That said, you might find a new use case that sup-
ports an existing use case, or realize that an existing use case must be refactored into
several use cases. Certainly, you must expect to refine your understanding of each use
case during analysis.

Prioritizing Use Cases
Analysis may be performed for all of the use cases at once or for a targeted subset of
use cases, as in iterative development, hi iterative development, all of the use cases are
described during a comprehensive requirements-gathering phase. Next a set of use
cases is identified and a mini-system is developed to meet these requirements. This
mini-system is created by performing analysis, architecture, technology selection,
design, code, and test for the selected use cases. The process of building the mini-sys-
tem is an iteration. The entire system is built incrementally, with a new set of use cases
added in each iteration.

Prioritizing the use cases makes it possible to attack the most important ones
together in the first iteration. Once this first iteration is completed, the remaining use

manner, the overall project risk is minimized, and the project can build a large success
from a series of smaller successes, or overcome small failures rather than succumb to
one large failure.

A Brief Introduction to Object-Oriented Analysis with the UML 79

| It is always better to plan a series of small successes and accept the

occasional minor setback. Planning for one giant success often results in one
catastrophic failure.

Risk

Risk provides an important criterion when ordering use cases. It often makes sense to
attack risks early in the project. In this approach, a risky use case may cause the first
iteration to fail. On the bright side, there is plenty of money left in the budget and
plenty of time in the schedule so you can try other approaches. If the total schedule is
going to lengthen, it is better to find out early. Either way, this approach ultimately
reduces risk and increases the predictability of the schedule.

There are many types of risk. A use case may push the state of the art for computer
science, depend on an intricate set of interactions with the end user, or have very
restrictive nonfunctional requirements. Consider a brief example: A credit card com-
pany is developing a Web-enabled system that allows customers to check their out-
standing balance, view the last month's transactions, pay the current bill, and apply for
more credit. Experience and focus groups determine that there is no speed requirement
for the first two use cases, View Balance and View Transactions. People are used to
waiting several seconds for this sort of information.

In contrast, most people become anxious when money is changing hands. They
want the transaction completed and a printable receipt produced. So, the Pay Current
BUI use case is risky because it must meet demanding performance requirements. The
last use case seems to have a lot of risk, because it requires a computer to apply a com-
plex set of rules to a large amount of data, and produce an important answer. However,
this is hardly a new problem in the credit card industry, so in practice there may not be
much risk involved.

Significance

Some use cases capture the intent of a system, while other use cases play a supporting
role. In many systems, it is important to develop the more significant use cases in the
first iteration. The supporting use cases can often be deferred by populating the system
with fake data. By developing the more significant use cases first, developers give the
other stakeholders a chance to see the system while there is still time and budget to
change it.

Team Competency and Team Building

While it is important to pick use cases based on risk and significance, you must not for-
get the developers. Ignoring team competencies can jeopardize both the project's suc-
cess and the long-term stability of the development team. Teams that are new to one
another, new to object-oriented development, and new to some of the candidate tech-
nologies must start with a small simple set of use cases.

80 Enterprise Java with UML

What Is Object-Oriented Analysis?

Since objects do the work in an object-oriented system, object-oriented analysis must
discover the objects that make up the system, describe their responsibilities, and deter-
mine their interactions. Again, this is done without considering the development lan-
guage or technology that will be used for the objects.

There are two key advantages to deferring technology selection. First, it allows you
to solve a simpler and more generic problem. It is easy to become absorbed in the intri-
cacies of a particular technology; and focusing on these details prevents a designer
from seeing larger patterns. Also, an implementation-independent analysis model
allows for more flexibility as the solution evolves. Strange combinations of technology
shortcomings and new requirements can lead to changes in the implementation strat-
egy. An implementation-independent analysis model helps developers to create clear
designs and provides insurance against radical changes in the system architecture.

If analysis is not concerned with the specific technologies of the system, then what
questions does it answer? Analysis discovers the objects that interact to form the sys-
tem. When the analysis is completed, you have an understanding of what the objects
in the system need to do and, at a logical level, how they will do it. As you discover and
evolve this detailed understanding of the system, you invariably notice weak areas in
the requirements. It is very common for developers to revisit some use cases with the
other stakeholders during analysis.

The Analysis Model
An analysis model contains two types of diagrams, which describe the objects and then-
interactions. These diagrams are organized according to the use case model, with each
use case leading to several diagrams.

The first diagram used for analysis is the class diagram. This diagram captures each
type of object in detail. Remember that the template for creating all objects of a partic-
ular type is called a class. So, a class diagram shows the state and describes the behav-
ior that typifies the objects. The second type of diagram is an interaction diagram. This
diagram describes the interaction between objects. It shows how one object configures
another object and how other objects use an object to reach an objective.

These diagrams form two very different views of the objects that make up a system.
The first, the class diagram, shows the templates for the objects in great detail. The sec-
ond diagram, the interaction diagram, shows the object in motion.

Relationship to Use Case Model
Analysis builds on requirements gathering, so the analysis model builds on and is
structured by the use case model. Specifically, each use case in an iteration leads to a
class diagram that shows all of the different types of objects that participate in the use
case. Also, each flow of events for a use case leads to an object interaction diagram that
shows how individual objects cooperate to perform the flow of events. Finally, all of
the classes from all of the use cases are organized into groups, for consistency.

A Brief Introduction to Object-Oriented Analysis with Hie UML 81

Considering each use case separately also helps decrease the total effort for analysis.
Obviously, developers must consolidate and refactor their model of the system as addi-
tional use cases are considered, which adds to the effort. But the benefits of a divide-
and-conquer approach far outweigh the effort spent on refactoring. After all, finding
all of the objects for a moderately large system in one pass is impossible for most peo-
ple. Perhaps there is one genius in a million who, like a chess grand master or brilliant
composer, can keep the whole model in his or her head. The rest of us must be content
solving the puzzle a piece at a time.

Steps for Object-Oriented Analysis
Object-oriented analysis can be broken into several discrete steps. For each use case in
the current iteration, you need to:

1. Discover candidate objects.

2. Describe object interactions.

3. Describe the classes.

Let's look at each of these steps in more detail.

Discover Candidate Objects

The first step in creating an analysis model is object discovery. In this step, developers
find a group of objects that contribute to the solution for a use case. These objects are
used as a starting point for the next step, describing behavior.

This section has two parts. The first part enumerates some guidelines for discovering
objects. The second part discusses an actual process for discovering objects. Probably,
no two developers will perform this creative task in the exact same way; nevertheless,
this process can serve as a reasonable starting point for most developers.

In discussing objects, it is difficult to avoid discussing classes. After all, every object
is an instance of a particular class. Every class defines a type of object. In the UML, the
attributes and behavior common to a group of objects are documented in a class dia-
gram. There is no UML diagram that shows the data and behavior for an individual
object. The UML diagrams that show objects are dedicated to showing interaction and
cooperation between objects.

By discovering objects, you are implicitly discovering the classes that the
objects instantiate.

Guidelines for Discovering Objects
Before discovering objects, you should have some guidelines for the objects and classes
that you will discover. Establishing these guidelines early in the process prevents con-

81 Enterprise Java with UML

fusion between developers, and facilitates development of a coherent and consistent
analysis model. The following delineations provide some criteria and checkpoints.

• Limit the responsibilities of each analysis class.
• Use clear and consistent names for classes and methods.

Limit Responsibilities

A good class has a single clear and coherent purpose or responsibility. This makes the
class easier to understand, maintain, and extend. Simplicity and clarity of purpose also
make it easier for other parts of the system to use the class, which keeps the system
lean and elegant. Conversely, allowing large classes with many responsibilities can
cripple a project. These classes are difficult to maintain, and over time may grow
beyond the comprehension of their creators. This seems to be true for all programming
paradigms: If you allow too much functionality to reside in a single function, proce-
dure, subroutine, class, module, or stored procedure, the eventual result is an incom-
prehensible "hot potato" that is shuffled from developer to developer until everyone
retires or leaves the project.

Analysis classes may seem excessively well focused and even contrived. It may
seem odd to have a class in analysis with three methods and no data. This discomfort
leads many developers to combine analysis classes or to add unrelated responsibilities
to an existing analysis class that appears too small. Doing so is dangerous. During
detailed design and implementation, a simple analysis class may evolve into a reason-
ably complicated class or even a group of tightly coupled classes. User interface and
system interface classes invariably explode, as their full complexity is understood. In
general, creating small well-defined analysis classes is a sound philosophy. To that
end, strive to answer yes to the following questions:

1. Does each class have a single clear purpose?
2. Is this purpose clear from a one-paragraph textual description?
3. Does each method fit within the responsibility of its class?

Use Clear and Consistent Names

For a class to be useful to developers, it must be easy to understand from the outside.
This means that class names and responsibilities must be clear and unambiguous from
the perspective of other developers and, whenever possible, other stakeholders. For
instance, a class that describes part of the business problem must make sense to an
industry expert. Clear class and method names allow other developers and stake-
holder to understand and validate the analysis model. This allows developers and
stakeholders to catch mistakes and misunderstandings before they threaten the suc-
cess of the project.

By definition, an object is an independent system element, with its own data and the
capability to provide services as defined by its class. With this in mind, class names
should always be nouns that describe the nature or responsibility of the system ele-

A Brief Introduction to Object-Oriented Analysis with the UML 83

ment. This distinguishes classes and objects from methods. By tradition, class names
start with an uppercase letter and use mixed-case letters to highlight word boundaries.
Some types of objects are natural nouns. Consider a few examples from different prob-
lems, such as Employee, Timecard, LinkedList, Binary Tree, BankAccount, and Mort-
gage. In other cases, a class name is a distorted verb. This is often the case when a class
is typified by its responsibility for some action. Again, consider a few examples from
different problems, such as TaxCalculator, EventListener, PayrollProcessor, and Input-
Validator. The English language is full of verbs that have mutated into nouns: People
who teach are teachers; people who tend gardens are gardeners; people who program
computers are programmers; people who instruct are instructors.

Keep It Simple

Don't get too fancy when discovering analysis objects; that is, don't try to determine
the relationships between the objects. Don't name roles or create elaborate inheritance
hierarchies. Remember, this is your first attempt at a high-level solution. In short, don't
spend large amounts of time perfecting the first draft. Discover some objects, review
the results, and defer the details until you have found behavior.

Process for Discovering Objects
Identifying the objects that make up the system is one of the most difficult parts of
analysis. The use case model is large and elaborate while the analysis model is just a
blank sheet of paper, waiting to be filled. As with many complex and creative endeav-
ors, the hardest part is getting started. Fortunately, the object-oriented community has
identified four commonly occurring types of objects that can be used in almost every
analysis model. They are:

• Entity
• Boundary
• Control
• Lifecycle

The following sections describe them in detail.

84 Enterprise lava with UML

Entity Objects

Entity objects encapsulate the business data and business logic of the system [Jacobson,
et al. 1999]. They are generally fairly easy to find, as they are the nouns used to describe
significant parts of the problem. There are two ways to find entity objects. One
approach is to consider all of the data and behavior required to solve the problem, then
organize the data into related groups. The other approach is to identify the important
nouns as entity objects, then determine the data and behavior that each entity object
contains. While the latter is closer to object-oriented theory, reality lies somewhere in
the middle for most developers. It makes sense to make a list of all data, a list of behav-
ior, and a list of all the important-sounding nouns, then allocate the data and behavior
to different types of entity objects. During this process, you may find additional entity
objects, rename entity objects, or remove entity objects.

For example, let's find the entity objects for our reoccurring example of withdrawing
funds from bank accounts, as introduced in Chapter 2, "Gathering Requirements with
UML." Working through the normal flow of events and the activity diagram, there are
several important-sounding nouns, some data, and some behavior.

Nouns (candidate entity objects). Customer, user, account, money, receipt
Data. Personal identification number (PIN), customer name, amount for with-

drawal
Behavior. Validate PIN, withdraw funds, check for sufficient funds, dispense money,

print receipt, thank customer

First, we need to clarify the nouns, data, and behavior that we extracted from the
flow of events and the activity diagram. This leads us to perform the following
exclusions:

• Customer and user seem interchangeable, so we discard user and keep the more
descriptive customer.

• Money seems like part of a more significant entity, not an entity in its own right,
so we discard it

• Receipt does not seem very significant; it seems more oriented toward the inter-
face with the user, so we discard it.

A Brief Introduction to Object-Oriented Analysis with the UML 85

• Dispense money, print receipt, and thank customer all seem to be very specific
parts of the interface with the user, not core parts of the terminology of the prob-
lem, so we discard them.

After these exclusions, we are left with the following nouns, data, and behavior:

Nouns (candidate entity objects). Customer, account
Data. Personal identification number, customer name, amount for withdrawal

Behavior Validate PIN, withdraw funds, check for sufficient funds

Based on these lists, we can allocate data and behavior to the candidate entity
objects, as follows.

• Each customer object knows the name and PIN of the customer that it repre-
sents, and can validate the entered PIN.

• Each account object knows how much money is in the account that it represents;
it provides withdrawal funds and checks for sufficient funds as services.

• No object seems appropriate to hold the withdrawal amount, so, we introduce a
new entity object that represents the transaction.

We have discovered three distinct types of entity objects. Since each type of object is
a class in an object-oriented system, we can use the UML notation for classes to capture
the work. Figure 4.1 shows all three classes with their data and behavior. Notice the
«entity» at the top of each class box.

even antiquated. You might be tempted to improve the terminology during

analysis; you may want to update or generalize a term for the convenience of

the developers. Don't Maintain domain-specific terminology, and educate

developers to use it. Changing the terminology makes conversations with the

stakeholders difficult, and is generally impolite. After all, a term may have been

around for a few hundred years and be part of the culture of the industry.

In many cases, the industry's terminology may be obscure or

86 Enterprise Java with UML

Boundary Objects

In Chapter 2, the actors in the use case model were defined ay those people or systems
located outside of the solution system that will interact with the solution system.
Boundary objects represent how the system will interface with the actors.

Boundary objects are identified by examining the relationships between the actors
and the use cases in the use case diagram. As a rule, each actor/use case pair forms a
boundary object in the analysis model. There are two types of boundary objects:

User interfaces. Allow the system to interact with humans.
System interfaces. Allow the system to interact with other systems.

For both types, boundary objects have a very narrow focus. User interface objects are
responsible only for presenting data to the user and accepting input from the user. Sys-
tem interface objects are responsible for communicating with another system. Business
data and business rules belong in entity objects, not in boundary objects [Jacobson, et
al. 1999].

The analysis model should not contain any user interface design details.
However, user interface prototyping may be performed concurrently with

analysis, as long as it is treated as a separate effort with a separate deliverable.

Consider the banking example with a Customer actor and two use cases, Withdraw
Funds and Transfer Funds. According to the rule of thumb, there is a boundary object
for each actor/use case pair, so there are two boundary objects. This leads to two
objects withdrawFundsUI and transferFundsUI. From the normal flow of events and
the interaction diagram in Chapter 2, we see that the withdrawFundsUI has the fol-
lowing user interface-related behavior: soliciting a PIN, displaying accounts, allowing
the user to select an account, and soliciting the withdraw amount. As with entity
objects, this behavior is captured in a class diagram, since it is available to all instances
of the WithdrawFundsUI class. Figure 4.2 shows this behavior in a class diagram. Each
method is named from the perspective of the actor or object that uses the object.

Use a consistent naming scheme for user interfaces and external

systems. Many projects append the suffix view or Ul to the end of the use case
name. If more than one actor initiates the use case, the actor's name should be
incorporated.

A Brief Introduction to Object-Oriented Analysis with the UML 87

Boundary objects appear very insubstantial during analysis. They may not have any
data and may have easy-sounding responsibilities, such as "display accounts." Resist
the urge to discount or ignore boundary objects. In many cases, their functionality is a
key criterion during technology selection, and greatly influences the design and archi-
tecture of the system. Boundary objects are only "thin" during analysis, because their
responsibilities are described at a very high level.

Control Objects

Control objects provide workflow and session services to other objects. The control
object bundles the complex series of requests to the entity objects into a common work-
flow that is easily accessed by the boundary objects. A high-level message from a
boundary object to the control object is converted into a series of messages from the
control object to the entity objects. This allows the boundary object to concentrate on its
responsibilities while the domain object stays simple. As a rule, each use case has one
type of control object in the analysis model [Jacobson, et al. 1999].

The easiest way to identify control objects is to consider the system

without them.

Entity objects are simple, with a small number of well-focused responsibilities. This
means that a boundary object with a complex objective must send a complex series of
requests to the simple well-focused entity objects. The trade-off is unpleasant: either
to have heavy and less flexible entity objects or to have complex boundary objects that
are tightly coupled with the entity objects. Neither option is acceptable. Entity objects
must be simple and flexible, so that they can provide business logic and business data
for many use cases. Even well-defined user interface and system interface objects tend
to be difficult to extend and to maintain, so adding even more complexity is quite
dangerous.

Fortunately, a control object serves as an intermediary between the boundary objects
and the entity objects that cooperate in a particular use case. This allows the entity
objects to provide a simple set of services while the boundary objects defer the com-
plexity of interacting with the entity objects to the control object. Several boundary
objects may use a single type of control object for a particular use case. For example, a
Web interface and a client server interface might share a common type of control object.

88 Enterprise Java with UML

Perhaps a real-life example will make this rather abstract idea more concrete. Con-
sider a customer ordering lunch in a sub shop on North Broad Street in Philadelphia,
specifically, a nice cheese steak on a freshly baked sub roll with mayo, mushrooms,
fried onions, and sweet peppers, but no tomatoes, no lettuce. But I digress. The cus-
tomer does not shout his or her order to the short order cook; most shops would frown
on such a breach of etiquette, instead, a designated order taker or cashier accepts the
request, queries the customer for additional drink and side preferences, settles the bill,
writes down the order on a little piece of paper, and clips it to the greasy range hood.

This interaction is very simple and convenient for the customers. They do not need
to get the cook's attention or direct their efforts in any way. They do not need to sepa-
rately request fries or the drink from busy employees. Once the order is completed,
they wait in quiet anticipation.

The little piece of paper also simplifies the staff's tasks. The fry guy can fill drinks
and dish up some fries without worrying whose order it is. The cook is similarly free
to concentrate on the details of sub making; getting the ingredients together and in
proper balance, ignoring the customer's preferences, and wrapping the finished prod-
uct. In the end, the customer gets a delicious cheese steak with mayo, hot peppers and
tomato and lettuce.

So, a simple single point of contact, the order taker, simplifies life for the customer
and allows the other employees in the shop to stay focused on their individual tasks.
This is exactly the role of a control object. A control object encapsulates the interactions
with entity objects so that the boundary object can focus on the actor without making
additional demands on the entity objects.

Consider the Withdraw Funds use case. Our simple rule of thumb indicates that
there is a single type of control object for each use case. Since the use case describes a
simple workflow for withdrawing money, it seems appropriate to introduce a With-
drawFundsWorkflow class, as in Figure 4.3.

The behavior for this type of control object is determined by isolating the behavior
that is exposed by the entity objects and used by the boundary objects for the use case.
The behavior consists of validating the entered PIN, checking for sufficient funds, and
withdrawing funds. Remember, a control object does not actually verify the PIN or
withdraw funds. Instead, the control object finds and uses one or more entity objects to
process each request.

Object Lifecycle Classes

Object l i fecycle classes keep track of entity objects. Object-oriented systems contain hun-
dreds or even thousands of entity objects. These objects must be created, located, and

A Brief Introduction to Object-Oriented Analysis with the UML 89

sometimes destroyed. Control or entity objects may need to locate an entity object by
different criteria. For example, a WithdrawFundsWorkflow object needs to locate a
specific Customer object, given the name or ID of the actual customer. There may be
several ways to create an entity object. Since the logic for creating, finding, and
destroying a particular typo of entity object may be used in many use cases, it is handy
to have a single type of lifecycle object for each type of entity object. As the developer
considers each use case in turn, the lifecycle class accumulates additional behavior. As
a general rule, there is a lifecycle class for each entity class.

| Entity, boundary, and control classes have a long history as analysis
classes. Lifecycle classes, at least by this name, lack this pedigree. In fact as far
as I know, I just made up the term. In my experience, almost all designers
introduce something similar either late in analysis or very early in design. Most
designers use names from the intended implementation technology or from
their design experience. Some common examples include home, factory, and
container. None of these names seems appropriate for an analysis model, as
they all include design assumptions. While in general I frown upon the practice
of authors creating their own terms to describe existing ideas, it seems that
there is a vacuum to be filled here. So, I refer to such classes as lifecycle classes.

For the Withdraw Funds use rase, both customer and account objects are located by
particular criteria. Figure 4.4 shows that CustomerLocator lifecycle objects can locate

90 Enterprise Java with UML

Customer objects by ID or name. Similarly, the AccountLifecycle objects can locate
accounts for a specified customer.

Describe Behavior

Once you've identified entity, boundary, and controller classes, the next step is to
determine how the associated objects interact, to realize the use cases.

This section has two parts. The first part enumerates some guidelines for describing
behavior. The second part discusses an actual process for describing the interaction
between objects. As noted before, probably no two developers will perform this cre-
ative task in the exact same way, but this process can serve as a reasonable starting
point for most developers.

UML uses two diagrams to describe the interactions between objects: sequence dia-
grams and collaboration diagrams. Sequence diagrams show how objects interact over
time. A sequence diagram allows you to track complex message sequences easily, but
does not show how objects are connected. Collaboration diagrams show connections
between objects, but are not very readable for complex sequences.

Objects interact by calling methods in other objects. Objects use this mechanism to
send information, request a service, or request information. In object-oriented termi-
nology, these interactions are described as messages, which are sent from one object and
received by another. While messages are named from the perspective of the calling
object, it is important to remember that the implementation is in the receiving object.
Think of the receiver as providing some standardized service that can be called by
other objects.

To preserve your sanity, I recommend considering use cases one at a
time, developing sequence diagrams and a view of participating classes for
each use case in turn. As you add more use cases, you inevitably revise your
earlier work For instance, your understanding of the responsibilities of a
particular class often changes as you consider its role in various use cases.

Guidelines for Finding Behavior
There are four rules to follow as you identify the behavior of objects as they cooperate
to fulfill a use case:

• Make sure the messages for each type of object fit together.

• Clearly name each message.

• Completely satisfy the functionality for the use case.

• Keep it simple.

The following subsections explain these guidelines in detail.

A Brief Introduction to Object-Oriented Analysis with the UML 91

Ensure Cohesion between Methods

The methods for a class must form a coherent group, and they must fit the stated
responsibilities of the class. For instance, makeToast, makeEggs, and makejuice are
closely related behaviors that combine to fulfill the "make breakfast" responsibility.
They make perfect sense as methods in a Cook class. If we add the changeOil method,
the methods no longer form a single coherent responsibility.

You will be tempted to add a responsibility to an object that does not fit with the
existing responsibilities. The short-term convenience is not worth the long-term

Use Clear and Unambiguous Method Names

Each method must be named clearly and unambiguously from the perspective of the
calling object. A developer who wishes to use your object should not need to read your
source code to determine what the methods do. For instance, a class that has
getQuantity and getValue as its methods is not likely to earn popularity awards for its
developer. You must remember chat the audience for your method names includes
other current developers, future developers, and you after a long vacation.

Most method names can indicate the return type of the method. For instance,
getName should return a string that is the name of the object. A method called
setHeight is not expected to return anything, and almost certainly accepts a numeric
parameter that changes the height of the object.

Completely Satisfy the Use Case

You must ensure that the use case is completely realized by your objects. This requires
perseverance and good bookkeeping- Each step in each flow of events, and each activ-
ity and conditional in the activity diagram for the use case, must be traceable to one or
more methods in the objects. Since this is analysis, the method may not be well under-
stood, but it must exist.

Keep It Simple

Don't get too fancy during analysis; that means defer any nonobvious parameters and
return types until design. Also, there is no need to determine the source of each object,
so don't bother creating elaborate inheritance hierarchies or arguing over the exact
relationship between two objects. There is no need to get bogged down in the details
when the whole landscape will change and evolve during design. For now, just use
classes to hold related behaviors.

92 Enterprise Java with UML

A Process for Describing Behavior
This subsection shows how to find and describe the interactions between objects a
they cooperate to fulfill a use case. This process can be separated into three steps.

1. Add the previously identified participating objects to a sequence diagram.
2. Work forward from the actor, finding behavior as you go.
3. Validate the sequence from the end.

The following subsections build on the Withdraw Funds use case as introduced ii
Chapter 2 and on the candidate objects found In the "Discover Candidate Objects" sec
tion of this chapter.

Add Participating Objects to a Sequence Diagram

Finally it is time for the players to take the field. First, we add the actor that initiates the
use case to the sequence diagram. Next, we add the boundary object, then the control
object, then the entity objects. This pattern almost always holds true. Each use case is
initiated by an actor, so it makes sense to put the actor on first. Likewise, there is
always a single boundary object between the actor and the use case, so it makes sense
to show that object next. There is always a single control object that serves as a single
point of contact as the boundary object uses the entity objects. Finally, there may be
many entity objects, depending on the complexity of the use case. We ignore the life-
cycle objects until they are needed.

When arranging the actor and objects for a use case, you can derive the

order based on the way objects depend on one another; or you can follow the

slightly flawed mnemonic device of "simple as ABCE" for actor, boundary,

control, and entity.

Figure 4.5 shows the objects arranged in this simple pattern. Each object may show
its name, its type, and its stereotype. The name of an object is the underlined text to the

A Brief Introduction to Object-Oriented Analysis with the UML 93

left of the colon. The class that the object instantiates is the underlined text to the right
of the colon. The stereotype is at the top of the object box; it is always enclosed inside
angle brackets. In many cases, there is no need to name an object. For instance, in this
case, there is only one object of type WithdrawFundsUI, so there is no need to name it.
But because most customers have a checking and savings account, it may be useful to
name the Account object.

Work Forward from the Actor

Once the objects are arranged on the sequence diagram, we can show how they inter-
act with one another. Remember, in object-oriented terminology, one object sends a
message to another object; the actual method implementation resides inside the receiv-
ing object. Each message is named for the method that it calls.

Since the actor always initiates the use case, it must send the first message. A mes-
sage in UML is depicted as a solid arrow from one object's dashed line to another. The
order of messages from top to bottom along the lines indicates the order in which they
are sent.

Figure 4.6 shows a first attempt at the sequence diagram for the normal flow of
events for the Withdraw Funds use case. The sequence begins when the customer enters
his or her PIN. This message is received by a nameless WithdrawFundsUI boundary
object that asks a nameless WithdrawFundsWorkflow object to validate the PIN. The
WithdrawFundsWorkflow object, like all control objects, does not know how to perform
this task directly. Instead, it knows which object to ask. It asks the Customer object that
is associated with the user to validate the PIN. The return value of VALID bubbles up to
the WithdrawFundsUI object. The return value is explicitly shown because the value
affects the sequence.

Next, the WithdrawFundsUI object needs to present a list of accounts to the user. So
the WithdrawFundsUI object asks the WithdrawFundsWorkflow object for a list of
accounts. The WithdrawFundsWorkflow object asks each account for its name, and
returns a list. Notice that the return arrow is not shown for the getName messages, as
it is obvious from the method name, and the return result does not impact the flow. The
display Accounts arrow from the WithdrawFundsUI object back to the object indicates
that the object calls a method on itself to display accounts.

94 Enterprise Java with UML

Next, the customer selects an account in the WithdrawFundsUI object, which in turn
selects an account in the WithdrawFundsWorkflow object. Notice that the Withdraw-
FundsWorkftow simply absorbs the account selection for future use. Finally, the cus-
tomer enters an amount, after which the WithdrawFundsUI passes the amount to the
WithdrawFundsWorkflow object. The WithdrawFundsWorkflow object asks the sav-
ings account if the funds are available, then performs a withdrawal against the savings

Validate the Sequence

Finally, when you believe you have discovered the required methods, you must vali-
date the sequence. To do this, work backward from the end of the last sequence, asking
whether each object has the information that it needs to provide the desired services.

An account object certainly knows how much money it has, and can remove money
from itself, so the last two methods are okay. The beginning of the sequence, where the
WithdrawFundsUI object passes the amount along to the WithdrawFundsWorkflow,
seems reasonable—if you assume that the WithdrawFundsUI and the Withdraw-
FundsWorkflow objects are created as a pair of cooperating objects. The sequence also
assumes that the WithdrawFundsWorkflow object remembers the selected account.

A Brief Introduction to Object-Oriented Analysis with the UML 95

The previous sequence, in which the WithdrawFundsUI object passes the account
selection to the WithdrawFundsWorkflow seems similarly reasonable.

Working backward from the display accounts method, it is reasonable to expect each
account to know its name. It is not, however, clear how the WithdrawFundsWorkflow
object found the savings and checking accounts. There are three alternatives: First, the
Customer object can hold a list of its accounts; second, the WithdrawFundsWorkflow
object can use a locator object to find the accounts for a given customer; third, you can
defer the question until design. As long as you are consistent within your project, any
of these approaches is defensible, although I prefer the locator approach, as it provides
a convenient list of the ways that each type of object is located.

The first sequence raises a similar question. A Customer object can certainly validate
a PIN, but how did the WithdrawFundsWorkflow object find the Customer? Figure 4.7
shows the same sequence diagram with these issues resolved.

Describe the Classes

The previous step used sequence diagrams to describe the interactions between objects
for a use case. The interactions between objects require methods in classes and rela-
tionships between classes. In UML, this information is captured in a static class diagram.

Consider an object that sends a message to another object. In order to send the mes-
sage, the sender needs a reference to the receiver. This can be a permanent link, where
the sender keeps a reference to the receiver; or the sender can create a helper object,
send it a few requests, and then lose track of it. Also, the method must exist in the
receiving object. Since each class completely determines the data and behavior that its
instances have, the method must be defined in the class that was used to instantiate the
object.

This section has two parts. The first offers general guidance for describing classes
and their relationships. The second part defines and demonstrates a simple process for
describing classes based on object interactions.

Guidelines for Describing Classes
There are three rules to follow as you describe the classes that support a use case:

1. Be complete.
2. Keep it simple.
3. Maintain coherent classes.

Be Complete

Each message in a sequence diagram must have a corresponding method in the associ-
ated class. Remember, when an object sends a message to another object it is actually
calling a method that is implemented in the receiving object's class. So, every message
must match a corresponding method in a class.

A Brief Introduction to Object-Oriented Analysis with the UML 97

In order to send a message, the sending object must have a relationship that is nav-
igable toward the receiving object. The receiving object may reply with a return value
without requiring navigability toward the sender.

It is important to establish the direction of relationships between classes. As the sys-
tem evolves, you need to know how different parts of the system depend on one
another.

Keep It Simple

You don't want to miss anything completely, and you do not want to over-analyze the
problem during analysis. Remember, analysis provides a useful foundation for design,
but the actual diagrams do not need to survive past design. It is simply too difficult to
keep the analysis model synchronized as the design and architecture evolves.

However, you should not spend much time seeking out inheritance hierarchies or
determining the multiplicity of relationships. Do not spend hours arguing over aggre-
gation or composition for a relationship that may not even exist in the design model.

If information seems obvious, then include it; otherwise, be very conservative as
you spend time in analysis. Remember, the purpose of analysis is to discover and allo-

Think of the analysis model as a rough sketch. You must complete it

before you start painting with expensive oils on an expensive canvas, but you

don't frame the sketch.

Maintain Coherent Classes

Each new flow of events for each use case introduces methods for existing classes. As
this effect is multiplied over many flows of events for many use cases, it is difficult to
keep the methods in each class consistent. So, after the sequence diagrams are com-
pleted and the classes are updated to reflect the behavior discovered through the
sequence diagrams, the classes must be reexamined. Some of the methods that accu-
mulated in a class may not fit well together or may vary from the stated responsibility
of the class. In this case, the methods must be reallocated, so that each class forms a
coherent whole.

Process for Describing Classes
There are three steps in describing classes:

1. Consolidate behavior from objects to classes.
2. Refactor classes to meet guidelines.
3. Find relationships between classes.

The following subsections explain these steps and demonstrate them against the
Withdraw Funds use case.

98 Enterprise Java with UML

Consolidate Behavior

In the WithdrawFunds use case, there is only one sequence diagram, as shown in Fig-
ure 4.7, In real systems, there are many sequence diagrams per use case and one class
diagram per use case. A class that supports more than one use case will appear in each
class diagram.

The implementation for each message is located in the receiving object. Each object's
behavior is completely determined by the class it instantiates. So, for each message, we
identify the receiving object's class and make sure that the method is in the class. Also,
if a class or a method in a class is not used in any sequence diagrams, it should be
removed. Figure 4.8 shows the changes to the class diagram. The findByName method
in the CustomerLocator class, the isAmountAvailable method in the WithdrawFunds
Workflow class, and the entire Transaction class have all been removed. Two new
methods, enterAmount in the Withdraw Funds Workflow class and getName in the
Account class are added.

Refactor Classes

You must examine each class to determine if it still has a well-focused responsibility
and if the methods are cohesive. WithdrawFundsUI, AccountLocator, and Customer-
Locator are all unchanged or reduced, so they pass our criteria.

A Brief Introduction to Object-Oriented Analysis with the UML 99

WithdrawFundsWorkflow gained the enterAmount method and lost isAmount-
Available. The responsibility and nature of the WithdrawFundsWorkflow object has
not changed. It is still a simple control class that uses entity objects on the Withdraw-
FundsUI object's behalf.

Account added the getName method. It seems perfectly reasonable for an account
object to know and expose its own name, so Account is still okay.

Find Relationships between Classes

For each message, there is a dependency or association from the class of the sender to
the class of the receiver. If the sender remembers the receiver across different messages,
it is a form of association. Multiplicity can be used to describe the relationship. An
object may share use of an object or may require its undivided attention.

We use the sequence diagram shown in Figure 4.7 to determine interactions between
objects. There is a relationship between the WithdrawFundsUI class and the Withdraw
FundsWorkflow, as the WithdrawFundsUI object calls the validatePIN, getAccounts,
selectAccounts, enterAmount, and withdraw methods on the WithdrawFundsWorkflow
object. This relationship is shown in the class diagram in Figure 4.9. As there are no
messages from the WithdrawFundsWorkflow object to the WithdrawFundsUI object, it
is a unidirectional relationship. The WithdrawFundsUI object remembers the With-
drawFundsWorkflow object over time, so it does not need to find it each time the actor
enters data. It is not clear how the WithdrawFundsUI object gets an initial reference to
the WithdrawFundsWorkflow object, but for now, we accept that they are a closely
cooperating pair of objects.

Notice that the WithdrawFundsWorkflow object remembers information, such as
the selected account and the amount to withdraw, for the WithdrawFundsUI. This
implies that each WithdrawFundsWorkflow object is dedicated to a single Withdraw
FundsUI. This dedication is captured by the multiplicity number, which is closest to
the WithdrawFundsUI class. Reading the relationship from the WithdrawFunds
Workflow to the WithdrawFundsUI results in: "Each WithdrawFundsWorkflow object
is known about by exactly one WithdrawFundsUI object." Each WithdrawFundsUI
needs to use the same WithdrawFundsWorkflow object every time it receives input
from the actor, so it keeps a reference to exactly one WithdrawFundsWorkflow object.
This is indicated by the number 1 next to the WithdrawFundsWorkflow class.

There is only one CustomerLocator object that is shared by all WithdrawFunds
Workflow objects. There can, however, be more than one WithdrawFundsWorkflow
object at a time, as each actor using the system gets his or her own WithdrawFundsUI
object, which in turn gets its own WithdrawFundsWorkflow object. This is indicated by
the asterisk (*) next to the WithdrawFundsWorkflow class and the number 1 next to
the CustomerLocator class. The same logic determines the relationship between the
WithdrawFundsWorkflow class and the AccountLocator class.

Clearly, there is some sort of relationship between the WithdrawFundsWorkflow
class and the Customer class, as the WithdrawFundsWorkflow object sends a vali-
datePIN method to a Customer object. However, once the validation returns, the With-
drawFundsWorkflow object never uses the Customer object again. It is possible in an
alternate flow that the WithdrawFundsWorkflow object might remember the Cus-

100 Enterprise Java with UML

Figure 4.9 Class diagram with relationships.

tomer object, perhaps so it can retry different PINs as the actor enters them. However,
we have only one sequence diagram, and it doesn't show any such memory or subse-
quent use. So, the relationship is a dependency.

There is clearly an association relationship between the Withdraw Funds Workflow
class and the Account class, as the WithdrawFundsWorkflow object locates some
Account objects, retrieves their names, then remembers them. Notice that the multi-
plicity of the WithdrawFunds Workflow objects is left unspecified. This process has just
raised an interesting question: If a user can log in twice, can there be two Withdraw

A Brief Introduction to Object-Oriented Analysis with the UML 101

FundsUI objects, each with a WithdrawFundsWorkflow object? Each Withdraw
FundsWorkflow object would use the same Account objects. So, if multiple logins are
allowed, the multiplicity is *; otherwise, it is 1.

The Next Step

This chapter described and demonstrated techniques for understanding the problem
from a developer's perspective. Analysis describes the solution in terms of cooperating
objects and the classes that define them. It focuses on the responsibilities and behavior
of these objects, while ignoring the implementation technology.

This provides a solid foundation for subsequent technology selection, architecture,
and design efforts. Without analysis, developers are forced to simultaneously under-
stand the solution and the problem. This often leads to hasty or flawed decisions.

The next chapter reinforces the techniques and principles covered in this chapter,
and continues the sample timecard system introduced in Chapter 2, "Gathering
Requirements with UML."

Analysis Model for the
Timecard Application

Now that we've walked through the steps for the analysis phase, let's walk through an
example. So far, we've gathered the requirements for our timecard application. The
next step is to analyze the requirements and translate them into a language that the
developers can understand. Remember that we're not interested in the specific tech-
nologies yet; we're focusing on the model of how the system internals will work.

This chapter expands on the material from Chapter 4, "A Brief Introduction to
Object-Oriented Analysis with the UML." It provides a small but fairly representative
example of the art and science of object-oriented analysis.

•NOTE The example in this chapter is continued throughout the book, so it is

recommended that even experienced object-oriented practitioners at least skim
the information.

Let's begin by walking through each step, from prioritizing the use cases to discov-
ering candidate objects and interactions to, finally, describing the classes in detail.

Prioritizing the Use Cases

Each use case must be ranked according to its risk, its significance to the user and to the
architecture, and its suitability given the skills of the team. Once the use cases are

103

104 Enterprise Java with UML

ranked in these categories, we must determine which subset of the use cases is most
important and makes sense in the first iteration of the system. This process often
involves trade-offs and compromise. For example, a use case might be very risky,
which would lead us to include it in the first iteration. However, if the team is com-
pletely unprepared to succeed with that same use case, then a less risky and more
achievable use case must be selected as a compromise.

The Ranking System
To make life easier, risk, significance, and suitability are forced into a simple qualitative
ranking system from 1 to 5. The higher the number, the more suitable the use case is for

In Chapter 3, "Gathering Requirements for the Timecard Application," we identi-
fied six use cases for the sample timecard application. Figure 5.1 shows the high-level
use case diagram. We must describe each use case in terms of its risk, significance, and
its suitability given the current state of the team.

Analysis Model tor the Timecard Application 105

Risk

When possible, you should attack risky parts of the system early in the develop-
ment cycle. Then, if the first approach fails, there is still time and opportunity to try
alternatives.

Before considering the risks involved with each use case, you must develop a list of
risks for the project. The following risks are common to many projects, and so can serve
as a starting point as you list the risks for your project.

• Unacceptable system performance
• Unacceptable user interface
• Schedule uncertainty and schedule length
• Inability to adapt to new requirements

After some consideration, we determine that the user Interface is fairly straightfor-
ward. We also realize that performance may be critical, as the end users are very busy
and will not appreciate any delays due to the timecard system. Due to our experience
on previous projects, we know that the stakeholders invariably increase the system's
scope over time and that the stakeholders expect the new features to fit seamlessly into
the existing system. Therefore, we order the risks as follows, and resolve to consider
each use case with respect to the risks.

1. Unacceptable system performance
2. Inability to adapt to new requirements
3. Schedule uncertainty and schedule length
4. Unacceptable user interface

Before we rank each use case according to risk, we need a simple descriptive way of
expressing different levels of risk. To that end, we ask developers if they are sure they
can solve the problem on their first try, and make them pick from the following to
answer:

1. Of course; our project team has solved that problem before.
2. Certainly; our organization has solved that problem before.
3. There are third-party products, training, books, or other technical resources

available, but we do not have any in-house experience.
4. Maybe; we have heard of similar problems being solved.
5. I hope so, but we will be breaking new ground.

As we will see in the use case evaluations, this simple risk "spectrum" helps identify
high-risk use cases that must be considered for inclusion in the next iteration.

Significance

A use case is significant to the user and to the architecture if it is close to the core vision
of the system. A significant use case captures the flavor and intent of a system. Other

106 Enterprise lava with UML

use cases may be very important, but in a supporting role. For example, the timecard
system cannot function without the Add Employee use case. On the other hand, the
Record Time and Export Time Entries use cases completely capture the intent of the
system.

Significance can be measured by asking developers how users would react if the use
case were omitted from the iteration or replaced with simulated results. Make them
pick from the following to answer this question:

1. They would barely notice, and they could easily use the system without it.
2. They would notice; but with a little imagination, the system would still make

perfect sense.
3. Most of the system could exist independently.
4. Some parts of the system could exist independently.
5- The system would be impossible to use without it.

As we will see in the use case evaluations, this simple spectrum helps identify very
significant use cases that must be considered for inclusion in the next iteration.

Suitability

A use case is suitable for the current project team if they can start working on it with a
minimum of training and a relatively short learning curve. These two criteria are espe-
cially important when new technologies, languages, and development techniques are
introduced to an organization.

Many organizations adapt to new technologies and techniques by putting their best
people on a superhigh-profile project. After all, the hype says that object-oriented
development and Java is the wave of the future, so why not invest in a week or two of
training for the brightest people in the company and then watch them revolutionize
the company under intense schedule pressure? Of course, this is backward thinking,
because the company simultaneously alienates their best and brightest while making
them substantially more marketable.

It takes at least six months to become proficient in a completely new way of thinking,
and at least two or three months to become truly proficient in a new language and devel-
opment environment. Development teams need time and practice under relatively low
pressure so that they can develop proficiency and confidence in the new techniques.

Since we are picking use cases for the first iteration and have not selected any tech-
nologies yet, it may be difficult to determine exactly how much the developers will
need to learn. In contrast, in the real world, project teams generally know whether they
will be adopting a new technique, such as object-oriented development. Also, they
generally know the language or family of languages that will be used. With this in
mind, we ask the developers to describe their comfort level with the technology and
techniques, and tell them to choose from the following answers:

1. The team definitely needs more seasoning before attempting this use case.
2. The team's capabilities are probably sufficient for this use case, but may improve

substantially over the course of a single iteration.

Analysis Model for the Timecard Application 107

3. The team's capabilities are probably sufficient and are unlikely to improve over
the course of a single iteration.

4. There is no need for more seasoning. Either the team is already quite experi-
enced or the use case is sufficiently straightforward.

5. There is no need for more seasoning. The team is experienced and the use case is
straightforward. Money in the bank.

As we will see in the use case evaluations, this simple spectrum helps protect the
development team by excluding inappropriate use cases from the next iteration.

For our examples, let's assume that we have a reasonably seasoned team. Most of
the developers have at least a year of experience with object-oriented development,
and almost everyone has at least a year of experience with Java and at least a year of
experience developing software that uses relational databases.

Let's walk through each use case and evaluate them according to risk, signifi-
cance, and suitability. This will tell us which use cases should be included in the first
iteration.

Evaluation of the Export Time Entries
Use Case

The Export Time Entries use case allows administrative users to export a specified
range of time entries to a formatted XML file.

Risk

Certainly, there is some performance risk involved, since the system must extract
significant blocks of data from a set of data that grows larger with every new employee
and with the passage of time. This activity could be performed during off-peak

• This use case must be extensible, because the criteria for extracting timecard
entries may evolve and become more sophisticated over time.

• This use case is fairly easy to estimate, since it is simply a matter of finding time-
card entries and writing the data to a flat file.

• The use interface is very straightforward, so there is no real risk of delivering an
overly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 2, "Certainly; our orga-
nization has solved that problem before," seems applicable.

Significance

This is a very significant use case. The whole point of a timecard system is to collect
and retrieve timecard entries for a variety of purposes. Level 5, "The system would be
impossible to use without it," is well justified.

108 Enterprise Java with UML

Suitability

This use case is relatively straightforward, and the team is certainly ready. Level 4,
"There is no need for more seasoning. Either the team is already quite experienced or
the use case is sufficiently straightforward," seems appropriate.

Conclusion

Due to the high significance, this use case is very desirable as part of the first iteration.
Including it would build credibility with the customer and provide architecturally sig-
nificant functionality.

Evaluation of the Create Charge Code
Use Case
The Create Charge Code use case allows administrative users to add charge codes for
use by the employees as they enter their hours.

Risk

There is virtually no performance risk, since charge codes are added infrequently and
contain very small amounts of data.

• The use case seems very well understood, so the extensibility risk is low.
• This use case is fairly easy to estimate, since it is simply a matter of adding data

to the system.
• The use interface is very straightforward, so there is no real risk of delivering an

overly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

While it is certainly very important in the final system, the Create Charge Code use
case is more of a support use case. During preliminary iterations, the customer is
unlikely to notice the difference between simulated charge codes and charge codes that
are entered through the system. Level 1, "They would barely notice, and they could
easily use the system without it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
case is straightforward. Money in the bank," describes the development team's readi-

Analysis Model for the Timeiard Application 109

Conclusion

In the absence of any significant risk or significance, there is no compelling reason to
consider this use case for the first iteration.

Evaluation of the Change Password
Use Case
The Change Password use case allows any current user to change his or her password.

Risk

There is virtually no performance risk, since passwords are changed infrequently and
contain very small amounts of data.

• The use case seems very well understood, so the extensibility risk is low.
• This use case is fairly easy to estimate, since it is simply a matter of changing

data in the system.
• The use interface is very straightforward, so there is no real risk of delivering an

overly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

Like the Create Charge Code use case, the Change Password use case provides sup-
porting functionality. Level 1, "They would barely notice, and they could easily use the
system without it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
case is straightforward. Money in the bank," describes the development team's readi-
ness for this use case.

Conclusion

The relatively low risk and lack of significance indicates that this use case can be omit-
ted from the first iteration. Certainly it is important to the project, but it can be deferred
without affecting the stakeholders as they evaluate the system or the developers as
they design the system.

Evaluation of the Login Use Case
The Login use case allows any current user to validate his or her identity to the system
as a prerequisite to performing the other more interesting use cases.

110 Enterprise lava with UML

Risk

There is some performance risk, since large numbers of users may log in at the same
time. However, logging in is a fairly straightforward process and does not involve a lot
of data or calculation. The performance risk is low.

• Login is a very well-understood use case, so there is little extensibility risk.

• Login does not present much schedule risk, since it is very small and well
focused.

• There is no risk of an unacceptable user interface.

Level 1, "Of course; our project team has solved that problem before," describes the
Login use case perfectly.

Significance

The final system would be completely unacceptable without the Login use case, but
the end users could certainly evaluate the system without it. Still, the developers need
to make sure that their architecture supports this use case even if it is not included in
the first iteration.

Level 2, "They would notice, but with a little imagination, the system would still
make perfect sense," seems appropriate.

Suitability

Level 4, "There is no need for more seasoning. Either the team is already quite experi-
enced, or the use case is sufficiently straightforward," seems very appropriate.

Conclusion

With some reservations due to the use case's architectural significance, Login is not
essential for the first iteration.

Evaluation of the Record Time Use Case
The Record Time use case allows any user to enter his or her hours for the current time
period.

Risk

The performance risk is very significant, as many users will record their time in the last
few working hours of each time period. Also, users are rarely willing to accept poor
performance while performing "nuisance" tasks. For instance, people may be willing
to wait 15 minutes for a funny video clip to download and queue up, but they become
aggravated if they have to wait three minutes in a grocery store line. Filling in a time-
card generally falls into the category of undesirable tasks, so performance pr6b\eitis
must be avoided.

Analysis Model for the Timetard Application 111

• The use case seems very well understood, so the extensibility risk is low.
• Any estimate for this use case will be complicated by the complexity and perfor-

mance requirements.
• The user interface is fairly complex, with charge code selection, comments for

entries, and an editable matrix of time entries.

The Record Time use case is fairly risky, due to the performance requirements and
user interface complexity. Level 3, "There are third-party products, training, books, or
other technical resources available, but we do not have any in-house experience," is
appropriate.

Significance

The Record Time use case is very significant, as it captures the intent of the timecard
system. It is difficult to imagine an iteration without this use case. Level 5, "The system
would be impossible to use without it," seems completely justified.

Suitability

The same complexity and risk that drives us to include this use case in the first itera-
tion also forces us to carefully evaluate its suitability for the team. Level 2, "The team's
capabilities are probably sufficient for this use case, but may improve substantially
over the course of a single iteration," seems appropriate.

Conclusion

Clearly, many factors encourage us to include the Record Time use case in the first iter-
ation. However, due to its complexity, we might want to manage the stakeholders'
expectations by spreading complete development of the use case over the first two iter-
ations. For example, the first iteration might include the complete user interface but
defer performance goals to the next iteration.

Evaluation of the Create Employee
Use Case
The Create Employee use case allows an administrative user to add an employee to the
system.

Risk

There is virtually no performance risk, since employees are added infrequently, and
the process requires very small amounts of data.

• The use case seems very well understood, so the extensibility risk is low.
• This use case is fairly easy to estimate, since it is simply a matter of adding data

to the system.

112 Enterprise Java with UML

• The user interface is very straightforward, so there is no real risk of delivering anoverly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

Though very important in the final system, the Create Employee use case is more of a
support use case. During preliminary iterations, the customer is unlikely to notice the
difference between simulated employees and actual employees entered through the
system. Level 1, "They would barely notice, and they could easily use the system with-
out it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
case is straightforward. Money in the bank," describes the development team's readi-
ness for this use case.

Conclusion

In the absence of any significant risk or significance, there is no compelling reason to
consider this use case for the first iteration.

Select Use Cases for the First Iteration

iteration based on risk and significance. Record Time and Export Time Entries defi-
nitely belong in the first iteration. Create Employee, Create Charge Code, and Change
Password should all be deferred. Login could easily be deferred, but we will include it
to make the first iteration more realistic.

By putting all of the architecturally significant use cases in a single iteration, we give
the stakeholders a clear impression of the system after the first iteration, while the
developers can ensure the integration of the solutions to these key use cases.

Now that we have selected the use cases for the first iteration, let's perform the
remaining analysis steps for those use cases.

Discover Candidate Objects

[n this step, developers find candidate objects that interact to provide the functionalil
as described in the use cases. Remember, this process is greatly simplified by dividir
objects into four categories: entity, boundary, control, and lifecycle.

While discovering objects, it is important to limit the responsibilities for each obje
and to use clear and consistent names for each object and for each method in each objei

Analysis Model for the Timecard Application 113

Since we are just starting analysis, we will not spend time determining the relation-
ships between objects. These relationships are clarified in the remaining steps of the
process. Also, there is no point in specifying the type of every attribute or in creating
elaborate inheritance hierarchies. We will keep it simple, and not try to perfect the
rough draft.

Discover Entity Objects
For each use case, we search each flow of events to find nouns, data, and behavior.
Nouns may become entity objects, the data may become attributes of the objects, and
the behavior is allocated to one or more objects. The nouns for each use case are con-
sidered separately before considering them together.

Record Time Use Case

Working through the normal flow of events, we highlight the following candidate
objects and data:

1. The employee sees any previously entered data for the current time period.

2. The employee selects a charge number from all available charge numbers, orga-
nized by client and project.

3. The employee selects a day from the time period.

4. The employee enters the hours worked as a positive decimal number.

5. The new hours are added to the view and are seen in any subsequent views.

The following pieces are highlighted in the first alternate flow of events—employee
edits existing data:

1. The employee sees previously entered data for the current time period.

2. The employee selects an existing entry.
3. The employee changes the charge number and/or the hours worked.

4. The new information is updated in the view and is seen in any subsequent

The following pieces are highlighted in the next alternate flow of events—employee
submits timecard as complete:

1. The employee sees any previously entered data for the current time period.

2. The employee elects to submit the timecard.

3. The employee is asked to confirm his or her choice and warned that he or she
will not be able to edit his or her entries.

4. The timecard is submitted; it is no longer available for editing.

The remaining flows of events do not introduce any new information, so we move on.
Next, we produce a simple alphabetic list of nouns, then judge each one. This

process weeds out unneeded and duplicate entity objects. It also identifies nouns that

114 Enterprise Java with UML

are more appropriate as attributes inside an object as opposed to an independent
object.

1. charge code
2. charge number

Clearly, charge code and charge number are synonyms. Since charge code is more
common in the other documentation, we discard charge number and keep charge code
as a type of entity object.

3. client

Client also seems like a reasonable type of entity object.

4. day

Day does not seem like an independent type of object. Instead, it seems like data
within an object.

5. employee

An employee seems like an independent entity object.

6. existing entry

An entry in a timecard may be the object that holds the day. We tentatively make this
a type of entity object.

7. hours

8. hours worked

Hours and hours worked are synonyms, but hours worked is far more descriptive,
so we discard hours. Hours worked becomes data in the newly discovered entry
objects. This convinces us that the entry object is justified.

9. previously entered data

Previously entered data duplicates entry, so we discard it.

10. project

Project becomes a type of entity object.

11. timecard

Timecard becomes a type of entity object.

12. time period

Time period describes a timecard, so it becomes data inside each timecard object.13. view

View objects are boundary objects, so we reject view.
We're done with the Record Time use case. Our entity objects are: charge code,

client, employee, existing entry, hours worked, project, and timecard.

Analysis Model for the Timecard Application 115

Export Time Entries Use Case

Working through the normal flow of events, we highlight the following candidate
objects and data for the Export Time Entries use case:

1. The administrative user selects a range of dates.
2. The administrative user selects a subset of clients or all.

3. The administrative user selects a subset of employees or all.

4. The administrative user selects a target file.
5. The data is exported to the file as formatted XML. The administrative user is

notified when the process is complete.

Next, we produce a simple alphabetic list of nouns, then judge each one.

1. administrative user

Administrative user seems plausible as an entity object.

2. clients

Client has already been identified as a type of entity object.

3. formatted XML

This sounds more like a description of the output file than a type of entity object.

4. data

This data refers to a group of entries from a group of timecards. Since these are
already entity objects, no new objects are needed.

5. employees

Employee is already a type of entity object.

6. range of dates

Range of dates sounds like data within another object. We add a new entity object;
export request, even though it did not show up in the flow of events.

7. target file

This could easily be held as data inside the export request.
So, this use case gives us two new entity objects: administrative user and export

request. Now, let's look at the next use case.

Login Use Case

Working through the normal flow of events, we highlight the following candidate
objects and data for the Login use case:

1. The administrative user or employee supplies a username and password.
2. The user is authenticated as either an administrative user or an employee. This

is not a choice during the login; it is determined by the username.

116 Enterprise lava with UML

Now we produce a simple alphabetic list of nouns, then judge each one.

1. administrative user

Administrative user has already been identified as a type of entity object,

2. employee

Employee has already been identified as a type of entity object.

3. password

Password seems more appropriate as data within the employee and administrative
user objects.

User is just a generic reference to an employee or administrative user.

5. username

Username seems more appropriate as data within the employee and administrative
user objects.

After evaluating this use case, there are no new entity objects to add to our list.

Consolidate the Entity Objects

Our list of entity objects looks like this:

administrative user
charge code
client
employee
existing entry
hours worked
project
timecard

The only two types of entity objects that seem similar are administrative user and
employee. They are both types of users, one with administrative privileges and one
without. So, we decide to eliminate both types of objects and add user.

The class diagram in Figure 5.2 shows the different types of the entity objects.

Discover Boundary Objects

Our next step is to identify the boundary objects for our use cases. Remember the rule
for boundary objects in analysis: one boundary object per actor/use case parr.

For the Export Time Entries use case, this leads to a boundary object that serves as an
interface between the administrative user and the system. It also leads to a boundary-
object that serves as an interface between the system and the external billing system.

Analysis Model lor the Timemd Application 117

«entity»
Client

«entity»
Project

«entity»
Charge Code

Figure 5.2 Entity classes.

For the Record Time use case, the rule leads to two boundary objects, one that serves
as an interface between the administrative user and the system and one that serves as
an interface between regular employees and the system. This is true despite our earlier
decision to merge the administrative user and the employee into a single entity object.
Boundary objects are discovered based on the way people or external systems use the
system, not on how they are represented inside the system.

For the Login use case, the rule leads to two boundary objects, one that serves as an
interface between the administrative user and the system and one that serves as an
interface between employees and the system.

Following a standard naming convention simplifies this process. We use UI as a suf-
fix for any user interface objects and Systemlnterface for any system interfaces. If more
than one actor initiates the use case, the boundary classes must be named distinctly.
Applying these guidelines to the preceding decisions leads to the boundary classes in
Figure 5.3.

5.3 Boundary classes.

118 Enterprise Java with UML

Discover Control Classes
The rule for control classes in analysis is one type of control object per use case. A con-
trol object encapsulates the workflow for the use case. This allows the entity objects to
stay well focused while the control object provides a simple interface to the boundary
objects.

When devising a name for a type of control object, remember to keep it simple. It
makes sense to pick a reasonable suffix, such as Workflow and stick with it. In many
cases, simply adding Workflow to the use case name is sufficient. No points are given
for style. Simplicity and consistency are far more important.

• For the Export Time Entries use case, this leads to a control class called Export-
TimeEntriesWorkflow.

• For the Record Time use case, this leads to a control class called RecordTime-
Workflow.

• For the Login use case, this leads to a control class called Login Workflow.

Figure 5.4 shows these control classes.

Discover Lifecycle Classes
There is no easy rule for discovering lifecycle classes. A lifecycle object is used to cre-
ate, locate, and destroy entity objects. In analysis, a lifecycle class allows developers to
consolidate the different ways a certain type of entity object is located and created.

In many cases, it makes sense to see how entity objects are used before creating life-
cycle classes. Therefore, we will not attempt to discover any lifcycle classes at this point.
Instead, we will defer their discovery to the next step, describe object interactions.

Describe Object Interactions

In this step, we use sequence diagrams to model the interaction and cooperation
between objects as they fulfill a use case. This requires a sequence diagram for each
flow of events and a class diagram for each use case. The class diagram shows all of the
classes that define the objects that participate in the sequence diagrams.

During this step, we use the flows of events and the activity diagram for the use
case, as well as the entity, boundary, and control classes that we discovered in the pre-
vious step.

Figure 5.4 Control classes.

Analysis Model for the Timecard Application 119

It is often helpful to discover some behavior for each class before starting the
sequence diagrams. These methods often help shape the sequences, and they can
always be moved or removed if they do not fit. This is especially true for developers
who are migrating to object-oriented development from procedural development.
Novice object-oriented developers tend to mutate the objects into verbs and the meth-
ods into data, as in a data flow diagram. Finding the objects and some methods in a
separate step helps prevent this natural tendency.

•WARNING Objects should be nouns, and methods should be verbs. If your

sequence diagram has verbs for the objects and nouns for the methods, you are

reverting to procedural habits by creating data flow diagrams.

Add Tentative Behavior for Login

Walking through the normal flow in the activity diagram, we see that the system asks
for the username and password. Clearly, this must be performed by the LoginUT
objects, as they handle all interactions with the external actors. So we add a display-
LoginForm method to both user interface classes.

Next, the actor enters values for the username and password. The actor must some-
how indicate that he or she is done, so we add a submitNameAndPassword method to
the user interface classes.

In the next activity, the system verifies the username and password. Clearly, this
business logic does not belong in the boundary objects. We give the responsibility to
the LoginWorkflow objects by adding the validateLogin method to the LoginWorkflow
class. However, the LoginWorkflow object will not actually know whether a particular
name and password pair is valid. Since the user objects already have this information,
we make the LoginWorkflow object find the right user and ask him or her to validate
the login, so we add a validateLogin method to the User class. For the LoginWorkflow
object to find the right user, we need a lifecycle object that searches for users by user-
name, so, we create a UserLocator class with a findByName method.

In the final activity of the normal flow, the system welcomes the user, so we add a
displayWelcome method to the user interface classes.

Walking through the activity diagram lets us find behavior and allocate methods to
the classes identified earlier. All of these decisions are captured in Figure 5.5. Next, we
must use a sequence diagram to visualize and verify this behavior.

Build Sequence Diagrams for Login
Now that we have identified several types of objects, and allocated responsibilities to
them, we must show how the objects work together. First, we arrange the initiating
actor and the objects on a sequence diagram. Since the actor initiates the sequence, we
place the actor in the top left. Since the actor interacts with the system through the
boundary object, we place the boundary object to the immediate right of the actor.
Since the control object serves as a single point of contact between the boundary object
and the entity objects, we place the control object between them.

120 Enterprise Java with UML

«bo u n d a ry»
AdministrativeLoginUI

+displayLoginFormO
+displayWelcome()
+su bmitNameAndPassword Q

«boundary»
EmployeeLoginUl

+displayLoginFormO
+displayWelcomeO
+submitNameAndPassword()

Figure 5.5 Participating classes for Login.

We repeat this process for the normal flow and some of the alternate flows. At some
point, the sequence diagrams become repetitive, so we stop making them. Deciding
when to stop is a delicate balancing act; including too few sequence diagrams leads to
missed behavior, while too many sequence diagrams leads to extra work, as each
sequence diagram must be kept up to date and improved throughout the analysis and
design process.

Normal Flow for Login

The actor asks the boundary EmployeeLoginUl object to display the login form. The
actor then fills in username and password and submits them to the system. The
EmployeeLoginUl object asks the control LoginWorkflow object to validate the login
workflow. To satisfy this request, the LoginWorkflow object asks the UserLocator
object to find the User object that corresponds to the name. Once the LoginWorkflow
object gets the right User object, it asks it to validate the password. Once the Login-
Workflow object receives a response, it passes it back to the EmployeeLoginUl object.
When the EmployeeLoginUl object receives the valid response, it displays a welcome
message, and the flow is complete. Figure 5.6 shows this sequence.

Analysis model lor lilt Timecatd Application 121

Figure 5.6 Sequence diagram for the normal flow of Login.

Alternate Flow for Invalid Password

This sequence proceeds exactly as in the normal flow, until the User object responds
with INVALID to the validateLogin method. This response is propagated up to the
EmployeeLoginUI, which must display an invalid password message to the actor.
Since there is no method in the EmployeeLoginUI, we add one, displayError message.
Figure 5.7 shows the complete sequence.

Alternate Flow for Unknown User

This sequence proceeds exactly as in the normal flow, until the UserLocator responds
with a NULL when asked to locate the user by his or her name. Obviously, the Login-
Workflow cannot ask an unknown User object to validate the password, so it returns
INVALID to the EmployeeLoginUI object. As in the sequence for the Invalid password,
the EmployeeLoginUt calls its own displayErrorMessage method.

Enterprise lava with UMt

Figure 5.7 Alternate flow for invalid password.

Validate Sequences for Login
In the previous sequences, we found behavior by following the flow of events forward. No1

we must verify the sequences by going backward through each sequence. At each step, v,
determine whether the object has the information it needs to respond to the request.

Normal Flow

The last method call is display Welcome from the EmployeeLoginUI to itself. Certainly, the
EmployeeLoginUi can greet the user by his or her username.

The previous method is from the LoginWorkflow object, which asks the User object to val-
idate the login. The LoginWorkflow object knows about the User object because it just asked
the UserLocator object to find it. Since each User object has a username and a password, it can
easily determine whether the password matches.

The previous method is the LoginWorkflow, which asks the UserLocator to find the User
object that corresponds to the username. Though it is not dear how the LoginWorkflow object
knows the UserLocator object, it is safe to assume that any object can use the dedicated User-

Analysis Model for the Timecard Application 123

Figure 5.8 Alternate flow for unknown user.

Locator object. The details are deferred until design. Certainly, the UserLocator must
be able to locate any User object; that is its job.

The previous method is the EmployeeLoginUI object, which asks the LoginWork-
flow object to validate the login. Though it is unclear how the EmployeeLoginUT object
knows about the LoginWorkflow object, it is reasonable to assume that these two
objects are a cooperating pair, and that either the EmployeeLoginUI created the Login-
Workflow or they were both created by the same application-level object. Again,
this detail is deferred until design. While the LoginWorkflow cannot perform this task
on its own, it knows where to go for this information. This is the nature of control
objects.

Certainly, the Employ eeLoginUI object knows how to display the login form and
accept user input. It is unclear how the actor and EmployeeLoginUI are hooked
together. This depends on the implementation strategy, and may be profitably deferred
until design.

124 Enterprise Java with UML

Sequence Diagrams and Class Diagrams
for the Remaining Use Cases

The sequence diagrams and class diagrams for the Export Time Entries and Record
Time use cases are shown in Figures 5.9 through 5.13 with little explanation. These dia-
grams complete the analysis model that is used as a basis for the remainder of the
book, but they do not introduce any new techniques or issues.

Figure 5.9 Participating classes for Export Time Entries.

Analysis Model for the Timecard Application 125

126 Enterprise Java wia UMl

Figure 5.11 Participating classes for Record Time.

Describe Classes

In this step, we determine the relationships between classes that are required to sup-
port the interaction between objects in the flow of events. This is accomplished by cre-
ating a class diagram for each use case. This means that several sequence diagrams
contribute to each class diagram.

Remember, each time an object calls a method in another object there is a relation-
ship between the objects. This relationship is captured in the class diagram. In analy-
sis, we want to fully specify the relationships between entity classes while loosely
specifying the relationships between boundary and control classes and between con-
trol and entity classes. Of course, we should determine that a relationship exists and
determine its direction. However, any decisions as to multiplicity or type of association
are pure speculation. Different technologies and different techniques lead to different
patterns of association.

Determining the need for a relationship is simple bookkeeping. Every message from
one object to another requires a relationship from the sending object's class to the
receiving object's class- Determining the type of the relationship is a bit more complex.

Analysis Model for the Timecard Application 127

Figure 5.12 Normal flow for Record Time.

Find Relationships for Login
We find relationships by working forward in the sequence diagram for the normal flow
of the Login use case. The EmployeeLoginUI object calls the vaiidateLogin method in
the LoginWorkflow object. This implies a relationship from the Em ploy eeLoginUI
class to the LoginWorkflow class. There is also a relationship from the LoginWorkflow
class to the User class and the UserLocator class. The return values do not indicate rela-
tionships, since an object does not need a reference to provide a response.

Now that we have determined the direction of the relationship, we consider the type
of each relationship. At first, it seems as if there is no reason for the EmployeeLoginUI

It is a dependency if the sending object creates the receiving object, uses it, then loses
it, or if the sending object receives the receiving object as a method parameter, uses it,
and fails to keep it. During analysis, this may be difficult to determine, as there are no
method parameters. Fortunately, these decisions are not important during analysis.

128 Enterprise Hva with UML

Figure 5.13 Submit timecard flow for Record Time.

object to keep a reference to the Login Workflow object. However, a quick glance at
the activity diagram for the Login use case shows that the EmployeeLoginUT
allows the user to reenter his or her username and password. It makes sense for the
EmployeeLoginUI object to keep a reference to the LoginWorkflow object, so the rela-
tionship is an association.

The relationship between the LoginWorkflow object and the UserLocator object fol-
lows the same logic. The LoginWorkflow object should keep a reference in case it needs
it for subsequent login attempts, so the relationship is an association.

The LoginWorkflow object does not need to keep a reference to the User object, as
the LoginWorkflow object looks up the User object each time, so the relationship is a
dependency.

Figure 5.14 shows these relationships.

Find Relationships for Export
Time Entries
The ExportEntriesUI object uses the ClientLocator object and the UserLocator object It
also uses the ExportEntriesWorkflow object. The ExportEntriesWorkflow object uses
the EntryLocator object, the BillingSystemInterface object, and many Entry objects. No
object is reused, so all of the relationships may be treated as dependencies.

Analysis Model for the Titnecard Application 129

Figure 5.14 Participating classes for Login.

Notice that the ExportEntriesUI object interacts directly with the ClientLocator and
the UserLocator, rather than going through the control object. The class diagram high-
lights this deviation from our normal pattern.

Figure 5.15 shows these relationships.

Find Relationships for Record Time
The RecordTimeUI object uses the RecordTimeWorkflow object, which in turn uses the
User object and the Timecard object.

The RecordTimeUI object keeps a reference to the RecordTimeWorkflow object, and
uses it to update the entries, so the relationship is an association.

The RecordTimeWorkflow object keeps a reference to the User object. This object is
used when the RecordTimeWorkflow object submits the old timecard and replaces it
with a new trmecard, so the relationship is an association.

The RecordTimeWorkflow object keeps a reference to the Timecard object. This
object is used when the RecordTimeWorkflow object sets the entries for the Timecard
object, so the relationship is an association.

Figure 5.16 shows these relationships.

130 Enterprise Java with UML

Figure 5.15 Participating classes for Export Time Entries.

Analysis Model for the Timeiard Application 131

Figure 5.16 Participating classes for Record Time.

The Next Step

This chapter focused on some of the use cases, based on their risk, significance, and
suitability. For each of these use cases, we used the flows of events to find some entity,
control, and boundary objects. In the next step, we use sequence diagrams to describe
the interactions between the objects. Finally, we use class diagrams to show the rela-
tionships between objects.

At this point, we have a good understanding of the system from the stakeholders'
and the developers' point of view. This understanding provides a solid foundation aswe invent the solution in the remaining processes.

Describing the System
for Technology Selection

The previous chapters detailed how to use a consistent process and the UML to under-
stand a system from the stakeholders' and developers' perspective. That effort leads to
a very complete and detailed view of the problem. In this chapter, you'll learn how to
describe and categorize the system so that technology experts can determine the most
suitable technologies, without being overwhelmed by the intricacies of the problem.

In some cases, the developers who gather the requirements and develop the analy-
sis model may also determine the best technologies. In other cases, the developers may
use a variety of resources within and even outside of the organization. Having a
higher-level description of the proposed system allows more and a wider variety of
people to contribute to the technology selection process.

Perhaps a real-world example is in order. Architects can select materials and build-
ing technology for a proposed structure without understanding exactly how the build-
ing will be used. They do, however, need to know if the building is planned for
residential, commercial, or industrial use, and they need a rough estimate of its size or
capacity. They don't need to know what each room will be used for or who will occupy
each space. Based on this limited and high-level view of the building, an architect can
choose between wood, concrete, or steel for the building's skeleton. The same holds
true for a computer system; the technology experts need to know only the basics about
the system in order to choose the right technology to make the system work.

133

114 Enterprise lava witli UML

Are You Ready?

In. order to describe the system for technology selection, you must have a clear under-
standing of the system. Without this understanding, developers are doomed to solve
the wrong problem or to deliver unusable solutions. For example, a technology may
meet all of the functional requirements but fail to function in the user's actual envi-
ronment, due to hardware limitations, nonstandard operating systems, or network
topology.

These misunderstandings can be avoided by gathering requirements, complete with
deployment constraints and nonfunctional requirements for each use case. The analy-
sis model helps developers identify common parts of the system that can be considered
together during technology selection. In some cases, the developers must gather addi-
tional information, such as the expected the number of concurrent users, the expected
volume of data, and the deployment environment.

There are two significant steps to create a description of the problem for technology
selection:

1. Group analysis classes.

2. Describe each group.

Let's look at each of these.

Group Analysis Classes

In the previous chapters, we developed an analysis model that identified entity, con-
trol, boundary, and lifecycle classes for each use case. Before performing technology
selection, we will group similar analysis classes together. This allows developers to
consolidate the decision making process and helps ensure a coherent solution.

Different types of analysis classes connect in different ways, so you need to consider
each of the following separately:

• Boundary classes between humans and the system
• Boundary classes between an external system and the system

• Control, entity, and lifecycle classes

Boundary (User Interface)
The boundary classes between humans and the system are more commonly known as
the user interface. There are three main criteria for grouping user interface classes for
technology selection:

• User group

• Deployment constraints
• Complexity of the user interface

Describing the System for Technology Selection 155

Whenever possible, you should use a single technology for all user interface classes
in the system. If this is impossible, all of the user interface classes for each group of
users should use the same technology. Limiting and consolidating the user interface
technologies greatly decreases deployment costs such as distribution, training, and
support. Systems that depend on a patchwork quilt of different technologies tend to be
difficult for new users to learn and for developers to maintain, extend, and support.

Unfortunately, varying deployment constraints and user interface complexity often
complicates this goal. If the user interface classes in a group have radically different
deployment constraints, then it may be necessary to split up the group. The same
process must be followed for user interface complexity.

User Croup

In the UML, actors in the use case model represent distinct user groups. This makes it
very easy to identify a group of user interface classes: just group the boundary classes
that are used by an actor.

For example, a banking system may use one presentation technology to allow cus-
tomers to pay bills online, and another technology to allow bank tellers to manage new
and existing accounts. This enables the developers to select one technology for the cus-
tomers based on their needs for low deployment cost and universal access, while
selecting the other technology based on the bank tellers' needs for ease of use and full
functionality.

Deployment Constraints

When dividing the user interface classes into groups, it is important to consider
deployment constraints. In order to be suitable for all of the user interface classes in a
group, the technology must meet the most restrictive deployment constraint. If one
class has more restrictive deployment constraints, it should be split out to a separate
group.

The deployment constraints are found in the description of the use case that led to
the creation of the user interface boundary class during analysis. For instance, a use
case may specify that it must be accessible from behind a firewall or from any com-
puter that is connected to the Internet.

User Interface Complexity

The complexity of the user interface must be considered when dividing the user inter-
face classes into groups. If most of the user interface classes involve simple data entry,
a sophisticated data visualization class may need to be considered separately when
selecting technologies. Attempting to push a technology past its strengths often will
cause headaches as the system evolves and expands. A technology that is just barely
capable of supporting the current user interface may not support future desires for
more user interface sophistication. Therefore, it is important to consider user interface
complexity in grouping user interface classes.

136 Enterprise Java with UML

User interface complexity can be derived from the flows of events for each use case
and by examining the responsibilities of each user interface boundary class.

Boundary (System Interface)
Each boundary class that controls the system's interaction with another system must
be considered separately. While it is desirable to use the same technology for all system
interface classes, it may not be possible. In many cases, existing external systems dic-
tate the interface. For example, a system may expose its functionality through CORBA
or EMI, or support a standard protocol such as HTTP or FTP. External systems may
require special formatting for the data, such as XML or a proprietary data structure.

It is easy to group the system interface classes, as each is its own group. Later, after
technologies have been selected, it may be possible to combine system interface classes
or share common functionality.

Remember, system interface classes encapsulate the interactions between your sys-
tem and an external system. So, when describing a boundary class, use the flow of
events and the responsibilities in the system interface class to derive the technology
needs for the boundary class.

Control, Entity, and Life cycle
Recall the different responsibilities held by control, entity, and lifecycle classes. Control
objects convert high-level messages from the boundary objects into many simple mes-
sages to entity objects. This allows the entity objects to stay very focused and as simple
as possible while providing a convenient interface to the boundary objects.

Entity objects hold the persistent business data and business rules for the system.
Lifecycle objects create, locate, and destroy entity objects. All control, entity, and life-
cycle classes in a system should use the same technology or related technologies. After
all, they are closely related, as control objects use lifecycle objects to obtain references
to entity objects, then interact with those entity objects to fulfill the functionality for a
use case. A lot of data and object references are passed about. In many cases, transac-
tions must be started and completed. The alternative, a patchwork quilt of technolo-
gies, is often unpleasant to develop and extend. With these factors in mind, it is highly
desirable to select a single technology or a closely related family of technologies for all
of the control, lifecycle, and entity classes. There may be some esoteric exception to this
rule, but I have never encountered it.

Describe Each Croup

Once you have identified some groups of classes, you can describe each group's char-
acteristics with respect to technology requirements. For example, you might categorize
a group of user interface classes according to the complexity of the interface and
according to its deployment constraints. Every user interface can be loosely located in
a spectrum of complexity that ranges from simple data entry to slick interactive graph-
ics. It can also be located in a spectrum for deployment constraints.

Describing the System for Technology Selectio

The real payoff comes when you use the same descriptive spectrums to describe- the
strengths and weaknesses of each technology. For instance, a user interface technology
may be perfectly adequate for one level of complexity, but be inappropriate for a more
complex level. Using the same descriptive spectrum to describe both the problem and
the prospective solutions greatly simplifies the technology selection process and
removes much of the uncertainty and guesswork.

I suggest a spectrum of descriptions for the following areas:

• User interface complexity
• Deployment constraints for user interfaces

• Number and type of users
• Available bandwidth
m Types of system interfaces
• Performance and scalability

Let's examine each spectrum in detail.

User Interface Complexity

GUI complexity is the most important criterion to consider when selecting a technol-
ogy for user interface classes. It is incredibly important to be clear on what your user
wants and needs before making this decision. It would be horrible to be 80 percent
done with a year's worth of tedious HTML and JavaScript generation only to find that
you cannot satisfy your customer with an HTML-only solution. It would be equally
painful to discover that you have completely overdesigned the interface and that what
they really need is tabular data that will load into their PalmPilot's Web browser. It is
often difficult to extract such decisions from a user community that may not even
know, collectively, what it wants. I offer my empathy, along with the caveat that the fol-
lowing section is completely useless if you cannot establish solid requirements.

In describing the complexity of a user interface, it is helpful to have some descrip-
tive categories to which to compare. With this goal in mind, consider a range of com-
plexity from simple data entry to interactive graphics:

Simple data input. A simple data input user interface allows a user to enter data into
the system. It may help the user by presenting a list of choices or by performing
simple field-level validation for dates or numbers. At the very least, the technology
must allow text entry, as with a command prompt or text entry field. However,
most users expect a little more; consequently, simple data input in our modern era
often includes some not-so-simple widgets, such as drop-down selectors, selec-
table lists, radio buttons, checkboxes, and scrollable text entry fields. Field-level
validation, such as a check for valid dates or numeric data, may also be included.

Static view of data. A static view of the data can be a table, tree, or graph that is
unaffected by changes in the underlying system data. It is equally unresponsive
to the user's desire to see more or less data or to change a sort order. The view is
essentially a snapshot of some underlying data in the system. If users want to
vary the presentation or see the latest data, they must have the system regenerate

136 Enterprise Java with UML

the entire view. For example, consider a list of books and prices from an online
bookseller. The data is constant; customers must resubmit their request whenever
they need the latest information. Also, if customers want to exclude some books,
they must enter new search criteria.

Customizable views. A customizable view allows a user to customize the presenta-
tion of static data without making a new request to the server. For example, given
tabuiar data, the system user may filter the data, select the sort order, and hide
particular columns. Given a graph, the system user may zoom in on one part of
the graph or filter the data to create a new graph. The data is constant; only the
presentation changes. For example, if you have a table of 50 used cars, a user can
sort and re-sort by price, manufacturer, or cargo capacity, all without submitting
a new request to the server.

Dynamic view of data. A dynamic view of data is automatically refreshed to stay
current with the underlying system data changes. There is no need for the user to
request an updated view. Either the view is updated whenever the underlying
data changes or the view is periodically updated. A news ticker is a good exam-
ple. The user does not request the updated information. It simply appears unbid-
den and, often, unwanted.

Interactive graphics, interactive graphics are similar to dynamic views; the graphi-
cal view is automatically updated as the underlying system data changes. How-
ever, interactive graphics take this one step further. The user can update the
underlying data by manipulating the graphics. This level of interaction can be
very useful for visualizing resource allocation, interactive simulations, and devel-
oping collaborative designs.

A networked version of the game Doom is a good, if extreme, example. Each
player uses interactive graphics to view and change the underlying data in the
system. By keeping all of the remote views synchronized, the system allows the
player to interact with one another and with the computer-generated players.

Other systems use interactive graphics to allow a user to change data visu-
ally, then see the effects as calculated by the system. Microsoft Project is an excel-
lent example of this type of application. A user can change the scheduled end date
for an activity by dragging it to the right on a timeline. The application deter-
mines if the change has a ripple affect on other activities. If so, it updates both the
underlying data and the visual display. This gives the user access to an intuitive
visual interface to evaluate complex project scheduling options.

These categories describe a spectrum of user complexity from very simple to very
complex. A similar spectrum can be used to describe deployment constraints.

Deployment Constraints for
User Interfaces
It is impossible to characterize a group of user interface classes without considering
how the classes will be deployed. For most systems, the deployment constraints are as
important as the complexity of the user interface. After all, great functionality does not
help anyone if the intended audience cannot use the system.

Describing the System for Technology Selection 159

When you describe the deployment constraints for a user interface, it is helpful to
have some descriptive categories to which to compare. With this goal in mind, consider
a range in deployment scenarios from a handheld device accessing the system over the
Internet to a few dedicated workstations accessing the system on a high-speed LAN:

Handheld device. This deployment constraint requires the user interface to work on
a handheld device, such as a PalmPilot or perhaps even a cellular phone. While

wireless technology improves and tiny user interfaces mature.

Any Web browser on the Internet. This deployment constraint requires the user
interface to perform acceptably on any browser, on any computer, over the slow-
est possible dial-up connection. Some browsers may not support images, much
less dynamic HTML, so the user interface must be presented or at least pre-
sentable in a text-only form. While rare, this constraint is a reality, especially for
government sites that provide access to people with disabilities. In other cases,
the computer may be old, slow, and behind a corporate firewall, or old, slow, and
connected to a painfully slow modern. In both cases, the system must perform
adequately, despite the restrictions. There also is no limit to the number of con-
current users in this scenario.

Late-model Web browser on the Internet. This deployment category relaxes the
constraints a bit, by ensuring that each Web browser is no more than a few gener-
ations old. If this assumption is true, we know that the computer is also no more
than one or two generations old, since significantly older computers cannot sup-
port resource-hungry late-model browsers. There is also no limit to the number of
concurrent users in this scenario. This is the target deployment scenario for most
commercial Web sites.

Late-model browser on a network. This deployment category assumes a late-model
Web browser and a reasonably late-model computer on the same network that
contains the system. The number of concurrent users is certainly fewer than the
total number of users on the network. This is a common deployment scenario for
systems that are deployed on corporate intranets.

Specific browser on a network. This deployment category restricts the users of a
system to a single version of a specific browser. The number of concurrent users
is certainly fewer than the total number of users on the network. This is a slightly
less common deployment scenario for systems that are deployed on corporate
intranets.

Dedicated workstations on a network. In this scenario, users implement software
installed on workstations to access the system. This allows the developers to com-
pletely control the software on both the server and the client. The number of
clients that are installed limits the number of concurrent users. This is a tradi-
tional client/server approach.

These categories describe a spectrum of deployment constraints from very restric-
tive to completely under the control of the developers. A similar spectrum can be used
to describe the number and type of users.

140 Enterprise Java with UML

Number and Type of Users
The number of users influences technology selection in two ways. First and foremost, a
high number of users forces the technology for the entity, control, and lifecycle classes
to scale well. A high number of users also influences the selection of user interface tech-
nology. A larger audience makes ease of deployment and support costs major factors.

A system with many users must keep the incremental distribution, deployment, and
support costs low. Distribution and deployment costs can be reduced, by allowing
users to download the client software or by offering the entire service as a Web site.
Support costs encourage simplicity over flash and extra functionality.

The type of users also influences the technology selection. An enthusiastic group of
users who gain a lot by using the system will accept a shghdy more difficult deployment
process. Their vested interest in the system makes them more accommodating and flexi-
ble. On the other hand, users who have little to gain or who are forced to use a system to
perform a nuisance task, such as filling in their timecard or paying personal property
taxes, are less accommodating, in which case, the technology must be easy to use.

In describing the expected number and type of users for a system, it is helpful to
have some descriptive categories to which to compare. With this goal in mind, consider

Small number of dedicated users. This is a small group of users who help define
the system and who directly benefit from the system. Distribution, installation,
training, and support may be cost-effectively customized to fit their needs. Func-
tionality is usually the priority, as these groups are often willing to invest their
own time and energy as they leam the system, hi many cases, the users spend
much of each working day intertwined with the system.

While this seems like an esoteric category, examples can be found in many
industries. Air traffic controllers use immensely complex systems to visualize the
location and path of commercial air traffic. Stock traders use highly customized
and proprietary systems to analyze risk and determine values for securities.
Resource planners in the oil industry use complex systems to keep expensive
refineries operating at high efficiencies while keeping inventory costs low and
fulfilling contracts. Call center systems allow people to handle huge volumes of
calls for customer or technical support.

General use within an organization. This is a much larger group of users, who are
generally less motivated with respect to the system. In some cases, almost every-
one in a company with tens of thousands of employees on three continents
depends on a system. These systems tend to support the organization, rather than
contributing directly to the core business. Examples include time tracking, bene-
fits management, safety compliance, and information sharing.

Large audience with high interest. In this scenario, a system must serve a large
audience of very involved participants. The users may be geographically scat-
tered and otherwise unconnected from one another. The users may log on to the
system to exchange information or to collaborate. The Internet was actually
started by one form of this audience, researchers who needed to share data andinformation in a loose collaborative environment.

Describing the System for Technology Selection 141

This audience is generally willing to accept some inconvenience, as the
system holds great value for them. For example, researchers may be willing to
download and install fairly complex software if it will help them visualize mathe-
matical models for weather or burning buildings, for example. An audiophile
may be willing to do almost anything to hear his or her favorite recording artist's
new track a week early.

In many cases, this audience is virtually self-supporting, as the community
members help one another through the inevitable pitfalls of installing and using
the software.

Huge audience with low interest, hi this scenario, a system must attract and serve
a relatively fickle audience. This, of course, is the audience for most consumer
Web sites. Visitors are alienated easily by systems that start slowly or that waste
their time in any way. Both potential and existing customers want a very pleasant
and efficient experience, and they are certainly not going to accommodate the
system in any way.

These categories describe a spectrum of users from a small number of dedicated
users to a large number of relatively disinterested users. A similar spectrum can be
used to describe the available bandwidth.

Available Bandwidth
Available bandwidth is another key factor when selecting technologies. Some combi-
nations of technologies allow the developers to meet low bandwidth restrictions, while
other technologies exacerbate bandwidth constraints. The descriptive categories for
bandwidth ranges from a dial-up connection to an Internet service provider at one end
and a dedicated network at the other:

Dial-up Internet connection. This is still the most common type of connection to the
Internet. Supporting speeds from roughly 26 KBaud (thousand bits per second) to
56 KBaud, a dial-up connection is suitable for systems that let users view text and
images, listen to streaming audio, and enter text data. It is painfully slow for any
sort of real-time video or other media.

Fast Internet connection. Fast Internet connections include a variety of technolo-
gies, including digital data transmission over phone lines, cable and satellite
transmission, and shared direct transmission lines to the Internet backbone.
These connections allow users to view text, images, and even streaming video
without significant discomfort.

Dedicated network between client and server. A dedicated network allows the
client and the server to exchange data at very high speeds. Even an inexpensive
home network can easily support 100 million bits per second over relatively short
distances.

These categories describe a spectrum of bandwidth from dial-up connections to a
dedicated network. A similar spectrum can be used to describe different types of sys-
tem interfaces.

142 Enterprise Java with UML

Types of System Interfaces
In some cases, the technology for a system interface is determined by an existing exter-
nal system. Otherwise, you must describe the system interface, then select an appro-
priate technology. Obviously, this process must be coordinated with the development
team for the external system. System interfaces divide into three categories:

Data transfer. Many system interfaces exist solely to transfer large blocks of infor-
mation from system to system. Such interfaces are traditionally referred to as
Electronic Data Interchange (EDI) interfaces. The exchange of data may be per-
formed at preset intervals or it may be performed on demand. In any case, one
system takes a snapshot of its internal data, formats it for the other system, and
sends it to the other system. The receiving system must read the information and
update its own internal information. Each interaction has its own agreed-upon
data structure, so that both sides can read and write the records.

Data transfer interfaces are \ery common in business and financial systems.
Semi-independent branch office systems retrieve the latest data from the home
office. The home office collects the day's transactions from its satellite offices.
Money flows from bank to bank. Business partners exchange data and make
commitments,

Services through a protocol. The next form of system interface allows a system to
make requests through an agreed-upon protocol. A server allows a client system
to authenticate itself and request data or services by sending predefined codes
and values. This arrangement allows very structured access to the server, with
substantially more flexibility than a simple data interchange.

Some protocols have been standardized for widespread use. For example,
the File Transfer Protocol (FTP) allows clients to move files to and from the server.
The HyperText Transfer Protocol (HTTP) allows a client to retrieve data from a
Web server and to post requests to a Web server. Many organizations develop
their own protocols to provide services and exchange more arbitrary information.
Protocol-based interfaces use many of the same techniques as data interchange
interfaces. It may even be difficult to distinguish between a simple protocol and a
complex data interchange. However, protocol-based interfaces generally allow-
more flexibility and add behavior to the data. For instance, a data interchange
interface sends a large block of data and lets the receiver determine the next step.
A protocol-based interface might send a small block of data as part of a command,
then wait for the response before deciding what to do next.

Direct access to system services. This type of interface allows a client system to
directly call designated methods in the server. The server exposes certain meth-
ods for remote access. The client passes the name of the method and any input
arguments as a request to the server. The server calls the actual method and
passes the result back to the client.

Procedural versions of this type of interface are called Remote Procedure
Calls (RPCs), while object-oriented versions of this system use the open standard
Common Object Request Broker Architecture (CORBA), Microsoft's Distributed

Describing the System for Technology Selection 143

Common Object Model (DCOM), or Sun's semi-open standard Remote Method
Invocation (EMI).

This type of interface can provide a very flexible and intuitive interface
between two systems. In many cases, it is infinitely easier to expose parts of an
existing system in this manner than to implement an entire protocol between two
systems.

These categories describe a spectrum of system interfaces from simple data transfer
to remote access to the system's functionality. A similar spectrum can be used to
describe the performance and scalability issues for a system.

Performance and Scalability
Performance and scalability requirements are increasingly important factors in the
selection of technology for control, entity, and lifecycle classes. Performance must be
balanced against data integrity in any multiuser system, and there aren't many single-
user systems left. Also, as concurrent users and data are added to the system, the sys-
tem must scale well so that the user experience stays tolerable.

Several factors complicate the development of high-performance and scalable sys-
tems. Certainly, the amount of data and the number of concurrent users impact the per-
formance. However, high-performance databases can handle large amounts of data
with ease, and high-speed networks minimize the impact of additional users. One fac-
tor that dramatically affects performance is concurrent access and updates of data.
Some systems must contend with multiple users modifying the same data. In order to
keep the data intact while meeting performance requirements, these systems must use
sophisticated locking strategies.

There are several descriptive categories that affect scalability and performance:

Read-only. Some systems allow users to view the system data, but do not allow
them to update it. While this sounds quite restrictive, many very important sys-
tems fit this description. For instance, a system may allow a stockbroker to ana-
lyze and visualize the risk in his or her portfolio, without allowing him or her to
buy or sell securities. A safety compliance system may allow a user to search for
safety regulations, without allowing that person to change the regulations. In
fact, many systems allow a mass audience to view data, while narrowly restrict-
ing changes to the data.

Isolated updates. In many systems, many users change the system's data, but the
changes do not conflict with one another. An online store may have many cus-
tomers, but they cannot change one another's billing or shipping preferences. Of
course, this example falls apart if two people are allowed to log in as the same
user, at the same time.

Concurrent updates. In other systems, many users change the system's data, with
some of the changes affecting the same data. An online airline reservation system
allows many users to reserve a seat on a particular flight. Since a flight holds a
limited number of passengers, each reservation affects a very important piece of
data, the number of remaining seats on the flight.

144 Enterprise Java with UMl

These categories describe a spectrum of factors that affect the performance and scal-
ability of a system. Now we have several descriptive spectrums that allow us to
describe a system's technology needs.

Technology Requirements for the
Timecard Application

Now that we have the descriptive spectrums, let's apply them to our Timecard system.
This section divides the analysis classes into groups and uses the descriptive categories
to describe the technology requirements for each group. These descriptions will be
used in subsequent chapters, when we select technologies for each group.

Find Groups of Analysis Classes
There are at least three distinct groups for the Timecard application: the user interface
classes, the system interface for the external time entry repository, and the control,
entity, and lifecycle classes.

While the deployment constraints for the employee's user interface classes are more
restrictive than the administrative users' user interface classes, the user interface com-
plexity is exactly the same. Therefore, any technology that satisfies the employees, with
their additional requirements for remote access, will also satisfy the administrative
users. Treating all of the user interface classes as a single group will greatly simplify the
Timecard application.

There is only one external interface class, the BillingSystemlnterface. It must be
treated as a separate group.

Unless there is some compelling reason, the control, entity, and lifecycle classes
should be treated as a single group. This group contains all of the application logic and
business logic for the system.

These decisions leave us with the following groups of analysis classes:

• All user interface classes
• The system interface for the external billing system

• All application and business logic classes

Let's focus on the user interface classes first.

User Interface Complexity
To determine the complexity of the user interface, we need to consider each user inter-
face class in turn. Since all of the user interface classes are grouped together, the
selected technology must support the most complex user interface class.

The descriptive categories for user complexity are:

• Simple data input

• Static view of data

Describing the System for Technology Selection 145

• Customizable views• Dynamic view of data

• Interactive graphics

The group includes the following analysis classes we documented in Chapter 5,
"Analysis Model for the Timecard Application":

AdministrativeLoginUI. The AdministrativeLoginUI allows the users to enter their
username and password as proof that they are authorized to use the system.
Examining the class and its methods, as shown in Figure 6.1, it is clear that the
purpose of the AdministrativeLoginUI class is best described as simple data
input.

EmployeeLoginUI. Since the EmployeeLoginUI class provides the identical func-
tionality as the AdministrativeLoginUI class, it must have the same user interface
complexity: simple data input. Figure 6.2 shows the methods for the class.

ExportEntriesUI. The ExportEntriesUI class allows administrative users to export
time entries to the Time entry repository. Examining the class and its methods, as
shown in Figure 6.3, it is clear that the ExportEntriesUI class both displays exist-
ing data, such as a list of clients, and allows export criteria to be entered. There is
no indication that the data is dynamically updated, so we conclude that the pur-
pose of the ExportEntriesUI class is best described as simple data input and static
view of data.

RecordTimeAdministrariveUI. The RecordTimeAdministrativeUI allows adminis-
trative users to enter hours for any employee. Examining the class and its meth-
ods, as shown in Figure 6.4, it is clear that the RecordTimeAdministrativeUI class
displays existing time entries, and allows the user to enter new time entries and
update existing time entries. We conclude that the purpose of the Record-
TimeAdministrativeUI class is best described as simple data input and static view
of data.

RecotdTimeUI. The RecordTimeUI allows employees to enter their hours. Since the
RecordTimeUI class provides less functionality than the RecordTimeAdministra-
tiveUI class, we conclude that it has the same description, simple data input and
static view of data. Figure 6.5 shows the methods for the class.

Figure 6.1 AdministrativeLoginUI class. Figure 6.2 EmployeeLoginUI class.

146 Enterprise lava with UMl

Figure 6.3 ExportEntriesUI class. Figure 6.4 RecordTimeAdministrativeUI class.

Figure 6.5 RecordTimeUl class.

Deployment Constraints for
User Interfaces
Examining the use case descriptions covered in Chapter 3, "Gathering Requirements for
the limecard Application," there seem to be two distinct sets of deployment constraints
The Login and Record Time use cases for the employee must be accessible from almost
anywhere, while the use cases for the administrative user have no such restrictions.

Recall that all of the user interface classes have been grouped for technology selec-
tion. So, one user interface technology will be selected, and it must meet the mart i
restrictive deployment constraints.

First we survey the use case descriptions to determine the individual deployment
constraints. Based on this information, we select a descriptive category that fits all at
the use cases. Revisiting the use case descriptions in Chapter 3, we find the following
deployment constraints:

Login use case. Employees must be able to log in from any computer, including ,
home, client sites, and on the road. This access may be from behind a client's foe-
wall.

Describing the System for Technology Selection 147

Record Time use case. The Record Time use case must be accessible from client sites
and employees' homes. In the case of client sites, they will often be behind the
client's firewall.

Next, we need to pick the descriptive category. The descriptive categories for
deployment constraints are:

1. Handheld device

2. Any Web browser on the Internet
3. Late-model Web browser on the Internet
4. Late-rnodel browser on a network

5. Specific browser on a network

6. Dedicated workstations on a network

Since the employee must be able to access the system from home and client sites, we
can exclude categories 4, 5, and 6. There is no indication that handheld devices are
used, so we can exclude category 1. This leaves us with option 2, "any Web browser on
the Internet," and option 3, "late-model Web browser on the Internet." The deploy-
ment constraints in the use case descriptions do not determine which of these two
options is most appropriate.

In this case, we might ask the stakeholders, or use a simple email survey to clarify
the issue. For our example, let's assume that all of the employees already use late-
model browsers, so we choose option 3, "late-model Web browser on the Internet."

Number and Type of Users
The number and type of users can usually be deduced from the use case model.
Remember, each distinct group of users is represented by an actor in the use case doc-
umentation. In the Timecard application, there are only two actors, employee and
administrative user. The employee actor represents all employees who use the system
to record their time. The administrative actor represents people who administer the
system.

The descriptive categories that describe users are:

1. Small number of dedicated users
2. General use within an organization
3. Large audience with high interest

4. Huge audience with low Interest

Since all employees use the system to record their hours, category 2, "general use
within an organization," seems very appropriate for the user interfaces that support
the Login and Record Time use cases. Option 1, "small number of dedicated users,"
seems more appropriate for the user interface that supports the Export Time Entries
use case. However, we have decided to pick a single user interface technology that sup-
ports the most restrictive case, so we select the more challenging option, number 2,
"general use within an organization."

148 Enterprise Java with UML

Available Bandwidth
Available bandwidth can usually be deduced from the deployment constraints on spe-
cific use cases and from the descriptions of the actors. For example, if all the actors use
the system at a single facility, bandwidth may not be an issue. If some actors use the
system from remote facilities, from home, or while traveling, bandwidth may be an
important factor.

The descriptive categories for bandwidth are:

1. Dial-up Internet connection
2. Fast Internet connection
3. Dedicated network between client and server

From the deployment constraints in the use case descriptions, we see that the
employee must be able to use the system from "any computer, including home, client
sites, and on the road." This clearly excludes the last two categories and leaves us with
"dial-up Internet connection."

Types of System Interfaces
System interfaces are best described by examining the complexity of the interaction as
documented in the flow of events for the use case(s) that use the external system. We
must ask questions such as: What data is exchanged? Which services are obtained?
How flexible is the interface?

The descriptive categories for system interfaces are:

1. Data transfer

2. Services through a protocol

3. Direct access to system services

The only system interface, the BillingSystemlnterface, does not demand any ser-
vices of the billing system. Instead, it simply sends a block of time entries to the exter-
nal system. Category 1, "data transfer," is clearly the right choice.

Performance and Scalability
The performance and scalability factors are generally found by examining the class
diagrams and sequence diagrams from the analysis model. These diagrams describe
the data access and update patterns that influence performance and scalability. Unfor-
tunately, these diagrams cover a single use case at a time. It is up to the developers to
consider the effects of several use cases occurring concurrently.

The descriptive categories for performance and scalability are:

1. Read-only
2. Isolated updates

3. Concurrent updates

Describing the System for Technology Selection 149

To determine the most appropriate category, we must consider how multiple users
performing the use cases simultaneously affects each entity object. In many cases, a
cursory glance at the activity diagram and sequence diagrams for a use case is suffi-
cient. In other cases, developers must examine the sequence diagrams to see exactly
how the entity objects are used. It seems profitable to consider each use case in turn
before considering the impact of users performing different use cases simultaneously
on the categorization. The following sections each describe the performance and scala-
bility factors for an individual use case.

Login use case. In the Login use case, the system locates the user entity object that
corresponds to the actual employee. Once the object is located, it must determine
if the password is valid. This requires the system to read the password from some
sort of persistent store. No data is updated, so "read-only" is the appropriate
description. The sequence diagram in Figure 6.6 shows this interaction between
the objects.

150 Enterprise Java with UML

Export Time Entries use case. In the Export Time Entries use case, the system
locates client, user, and time entry objects. It also retrieves the details for each
time entry object. It does not update any system data, so "read-only" is the appro-
priate description. Figure 6.7 shows these interactions.

Figure 6.7 Data access for the Export Time Entries use case.

Describing the System for Technology Selection 151

Record Time use case. In the Record Time use case, the system retrieves and dis-
plays the time entry objects. After the user updates the entries, the system must
update its data with the new data. Therefore, the use case must be described with
either "isolated updates" or "concurrent updates."

Each employee can only record his or her own hours, so there is no danger of
concurrent updates due to different employees using the system at the same time.
We can easily preclude the same employee from logging in twice, so there is no
danger of the same employee recording hours in multiple sessions. However, the
administrative user can initiate the Record Time use case on behalf of any
employee. So, two administrative users or one administrative user and the actual
employee could record time for the same employee at the same time. The Record
Time use case does introduce a risk of "concurrent updates." Figure 6.8 shows
these interactions.

151 Enterprise Java with UML

The Next Step

Describing the technology requirements of a system forces you to carefully examine
the requirements and analysis model for the system. For real-world systems, this is a
very daunting prospect. Hundreds of pages of documentation must be read and
understood as the system is gradually categorized. However, the result is well worth
the effort, as the technology requirements for a complex system, with many interesting
nuances and subtleties, can be summarized in a few paragraphs.

This summary is used to facilitate technology selection and to enable the participa-
tion of more people in the selection process. For instance, developers with experience
in a given technology can easily use the summary to evaluate the suitability of that
technology. They can share their expertise without spending countless hours learning
the system. Summarizing the technology requirements for a system is also useful if you
are not using outside expertise. By producing the summary before considering tech-
nology, developers avoid any urge to pick a technology and then justify its suitability
for the system. It is very common for developers to semi-consciously select a technol-
ogy before evaluating its suitability. This leads them to see the areas where the tech-
nology fits, while and sometimes glossing over the areas where it does not.

The next two chapters use the following to describe and select technologies for the
Timecard application:

• User interface complexity: Simple data input and static view of data.

• Deployment constraints for user interfaces: Late-model Web browser on the
Internet

• Number and type of users: General use within an organization

• Available bandwidth: Dial-up internet connection

• Types of system interfaces: Data transfer
• Performance and scalability: Concurrent updates

Evaluating Candidate
Technologies for

Boundary Classes

Now that we've grouped our classes and described each group, we're ready to exam-
ine the classes and select the technologies that will achieve our system requirements.

This chapter describes how to describe and evaluate candidate technologies for
boundary classes. Tt begins with an introduction of a standard format for describing a
technology that we can use. Then, we'll apply the template to several technologies.
Once this is done, we'll use the technology requirements from Chapter 6, "Describing
the System for Technology Selection," and the technology descriptions to find the right
technologies for the boundary classes in the Timecard system.

Technology Template

When learning a new technology, it is easy to become absorbed in the details and miss
important information. Most developers, myself included, lose objectivity as they
leam about the latest and slickest technology. Given a shiny new hammer, all I see are
nails. The following template helps me focus my efforts and stay grounded as I assim-
ilate a new technology. 1 suspect that, with some modifications, it may serve you in a
similar way.

Each technology description contains the following elements:

Name and description. This section provides the name, acronym, and origin of the
technology before briefly summarizing it. The emphasis is on the nature and pur-
pose of the technology, rather than any of the details.

153

154 Enterprise lava with UMl

Gory details. This section uses class diagrams, sequence diagrams, and code sam-
ples to describe how the technology works and how it is used. While hill cover-
age of each technology is not possible, this section does capture the flavor and
general use of each technology. For more information about specific technologies
discussed here, refer to Appendix B, "Additional Resources."

Strengths. This section describes areas and uses in which the technology excels.

Weaknesses. This section describes any pitfalls or limitations of the technology.

Compatible technologies. This section discusses common combinations of tech-
nologies that leverage the strengths of the candidate technology,

Cost of adoption. This section quantifies the costs of adopting the technology. Spe-
cial emphasis is given to the difficulty of acquiring expertise in the technology. It
also mentions any product costs or licensing issues.

Suitability. This section uses the descriptions established in Chapter 6 to describe
the situations for which the technology is suitable.

With a reasonable template for describing technologies in hand, we can explore sev-
eral technologies that can be used to implement boundary classes.

Swing

Swing is Sun's framework for GUI development. It continues to receive well-deserved
accolades for fulfilling Sun's "write once, run anywhere" philosophy for user interface
development and for its object-oriented design. A Swing application, or applet, looks
and behaves the same on any compliant Java Virtual Machine JVM). Since JVMs exist
for Microsoft Windows, most flavors of UNIX, and Linux, developers have a lot of free-
dom in developing and deploying Swing-based products. I continue to be impressed
when the code I write at night on my PC runs fine under Solaris the next morning.
While far from perfect, Swing is a solid implementation of a great vision.

Another, less-hyped, characteristic of Swing is its clear separation of model and
view classes. Swing provides many valuable model classes that can be used with
Swing view components, with other presentation implementations, or as independent
data structures in a model. Once a model object is constructed, it can be wired to one
or more view objects. The view objects are kept in sync with the model by an event
model. For example, consider a list component that is wired to an underlying list
model object. Updates to the model are automatically reflected in the list component.
Similar model and view parrs are available for pull-down lists, trees, and tables, to
name a few.

In an effort to make the view and model separation even more flexible and power-
ful, Swing's architects made each model an interface, and provide a default implemen-
tation. Custom implementations of the model interface work seamlessly with the
corresponding view objects. For example, a developer could provide a fancy imple-
mentation of ComboBoxModel that keeps the elements in alphabetical order.

Many of Swing's early weaknesses, such as poor IDE support, poor performance,
and unsettling instability in the API, have been resolved. Undoubtedly, it will continue

Evaluating Candidate Technologies for Boundary Classes 155

to improve incrementally, it is now a stable and legitimate alternative for GUI devel-
opment. I predict that Swing will complete its move from a leading-edge technology to
a mainstream technology over the next few years.

Gory Details
Swing is an incredibly large and rich class library. It is impossible to do it justice here.
However, I can cover some important facets of Swing that, hopefully, will capture its
elegance and its versatility,

Separation of Model and View

In our analysis model, user interface classes are carefully separated from entity classes,
because they have very different responsibilities. Encapsulation is the key goal. Busi-
ness data and business logic are encapsulated in the entity classes so that they are easy
to find, easy to extend, and easy to reuse. Presentation logic and user interaction logic
are encapsulated in the boundary class, so that they are easy to find, and can be
extended without affecting other classes. Also, this separation allows developers to
specialize; one set of developers acquires knowledge of the business while another
focuses on user interface design and the details of the presentation technology.

Swing has built-in support for this separation. Like all user interface class libraries,
Swing comes with a rich array of widgets, including everything from text entry to
progress bars to tree controls. However, Swing also includes classes that represent the
data in a view-independent way. These classes are called model classes, based on trie
common synonym for entity classes. Swing model classes organize data into lists,
trees, and tables, just to name a few. These models are completely independent of the
view, and may be useful even if no view is involved. This is especially true of the
DefaultTreeModel, which provides methods for adding nodes to a tree, removing
nodes from a tree, traversing a tree, and generating a list of nodes from a leaf node to
the root node.

By design, Swing model classes are highly extensible. In each case, Swing provides
an interface that defines the behavior for the model, as well as a default implementa-
tion. This approach allows developers to solve straightforward problems with little
effort, while allowing developers to handle more complex modeling problems with
proportionally more effort.

Consider a list of objects and the corresponding graphical widget for displaying the
objects in a pull-down combo box. In Swing, all concrete combo box model classes
must implement the ComboBoxModel interface if they intend to be used by graphical
combo box components. The class JComboBox contains all of the presentation and user
interaction logic for producing combo box widgets. Each JComboBox object has a uni-
directional association with exactly one object, whose class implements the Com-
boBoxModel interface. The JComboBox object is completely protected from the
implementation details of the model; as long as the object supports all of the methods
in the ComboBoxModel interface, the JComboBox object's needs are satisfied. Notice
that one ComboBoxModel can support many JComboBox objects. Figure 7.1 shows
these relationships. Sun provides the DefaultComboBoxModel as a quite reasonable

156 Enterprise lava with UML

implementation of the ComboBoxModel interface. More complex implementations,
such as a list model that sorts its contents, must implement the ComboBoxModel
interface.

Event Model

In many applications each graphical view object must stay up to date with its underly-
ing model object. The most obvious approach is to have the model object notify each
view object when a change occurs. However, this introduces a dangerous mutual asso-
ciation between the model object and the view objects, as shown in Figure 7.2 for the
JComboBox and its associated model class. The JComboBox object calls the getSize and
getElementAt methods on the ComboBoxModel object, and the model object calls the
intervalAdded notification method on the view object whenever an object is added to
the model. This mutual association makes it impossible to reuse the model class with-
out also reusing the view class, which is often inappropriate. Also, allowing a model
class to access one method in the view class may lead developers to use other methods,
until the two classes are tightly coupled.

The architects of the Swing class libraries needed a way to update view objects to
reflect changes to the model objects' state, without introducing direct dependencies
from the model classes to the view classes. Fortunately, there is a well-defined and
well-respected design pattern that solves this exact problem, called Observer [Gamma
1995]. In this pattern, the observer class implements an interface that contains all of the

Evaluating Candidate Technologies for Boundary Classes 157

notification methods. An observer object is registered with the observed object. When
a change occurs, the observed object must notify each registered observer. However,
the observed object does not depend directly on the observers; it just knows that they
implement the observer interface.

In Swing, this pattern is implemented by requiring the view objects to register
themselves as listeners on the model objects. Swing adds an additional twist, as the
JComboBox does not know the specific implementation of ComboBoxModel. It
only knows that the model object implements the ComboBoxModel interface. Since
JComboBox implements ListDataListener, it is able to add itself as a listener to the
model object. Once the model object has a reference to the listener, it can use the inter-
val Added or contentsChanged methods to notify the listener of changes. The bidirec-
tional association is avoided, because the model object does not know about
JComboBox objects, just ListDataListeners. Figure 7.3 shows the way in which Swing's
event model works for JComboBox objects and the underlying model.

The Observer pattern allows the objects to communicate with one another while
keeping the model independent of the view and providing an amazing amount of flex-
ibility. An application can create a particular type of ComboBoxModel, such as a
DefaultComboBoxModel. The application can then create a JComboBox object that
receives a reference to the model object in its constructor. However, the JComboBox
object does not know or care which concrete implementation of ComboBoxModel it
receives. JComboBox's constructor calls the add ListDataListener method on the Com-
boBoxModel object. This registers the JComboBox as a listener on the model. Finally,
the JComboBox object extracts the current state of the ComboBoxModel and uses the
information to populate itself.

When the DefaultComboBoxModel object receives new elements, it notifies each
registered ListDataListener object by calling its intervalAdded method. In the case of

158 Enterprise lava with UML

the JComboBox object, it knows to repopulate itself to reflect the model. Figure 7.4
shows the Interaction between objects, while ignoring the interfaces.

Combining User Interface Components

Swing includes almost 50 user interface classes, from entire tables to tiny tooltips and
everything in between. While many of these classes are independently impressive, any
real user interface requires developers to connect user interface objects in sophisticated
combinations. A user interface might include a tree control and a detail editor that
allows the user to view and update the data for the item that is selected in the tree con-
trol. This navigation and editing tool might live inside of a larger user interface that
includes a menu bar and a toolbar with icons.

The key to Swing's power and flexibility lies in the breadth and sophistication of the
user interface classes themselves and in the ease with which developers can assemble
a complicated whole from relatively simple parts. In providing this functionality, the
Swing classes make excellent use of the Composite design pattern JGamma 1995]. A
JPanel is a Swing class that extends JComponent. Figure 7.5 shows how a JPanel object
can hold any number of other JComponent objects, including other JPanels. This gives
Swing developers full freedom to compose several components into a group, then use
several groups to build a still larger user interface.

Evaluating Candidate Technologies for Boundary Classes 159

160 Enterprise Java with UML

Layout Managers

Combining many components to form a coherent user interface requires the developer
to determine how the components will be organized relative to one another, and how
each component handles changes to the size of the enclosing window. Swing provides
several classes, known as layout managers, that allow developers to control the layout of
components within a container. Each JPanel object has exactly one layout manager
object, which is an instance of a class that implements the LayoutManager interface. As
shown in the one-to-one relationship between JPanel and LayoutManager in Figure
7.6, each LayoutManager object is dedicated to a single JPanel'. Since the JPanel has a
reference to the LayoutManager interface, it can use any concrete implementation of
LayoutManager without modification.

Putting It Together

Swing makes excellent use of the Observer pattern to keep the model and presentation
classes separate while keeping the views in sync with the model. It also uses the Com-
posite pattern to allow the incremental construction of arbitrarily complex user inter-
faces. Flexibility is constantly increased through the creative use of interfaces. In fact,
as you can see in Figure 7.7, every single association relationship is to an interface or to
a base class, rather than directly to a concrete implementation class. This means that
any JPanel can contain any number of different components, and use any layout man-
ager. A JComboBox can use any model that implements the ComboBoxModel inter-
face, and a DefaultComboBoxModel object can keep any object up to date, as long as
the object's class implements the ListDataListener interface. Swing's developers
clearly designed with flexibility and extensibility in mind.

A Small Sample

The following sample application shows how several JComboBox objects can present
the elements of the same ComboBoxModel object. A separate text entry frame is used
to add items to the model. Each time an object is added as an item in the ComboBox-
Model object, it is immediately available in all of the JComboBox objects.

Let's take a look at the files that produce the combo boxes and the entry widget. The
UpdatedChooser's constructor receives a reference to an object that realizes the Com-
boBoxModel interface. This UpdatedChooser's only job is to pass the model object
along to the JComboBox and display the JComboBox inside of a frame. It is not at all
involved in the Observer pattern.

The main method of Up da ted Chooser, which as you know serves as a static entry
point into this little application, constructs a new DefaultComboBoxModel and passes
it to the constructor of a few UpdatedChooser objects. Notice that the constructor for
the UpdatedChooser objects only knows that the parameter is an object whose class
implements the ComboBoxModel interface. The mam method could use any other
implementation of ComboBoxModel, without affecting the code for the Updated-
Chooser.

Evaluating Candidate Technologies for Boundary Classes 161

Evaluating Candidate Technologies for Boundary Classes 163

The TextEntry Frame keeps a reference to the DefaultCom bo Box Model object, which
it receives in its constructor. The constructor also adds a text field and an OK button to
the frame, and registers the TextEntryFrame object as an action listener on the button.
When the OK button is pushed, Swing's framework calls the TextEntryFrame object's
actionPerformed method, which reads the text field and adds the resulting string to the
model.

TextEntryFrame.j a va
package com.wiley.compBooks.EJwithUML.SwingExamples ;

164 Enterprise Java with UML

Evaluating Candidate Technologies for Boundary Classes 165

This fairly small sample shows how the Observer design pattern works behind the
scenes in Swing. Al] the developer has to do is wire the right objects together using the
addXXXListener methods.

Now that we have explored some of the inner workings of the Swing classes, let's
continue to discuss the strengths and weaknesses more specifically.

Strengths

Swing's strengths lie in its limitless flexibility and richness, its cross-platform nature,
and in the clear separation of model classes from view classes. The first two strengths
allow developers to create incredibly slick user interfaces that look and behave the
same on dozens of platforms, from Microsoft Windows to Linux to high-end UNIX
workstations. Used effectively, the clear separation of model classes from view classes
allows developers to write extremely extensible and readable code.

Swing has very reasonable performance and usability characteristics. Certainly, no
one is writing the next commercial 3D point-and-shoot game in Swing and Java 3D, but
Swing is quite suitable for business applications or even interactive data visualization. In
fact, several popular arcade games from the 1980s have found new life as Swing applets.

Weaknesses

Swing is not a low-end GUI solution. Some organizations buy an IDE, send their
PowerBuilder and Cobol programmers to a week of Java training and a week of Swing
training, and expect to be tip and running the next week. It is not possible. Learning to
develop Swing applications takes time, and is easier with a strong background in
object-oriented user interface development. Consequently, Swing may be precluded
due to a lack of expertise.

Compatible Technologies
Swing applications, or applets, integrate well with all server-side Java technologies,
such as RMI, JDBC, and EJB. For example, a boundary object that is implemented in
Swing can interact with remotely deployed control or entity objects that are imple-
mented with RMI or Enterprise Java Beans. It is also possible to locate the boundary,
control, and entity objects in the same virtual machine. For example, a Swing bound-
ary object may talk directly to control and entity objects that use JDBC to retrieve infor-

166 Enterprise Java with UML

Cost of Adoption

Swing is provided free as part of the standard JDK, but there are costs of adoption. First
and foremost, to be successful with Swing, your project must fill the roles of Ul
designer, architect, and Swing developer.

Ul Designer
It is always good to have a user interface designer who can address usability and
human factors. A Ul designer devises alternative interface strategies that meet the
requirements, and works with the stakeholders and the developers to determine which
approach is most suitable for the project. Detiverables range from screen shots in a
drawing program to thin prototypes.

Architect
Swing user interfaces can degenerate into a series of unconnected works, with no two
screens following the same format or using the same components. An architect can
reduce this effect by establishing reusable components, such as button panels, layouts
for input forms, and default windows. This allows developers to easily change the look
of the entire application by altering the reusable components. The alternative requires
each screen to be laboriously edited, perhaps for something as trivial as the back-
ground color or the space between buttons.

The architect can also keep the code base sane, and avoid costly rework by establish-
ing standards for exception handling, error logging, and the use of layout managers.

The architect for a Swing-based user interface must have a strong knowledge of
object-oriented principles, extensive design experience, and a clear grasp of the Swing
architecture and event model.

Developer
At minimum, a Swing developer needs a solid understanding of the event model, lay-
out managers, and some basic components. However, every Swing project needs at
least one developer who knows the full breadth of classes that make up Swing. Almost
any GUI component you can dream up can be built from Swing's classes. The trick is
knowing where to start.

Developers who have solid object-oriented skills and a strong background in user
interface development can migrate to Java and Swing without too much difficulty.
However, it does take time and practice. A C++ developer with Motif experience
would need a few months before he or she was truly comfortable with Java and the
Swing class libraries. An experienced Java developer with GUI development experi-
ence in some other language might take considerably less time.

Developers who are migrating from a procedural background to Java and Swing
may be overwhelmed by the challenge of learning object-oriented development, Java,
and the intricacies of Swing. Most developers in this situation should gain experience
with Java before tackling Swing.

Evaluating Candidate Technologies for Boundary Classes 167

Suitability
In Chapter 6, we discovered the following descriptive categories:

• User interface complexify
• Deployment constraints for user interfaces
• Number and type of users
• Available bandwidth

Let's evaluate Swing to see if it is a suitable choice for our system.

User Interface Complexity

Swing is certainly capable of handling simple data input and static data presentation
tasks. It comes with a full array of input widgets, including text entry fields, pull-down
selectors, radio buttons, scrollable lists, and nifty sliders. Presentation classes include
tables, tree controls, and image maps. In addition:

• Swing also easily supports customizable views, such as sorted tables and filtered
tables.

• Dynamic views of data are incredibly easy to implement in Swing, as its archi-
tecture has built-in support for change propagation, and stresses a clear separa-
tion between the data and the presentation of the data. Once a view object is
connected to an underlying data or model object, any changes to the model
object automatically cause changes to the view object.

• Swing can be combined with the Java 2D or Java 3D graphics frameworks to pro-
duce some very impressive interactive graphics. By manipulating the view, a
user can update the underlying data.

In summary, Swing supports the entire spectrum of user interface complexity, from
simple data input to interactive graphics.

Deployment Constraints for User Interfaces

The first two deployment constraints, handheld devices and any Web browser, clearly
are not supported by Swing. However, most late-model Web browsers do include sup-
port for Swing applets, either directly or through the Java plug-in. Almost every work-
station, from UNIX to Linux to Microsoft Windows, has a Java virtual machine, and
therefore supports Swing applications.

Number and Type of Users

Swing is easily appropriate for a small number of dedicated users. Deployment and
support of a Swing applet or dedicated application may easily be justified for low
numbers of users.

Swing may also be appropriate for general use within an organization, if the com-
plexity of the user interface makes Swing a desirable choice. However, Swing does

168 Enterprise lava with UMl

have some incremental support costs. Swing applications must be installed on each
user's workstation, complete with the appropriate Java virtual machine. Swing applets
do not need to be individually installed, but an appropriate browser or Java plug-in
must be present.

Similar considerations apply to using Swing for a large audience with high interest.
If the complexity of the user interface and the system is sufficiently compelling, users
will install the Java virtual machine, Java plug-in, and appropriate browser.

Swing is completely inappropriate for huge audiences with low interest. Any users
who do not have a suitable configuration will not take time out of their day to install
new software.

Available Bandwidth

Swing can be a very attractive option even for low-bandwidth scenarios. Swing applets
do require the client browser to download the class files before running the applica-
tion. However, the class files for a reasonably complex application are still smaller than
three large images.

Once it starts running, a Swing applet can actually use less bandwidth than other
user interface technologies. The server does not need to control the presentation;
instead, the server can send the smallest possible amount of data or even compressed
data.

With a little creativity, Swing is appropriate for all bandwidth categories, from dial-
up connections to dedicated networks.

Java Servlets

The Servlet API is Sun's flexible and extensible framework for server-side develop-
ment. Within the Servlet API, the HTTP package protects developers from tiresome
HTTP protocol details and allows them to focus on their own unique data presentation
problems. Servlets are used in conjunction with a Web server to create dynamic content
based on the user's input.

There are a several key terms that are critical to an understanding of servlets. These

HyperText Transfer Protocol (HTTP). Specifies a communication protocol between
Web clients and Web servers. It specifies valid request and response formats,
error codes, and datatypes. By complying with HTTP, a Web browser is able to
communicate with millions of Web servers, regardless of their hardware, operat-
ing system, or Web server vendor.

HTTP is a connectionless protocol, in that the browser does not keep a connec-
tion open nor send multiple requests across it. Instead, each request requires a
new socket connection to the Web server. The connection is closed as soon as the
request is complete.

HTTP request. A group of data sent from the browser to the Web server. An HTTP
request includes the name of the requested page, descriptive information about

Evaluating Candidate Technologies for Boundary Classes 169

the browser, acceptable datatypes for the response, any cookies that were
dropped by the target server, and any data as entered by the user. In a nutshell,
each HTTP request packages a request from the user into a format that any Web
server can understand.

HTTP response. A group of data sent from the Web server to the Web browser in
response to a request. An HTTP response includes descriptive information about
the server, an expiration date for the response, and formatted data. The formatted
data might be plaintext, formatted HTML, an image or even binary data. The
browser is responsible for displaying the formatted data.

Form data. HTTP allows Web browsers to collect data from the user and pass it
along to the Web server as a list of strings. The user fills in an HTML form in
his or her browser and submits the data. The browser packages the form data as
part of the HTTP request and passes it to the Web server as part of a HTTP
request.

Cookie. When a browser loads a page, the page may ask the browser to save a rela-
tively small chunk of data on the client machine. This chunk of data is called a
cookie. Tf the browser accepts the cookie, then the browser stores the data and the
name of the site that "dropped" the cookie.

When a browser sends a request to a Web server, it appends all of the cook-
ies previously dropped by that site. This allows the Web server to keep track of
each user so it can simulate a continuous interactive session.

HTTP servlet. A Java class that accepts an HTTP request and fills in an HTTP
response. Servlets extend javax.servlet.http.HttpServlet, which protects them
from the messy details of parsing HTTP headers, retrieving form data, and for-
matting HTTP data for the response.

The actual processing occurs inside of the servlet's doGet or doPost method,
which accepts the HTTP request and HTTP response objects as method parame-
ters. The doGet or doPost method uses the HTTP request object to retrieve any
form data, then builds the formatted response data.

Servlet engine. Allows a Web server to redirect incoming requests to a deployed
servlet. The Web server must be configured to associate certain relative URLs
with servlets. When the Web server receives an HTTP request for one of these
URLs, it captures the request and passes it along to the servlet engine. If
the servlet is not already active, the servlet engine loads the servlet class
and instantiates it. Next the servlet engine creates a response object and wraps
the request data in a request object. These well-encapsulated and easy-to-use
objects are gift-wrapped and presented to the servlet's doGet or doPost method.
The servlet uses the request and any other resources at its disposal, including
database connections, Enterprise JavaBeans, and HTML formatting code to fill in
the response. The response from the servlet can be an HTML page, an image, or
a file.

For more detailed information about any of these technologies, refer to the addi-
tional resources in Appendix B.

170 Enterprise Java with UML

Gory Details
Servlets make life easier for developers by retrieving form data in a convenient form
and by managing sessions and session data. However, a lot of work remains for the
developer, who must build huge quantities of HTML and keep the system safe despite
concurrent access from the Web server.

Retrieving Form Data

When a request is received from the Web server, the servlet engine creates the
HttpServletRequest object, parses the form data out of the raw request, and adds the
form data to the HttpServletRequest object. This encapsulates the logic for reading
HTTP in the servlet engine. The doPost or doGet methods of the processing servlet can
use the getParameterNames and getParameter methods of HttpServletRequest to
extract each piece of form data.

Sessions

Servlet engines use cookies or hidden form data to keep track of different users by
unique identifiers and to simulate a continuous session. Remember, each request is a
distinct connection, and contains any cookies that have been dropped by the Web server
onto the client. If there is no identifying data accompanying the request, then the servlet
engine creates a new session. If identifying data exists, the servlet engine verifies that
the session is still active. If so, it treats the request as part of a continuing session.

Consider a real-world analogy. When you make a flight reservation with an airline
by phone, the booking agent gives you a confirmation number at the end of the call. It
is up to you to write this number down and make sure that you do not confuse it with
the confirmation number for your rental car. If you need to make changes to your
flight, you simply call the airline and provide the confirmation number. This enables
the booking agent to easily find the relevant transaction out of tens of thousands of
similar transactions. To complete the analogy: You are the Web browser; the booking
agent is the servlet engine; and the confirmation number is the cookie.

When the servlet engine receives a request from the Web server, it constructs a
HttpServletRequest object that encapsulates the request information. The servlet
engine also attaches the HttpSession object to the HttpServletRequest. This session
object is especially valuable to servlet developers, as it allows them to store references
to any object in a map of name and value pairs. This makes it really easy to associate
different useful objects with a user and to retrieve them by name when processing sub-
sequent requests. Figure 7.8 shows how the session and request information is pack-
aged and delivered to the doGet and doPost methods of the servlet.

HTML Production

Servlets usually obtain a PrintWriter from the HttpServletResponse. This allows the
servlet to send a stream of formatted text data back to the Web browser. Most servlets
fill the response stream with HTML, lots and lots of gruesomely complex HTML. For
many projects, this leads to a series of one-of-a-kind works of art, with each developer

Evaluating Candidate Technologies for Boundary Classes 171

embedding hundreds or even thousands of lines of hard-coded HTML tags and
JavaScript in each servlet. This brute-force approach is survivable until the developers
receive a requirement fora new look or behavior that affects many dynamically gener-
ated Web pages. It could be something as simple as applying a new look to every table.
Developers must comb through each servlet, searching for tables and making the
desired change. Each new work exacerbates this problem, until it becomes prohibi-
tively expensive to make any wholesale changes.

Producing complex pages of HTML in a clean and reusable manner is a challenge
that all servlet projects must accept. The project team must create a reusable set of
HTML production classes that are used throughout the project. For instance, there
might be a single class for creating HTML tables and another for creating a group of
radio buttons. These classes must be configurable so that they can be used in a variety
of situations, yet be simple to use. In some cases, a separate class or subclass must be
created to accommodate a specific browser. This approach has three major advantages:
First, the code base stays small and is easier to understand and to extend. Second,
applicationwide changes affect only a few classes. Finally, since each HTML produc-
tion class is reused throughout the application, sufficient time can be spent on effi-
ciency, quality, and appearance.

172 Enterprise Java with UML

I For one approach to this challenge, see Chapter 12, "Design for
HTML Production."

Concurrent Access
In developing servlets, it is easy to forget that the code in their doGet or doPost
methods may be called by more than one thread at a time. However, since all produc-
tion servlet engines process requests concurrently, this is an unavoidable reality. It is
up to the servlet developer to make sure that any resources that are shared between
servlet instances are thread-safe, by synchronizing the appropriate methods or code
blocks.

Strengths
Servlets are incredibly simple to learn. A simple "hello world" servlet takes only a few
lines, and once developers understand the session management logic, a shopping cart
servlet is quite trivial.

Servlets protect developers from the HTTP's complexity, as all of the nasty details of
parsing and building HTTP headers and payloads are hidden within the HTTP servlet
classes.

Weaknesses

Though servlets are technically very sound and very easy to learn, by having a sepa-
rate servlet for each dynamically generated page, and by lumping data access and
HTML production into the doGet or doPost method, it is also very easy to create a
maintenance and extensibility nightmare. Despite the simplicity of the servlet classes,
servlet-based systems must still be designed with extensibility and flexibility in mind.

Compatible Technologies
Servlets are very compatible with Web technologies, such as HTML, DHTML,
JavaScript, and XML. Servlets are often used to create elaborate, dynamically gener-
ated Web pages that produce content in these forms.

Servlets are also quite compatible with server-side technoiogies, such as JDBC, RMI,
and EJB. A servlet boundary object can easily access a remote control or entity object
using RMI or EJB. As with Swing, the variations are limited only by your architectural
imagination.

Cost of Adoption

The servlet classes are provided free as part of the enterprise edition of Java, and most
commercial quality Web servers include a servlet engine. However, there are other
costs of adoption. First and foremost, to be successful with servlets, your project must
fill the roles of UI designer, architect, and servlet developer.

Evaluating Candidate Technologies for Boundary Classes 173

Ul Designer

It is always good to have a user interface designer who can address usability and
human factors. A UT designer devises alternative interface strategies that meet the
requirements, and works with the stakeholders and the developers to determine which
approach is most suitable for the project. Deliverables range from screen shots in a
drawing program to thin prototypes.

This is especially important in servlet development, where user interfaces are lim-
ited by the capabilities and idiosyncrasies of the users' browsers. Creativity and per-
sistence are definitely required. Also, the user interface designer for a servlet-based
interface must constantly refresh his or her skills, as browsers and Web technologies
evolve and mutate at a disturbingly quick pace. At the very least, designers must know
or be on a sharp learning curve for HTML, DHTML, JavaScript, XML, and XSL.

Architect

Servlet-based user interfaces can degenerate into a series of unconnected works, with
no two following the same format or producing HTML in the same way. An architect
can reduce this effect by establishing reusable HTML production classes to produce
everything from tables and trees to frames and the enclosing page. This allows devel-
opers to easily change the look of the entire application by altering the reusable HTML
production classes. The alternative requires each servlet to be laboriously edited, per-
haps for something as trivial as the background color or the space between buttons.

The architect can also keep the code base sane and avoid costly rework by establish-
ing standards for exception handling, concurrency, error logging, and the use of ses-
sion data.

The architect for a servlet-based user interface must have a strong knowledge of
object-oriented principles, extensive design experience, an understanding of Web tech-
nologies, and a clear grasp of the servlet architecture.

Servlet Developer

Compared to Swing, servlets require substantially less object-oriented sophistication,
and frequently have a significantly shorter learning curve. This is especially true when
the architect or other senior developer defines the intent of each servlet, and the UI
designer prototypes the HTML and associated Web scripting. Given these assump-
tions, servlet development may serve as an excellent first project for a budding Java
developer.

If the architect and user interface designer roles are not filled, then the servlet devel-
oper is forced to know everything from object-oriented design to DHTML to
JavaScript. This requires a strong object-oriented Java developer who understands
Web technologies and who can visualize usable interfaces.

Suitability
In Chapter 6, we identified the following descriptive categories:

174 Enterprise Java with UML

• User interface complexity

• Deployment constraints for user interfaces

• Number and type of users

• Available bandwidth

Let's see how suitable servlets are for each of these requirements.

User Interface Complexity

Servlets, in combination with HTML, can easily support simple data input and static
views of data. First, a servlet formats the HTML for a customized form. When the user
submits the form, the form data is sent to a servlet for processing. The servlet can use
any other data sources, such as database connections, Enterprise JavaBeans, or external
systems, to create a response. The response is usually formatted HTML, although it
could be a file or an image.

Customizable views, in which the user can manipulate the view without making a
separate request to the server, are mure difficult. Remember, the servlet responds to each
request with a single block of data that is interpreted by the browser. So, the formatted
response must include some combination of more complicated Web technologies, such
as JavaScript and DHTML. These solutions depend on the browser to correctly render
them, and they must be customized for each browser vendor and browser version.
Therefore, creating customizable views using servlets is a complex undertaking that
requires patience and a sophisticated understanding of Web technologies.

Dynamic views of the data are equally problematic. Remember, a dynamic view keeps
current with the underlying model, either by receiving notification when a change
occurs or by periodically retrieving the new data. With servlets and Web browsers, the
first option is impossible; the server does not maintain a connection to the Web browser
and therefore cannot notify it when the data changes. The second option can be achieved
by using JavaScript to reload the entire page or a frame at suitable intervals. Of course,
this is not very efficient, as all of the data, not just the updates, must be retrieved. As with
customizable views, creating dynamic views using servlets is a complex undertaking
that requires patience and a sophisticated understanding of Web technologies.

Interactive graphics, in which the user sees changes as they occur, and updates the
underlying data by interacting with the graphics, are not possible with servlets and an
unmodified Web browser. Just rendering the graphics requires some form of plug-in,
such as a VRML or ActiveX viewer. Propagating changes back to the server is even
more problematic.

Servlets are most appropriate for simple data input and static views of data. Cus-
tomizable views and dynamic views of data are quite possible, but depend on browser-
specific Web technologies, such as JavaScript and DHTML. Interactive graphics are not
possible with servlets and standard Web browsers.

Deployment Constraints for User Interfaces

Servlets can support the entire range of deployment scenarios; the hard part is to gen-
erate HTML that presents well for the different users. For instance a micro-Web browser

Evaluating Candidate Technologies for Boundary Classes 175

on a handheld device will not present large images very well, so the HTML produced
by the servlet must include an alternative textual description in place of the image.

Number and Type of Users

Servlete are very appropriate for all user communities. The users should not even
notice that servlets are being used. They will know that they requested information
from a Web server and that they received information in response. They do not need to
alter the configuration of their Web browser or accommodate the system in any way,

Available Bandwidth

Servlets are generally appropriate for all bandwidth levels. However, there are some
limitations when attempting to stretch the capabilities of the browsers while con-
strained by low bandwidths. Remember, the browser simply renders the formatted
HTML as sent by the Web server and servlet engine. This HTML contains data, pre-
sentation instructions, and any special processing logic, all in a form that the browser
can interpret. In some cases, this may lead to an amazingly large quantity of HTML.
For instance, implementing a customizable view by making each option a separate
layer may replicate most or all of the data for each layer. Similarly, implementing a
dynamically updated view by reloading the page periodically forces the servlet to wend
all of the data and presentation instructions each time.

XML

The extensible markup language (XML) is a rare example of an extremely hyped tech-
nology that really is worth the hoopla. Since its specification by the World Wide Web
Consortium (W3C) in 1998, XML has become the standard mechanism for storing
and exchanging descriptive data via electronic data interchange (EDI). Industry
groups and government agencies are establishing XML document formats to describe
everything from astronomical data to job descriptions to workflow management.
Other common uses include configuration files, flexible data storage, and language-
independent object serialization.

XML documents are valuable for people as well as computers. XML documents are
precise enough for computers to create, read, and update them. Most people find them
fairly easy to work with, especially with the aid of an XML authoring tool. For example,
authors might use XML to divide a document into sections and to describe the suitabil-
ity of the document for various audiences, based on their language and organizational
role. An XML-based document management system can tailor each user's view of the
documents based on the user's profile and this suitability description.

Before continuing this discussion in more depth, there are a few key terms that must
be defined:

Element. XML divides a document into elements. Each element may contain data,
attributes, and other elements. Conceptually, elements are rather like nodes in
a tree.

176 Enterprise Java with UML

Document type definition (DTD). Defines the structure of a set of documents.
Specifically, a DTD defines which elements can be part of each element, and how
many and in what order. The notation is reasonably simple and consistent with
other pattern definitions, such as regular expressions.

Parser. Breaks a document into a tree of elements, and validates the document's
structure against the DTD. Note that the validation tests for presence of the cor-
rect elements, attributes, and data within defined elements. It does not test data
against an allowable range, or even differentiate between letters and numbers.

Authoring tool. Helps a human read and write XML documents that are valid for a
particular DTD. Authoring tools save typing and your sanity, so you want one of
these.

Now we can plunge into the details of XML.

Gory Details
XML allows people and computers to create and read documents that present data and
describe themselves. This section discusses the structure of XML documents and the
technology for creating and parsing XML documents.

Self-Describing Documents

Every piece of data in an XML document is inside of an element or is a named attribute
of an element. As long as the author of the DTD picks explanatory names for elements
and attributes, the XML document is self-describing. This eliminates an entire class of
errors that have plagued EDI developers for decades. Traditionally, a protocol or data
interchange format described the meaning and allowable values for each position in
each record. Imagine the resulting chaos if a program reads field 11, which is Social
Security number, as field 12, which is age in seconds since 1970. Also, changing the
interchange format may ruin existing documents; you certainly cannot safely delete a
field or insert one in the middle.

Now consider a self-describing document format, such as XML. There is never any
argument over the identity of a piece of data. The name literally surrounds the data. Of
course, there may be arguments over the associated units or how to interpret the data,
but this is hardly the technology's fault. Also, a new element can be added anywhere
in the document. As long as it is optional, no existing documents break. This really
helps when different organizations create documents that are similar but not identical
in structure.

For example, XML can be used to describe a transaction in a form that is easy to read
and unambiguous for both humans and computers. Consider the following brief snip-
pet of XML that describes a single transaction in which someone gets very lucky on
February 1,1999.

Evaluating Candidate Technologies for Boundary Classes 177

Consider the alternative approach of simply allocating a particular number of bytes
for each field. Tiny disagreements in the size or starting index of 3 field can lead to
strange and sometimes difficult-to-diagnose problems. The following densely packed
line shows the same data as in the preceding XML sample; however, the meaning of
each byte is left to the human or computer that reads the line.

Parsers

Parsers come in two flavors and use two parsing methods. First, parsers either validate
the document against the DTD or they don't.Thus, parsers are often described as vali-
dating or nonvalidating. The first parsing method, the Simple API for XML (SAX), is an
event-based parser that deserves recognition for its elegance and the fact that its
acronym encapsulates two other acronyms. The second parsing method, the Docu-
ment Object Model (DOM), builds a tree of elements in memory.

SAX

As a SAX parser works its way through a XML document, it notifies the registered doc-
ument handler whenever an element begins and ends. This allows the handler to react
to the content a piece at a time, so it can build objects or perform any required actions.
Any extraneous information is discarded, with no wasted memory. Also, it is easy to
stop parsing at any point. For instance, an application might parse through a docu-
ment looking for the first valid record. With a SAX parser, it is easy to stop because it is
processing one record at a rime.

Writing applications that use a SAX parser can be somewhat tedious, however, as
each event must be caught, identified, and processed. This is especially painful when
the processing depends on where the element occurs in the tree.

DOM

DOM parsers are generally built on top of a SAX parser; they provide an extra level of
convenience. A DOM parser builds a tree structure from the document. Once the entire
document has been parsed, this tree structure can be navigated and explored at length.
Also, an application can modify the DOM tree and save it as a new XML document. So,
for many applications, a DOM parser is the clear choice.

Unfortunately, this convenience may come at a price. The entire document is parsed
and held in memory before the tree of elements is returned to the application. DOM
parsers are notoriously wasteful if the document is large and the application needs

178 Enterprise Java with UML

only a fraction of the data. Or are they? Some DOM parsers accept event handler
objects and notify them when certain events occur. For instance, IBM's venerable, and
horribly named, xml4j parser allows an application to register element event handler
objects with the parser. These handlers are notified when matching elements are com-
pletely parsed. In this scheme, the element handler can do nothing, replace the element
with another element, or consume the element completely. If the parser supports this
sort of scheme, then developers get the convenience of a nice DOM tree without the
wasted space.

IBM's xml4j has been integrated into Apache's open source toolkit

for XML. It is now called Xerces. While the name is undeniably cool, it is even

less explanatory.

Strengths
XML greatly improves data interchange between peer systems and between people
and systems, it dramatically decreases development time and minimizes the risk of
translation errors. In short, it actually deserves its hype.

Weaknesses

If network bandwidth is a very high priority, then an XML document with more bytes
spent on element names than on the actual data values may be a foolish luxury. Other-
wise, it is a great way to exchange data.

Another less obvious weakness of XML is its natural hierarchical structure. While
XML is perfect for treelike data, it is not such a natural fit for webs of interconnected
nodes. Relationships must be stored as data. This may seem awkward, and prove to
be error-prone, as deleting a data element requires the deletion of the associated
relationships.

Compatible Technologies

XML can be used by any Java application, applet, or servlet. It is used to store infor-
mation on both clients and servers, and to communicate between different parts of the
same system and between different systems. It truly is well on its way to ubiquity.

Cost of Adoption

Use of XML requires several, some, or all of the following roles.

DTD Author

DTD authors determine the structure of XML documents. At a minimum, they need a
mastery of the data that is described in the document, and a facility with the syntax

Evaluating Candidate Technologies for Boundary Classes 179

and idioms of DTDs. Fortunately, DTDs are fairly straightforward, and there are many
excellent texts on the pragmatics and theory of DTD construction. Also, an effective
DTD author needs a strong vision for the future of the document.

In some cases, the DTD author may not have sole control over the document's struc-
ture. In many cases, XML dcx:uments help diverse organizations exchange information.
Each organization promotes certain perspectives and interests as the document struc-
ture evolves by consensus. A DTD author in such a situation needs patience and persis-
tence in unusually large quantities, as well as skills in negotiation and compromise.

Document Author

Once the DTD solidifies, actually authoring XML documents is fairly straightforward.
Tools automate much of the drudgery, and prevent invalid XML based on a particular
DTD. This frees the document author to concentrate on the actual data.

In some cases, humans do not create XML documents. Instead, XML documents are
generated by a system. For instance, a system may extract data from a database and
convert it into XML. In this case, there is no need for a human document author.

Developer

XML development requires developers to learn at least one parser technology. Fortu-
nately, documentation and sample code for XML parsers is readily available. XML
development does not generally require extensive knowledge of the Java class libraries.

Suitability
Recall from Chapter 6 that system interfaces can be divided into three categories: data
transfer, services through a protocol, and direct access to system services. This section
explores XML applicability for these three categories.

Data Transfer

XML is very useful for data transfer between systems. XML was created in part as a
more flexible and easy-to-use alternative for electronic data interchange. One system

and send the document across to the other system. The receiving system can use a
parser to recover the document. Once a system has recovered a document, it can
process each element individually or build a set of interrelated objects.

XML is an excellent choice for system interfaces that emphasize data transfer.

Services through a Protocol
XML is also very useful for system interfaces that allow one system to receive services
through series of requests and responses. One system builds an XML document and
sends it over a socket connection to the server system. The server parses the request,
performs any required actions, builds a response XML document, and sends it back to

180 Enterprise Java with UML

the client system. The same flexibility and extensibility characteristics that make XML
an ideal EDI technology are assets in this situation. Also, the readability of XML is very
helpful when debugging the interactions between the client and server.

Direct Access to System Services

This type of system interface exposes some of its methods for remote access. XML is
gaining acceptance as an object serialization mechanism for use with language-
independent remote method invocation. Hopefully, this will allow greater interoper-
ability between EJB and CORBA systems in the near future.

Technology Selections for the
Timecard System

Now that you have an understanding of the different technologies available for bound-
ary classes, let's use the technology requirements from Chapter 6 and the technology
descriptions from this chapter to select technologies for the Timecard system's bound-
ary classes. We'll also need to consider the cost of adopting the technology.

The boundary classes break into two groups: user interface classes and the system
interface with the billing system.

User Interface Classes
Recall from Chapter 6 that we lumped all of the user interface classes for the system
into a single group for technology selection. Also, we characterized those user interface
classes in several areas.

• User interface complexity: Simple data input and static view of data
• Deployment constraints for user interfaces: Late-model Web browser on the

Internet.
• Number and type of users: General use within an organization.
• Available bandwidth: Dial-up Internet connection.

Based on these descriptions, we must choose between servlets and Swing. Let's exam-
ine them individually.

User Interface Complexity

Both technologies are perfectly capable of supporting simple data input and static
views of data. Neither technology has an advantage. We will have to base our decision
on other criteria.

Deployment Constraints for User Interfaces

Servlets can be used to produce dynamic Web pages for display in any late mode:
browser. Swing is also appropriate for deployment as an applet under these same or-

Evaluating Candidate Technologies for Boundary Classes 181

cumstances, since all late model browsers either have a built in Java virtual machine or
supported the Java plug-in. This may require the user to install the Java plug-in or
change the configuration of their browser.

While these accommodations seem trivial to developers and other power users, some
users may resist, due to security concerns, lack of time, or for sheer perverse pleasure.
Making any additional demands on the user results in extra demands on the develop-
ment or deployment staff for the system, so servlets have a slight advantage over Swing.

Number and Type of Users

Servlets are appropriate for any number of users. Swing applets are appropriate for
general use within an organization. However, there must be some advantage to using
Swing, to offset the incremental support costs that result from deploying an applet to a
large and often unmotivated audience. In this case, there does not seem to be any
advantage to using Swing, as the user interface seems straightforward. Therefore, the
advantage is to servlets.

Available Bandwidth

The Timecard system must support low-bandwidth scenarios, such as traveling
employees using a slow dial-up connection. On the other hand, updating a timecard
does not require much data. Either Swing or servlets are perfectly appropriate. There's
no advantage to either technology. We will have to base our decision on other criteria.

Cost of Adoption

The cost of adopting servlets for this application is quite low, as the user interface is
fairly straightforward. The UI designer and servlet developers should have a reason-
ably easy time. As far as user interface classes go, this project is appropriate for devel-
opers with low to moderate experience in Web technologies and Java development.

The cost of adopting Swing for this application could be a bit higher, due to the com-
plexity of Swing development. Unless the developers already know Swing, and do not
know any Web technologies, the cost of adoption is clearly higher for Swing. Servlets,
therefore, have the advantage.

Conclusion

The Timecard application could reasonably be implemented with either Swing or
servlets. However, there are no indications for choosing Swing over servlets. hi the
absence of any strong preference on the part of the development staff or the users, we
will use servlets.

System Interface with the Billing System
Recall from Chapter 6, that the interface with the billing system is simple data transfer.
Finally, we get an easy decision. XML lets us create a flexible data interchange format;

182 Enterprise lava with UML

Figure 7.9 Package dependencies and technology selection.

and it comes with free tools and parsers. We happily follow the rest of the industry and
select XML.

The Next Step

UML provides package dependency diagrams that show the relationships between
large parts of the system. In this case, we can show that the user interface classes
depend on the servlet classes, while the billing system interface depends on an XML
parser of undetermined origins. Figure 7.9 shows our technology selections for the two
groups of classes.

Now that we have selected technologies for the boundary classes, we can turn our
attention to the control and entity classes.

Evaluating Candidate
Technologies for Control

and Entity Classes

The control and entity classes comprised the second group of analysis classes we iden-
tified in Chapter 6, "Describing the System for Technology Selection." In this chapter,
we'll use the template I introduced in Chapter 7, "Evaluating Candidate Technologies
for Boundary Classes," to describe and evaluate the candidate technologies for imple-
menting this group of classes. The first step is to apply the simple descriptive template
to several technologies, before using the technology requirements descriptions from
Chapter 6 to find the right combination of technologies for the control and entity
classes in the Timecard application.

The technologies we'll evaluate are Remote Method Invocation (RMI), Java Data-
Base Connectivity (JDBC), and Enterprise JavaBeans (EJB). However, we evaluate the
suitability of RMI and JDBC together, since they are often used together.

RMI

Remote Method Invocation (RMI) was added to version 1.1 of the Java Development
Kit (JDK) to allow remote access to objects. It is important to understand RMI both
as an alternative to EJB for simple applications and as a technology that directly sup-
ports EJB.

RMI has a simple and wonderful purpose. It allows a client object on one host to call
methods on an object that resides on another host. The client objects use a stub object to

183

184 Enterprise lava with UML

communicate with a skeleton object on the server. Fortunately, RMI and its tools provide
the stub and skeleton objects, which do all of the hard work. Figure 8.1 shows commu-
nication between a client and art RMI server. While the client thinks it is calling a
method on a remote object, it is actually calling a method on a stub object in the same
virtual machine (VM). The client stub converts the method parameters into data and
sends them across to the waiting server skeleton. (Note: The client stub and the server
skeleton live in different virtual machines and may even be located on different conti-
nents, so the communication between the stub and the skeleton is over a network con-
nection.) The client stub then waits for a response. Once the skeleton receives the data,
it converts the data back into parameter objects and calls the same method on the
implementation object. The return value, if any, is converted into data and sent back
across the socket connection to the waiting client stub that converts it back into an
object and passes it along to the client.

Gory Details
RMI consists of a handful of classes and interfaces and a few simple tools. Thanks to
this simplicity, a reasonably experienced Java developer can learn enough to have a
remote HelloWorld server up in a few hours. However, designing an efficient and
effective RMI server is a bit more challenging. RMI developers must consider what
data is passed for each remote method, and protect against concurrent access to their
RMI server's objects. As explained in the next section, RMI is both very simple and
very complex.

Figure 8.1 RMI communications between clients and servers.

Evaluating Candidate Technologies tor Control and Entity Classt

Classes and Interfaces

Consider a user interface that uses RMI to access some functionality on a remote server.
Each ClientView object has a reference to an object that implements the Some-
Remotelnterface interface. For the client, the object that implements the SomeRemote-
Interface interface is an instance of ClientStub. When one of the interface methods is
called, the ClientStub object converts each parameter and sends it over the socket to the
server. It then waits for a response. The response is either a return type or an error. If it
is an error, then the ClientStub converts the raw data into a RemoteException and
throws the RemoteException to the calling client. Otherwise, it converts the returned
data and returns it to the calling client. Figure 8.2 shows the classes and interfaces for
this simple scenario.

On the server, the Somelmplementation class extends UnicastRemoteObject and
implements the SomeRemotelnterface. A ServerSkeleton that has a socket connection
to the ClientStub has a reference to the actual implementation. When the ServerSkeleton
receives data from the socket, it converts the data to parameters and calls the correct
method on the Somelmplementation object. If any RemoteExceptions are thrown, they
are converted to data, and the data is sent back across the socket. Otherwise, the return
value is converted to data and sent back across the socket.

Fortunately, developers do not need to write the complex code that dwells inside of
the stubs and skeletons. Sun Microsystems provides a tool, called rmic, as part of the
JDK, which produces the stub class files based on your class files. It is up to you to bun-
dle the class files so that the client and server applications can find them.

Figure 8.2 Classes and interfaces for RMI.

186 Enterprise Java with UML

In JDK 1.1, rmic also produced custom skeleton class files. As of JDK
1.2, the skeleton is part of the RMI server.

Remote Object Registration
Before a client can reference a remote object, the RMI registry must be running on the
server, and the remote object must be registered with the RMI registry. The RMI reg-
istry is simply a lava application that listens on a port for incoming requests. When it
receives a request for a particular object, it tries to match the request against all of the
implementation objects that have registered. A remote object is instantiated by a Java
application, which then uses the static bind or rebind method in the Naming class to
register the object with the RMI registry.

The following code snippet shows how a remote object for the example in Figure 8.2
is instantiated and registered.

Parameter Passing

So far, I have glossed over a great deal of complexity by ignoring how parameters and
return types are converted to and from data. Consider what happens when a client
object calls a method on a remote object reference. Before the client stub can pass the
request to the server, it must convert the parameters into data. This is known as serial-
ization. When the response is received, the client stub must convert the data back into
a return value. This is known as deserialization.

There are three types of serializable data that can be used as parameters or return
types in RMI: primitive data, serializable objects, and remote references.

Primitives

Primitive data types are very convenient for use with RMI, as there is no need to con-
vert primitive data types to data; they are already simple data. They allow remote
clients to configure the remotely accessible object and to request data from the
remotely accessible object.

Evaluating Candidate Tediimlogies lor Conlrol anil Enlily Classes 187

Serializable Objects
The client stub must convert each parameter object into data. If the object contains prim-
itive data, then this process is fairly straightforward. The stub simply serializes the
object by sending the name of the object's class and all of the object's data. However, if
the object contains other objects, then they must be serialized also. So, serializing a sin-
gle object can lead to the serialization of an entire network of connected objects.

Java provides two mechanisms that help developers manage the serialization process.
First, an attribute can be marked as transient in the class. Transient data is ignored during
serialization. Also, in order for an object to be serialized, the class must implement the
Serializable interface, which has no methods. By allowing a class to implement Serializ-
able, a developer is stating that objects of that type are reasonable for serialization.

Each object that is serialized on the client was instantiated from a particular class.
When the skeleton on the server receives the serialized data, it instantiates an object of
the same class and loads the data into it. This requires that the same version of the class
exist on both the client and the server.

In remote method calls, a serialized copy of the object is passed to the server, so any
changes to the passed object's state on the server do not affect the original object on the
client.

Remote References as Parameters
When the stub is converting the parameters, it checks for objects that implement
java,rmi.RemoteObject. These parameters are not serialized. Instead, their stubs are
serialized and sent in their place. Thus, the server receives as a parameter a stub object
that connects back to the remote object on the client machine.

Thread Safety

When an object is registered with the RMI registry, it is open for access by concurrent
threads. RMI, like most distributed architectures, allows more than one client to access
the server at the same time. So, the remote object and every object that the remote
object has a reference to must be designed with thread safety in mind. It is up to the
developer to make sure that any resources that are shared among client requests are
thread-safe, by synchronizing the appropriate methods or code blocks.

Development and Deployment

Applications based on RMI have a reasonable, if somewhat tedious, development and
deployment cycle. In order to develop and deploy a RMI-based system, you need to
follow these steps:

1. Write remote interfaces and implementations for the server.

2. Use the rmic command to generate stub classes.

3. Write client applications.

4. Distribute stub classes and any common domain classes to the client.

5. Start the RMI registry.

188 Enterprise Java with UML

6. Run the main application to register the remote objects with the registry.

7. Start the clients.

Most of these steps can be automated in a build or make file.

Common Uses of RMI

EMI is a fairly simple and very flexible technology. There are three ways in which EMI
can expose business logic to clients:

• Remote object that hides entity objects

• Direct access to entity objects

• Direct access to entity objects with event notification

The following sections describe these common uses in more detail.

Remote Object That Hides Entity Objects
(Strict Layering)
In many cases, it is possible to completely isolate the user interface objects from the
entity objects. As discussed in Chapter 3, "Gathering Requirements for the Timecard
Application/' this separation helps simplify the user interface while keeping the enti-
ties well focused. When the user interface objects are distributed, the control object
may expose its methods through RMI. Figure 8.3 shows the UpdateTimecardControl as
a remote interface that is implemented by the UpdateTimecardControlImpl class. The
UpdateTimecardControl object keeps track of the employees and receives the employee
ID as the first argument of each method. This allows the UpdateTimecardControl
object to get the current timecard from the correct employee and call the appropriate
method on that timecard.

There is only one remote object, the UpdateTimecardControl. None of the entity
objects are exposed as remote objects. All of the parameters and return types are sim-
ple objects, primitives, or enumerations of simple objects.

Hiding the entity objects keeps the remote client isolated from the remote objects.
All interactions funnel through a very straightforward interface. This reduces the
deployment burden, because as long as the UpdateTimecardControl interface remains
the same, the domain objects can be altered without impacting the clients.

Direct Access to Entity Objects (Relaxed Layering)
An alternative design allows the user interface to directly access the entity objects.
Since the user interface and entity objects are on different hosts, EMI is used to expose
the entity objects as remote objects. A locator object is registered as a remote object. The
locator object's methods allow the user interface to find Timecard objects. Rather than
receiving a serialized copy of the timecard object, the user interface receives a remote
object reference to the specified timecard object. Thereafter, the user interface commu-
nicates with the timecard object via EMI. Figure 8.4 shows the classes and interfaces for
this alternative.

Figure 8.3 Remote access to control object.

190 Enterprise Jai

Figure 8.4 Remote access to entity objects.

Notice that each change to the Timecard interface requires a new deployment. It is
important to note that changes to the internal implementation of the Timecard class
:nay not require redeployment.

Direct Access with Event Notification

It is common for objects to track the state of another object. This allows a view to stay
in sync with an underlying entity, or one entity to monitor a group of entities. Fortu-
nately, the Observer design pattern [Gamma 1995] allows an object to receive an event
notification whenever the state of another object changes. The object of interest does
not know the specific type of each registered observer. Instead, the object of interest
keeps references to any object that implements a simple notification interface.

Java uses the Observer pattern both in)avaBeans with PropertyChangeListeners
and in AWT and Swing with different types of listeners for different events.

For a more thorough description of the use of the Observer design
pattern in Swing, see the Cory Details section for Swing in Chapter 7.

Evaluating Candidate Technologies for Control and Entity Classes 191

In some cases, the observer object and the observed object may reside in different
virtual machines, perhaps on different continents. One solution to this scenario
extends the JavaBeans event model to notify remote clients of changes in an entity
object's state. For example, an object might provide a remote method to register remote
property change listeners. The property change listener must also be remotely accessi-
ble, so that the object of interest can notify it of changes. Figure 8.5 shows some classes
and interfaces that illustrate this scenario. An InterestingThing object is registered with
the RMI registry. Once a client gets a reference to the InterestingThing, it can register a
listener object. Whenever a client changes the state of the InterestingThing by calling
its changeSomething method, the InterestingThing must call the propertyChanged
method on each registered listener.

Figure 8.5 Remote event notification.

192 Enterprise lava with UML

Strengths
RMl is a great starting point for distributed applications. It makes distributed comput-
ing palatable to developers by hiding the nasty details of serializing and deserializing
parameters and return values. There are not many classes or interfaces to learn, and the
rmic and rmiregistry tools are very easy to use. Also, the error handling is fairly
straightforward, assuming a basic knowledge of exception handling in Java. It is a very
elegant and easy-to-assimilate technology. Moreover, it works between any hosts that
have a compliant virtual machine. For example, a client on a PC can easily access a
remote object on a UNIX server.

Weaknesses
RMI leaves scalability, fault tolerance, load balancing, and data integrity concerns up
to the developers. This is an intentional limitation in Sun's vision for RMI, not a weak-
ness in the execution of the vision. In any case, using RMI for an enterprise class sys-
tem requires developers to consider a host of issues, from object and resource pooling
to redundancy to thread safety. In many cases, designing and implementing simple
solutions for these issues may be reasonable. Otherwise, the architecture must include
more sophisticated technology that leverages RMI, such as Enterprise JavaBeans.

Compatible Technologies
KMI and JDBC are often combined to form a remotely accessible and persistent control
and entity layer. This allows a central repository of application, business logic, and
business data to support a variety of user interfaces and peer systems.

Methods that are exposed through RMI can be called from any Java code, including
servlets, applications, and applets.

Cost of Adoption
While RMI is provided free as part of the standard JDK, there are other costs of adop-
tion, hi order to be successful with RMI, your project must fill the roles of architect and
RMI developer.

Architect

The architect for a RMI-based system needs a clear understanding of the performance
and scalability issues involved with different design choices. Choices between strict
and relaxed layering and for event notification need to be made early in the develop-
ment cycle.

Also, the architect must establish clear guidelines for exception handling, error log-
ging, and naming for different types of common RMI classes and interfaces. This upfront
effort yields huge dividends in the form of a smaller and more readable code base.

The architect must have a strong background in distributed object-oriented devel-

Evaluating Candidate Technologies for Control and Entity Classes 193

RMI Developer

RMl developers need to understand distributed development, threads, and concur-
rency. A clear understanding of these issues is more important than the actual Java
classes and programming techniques, which are actually fairly straightforward. A
developer with ilie right experience can easily pick up the RMI specifics from a few
examples. So, a system or subsystem that is dominated by domain data and RMI may
serve as an excellent entry point for a developer who is transitioning to Java from, say,
C++ and CORBA.

RMI developers do need a strong understanding of synchronization, exceptions,
serialization from the java.io package and, of course, the java.rmi package.

JDBC

Java DataBase Connectivity QDBC) was introduced in JDK 1.1. JDBC is a thin, object-
oriented wrapper around the full functionality of SQL. You can create, read, update,
and delete the schema and the data; execute stored procedures, commit or roll back
transactions, and even fiddle with isolation levels. If you can do it in SQL, you can do
it with JDBC.

Using JDBC to save a few objects to a database is very easy. You just figure out the
mapping from the object's data to the table's fields, and the rest is straightforward
drudgery.

Real systems tend to be a bit more complex. Problems begin to crop up when you
have different flows through the system that all update an object but that all have dif-
ferent transaction boundaries. Where do transactions originate? Where is each transac-
tion committed? Who creates database connections, and can they be reused? Also, no
useful object is an island. How do you store the relationships between objects? When
you load an object, do you load all of the objects that the object knows about, or do you
wait until they are needed? How many objects can you store in memory?

Fortunately, a lot of very smart people have dedicated their careers to solving the puz-
zles inherent in object-to-relational persistence. This body of work can be consumed and
leveraged by absorbing the theory and by using commercial objecMo-relational map-
ping products. Also, EJB servers are becoming increasingly sophisticated in this area.

Gory Details
JDBC allows developers to write database-independent code while still getting the
performance of drivers, which are written and tuned by the vendor.

As you explore the technology in this section, be alert for creative uses of object-
oriented principles, such as encapsulation, interfaces, and polymorphism. In addition
to its technical merits, JDBC is valuable and accessible example of object-oriented the-
ory as applied to a very real problem.

194 Enterprise Java with UML

Drivers, Connections, and Statements

JDBC derives much of its appeal from the freedom it gives developers to almost com-
pletely ignore the differences between databases. JDBC requires the code to load one or
more drivers and to request a specific connection from the DriverManager. After that,
the rest of the code is entirely generic. Many projects use a configuration file to hold the
connection information and the driver class names that must be registered. This means
all of the code can be blissfully unaware of the database specifics. Let's examine some
of the classes and interfaces that perform this rather impressive feat.

The Driver interface defines the methods that are required to determine if a driver is
suitable and to open a connection. If it is, database vendors must provide a specific
implementation class for the Driver interface, which encapsulates the details of open-
ing a connection to their specific type of database, and provides information about the
supported features for their database and their driver.

The thoughtful developers at Sun also protect developers from worrying about the
individual drivers by supplying a class, DriverManager, that collects drivers and
determines which one fits a particular situation. When a concrete implementation of
the Driver interface is loaded, it must register with the DriverManager class by calling
the static registerDriver method. Later, when an object needs a connection to a data-
base, it calls the static getConnection method on the DriverManager class. This method
searches the DriverManager's list of drivers until it finds one that matches the
requested database type. It then asks the driver to open a connection to the database by
calling the connect method on the driver. Assuming that all goes well, this connection
is returned to the requesting object. Figure 8.6 shows the sequence diagram as an appli-
cation first registers two drivers and then obtains a connection that fits the second
driver.

Notice that this connection is really a vendor-specific implementation of the Con-
nection interface. Connection objects allow full control over the current transaction,
through the commit and rollback methods. If the database allows it, they also allow
configuration of the isolation level for subsequent transactions on the connection.

Consequently, the code that you or I write deals solely with the DriverManager and
the Connection and Statement interfaces. We are protected from all of the database-
dependent variations that are hidden inside of the vendor-supplied implementation
classes. Figure- 8.7 shows the classes and interfaces required to obtain a Connection
object and a Statement object. The vendor must supply a chain of database-dependent
implementation classes, as shown on the right, that implement the chain of interfaces
shown on the left. This elegant scheme simplifies development for application devel-

New and Improved Result Sets

In JDBC 2.0, the createStatement method in the Connection interface accepts two new
integer parameters. The first determines how the result set can be traversed. In previ-
ous versions of JDBC, the result set is traversed from beginning to end, with each row
seen exactly once. This is one option for the first parameter. Another option allows the
result set to be traversed in any order, and for multiple visits for each row. The next
parameter determines if the result set can be updated.

Evaluating Candidate Technologies for Control and Entity Classes 195

Figure 8.6 Register and use drivers.

The result set contains several distinct types of methods. These methods traverse the
result set, retrieve data from the result set, update data in the result set, and refresh the
result set from the database.

The traversal methods move the current row within the result set. In older versions,
the only traversal method is next. Each record is seen once, from top to bottom. The
new version adds methods to move about the result set in both directions, jump to
arbitrary rows, and revisit rows.

The data retrieval methods are very similar to previous versions. Support has been
added for additional datatypes, but the pattern is the same.

An entirely new set of methods has been added to update the data. The current row
can be deleted or have its data changed. A new row can be added by moving to the
insert row, which serves as a buffer, and by updating each column for the new row.
After changes have been made, the updateRow method submits the changes to the
database.

196 Enterprise Java with UML

Figure 8.7 JDBC classes.

Another completely new method, refreshRow, has been added to reread the current
row from the database.

Figure 8.8 shows the classes for retrieving and using a result set. As before, the ven-
dor must supply a chain of database-dependent implementation classes, as shown on
the right. These classes implement the chain of interfaces on the left.

Strengths
Like RMI, jDBC is a great starting point; database-independent code is easier than
ever. As long as there is a JDBC driver for your favorite databases, and as long as you
stick to SQL-compliant datatypes and syntax, you can change databases with ease. The
class libraries are easy to understand, and behave as expected.

Evaluating Candidate Technologies for Control and Entity Classes 197

Figure 8.8 Result sets.

Weaknesses

Like RMI, JDBC leaves many issues to the developer. Larger datasets and more com-
plex transactions require caching, transaction management, and connection pooling. In
many cases, designing and implementing simple solutions for these issues may be rea-
sonable. Otherwise, the architecture must include more sophisticated technology that
leverages JDBC, such as a commercial object-to-relational framework or Enterprise
JavaBeans.

198 Enterprise Java with UML

Compatible Technologies

RMI and JDBC are often combined to form a remotely accessible and persistent control
and entity layer. This allows a central repository of application, business logic, and
business data to support a variety of user interfaces and peer systems.

JDBC can be used to access a database from any Java code, including servlets, appli-cations, and applets.

Cost of Adoption
JDBC is provided free as part of the standard JDK, but there are other costs of adopting
it. In order to be successful with JDBC, your project must fill the roles of architect and
JDBC developer.

Architect

Architects for JDBC-based systems must be familiar with many performance, scalabil-
ity, and data integrity issues. Database connections, which are fairly expensive to
establish, must be used efficiently. Transactions must be started and completed. Map-
pings from objects to database tables must be established in a flexible and extensible
manner. The simple class library makes JDBC development look easy, but there are
many subtleties that, if ignored, can cripple a project.

The architect must have a solid object-oriented background and some experience
with object-to-relational persistence.

JDBC Developer

Developing JDBC-based applications is generally straightforward. The class library is
extremely clear and easy to use. A basic understanding of transactions and SQL is
needed. Developers who are migrating to Java may find JDBC to be a comfortable
starting point.

Suitability of RMl and JDBC
In Chapter 6, we identified two descriptive categories:

• Number and type of users
• Performance and scalability

Let's evaluate how RMl and JDBC perform in these categories.

Number and Type of Users

RMl and JDBC are certainly a valid choice for the first three audiences: a small number
of dedicated users, general use within an organization, and a large audience with

Evaluating Candidate Technologies tor Control and Entity Classes 199

high interest. As the number of users and the data accessed grows, developers will
need to cache objects and pool resources, but these are common problems in large-scale
development.

This combination is less applicable for huge audiences. At some point, the perfor-
mance characteristics of RMI, like any distributed technology, will be overwhelmed by
the demands of a mass audience. Unfortunately, RMI does not support any form of
load balancing across servers. In some cases, it may be possible to create a simple archi-
tecture that spreads the load across several hosts. However, this is not an easy task.
Really large audiences usually require a more formal and scalable solution, such as
EJB, which leverages both RMI and JDBC.

Performance and Scalability

A combination of RMl and JDBC is certainly a reasonable choice for read-only systems
and for systems that allow isolated updates. These systems do not require any special
design for transaction management or data integrity. The combination is also appro-
priate for systems that allow concurrent updates of data. However, in this case, the
developers must supply their own architecture for coordinated transaction manage-
ment on top of the simple control provided by JDBC.

EJB 1.1

The Enterprise JavaBeans specification, which is part of the Java 2 Enterprise Edition,
completely specifies a framework that exposes business objects to remote clients. It
builds heavily on the lessons and innovations of CORBA, while defining a more com-
prehensive suite of services, including object caching, transaction management, object-
to-relational persistence, and security. Any developer who has struggled to implement
these services for his or her own distributed application knows that doing so is both
painful and risky.

EJB implementations tend to depend heavily on the technologies described so far.
They use RMl to provide distributed access, JDBC as a basis for persistence, and XML
to describe the deployment decisions.

Several terms are essential to understanding of EJB. These are:

• Entity bean
• Home interface
• Session bean
• Remote interface
• Implementation
• Deployment descriptor
• Bean-managed persistence
• Container-managed persistence

200 Enterprise Java with UML

• Transaction boundaries• Container

• Persistence

The following sections give a general overview of these terms. Resources for more
information on these topics can be found in Appendix B.

Entity Bean

Entity beans are remotely accessible components that expose business data and busi-
ness logic for an EJB system. Each entity bean represents a single independent and per-
sistent entity in the domain. An individual employee and an employee's timecard are
both appropriate entity beans.

Individual pieces of data, such as a name or contact information, may be contained
within entity beans, but they are not good candidates for separate entity beans. Lists or
collections of entities do not need to be wrapped inside of another entity bean. This
role is played by the home interface, as explained next.

Entity beans generally evolve very cleanly from entity objects in the analysis
model.

Home Interface

Entity beans are only useful if clients can create, locate, and destroy them. This is the
role of the home interface. Each home interface specifies remotely accessible methods
for the creation, location, and destruction of one type of entity bean. For example, if a
system has entity beans for employees and for timecards, then the system has separate
home interfaces for employees and for timecards. Home interfaces generally evolve
nicely from the object lifecycle analysis objects.

Session Bean

Session beans are remotely accessible components that expose high-level business
logic and workflow logic that spans multiple entity beans. Session beans simplify and
support access to entity beans in several ways. A session bean translates an individual
high-level request into many requests to many entity beans. In translating the request,
the session bean may protect the caller from knowledge of the entity beans by return-
ing simple data or collections of simple data.

Session beans do not generally update domain data directly. They frequently call
methods on entity beans that change the persistent state of the entity bean.

Despite the superficial similarity in names, EJB session beans are completely distinct
from HTTP sessions. A single HTTP session may use many session beans to accomplish
many subtasks during a single login.

Session beans typically evolve fairly cleanly from control objects in the analysis
model.

Evaluating Candidate Technologies for Control and Entity Classes 201

Remote Interface

Each entity and session bean has an interface that defines its remotely accessible meth-
ods. When a call to a bean's home interface returns an entity object, it is actually return-
ing a reference whose type is the corresponding remote interface. All access to the
entity bean is accomplished through this remote interface reference.

Implementation

Each entity and session bean has an implementation that realizes the Entity Bean or Ses-
sionBean interface. The implementation contains the Java code for the business logic for
entity beans, and the workflow logic for session beans. It does not implement the home
and remote interfaces. The implementation also defines persistent instance data.

Deployment Descriptor

The deployment descriptor is an XML document that describes how the entity and ses-
sion beans are deployed. It describes everything from the location of class files to deci-
sions about persistence, transactions, and security.

Container
An EJB container holds entity and session beans. It is responsible for a variety of house-
keeping activities, from object caching to transaction management to managing
resource pools. The interactions between beans and their enclosing container are
tightly defined in the EJB specification. The following are some interesting aspects to
the relationship between beans and their enclosing container.

Object caching. A large-scale enterprise system may hold data for thousands or
even millions of entity beans. However, at any point in time, most entity beans are
not being accessed. It is up to the container to determine which entity beans need
to be active due to current or recent usage. When the container takes beans in or
out of service, it notifies the bean via callback methods, such as ejbPassivate and
ejbActivate.

Concurrent access. In order to preserve data integrity, the container controls access
to each entity bean. Many clients or session beans may have access to the same
bean, but each method call must complete before another method call can start on
that bean. Notice that a series of calls from different clients may be interleaved.
Also, calls to different beans of the same type may be executed simultaneously.

The EJB specification precludes developers from using the

synchronized keyword in beans or code that is called from beans.

Transaction management. The container also enforces any transaction requirements
specified in the deployment descriptor. By moving the decisions out of the devel-
oper's code and requiring the container to enforce it, the EJB specification gives

202 Enterprise Java with UML

the developer a lot of flexibility and opportunity to procrastinate or experiment.
For example, developers can defer any serious thoughts on transaction bound-
aries until late in a project without disturbing existing code.

Persistence. The container also determines when each entity bean needs to be
saved, and hi the case of container-managed persistence, uses the mapping in the
deployment descriptor to save the data.

Bean-Managed Persistence

In bean-managed persistence, the entity bean loads and saves its own data. The entity
bean does not need to determine when it is time to load or save. Bean-managed per-
sistence requires developers to embed JDBC code within the bean's implementation.

Container-Managed Persistence

In container-managed persistence, the developer specifies a mapping between each
piece of persistent data and a field in a table in the database. This mapping is stored in
the deployment descriptor.

Transaction Boundaries

The container determines transaction boundaries based on decisions that are recorded
in the deployment descriptor. For each remotely available method, developers specify
if the method should join an existing transaction, start its own transaction, or execute
outside of any transaction.

Gory Details
Enterprise JavaBeans is a fairly complex technology, with lots of terms, concepts, rules,
classes, and interfaces to leam. However, one thing is certain: using EJB is infinitely
better than trying to produce your own scalable remote object framework.

Classes and Interfaces

In order to gain all of the benefits of an EJB system, the developer must create classes
and interfaces that fit within the specification. Specifically, for each Enterprise Java-
Bean, the developer must provide a remote interface, a home interface, and an imple-
mentation class. Each remote interface, which defines the public face of the bean, must
extend the EJBObject interface as provided by Sun. Each home interface must extend
the EJBHome interface, also provided by Sun. Each implementation class must realize
the EntityBean interface.

Notice that the implementation class does not implement the home and remote
interfaces. This is a good thing, as you really do not want to write code for some of the
methods in EJBObject and EJBHome. These tasks are left to the vendor, who supplies a
proxy class that implements your remote and home interfaces. Since these interfaces

Evaluating Candidate Technologies for Control and Entity Classes 203

extend Sun's interfaces, the proxy must provide behavior for your business behavior,
as described in your remote interface, the bean lifecycle behavior, as described in
your home interface, and the behavior defined by Sun in the EJBObject and EJBHome
interfaces.

Obviously, the container vendors cannot be expected to anticipate your business
logic, yet their proxy class is expected to implement your remote interface. This forces
the proxy to delegate each request for a business method to an instance of the imple-
mentation class.

Figure 8.9 shows the classes and interfaces that are provided by Sun, the application
server vendor, and the developers.

Stateful Session Beans

Session beans are divided into two distinct categories, stateless and stateful. A stateful
session bean maintains a dialogue with the client application, in which the session
bean remembers past requests, and uses them to simplify subsequent requests. For
example, a stateful session bean for an online store might allow the customers to select
a product, enter their billing information, then enter their shipping information, and
finally confirm the purchase. This allows each interaction to stay simple, while useful

Figure 8.9 Interfaces and classes for a simple entity bean.

204 Enterprise Java with UML

This convenience comes with a price. The stateful session object takes up memory,
and must be managed by the container until the session is completed by the client
application. If the container runs low on memory, it must serialize the bean and recover
it when the client makes another request. Also, there is no guarantee that the client will
gracefully end the session. This forces the container to worry about timeouts and
cleanup for orphaned stateful session beans.

Control objects that provide a conversational workflow for the client are generally
very appropriate as stateful session beans.

Stateless Session Beans

A stateless session bean is not required to remember any conversational state from
request to request. In fact, the same client making multiple requests to the same state-
less session bean may actually receive a different instantiation each time.

This is very efficient, as the container can keep a small pool of stateless session beans
for use by many clients. There is no need for the container to manage relationships
between the session beans and the client application.

Stateless session beans often evolve from control objects, which convert a single
method into a series of smaller requests, and consolidate the results.

Development Workflow, Assuming
Container-Managed Persistence

As a system is designed and implemented with EJB, development breaks into fairly
distinct pieces. First, developers determine the business data that resides in each entity
bean, along with the remotely accessible interface that exposes the data. At the same
time, session beans are identified from control objects in the analysis model. They
encapsulate the high-level business logic and workflows that span multiple entity
beans. After these two efforts solidify, a separate effort maps the data in the entity beans
to fields in a relational database. The mapping is held in a deployment file, not in the
code itself. As these efforts mature and are exercised against actual data and usage sce-
narios, developers can determine the most appropriate transaction boundaries and
permissions for remotely accessible methods. Again, these decisions are kept in a
deployment file, not in the code.

So, development of an EJB system breaks into the following primary steps:

1. Allocation of business data, business logic, and control logic to entity and ses-
sion beans.

2. Mapping entity data to persistent data store.
3. Determining transaction boundaries and security.

The key is that each step does not affect the previous steps. For instance, the code for
the entity beans and session beans is completely unaffected by the mapping from the
data to the database. Even the data mappings are independent of the decisions regard-
ing transaction boundaries and security.

This clear division between software development activities may be EJB's greatest
contribution to enterprise development. By allowing developers to defer and revisit

Evaluating Candidate Technologies for Control and Entity Classes 205

different steps without destroying the existing work, use of EJB technology can dra-
matically decrease project risk.

Strengths
By providing a coherent framework of services and standards, EJB greatly simplifies
the development of enterprise systems. EJB allows developers to leverage several
decades of research and innovation in transaction management, object-to-relational
persistence, object caching, and resource management. Standing on the backs of giants
allows us to approach formidable projects with confidence. The following section dis-
cusses some specific advantages of EJB.

Object Lifecycle Management

Object lifecycle management includes creating, locating, caching, and deleting objects.
In EJB, the methods for performing these tasks are defined in the home interface. In
most cases, no code is written by the developer to realize these methods. Instead, the
container uses SQL statements and database mappings as defined in the deployment
descriptor to realize them at runtime.

This approach has two tremendous advantages. First, developers save a great
deal of effort that would otherwise be spent writing tedious JDBC code to load
and save objects, as well as complex and error-prone code for caching objects. Also,
entity beans can easily be reused in other systems, since developers follow standard
conventions.

Transaction Management

In EJB development, transaction boundaries may be handled within the code or
described in the deployment descriptor. The first approach gives developers limitless
flexibility, while the later approach is incredibly easy to use and allows developers to
revisit their decisions without disturbing the existing code base,

Security

EJBs provide security by allowing developers to specify which users can access each
method. This approach allows developers to control system access with a great deal of
precision and at a fine granularity. Of course, the user interface must handle invalid
requests gracefully or prevent users from attempting to access forbidden functionality.

Persistence

As with transaction management, EJB development offers limitless flexibility for beans
that require custom persistence code or easy point-and-click descriptions of the map-
ping from entity bean data to database fields. While this is certainly not unique to EJB,
it is still a huge advantage.

206 Enterprise lava with UML

Vendor Neutrality

Since the relationship between the container and the enclosed beans is very well deter-
mined by the EJB specification, a set of beans can be redeployed within a different
compliant container with proportionally little effort. This allows developers to scale
their system by changing the container, not the code. For instance, a system might
be developed within a free or cheap container, initially deployed inside of a midrange
container, and then redeployed to a fancy cluster of high-performance EJB servers.
Also, containers may be selected based on particular strengths, such as superior trans-
action management or scalability.

Portability and Reuse

By definition, every EJB developer follows the same specification. This greatly
increases reuse potential. There is no worry that a bean will not fit the persistence or
security scheme of the new system. So, a bean that fits nicely with the new system's
domain can never be excluded due to implementation decisions.

Weaknesses
While EJB development has many advantages, it is not without a price. Application
servers that provide substantial value come with substantial price tags. Also, Enterprise
JavaBeans require developers to comply with the EJB specification, master the applica-
tion server's deployment tool, and endure painful code-deploy-test cycles.

Compatible Technologies
Enterprise JavaBeans cart be accessed from any kind of application, applet, or servlet.
It can be used to create entity and control objects that are accessed from almost any sort
of boundary objects.

Cost of Adoption
Commercial-quality application servers with EJB support are quite expensive. You pay
the vendor so that you will not have to solve the rather nasty problems associated with
enterprise development. If your project really needs the strengths of EJB, the costs of
not using it may be incredibly high. Your development team must provide solutions
for the object caching, persistence mapping, and transaction control needs of a scalable
enterprise system. On the other hand, using EJB should decrease risk and speed up the
development cycle.

If you worry that finding or cultivating EJB developers is difficult and
expensive, consider the option: finding the developers who are qualified to

develop an alternative solution to each of the problems that EJB solves.

Evaluating Candidate Technologies for Control and Entity Classes 207

In order to be successful with EJB, your project must fill the roles of architect, bean
developer, and deployer.

Architect

Architects for EJB systems need knowledge of the EJB specification, the J2EE platform,
distributed computing, object-to-relational persistence issues, transaction manage-
ment, concurrency, exception handling, and architectural patterns. Experience with
CORBA or another distributed computing technology may be helpful. This role
requires a wide breadth of knowledge, as well as practical low-level experience.

Bean Developer

In many cases, bean development is fairly straightforward. Knowledge of transaction
basics, exceptions, and the Java language is essential. No particular breadth of knowl-
edge of the Java class libraries is required.

Deployer

A bean deployer needs a basic understanding of transactions, concurrency, resource
pools, and security. A deployer does not need to implement any of these areas in code;
instead, he or she must make deployment decisions that maximize performance while
protecting data integrity.

In-depth knowledge of the application server and its associated deployment tool is
also essential. Expertise in the Java programming language is not necessary.

Bean deployment is not like other design and code activities. It is closer to system
administration or database ad ministration.

Suitability
hi Chapter 6, we identified two descriptive categories:

• Number and type of users
• Performance and scalability

Let's take a look at how EJB meets these criteria.

Number and Type of Users

EJB is certainly a valid choice for all four types of audience: a small number of dedi-
cated users, general use within an organization, a large audience with high interest,
and a huge audience with low interest. As the number of users and the amount of data
accessed grows, the capability of an EJB server to cache objects and pool resources
becomes increasingly important.

While load balancing and clustering will never be easy, vendors of commercial
application servers are already focusing on this challenge. It is important to note that

208 Enterprise Java with UML

several of the application server vendors, including BEA, IBM, and Sun, have exten-
sive experience with enterprise system development and clustering technology.

Performance and Scalability

EJB is not always a reasonable choice for read-only systems and systems that allow iso-
lated updates. These systems make use of a small set of EJB's strengths, such as object
caching. And if the system has demanding performance requirements, using EJB may
actually increase overall project risk.

EJB real ly starts to show its value when faced with concurrent updates of the system
data. The combination of object caching and transaction management is more efficient
than 99 percent of all in-house efforts. Also, EJB developers and deployers can manip-
ulate the transaction boundaries without altering a single line of code. This is invalu-
able when attempting to achieve just the right balance between data integrity and
performance.

Sample Technology Selection

This section uses the technology requirements from Chapter 6 and the technology
descriptions from this chapter to select technologies for the Timecard system's control
and entity classes. It also considers the cost of adopting the technology.

One choice is a custom implementation based on RM! and JDBC. The other choice is
an EJB implementation.

Lefs review the Timecard application's technology requirements as developed in
Chapter 6 and proceed from there.

Technology Requirements
The relevant areas for control and entity classes are number and type of users and per-
formance and scalability. The results were:

• Number and type of users: General use within an organization
• Performance and scalability: Concurrent updates

Based on these descriptions, we must choose between the custom combination or EJB.

Number and Type of Users

RMI and JDBC certainly make a valid combination for general use within an organiza-
tion. As the number of users and the data accessed grows, developers will need to
cache objects and pool resources, but these are common problems in large-scale devel-
opment.

Recall that RMI and JDBC do not provide any clustering or load-balancing frame-
work. However, it seems unlikely that any one company's Timecard application will
require a cluster of servers to meet demand, so this is not a factor.

Evaluating Candidate Technologies for Control and Entity Classes 209

EJB is certainly appropriate for general use within an organization. It has the object-
caching and resource-pooling capabilities that greatly simplify system development.
Conclusion: EJB has a slight advantage.

Performance and Scalability

A combination of RMI and JDBC is appropriate for systems that allow concurrent
updates of data. However, in this case, the developers must supply their own architec-
ture for coordinated transaction management on top of the simple control provided by
JDBC.

EJB is designed with concurrent updates in mind. Supporting them in this case
should not require any great effort or creativity. EJB has the advantage.

Cost of Adoption

This category is more difficult and subjective to assess. First, for most systems, the
licensing cost is not financially significant when compared to payroll. Certainly, appli-
cation servers are expensive. However, reducing the project staff by one person over a
year or reducing the schedule by a month or two is worth a lot of money. Such modest
reductions in effort are very reasonable when comparing EJB with RMI/JDBC for a
challenging project.

Now let us consider the remaining cost of adoption: assembling a team. EJB has one
huge advantage over RMI/JDBC in this area. With EJB, you must acquire one or two
experts who understand the technology and the application servers. With RMI/JDBC,
you must acquire one or two experts who must develop a framework and usage guide-
lines for persistence, resource pooling, and object caching. Either way, to avoid chaos,
you must allow most developers to work within a fairly narrow and well-documented
framework. However, with EJB, the framework and guidelines already exist, along
with books, seminars, and online tutorials. Even the best in-house solutions cannot
reach this level of sophistication. Therefore, EJB reduces the workload on the architect
while making all of the developers more productive.

If EJB is technically suitable for an application, it seems wise to use it. While it is dif-
ficult to balance salaries against licenses, the advantages of EJB seem fairly clear.

Conclusion

The Timecard system could clearly be implemented with RMI/JDBC or EJB. However,
given the slight advantage for EJB in each category, it seems prudent to select EJB.

Some companies are selecting EJB as an implementation

technology even before they establish their requirements. Unfortunately, not all

systems are appropriate for EJB, and choosing EJB when the technical

requirements do not indicate it may be very risky. For instance, some systems

place a high premium on speed, but do not have data integrity issues. Using EJB

for such a system may decrease development time but fail to meet the

performance requirements.

210 Enterprise lava with UML

The Next Step

We selected technologies for the boundary classes in Chapter 7, and for the control and
entity classes in this chapter, we are ready to move forward with our understanding of
the solution. Next, in architecture, we elaborate and structure our growing under-
standing of the solution.

Software Architecture

In previous chapters, we discussed techniques for understanding a problem from the
users' and developer's perspective. In Chapters 6 ("Describing the System for Tech-
nology Selection"), 7 ("Evaluating Candidate Technologies for Boundary Classes"),
and 8 ("Evaluating Candidate Technologies for Control and Entity Classes"), we dis-
cussed a disciplined approach to technology selection and selected technologies for
each group of analysis. Finally, we have the information we need to describe a viable
solution to the system problem. The software architecture is exactly that: It is a high-
level structural description of the solution for the system.

A software architecture composes groups of classes into a coherent solution, and
shows how the pieces are structured with respect to one another. The emphasis is on
the structure and relationships, not on the details of each piece. This is similar to a blue-
print for a building, which shows the dimensions of the building and indicates the
building materials, while omitting details about the interior of the building and the
actual construction techniques.

As they work on their specific parts, a software architecture allows developers to
understand the entire system as a coherent whole. More people can understand and
review the solution before it is implemented, and this helps to minimize confusion and
facilitates a more orderly development process. A solid architecture diffuses confusion
and creates a clearly defined goal. This has a significant effect on developer morale and
productivity. Just as a blueprint helps separate teams of carpenters, electricians, and
masons to contribute efficiently to a greater goal, a software architecture helps devel-

211

212 Enterprise Java with UML

opers coordinate their efforts around a common and consensual understanding of the
solution.

I am continually shocked at how little emphasis is placed on architecture in our
industry, especially compared to other industries. No builder would commit to a pro-
ject without reviewing detailed plans, yet even sophisticated software companies often
spend more money on catering than on the software architecture. The result is all too
common and all too predictable: Developers flounder about, unsure how their efforts
contribute to the whole system. Periodically the code from different developers and
from different teams is merged and tested. At this point, a host of incompatible inter-
faces and inconsistencies brings the entire process to a halt. After the finger-pointing
subsides, the developers resolve their integration issues as quickly as possible and
describe the changes as "bug fixes." Not a pretty sight.

Are You Ready?

Before you can create a software architecture for your system, you must have a clear
understanding of the problem and a clear understanding of the technologies that will
be used.

Clear Understanding of the Problem
You need solid requirements, analysis classes, and sequence diagrams for a represen-
tative subset of the use case model. This model of the system forms and documents
your understanding of the problem that will be solved. Failing to understand the prob-
lem from the users' perspective leads to the dreaded, "That's nice, but..." reaction at
the first large-scale demonstration. Failing to understand the problem from the devel-
opers' perspective often leads to a brittle architecture that cannot easily meet the func-
tional requirements of the system.

Clear Understanding of the Technology
You need a clear understanding of the technologies, including their strengths, weak-
nesses, and compatibilities. This information is invaluable as you organize the solu-
tion. In some cases, technologies may not be directly compatible. For example, you
may create an additional piece of the system solely to adapt a commercially available
class library for use in your system. In other cases, the technology may not support a
desired relationship. Time spent upfront understanding the technologies prevents a
wide array of difficulties, and greatly lowers your risk of spectacular failure.

You should also consider the difficulties in adopting a technology when dividing a
system into parts. After all, actual humans, who may not know all of the technologies
involved, must implement each part. You must ensure that each part is sufficiently lim-
ited in the technology it uses, so that a reasonably small group of your organization's
developers can master the required technologies.

Software Architecture 213

Never forget the developers. At first, it seems that architecture is all

about technology and object-oriented theory. Certainly these factors are
important, but an elegant and technologically impressive solution may still fail
if your organization is not prepared to implement it As a professional, with

obligations to customers and to your peers, it is better to succeed quietly than
to fail spectacularly.

Goals for Software Architecture

A good software architecture is also the result of an endless series of compromises and
trade-offs. Moving closer to one goal may inadvertently move the architecture away
from another goal. For example, increasing the scalability of a system usually makes
the system more complex and more difficult to maintain. Using a new technology may
reduce technical risk, but increase schedule risk as developers scramble to adopt the
technology. In short, perfect architectures are sought, but are never found.

Architecture, like politics, is the art of the possible.

Most software architectures have some or all of the following goals, either implicitly
or explicitly, but it is better to spell out the goals explicitly, so that they can be priori-
tized and monitored. This does not need to be an elaborate process; it can even be a
simple list for internal use.

We will refer back to these goals as we discuss various techniques for creating a
high-quality software architecture.

Extensibility
Enterprise systems are expected to provide value over many years. Over time, a suc-
cessful system evolves to meet the changing needs of the customer. Completely new
functionality may be added, or existing functionality may change radically. A good
system architecture must easily assimilate small changes, gracefully adapt to large
changes, and survive radical changes. In order to produce an architecture that handles
change well, the architect must have a solid vision about what can change and what is
truly fixed.

Maintainability
Over a decade, a large enterprise system may be developed and maintained by 50 or
even 100 different people. The original developers often leave the project to create the
next big thing, perhaps with an entirely different organization. In those 10 years, even
stalwart maintenance developers are promoted or retire. Therefore, bug fixes and
requirements may have to be made with little or no help from the original system

214 Enterprise Java withUML

architect and developers. This means that the system architecture must be accessible to
an entirely new group of developers. Simplicity and clarity may need to be balanced
against extensibility or performance goals.

Reliability
Many systems have nonfunctional requirements that specify the reliability of the sys-
tem. These requirements may limit system downtime or prohibit any downtime. Reli-
ability certainly constrains shape as well as the technology selection and architecture
for the system.

Scalability
Many systems have goals for the number of concurrent users and the amount of data
that the system will contain. These scalability goals must be considered when devel-
oping the system architecture. Otherwise, the system may meet the functional require-
ments but fail to scale as the business it serves grows. This often leads to a series of
desperate attempts to improve performance, followed by unchecked finger-pointing,
and finally to a complete redesign of the system.

With these goals in mind, we can consider some theory and pragmatic techniques
that will help you develop strong software architectures.

UML and Architecture

Architecture is all about managing complexity by dividing the solution into small
pieces, then combining the small pieces into larger, more coherent structures. Fortu-
nately, there are several object-oriented principles that assist us in this endeavor. As
always, UML is used to visualize and communicate our decisions.

The following concepts are especially helpful.

• Packages

• Package dependency diagrams

• Subsystems

• Layers

The following sections examine each concept in detail, and provide the applicable
UML notation.

Packages
In UML, a group of classes is known as a package. A package may also contain other
packages, so that developers can construct arbitrarily complex groupings and sub-
groupings.

Software Architecture 215

Packages are valuable for several reasons. First, when classes are organized in logi-
cal groups, it is far easier to find classes and understand the system. Packages serve the
same purpose as folders in an email system or directories in a file system; they help
keep us sane.

There are two distinct approaches to grouping classes. Classes can be grouped
according to similar responsibilities, even if they do not collaborate. Classes can be
grouped because they collaborate to fulfill a larger responsibility, even if each of the
classes has very different individual responsibilities.

Similar Responsibilities

It makes sense to group classes that have the same responsibility, but vary in their
implementation. The classes form a group of alternatives, not a group of collaborators.
For example, there are several implementations of the Border interface in Java's
javax.swing. border package. Each implementation has a different way of drawing a
border around a component. Figure 9.1 shows several of the alternative border classes
and the interface that they all realize. Packaging the different borders together make sit
easy for developers to find the right alternative for their needs.

In this case, all of the classes realize the same interface. While this is desirable in
many cases, it is far from essential. A package may hold classes that have very similar
responsibilities, but do not realize the same interface.

Collaborations

Another package may gr
fulfill a significant respor

Figure 9.1 Alternative borders.

216 Enterprise Java with UML

uncompressing data are held in the java.util.zip package. The classes have quite differ-
ent responsibilities. The ZipOutputStream writes compressed data to an arbitrary out-
put stream. It allows client objects to start a new entry, write data, and close the entry
when they are done writing. This process may be repeated for any number of entries.
A ZipInputStream object reads compressed data from an arbitrary input stream and
uncompresses it, one entry at a time. A ZipFile uses a ZipInputStream to provide con-
venient functionality for reading compressed data from a file. Figure 9.2 shows the
classes for compressing and uncompressing data using the Zip format. Each class has
a separate responsibility, and collaborates with the others to meet a larger goal.

Notice that changes to the implementation of one class in this package may ripple to
the other classes in the package. For example, any change to the compression logic in
the ZipOutputStream causes a corresponding change in the uncompression logic in the
ZipInputStream. However, no class outside of this package should need to depend on
the implementation of any of these classes. Together, these classes fully encapsulate

Packages are also a useful unit of work that can be designated to a small team. If a
team takes responsibility for a package, that package must be sized appropriately, and
all of the implementation technology must fall within the team's expertise. In order to
divide up the effort in this way, each package must be fairly independent, so that it can
be developed and tested separately.

Software Architecture 217

Package Dependency
Package dependencies show how changes to classes can ripple throughout the system.
A dashed dependency arrow from package A to package B indicates that there is at
least one class in package A that uses at least one class in package B. This means that
some changes to the classes in package B will ripple to affect the classes in package A.
Other changes to package B may not affect package A at all. The absence of a depen-
dency arrow from package B to package A would indicate that the classes in package
A may change as much as you wish, with no effect on the classes in package 8. Figure
9.3 shows package A depending on package B

Package dependencies may be direct, as in Figure 9.3, or indirect. If package A
depends on package B, and package B depends on package C, then it is possible for a
change to a class in package C to require a change to a class in package B, which
requires a change to a class in package A. Package A indirectly depends on package C.
This has tremendous implications when attempting to reuse a package in a new sys-
tem. Trying to extract the desired package may require radical surgery, as each of its
dependencies must be extracted, along with each of the dependency's dependencies.
With this in mind, examining the package dependencies helps developers gauge the
difficulty of reusing a package or a class from a package.

Package dependencies are often shown in high-level views, called package depen-
dency diagrams, which ignore the individual classes and show all of the packages and
their dependencies. These diagrams allow developers to measure the complexity of a
system in a high-level view and help them evaluate the effects of a proposed change to
the svstem.

A package dependency diagram is like a road map. It only helps you if it
is up to date.

Avoiding Mutual Dependency

We refer to packages that depend on one another, either directly or indirectly, as mutu-
ally dependent. Figure 9.4 shows the Userlnterface package and the BusinessObjects
packages depending directly on one another. Figure 9.5 shows the Userlnterface pack-
age depending directly on the SessionManagement package, which depends on the
BusinessObjects package, which completes the cycle by depending on the Userlnter-
face package.

Figure 9.1 Package A depends on package B.

118 Enterprise Jata with UML I

Figure 9.5 Indirect mutual dependency.

Mutual dependencies are definitely worth avoiding. Their presence dramatically
decreases your ability to predict the effects of changes to the system, as a change in one
package can ripple throughout the dependency cycle.

Mutual dependencies also reduce the architect's ability to limit and control the com-
plexity of the system. Packages tend to intertwine over time, as the challenges and

pressures of detailed design and code lead developers to discover ways in which the
packages can cooperate to meet the needs of the system. A mutual dependency
between packages gives free rein to this tendency. If the packages are already depen-
dent on one another, it is difficult to fight the urge to add one more dependency. This
process gradually increases complexity while decreasing extensibility and reusability.

When creating package dependency diagrams, organize the packages so

that the dependency arrows all point horizontally, down, or diagonally down.
Following this convention makes it very easy to spot dependency cycles, as they
will require an upward arrow.

Once you accept that mutual dependency is dangerous, you must break the cycle by
reorganizing the classes within the packages or splitting some classes into new pack-
ages. The example in Figure 9.5 is a mutual dependency because the BusinessObjects
package depends on the Userlnterface package. This may seem necessary for some
applications, as the user interface may demand notification whenever the business
objects change. However, we can use the event model from JavaBeans to achieve this
effect while removing the mutual dependency cycle. The user interface classes can
implement the PropertyChangeListener interface as found in java.beans. The user
interface objects can then be registered as listeners on the business objects. This allows
business objects to notify registered listeners of changes without knowing their specific
class. Figure 9.6 shows the new package dependency diagram without the mutual
dependency cycle.

Subsystems

A subsystem is a package that completely encapsulates its implementation. Client
objects access the subsystem's functionality through a narrowly defined interface. As
long as the interface does not change, the dependent classes do not need to change.

For example, a project may need a logging subsystem. In UML, the subsystem is
shown as a stereotyped package, and the subsystem directly realizes the interface. Of
course, we know that there must be some implementation class hidden inside of the
subsystem and that the running system needs an instance of the implementation class.
We need to expose this instance to the objects that need it, without having them
depend on its constructor or its specific type.

Fortunately, the Singleton design pattern [Gamma 1995] is a perfect match for this
problem. We introduce a new class, LoggerSingleton, which has a public static method,
called getLogger, that returns an ILogger reference. The LoggerSingleton instantiates
the Loggerlmplementaticm once, and passes that single instance to each caller.

Figure 9.7 shows the LoggingSub system and the ILogger interface in a class dia-
gram. A more concise view of the same scenario is shown in 9.8.

To summarize, a subsystem hides functionality that can change — the implementa-
tion — behind something that will not change — the interface. Subsystems facilitate effi-
cient development, support system configuration, and allow the system to evolve as
requirements change.

Software Architecture 219

220 Enterprise Java with UMl

Figure 9.7 A logging subsystem.

Software Architecture 221

Figure 9.8 A logging subsystem with no details shown.

Efficient Development

Subsystems with well-established and consensual interfaces allow developers to work
in parallel. The developers whose code depends on the subsystem do not actually need
a fully functional version of the subsystem. All they need is a stub or trivial imple-
mentation of the subsystem and confidence that their code will integrate seamlessly
with the real subsystem. This enables one set of developers to work on the subsystem
without impeding the progress of the other developers.

To continue our logging subsystem example, the initial version of the subsystem
simply writes the formatted messages to standard out. A subsequent version will write
messages to a recycled error log file.

Variability and Configuration

Multiple subsystems may implement the same interface in very different ways. Once
an implementation is selected, the rest of the system ignores the choice. This allows a
development team to easily configure and deploy variations of a system.

For example, some clients for a system may want to log to an error file while others
want to log to a database. One approach is to use a configuration file to tell the Log-
gerSingleton which implementation class to instantiate. This provides a lot of flexibil-
ity without breaking any existing code.

Extensibility

A subsystem's implementation is hidden. As long as the interface does not change, the
implementation of the subsystem can freely evolve to meet new or expanding require-
ments.

For example, a requirement to add a timestamp to the formatted errors produced by
our logging subsystem can be accommodated by changing the implementation class.
There is no need to change the interface or alter the code that calls the logger's writeEr-
ror method.

Guidelines for Software Architecture

As you develop a software architecture, you must keep some guiding principles in
mind. The first, cohesion, helps you organize parts of the system into logical groups.
The second, coupling, helps you keep groups independent and understandable.

222 Enterprise lava with UML

Cohesion
Cohesion describes how members of the same group are related to one another. Strong
cohesion indicates that the members of the group belong together. Weak cohesion indi-
cates that the grouping is arbitrary or even illogical.

Cohesion can be applied to a group of methods inside of a class, a group of classes
inside a package, and a group of packages. Given the members of the group, an out-
sider should be able to deduce the overall responsibility of a cohesive group. For
instance, what is the responsibility of a class that has these methods: makeEggs, make-
Toast, makeHashBrowns, and makejuice? The responsibility, make breakfast, is fairly
clear, so these methods have strong cohesion within a class called Cook.

A similar level of cohesion should be demanded of classes within a package and
packages in a layer. Groups with weak cohesion are hard to understand and to remem-
ber. They make a system more difficult to maintain and to extend.

Coupling
Coupling describes the level of dependence between different groups. Tight coupling
indicates that the groups are very interdependent and that changes to one group may
require a complex ripple of changes to the other groups. Loose coupling indicates that
the groups are relatively independent. Loose coupling invariably makes the groups
and their relationships easier to understand, maintain, and extend.

Coupling can be determined for a group of methods inside of a class, a group of
classes inside a package, and a group of packages. However, the amount of permissi-
ble coupling varies greatly between the different types of groups. For instance, the
methods in a class may be tightly coupled, as they interact with the same instance vari-
ables and frequently call one another. At the next level up, classes within a package
should be less interdependent. They should not depend at all on one another's imple-
mentation, and they should depend on a fairly narrowly defined set of methods. The
coupling between packages should be even looser. Whenever possible, they should
depend on one another through interfaces rather than implementation.

Creating a Software Architecture

Creating a solid architecture requires a dedicated effort within the project. Choosing an
architect and committing to a reasonably disciplined process for creating an architec-
ture pays immense dividends throughout the life of the project.

The Architect
The software architect works with other senior developers to determine the architec-
ture of the system, including technology selection and subsystem design. Architectural
mechanisms, such as error-handling and caching strategies, must be defined before
developers need them. Subsequent responsibilities include evaluating detailed designs
for conformance with the architecture, revisiting the architecture, and encouraging

Software Architecture 223

developers to use good OO and software engineering practices. These practices
include use of the UML, solid OO design principles, the educated use of design pat-
terns, iterative development, and design and code reviews.

A software architect needs extensive experience developing object-oriented systems
and mentoring technical people. Language and technology expertise are also required.
It is impossible to select technology and decompose a solution into the right pieces
without getting your hands dirtied in the details.

Strong communication and people skills are equally important. An architect must be
able to hold and defend strong opinions, or the project will lack technical vision. On the
other hand, architects must build consensus and mentor developers. They are obligated
to push back against excessive and destructive schedule pressure, yet they must work
closely with project mangers to manage risks and ensure the project's timely success.

Architecture also requires an odd mix of personality characteristics. To be successful
in the short term, architects design a high-level solution with incomplete information
while under schedule pressure. This requires them to be decisive, knowledgeable, and
persuasive. To be successful over the life of the project, they must accept and improve
their inevitably flawed ideas. They must be humble enough to admit their own failings
in full view. They must also work with project management and highly technical peo-
ple to resolve issues that range from risk mitigation and iteration planning to mecha-
nisms and subsystem interfaces.

In my experience, this responsibility cannot be distributed among multiple archi-
tects for a system. Certainly, a good architect gathers input from many participants,
and builds consensus among the senior technical people. However, the final responsi-
bility cannot be shared. Cohesive and coherent solutions are not made by committee.
Once the overall solution has been developed, individual parts can be delegated to
designers, but there must be one coherent vision and one accountable person.

A Process

Creating a solid architecture involves several steps:

1. Set goals.
2. Group classes.
3. Show technologies.
4. Extract subsystems.
5. Evaluate against guidelines and goals.

The following sections discuss each step in detail.

Set Coals

Earlier in this chapter, we discussed goals for extensibility, maintainability, reliability,
and scalability. Your system may have some of these, and perhaps other, goals. In any
case, you must establish the goals and have some idea of their relative importance.
Remember, architecture requires you to make a series of decisions based on incomplete
information, and almost every decision has some unintended side effect.

224 Enterprise Java with UML

Setting clear priorities is also a nice counterpoint to risk management. Risk manage-
ment tracks all of the outcomes that you want to avoid. Goals are all of the outcomes
that you want to foster. Either way, establishing priorities does not need to be an
exhaustive process. Most projects need only a page or two of very informal text to get
a huge benefit. Just discussing goals or risks on a regular basis is a healthy exercise, as
it encourages people to think about the project as a whole.

Croup Classes

Classes can be grouped into packages to keep collaborators together or to keep similar
classes together. This choice is not easy. You must consider coupling and cohesion as
well as the potential for variability and reuse. In general, classes that may be reused in
different situations should be organized together by responsibility. Grouping them by
responsibility rather than by collaboration helps to keep them independent of any one
type of use. Classes that are dedicated to a single collaboration must be packaged with
the other classes that they support.

I tend to group different types of analysis classes into layers by responsibility. For
example, more than one control class can use each entity classes, so the entity classes
belong in a layer. The same is true for the control classes, as each control class can inter-
act with different versions of the same boundary class.

Within each layer, the classes often divide into packages. For example, the entity
layer may contain several packages or even subsystems with clearly defined responsi-
bilities. The control layer may be divided into groups of control classes that interact as
part of a larger workflow for a particular type of user.

The layers and the packages within each layer must be shown in one or more pack-
age dependency diagrams.

Show Technologies

We selected technologies in Chapters 7 and 8, so this step is fairly mechanical. Each use
of a technology must be added to the package dependency diagram(s) that shows the
appropriate package.

Extract Subsystems

Remember that subsystems facilitate efficient development, support system configura-
tion, and allow parts of the system to evolve independently as requirements change.
Candidate subsystems can be found by looking for packages that have a clearly
defined interface and loose coupling with the rest of the system. Within the candidates,
look for packages that can be developed independently and/or that encapsulate
volatile requirements.

Evaluate against Guidelines and Coals

You must periodically evaluate the architecture against the goals and against the
guideline of high cohesion and loose coupling. UML and modeling tools allow you to

Software Architecture 225

review and revise a model with little waste. UML also allows you to efficiently com-
municate the structure of the system with other developers. Given these advantages,
there is no reason not to review, collaborate, and revise the architecture.

You must accept the simple fact that initially, all architectures are
flawed. Software systems are horribly complex, and we have a finite capacity to
manage complexity. You will not get it right the first time. You can fix it in a
high-level tool or you can fix it in code.

Sample Architecture for the
Timecard System

Now that we have discussed the theory and process for creating a software architec-
ture, let's create the architecture for the example Timecard system. We'll walk through
each of the steps:

1. Set goals.
2. Group classes.

3. Show technologies.

4. Extract subsystems.

5- Evaluate against guidelines and goals.

Set Goals
The first step is to set goals for the system. In some cases, a goal is given weight by an
explicit requirement. For example, reliability and scalability requirements are often
plainly stated in the supplementary requirements. Developers usually determine
maintainability and extensibility goals. This makes sense, as the developers know how
the system will be developed and can estimate the stability of the requirements.

Extensibility. While all systems change, the Timecard application seems fairly well
focused. It gathers timecard data from the user. It does not analyze that data, bill
clients, or calculate the pay for each employee. If I ever see such a well-defined
system outside of a book, I may just dance a little jig. Caveats aside, we conclude
that extensibility is not a huge priority.

Maintainability. The Timecard system must be easy to comprehend and to main-
tain. The company has separate teams for maintenance and for new projects, so
the system will be transitioned to a new group.

Reliability. As part of the infrastructure of a company, the Timecard system must be
reliable. However, it is not responsible for credit card processing or life support.
Scheduled downtime is perfectly acceptable. Unanticipated downtime is not.

Scalability. The Timecard system must scale to accommodate more data and more
users, as the company plans to grow rapidly.

226 Enterprise Java with UML

Explicitly defining these goals and their relative importance helps shape subsequent
architectural and design decisions. In this case, it is useful to know that we can sacri-
fice some extensibility to increase scalability, if the opportunity arises.

Group and Evaluate Classes
The next step is to group our classes into candidate packages and evaluate their cohe-
sion. To do this, we'll identify some groups of classes from the analysis model and
examine their responsibilities. We want each group of classes to be closely related, so
that the resulting package has a clear and well-defined purpose.

Grouping Classes

In Chapter 5, "Analysis Model for the Timecard Application," we were able to identify
five distinct groups of classes:

• Entity classes
• User interface classes

• Control classes

• System interface classes

• Locator classes

We will consider these groups as candidate packages and evaluate them for strong
cohesion. If the packages exhibit strong cohesion, we will use the class diagrams cre-
ated in analysis to evaluate them for loose coupling. In some cases, this simplistic lay-
ering approach will fail because the collaborations between classes of different types
are stronger than the collaborations between classes of the same type. However, it is by
far the easiest approach, and it is often sufficient.

Let's consider each candidate package separately.

Entity classes. This is our first group of classes, which were identified in Figure 5.2.
Most of the classes describe a tightly related set of business concepts that are core
to our understanding of a timecard. The only class that does not fit is ExportRe-
quest, which has nothing to do with timecards in general. We decide to exclude
ExportRequest from the package and look for a better fit.

We also need a name for this group of packages, as entity classes is simply
too vague. Since all of the classes are part of our model of a timecard, the package
name becomes Timecard Domain. Figure 9.9 shows the classes for the package.

User interface classes. This is our second set of classes, shown in Figure 5.3. These
classes all encapsulate the logic needed to present data and interact with the user
for time entry. In Chapter 7, we decided to use one user interface technology,
servlets, for all user interface classes. Based on this decision, there is no reason to
keep separate classes for the AdmmistrativeLoginUI and the RecordTimeAdmin-
istrativeUI.

The name for this package should reflect the application and the technology,
so it becomes TimecardUI. Figure 9.10 shows the classes for the package.

Software Architecture 227

Figure 9.10 The TimecardUl package.

228 Enterprise Java with UML

Figure 9.11 The TimecardWorkflow package.

Control classes. The third group of classes we identified in Chapter 5 were control
classes, shown in Figure 5.4. These all encapsulate various parts of the timecard
entry or timecard processing workflow. All of these workflows seem to use the
same entity classes and are reasonably cohesive.

Since each of the classes contains a workflow for the timecard system, the
name of the package becomes TimecardWorkflow. Figure 9.11 shows the classes
for the package.

Billing system interface. The BillingSystemlnterface class was the fourth group of
classes, shown in Figure 5.3. This also seems like a good home for the Export-
Request class, which was excluded from the Timecard Domain package. The
package encapsulates the logic for generating the export data and also contains
the export request. This seems to be reasonably strong cohesion.

Since the class is a system interface to the billing system, the package become
the BillingSystemlnterface. Figure 9.12 shows the classes for the package.

Figure 9.12 The BillingSystemInterface package.

Software Architecture 229

Locator classes. Because we are using EJB to implement our entity classes, we will
not need separate locator classes. The functionality is provided by the Home
interface for each entity bean.

As described, each package has a clear purpose and strong cohesion between its
classes. Next we need to see if the packages are tightly or loosely coupled.

Describe Coupling between Packages

In the next step, we use a package dependency diagram to evaluate the coupling
between packages. Recall that package A depends on package E if there is a class in A
that has a relationship with a class in B.

Fortunately, we collected a lot of information about the dependencies between
classes during analysis. Figures 5.14 to 5.16 showed the dependencies between classes
for each use case. We must merge these three diagrams into one class diagram, then
summarize that diagram in a package dependency diagram.

Figures 9.13 to 9.15 show the diagrams exactly as they appeared in Chapter 5.
From these class diagrams, we can produce a single class diagram that shows all of

the dependencies between all of the classes. This is a highly mechanical process, in

Figure 9.13 Participating classes for Login.

230 Enterprise Java with UML

Figure 9.14 Participating classes for Export Time Entries.

In real life, you need automated tool support to find dependencies. You
just can't spend several days finding each relationship in a large model.

Fortunately, this is exactly the sort of mindless drudgery that these tools were
created to do.

Figure 9.16 shows the classes and their dependencies. Along the way, we notice that
the ExportEntriesUI has direct dependencies on classes from the TimecardDomain

which each relationship in each of the participating classes diagrams is added to a sin-
gle diaeram.

Software Architecture 231

Figure 9.15 Participating classes for Record Time.

Figure 9.16 Classes and relationships.

252 Enterprise Java with UML

package. This seems odd, as all of the other user interface classes depend on classes
from the TimecardWorkflow package, which in turn depends on the TimecardDomain
package. Our knowledge of EJB indicates that direct relationships from user interfaces
to entity beans are not desirable, and we would like to keep the relationships consis-
tent. This leads us to force the ExportEntriesUl to work through the classes in the Time-
cardWorkflow package.

The next step is to produce a package dependency diagram from the class relation-
ships. Each relationship from a class to another class in a different package leads to a
package dependency. For example, the relationship from RecordTimeUI (in the Time-
cardUI package} to the RecordTimeWorkflow (in the TimecardWorkflow package)
leads to a dependency from the TimecardUI package to the TimecardWorkflow pack-
age. Again, this is a highly mechanical process, best left to a tool.

The package dependencies seem fairly reasonable. There are no circular dependen-
cies. Also, the packages that we might expect to be reusable, such as TimecardDomain
and BillingSystemlnterface do not have any dependencies.

Figure 9.17 Package dependencies.

Software Architecture 233

There is strong cohesion between the classes in each package, and loose coupling
between the packages. We have a preliminary structure for our system.

Show Technologies
Fortunately, all of the technology selections for our Timecard system were made in
Chapters 7 and 8. Recall that the entity and control classes will use Enterprise Java-
Beans, while the user interface classes will become servlets. Also, the BillingSystem-
Interface class will use XML. AH we have to do is add a package for each technology to
the package dependency diagram. Use of a technology is shown by drawing a depen-
dency line from the original package to the technology package that it uses. For exam-
ple, the TimecardUI package depends on the Servlets package. Figure 9-18 shows the
updated diagram.

Extract Subsystems
The next step is to identify the candidate subsystems. These can be found by looking
for packages that have a clearly defined interface and loose coupling with the rest of
the system. Within the candidates, look for packages that can be developed indepen-
dently and/or that encapsulate volatile requirements.

The most likely candidate subsystem is the BillingSystemlnterface, which offers a
very simple service to the rest of the system and is completely encapsulated. Also,
since the billing system is an independent system, there is always a chance that the
interface may change.

We decide to make the BillingSystemlnterface into a Java interface, and make the
ExportTimeEntriesWorkflow objects have a relationship through the interface. At this
point in the process, this sort of decision is all but free. It takes longer to make the deci-
sion than to perform the changes in a UML modeling tool. How long would it take in
code?

Figure 9.19 shows the BillingSystemlnterface as a subsystem that realizes the
IBillingSystemlnterface interface. Notice that the TimecardWorkflow depends on the
interface, not the subsystem directly.

Evaluate against Guidelines and Goals
Now that we have a reasonable draft architecture, we must evaluate it against our
guidelines and our goals.

Recall that the goals for the Timecard system emphasized maintainability, reliability,
and scalability. Extensibility was less significant, as the system has a very stable vision.

Maintainability and Extensibility

Each package has a very well-defined set of responsibilities, and the packages are well
encapsulated. These factors are quite encouraging when planning for an easy-to-
understand and easy-to-maintain system. Also, the system is based on reasonably

234 Enterprise Java with UML

Figure 9.18 Package dependencies with technology.

standard technology, so the future developers will have a wealth of resources outside
of the system documentation.

There is one concern. The user interface classes will be implemented as servlets, and
the technology description for servlets warns us about producing HTML in a haphaz-
ard fashion (see Chapter 7). The following excerpt from the architect's role in servlet

Software Architecture 235

Figure 9.19 Package dependencies with subsystem.

Servlet-based user interfaces can degenerate into a series of unconnected
works of art, with no two following the same format or producing HTML in
the same way. An architect can reduce this effect by establishing reusable
HTML production classes to produce everything from tables and trees
to frames and the enclosing page. This allows developers to easily change
the look of the entire application by altering the reusable HTML production
classes. The alternative requires each servlet to be laboriously edited, perhaps
for something as trivial as the background color or the space between buttons.

256 Enterprise lava with UML

We decide to follow this advice, and add an HTMLProduction package to the
architecture.

Reliability and Scalability

Most of the system's reliability and scalability concerns can be isolated to the Tinie-
cardDomain and Timecard Workflow packages, which will be implemented as Enter-
prise JavaBeans. Picking the right server and allocating plenty of time for design and

Figure 9.20 Package dependency diagram with HTMLProduction package.

Software Architecture 237

prototyping with a real application server should address these concerns. These are
tactical efforts within the design process; the architectural choice of EJB for these com-
ponents is very sound.

The updated package dependency diagram in Figure 9.20 shows the TimecardUI
package using the TimecardWorkflow package as well as the HTMLProduction
package.

The Next Step

This chapter identified architectural goals, determined the structure of the system, and
defined the relationships between the packages. These elements provide context and a
solid foundation as we fill in the details of the solution during design. As we make
decisions during design, we can evaluate them against the package dependency rela-
tionships that we have established.

Introduction to Design

Design builds on the understanding of the problem as developed during requirements
gathering and analysis, it is an attempt to fully understand the solution as constrained
by the structure developed during architecture. The goal of design is to make the next
step, implementation, as simple and efficient as possible. It is your last chance to make
changes quickly and efficiently in a tool and a notation, rather than in code and other
deliverables.

What Is Design?

An object-oriented design is a detailed description of the objects that work together
to fulfill the system's requirements. Design describes the solution, in great detail.
It specifies instance variables, method parameters, return types, and technology
details.

Design uses the same diagrams as analysis, and for the same purposes.
Sequence diagrams show interactions between objects. Class diagrams show the
structure, behavior, and relationships that objects of particular types have in common.
With the added level of detail, the diagrams in design are much larger and more
intricate.

239

240 Enterprise Java with UML

Are You Ready?

Good designs are built on a solid foundation, including a clear system vision, a solid
use case model, a fairly complete analysis model, careful and appropriate technology
selection, and a resilient architecture.

Premature design risks project failure in several ways. If the system vision or use
case model is incomplete or inaccurate, then even a brilliant design may solve the
wrong problem. Omissions and inaccuracies in the analysis model lead to an incom-
plete architecture and poor technology selections, which in turn lead to a flawed
design. If the analysis model is incomplete or inconsistent, the design mode] will prob-
ably perpetuate these omissions or errors.

Each step in the development process feeds the next, so that a good design is not
possible unless the preceding steps are complete and of high quality.

The Need for Design

Omitting or neglecting design is prohibitively expensive and insanely risky. Without a
good design, developer productivity and morale suffer. Inconsistent code and incom-
patible modules are a certainty. Discovery of deficiencies in the architecture is delayed
because there is no way to see the larger picture. Accurate scheduling is impossible,
since the problems are not well understood before coding begins. Flawed ideas and
incompatible implementations that are not caught until integration or system test are
incredibly expensive to fix.

My grandfather, who built residential and commercial buildings back in the days
when they still laid bricks and cut lumber to fit, used to say, "Measure twice, cut once."
This captures the essence of design for me. You are about to write code, which tends to
resist change. A little extra effort in design often prevents painful rework later.

On the other hand, it is far cheaper and less time-consuming to make decisions in
design than in code. Also, a clear design model enables more developers to understand
and review more of the system, which makes it possible for them to understand their
own responsibilities and contribute to the overall success of the project through design
discussions and reviews. Moreover, project managers and senior developers can esti-
mate effort more accurately it their estimates are based on a clear and concrete design.

Productivity and Morale
Implementing high-quality systems is a complicated process. New technology, com-
plex requirements, and extreme schedule pressure create challenging and oftentimes
frustrating puzzles for developers. Complex code must be developed, tested, and inte-
grated with other developer's equally complex code. Anyone who has tried it knows
that design and implementation are by turns daunting, exhilarating, frustrating, and at
times addictive.

Momentum is an important key to thriving in this environment. Small successes
lead to more successes and help the entire team build confidence and credibility. On

Introduction to Design 241

the other hand, failure and wasted efforts destroy momentum. In order to gain and
maintain momentum, developers must have a realistic and complete architecture and
design for the system. This facilitates realistic expectations, partitions the project into
reasonable and achievable parts, and avoids incompatibilities between different devel-
opers' modules.

Design helps developers succeed, and incremental success motivates developers
more than any other stimulus. Okay, high salaries help, but a chance to produce high-
quality work in a sane effort is a major motivator for most of us.

A Malleable Medium
UML in a modem tool can be shaped and reshaped very easily. It is a very malleable
medium. Code is not so easy to work with. Code is dispersed over hundreds of files,
with a very low level of detail obscuring the larger patterns. A UML model in a mod-
ern design tool is infinitely easier to assimilate, change, and extend.

Remember, the step after design is implementation. Mistakes that are not caught
before implementation are often vety expensive to fix. Fixing incompatible interfaces
can take weeks, with developers alternating between coding, testing, and blaming. A
poor architecture that survives into implementation often leads to months of rework or
even to project failure.

Even radical surgery on a fairly large UML model can be completed in a hundred
person-hours. Relationships between classes can be changed with a click of a mouse.
Responsibilities easily migrate from class to class. A class becomes an interface with
several concrete alternative implementations. Classes and packages split or merge
with relative ease.

Moreover, a developer who knows UML can review the design for a large subsys-
tem in a short day. Compare this to the weeks consumed developing a serious under-
standing of the code for a large subsystem. Consistent and thorough review of design
artifacts is far more economically feasible than a similar review of code.

Scheduling and Delegation
A sound design makes estimation, scheduling, and delegation possible. Given a thor-
ough design, a developer estimates the effort required for each ciass. The sum of these
estimates is invariably more accurate than a rough guess based on the requirements.
This gives the project manager something solid to work with. A solid design also
allows developers to develop a few classes or a package and then integrate their code
with the rest of the project. Delegation without a design is far less efficient, and gener-
ally requires a significant effort during integration.

Design Patterns

A design pattern is a well-defined, well-documented, and time-tested solution to a com-
mon problem in software design. Each pattern has a name, a problem description, a

242 Enterprise Java with UML

solution, a discussion of the consequences, a sample implementation, and a list of
related patterns [Gamma 1995].

Problem description. Describes the specific problem that the pattern is intended to
solve. This allows developers to quickly search through a catalog of patterns and
extract the one or two that seem appropriate for more careful consideration.

Solution. Describes the objects and their interactions in a fairly abstract way, so that
the pattern can be applied to a variety of designs, in most cases, a more concrete
example is used to clarify and explain this generic solution.

Consequences. Discuss the positive and negative impact of using the pattern to
achieve common design goals. This helps developers to determine which candi-
date pattern is best for their situation, and may lead them to modify the pattern
when applying it to their own design.

Sample implementation. Shows how the solution can be implemented in at least
one object-oriented language. This makes the solution more concrete for devel-
opers, and provides a solid proof of concept for cynical practitioners.

Related patterns section. Shows how other patterns can support or extend the pat-
tern in question. In many cases, patterns can be combined to form very resilient
and elegant designs.

Benefits
Without getting too mushy, I must say that learning and using design patterns radi-
cally changed the way I design software, and solidified my grasp of object-oriented
theory more than any other experience.

Design patterns help developers design better software in two very significant
ways:

• They provide a common language for collaboration and documentation.
• They reinforce object-oriented theory.

Common Language

Learning design patterns takes patience and effort. Each pattern takes time to assimi-
late, and there are a lot of patterns. However, the effort only adds to the incredible rush
you get when you realize that the developer across the table shares a common lan-
guage and that you just compressed three hours worth of design discussion into 15
incredibly productive minutes. A group of developers who all understand design pat-
terns can communicate in a common language that is both expressive and compressed.

Design patterns help developers communicate their designs quickly and efficiently.
Any uncertainty can be resolved by consulting a widely accepted source. This works in
design meetings, design documents, and code

In the same way a well-understood pattern enables you to
communicate effectively, a misunderstood design pattern will confuse people
just as effectively. You must know the patterns that you use.

Introduction to Design 243

Reinforces OO Theory

Object-oriented theory and practices are not intuitive for most people. They require
us to think abstractly, analytically, and creatively—all at the same time. In my experi-
ence, exposure to good object-oriented design is the best way to refine your own
understanding and to improve your own habits. Design patterns apply object-oriented
practices to a clearly defined problem. This makes them excellent case studies for
object-oriented design. It is interesting to see the consequences of different decisions
and to see how the same techniques can be used in radically different ways.

Use
Fortunately for us, many design patterns have been captured in books, articles, and
online repositories. An entire community of developers donates an enormous amount
of time, effort, and expertise as they revise and extend a collective catalog of design
patterns. The best single source for design patterns is the seminal book Design Patterns:
Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley-Longman, 1995). These authors are
often referred to as the Gang of Four; thus, their book is often referred to as the GoF
book.

Design patterns are best applied to a well-defined problem. Fortunately, analysis
and architecture identify lots of problems for us to solve. In many cases, you can apply
a series of design patterns to a package or small group of packages. Each pattern helps
provide some functionality or helps reach a design goal.

Planning for Design

To be successful, design must be a coherent and unified effort. Unfortunately, design is
naturally a divisive process. Design breaks people into small teams or even isolates
people by themselves. Each team or person is then immersed in the details of new tech-
nologies and the challenges of object-oriented design. Becoming absorbed in the
design of his or her piece, to the exclusion of all other interests, is a natural part of the
process, as the designer struggles to make sense out of complexity.

Once design begins, each design effort will go its own way for a while. Failure to
accept this reality often leads to slow, painful progress, as developers are constantly
expected to see the whole picture and ensure that their work fits with everyone else's
work, hi order to simulate a coherent and unified effort, we establish clear goals for the
entire design before giving developers the freedom to work on their separate efforts.
The following steps summarize this process:

1. Establish goals for the entire design.

2. Establish design guidelines.

3. Find independent design efforts.

Each of these steps is described in detail in the subsections that follow.

244 Enterprise lava with UML

Establish Goals for the Entire Design
Every system contains a million decisions. Many of these decisions are more compro-
mise than brilliant discovery of perfect truth. This is as true for design as it is for
requirements and architecture. Establishing design goals before making decisions
helps maintain the consistency of the system, and makes each decision easier.

One person's well-focused system is another person's overly restricted disappoint-
ment. An architecture or technology selection may trade performance for functionality
and extensibility. Or it may partition subsystems to accommodate the development
team's available skill set or to maximize the reuse potential of a subsystem. Design
decisions often balance clarity, performance, reliability, extensibility, and reuse poten-
tial. We will refer back to these common goals as we discuss various techniques for cre-
ating a high-quality software design.

Clarity
Clarity and understandability is a key goal for every design. Developers cannot review
or implement something that they cannot understand. Faced with an unclear design,
most developers either attempt to follow the design and develop confusing code or
simply ignore the design entirely. Clear and unambiguous designs often lead to code
that is easy to maintain and to extend.

Clarity is increased by keeping strong cohesion for methods in classes and for
classes in packages. Loose coupling makes the interfaces between packages tight and
easy to understand. Encapsulation improves readability by limiting what you need to
know to use a class.

Performance and Reliability

Many systems have demanding performance and reliability requirements, hi most
cases, performance and reliability goals can be reached by picking the right technology,
then designing to the technology's strengths. Developers must understand how the
technology exchanges data between different tiers and how the technology ensures
data integrity. Establishing performance and reliability goals early in the design
process encourages developers to consider these issues, rather than procrastinating
and hoping for the best.

Extensibility

Extensibility is almost always a priority, even if the customer does not realize it. As the
needs of the organization change, the system must be able to accommodate the new
reality.

As a rule, loose coupling and strong cohesion make it more likely that the classes
that need to change will reside in the same package and that the package will be
loosely coupled with the rest of the system. This limits the ripple effect of each change.

If you can identify areas that are very likely to change, you may be able to design the
variability into the system, by encapsulating the variability inside of a swappable sub-
system or by designing the system to use configuration data. Of course, this requires a

Introduction to Design 245

very clear vision of the future of the system; and if you are wrong, you have wasted
time and increased the complexity of the system.

Reuse Potential

Reuse of classes, both within a project and between projects, is a tremendous selling
point for object-oriented technology. Reusable classes must have a generically useful
abstraction and well-encapsulated data. When aiming for reuse, keep classes small and
well focused. Also, in order to reduce the burden on the person who wants to adopt or
adapt your class or package, keep the dependencies to a minimum and make the
abstraction easy to use and understand.

Despite the hype, reuse never conies for free. You must design with
reuse in mind, or be willing to clean up an existing design to gain reusability.

Establish Design Guidelines

It is important to have projectwide guidelines during design. This unifies the efforts of
the different designers or teams of designers. Each design effort should use the same dia-
grams, describe the solution at the same level of detail, and follow the same naming con-
ventions. The following guidelines form a reasonable starting point for most projects.

Diagrams for Each Use Case

Use several sequence diagrams to describe each use case, one for each significant flow
of events. Also, a single class diagram should be used to capture the relationships
between all of the classes that participate in the different sequence diagrams. In some
cases, state diagrams can be used to show state-dependent behavior for a particular

Level of Detail

The level of detail for design is far lower than for analysis. Each method must be fully
specified, complete with arguments and return types.

Also, any object that is used in a sequence diagram must be located or created, either
in the same sequence diagram or in a supporting sequence. In analysis, sequences are
often supported by a series of minor miracles, with objects simply appearing when
needed. In design, objects are created, kept for future use, located, and finally
destroyed.

Naming Conventions

Name each method with a well-selected verb or a combination of a verb and a noun;
paint and open are good examples from the Java class libraries. The name of the
method should match the return type, if any. For instance, a method that returns a ref-
erence to a Timecard object might be called getTimecard or getCurrentTimecard.

246 Enterprise Java with UML

Each class should be named with a noun, a combination of nouns, or a combination
of adjectives and nouns. String, Menultem, and OutputStream are good examples from
the Java class libraries.

The purpose of each class and each method must be clear and unambiguous to other
developers. This usually precludes the use of filler class names, such as manager.
Whenever possible, clearly defined terms from design patterns, such as Factory or
Singleton, should be used as part of applicable class names.

Cohesion

Each set of methods within a class must form a cohesive whole. This requires them to
have a common goal or responsibility. Similarly, the classes inside of each package
must have a unifying purpose or nature. Classes and methods must not be grouped,

Find Independent Design Efforts
hi order to divide up the design effort, you must identify packages or groups of pack-
ages that are loosely coupled with the rest of the system. This allows developers from
different efforts to agree on the interfaces before starting independent design activities.

Packages that are tightly coupled must be designed together. Packages that are
loosely coupled and well encapsulated are good candidates for independent develop-
ment. Subsystems are perfect for independent development. By their very definition
they are independent and well encapsulated.

Each independent design effort must fit the technical abilities of a single team. This
may require an otherwise coherent design effort be divided into smaller efforts that
more closely match the skill sets of existing teams. Otherwise, this may require reorga-
nization and training of team members to improve skill sets.

Designing Packages or Subsystems

The design for a package or subsystem builds on the analysis model, including class
diagrams and sequence diagrams. While each package is designed and implemented
as a separate deliverable, all of the packages cooperate to realize the use cases. As part
of the initial design of the package, developers must identify (he use cases that include
the package. This process highlights the interactions between the package and the
other packages that are involved in the use case. At this point, the developers must
cooperate with the developers of the other involved packages to finalize the interfaces
between the packages.

A package or subsystem design is also constrained by the architecture and the over-
all goals for the system. Specifically, the architecture determines the permissible rela-
tionships between the system's packages. Each time a class in the package uses a class
outside of the package, it establishes a dependency between these packages. These
new relationships must be evaluated for compliance with the architecture.

Introduction to Design 247

Each package or subsystem may have its own goals. For instance, a package of user
interface classes may need to be highly flexible and extensible, while a package of
entity classes may need to be well encapsulated and meet demanding performance
goals.

The following steps must be followed for each design effort:

1. Identify goals and priorities. While goals are established for the entire design,
not every design effort can influence each goal. Each design effort must identify
the goals and priorities that it can and cannot impact. This is usually clear from
the technology involved and from the purpose of the package or subsystem. For
instance, the design effort for the TimecardDomain and Timecard Workflow
packages will undoubtedly have a most noticeable effect on performance, as it
controls persistence and the flow of data. On the other hand, the design efforts
for the HtmlProduction framework and the TimecardUI package wil] have a
greater effect on extensibility, since user interfaces are notoriously vulnerable to
requirements changes.

2. Review prior steps. Previous steps created an analysis model, selected tech-
nologies, and established structural constraints for the design of the Timecard
system. Each design effort must review, then follow these inputs and constraints.
The analysis model describes the problem from the developer's perspective. As
such, it is the best resource when designing packages and subsystems. In many
cases, the responsibilities of a class or package can be directly extrapolated from
the responsibilities of analysis classes.

3. Design to goals. In some cases, the high-level design is almost completely deter-
mined by the technology. For instance, Enterprise Java Beans development com-
pletely determines much of your design. Decisions must be made for each use
case to meet goals, but there are no sweeping design decisions left to the devel-
oper. In other cases, it is up to the developers to design the package or subsystem
to meet the goals. Design patterns may serve as a valuable resource in this highly
creative and iterative process.

4. Apply design to use cases. Applying the high-level design to the use cases vali-
dates and invariably improves the design. In this process, the high-level design
developed in the previous step is applied to each use case in turn, until the
design is fully fleshed out and all the applicable use cases are met or the design

Design Efforts for the Timecard Application

The Timecard application seems to naturally break into four design efforts:

• TimecardDomain and Timecard Workflow packages

• HtmlProduction framework

• TimecardUI package

• BillingSystemlnterface subsystem

248 Enterprise Java with UML

The TimecardDomain and TimecardWorkflow packages should be designed to-
gether, because they are so closely related. They depend on the same technologies, and
are very tightly coupled.

The HtmlProduction framework should be designed as a separate package from the
TimecardUl. ft is the only package that produces the actual HTML for the system. The
TimecardUl package clearly uses it and should drive its development, but the Html-
Production framework should be able to evolve independently. One approach is to
build a minimum set of functionality for the HtmlProduction framework before start-
ing the design and implementation of the TimecardUl package. With this minimum
functionality established, the HtmlProduction can grow in sophistication while the
TimecardUl is designed and implemented.

The BillingSystemlnterface subsystem is a natural independent design activity.
Since the rest of the system does not depend on it, it can be developed concurrently or
deferred until development resources are available.

The Next Step

We have spent the last 10 chapters building up to this point, improving our under-
standing of the problem, selecting technology, and structuring the solution. Now it is
time to use UML to build a design model for the Timecard application.

Each of the following chsptecs shows how UML can be used to design a package or
subsystem. The analysis model is used to determine each package's functionality and
interfaces with other packages. Well-defined goals are met by applying object-oriented
principles and design patterns. Finally, the design is evaluated for compliance with the
architecture and the overall goals of the system.

In Chapters 11 through 14, the design is used as a basis for actual Java code. This is
intended to reinforce the basic principles and to show how modeling in UML simpli-
fies the coding process.

Design for the TimecardDornain
and TimecardWorkflow

The design for the TimecardDornain and TimecardWorkfiow packages builds heavily
on the analysis model, technology selection, and architecture we developed in Chapter
5, "Analysis Model for the Timecard Application," Chapter 8, "Evaluating Candidate
Technologies for Control and Entity Classes," and Chapter 9, "Software Architecture."
The analysis model in Chapter 5 showed how the boundary, control, and entity classes
collaborate to fulfill the system's requirements. Chapter 8 described Enterprise Java-
Beans and some of the decisions that must be made when developing with EjBs. Chap-
ter 9 constrained the relationships between packages.

This chapter builds a sample design and implementation for the TimecardDornain
and TimecardWorkfiow packages. It follows the steps described in Chapter 10, "Intro-
duction to Design":

1. Identify goals and priorities for the effort.
2. Review prior steps.

3. Design to goals.

4. Apply design to use cases.

The following sections apply each step to the Timecard Domain and TimecardWork-
fiow packages.

249

250 Enterprise lava with UML

Establish Coals for the Effort

Establishing goals up front makes it easier to make consistent decisions during design.
This is important, as design is all about making an endless series of decisions, gener-
ally under fairly strong schedule pressure.

The most important goals for the TimecardDomain and TimecardWorkflow pack-
ages are performance, reliability, and reuse potential. Extensibility is less of a priority,
since the system is very well understood and has a narrow focus.

Performance and Reliability
Performance and reliability are important goals for the entire Timecard system. After
all, a lot of people depend on a corporate Timecard system, and they do not have time
to wait.

The classes in the TimecardDomain package contribute greatly to the performance
and reliability of the entire system. The classes that reside in the TimecardDomain
package are responsible for the availability and integrity of the timecard data itself.
Design decisions for the TimecardDomain package dramatically impact the time
required for data access and data updates. For instance, decisions on how the data is
represented in the database and how the data maps to entity beans greatly impact the
speed and efficiency of the EJB container as it services requests for data.

The classes of the Timecard Workflow package have a different but equally signifi-
cant impact on performance and reliability. The TimecardWorkflow classes contain
the methods that client objects use to get access to the data and services provided by
the TimecardDomain objects. The Workflow object may require the client object to
make several requests, one large request, or some variation in between. Remember that
the Client and TimecardWorkflow classes are invariably in separate virtual machines
and are often on separate hosts. This makes the efficiency of the data flow very impor-
tant, since even a fast network is far slower than the host's internal data bus, and the
data must be serialized and deserialized at every turn.

Reuse
Reuse is another important goal for the TimecardDomain and TimecardWorkflow
packages. To reach this goal, each entity bean in the TimecardDomain package should
be useful in a wide variety of workflows within the Timecard application, and most of
the session beans in the TimecardWorkflow package should be able to support new
user interface classes as new views of the system evolve.

Extensibility
While extensibility is less of a priority, experience indicates that there are no static sys-
tems. Extensibility is improved by encapsulating potential variability and by keeping
the classes small and narrowly focused.

Design for the TitnecardDomain and TimecardWorkflow 251

Now that we have established some goals, we must review the prior decisions that
affect the design effort.

Review Prior Steps

Several prior steps drive design. The analysis model describes exactly what the system
will do, from a developer's perspective. The architecture describes the structural and
technology decisions that constrain the design. In this section, we review the analysis
model and the architectural decisions.

Review of the Analysis Model
Our first task requires us to work through each analysis diagram, first to refresh our
understanding of the sequence of interactions between the objects and then to identify
any important characteristics. We'll consider the Login, Record Time, and Export Time
Entries use cases.

The Login Use Case

The Login use case contains several flows. First, there is the normal flow in which
everything proceeds according to plan. Next there are alternate flows for invalid pass-
words and unknown users.

Normal Flow for Login (Analysis)
The actor asks the boundary EmployeeLoginUI object to display the login form, as
shown in Figure 11.1. The actor then fills in username and password and submits them
to the system. The EmployeeLoginUI object asks the control LoginWorkflow object to
validate the login. In order to satisfy this request, the Login Workflow object asks the
UserLocator object to find the User object that corresponds to the name. Once the
LoginWorkflow object gets the correct User object, it asks it to validate the password.
Once the LoginWorkflow object receives a response, it passes it back to the Employ-
eeLoginUI object. When the EmployeeLoginUI object receives the valid response, it
displays a welcome message and the flow is complete.

The only object in this sequence that is outside of our current design effort is
EmployeeLoginUI. There is only one request from the EmployeeLoginUI object to the
LoginWorkflow object, validateLogin. This request includes very simple data and
receives a simple yes/no response.

Alternate Flow for Invalid Password (Analysis)
The sequence for an invalid password proceeds exactly as in the normal flow, until the
User object responds with INVALID to the validateLogin method. This response is
propagated up to the EmployeeLoginUI, which must display an invalid password
message to the actor. Figure 11.2 shows this sequence.

252 Enterprise Java with UML

Figure 11.1 Sequence diagram for the normal flow for Login (analysis).

This sequence is incredibly similar to the normal flow. Within the Timecard Domain
and TimecardWorkflow packages, there is no difference in what is done, only in the
response values, so we will not need to develop a separate design sequence diagram
for this flow of events.

Alternate Flow for Unknown User (Analysis)
The sequence for an unknown user proceeds exactly as in the normal flow, until the
UserLocator responds with a NULL when asked to locate the User object by name.
Obviously, the LoginWorkflow cannot ask an unknown User object to validate the
password, so it returns INVALID to the EmployeeLoginUI object. As in the sequence
for the invalid password, the EmployeeLoginUI calls its own displayErrorMessage
method. Figure 11.3 shows this sequence.

Again, the sequence is incredibly similar to the normal flow. However, it does high-
light the reaction of the LoginWorkflow object when the User object cannot be located.
It is not an error or exception case, but rather a reasonable outcome.

Design tor the TimecardDomain and TimecardWorkflow 253

Figure 11.2 Sequence diagram for invalid password (analysis).

Participating Classes (Analysis)

The user interface objects use LoginWorkflow objects to validate the user's login data.
The resulting relationship needs to be an association, so that the user interface objects
can reuse the same LoginWorkflow object for login retries.

The LoginWorkflow object finds and uses a User object, but does not need to
remember it for future use. So, the resulting relationship is a dependency. The Login-
Workflow object uses a UserLocator object, and does keep it for future use, so the
resulting relationship is an association. These relationships are shown in Figure 11.4.

The Record Time Use Case

The Record Time use case contains two flows of events. First, there is the normal flow
in which everything proceeds according to plan. Next there is an alternate flow for
Submit Timecard.

254 Enterprise Java with UML

Figure 11.3 Sequence diagram for unknown user (analysis).

Normal Flow (Analysis)
The normal flow for the Record Time use case begins when the actor requests the cur-
rent entries. The RecordTimeUl object calls the RecordTimeWorkflow object's getEn-
tries method, which magically has a reference to the correct User object. Given the User
object, the RecordTimeWorkflow object asks it for its current Timecard object. The
RecordTimeWorkflow object can then ask the Timecard object for its entries and return
them to the RecordTimeUl. After the Employee actor updates the time entries, the
RecordTimeUl object uses the updateEntries method on the RecordTimeWorkflow to
propagate the changes to the system. The RecordTimeWorkflow object calls the setEn-
tries method on the previously stored reference to the Timecard object. These interac-
tions are shown in Figure 11.5.

Submit Timecard (Analysis)
The Submit Timecard flow of events describes how the actor marks his or her current
timecard as submitted and gets a new current timecard. Once the actor decides to sub-

Design lor the TimefardDilnnin and linmardWorkflow 255

Figure 11.4 Participating classes for the Login use case (analysis).

mit his or her current tiinecard, the RecordTimeUI object calls the submit method on its
RecordTimeWorkflow object, which knows the User and the Timecard objects. The
RecordTimeWorkflow creates a new Timecard object and sets it as the current Time-
card object for the user. The old Timecard object still exists, but it is not a current Time-
card, so it cannot be edited by the user. These interactions are shown in Figure 11,6.

Participating Classes (Analysis)

Each method in the sequence diagrams requires some sort of relationship between the
object calling the method and the object that contains the method. Each RecordTimeUI
object is associated with an undetermined number of RecordTimeWorkflow objects.
The undetermined multiplicity indicates that during analysis we did not know
whether RecordTimeUI objects would have dedicated RecordTimeWorkflow objects or
would share them. Each RecordTimeWorkflow object is associated with the User and
Timecard objects. These relationships are shown in Figure 11.7.

The Export Time Entries Use Case

The Export Time Entries use case contains a single flow of events, the normal flow.

156 Enterprise Java with UML

Figure 11.5 Sequence diagram for the normal flow of Record Time (analysis).

Normal Flow (Analysis)

The normal flow for the Export Time Entries use case begins when the ExportEntriesUI
object builds the display by asking the ClientLocator for a list of clients and the User-
Locator for a list of employees. The administrative user selects various criteria and sub-
mits the request. The ExportEntriesUI object calls the exportForCriteria method on the
ExportTimeEntriesWorkflow object, which uses the Entry Locator's findForCriteria
method to get a list of time entries that match the criteria. The details for each entry are
extracted from each entry object and written to a file for export. This sequence is shown
in Figure 11.8.

Design for the TimecardDomain and TimecardWorHlow 257

Figure 11.6 Sequence diagram for the submit Timecafd (low of events (analysis).

Participating Classes (Analysis)
Each method call in the sequence diagram requires a dependency or association in the
participating classes diagram. A fairly mechanical process yields the relationships, as
shown in Figure 11.9.

The ExportEntriesUI does directly depend on the ClientLocator and the UserLoca-
tor; this dependency violates the structural constraints defined by the architecture.
This must be remedied during design.

Review Architectural Constraints
For the Timecard application example, the server-side entity and control classes are
implemented in Enterprise JavaBeans. The Timecard Workflow package, which con-
tains the control classes, depends on EJB session beans. The TimecardDomain package,
which contains the entity classes, depends on EJB entity beans.

The architecture also precludes classes in the TimecardUI package from having direct
relationships with classes in the TimecardDomain package. Instead, they must delegate
any requests for information or services to a control class in the TirnecardWorkflow.
This is shown in the lack of a dependency from the TimecardUI directly to the Time-
cardDomain. Figure 11.10 shows these dependency relationships in a package diagram.

258 Enterprise Java with UML

Figure 11.7 Participating classes for the Record Time use case (analysis).

If you are not familiar with Enterprise Java Beans, review the

technology description for EJB in Chapter 8.

Design for Goals
Enterprise JavaBeans constrains the developer to a fairly small number of decisions. In
this section, we discuss some of the design decisions that are important in EJB devel-
opment. In the next section, "Apply Design for Each Use Case," we will make these
decisions for each bean involved in the use case.

Every technology forces the developer to make certain design decisions in order to
meet his or her goals. EJB is no exception. It forces you to:

1. Choose between stateful or stateless for each session bean.

2. Choose between container-managed or bean-managed persistence for each
entity bean.

Design for the TimecardDomain and TimecardWorkflow 259

Figure 11,8 Sequence diagram for the normal flow of Export Time Entries use case.

260 Enterprise Java with UML

Figure 11.9 Participating classes for the Export Time Entries use case.

Stateless or Stateful Session Beans

Recall from Chapter 8 that stateless session beans do not hold any conversational state
from request to request. This makes them very efficient, but decreases their usefulness
for session beans that must moderate a series of requests from the same client object.

conversational state with the client object, since it can remember information from pre-
vious requests that were made by the client object. This allows it to accumulate infor-
mation for a consolidated transaction, such as a shopping cart, or remember previous
results so it does not need to rebuild them.

For each session bean, the sequence diagrams reveal the pattern of requests from the
client object to the session bean. If the session bean holds information from request to
request, it is best modeled as a stateful session bean. Otherwise, the default choice
should be stateless, since stateless session beans are much more efficient and place less
of a burden on the bean container.

Container-Managed or Bean-Managed Persistence

Each entity bean has data that must be persisted to the database. Container-managed
persistence allows the developer to isolate the persistence information in the deploy-

Design for the TimecardDomain and TimecardWorkfiow 261

e 11.10 Architectural decisions and constraints.

rnent descriptor. This allows the developer or deployer to specify the object-to-rela-
tional mapping and the transaction boundaries in a very concise form, without modi-
fying any code. This is the default choice.

Bean-managed persistence forces you to write database access and transaction man-
agement code directly in the entity beans. However, it also provides unlimited flexibil-
ity. The most common reason to use bean-managed persistence is to achieve a tricky

262 Enterprise Java with UML

object-to-relational mapping that is not supported by the deployment tool. This is less
preferable, but still fairly common.

Apply Design for Each Use Case

Remember, a design model is one step away from implementation. So, we need to care-
fully build a model that applies all of these decisions to all of the use cases in the
requirements model. This model will provide a solid foundation for a clean and con-
sistent implementation. As in analysis, the domain model includes sequence diagrams
and a view of the participating classes for each use case. Unlike analysis, the design
model is extremely detailed and thorough. Each return type and parameter must be
shown. Each object must be created or retrieved before it is used. Significant mysteries
and ambiguity in the design model lead to problems and poor solutions during imple-
mentation.

In designing an EJB-based solution for each use case, we follow these steps:

1. Consider each of the key design decisions for EJB development, as well as the
goals for the package.

2. Build sequence diagrams for the normal and alternate flow of events as identi-
fied in the use case model.

3. Build a class diagram that shows all of the classes that participate in the use case.

We'll follow these steps for the Login, Record Time, and Export Time Entries use
cases in the Timecard application.

Design for the Login Use Case

We are finally ready to start our design based on the first use case, Login. Let's walk
through each of the steps.

Key Design Decisions for Login

We need to make two key design decisions for the Login use case.

• Is the LoginWorkflow object a stateless session bean or a stateful session bean?

• Is there any indication that bean-managed persistence is required for the User
entity bean?

There is no indication in the sequence diagrams that the LoginWorkflow needs any
data from or about previous attempts. A quick glance at the system's requirements
reveals that there is no limit on the number of login attempts, so there is no need for a
counter of login attempts. For performance reasons, we use stateless session beans by
default. There is no reason not to follow that rule of thumb in this case.

The data for each User entity bean consists of a username and a password.
Both fields are strings. There is no indication for bean-managed persistence, since the
data is incredibly simple and the database schema is controlled by the development

Design for the TimecardDomain and TimecardWorkflow 263

Create Sequence Diagrams and Participating
Classes for Login Use Case

Now that we have refreshed our memory of the analysis model and made some design
decisions based on the architecture and on the analysis model, it is time to do the actual
design for the Login use case. We will create sequence diagrams for the normal flow
and for the alternate flow for an unknown user. Working from the analysis sequence
diagram, we can simply apply the technology selections to each object. The messages
are basically the same, just with more details.

Normal Flow
In the first part of the sequence diagram, shown in Figure 11.11, the login servlet asks
the LoginWorkflow session bean to validate the user. The Login Workflow session bean
calls the findByUsername method on the UserHome, which returns a remote reference
to the appropriate User entity bean. The LoginWorkflow calls the isPasswordValid
method on the User entity bean and returns the result.

Notice that this diagram does not attempt to show any behavior within the user
interface object. For this design effort, we are mostly concerned with the interactions
with the objects from the LoginWorkflow and LoginDomain packages.

Our earlier decision to make the LoginWorkflow a stateless session bean is validated
by this sequence. There is no need for the LoginWorkflow to keep any information
between method calls. It receives both the username and the password each time, and
it uses the UserHome to find the right User entity bean each time.

The Java Naming and Directory Interface (JNDI) lookups of the

LoginWorkflow and the UserHome are not shown. This seems appropriate, as

they are so incredibly repetitious and common.

Alternate Flow for Unknown User

Similar to the normal flow, the login servlet in the alternate flow asks the LoginWork-
flow session bean to validate the user. The LoginWorkflow session bean calls the find-
ByUsername method on the UserHome. Since the User object does not exist in the
system, the UserHome returns a null reference. The LoginWorkflow session bean
returns false, as the user's login information is clearly not valid. Figure 11.12 shows
this sequence.

This sequence is very similar to the normal flow. Other than some internal logic
within the LoginWorkflow session bean, there is no new information here.

Participating Classes
The validateLogin message from the LoginServlet to the LoginWorkflow requires a
dependency relationship between the LoginServlet class and the LoginWorkflow class.
The other messages in the sequence diagram lead to the dependency relationships
shown in Figure 11.13. Notice that none of the objects retains any information between
messages, so all of the relationships are dependencies.

It is always wise to verify that none of the relationships between the classes violates
the structural decisions that were made during architecture. In this case, you can see

266 Enterprise Java with UML

Figure 11.13 Participating classes for the Login use case.

that the dependencies exactly match the package dependencies specified in architec-
ture. The user interface class depends on the Workflow class, which in turn depends on
the user entity bean classes, which resides in the TimecardDomain package.

Now that we have a fairly complete design for the Login use case, the next step is to
design the Record Time use case.

Design for the Record Time Use Case

To design the Record Time use case, we follow the same steps as those used for the
Login use case design. First we consider the key design decisions, then create sequence

Design for the Timecardpontain and TimecanWorfcflOH 267

Key Design Decisions for Record Time

We need to make three key design decisions for the Record Time use case:

• Is the RecordTimeWorkflow object a stateless session bean or a stateful session
bean?

• How shouJd data be returned from the session beans to the UI: as remote refer-
ences or simple data?

• How should the persistent data be stored and mapped to entity beans?

Stateless or Stateful Session Bean?
In the analysis model, the RecordTLmeWorkflow object appears to hold a reference to
the Timecard object. If we carry this approach over to design, the RecordTimeWork-
flow session bean must keep a reference to the Timecard entity bean, which means that
it must be a grateful session bean.

Holding a reference to the Timecard entity bean would save the RecordTimeWork-
flow from having to find the right User entity bean each time it needs to get the current
Timecard bean. It almost certainly makes sense to avoid the extra database access and
make RecordTimeWorkflow a stateful session bean.

Remote References or Simple Data?

RecordTimeWorkflow objects allow RecordTimeUI objects to obtain a lot of informa-
tion about the current Timecard object. There are two fundamental ways that this goal
can be accomplished. First, the Record Time Workflow object can return remote refer-
ences to any entity beans that the RecordTimeUI needs; alternatively, the RecordTime-
Workflow can return simple data.

Returning remote references allows the receiving object a lot of flexibility, because it
can call any available method on the remote reference. For timecard data, this sort of
flexibility seems excessive. The RecordTimeUI has very narrow needs. Also, allowing
the RecordTimeUI object to have direct access to an entity bean violates the structural
constraints established during architecture, as it introduces a direct dependency
between the TimecardUI package and the Timecard Domain package.

In EJB development, it is usually better to have the session beans return
simple data or a collection of simple data. The client already has a remote
reference to the session bean, and every remote reference introduces overhead
on both the client and, more importantly, on the server.

Persistent Data and Design Implications
In the analysis model, each Timecard object contains many TimeEntry objects, one for
each date/charge code combination. This is a reasonable way to express the relation-
ship between hours, charge codes, and dates for an employee in the analysis model.
However, it may not be a prudent design strategy.

A separate TimeEntry entity bean for each employee, charge code, and date combi-
nation can lead to an explosion of entity beans. Consider a typical employee, with four

268 Enterprise lava with UML

charge codes in each seven-day timecard. That employee's timecard is associated with
28 TimeEntry beans. As the system scales, to, say, 1,000 employees updating their time-
cards each hour on Friday morning, the application server must load 1,000 employee
entity beans, 28,000 TimeEntry entity beans, and many charge code entity beans. Cur-
rent experience with EJB systems indicates that creating tens of thousands of fine-
grained entity beans has an adverse affect on performance and scalability. Each time an
entity bean is loaded, a record must be read from the database, and a pooled object
must be initialized with the data. This takes time, and forces the container to do more
work tracking the objects and maintaining a pool of available entity objects.

What is the alternative? We need a way to hold charge codes, hours, and dates for
each Timecard entity bean, without requiring a separate entity bean for each combina-
tion. Let's consider each type of data in turn.

Charge codes. We cannot store the timecard ID in each charge code, since each
charge code is used by many timecards. Using a lookup table in the database is
appealing but makes container-managed persistence (CMP) intractable. Since we
really want CMP, we need to store all of the charge codes for a timecard in a sin-
gle field. The solution is to serialize the charge code IDs into a string. Is this a
kludge or is this an application of the classic maxim "keep it simple? "

On the one hand, the database no longer meets the criteria for first normal
form; as a single row, column intersection is used to store multiple values. Data-
base administrators throughout the organization may cringe, mock, then attack.
They will rightly claim that we have ruined the reporting capabilities of the data-
base, as the combined field is useless for queries. However, if the database is a
subordinate tool for the application server, this may be irrelevant.

If breaking normalization is too high a price to pay, we can use bean-man-
aged persistence (BMP) for the Timecard entity bean. This allows us to have a
TimeEntry table with timecard ID, date index, charge code, and hours in the data-
base. Each Timecard entity bean builds itself by reading entries from the table,
and stores itself by writing entries to the table.

Hours. Each Timecard entity bean must also hold a list of hours, one for each com-
bination of charge codes and day. Again, in order to use CMP, we need to store all
of the hours in a single field. If we broke the database schema for charge codes,
we can certainly store an ordered list of floats in a string field. Otherwise, the
Timecard entity bean must use bean-managed persistence.

Again, the choice is the same: CMP provides convenience but reduces the
flexibility of the database. BMP maintains the flexibility of the database, but
requires the developers to write their own database access and transaction man-
agement code in the bean implementation.

Dates. Since we need only days, not hours or minutes, it is efficient to store the day
of the year and the year for the start of the timecard. Also, we might want to store
the length of the rime period in days, in case the customer ever decides to move
away from a standard seven-day time period.

There are three choices for persisting Timecard entity beans:

Use many fine-grained TimeEntry entity beans. This allows us to use CMP and
keep the database in first normal form. However, it undoubtedly impacts the seal-

Design for the TimecardDomain and TimecardWorkflow 269

ability of the system, since the system will require approximately 28 timecard
entries per employee per week.

Normalize the database and use BMP to keep all of the data for a timecard within
the Timecard entity bean. Keep the persistent data in well-normalized tables
with a separate row for each time entry. BMP allows us to write the SQL to join the
timecard and time entry data to build the consolidated Timecard entity bean. This
is a bit harder to implement, but makes the database more useful for reporting
and enables flexible queries against the time entry data.

Keep the data for a timecard within the Timecard entity bean. Keep the persistent
data in one table that stores all of the hours in a single field and all of the charge
codes in another field. This violation of first normal form allows us to use CMP,
but it also reduces the database to a simple data store. Generating reports from
the database becomes very painful. For example, if we want a list of all time
entries for a particular client, we would have to extract the charge codes list out
of every timecard and parse for the client.

Since we desire the convenience of CMP, and there is no requirement for extra
reporting, there is no reason not to use the third option.

Create Sequence Diagrams and Participating
Classes for Record Time Use Case

Now that we have refreshed our memory of the analysis model, and made some
design decisions based on the architecture and on the analysis model, it is time to do
the actual design for the Record Time use case. We will create sequence diagrams for
the normal flow and the Submit Timecard alternate flow.

Normal Flow
The normal flow begins when the actor requests the current entries. The RecordTime-
Servlet asks the RecordTimeWorkflow's home interface for a remote reference to a
RecordTimeWorkflow session bean. The RecordTimeServlet can then ask the Record-
TimeWorkflow session bean for the charge codes, dates, and hours that make up the
current timecard. Notice that the first request for information requires the Record-
TimeWorkflow to find the User object and ask for its current Timecard object. Subse-
quent requests use the references as held by RecordTimeWorkflow, which is a stateful
session bean.

The interaction between the RecordTimeWorkflow session bean and the Timecard
entity bean is quite straightforward. Each time the RecordTimeWorkflow receives a
request for information, it passes the request on to the Timecard entity bean, and
returns the result. Each time the RecordTimeWorkflow receives an update command,
it passes it along to the Timecard entity bean. Figure 11.14 shows this sequence.

Submit Timecard
The Submit Timecard flow begins when the actor sends the submit command to the
servlet. The RecordTimeServlet asks the RecordTimeWorkflow session bean to submit
the timecard. No information is passed as part of this request. The RecordTimeWorkflow

Design for the TimecardDomain and TimecardWorkflow 271

session bean uses a previously established reference to the User object to ask it to sub-
mit the current timecard. The User object uses the Timecard entity bean's home inter-
face to create a new Timecard. It keeps this as the new current timecard. Figure 11.15

Participating Classes
As always, each message in the sequence diagram requires a relationship in the class
diagram. Notice that the structural constraints established in architecture have been
met, as the classes in the TimecardUI package depend on classes in the Timecard-
Workflow package, which depend on classes in the TimecardDomain package. These
exactly match the structural constraints that were introduced in architecture. Figure
11.16 shows the participating classes and their relationships.

Now that we have a fairly complete design for the Record Time use case, we turn
our attention to the Export Time Entries use case.

Design for the Export Time Entries
Use Case

To design the Record Time use case, we follow the same steps as used for the Login use
case design. First we consider the key design decisions, then create sequence diagrams
and a class diagram.

Figure 11.15 Sequence diagram for Submit Timecard flow.

272 Enterprise Java with UML

Figure 11.16 Participating classes for the Record Time use case.

Design for the TimecardDomain and TimetardWorktlow 273

Key Design Decisions for Export Time Entries

Only one key design decision remains: whether to use a stateless or a stateful session
bean. The design for the other use cases has determined the design for all of the entity
beans.

Stateless or Stateful Session Bean?
There is no indication in the sequence diagrams that the ExportTimeEntriesWorkflow
needs any data from or about previous attempts. In fact, we expect export requests to
be few and far between compared to other system functionality.

For performance reasons, we use stateless session beans by default. There is no rea-
son not to follow that rule of thumb in this case.

Create Sequence Diagrams and Participating
Classes for Export Time Entries Use Case

There is onjy one significant flow of events, the normal flow.

Normal Flow
In the normal flow, the ExportTimeEntriesServlet retrieves lists of users and clients
from the ExporrTimeEntriesWorkflow, which uses their respective home interfaces to
actually find the relevant entity beans. The servlet uses the criteria entered by the user
to build an ExportCriteria object, which it sends to the ExportTimeEntries Workflow as
an argument to the exportForCriteria method.

The ExportTimeEnrriesWorkflow is responsible for all interactions with the Billing-
Systernlnterface. Each candidate time entry is sent to the BillingSystemlnterface, which
is responsible for using or rejecting the record. Figure 11.17 shows this sequence.

Participating Classes
Each ExportTimeEntriesServlet object depends on a ExportTimeEntries Workflow
object and an ExportCriteria object, because it creates a ExportCriteria object and
passes it along to the ExportTimeEntriesWorkflow object when it calls the exportFor-
Criteria object.

Notice in the sequence diagram that the ExportTimeEntriesWorkflow depends on
many entity beans, but does not keep any references to any of them. This indicates that
the ExportTimeEntriesWorkflow is perfectly acceptable as a stateless session bean, as
we planned. Figure 11.18 shows the participating classes and their relationships.

This concludes the design for the Login, Record Time, and Export Time Entries use
cases. The next, and last step before implementation is to evaluate our design.

Evaluate the Design

Now that we have completed the exhausting and exhaustive design for each use case,
we must evaluate the design against our goals and for compliance with the structural

Design for the TimecardDomain and TimecardWorhtlow 275

Figure 11.18 Participating classes for the Export Time Entries use case.

constraints from architecture. Recall that the primary goals for this design effort are
reuse, performance, and reliability.

Performance and reliability. The design works toward our performance and relia-
bility goals by leveraging EJB's strengths and by staying away from its weak-
nesses- Reviewing the sequence diagrams, we can see that remote connections are
kept to a minimum and that the data access emphasizes speed for the Record
Time use case, which is the most demanding of the common use cases.

Reuse. We have achieved a fairly high level of reuse within the system. The same
entity beans, such as Timecard, are used by several session beans. Examining
the methods for each bean, we can see that the methods are closely related and
fulfill a clear responsibility. Based on these observations, we can use formal
OO terminology and say that each bean is well encapsulated and has strong

276 Enterprise Java with UML

cohesion. Thus, there may be reuse opportunities with new systems within the
organization.

The participating class diagrams show that the design fits the structural constraints
in almost every case. The ExportTimeEnrryServlet, from the TimecardUI package,
depends on the ExportCriteria, which resides in the Bill ingSy stem Interface package.
This requires an updated package dependency diagram, as shown in Figure 11,19, but
does not introduce any major issues, such as cyclical dependencies or tight coupling.

Finally, we are ready for implementation.

Figure 11.19 Revised package dependencies diagram.

Design tor the TimecardDomain and TimecardWorkflow 277

Implementation

Now that the design is complete, and we have evaluated it, we have a solid founda-
tion for implementation. We will make some important decisions during implementa-
tion, but we made most or all of the major structural decisions during analysis,
architecture, and design. For example, we know each significant class, its responsibili-
ties, and its relationships with other classes. We know how each entity bean holds data
and how the session beans package that data for consumption by the user interface
classes.

The implementation will be split into two parts. First, there are core classes, which
are directly derived from the design model. Each section will show the derivation and
code for the different parts of each bean. Second, described in the last section, are some
helper classes. These classes are not in the design; they will be discovered as part of the
implementation process.

All of the code for this book is included on the CD-ROM. The package

names in the book match the packages in the CD-ROM.

User Entity Bean

The User entity bean, like all entity beans, requires three files: a remote interface, a
home interface, and an implementation class.

User.java

User.java is the remote interface for the User entity bean. It defines all of the remotely
accessible business methods for the bean, as shown in Figure 11.20. This class consoli-
dates behavior discovered in the Record Time and Login use cases.

All methods in User.java must throw RemoteException, since they are remotely
accessible. Each method returns either void or a primitive. All of the data serialization
rules we considered for RMI apply for EJB, so having primitive return values and para-
meters is desirable, to keep versioning simple.

Figure 11.20 Remote interface for the User entity bean.

278 Enterprise lava with UML

UserHome.java

UserHome.java is the home interface for the User entity bean. It defines all of the meth-
ods needed to find, create, or destroy User entity beans, as shown in Figure 11.21.

Each of the methods in UserHome.java throws RemoteException and either Create-
Exception or FinderException. RemoteExceptions are thrown for network, serializa-
tion, or class cast exceptions. CreateExceptions and FinderExceptions indicate logic
errors or data errors in the implementation.

Design for the TimecardDomain and TimecardWorkflow 279

Figure 11.21 Home interface for the User entity bean.

Initially, it is quite surprising to see the findByUsername method returning an Enu-
meration. After all, logically, there should be only one User entity bean for each user-
name. The Enterprise JavaBeans specification mandates that primary keys are unique.
Any other criteria for a find method could yield more than one entity bean. So, the
findByPrimaryKey method is the only find method that is permitted to return a single
remote reference. It is up to the developers to verify that other criteria are unique when
creating entity beans and to extract the entity bean's reference from the Enumeration
returned by the find method.

280 Enterprise Java with UML

UserBean.java

UserBean.java is the implementation for the User entity bean. It provides implementa-
tions for the methods in the home and remote interfaces.

As a side effect of using container-managed persistence, all persistent data must be
public. This is unnerving to developers who spend a fair amount of time convincing
other developers that public data is vulnerable to corruption, due to concurrent access,
and that making an instance variable public eliminates their ability to check values and
propagate changes. With EJB, however, these very valid arguments are rendered irrel-
evant, as the container is the only object that deals directly with the bean implementa-
tion. If you want the benefits of CMP, you must follow the specification and trust your
application server.

Enterprise JavaBeans should never be reused outside of an EJB
context Without the context. Enterprise JavaBeans are not even thread-safe, as
the data is public, and use of the synchronized keyword is precluded by the
specification.

The reference to the current Timecard entity bean is private. This is perfectly okay,
since it is not persistent. Instead of keeping a persistent reference, the User bean holds
the primary key of the current Timecard entity bean and uses it to obtain a reference on
demand.

Design for the TimccardDomain and TimecafdWorktlow 281

282 Enterprise Java with UML

Timecard Entity Bean
The User entity bean, like all entity beans, requires three files: a remote interface, a
home interface, and an implementation class.

Timecard.java

Timecard.java is the remote interface for the Timecard entity bean. It defines all of the
remotely accessible business methods for the bean, as shown in Figure 11.22. This class
consolidates behavior discovered in the Record Time, Export Time Entries, and Login

In the design, the methods to retrieve the current charge codes, dates, and hours
each returned an Enumeration. This is an appealing design, but it does not always
work well in practice. In many cases, the session bean passes the results of a request to
an entity bean back to the client. This can lead to annoying versioning issues. The Enu-
meration for a Vector on an appiication server that is running within a VM from JDK
1.2 is not compatible with the Enumeration for a Vector in a servlet engine or Swing
application that is running within a VM from JDK 1.1.

Design for the TimecardDomain and TimecardWorkflow 283

It is prudent to have all remotely accessible methods return either
primitives or a custom class that wraps a group of related primitives. The same

is true for method parameters. This cannot be true for the find methods, as they
automatically return a remote reference or a collection of remote references.
However, in most cases, it is advisable to force clients to use session beans
rather than accessing the entity beans through their find methods.

TimecardHome.java

TimecardHome.java is the home interface for the Timecard entity bean. It contains
all of the methods for creating and finding Timecard entity beans, as shown in Fig-
ure 11.23.

284 Enterprise Java with UML

Design for the TimecardDomain and TimecardWorkflow 285

Figure 11.23 Home interface for Timecard entity bean.

Note the variety of find methods that can be used for an entity bean. In more tradi-
tional Java development, each one-to-many relationship is kept in the containing
object. In EJB development, the containing object's primary key is often stored in each
object that it contains. At runtime, the containing object performs a reverse lookup on
the entity beans that it contains. For example, each Timecard entity bean contains the
primary key of the User entity bean to which it belongs. If the User entity bean needs
to find all of its Timecards, it uses a find method on Timecard's home interface.

This has a huge advantage, since relationships are kept in the data and are not real-
ized unless they are needed. However, it also breaks the encapsulation of the contain-
ing entity bean. Any object can ask the Timecard's home interface for a list of all
Timecards for a given username. The User bean is not even involved.

286 Enterprise Java with UML

TimecardBean.java

TimecardBean.java is the implementation class for the Timecard entity bean. As
designed, it holds its charge codes as text in one string and its hours as text in another.
To make matters even more complex, the charge codes are actually primary keys for
actual ChargeCode entity beans. The rest of the data is fairly straightforward.

Again, all remotely accessible methods return a primitive or an array of primitives,
to avoid versioning issues when the value is deserialized on the remote client.

Design for the TimecardDomain and TimecardWorkflow 287

288 Enterprise lava with UML

Design for the TimecardDomain and TimecardWorkflow 289

290 Enterprise Java with UML

Design for the TimecardDomain and TimecardWorkflow 291

292 Enterprise Java with UML

LoginWorkflow Stateless Session Bean

The LoginWorkflow stateless session bean consists of three files: a remote interface, a
home interface, and an implementation class.

Login Workflow/Java

LoginWorkflow.java contains the one remotely accessible method for the LoginWork-
flow session bean, as shown in Figure 11.24.

Since LoginWorkflow is a stateless session bean, each method includes all of the
information needed to perform the request. For example, setPassword must specify the
user, since the LoginWorkflow session bean does not remember who is logged in. In
fact, consecutive calls to a stateless session bean are frequently received by different
bean implementations. The container pools implementations, and can do as it pleases
with stateless session beans between method invocations.

Figure 11.24 Remote interface for the LoginWorkflow stateless session bean.

Design for the TimecardDomain and TimecardWorkflow 293

Login WorkflowHome.java

Login WorkflowHome.java is the home interface for the Login Workflow session bean.
It contains the method by which Login Workflow session beans are created.

Since Login Workflow is a stateless session bean, there would not be much point to
including parameters in the create method. Nevertheless, we must specify the method.

294 Enterprise Java with UML

Login WorkflowBean.java

LoginWorkflowBean.java is the implementation class for the LoginWorkflow session
bean.

As you can see in the code here for the isPasswordValid method, LoginWorkflow-
Bean obtains and uses remote references to entity beans as it needs them. There is no
way for one entity or session bean to directly get at an implementation bean. Instead,
the entity or session bean must obtain a remote reference. Performance between two
local beans is dramatically better than the performance between a client object in a dif-
ferent VM and a bean in an application server, even if both VMs are on the same host.
Otherwise, local access and remote access of a bean use the same remote and home
interfaces and very similar name resolution code.

Design lor the TimecardDomain and TimecardWorkflow 295

296 Enterprise Java with UML

RecordTimeWorkflow
Stateful Session Bean
The RecordTimeWorkflow stateless session bean consists of three files: a remote inter-
face, a home interface, and an implementation class.

Design for the TimecardDomain and TimecardWorkflow 297

ReconfTimeWorkflow.java

RecordTimeWorkfTow.java contains all of the remotely accessible methods for the
RecordTimeWorkflow session bean, as shown in Figure 11.25.

Since RecordTimeWorkflow is a stateful session bean, each method assumes a par-
ticular session, which involves a single user and a single current timecard. This allows
the getChargeCodes to have an empty parameter list.

Again, notice that each return type is an array of primitives or an array of custom
wrapper objects that wrap primitives. This eliminates versioning issues when the
remote client object deserializes the object.

Figure 11.25 Remote interface for RecordTimeWorkflow session bean.

298 Enterprise Java with UML

RecordTime WorkflowHome.java

RecordTimeWorkflowHome-java contains the methods for creating RecordTimeWork-
flowHome session beans.

The create method requires a username. This associates the RecordTimeWorkflow
session bean with a single user for the life of the session.

package com.wiley. oompBooks . EJwithUML .TimeCardHorkf low,-

RecordTimeWorkflowBean.java

RecordTimeWorkflowBean.java is the implementation class for the RecordTime Work-

Most of this code should be somewhere between familiar, and monotonous, by this
point. However, there is one new wrinkle, as the ejbCreate method finds a User entity
bean based on the username parameter. This bean reference is kept for the duration of
the stateful session.

Design for the TimecardDomain and TimecardWorkflow 299

The RecordTimeWorkflow session bean wraps the data for a charge code into a cus-
tom ChargeCodeWrapper object. This avoids the versioning issues, while providing a
convenient interface for the client object.

package com.wiley.compBooks.EJwitMML.TimeCardWorkflow,-

irnport com. wiley.corapBooks .EJwithOML.TimeCardDomain. *;
import com.wiley.corapBooks.EJwithUML.Ejbutil.*;
impart java.ut i l ,* ;
import java.rmi.*;

import javax.naming.*;

300 Enterprise Java with UML

Design for the TimecardDomain and TimecardWorkflow 301

Supporting Classes

The rest of the classes for this chapter support the classes that were found in the design.
While implementing a design, developers often discover classes that capture common
functionality or provide significant functionality. As long as these new classes do not
significantly impact the architecture by introducing new dependencies between pack-
ages, this discovery process is a healthy refinement of the design.

BasicSessionBean.java

The BasicSessionBean class removes some of the drudgery from creating implementa-
tion classes for session beans. It provides default implementations for all of the
required EJB methods. Except for the initial context, all of the methods are empty.

302 Enterprise Java with UML

BasicEntityBean.java

The BasicEntityBean.java class removes some of the drudgery from creating imple-
mentation classes for entity beans. It provides default implementations for all of the
required methods. Except for the initial context, all of the required methods are empty.

BasicEntityBean also provides a checkForDuplicates method that can be called from
the create method in each bean implementation. The checkForDuplicates calls
doCheckForDuplicates, which must be implemented in the subclass. This allows Basic-
EntityBean to do the boring exception handling, while each subclass fills in the inter-
esting duplicate checking logic.

Design for the TimecardDomain and TimecardWorkflow 303

304 Enterprise Java with UML

Activity Entity Bean

The Activity entity bean is a simple data repository with no behavior beyond a simple
check for uniqueness. An activity is a unit of work that can be used for a charge code.

Activity.java

Activity.java is the remote interface for the Activity entity bean. It defines all of the
remotely accessible methods for the Activity entity bean.

Design for the TimecardDomain and TimecardWorkflow 305

ActivityHome.java

ActivityHome.java is the home interface for the Activity entity bean. It defines the
methods for finding and creating Activity entity beans.

306 Enterprise Java with UML

ActivityBean.java

ActivityBean.java is the implementation class for the Activity entity bean. It contains
the actual data and logic for the bean. There is not much to it, just an ID, a name, and adescription.

Design for the TimecardDomain and TimecardWorkflow 307

308 Enterprise Java with UML

ChargeCode Entity Bean

The ChargeCode entity bean is a simple data repository with no behavior beyond a
simple check for uniqueness. A charge code is a billable unit of work.

ChargeCode./ava

ChargeCode.java is the remote interface for the ChargeCode entity bean. It defines all
of the remotely accessible methods for the ChargeCode entity bean.

ChargeCode Home

ChargeCodeHome.java is the Home interface for the ChargeCode entity bean. It
defines the methods for finding and creating ChargeCode entity beans.

Design for the TimecardDomain and TimecardWorFlow 309

ChargeCodeBean.java

ChargeCodeBean.java is the implementation class for the ChargeCode entity bean. It
provides the data and logic for the bean. Again, there is not much to it. Each Charge-
Code entity bean holds an ID, a name, a description, and the ID of the project entity
bean to which it belongs.

310 Enterprise Java with UML

Design for the TimecardDomain and TimecardWorkflow 311

312 Enterprise Java with UML

Client Entity Bean

The Client entity bean is a simple data repository with no behavior beyond a simple
check for uniqueness. A client represents an organization that hires the company to
perform some task or tasks.

Client.java

Client.java is the remote interface for the Client entity bean. It defines all of the
remotely accessible methods for the Client entity bean.

ClientHome.java

ClientHome.java is the home interface for the Client entity bean. It defines the methods
for finding and creating Client entity beans.

Design for the TimecardDomain and TimecardWorkflow 313

ClientBean./ava

ClientBean.java is the implementation class for the Client entity bean. It contains the
data and logic for the bean.

314 Enterprise Java with UML

Design for the TimecardDomain and TimecardWorkflow 315

Project Entity Bean

The Project entity bean is a simple data repository with no behavior beyond a simple
check for uniqueness. A project represents a large-scale task or deliverable that may
contain many charge codes for a client.

Project.java

Project.java is the remote interface for the Project entity bean. It defines the remotely
accessible methods for the Project entity bean.

316 Enterprise Java with UML

ProjectHome.java

ProjectHome.java is the home interface for the Project entity bean. It defines the meth-
ods for finding and creating Project entity beans.

Design for the TimecardDomain and TimecardWorkflow 317

ProjectBean./ava
ProjectBean.java is the implementation class for the Project entity bean. It holds the
data and logic for the bean.

318 Enterprise Java with UML

Design for the TimccardDomain and TimecardWorkflow 319

ChargeCodeWrapper.java

ChargeCodeWrapperjava encapsulates the details of a specific charge code inside a
simple data container. This allows methods of Enterprise JavaBeans to return a small
serializable chunk of data, rather than a less efficient remote reference. Of course, the
wrapper is less flexible than the remote reference.

320 Enterprise Java with UML

Node.java
A Node holds child nodes and may be a child of another Node object. It allows the
composition of arbitrary tree structures.

Design for the TimecardDomain and TimecardWorkflow 321

The Next Step

The design and implementation for the TimecardDomain and Timecard Workflow
packages are now complete. Now we move on to the next design effort: the HTML Pro-
duction class library.

Design for HTML Production

Much of our system's functionality will be obtained via Web browsers, so we will be
producing a huge volume of moderately complex HTML. This can be a daunting task,
as HTML and its surrounding technologies are often a capricious and unforgiving lot.
There are details to learn for each browser, and a frighteningly large number of poten-
tial solutions for any problem. HTML documents can be both disturbingly large and
incomprehensibly dense. Many large-scale Web-based systems are composed of hun-
dreds of different screens, each sharing some common elements, and many with
unique aspects.

One effective approach to these issues is to develop a class library that is dedicated
to the production of HTML. Servlet developers will use this framework as they build
the user interface classes. Ideally, the servlet developers should not even need to
directly produce any HTML. Instead, they will depend on HTML production classes to
handle this tedious task.

Designing a class library is quite different from designing a package based on use
cases; therefore, we will deviate a bit from the normal design steps. First, we will estab-
lish goals for the design. Next, we will attempt to design to one or more goals. It may
help to consider existing design patterns or existing products as guides in this effort.
Then we will measure the resulting design against the goals. Finally, we will flesh out
our design to support our particular user interface needs.

Remember, design is an iterative process; doing refactoring or even
completely changing your mind is a natural part of the process.

323

324 Enterprise Java with UML

Design Goals

Before we can design a clever solution to our problem, it is essential to formally deter-
mine the design goals for the HTML production framework. After all, how can we hit
an undefined target? Think of the goals for a subsystem or framework as a technically
oriented internal requirements document. The goals detail how other parts of the sys-
tem will interact with the framework, and what these parts can expect from it.

You must establish concrete examples and very specific criteria for your goals before
you begin to design. Clear and quantifiable goals can drive a design and provide a
valuable measure of success. Vaguely defined goals do not provide direction for the
design, and tend to frustrate developers more than they help. For example, it is far
more useful to require the framework to support new versions of Internet Explorer
than to require the framework to be extensible in some generic sense.

Let's take a look at the design goals for the HTML production class library.

Goal 1: Support Modular Construction
of Views
It can be useful to nest one HTML component inside another HTML component to
form a more complex page. A page might contain a table, an input form, and some text.
One eel! in the table might contain an image while another cell contains another
complete table. Component nesting allows a patient developer to assemble arbitrarily
complex pages from a small number of relatively simple building blocks. We want our
underlying HTML production classes to allow a presentation developer to easily nest
and combine structures.

Consider a page that contains a table, which in turn contains an image and some
text. This moderately complex view is built by combining these three simple elements.
The pseudocode for this table might look like the following:

1. Get a new table from the framework.

2. Get a new image from the framework, and set its source.
3. Add the image to the table.

4. Add text to the table.
5. Get a new page from the framework.

6. Add the table to the page.

Graphical interface programmers use this sort of bottom-up composition to stay
sane while they create elaborate screens. Even the most complex screen is composed
from a relatively small number of components, which are creatively combined. Our
framework must provide the same capability.

Goal 2: Keep HTML Production Simple
We want the majority of our developers to remain focused on the intricacies of the
business and to ignore the painful details that can be involved in generating the actual

Design for HTML Production 325

HTML. Presentation developers must be able to add data to views without knowing
about differences between browsers or which arcane option on a particular HTML tag
does what.

In short, we want to keep HTML production simple. To do this, there are three spe-
cific criteria:

Hide the actual tags and options. Outside of the framework team, developers
should not need more than a casual familiarity with HTML syntax.

Hide all browser-specific behavior. Application and presentation logic that uses
the HTML production framework must be able to completely ignore browser-
specific behavior. Developers trust the underlying framework to tailor the gener-
ated HTML for the user's browser.

Enable natural development of user interface. Adding content or data should be
natural from the perspective of the view developer. It should not necessarily be
dictated by the structure of the resulting HTML.

An example of how a view might use the class library might be helpful. Let's con-
sider a view that extracts some data from the domain and displays it in a table. The
pseudocode might look like the following:

1. Retrieve raw data from the domain.

2. Format the data into a two-dimensional array of strings.

3. Retrieve the user's context, including browser type, from the request.

4. Get a new page from the framework.

5. Set the rifle of the page.

6. Add some instructional text to the page.

7. Get a new table from the framework.

8. Set the column headings for the table.

9. Set the formatted data from step 2 as the table's data.

10. Add the table to the page.

11. Ask the page for its HTML.

Notice that the view does not know how the HTML is produced. It just wires the
data into the elements that are provided by the framework.

By encapsulating the dirty details of HTML production, we allow staff specializa-
tion. Presentation developers can keep their data manipulation logic separate from the
complexities of the actual HTML. This helps keep the code base smaller and easier to
understand.

This is a very valuable form of reuse. It may not be as stunning or politically im-
pressive as a cross-corporate domain infrastructure, but it is really nice when everyone
can add data to a table and have it produce the same HTML. Without such a frame-
work, developers must create their own unique and often incompatible solutions.
When allowed to compound over time, this trend leads to chaos and terminal code
bloat.

326 Enterprise Java with UML

Goal 3: Support Preferences
Preferences allow the look and feel of a system to be modified to meet the user's wants
or needs. For example, the user might want to change the color scheme, or draw solid
lines around each cell of a table. This can involve changing a configuration file and
restarting the system, but it should never require a change to the source code. Many
users expect to change preferences while the system is running.

Since there are many types of screen elements, we must allow for many preference
options. A page might allow customization of the background color and text color,
while a table might allow customization of its colors, as well as the width of the border
and various alignments. A system could use preferences to allow customization of tens
or even hundreds of screen characteristics.

Preferences have one more interesting wrinkle. Different systems offer customiza-
tion at different levels. A system with many anonymous customers would probably
have a single look and feel that could be customized by the Web master. A complicated
corporate intranet might allow each user to override these default choices with his or
her own preferences. Some systems have a complicated preference scheme in which
user choices override department choices that override the system defaults.

For simplicity and to enable reuse, our underlying HTML production framework
must be oblivious to how the preferences are created, edited, and selected for a user. The
framework will allow view objects to set the preferences for an element. It is up to the
view to build the right preferences for a given circumstance. If no preference is set for an
element, the preference for the enclosing element will be used. The framework will:

• Only apply preferences; it will not determine the correct preference for a sit-
uation.

• Allow preferences to be set at any level.

• Make it easy to extend preferences and to support entirely new types of pre-
ferences.

The framework will support preferences without losing its independence and reuse
potential.

Goal 4: Extensibility and Encapsulation
Class library developers must be able to extend the framework easily and without
impacting existing views. The presentation logic will not change to accommodate each
new version of Internet Explorer or Netscape Navigator. These changes must be iso-
lated to the framework.

Framework developers must be free to change the framework to take advantage of
new browser features, to fix rendering anomalies, and to make changes to the look and
feel of the system. These changes must not break the interface on which the presenta-
tion developers depend. The framework must accommodate the following changes
without impacting existing client code or existing framework code:

• New browsers

• Changes to the HTML specification for an element

• Changes to the preferred look of an HTML element

Design for HTML Production 327

The presentation layer is protected from changes in the HTML production classes,
so the HTML production classes must be protected from changes in the application or
presentation layers. To ensure this, the HTML production classes should depend only
on primitives and standard Java classes. For instance, the framework must not know
anything about timecards or employees. The user interface developer would need to
extract data from any domain-specific classes before using it to configure any HTML
production classes.

Meeting these specific design goals will allow the framework developers to keep the
presentation developers happy over time. The encapsulation also will make it easier
for other projects to reuse the entire framework.

Design to Goals

Once we have developed specific goals, the next step is to develop high-level designs
that meet them. It is difficult to design for all of the goals simultaneously. Instead, we
will design for one goal at a time and periodically check for contradictions.

Design for Goal 1: Support Modular
Construction of Views

Supporting modular construction of views captures the flavor of the HTML produc-
tion classes. The class library exists because it lets developers build elaborate structuresfrom simple primitives.

The Composite Design Pattern

Goal 1 is also especially meaningful because it is a perfect fit for an existing design pat-
tern. Gamma and his co-authors describe the Composite pattern's intent as follows:
"Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly" [Gamma, et
al.1995],

A tree structure that represents a part-whole hierarchy sounds applicable. We can
represent our page as the following tree:

• Page

• Table
• Image
• Text

The next part of the intent, "Composite lets clients treat individual objects and com-
positions of objects uniformly," is a bit more interesting. It implies that Composite
objects implement the same interface as their children. So, the client does not care if it
holds a reference to a Composite or an individual object. Similarly, a Composite does
not care if a child is a Composite or an individual object.

Gamma and his colleagues demonstrate the pattern with graphical primitives,
such as lines, rectangles, text, and pictures. These primitives can be combined to form

328 Enterprise lava with UML

elaborate pictures. As the intent states, the payoff comes when we draw the picture by
asking the topmost container to draw itself. It in turn asks each of its children to draw
itself. If it is a leaf, the child draws itself and is done. If it is a container, it draws itself
then asks each of its children to draw itself. What a nice generic and recursive solution
to a very common problem.

Applying Composite

Consider the potential for using the Composite pattern for the HTML production class
library. The Composite pattern can be used to construct very complex HTML pages by
combining relatively simple HTML producers.

For example, a table contains text, images, forms, and other tables. A page might
contain a table, a form, images, and some miscellaneous text. A form might contain
input fields, descriptive text, and one or more Submit buttons. Notice that some ele-
ments, such as forms and tables, can contain other elements. Other elements, such as
text, cannot contain any other elements.

To access the elements, we need a common interface that the Composites and indi-
vidual objects can implement. Since this is an HTML production framework, let's call
the interface IHtmlProducer. Each Composite will have methods that add any IHtml-
Producer. To keep names consistent, we'll name each class that implements IHtml-
Producer with its type and the suffix Producer. For the example, we invent
PageProducer, TextProducer, ImageProducer, and TableProducer. Each class formats
its own HTML; and except for TextProducer, all can contain any other IHtmlProducer.
So, we create the HTML page by creating a PageProducer object then adding a
TableProducer to it. Next, we'll add an ImageProducer and a TextProducer to the
TableProducer. Figure 12.1 shows how a composite page can be built from simple
pieces. Note that each Composite can accept any IHtmlProducer.

Each type of producer has a different way to add a producer. The PageProducer
adds one producer after another. The TableProducer allows control over the relative
positioning of producers, by allowing us to add each producer to a separate cell in the
table.

While each type of element needs different methods for adding data, all of them
should support a simple way to retrieve the formatted HTML. Once the page has been
constructed, getting the HTML is simple: The page asks each child for its HTML; then
each child asks its children for their HTML- Notice in Figure 12.2 that each parent does
not need to know much about its children. It just expects nicely formatted HTML when
it asks for it. Figure 12.3 shows the producer classes and the common IHtmlProducer
interface. Notice that the TableProducer and PageProducer may have many IHtrnlPro-
ducers, but are completely unconcerned as to the type of any particular producer.

Design Evaluation

Let's express our design in terms of the Composite design pattern and evaluate our
effectiveness. PageProducer and TableProducer are Composites since they implement
the IHtmlProducer interface and contain objects that implement IHtmlProducer. This
allows us to easily build complex HTML pages by combining IHtmlProducers. Also,

Design for HTML Production 329

Figure 12.1 Building an IHTML page with the Composite pattern.

Figure 12.2 Retrieving HTML from a Composite.

330 Enterprise lava with UML

Figure 12.3 Participating classes for simple Composite.

when we add a new HTML producer, existing HTML producers are not affected. We
used the Composite pattern to build a very modular class library.

Design for Goal 2: Keep HTML
Production Simple
The first goal for the HTML production framework is to protect the view developers
from HTML details and browser-specific behavior. So far, the design seems to provide
a level of abstraction above HTML. The view developer can build a table and add it to
a page without knowing any HTML.

Browser-Specific HTML

Although the design supports modular composition, it does not make any provision
for browser-specific HTML production. It would be fairly simple, if tedious, to develop
a separate class for each browser-specific version of each element. This might be worth
the effort, since you can inherit common behavior and thus reuse it and still encapsu-
late any pesky and subtle differences.

Creating a separate class for each browser for HTML tables we end up with a hier-
archy similar to that shown in Figure 12.4. Since HTML tables are fairly standardized
in recent browsers, the generic TableProducer might do most of the work. Any

Design for HTML Production 351

browser-specific behavior can be overridden in the subclasses. This may seem like
overkill for a Table Producer, but consider the differences between an Internet Explorer
and a Netscape implementation of a TabbedPaneProducer. Notice that a view can pop-
ulate and configure any TableProducer by using the public methods in the base class.
Browser-specific implementations have different behavior behind the scenes, but
never change the public interface.

The browser-specific behavior is encapsulated within the implementation classes.
Once a view has the correct implementation, it can interact with it through the generic
base class. We are making progress. Unfortunately, each view still needs to know
which implementations are available and which is best for a particular situation. This
means that to add support for a new browser requires changes in each view. This is
clearly not acceptable.

The Abstract Factory Design Pattern

The Abstract Factory design pattern lets us hide the varying implementations behind a
common interface. Its intent: "Provide an interface for creating families of related or

Figure 12.4 Browser-specific HTML producers.

332 Enterprise Java with UML

dependent objects without specifying their concrete classes" is perfect [Gamma, et al.
1995], Let's examine some participants as defined in the pattern and see how they
apply to the example.

First, an AbstractProduct is an interface that is common to all implementations of
a particular type of product. In this example, TableProducer is an AbstractProduct.
A ConcreteFactory creates actual implementations of AbstractProducts for a particu-
lar family of products. For example, there might be separate ConcreteFactory classes
for Netscape 4.0 and Internet Explorer 4.0. Each actual implementation, such as
TableProducerlE40, is known as a ConcreteProduct.

Figure 12.5 shows the Abstract Factory pattern applied to some of the products in
our application. The Netscape40Factory overrides AbstractFactory's interface by creat-
ing Netscape-specific objects that extend either TableProducer or PageProducer. When
a client requests a product, the AbstractFactory identifies the right ConcreteFactory
and asks it to create a ConcreteProduct. It is important to remember that the client
never sees the ConcreteFactory or the ConcreteProduct. The presentation code has
a reference to some arbitrary implementation of AbstractFactory. When the presenta-
tion code asks for a particular type of producer, the ConcreteFactory builds a very spe-
cific producer, but returns a reference to the producer's abstract base class, such as
PageProducer or TableProducer.

Design Evaluation

There is one drawback to using the Abstract Factory pattern. We must have a different
ConcreteProduct for each combination of family and product. In our example, where
some HTML constructs are quite standard across browsers and completely standard
within one company's offerings, this is excessive. For instance, it is possible to produce
a generic PageProducer since the HTML for the page header is pretty standard.

Producer Factory

Let's revise the design so that there is a single ProducerFactory that is responsible for
finding the best-fit implementation for a given browser and type of producer. This is
more efficient, since many of the combinations of vendor, version, and producer would
have been redundant.

Now for the tricky part: How will the ProducerFactciry determine the best concrete
producer for a combination? Figure 12.6 shows that the ProducerFactory has a list of
concrete producers. It would need to ask each concrete producer a series of questions:
"Are you of type X?" Then, "Do you support browser vendor Y?" If so, "How close are
you to version 72" Based on the answers, it could ask the best one to copy itself. This
practice of creating new objects by copying an existing one is documented as the Pro-
totype pattern.

Notice that the ProducerFactory does not depend on the concrete implementations.
Instead, it has a list of objects whose classes implement the IConcreteHtrnlProducer
interface.

Let's reconsider the earlier example in which we added a table to a page. This tune,
let's assume that the HTML is intended for an Internet Explorer 4.0 browser. The view

Design for HTML Production 333

Figure 12.5 Abstract Factory for browser-specific HTML producers.

object uses the Producer Factory to obtain a TextProducer, an ImageProducer, a
TableProducer, and a PageProducer. The text and image producers are added to the
table, and the table to the page, as before. The view object does not need to construct
the producers directly. Instead, it delegates this chore to the ProducerFactory. The
sequence diagram in Figure 12.7 shows this scenario.

All of the logic for determining the correct concrete producer and returning a new
instance of that concrete producer is left to the ProducerFactory. When the view asks
the factory for a TextProducer, the ProducerFactory uses the browser information to
find a match. Since there is only one TextProducer, this decision is simple. Notice that,

334 Enterprise Java with UML

Figure 12.6 Criteria-based Factory.

from the view's perspective, the returned object is a TextProducer, not a TextProducer-
Generic. Views do not need to know the specific implementation. Next, the view asks
for a TableProd ucer. The ProducerFactory knows it has two candidates, so it asks them
if they support the browser name, which in this case would be "IE" for Internet
Explorer. Since only one candidate answers appropriately, it creates a copy and returns
it. The view uses the PageProducer and TableProducer interfaces to populate the view.
Figure 12.8 shows this sequence.

Reevaluation

Have we met the first design goal? View developers can create HTML page;
knowing HTML; and the logic for finding the most suitable concrete produc

Design for HTML Production 335

Figure 12.7 Using the ProducerFactory class.

hidden in the ProducerFactory. The current design achieves the first goal of keeping
HTML production simple.

Before we forge ahead, we need to make sure that our design changes have not com-
promised our previously realized goals. It seems that, from the view developer's per-
spective, we have simply replaced the direct instantiation of producers with requests
to the ProducerFactory. The flow for retrieving HTML is unchanged. Goal 2 was met
without losing any ground.

Design for Goal 3: Support Preferences
To meet the third goal, support user preferences, we need to look at how preferences
are captured and how they are applied to different elements.

Preferences Alternatives

There are two major alternatives for capturing preferences. First, we could design a
separate class for each type of preference. Table preferences would be encapsulated in
a TablePreference class, with specific methods for setting colors, cell borders, and spac-
ing. Every element would have a corresponding preference class, and every preference
would have a corresponding access method. For example, the framework might deter-
mine the background color of the page with the following code:

Design for HTML Production 337

compiles and runs fine. Unfortunately, it returns a null String instead of "LightGray."
On the other hand, the first design is rather cumbersome, with potentially hundreds

of incredibly simple preference access methods. Loading or editing the preference
objects will be complicated since each preference has its own method- Using the stan-
dard Properties class allows us to easily load preferences from files.

Also, in order to add a new preference type or even a new preference to an existing
type in the first design requires changes to the preference class, the code that loads the
preference class, and the framework code that reads the preference. A similar change in
the second design will require only a change in the preference data and in the frame-
work code that uses the preference.

After considering both possibilities, I prefer the second method. Though it does
introduce some potential for errors, I like the simplicity and its use of a standard Java
idiom. We can add a method in the IHtmlProducer, as shown in Figure 12.9, that uses
a Properties object to hold preferences. It is up to each concrete implementation of the
interface to use the preferences appropriately. Composite objects must propagate the
Properties object to their child IHtmlProducer objects.

Keeping the preferences in a properties file works well for simple or
moderately complex preferences. However, if you have very complex
preferences, with different values for the same preference for different types of

Figure 12.9 HtmlProducer interface

The other design alternative is to include a simple list of name and value pairs in a
java.util.Properties object. For example, page.backgroundColor = LightGray sets the
background color to gray. In order to retrieve the preference, the framework code
would access the properties object with this code:

String colorNarae = theProperties.getProperty("page.backgroundColor");

Trade-offs

The first approach uses tht? compiler to protect against typing errors. For instance, the
compiler will catch an error such as page Properties. getBsckgroundCol or. In the second
design, the equivalent error of:

338 Enterprise Java with UML

producers, the properties become very difficult to read. One solution is to use

an XML file to hold the preferences. This lets you edit the preferences in your
favorite XML editor, which is a major advantage.

Design for Goal 4: Extensibility and
Encapsulation

In addition to the first three goals, we must ensure that the design can survive the tests
of time. Requirements inevitably evolve over time, and a resilient system must accom-
modate them.

Encapsulation

Changes within the framework, excluding the public interfaces, must not be allowed to
propagate to the presentation layer that depends on it. The view package depends on
the generic HtmlProduction package with its generic HTML producers, but not on any
actual implementations.

To be really encapsulated, the generic HTML producers also should not depend on
their concrete implementations. This allows us to add new concrete implementations
or change existing concrete implementations without fear of cascading changes.
Remember, the ProducerFactory in the HtmlProduction package must pick the correct
concrete implementation for a given user and element. Does this mean that the Html-
Production package depends on the concrete implementations? Not necessarily, since
each concrete implementation implements the IConcreteProducer interface and the
ProducerFactory can use those methods to determine the best fit. All we need is a
way to register concrete producers with the factory. To do so, we add a method to the
ProducerFactory, as shown in Figure 12.10. Notice that the addConcreteProducer
method does not introduce any dependency on the concrete implementations. The
only dependency is on the IConcreteProducer interface.

Let's use table production to look at the dependencies between classes. Notice
that the SomeServlet class depends only on the ProducerFactory and the abstract pro-
ducer classes in the HtmlProduction package. Neither of these classes has any depen-
dencies on the concrete producer classes. Notice that each concrete producer
implements the IConcreteProducer interface and recall from Figure 12.6 that each
concrete producer extends an abstract producer class. Figure 12.11 shows these
relationships.

Evaluation of Package Dependencies

The class dependencies can be consolidated into package dependencies. The concrete
implementation packages for Internet Explorer and Netscape Navigator depend on
the HtmlProduction package, since they implement interfaces from that package.
The HtmlProduction package does not depend on the concrete implementations, since
they register using the IConcreteProducer interface; and each extends one of the
generic producers. This demonstrates how changes can ripple from one package
to another. Notice that changes to the generic classes and interfaces will require

Design for HTML Production 339

Figure 12.10 ProducerFactory with producer registration.

the concrete implementations to evolve to meet the changes. The converse is not true!
Concrete implementations may be created, destroyed, and modified without impact-
ing the HtmlProducrion classes and interfaces. The last goal, extensibility and encap-
sulation, has been met. Figure 12.12 shows the package dependencies for HTML
production.

Filling in the Details

Now that we have a high-level design that meets our high-level goals, we need to flesh
out the details. Our goal for this section is to develop detailed sequence diagrams and
class diagrams for several screens in the user interface prototype.

340 Enterprise Java with UML

Design for HTML Production 341

Figure 12.12 Package dependencies

Perfect initial designs are as common as perfect people. It is
important to remember that you will always discover some flaws in your
design, and identify some areas that you simply had not considered. Additional
classes will be discovered. Interfaces will be modified. It is far more efficient to
discover the inevitable issues in a modeling tool. Code has inertia, too; once
code is written, it tends to stay written.

Login Screen

From the login screen, it is clear that we will need a quick way to produce very simple
text input forms. The form consists of input boxes and a Submit button. Bach input box
needs a label, a name, and an initial default value. The Submit button requires a label-
Figure 12.13 shows an input form and a new generic producer class.

The sequence diagram in Figure 12.14 shows how a LogiriServlet object builds this
HTML. The LoginServlet object obtains a TabularlnputFormProducer object from the
ProducerFactory. It then configures it with the correct submission target and the cor-
rect submission label. Next, it adds fields for the username and the password. A simi-
lar process is used to build and configure a page. The TabularlnputFormProducer is
added to the PageProducer, and the preferences are set on the PageProducer.

It is important to note how little the view needs to know. There is no knowledge of
HTML or browser versions or any nasty details in the servlet. All in all, it looks like a
nice payoff for our hard work in high-level design.

Nevertheless, there are still questions to answer: How does an actual concrete Tabu-
larlnputFormProducer do its job? Should it independently produce the HTML, or
should it use internal FormProducer and TableProducer objects? Figure 12.15 shows

342 Enterprise Java with UML

Design for HTML Production 343

Figure 12.15 Building a TabularlnputForm.

how the TabuIarlnputFormProducer is constructed. For this example, assume that the
concrete producer is a TabularlnputFormProducerGeneric. The factory creates a copy of
a Prototype object. (See Prototype pattern in [Gamma, et al. 1995].) In the construction
of the copy, a table producer is added to a form producer. The TabularlnputFormPro-
ducerGeneric contains a FormProducer and adds a TableProducer to the FormProducer.
Notice that the TabularTnputFormProducerGeneric gets concrete producers the same
way everything else does, through the ProducerFactory.

Many messages from the view to the TabularlnputFormProducer are passed along
to other objects. When the view adds a field, the TabularTnputFormProducer adds a
corresponding text label and a text field to the TableProducer. Also, notice in Figure
12.16 how the setPreferences and getHtml messages cascade down from the TabuIar-
lnputFormProducer to the FormProducer and on to the TableProducer, because
TableProducer is a child of the FormProducer. Then, the messages cascade from the
TableProducer to the TextProducer and TextFi eld Producer since they are children of
the TableProducer. This cascading effect is typical of the Composite pattern.

As sequence diagrams become complex, we use notes to annotate them. For exam-
ple, one method may be called for two very different reasons. Notes allow us to tie the
low-level method calls together. In many cases, the notes may resemble pseudocode
that describes the intent behind a series of methods calls.

Figure 12.17 shows how each TabularlnputFormProducer object is associated with
a single FormProducer object and a single TableProducer object. It also highlights
the way the TabularlnputFormProducer depends on the other producers, while not
bothering to keep track of them. It is clear that many objects, including the views and
any TabularlnputFormProducer objects, will need a reference to a ProducerFactory
object. It is also clear that a single factory will be sufficient. We can implement this by

344 Enterprise Java with UML

Figure 12.16 Adding to a TabularlnputForm.

using the Singleton pattern. Specifically, we add a static getFactorySingleton method to the
ProducerFactory class.

Evaluation

It seems logical to have the TabuIarlnputFormProducer use the TableProducer. However,
there is one drawback: Normal tables may look very different from the simple input forms.
For instance, a simple input form blends in with the screen. We would not want borders or a
different background color to draw attention to the table. Data tables, on the other hand, need

Design for HTML Production 345

Figure 12.17 Classes for the TabularinputFormProducer

to clearly distinguish rows and columns. Since we are merely using the table to get the
layout right, we may need different preferences for the internal TableProducer. So, the
preferences must be altered by the TabularlnputFormProducer before they are passed
down to the TableProducer.

Time Entry

Our next challenge is the Timecard form itself. As you can see in Figure 12.18, this form
consists of text and text entry fields in a table. We already have producers for the
enclosing table and the text. It is a fairly simple exercise to add TextProducers and
TextFieldProducers to a TableProducer. Because there is no new behavior within the

346 Enterprise Java with UML

Figure 12.18 Timecard form.

framework, and because the use of the framework for this scenario is shown in Chap-
ter 13, "Design for the TimecardUI Package," I omit here the sequence diagram and
class diagram.

Implementation

The following section shows sample implementations for each class in the design.
Based on our design goals, we created a design to meet these goals while supporting
the use cases. This design provides a foundation for the implementation by specifying
the responsibilities for each class and the relationships between classes. While there are
still many decisions left for implementation, the design provides a coherent structure
during implementation.

IHtmlProducer.java

There is no difference between the design interface and its implementation, as you a
see from the following code. If only all implementations were this straightforward.

Design tor HTML Production 347

Combo BoxProducer.java
The ComboBoxProducer is an abstract class that provides some concrete and final
behavior. It has public final methods that allow a client to set the producer's prefer-
ences, set the name of the combo box, aiid add values for the combo box. The access
methods for this data are all protected and final. This means that any client can use the
set and add methods to configure the producer. Since the methods are final and the
underlying instance variables are private, subclasses of ComboBoxProducer cannot
change the underlying data or the way it is held. Subclasses only override the getHtm!
method. Any other changes, such as adding a new method, will not be visible through
the base ComboBoxProducer class, and therefore would be useless within the frame-
work.

It is considered good practice to narrowly define the responsibilities of the sub-
classes and enforce these decisions through the use of final methods and private data.

548 Enterprise Java with UML

Form Producer. Java

Like ComboBoxProducer, FormProducer is an abstract class that provides some con-
crete and final behavior. Its final methods and private data encapsulate the configura-
tion of a combo box. Subclasses must override getHtml to provide browser-specific
behavior.

Client objects can add any object that implements IHtmlProducer to the Form-
Producer's running list of producers through the addHtmlProducer method. This is
what makes the FormProducer a Composite.

Design for HTML Production 349

Notice that a private ArrayList is used to keep the HTML producers in order.

350 Enterprise Java with UML

PageProducer.java

Subclasses are limited to overriding getHtml. Like FormProducer, PageProducer is a
Composite with producers added through the addHtmlProducer method.

There is no limit to the number of producers, and they are kept in the order in which
they are added.

Design for HTML Production 351

SubmitButton Producer

As always, subclasses are limited to overriding the getHtml method. SubmitButton-
Producer provides the methods and attributes for storing the label and preferences for
the actual concrete producer. Notice that the attributes are private, so the subclasses
must access them through the public methods.

SubmitButtonProducer is not a Composite.

352 Enterprise Java with UML

TableProducer.java
TableProducer restricts subclasses to overriding the getHtml method. TableProducer is
a Composite HTML producer. HTML producers are added to the TableProducer
through the setHtmlProducerForCell method, which specifies a position and an IHtml-
Producer. Producers are kept in SortedMaps, with one SortedMap per row. This keeps
the producers in order by column index. Each SortedMap for a row is kept in another
SortedMap, so that the rows stay in order by row index.

Subclasses retrieve producers by row and column index. This simple interface has
one shortcoming. Notice that the subclass is free to request a producer for a cell that
does not exist. Therefore, it must be prepared to receive null as a response.

It is important that this fairly complex logic be kept in the base class. This encapsu-
lates complexity and ensures that all subclasses behave in the same way.

Design for HTML Production 353

354 Enterprise Java with UML

TabularlnputFormproducer.java
TabulailnputFormProducer is quite different from the other producers. It is a Com-
posite, but it mostly constructs itself. Its constructor obtains a FormProducer, a
TableProducer, and SubmitButtonProducer from the ProducerFactory. These are wired
together to form the TabularlnputFormProducer. Unlike the other producer classes, its
getHtml method is not abstract. Subclasses do not override the getHtml method.
Instead, the getHtml method in TabularlnputFormProducer produces formatted
HTML, in part by calling the getHtml method on its FormProducer.

Design for HTML Production 355

356 Enterprise Java with UML

TextFieldProducer.java
As always, subclasses are limited to overriding the getHtml method. TextFieldPro-
ducer contains the attributes and methods needed to set the name and initial value of
the text field, as well as the preferences. Since these attributes are private, the sub-
classes must access the attributes through the public methods.

Design for HTML Production 357

358 Enterprise lava with UML

Text Prod ucer.java
As always, subclasses are limited to overriding the getHtml method- TextProducer
contains the attributes and methods needed to set the text of the text, as well as the
preferences. Since these attributes are private, the subclasses must access the attributes
through the public methods.

TextProducer is not a Composite.

Design for HTML Production 359

IConcreteProducer.java
IConcreteProducer is a simple interface that allows the ProducerFactory to treat all reg-
istered concrete producers the same. It allows a concrete producer to reveal how suit-
able it is for a certain browser. It also contains constants that identify different types of
producers.

360 Enterprise Java with UML

ProducerFactory.java
ProducerFactory allows client objects to obtain the best concrete producer for a given
browser. For efficiency and convenience, it is a Singleton that is exposed through a sta-
tic retrieval method. The static getFactorySingleton method makes sure that an
instance of ProducerFactory exists and returns a reference to the caller. Notice that the
constructor is private, so the Singleton pattern cannot be subverted.

Concrete producers are registered with the factory through the addConcrete-
Producer method. Any object that implements the IConcreteProducer interface may be
registered. Since concrete producers are frequently configured, they cannot be shared
by different clients. When a client requests a particular kind of producer, the Producer-
Factory determines the best match, then asks it to copy itself. The copy is then returned
to the client.

The best match for a particular browser is determined by asking each registered con-
crete producer a series of questions. First, the concrete producer must be of the same
type, and support the browser. So, the ProducerFactory asks the concrete producer if it
supports the browser. Once the list is narrowed down to compatible producers, the
ProducerFactory determines which concrete producer is the best fit by asking each
producer how far it is from the specified version.

The same matching logic is used for all types of producers. The specific get method
simply casts the resulting producer to the specified type, and returns it.

Design for HTML Production 361

362 Enterprise Java with UML

Design tor HTML Production 363

364 Enterprise Java with UMl

FormProducerGenericjava
FormProducerGeneric produces HTML forms that are not tuned to any particular
browser. It produces a lowest common denominator that works in any modern
browser.

Design for HTML Production 365

As expected, FormProducerGeneric overrides getHtml and all of the methods from
IConcreteProducer. In getHtml, FormProducerGeneric uses protected methods to
access the configurable properties that are common to all FormProducers. These prop-
erties are used to build the actual HTML.

366 Enterprise Java with UML

PageProducerGeneric.java

PageProducerGeneric is very similar to FormProducerGeneric. It too overrides
getHtml to produce lowest-common-denominator HTML. In addition to the config-
urable properties that are held in the superclass, PageProducer, PageProducerGeneric
also uses the preference data.

Looking at the short, but rather gross, code required to build HTML highlights the
wisdom in our decision to encapsulate HTML production to a few dedicated classes.
Picture a system with customized HTML production code and domain access for each
view. Now consider the differences between each developer's code and the effects of
time and changing requirements. Now aren't you glad we took some time for design?

package cora.wiley.compBooks.EJwithUML.HtmlProduction.GenericProducerg;

Design lor HTML Production 367

368 Enterprise Java with UML

Table Produce rGeneric.java

As with the PageProducer, getHtml contains the interesting code. It traverses each row
of the table, by calling the getHtmlProducer method defined in the superclass
TableProducer. Each producer is retrieved for a particular row index and column
index. As before, the TableProducer encapsulates a narrowly defined piece of fairly
complex logic.

Design for HTML Production 369

TabularlnputFormProducerGeneric.java
TabularlnputFormProducerGeneric is interesting because it does not override
getHtml. Remember, TabularlnputFormProducer is a self-constructing Composite. It
builds itself from other producers, each of which has a concrete implementation of
getHtml. TabularlnputFormProducer's getHtml simply retrieves the HTML from its
internal FormProducer. There is nothing to override.

Notice that it does override the getBrowserName and get Browser Version methods
that were defined as abstract in the superclass.

370 Enterprise Java with UML

Design for HTML Production 371

The Next Step

In this chapter we defined goals for the design of our HTML production class library,
designed to those goals, and finally implemented our design in Java. This design and
implementation is used as a foundation for Chapter 13, "Design for the TimecardUI
Package," which follows the same design and implementation process for the Time-
card system's servlet-based user interface.

Design for the
TimecardUl Package

The TimecardUl package contains the servlets that provide a Web front end to the
Login and Record Time use cases of the Timecard application. These servlets obtain
and update system data by using the session beans in the Timecard Workflow package,
and use the HTML production framework from theHtmlProduction package to format
the results into HTML. The Sun Microsystems servlet class library is used to interpret
the HTTP request and to build the HTTP response.

As in earlier design efforts, we must identify goals and priorities, review prior steps,
design to goals, and apply design to use cases.

Establish Design Goals

To develop a solid design, we need clear goals. Establishing clear goals before you
begin to design helps designers avoid hasty decisions. After all, design forces a devel-
oper to compromise or pick between competing goals. Establishing clear goals up front
makes this easier and less arbitrary.

Extensibility
User interfaces always evolve over time, as the users' needs mature. To keep the
code base small, each new feature should reuse existing components or introduce new

373

374 Enterprise lava with UML

modular components that can be used on other features. At times, users also may
desire different appearances for particular screens or for the system as a whole. In
some cases, the customer might want to update the look of the entire site to emphasize
a brand or to produce a fresh look.

Because of these two factors, the servlets in our system should never produce their
own HTML. Instead, this tedious activity is always delegated to the classes of
the HtmlProdaction framework. If a new feature cannot be created by combining
existing HTML, producers, then a new HTML producer must be added to the frame-
work. Once in the framework, the new producer becomes available for use in other
servlets. A new look for the entire site should be accomplished by changing the prefer-
ences and a few key producers, without altering the servlets themselves. Preventing
the servlets from producing their own HTML, and forcing them to depend on the
HTML production framework, keeps the system smaller and easier to understand and
to extend.

Testability
The servlets tie together much of the system to provide direct benefit to the customer,
so they are a logical place to start for system and integration testing. While final testing
involves Web browsers going against the Web server and the application server, it is
useful to test the servlets inside an integrated development environment. This allows
quick edit and rebuild cycles, and the use of a debugger. The alternative, whereby
developers recompile classes and restart or notify the servlet engine after each change,
is demoralizing and time-consuming. If the servlets are testable outside of the servlet
engine, developers can perform independent and isolated load testing, which is useful
to determine scalability and to locate performance bottlenecks.

Review Prior Steps

Before proceeding, we must review the architectural constraints as well as the analysi
model.

Review Architectural Constraints
At the end of Chapter 9, "Software Architecture," we determined that the TimecardUI
depends directly on the HtmlProductkm package and on the TimecardWorkflow pack-
age. It must not directly depend on any other package in the system. Rather than
depend on the specifics of the HtmlProd ucers, it should depend upon the Producer-
Factory and the abstract producer classes. Also, TimecardUI must never directly access
any entity beans. In addition, no other package depends on the TimecardUI package.
Together, these restrictions help make the system more extensible and easier to under-
stand and to maintain. For example, even radical changes in the way data is stored or
in the business logic for validating timecards will not affect the servlets, as long as they

Design lor the TimecardUl Package 375

Figure 13.1 Architectural constraints.

do not affect the public interface of the TimecardWorkflow session beans. Figure 13.1
shows the architecture as it affects the TimecardUl package.

Each use case dynamically builds several HTML pages and processes that are input
from one or more HTML forms. Since page production and form processing are tightly
intertwined, it seems logical to encapsulate those tasks for each use case in a single
servlet. This results in two servlets: LoginServlet and RecordTimeServlet.

Review Analysis Model
In this step, we review the analysis model for the Login and Record Time use cases.

376 Enterprise Java with UML

Review Analysis Model for Login Use Case

The Login use case allows users to validate themselves to the system as a precursor to
any use of the system. The login use case has one normal flow and two alternate flows.
The alternate flows show different ways that the user's information can be invalid.

Normal Flow (Analysis)
The sequence begins when the employee asks the Employ eeLoginUI to display the
login form. The employee then uses the form to submit his or her username and pass-
word. The EmployeeLoginUI asks the LoginWorkflow to validate the login informa-
tion. Since the LoginWorkflow does not have the information needed to perform the
validation, it uses the UserLocator to find the User object, and the resulting User object
to finally validate the login information. Figure 13.2 shows the sequence diagram from
the analysis model.

Alternate Flow for Invalid Password (Analysis)
The sequence for the alternate flow for an invalid password begins when the employee
asks the EmployeeLoginUI to display the login form. The employee then uses the form

Figure 13.2 Sequence diagram for normal flow of Login (analysis).

Design for the TimecardUl Package 377

to submit his or her username and password. The EmployeeLoginUI asks the Login-
Workflow to validate the login information. Since the LoginWorkflow does not have
the information needed to perform the validation, it uses the UserLocator to find the
User object, and the resulting User object to finally validate the login information. In
this case, the User object responds that the user's information is invalid; the Employ-
eeLoginUI displays an error message, and the sequence is complete. Figure 13.3 shows
the sequence diagram from the analysis model.

Alternate Flow for Unknown User (Analysis)
When the user is unknown, the sequence for the alternate flow begins when the
employee asks the EmployeeLoginUI to display the login form. The employee then
uses the form to submit his or her username and password. The EmployeeLoginUI
asks the LoginWorkflow to validate the login information. Since the LoginWorkflow
does not have the information needed to perform the validation, it uses the User-
Locator to find the User object. In this flow of events, no matching User object can be
found, so the LoginWorkflow responds that the user's information is invalid. The
EmployeeLogintJI displays an error message, and the sequence is complete. The return
value of invalid does not seem to convey the reason why the login information is

Figure 13.3 Sequence diagram for invalid password for Login use case (analysis).

378 Enterprise Java with UML

invalid to the EmployeeLoginUl. Figure 13.4 shows the sequence diagram from the
analysis model.

Participating Classes for the Login Use Case
(Analysis)

The user interface objects use LoginWorkflow objects. The resulting relationship needs
to be an association, so that the user interface objects can reuse the same LoginWorkflow
object for login retries. The LoginWorkflow object uses a User object, but does not need
to remember it for future use; therefore, the resulting relationship is a dependency. The
LoginWorkflow object uses a UserLocator object and keeps it for future use, so the
resulting relationship is an association. These relationships are shown in Figure 13.5.

Review Analysis Model for Record Time Use Case

In the Record Time use case, an employee views his or her current hours, edits existing
hours, adds new hours, and optionally submits the timecard. The normal flow is the
only significant flow of events from a user interface based on user interface complexity
and processing.

Figure 13.4 Sequence diagram for unknown user for Login use case (analysis).

Design for the TimecardUl Package 379

Figure 13,5 Participating c

Normal Flow for Record Time Use Case (Analysis)

The sequence for the normal flow of events begins when the employee actor asks the
RecordTimeUI object to display his or her current timecard. The RecordTimeUI object
passes the request along to the RecordTimeWorkflow object, which finds the user's
current timecard and extracts the current timecard data. The RecordTimeUI uses this
raw data to build a display. The employee actor uses the display to update the entries.
The RecordTimeUI sends the updated entries back to the RecordTimeWorkflow, which
applies them to the current timecard. Figure 13.6 shows this sequence.

Design to Goals

Our design is fairly constrained, since we know that we will use servlets and the
HTML production classes. However, we must still consider our two goals: extensibil-
ity and testability.

Extensibility can be achieved by keeping each servlet well focused and by always
depending on the HTML production classes. If the desired functionality does not exist
within the HTML production class library, we must either create a new HTML pro-
ducer that can live within the library or wait for a HTML production developer to do

380 Enterprise Java with UML

Figure 13.6 Sequence diagram for normal flow for Record Time use case (analysis).

so. Creating our own custom HTML production code that lives within a servlet is not
acceptable, as it gradually leads away from standardization and reusable HTML pro-
duction code.

Stressing testability determines how we write each servlet. First of all, we want the
doGet method to be as small as possible. It should simply retrieve any parameters and
session data before calling private methods to perform any interesting logic. This
allows us to test the bulk of the servlet's functionality from a static main entry point,
perhaps even from the debugger of our choice. The code, compile, deploy, and test
cycle is significantly more difficult for most servlet engines than for an application in
an integrated development environment (IDE). It pays to minimize the amount of time
spent testing deployed servlet code.

Design for the TimecardUl Package 381

Design for Each Use Case

We need to create a design for both the Login and the Record Time use cases.

Create Design for the Login Use Case
Our design for the Login use case considers three major flows: building the empty
form, processing valid login data, and processing invalid login data.

Build the Login Form

The first step is to build an empty login form in HTML. While it is certainly possible to
use a static HTML page for this purpose, producing dynamic HTML for static pages
helps ensure the same look for all of the pages.

The LoginServlet knows to produce the empty form because the username parame-
ter is not set in the HttpRequest object. Note that the servlet calls an internal method,
buildForm, to produce the form. Separating the actual form production logic makes it
easier to test the use case inside of a debugger or within a performance test harness.

Next, a TabularlnputFormProducer is obtained from the ProducerFactory. Note
from the earlier HTML production design that TabularlnputFormProducer is an
abstract class. The actual object reference is an instantiation of a class that extends Tab-
ularlnputFormProducer. Only the ProducerFactory knows which concrete implemen-
tation of TabularlnputFormProducer is used. We are protected from such details.

The submit target is set to the URL for the LoginServlet. Fields for the name and
password are added to the TabularlnputFormProducer before the TabularlnputForm-
Producer is added to the PageProducer. Next, the preferences Properties object is
retrieved from the PreferenceManager and set in the PageProducer. Finally, formatted
HTML is extracted from the PageProducer and written to the HttpResponse's output
stream. Figure 13.7 shows the sequence of messages that produces an empty login
form.

Process Valid Login Data

In the sequence for processing valid login data, the usemame and password parame-
ters exist in the HttpRequest. The LoginServlet asks the Login Workflow to validate the
usemame and password combination. When the true response is received, the Login-
Servlet stores the username in the HttpSession.

Next, the LoginServlet builds a page with links to the user's options. For now, there
is onJy one option, record time, hi any case, the link is built by obtaining a Link-
Producer from the ProducerFactory. Since there is no existing LinkProducer in the
HTML production framework, we must design one. As we might expect, the target for
the LinkProducer is set to the URL of the RecordTimeServlet. Notice that the contents
of the link are encapsulated inside of a TextProducer. Allowing client code to add any
sort of f Html Producer provides limitless flexibility. For instance, adding an Image-

382 Enterprise java with UML

el 3.7 Sequence to build Login form.

Producer would produce a clickable image. While this requires us to wrap the text for
the link inside of a TextProducer, the extra flexibility is well worth the inconvenience.

The LoginServlet adds the LinkProducer to the PageProducer, sets the preferences
in the PageProducer, and extracts the formatted HTML from the PageProducer. This
sequence is shown in Figure 13.8.

Process Invalid Login Data

As in the sequence for valid data, the usemame and password parameters exist in
the HttpRequest. However, in this scenario, the validateUser method in the Login-
Workflow returns false, so the LoginServlet builds a page with a TabularlnputForm-
Producer, as in the build empty form, and adds a TextProducer with some explanatory
error text. Figure 13.9 shows this sequence.

Participating Classes for the Login Use Case

LoginServlet sits in the middle of the action, like a frantic Hollywood agent, knowing
all of the players but unable to accomplish anything on its own. This is a very common

Design for the TimecardUl Package 383

Figure 13.8 Sequence for a valid user.

and powerful concept: One thin class combines the talents of many other classes to
form a new and interesting whole. Luckily, classes and objects are truly egoless, so the
HtmlProcSucers do not mind the servlets' time in the limelight while they perform the
tedious HTML formatting.

Notice the complete lack of association relationships in the class diagram. Remem-
ber, each sequence begins when the servlet engine calls the doPost method of the
LoginServlet and the same LoginServlet object is used to validate any number of users.
Everything that the LoginServlet needs to produce the HTML is passed into the doPost
method inside of the HttpRequest object. Figure 13.10 shows the classes for the Login
use case.

Create Design for the Record Time
Use Case
Based on our recently refreshed memory of the analysis model for the Record Time use
case and our knowledge of the Servlet class library and the HTML production classes,
we can develop a design for the Record Time user interface. There are two main
sequences: building the Record Time form and updating the timecard based on a sub-

384 Enterprise Java with UML

Figure 13.9 Sequence for Invalid login data.

Build the Record Time Form

The sequence begins when the employee actor asks the RecordTimeServlet to build the
time entry form. The RecordTimeServlet extracts the usemame from the HttpSession,
and uses it to create a Record Time Workflow object. The RecordTimeServlet asks the
RecordTimeWorkflow for the charge codes, dates, and hours for the current timecard.
With the raw data in hand, the RecordTimeServlet obtains a FormProducer and a
TableProducer from the ProducerFactory. The TableProducer will hold the data and the
input text fields, so it must be added to the FormProducer, Each TextProducer to hold
the charge codes and the dates must be obtained from the ProducerFactory, configured
with the correct text, and added to the correct cell in the TableProducer. A similar
process populates the table with TextfieldProducers for the hours. Finally, the Form-
Producer is configured with the appropriate submit target and is added to the Page-
Producer. Figure 13.11 shows this sequence.

Design for the TimecardUl Package 385

Figure 15.10 Participating classes for the Login use case.

Update the Timecard

The sequence for updating the timecard begins when the employee updates his or her
time entries and submits the form to the servlet. The RecordTimeServlet extracts the
HttpSession from the HttpServletRequest. The RecordTimeServlet pulls the username
out of the session and uses it to get a remote reference to the appropriate RecordTime-
Workflow. Next, the RecordTimeServlet pulls parameters out of the request for the
hours, charge codes, and dates. The hours are then used to update the RecordTime-
Workflow. Figure 13.12 shows this sequence.

Participating Classes for the Record Time Use Case

Many classes help realize the Record Time use case, but most are independent of the
others. As in the Login use case, the servlet ties the disparate objects together. Again, it

Design for the TimecardUl Package 387

Figure 13.12 Sequence diagram for updating the timecard.

is worth noting that the RecordTimeServlet does not do any real work: It does not
retrieve any data from the database, it does not format any HTML, and it certainly does
not hold any business logic. It just knows where to go to ask.

At first glance, it seems odd that the RecordTimeServtet class depends on many
classes, yet does not have any lasting relationship with any classes. For instance, where
is the one-to-one or one-to-many association between the RecordTimeServlet class and
the RecordTi me Workflow class? Remember that all of the work done by a servlet is ini-
tiated when the serviet engine calls either the servlet's doPost or doGet method. Also
recall that many users may share a servlet. So, the HttpRequest contains all of the infor-
mation that the RecordTimeServlet needs, including form data and the RecordTime-
Workflow that is embedded within the HttpSession. Figure 13.13 shows this sequence.

Now that we have a solid design for the servlets for the Login and Record Time use
cases, we can implement them in Java.

Implementation

The following sections show the implerr
TimeServlet, and a BasicServlet class that s

station for the LoginServlet, the Record-
;rves as a useful base class for both.

LoginServlet.java

The LoginServlet does not directly format any HTML. Instead, it extracts information
from the LoginWorkflow class and uses the HtmlPoduction package to format all of
the HTML.

388 Enterprise Java with UML

Figure 13.13 Participating classes for Record Time use case.

If the username parameter is not set, then the LoginServlet knows that the usei
needs to enter his or her information in an HTML form. The static main entry point if
used to test the servlet's functionality.

Design for the TimecardUl Package 389

390 Enterprise Java with UML

Design for the TimecardUl Package 391

392 Enterprise Java with UML

Reco rdTi meServl et.ja va
RecordTimeServletjava does not directly format any HTML. Instead, it extracts infor-
mation from the Record Time Workflow class and uses the HtmlFoduction package to
format all of the HTML. If the hours are not set, it knows that it needs to build a form
for display. The form shows the current data and allows the user to update it. If the
hours are present in the request data, then the RecordTimeServlet extracts the data
from the form and passes it to the RecordTimeWorkflow for processing. Then it builds
the Time Entry form so the users can see their changes and make further updates.

Design for the TimecardUl Package 393

394 Enterprise Java with UMI.

Design for the TimecardUl Package 395

396 Enterprise Java with UML

Design for the TimecardUl Package 397

BasicServlet.java
The BasicServlet.java holds functionality that can be used by every servlet in the sys-
tem. The functionality includes populating the ProducerFactory, initializing prefer-ences, and formatting errors.

398 Enterprise Java with UML

Design for the TimecardUl Package 399

The Next Step

In this chapter, we used session beans, as designed in Chapter 11, and the HTML pro-
duction classes, as designed in Chapter 12, to produce the dynamically generated
HTML for the Timecard system. At this point, we have completed the core functional-
ity for the Timecard system. The last step is the interface with the BillingSystem, which
we cover in Chapter 14.

Design for
BillingSystemlnterface

The design for the BillingSystemlnterface subsystem builds heavily on the analysis
model, architecture, and technology selection, and the design for the TimecardWork-
flow packages, as developed in Chapter 5, "Analysis Model for the Timecard Applica-
tion," Chapter 8, "Evaluating Candidate Technologies for Control and Entity Classes,"
Chapter 9, "Software Architecture," and Chapter 11, "Design for the Timecard Domain
and TimecardWorkflow." The analysis model developed in Chapter 5 will help to
determine the behavior of the BillingSystemlnterface subsystem, while the content in
Chapters 8,9, and 11 will help to determine the technologies and existing packages that
it will use.

As in the preceding design chapters, the goal here is to develop a design that is quite
close to code and that is also constrained by the functional, architectural, and techno-
logical decisions made in those chapters. In this chapter, we will establish design goals,
review the analysis model to recall the required functionality, then review the architec-
ture to remind us of the architectural constraints. Based on this foundation, we will
build a design that fits the use case.

Identify Goals

The design for the BillingSystemlnterface should support the goals established for the
entire system in Chapter 10, "Introduction to Design." Clarity, performance and relia-

401

402 Enterprise Java with UML

bility, extensibility, and reuse potential are all considered goals for the BillingSystem-
Interface.

Clarity
Clarity is always an important goal, and the BillingSystemlnterface is no exception.
Both the design and the code must be understood by a wide variety of developers,
from reviewers to maintenance developers. Adherence to design guidelines and codestandards is very important.

Performance and Reliability
Performance and reliability are less important for the BillingSystemInterface than for
the system in general. The BillingSystemInterface is intended for occasional use, and
can be limited to off-peak hours if necessary.

Extensibility

Extensibility is fairly important for the BillingSystemlnterface, since the Billing System
itself is outside of our control and subject to change. The BillingSystemlnterface must
be able to evolve to meet different requirements for the format or content of the inter-
change data. Also, the BillingSystemlnterface must be flexible in the criteria used to
include or exclude time entries.

At the very least, these two areas must be kept well encapsulated, so that any
changes are confined to a few closely related classes.

Reuse Potential

Reuse potential is relatively unimportant. No other part of the Timecard system needs
any of this logic, and the BillingSystemlnterface is not solving a generally applicable
problem that might be shared by other systems.

Review of Analysis Model

There is only one use case that uses the BillingSystemlnterface subsystem, Export Time
Entries. The sequence begins when the administrative user asks the ExportEntriesUl to
display the criteria that can be used to filter time entries. Once the administrative user
selects the criteria, the control object, ExportTimeEntriesWorkflow, delegates the actual
work to the locator objects and the entity objects. Figure 14.1 shows this sequence.

Review of Architecture

In the architecture developed in Chapters 8 and 9, the BillingSystemlnterface uses
XML to package the data for transfer to the actual billing system. The BillingSystem-

Design for BillingSystem Interface 403

Interface is used by a class or classes in the Timecard Work flow package, shown in Fig-
ure 14.2.

Design

The architecture and analysis diagrams indicate that the BillingSystemlnterface
subsystem is accessed from a GUI and uses XML. In designing the subsystem, we

404 Enterprise Java with UML

Figure 14.2 Package dependencies for Timecard architecture.

reconsider the first assumption. There is no need for a fancy user interface for a data
export utility. Also, it may be useful to run the export as a scheduled task, so it can run
at off peak hours without inconveniencing anyone. This approach suggests a com-
mand-line application that extracts all of the information that it needs from a configu-
ration file. A fancy graphical user interface would be unnecessary and perhaps an
obstacle.

The BillingSystemlnterface could easily use the existing beans from the Timecard-
Workflow and TimecardDomain packages to gather the raw data that it needs. This
change, as shown in Figure 14.3, keeps the rest of the system independent of the

Design for BillingSystemlnterface 405

Figure 14.3 Revised architecture.

BillingSystemlnterface package. Classes in the BillingSystemlnterface depend on
classes in the TimecardWorkflow and TimecardDomain packages, but nothing depends
on the BillingSystemlnterface package.

Changes of this magnitude cannot be made lightly, and must be
reviewed by the developers who are responsible for the architecture. However,
in many cases, the developers who create the detailed design for a package or
subsystem gain a more thorough understanding of the problem and of the
solution. They must be allowed to apply this deeper understanding as they
create the solution. Judicious changes to the architecture are an inevitable and
healthy part of the design process.

Recall from Chapter 11 that individual time entries are not stored separately.
Instead, each Timecard entity bean encapsulates all of the hours for an employee dur-
ing a particular pay period. The TimecardHome interface lets a client object find all

406 Enterprise Java with UML

timecards for a given user. So, if the users are specified in the criteria, the timecards
for those users can be retrieved and the data extracted for comparison with the other
criteria. If the criteria include all users, then the UserHome interface can be used to
obtain a list of all users. The rest of the process is the same.

We will develop two sequence diagrams, one for each variation.

Sequence Diagram for Export
Specific Users
The sequence to export specific users begins when the Administrative Actor starts the
ExportTimeEntriesApplication. The input arguments to the application specify a crite-
ria file and a results file for the formatted output. The application immediately uses the
criteria filename to build an ExportCriteria object. This object is responsible for reading
the file and encapsulating the criteria data. Next the application uses the output file-
name to build an ExportFile object that is responsible for formatting the output and
writing it to the specified file.

A list of users is obtained from the ExportCriteria object. The ExportTimeEntriesAp-
plication then uses an existing class, TimecardHome, to obtain remote references to all
of the Timecard entity beans for each user. Each Timecard exposes a list of charge
codes, a list of dates, and a list of hours. The charge codes and dates are checked
against the ExportCriteria object by calling its containsClient and containsDate meth-
ods. The entries that match the criteria are added to the ExportFile, which is solely
responsible for formatting and writing them to the output file. Figure 14.4 shows the
sequence to export specific users.

Sequence Diagram for Export All Users

As in the sequence for Export Specific Users, the sequence to export all users begins
when the AdministrativeUser starts the ExportTimeEntriesApplication. The Export-
TimeEntriesApplication object creates the ExportCriteria and ExportFile objects. How-
ever, in this sequence, ExportCriteria answers the getUsers method with all users. This
leads the ExportTimeEntriesApplication to ask the UserHome for a list of all users. The
remainder of the sequence is the same as before, with the ExportTimeEnrriesApplica-
tion object using the ExportCriteria object to determine if each entry meets the criteria,
and adding the matching entries to the ExportFile object. Figure 14.5 shows the
sequence diagram for Find All Export Time Entries.

Participating Classes
Each ExportTimeEntriesApplication object keeps exactly one ExportFile object and
exactly one ExportCriteria object. No other objects use these two objects. Each Export-
TimeEntriesApplication object uses many remote references to User and Timecard
entity beans. Figure 14.6 shows the participating classes for Export Time Entries.

Design for BillingSystemlnterlaie 407

Implementation

The implementation of these classes is fairly straightforward. We begin with the
ExportCriteria and ExportFile, then proceed to the ExportTimeEntriesApplication
class that uses them.

ExportCriteria.Java
ExportCriteria's entire purpose is to completely encapsulate the criteria file. The pri-
vate method loadCriteria loads the criteria from the file. It loads the included users and
clients into separate hashtables for fast and convenient lookup. It also loads begin and
end dates for the included date range.

The loadCriteria method is called from each criteria-checking method, although it
only does the actual load on the first occurrence. Since loadCriteria can throw excep-
tions, it is better to accept this slightly clumsy approach than to call it once from the
constructor.

408 Enterprise Java with UML

Figure 14.5 Sequence diagram for Find All Export Time Entries.

There are several methods for checking criteria. None of them allows the calling
code to change the criteria or to discover how criteria are determined. Our goal of
encapsulation is well served by this discipline.

The class itself has default visibility, which is visibility to the other classes in the
package and no other classes. This reflects the architectural decision that no other
classes in the system use any classes in the BillingSystemlnterface package.

Design for BillingSystemlnterface 409

Figure 14.6 Participating classes for Export Time Entries.

410 Enterprise Java with UML

Design for BillingSysteinlnterface 411

412 Enterprise Java with UML

ExportFile.java

The ExportFile class holds all logic for formatting time entries into XML. As with
ExportCriteria, ExportFile's constructor just captures the filename. The more complex
code that may lead to an exception is not called until someone calls addEntry. In
addEntry, open is called if it has not been called before, then the new time entry is for-
matted and added to the file.

Design for BillingSystem Interface 413

414 Enterprise Java with UML

ExportTimeEntriesApplication.java
ExportTimeEntriesApplication retrieves the User and Timecard entity beans. Included
users are determined by retrieving the included users from the ExportCriteria object.
Each included user is used to get potential Timecards. Each entry within each Timecard
is compared to the included clients and included date range. Entries that match are
sent to the ExportFile for formatting.

Again, the constructor does not have to do much. All of the interesting processing,
which can throw exceptions, is left to the exportEntries method.

Design for BiilingSystemlnterface 415

416 Enterprise Java with UML

Design for BillingSy stem Interface 417

Conclusion

This chapter completed the implementation of the Timecard application. Throughout
the development process, UML helped us describe the problem and the solution in a
clear and comprehensible form. In a real project, this allows a community of develop-
ers and stakeholders to evolve a consensus on what the system should do and how it
should do it. Less time is lost in communicating ideas. This time is more profitably
spent debating the merits of the ideas.

Visual Glossary

The following glossary shows how several important object-oriented concepts are
shown in the UML and how they can be implemented in Java. Each section describes a
concept, provides a sample UML diagram that uses the concept, implements the UML
in Java, and offers some guidance on the proper use of the concept.

Generalization

One or more subclasses may share the attributes and behavior that are defined for the
base class. There are two ways to describe this relationship in proper object-oriented
terminology. First, a class inherits all of the attributes and behaviors from a superclass
or base class. From the opposite perspective, the superclass is a generalization of the
attributes and behaviors that are common to all of its subclasses. In UML, the relation-
ship is described as a generalization and is denoted by a solid line with a hollow arrow
pointing to the base class.

UML Example
Consider a brief example of generalization. Vehicle is a generalization of both Car and
Truck. The two subclasses, Truck and Car, inherit all of the attributes and behavior

419

420 Appendix A

from the base class. Figure A.I shows the two subclasses, with generalization arrows
pointing to the base class. In this case, there is no default go behavior for vehicles, so
the base class must be abstract. Each concrete subclass of Vehicle must provide an
implementation of the go method. Each concrete subclass may accept the default
behavior for startEngine, stopEngine, and isEngineOn. If the default implementation is
inappropriate, the subclass may override the default implementation by providing its

In UML, rendering the abstract class name in italics indicates that the class is
abstract. Showing a method in both the base class and in the subclass indicates that the
subclass overrides that method.

Java Example
The following Java files show how the UML model in Figure A.I can be implemented

Vehide.java

Vehicle.java is the abstract base class in Figure A.I. This is reflected in the source code,
as the class and the go method are both abstract. The other methods have implementa-
tions, but are not final, so they may be overridden by subclasses.

Appendix A 421

Car.java

Car.java is a subclass of Vehicle, which in Java is indicated by the reserved word
"extends." Car overrides the go method and uses the base class implementation of the
isEngineOn method.

422 Appendix A

Truckjava

Truck.java is a subclass of Vehicle, which in Java is indicated by the reserved word
"extends." Truck overrides the go method and uses the base class implementation of
the isEngineOn method. Truck is almost identical to Car, with a different implementa-
tion of the go method.

Guidelines
It is extremely important for the generalization relationship to be an accurate descrip-
tion of the underlying reality that you are modeling. Each subclass must really be a
refinement of the superclass. Do not subclass a class just to get useful behavior or
attributes. Doing so makes the system significantly more difficult to understand, and
may result in strange errors as the system evolves.

Realization

A class realizes an interface by implementing each method that is defined in the inter-
face. By realizing the interface, the class is promising to make the interface real, hi
UML, the realization relationship is denoted by a dashed line, with a hollow arrow
pointing to the interface.

Appendix A 423

UML Example
Continuing the earlier example, some Vehicles can carry cargo, some cannot. Also,
some classes that are not "normal" vehicles may also carry cargo. So, rather than intro-
ducing a separate subclass for all cargo-carrying vehicles, we introduce an interface,
ICargoTransport. Our design allows any class to realize the ICargoTransport by pro-
viding an implementation for the loadCargo method. Figure A.2 shows Truck realizing
the ICargoTransport interface, while Car does not.

Java Example
The following Java files show how the UML model in Figure A.2 can be implemented
in Java. Only the files that have changed from the generalization example are shown.

Truck.java

Truck.java is a subclass of Vehicle, which in Java is indicated by the reserved word
"extends." Truck overrides the go method and uses the base class implementation of
the isEngineOn method. Truck also realizes the ICargoTransport interface, as indicated
by the "implements" reserved word in the class definition.

Figure A.2 Realization example.

424 Appendix A

ICargoTransport.java

ICargoTransport.java simply defines the name and signature for the loadCargo
method. As an interface, it is precluded from providing an implementation.

Guidelines
All of the methods in an interface must combine to describe a coherent responsibility.

Association

An association is a long-term relationship between objects, hi an association, an object
keeps a reference to another object, and can call the object's methods as it needs them.
Real life is replete with association relationships. Consider a person with his or her
own automobile. As long as he or she remembers where it is parked, the car will let the

Appendix A 425

person in to drive to his or her destination. In the UML, a solid line between the two
classes represents an association.

In some cases, an object may instantiate another object and keep a reference to it for
future use. An object may also receive an object as a parameter to a configuration
method and keep a reference to the object.

UML Example

Consider an association relationship in which each Person object knows about zero or
more Vehicle objects. Figure A.3 shows this relationship in a class diagram. The rela-
tionship is read as "every Person object is associated with zero or more Vehicle
objects," and "every Vehicle object is associated with one or more Person objects." It
may help to think of this as a "knows-about-a" relationship, as in "each Person object
knows about some Vehicle objects."

Java Example

Person.java shows how the association relationship shown in Figure A.3 between Per-
son and Vehicle can be implemented in Java. Each reference to a Vehicle object is kept
in a Vector.

Person.java

The Person class simply holds the vehicles for a person.

Guidelines
Association is the default long-term relationship between objects. If you are in doubt a
to which long-term relationship to use, use association.

AppendnA 427

Aggregation

Aggregation indicates a long-term relationship, with the additional restriction that
some of the objects are part of another object. It is this whole-part nature of the rela-
tionship that distinguishes aggregation from association.

UML Example
To continue the example, each Vehicle object may contain zero or one Engine objects.
There is a clear whole-part relationship, as the engine is part of the car or truck. Figure
A.4 shows a modified association from Vehicle to Engine, with the hollow diamond at
the Vehicle indicating aggregation. The hollow diamond is always drawn next to the
enclosing whole.

Java Example
The following Java files show how the UML model in Figure A.4 can be implemented
in Java. Only the files that have changed from the previous running example are
shown.

Vehicle.java

Vehicle no longer determines whether it is running or not. Instead, this behavior is del-
egated to an Engine object.

Figure A.4 Aggregation example.

Appendix A 429

Engine.java

Engine.java provides very simple behavior for starting, stopping, and checking the
current value.

430 Appendix A

Guidelines
Aggregation requires a clear whole-part relationship. Any uncertainty about the need
for aggregation or ambiguity over which object is the whole and which is the part
should lead you to use association instead.

Composition

Composition is an even stronger relationship, with one object essentially owning the
other object or objects. The subordinate objects are created when the whole is created,
and are destroyed when the whole is destroyed. Also, an object cannot play the role of
a subordinate part in two composition relationships.

UML Example

Every engine contains many wheels, cogs, and gears that are integral and indivisible
parts of the greater whole. Figure A.5 shows that each Engine object contains zero or
many Cog objects. The filled-in diamond next to the enclosing class indicates the com-
position relationship.

Java Example
The following Java files show how the UML model in Figure A.5 can be implemented in
Java. Only the files that have changed from the previous running example are shown.

Engine.java

The Cog objects are created when the Engine is created, and become eligible for
garbage collection along with their enclosing Engine.

432 Appendix A

Dependency

Objects often need to use another object. An object may receive a reference as a para-
meter to a method, or it may create the object, use it, and lose it before the end of the
current method. The key idea is that the dependent object acquires, uses, and forgets
the object within a single method.

UML Example
Continuing the example, people use gas pumps to get gas, but most people do not keep
track of every pump that they have used. The Person object receives a reference to a
GasPump object as a parameter to the purchaseGas method. The reference is used
within the method; it is not kept. The resulting dependency relationship can be seen as
the dashed line from Person to GasPump in Figure A.6.

Guidelines
As with aggregation, when in doubt, do not use composition.

434 Appendix A

Java Example
Person.java shows how the dependency relationship between Person and GasPump
can be implemented in Java.

Person.java

Now, the Person class has a puichaseGas method that accepts a reference to a
GasPump object as a parameter.

Guidelines
Dependency should be used whenever an object is used and forgotten within a single
method.

Additional Resources

This appendix describes additional resources for several categories.

Object-Oriented Analysis and Design

Booch, Grady. Object-Oriented Analysis and Design with Applications. Reading, MA:
Addison-Wesley-Longman, Inc., 1994.
This is still the classic text for OO analysis and design. It has a unique combina-
tion of academic precision and clear explanations.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley-Longman, Inc., 1999.
Excellent reference for the UML and its application.

Coad, Peter, and Mark Mayfield. Java Design. Upper Saddle River, NJ: Prentice-Hall
PTR, 1997.
A very concise and readable book that stresses design by composition.

Fowler, Martin, with Kendall Scott. UML Distilled: Applying the Standard Object Mod-
eling Language. Reading, MA: Addison-Wesley-Longman, Inc., 1997.
A very concise guide to the UML.

435

436 Appendix B

Patterns

Buschmann, Frank, Regine Meunier, Harts Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. West Sussex, Eng-
land: John Wiley & Sons, Ltd., 1996.

Introduces several important architectural patterns, including MVC and layers.

Fowler, Martin. Analysis Patterns: Reusable Object Models. Reading, MA: Addison-
Wesley-Longman, Inc., 1997.

Very interesting book on analysis and domain modeling. Contains a lot of exam-
ples and clear explanations of the author's thought process as he creates his
designs.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley-
Longman, Inc., 1995.

The book for design patterns. Invaluable resource.

Software Development Process

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Reading, MA: Addison-Wesley-Longman, Inc., 1999.
Excellent reference for the proprietary process and for OO software engineering
in general.

Kruchten, Philippe. The Rational Unified Process: An Introduction. Reading, MA:
Addison-Wesley-Longman, Inc., 1999.
Concise guide to the RUP.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.
Incredibly easy-to-read coverage of some difficult and important topics. This is
not an OO book, rather the definitive software engineering book for the practi-
tioner.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press,
1998.
Contains a lot of the same material as Rapid Development, above, but in a conve-
nient easy-to-gift-wrap size. Makes a great gift for your favorite unenlightened
manager or customer.

Webster, Bruce F. Pitfalls of Object-Oriented Development. New York: M&T Books,
1995.
A clearly organized and easy-to-read guide to the dangers inherent in OO soft-
ware development. It contains excellent advice for both managers and develop-
ers as they adopt OO technology.

Appendix B 437

XML

Megginson, David. Structuring XML Documents. Upper Saddle River, NJ: Prentice-
Hall, Inc., 1998.
Goes way beyond the basics for a complete discussion of XML DTDs and how to
construct them.

St. Laurent, Simon. XML: A Primer. Foster City, CA: MIS Press, 1998.
Concise guide to creating XML DTDs and documents.

Java

Asbury, Stephen, and Scott R. Weiner. Developing Java Enterprise Applications. New
York: John Wiley & Sons, Inc., 1999.
An excellent introduction to Sun's Enterprise Java class libraries.

Chan, Patrick, Rosanna Lee, and Douglas Kramer. The Java Class Libraries Second Edi-
tion, Volumes 1, 2, and Supplemental edition for the Java 2 Platform. Reading, MA:
Addison-Wesley-Lortgman, Inc., 1998.
An amazing series of books, with the best low-level explanations of the packages
and classes that make up the core class libraries for Java.

Eckstein, Robert, Marc Loy, and Dave Wood. Java Swing. Sebastopol, CA: O'Reilly &
Associates, Inc., 1998.
Very readable explanations of a complex topic. Exhaustive and evenly written
coverage of a huge amount of material.

Flanagan, David. Java in a Nutshell. Sebastopol, CA: O'Reilly & Associates, Inc., 1996.
Excellent guide and reference for the language, tools, and basic classes.

Hamilton, Graham, Rick Cattell, and Maydene Fisher. JDBC Database Access with
Java: A Tutorial and Annotated Reference. Reading, MA: Addison-Wesley-Longman,
Inc., 1997.
Thorough coverage of JDBC, but a little heavy on the reprinted JavaDocs for my
taste.

Hunter, Jason, with William Crawford. Java Serutet Programming. Sebastopol, CA:
O'Reilly & Associates, Inc., 1998.
Solid coverage of servlets, from fundamentals to advanced topics.

Oaks, Scott, and Henry Wong. Java Threads. Sebastopol, CA: O'Reilly & Associates,
Inc., 1997.
Excellent coverage of multi-threaded programming in Java, with a good balance
of theory and details.

Reese, George. Database Programming with JDBC and JAVA. Sebastopol, CA: O'Reilly
& Associates, Inc., 1997.

438 Appendix B

Excellent coverage of JDBC, and a thought-provoking introduction to the design
of object-to-relational frameworks.

Roman, Ed. Mastering Enterprise javaBeans and the Java 2 Platform, Enterprise Edition.
New York: John Wiley & Sons, Inc., 1999.
Excellent coverage of a wide range of enterprise technologies.

The CD-ROM

The CD-ROM contains a read-only HTML version of the UML design model for the
' -. . ' • .ion, as well as the Java source code and deployment instructions that

can be used to deploy the application. If the model fails to load in your browser, please
try the Netscape version. Also, your browser must be configured to support Java
applets in order to view the model. The model file was created by using Rational Rose
"Web Publisher" feature to produce a read-only HTML version of the model. This is a
great way to distribute your designs to a larger audience, such as customers who do
not have a copy of Rose.

The model is intended to provide a coherent picture of the design that was devel-
oped over many chapters in the book. Some figures that are in the book are not in the
model, and vice versa.

fn order to view the contents of the model, simply use the tree control on the left. If
you are in the frames version, the main view frame on the right will display the
selected diagram. Otherwise, the selected diagram will appear in a second browser
window. For example, click on the plus sign to the left of the Logical view folder. Dou-
ble-click on the "main" diagram symbol.

The Java source code and deployment instructions allow the reader to see one pos-
sible implementation of the design and to experiment with various alternatives. These
instructions guide you as you install the required software and deploy the Timecard
application. The instructions are broken into several sections, with each section shown
in its own table. The leftmost column of the table shows the major steps required for

439

440 Appendix C

the section. The middle column describes the details for each step. Finally, the right-
most column describes any expected results.

If your interest and patience are high, you may wish to deploy the Enterprise Jav-
aBeans from, scratch. An additional page of custom installation instructions guides you
through this tedious process. You can also view the deployment instructions or the cus-
tom installation instructions as Word documents.

Hardware Requirements

To use this CD-ROM, your system must meet the following requirements:

Platform/processor/operating system: Windows NT or 2000

RAM: 128 MB
Hard drive space: 120 MB

Processor: 300 Mhz Pentium or equivalent

Installing the Software

To install the software, follow these steps:

1. Start Windows on your computer.
2. Place the CD-ROM in your CD-ROM drive.

3. You can browse the model from the CD-ROM by opening
X:\Models\Design\index.htm in Internet Explorer or X:\Models\Design\con-
tents.html in Netscape Navigator.

4. If you want to deploy the application, open X:\INDEX.HTM file on the CD-
ROM for detailed instructions (where X is the correct letter of your CD-ROM
drive).

User Assistance and Information

The software accompanying this book is being provided as is without warranty or
support of any kind. Should you require basic installation assistance, or if your media
is defective, please call our product support number at (212) 850-6194 weekdays
between 9AM and 4PM Eastern Standard Time. Or, we can be reached via e-mail at:
techhelp@wiley.com.

To place additional orders or to request information about other Wiley products,
please call (800) 879-4539.

Administrative User actor, 47-48,64
Aggregation relationships, 9,10,427-430
Alternative flows, 25
Analysis, 15. SK also Analysis model; Object-

oriented analysis
group,134-136

Analysis classes, 145
finding groups of, 144

Analysis model, 80,247
for Login use case, 376-378
for Record Time use case, 378-379
review of, 251-257, 375-379,402
for timecard application, 103-131

Architects. See also Software architect
EJB, 206
for Java servlets, 173
JDBC, 198
for Remote Method Invocation (RMI),

192
rule in servlet development, 234
for Swing-based user interfaces, 166

Architectural constraints, 375
reviewing, 257,374-375

Architecture, 15-16. See also Software archi-

BillingSystemlnterface, 402-403
premature, 40

Abstract Factory design pattern, 331-332
Abstraction, 4-5
AbstractProduct, 332
Accessible requirements, developing, 21-23
Activity.java, 304-305

ActivityBean.java, 306-307
Activity diagram, 14, 24, 25-27,50,52,

53,55, 57
for Change Password use case, 67
for Create Charge Code use case, 69
for Create Employee use case, 71
for Export Time Entries use case, 74
for Login use case, 65
for Record Time use case, 73

Activity entity bean, 304, 305,306
ActivityHorne.java, 305-306
Actor generalization, 31 -34
Actors

describing, 23
locating, 21-22,44-45
messages from, 93-94
refining, 45

Actor-to-use-case relationships, determining,
47-48

AdmirdstrativeLoginUI, 145

441

442 Index

Association relationships, 8-9,100, 424-426
Authoring tools, 176

B
Bandwidth, descriptive categories for, 148
Bandwidth availability, 141,148

Java servlet, 175
for Swing, 168
for the Timecard system, 181

Banking system, use cases for, 23
Baseline flows, 25
BasicEntityBean.]ava, 302-304
BasicServlet, 388
BasicServlet.java, 397-399
BasicSessionBean.java, 301-302
Bean developer, 206
Bean-managed persistence, 201,258, 260-262,

268,269
Behavior, of objects, 6
Bidirectional navigability, 10
Billing system interface, 181-182,228
BillingSystemlnterface, 128,144, 233,234,248

design for, 40H17
implementation of, 407-417

Boundary classes, 134-136,136
evaluating candidate technologies for,

153-182
Boundary objects, 86-87

discovering, 116-117
Browser-specific behavior, hiding, 325
Browser-specific HTML, 330-331
BusinessObjects package, 217, 218,219

C
Call center systems, 140
Candidate actors, finding, 44
Candidate objects

discovering, 81-90,112-118
for Export Time Entries use case, 115
for Login use case, 115-116
for Record Time use case, 113-114

Candidate technologies
for control and entity classes, 183-209
evaluating for boundary classes, 153-182

Candidate use cases, evaluating, 61-62
Car.java, 421-422
Case modeling, perseverance in, 35
Change Password use case, 61,62

activity diagram for, 67
documentation for, 65-66
evaluation of, 109

ChargeCode.java, 308
ChargeCodeBean, 309-311
ChargeCode entity beans, 286, 308,309
ChargeCodeHome.java, 308-309

Charge codes, 268
ChargeCodeWrapper.java, 319-320
Clarity, design and, 244
Class diagram, 14,80
Class diagrams, 124-126,126,239, 245
Classes, 6-7. See also Control classes; Object

classes
approaches to grouping, 215
collaboration among, 215-216
describing, 126-131
EJB,202
for entity beans, 203
group analysis, 134-136
grouping, 224,226-229
interface and, 11
participating, 406
purpose of, 82
in Remote Method Invocation (RMJ), 185
supporting, 301-308
Swing, 155

Class groups, characteristics of, 136-144
Class library

designing, 323
JDBC, 198

Class names, 82-83
Client.Java, 312
ClientBean.java, 313-315
Client entity bean, 312, 312,313
ClientHome.java, 312-313
ClientLocator, 128,129

184
Client/server network, dedicated, 141
ClientStub, 185
ClientVIew objects, 185
Clustering, 207

ode, database-dependent, 196
ohesion, 222
ollaborating classes, 215-216
ollaboration diagrams, 14,90
omboBoxModel, 155,157,160
omboBoxProducer-java, 347-348

Comment Time Entry use case, 46, 47
Common Object Request Broker Architecture

(CORBA), 142,199,206
Composite design pattern, 158-159,160,

327-328
applying, 328

Composition relationships, 9-10,430-432
ConcreteFactory, 332
Concurrent access, 172,201
Concurrent updates, 143-144,151
Confidence, developer, 36
Connection interface, 194-195
Connectionless protocol, 168

Index 445

Connections, JDBC, 193-195
Container, EJB, 201
Container-managed persistence, 201,204,

258, 260-262, 268,269, 280
Container vendors, 202
Control classes, 228

candidate technologies for, 183-209
discovering, 118

Control objects, 87-88,136,203
Cookies, 169,170

Coupling, 222. See also Loose coupling; Tight
coupling

between software packages, 229-232
Create Charge Code use case, 46,47,63

activity diagram for, 69
documentation for, 50-51,66-68
evaluation of, 108-109

Create Employee use case, 46,47,62
activity diagram for, 71
documentation for, 51-53,68-70
evaluation of, 111-112

Customer confidence, 36
Customer-developer dialog, 42-43,45-46,

58-61,62
Customer feedback, 41
Customer perspective, 13-14

understanding, 58
Customizable views, 138,174,175

D
Data

dynamic view of, 138
static view of, 137-138

Database-dependent code, 196
Data retrieval methods, 196
Data transfer

interfaces for, 142
in XML, 179

Decision making, 18. See also Design deci-

Decisions, architectural, 261
Dedicated client/server network, 141
Dedicated users, 140
Dedicated workstations, 139
DefaultComboBoxModel, 155-156,157
DefaultTreeModel, 155
Delegation, in design, 241
Dependency relationships, 8,100, 432-434
Deployer, EJB, 206-207
Deployment, in Remote Method Invocation

(RMI), 187
Deployment constraints, 24,49, 54,135

descriptive categories for, 147
Java servlet, 174-175

for user interfaces, 138-139,146-147,
180-181

Deployment descriptor, EJB, 200
Deserialization, 186
Design, 16,239-248

for BillingSystemlnterface, 401-117
establishing goals for, 244
evaluating 271 27f, ;>:^-330,332
for Export Time Entries use case, 271-273
for goals, 258-262
for HTML production, 323-371
implementation of, 277-321
for Login use case, 262-266
need for, 240-241

planning for, 243-245
premature, 40
preparing for, 240

for Record Time use case, 266-271
steps in, 247
for the Timecard application, 247-248
TimecardDomain and TimecardWorkflow,

249-321
for the TimecardUI package, 373-399

Design decisions, 258
Design flaws, 341
Design goals

establishing, 373-374
for HTML production, 324-327

Design guidelines, 245-246
Design model, 262
Design patterns, 241-243

common language in, 242
composite, 327-328

Design team, 243
Details, guidelines for describing, 48-57
Developers

for Java servlets, 173
JDBC, 198

perspective of, 14
Remote Method Invocation (RMI), 192-193
Swing, 166
XML, 179

Development. See also Iterative development
in Remote Method Invocation (RMI), 187
requirements gathering and, 20

Developmental process, belief in, 36-37
Development teams, 38, 39,106-107
Development workflow, EJB, 204
DHTML, 174
Dial-up Internet connection, 141
displayErrorMessage, 121
displayWelcome, 122

of candidate use cases, 61-62
of Change Password use case, 109
of Create Charge Code use case, 108-109
of Create Employee use case, 111-112
design, 328-330,332
of Export Time Entries use case, 107-108
of Login use case, 109-110
of package dependencies, 338-339
of Record Time use case, 110-111
of software architecture, 224-225, 234-236
of use cases, 46-17

Even flows, 54
Even model, 156-158
Even notification, direct access with,

88-191
Exception flows, 25
Export All Users, sequence diagram for, 406
ExportCriteria.fava, 407-412
ExportCriteria object, 406,414
ExportEntri^n. 129,145, 256,257
ExportEntriesWorkflow, 128
ExportFile.java, 412-414
Export Specific Users, sequence diagram for,

406
Export Time Entries. See also Export Time

Entries use case
finding relationships for, 128-129
participating classes for, 230
use case documentation for, 56-57

ExportTimeEntriesApplication,406
ExportTimeEntriesApplication.java, 414-417
ExportTimeEntriesServlet, 273
Export Time Entries use case, 46,47

activity diagram for, 74
candidate objects for, 115
control class for, 118
data access for, 150
design for, 271-273
documentation for, 72-75
evaluation of, 107-108
event flow in, 255-256
participating classes for, 260,275
sequence diagrams for, 259, 273

ExportTimeEntries Workflow, 118,273
ExportTimeEntryServlet, 276
Extend relationships, 27,29-31
Extensibility, 225

of the BillingSystemlnterface, 402
in design, 244-245
as a design goal, 326-327, 338-339, 379-380
polymorphism and, 11
of software architecture, 213, 234-235
of a subsystem, 221
for the Timecard system, 250-251
of the TirnecardUI package, 373-374

Distributed Common Object Model (DCOM),
142-143

Documentation, use case, 63-75
Document author, 179
Document Object Model (DOM), 177-178

Document tvpe definition'(DTD), 176
DOM. See Document Object Model (DOM)
Domain experts, 19, 20

Domain-specific terminology, 85
DriverManager, 193,194,195
Drivers, JDBC, 193-195
DTD authors, 178-179
Dynamic views of data, 138,167,174
Dynamic Web pages, producing, 180-181

E
EJB. See Enterprise Java Beans (EJB)
EJBHome interface, 202
EJBObject interface, 202
EJB system, primary steps in, 204
Electronic Data Interchange (EDI), 142,175
Elements, of XML documents, 175
EmployeeLoginUI, 120,121,123,127,128,

145,251,376,377
Employees, as actors, 45
Encapsulation, 5,155

as a design goal, 326-327,338-339
End users, 19-20
Engine.java, 429-432
Enterprise Java Beans (EJB), 1,165,199-207,

257,258, 279. See also EJB entries
cost of adopting, 206-207,208
details of, 202-204
number and type of users of, 208
performance and scalability in, 207, 208
strengths and weaknesses of, 204-206
suitability of, 207

technologies compatible with, 206
Entity Bean interface, 200
Entity beans, 199. See also Timecard entity

bean; User entity bean
interfaces and classes for, 203

Entity classes, 226
candidate technologies for, 183-209

Entity objects, S4-85,113-116,136
consolidating, 116
direct access to, 188
hiding, 188

Evaluation

r1a<«ps. 153-182

444 Index

Index 445

extensible markup language (XML), 175-180,
403

cost of adopting, 178-179
details of, 176-178
resources for, 437
strengths and weaknesses of, 178
technologies compatible with, 178

F
Fast Internet connections, 141
File Transfer Protocol (FTP), 142
First iteration, use cases fur, 112
Flexibility

interfaces and, 11,160

Flowcharts, 27
Flow of events, 24-25, 37

developing, 49
Flows, types of, 25
Focus, on use cases, 22
Follow-up meeting, sample notes from, 58-60
Form data, 169

retrieving, 170
FormProducer, 341-343,384
FormProducerCeneric.java, 364-366
FormProducer.java, 348-350

G
Generalization relationships, 419-422
getFactorySingleton method, 360
getHtmlProducer method, 368
Goals

in design, 244,247, 275
designing to, 258-262, 'C7--TV2, 379-380
identifying, 4QI-W3
for producing an HTML class library,

324-327
setting, 223-224

Graphics, interactive, 138,174
Group analysis classes, 134-136
Groups of classes, characteristics of, 136-144

H
Handheld devices, 139
Happy flow, 49
High-level use case diagram, 43, 104
High-level use case model, 35
Hiring, use cases related to, 32-34
Home interface, EJB, 200
HTML, browser-specific, 330-331
HTML class library, 323

goal-lor producing, 324-327
Html Producers, 383
HTML production, 170-172

design for, 323-371

design goals for, 324-327
details of, 339-346
implementation of, 346-371
simplicity in, 324-325,330-335

HtmlProduction framework, 248
HtmlProduction package, 338, 373,392
HTML syntax, 325
HTTP request, 168-169. See also HyperText

Transfer Protocol (HTTP)
HttpRequest, 381,387
HTTP response, 169
FITTP servlet, 169
HtrpServletRequest object, 170
HTTP sessions, 200
HyperText Transfer Protocol (HTTP), 142,

168. See abo HTTP entries

ICargoTransport.java, 424
IConcreteProducer, 365
IConcreteProducer.java, 359-360
IHtmlProducer, 328
IHtmlProducer.java, 346-347

EJB, 200
Implementation-independent analysis

model, 80
Include relationships, 27,29-31
Independent design efforts, 246
Indirect mutual dependencies, 218
Initial meeting, sample notes from, 42-43
Input, soliciting, 19-20
Integrated development environment (IDE),

380
Interaction diagram, 80
Interactive graphics, 138,174
Interchange format, 176
Interface classes, separation from entity

classes, 155-156
Interfaces, 11

EJB, 202
for entity beans, 203
realization by classes, 422-424
in Remote Method Invocation (RMI), 185

Internet browsers, 139
Internet connections, 141
Invalid login data, processing, 382
Invalid password, alternate flow for, 121
Isolated updates, 143
Iterative development, 78

J
Java. See also Java DataBase Connectivity

0DBC)
modeling with UML, 1-16

446 Index

Java, (cont.)
resources for, 437-438
UML model implementation in, 420-434

Java 2 Enterprise Edition, 1
Java 3D, 165,167
Java class libraries, 245
Java DataBase Connectivity (JDBC), 165,

193-199
cost of adopting, 197-198,208-209
details of, 193-196
number and type of users of, 208
performance and scalability of, 198-199,

208
strengths and weaknesses of, 196
suitability of, 198-199
technologies compatible with, 196-197

Java developers, opportunities for, 1
Java Development Kit (JDK), 183
Java Name and Directory Interface (fNDI),

263
JavaScript, 174
JavaServer Pages (JSP), 34
Java servlets, 34,168-175

bandwidth availability for, 175
cost of adopting, 172-173
designer, architect, and developer for, 173
details of, 170-172
number and type of users of, 175
strengths and weaknesses of, 172
suitability of, 173-175
technologies compatible with, 172
user interface complexity of, 174

Java Virtual Machine (JVM), 154
javax,swing .border package, 215
JComboBox, 156,157,160
JComboBox objects, 155,160-165
JPanels, 158,160

L
Layering, strict and relaxed, 188,192
Layout managers, 160,161
Licensing costs, 208
Lifecycle classes, 88-90

discovering, 118
Lifecycle objects, 136
LinkProducer, 381-382
Load balancing, 207
loadCriteria method, 407
Locator classes, 229
Logging subsystem, 219-221

adding tentative behavior for, 119
finding relationships for, 127-128
normal flow for, 120
participating classes for, 229

sequence diagrams for, 119-122
validating sequences for, 122-123

381-382
Login Form, building, 381
Login screen, 341-345
LoginServlet, 263, 381,382-383,388
LoginServletjava, 388-392
LoginServlet object, 341
Login use case, 61, 62,146

activity diagram for, 65
boundary objects for, 117
candidate objects for, 115-116
control class for, 118
data access for, 149
design creation for, 381-383
design for, 262-266
documentation for, 64-65
evaluation of, 109-110
flows in, 251-253
participating classes for, 266,379,382-383
reviewing analysis model for, 376-378
sequence diagrams for, 263-266

LoginWorkfbw, 118,119,120,122,263, 376,
377

LoginWorkflow.java, 292-293
LoginWorkflowBean-java, 294-296
LoginWorkflowHome.java, 293-294
Login Workflow objects, 251, 252,253, 378
Login Workflow session bean, 263, 292,293,

294
LoginWorkflow stateless session bean,

292-296
Loose coupling, 222,224,226, 244,246

M
Maintainability, 225

of software architecture, 213-214,234-235
Managers, as actors, 45

follow-up, 58-60
initial, 42-43
scheduling, 58

Method, defined, 6
Micromanagement, 38
Microsoft Project, 138
Mini-system development, 78
Model classes, 155
Modeling

defined, 2-4
process of, 14-16

Modeling software, 2
Morale, in design, 240-241
Multiplicity, 10-11
Mutually dependent packages, 217-219

Into 447

N
Naming conventions, in design, 245-246
Navigability, 10
Network browsers, 139
Node.java, 320-321
Normal (baseline) flows, 25,122-123

O
Object behavior

checkpoints for describing, 91-92
consolidating, 98
describing, 90-95
guidelines for finding, 90-92
process for describing, 92-95
refactoring, 98-99

Object caching, 201,207
Object classes. See also Object lifecycle

coherent, 97
describing, 95-101
finding relationships between, 99-101
guidelines for describing, 95-97
limiting responsibilities of, 82
process for describing, 97-101

Object class methods
cohesion between, 91
naming, 91

Object interactions, describing, 118-126
Object lifecycle classes, 88-90
Object lifecycle management, 204-205
Object Management Group (OMG), 4
Object orientation, basics of, 4-12
Object-oriented (OO) theory, 243
Object-oriented analysis

defined, 80-81
readiness for, 78-79
steps in, 81
with UML, 77-101

Object-oriented analysis and design,
resources for, 435

Object-oriented design, 239. See also Design
Object-oriented systems, 6, 7
Objects, 5-6. See also Boundary objects; Can-

didate objects; Entity objects
adding to a sequence diagram, 92-93
checklist for naming, 83
discovery of, 81-90
encapsulated, 5
guidelines for discovering, 81-83
process for discovering, 83-90
relationships between, 7-8

Observer design pattern, 156-158,160, 165,
188,190

Operations managers, as actors, 45

P
Package dependencies, 217-219

evaluating, 338-339
Package dependency diagrams, 217, 219,232,

236,276
Package diagram, 14
Packages, 214-216

designing, 246-247
grouping classes into, 224
mutually dependent, 217-219
as work units, 216

PageProducer, 328,381,382
PageProducer.java, 350-351
PageProducerGeneric.java, 366-367
Parameter passing, 186-187
Parsers, 176,177-178
Patterns, resources for, 436
People, soliciting input from, 19-20
Performance

of the BillingSystemlnterface, 402
design and, 244
EJB,207
JDBC, 198-199
for the Tirnecard system, 250

Performance comparison, 208
Performance requirements, 143-144,148-151
Performance risk, 108,109,110, 111
Perseverance, in use case modeling, 35
Persistence, 201

bean-managed, 260-262
container-managed, 204,260-262
EJB, 205

Person.java, 425
Planning, for design, 243

Portability, EJB, 205
Postconditions, 24
Preconditions, 24
Preferences, support for, 326,335-338
Preferences alternatives, 335-337
Presentation developers, 325
Primary use cases, finding, 45-46
Primitives, 186
Problem description, in design, 242
Problems, focus on, 34
ProducerFactory, 332-334, 338,339, 397
PrnducerFactory.java, 360-364
Productivity, in design, 240-241
Project.java, 315-316
ProjectBeanjava, 317-319
Project entity bean, 315,316,317
Project failure, 36-37
ProjectHorne.java, 316
Project management, 37
Project plan development, 37

4*8 Index

Properties file, 337-338
Properties object, 337
Protocol, services through, 179-180
Protocol-based interfaces, 142
Purchase Book use case, 27, 28,30

R
Ranking system, for use cases, 104-107
Rational Unified Process, 77
Read-only systems, 143
Record Time. See also Record Time use case

finding relationships for, 129-131
use case documentation for, 53-56

RecordTimeAdministrativeUI, 145
Record Time Form, building, 384
RecordTimeServlet, 269, 269,384,385, 387,

RecordTimeServlet.java, 392-396
RecordTimeUI, 129,145,254, 255
RecordTimeUI objects, 267, 379
Record Time use case, 46,47,147

activity diagram for, 73
boundary objects for, 117
candidate objects for, 113-114
control class for, 118
data access for, 151
description of, 70-72
design creation for, 383-387
design for, 266-27]
evaluation of, 110-111
event flows in, 253-255
participating classes for, 272,385-387
reviewing analysis model for, 378-379
sequence diagrams for, 269-271

RecordTimeWorkflow, 118,129,254
RecordTimeWorkflow.java, 297-298
RecordTimeWorkflowBean.java, 298-301
RecordTimeWorkflowHome.java, 298
RecordTimeWorkflow object, 267,379
RecordTimeWorkflow session bean, 267,269,

297, 298
RecordTimeWorkflow stateful session bean,

296-301
refreshRow method, 196
Relationships

classes and, 231
for Export Time Entries, 128-129
include and extend, 29-31
for Login, 127-128
for Record Time, 129-131

Relaxed layering, 188,192
Reliability, 225

of the BillingSystemlnterface, 402
design and, 244
of software architecture, 214,235-236

RemoteException, 277,278
Remote interface

EJB, 200
for User entity bean, 277

Remote Method Invocation (RMI), 143,165,
183-193

cost of adopting, 192-193, 208-209
details of, 185-187
number and type of users of, 208
performance and scalability of, 208
strengths and weaknesses of, 191-192
suitability of, 198-199
technologies compatible with, 192

Remote object registration, 185-186
Remote Procedure Calls (RPCs), 142
Remote references, 187
Requirements, See also Requirements gather-

ing; Technology requirements
accessible, 21-23
detailed and complete, 24-27
detecting poor, 37-̂ 0
good, 18-34
incomplete, 38,40
for object-oriented analysis, 78
performance and scalability, 143-144,

148-151
Requirements gathering, 15

additional, 58-61
guidelines for, 34-37
for a timecard application, 41-75

steps in, 18-19
with UML, 17-40

Result sets, 197
JDBC, 195-196

Reuse
of the BillingSystemlnterface, 402
design and, 245
EJB, 205
for the Timecard system, 250

Review, role in design, 247
Risk

role in ordering use cases, 79,105,107,108,
109,110-111

RMI. See Remote Method Invocation (RMI)

rmic tool, 185,191

S

from follow-up meeting, 58-60

Index 449

SAX. See Simple API for XML (SAX)
Scalability, 225

EJB, 207
increasing, 213
JDBC, 198-199
of software architecture, 214,235-236

Scalability comparison, 208
Scalability requirements, 143-144,148-151
Schedule pressure, excessive, 38-39
Scheduling, 40

in design, 241
"Scope creep," 15
Security, EJB, 205
Self-describing documents, 176-177
Sequence diagrams, 14,90,98,118-119,

124-126, 264-265, 270,274
adding objects to, 92-93
for Export All Users, 406
for Export Specific Users, 406
for Export Time Entries use case, 273
for Login, 119-122
for Login use case, 263-266
messages in, 95-97
for Record Time use case, 269-271

Sequence validation, 94-95
Serializable objects, 186-187
Serialization, 186
Services, through a protocol, 179-180
Servlet developers, 323
Servlet development, architect's role in, 234
Servlet engines, 169,170
Servlets, developing, 172
SessionBean interface, 200
Session beans, 200

LoginWorkflow stateless, 292-296
RecordTimeWorkflow stateful, 296-301
stateful or stateless, 202-203,260, 267,273

Sessions, servlet, 170
Simple API for XML (SAX), 177
Simple data input user interface, 137
Singleton design pattern, 219,360
Skeleton object, 184
Software architect, 222-223
Software architecture, 211-237

creating, 222-225
evaluating, 224-225, 234-236
goals for, 213-214
guidelines for, 221-222
readiness for, 212-213
Timecard system sample of, 225-236
Unified Modeling Language (UML) and,

214-221
Software base, 36
Software development, resources for, 436
Software models, 4

Software packages, coupling between,
229-232

Software systems, modeling with UML,
13-14

Software technologies, understanding, 212
SortedMaps, 352
Sponsors, identifying, 18
SQL, 193
Stakeholders, 19

listening to, 20-21,42-43
model validation with, 35
progress tracking by, 37

State, of objects, 6
State chart, 14
Stateful session beans. See Session beans
Stateless session beans. See Session beans
Statements, JDBC, 193-195
Static class diagrams, 95
Static view of data, 137-138
Statistics, use of, 35
Strict layering, 188,192
Stub object, 183-184
SubmitButtonProducer, 351-352
Submit Timecard event flow, 254-255
Submit Timecard flow, 269-271
Subsystems, 219-221

designing, 246-247
extracting, 224,234

Suitability
EJB, 207
of Java servlets, 173-175
of RMI and JDBC, 198-199
of the Swing framework, 167-168
of use cases, 106-107,108,108,109,110,

111, 112
XML, 179-180

Summarizing, of technology requirements,
152

Supporting classes, 301-308
Supporting use cases, finding, 46
Swing applets, 167,168,181
Swing framework, 154-168

bandwidth availability for, 168
cost of adopting, 166-168
designer, architect, and developer in, 166
details of, 155-165
number and type of users of, 167-168
strengths and weaknesses of, 165
technologies compatible with, 165
user interface components in, 158

Swing user interface, deployment constraints
for, 167

System-actor relationships, finding new,
61-62

450 Index

System interface classes, 136
System interfaces, 136,142-143

with billing system, 181-182
types of, 148

System modeling, 3
System performance, unacceptable, 105
System requirements, documenting, 13-14
Systems

customer perspective on, 58
describing for technology selection,

133-152
varying perspectives on, 3
vision of, 18

System services, direct access to, 142-143,180
System sponsor, 39

T
Table preferences, 335
TableProducer, 328, 331,334,344-345,384
TableProducer.java, 352-354
TableProducerGeneric.java, 368-369
TableProducer objects, 341-343
TabularlnputFormProducer, 341-345,381
TabularlnputFormProducer. Java, 354-356
TabularlnputFormProducerGeneric.java,

369-371
Team building, 79
Team competency, 79
Technology. See also Candidate technologies;

Software technologies; Technology
requirements

adaptation to, 106
showing, 224,232-233
understanding, 212

Technology requirements, 208-209. See also
Requirements

for Timecard application, 144-151
Technology selection, 15,207-209

deferring, 80
describing the system for, 133-152
chnology template, 153-154

' entative behavior, for Login, 119
' erminology, domain-specific, 85

stability
as a design goal, 380
of the TimecardUI package, 374
st cases, 37
xt description, 14
xtEntryFrame.java, 163-165
xtKeldProducer.java, 356-358
xtProducer, 328,333-334,345,382,384

TextProducer.java, 358-359
Thread safety, 187
Tight coupling, 222, 246

! ' '

Timecard.java, 283-284
Tirnecard application. See also Timecard sys-

analysis model for, 103-131
architectural constraints in, 257
design efforts for, 247-248
gathering requirements for, 41-75
technology requirements for, 144-151

TimecardBean.java, 286-292
TimecardDomain, 247,248

establishing goals for, 250-251
TimecardDomain design, 249-321
TimecardDomain package, 250, 257,271
Timecard entity bean, 269, 283,283-292,286
Tirnecard form, 345-346
TrmecardHtime.java, 284-286
TimecardHome interface, 405-406
Timecard system, 21

bandwidth availability for, 181
goals for, 250-251
sample software architecture for, 225-236
technology selections for, 180-181

TimecardUI, 374
TimecardUI package, 227,248, 257,271

design for, 373-399
design goals for, 373-374
designing for use cases in, 381-387
designing to goals for, 379-380
implementation of, 388-399

Timecard Workflow, 247,248
establishing goals for, 250-251

TimecardWorkflow design, 249-321
TimecardWorkflow package, 250
TimecardWorkflow session bean, 375
TimeEntry entitv bean, 267-268
TimeEntry objects, 267
Transaction boundaries, 202
Transaction management, 201

EJB, 205
Traversal methods, 196
Truck.java, 422,423-424

U
UML activity diagrams, 24. See also Activity

UML diagrams, 81
UML messages, 93
UML notation, 17
UML specification, 10
Unified Modeling Language (UML), 4-12,

241. See also UML entries
examples of, 419^34
gathering requirements with, 17-40
malleability of, 241
modeling Java with, 1-16

modeling software systems with, 13-14
object-oriented analysis with, 77-101
parkas'' dependency and, 182
software architecture and, 214-221

Unknown user, alternate flow for, 121
UpdatedChuo&er.jdva, 161-163
Updates

concurrent, 143-144
isolated, 143

UpdateTimecardControl, 188
Use case description, 24

sample, 70-72
Uw case diagrams, 13, 21,23. See also

Details
building, 44-48
revising, 61-63

Use case documentation, 50-57
revising, 63-75
sample, 64-71), 72-75

Use case generalization, 31
Use case model, 48

refactoring, 27-34
revising, 61-75
versus analysis model, 80-81

Use cases
application of design to, 247
defined, 13
describing, 23
designing for, 262-273,381-387
,'\ ,ilu,iting, 46-47
finding, 22-23,45^7
finding new, 61
for the first iteration, 112
naming, 46, 49
objects and, 91
prioritizing, 78-79,103-112
risk associated with, 105
significance of, 105-106
splitting up, 28
suitability of, 1U6-1U7

Use case template, 49-50
Use comparisons, 208
Lser.jaw, 277-278
UserlSean.java, 280-283
User entity bean, 277-283, 285
User groups, 135
UserHome.java, 278-280
UserHome interface, 406
User interface, 134-136

unacceptable, 105

User interface (UI) designer, 166,173
User interface classes, 135,180-181,226

Swing, 158
User interface complexity, 135-136,137-138,

144-146,180
of servlets, 174
Swing framework, 167

User interface design, avoiding, 58
Userfnterface package, 217, 218,219
User interfaces

deployment constraints for, 138-139,
146-147,174-175,180-181

naming, 86
User interface technology, 135,137

selecting, 146
UserLocator, 122,123,127,128,129,256, 377
UserLocator object, 253
Users

EJB,207
JDBC, 198
number and type of, 140-141,147,181,208

V
\ ahdatel-ogin method, 127
\ahd U>gm datd, pr<iu*S3nS, 381-382
Vehicle-Java, 420-421,427-429
Vendor neutrality, 205
Views, modular construction of, 324, 327-330
Virtual machine (VM), 184
Vision, clarity in, 39
Vision document, 18

W
Web browsers, 139,323
Web pages, dynamic, 180-181
Withdraw Funds use case, 93-95

class relationships in, 99-101
sequence diagram for, 96

Workstations, dedicated, 139
World Wide Web Consortium (W3C), 175

X
Xerces, 178
XML. See extensible markup language

(XML)
xm!4j parser, 178

Z
ZipFile, 216

Index 451

