NEW YORK « CHICHESTER + WEINHEIM + BRISBANE + SINGAPORE + TORONT(

To my beautiful wife Anne, you were sooo worth the wait!

Always and forever,

To Bethany Carleen, our precious daughter, and my
personal trainer.

To Anne Burzawa, my best friend from cradle to grave.

Publisher: Robert Ipsen

Editor: TheresaHudson

Developmental Editor: KathrynA. Mam

Managing Editor: Angela Smith

Text Design & Composition: Publishers Design and Production Services, Inc.

Designations used by companies to distinguish their products are often claimed as
trademarks. Inall instances where John Wiley & Sons, Inc., isawareof aclaim, the
product names appear ininitial capital or ALL CAPITAL LETTERS. Readers, however, should
contact the appropriate companies for more completeinformation regarding trademarks
and registration.

Thisbook is printed on acid-free paper. ©

Copyright © 2001 by CT Arrington. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax

(978) 750-4744. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New Y ork, NY
101580012, (212) 8506011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard
to the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistanceis
required, the services of a competent prof onal person should be sought-

Library of Congress Catal oging-in-Publication Data:
ISBN: 0-471-38680-4

Printed in the United States of America

1098765432

OMG Press Advisory Board

OMG Press Books in Print

About the OMG

Chapter 1

Chapter 2

Introduction to Modeling Java with the UML
What IsModeling?
Simplification
Varying Perspectives
Common Notation
UML
The Basics
Modeling Software Systemswith theUML
The Customer's Perspective
The Developer's Perspective
Modeling Process
Requirements Gathering
Analysis
Technology Selection
Architecture
Design and Implementation
TheNext Step

Gathering Requirements with UML
Are YouReady?
What Are Good Requirements?
Find the Right People
Listen to the Stakeholders
Develop Accessible Requirements
Describe Detailed and Complete Requirements

SGGGGE ERR Ar p®N R

5

17

18
19
20
21
24

Contents

Chapter 3

Chapter 4

Refactor the Use Case Model
Guidelines for Gathering Requirements

Focus on the Problem

Don't Give Up

Don'tGoTooFar

Believe in the Process
How to Detect Poor Requirements

Path 1: Excessive Schedule Pressure

Path 2: No Clear Vison

Path 3: Premature Architecture and Design
The Next Step

Gathering Requirements for the Timecard Application
Listen to the Stakeholders
Build aUse CaseDiagram

Find the Actors

Find the Use Cases

Determine the Actor-to-Use-Case Relationships
Describe the Details

Guidelines for Describing the Details
Gathering MoreRequirements
Revising the Use Case Model

Revise the Use Case Diagram

Revising the Use Case Documentation

The Next Step

A Brief Introduction to Object-Oriented Analysis
with theUML

AreYouReady?
Solid Requirements
Prioritizing Use Cases
Wheat |s Object-Oriented Analysis?
The Analysis Model
Relationship to Use Case Model
Steps for Object-Oriented Analysis
Discover Candidate Objects
Guiddines for Discovering Objects
Process for Discovering Objects
Describe Behavior
Guidelines for Finding Behavior

558898888 N

SIS N S

&8

61

75

77

78
78

88 grreisy

Contents

Chapter 5

Chapter 6

A Process for DescribingBehavior
Describethe Classes

Guidelines for Describing Classes

Process for Describing Classes

The Next Step

Analysis Model for the Timecard Application
Prioritizing the Use Cases
The Ranking System
Evaluation of the Export Time Entries Use Case
Eva uation of the Create Charge Code Use Case
Eva uation of the Change Password Use Case
Eva uation of the Login Use Case
Evauation of the Record Time Use Cese
Eva uation of the Create Employee Use Case
Sdect Use Cases for the First Iteration
Discover Candidate Objects
Discover Entity Objects
Discover Boundary Objects
Discover Control Classes
Discover LifecycleClasses
Describe Object I nteractions
Add Tentative Behavior for Login
Build Sequence Diagrams for Login
Validate Sequencesfor Login
Sequence Diagrams and Class Diagrams for the
Remaining Use Cases
Describe Classes
Find Relationships for Login
Find Relationshipsfor Export TimeEntries
Find Relationshipsfor Record Time
The Next Step

Describing the System for Technology Selection
AreYouReady?
Group Analysis Classes
Boundary (User Interface)
Boundary (System Interface)
Control, Entity, and Lifecycle
Describe Each Group
User Interface Complexity

92
95

©
@

g g

REEEEBBERKEEBEREREE

EBERE R

i
@®

3.

EEBEER &

vi Contents.

Deployment Constraints for User Interfaces 1B
Number and Type of Users 140
Available Bandwidth 41
Types of System|nterfaces 142
Performance and Scalability 143
Technology Requirements for the Timecard Application 144
Find Groups of Analysis Classes 144
User Interface Complexity 144
Deployment Constraints for User Interfaces 146
Number and Type of Users 147
AvailableBandwidth 148
Types of System Interfaces 148
Performance and Scalability 148
The Next Step 152
Chapter 7 Evaluating Candidate Technologies for Boundary Classes 153
Technology Template 153
Swing 14
Gory Details 15
Strengths 165
Wesaknesses 165
Compatible Technologies 165
Cost of Adoption 166
Suitability 167
Java Serviets 168
Gory Details 170
Strengths 172
Wesknesses 172
Compatible Technologies 172
Cost of Adoption 172
Suitability 173
XML 175
Gory Details 176
Strengths 178
Wesknesses 178
Compatible Technologies 178
Cost of Adoption 178

Suitability 17

Chapter 8

Chapter 9

Contents i

Technology Selections for the Timecard System
User Interface Classes

Conclusion

The Next Step

BREBE

Evaluating Candidate Technologies for Control and
Entity Classes
RMI
Gory Details
Common Uses of RMI
Strengths
Wesknesses
Compatible Technologies
Cost of Adoption
JDBC
Gory Detals
Strengths
Weaknesses
Compatible Technologies
Cost of Adoption
Suitability of RMI and JDBC
ETB 11
Gory Details
Strengths 205
Weaknesses 206
Compatible Technologies 206
Cost of Adoption 206
Suitability 207
Sampie Technology Selection 208
Technology Requirements 208
The Next Step 210

BBEBE

1]
N

SERBREREERE

Software Architecture 211
AreY ouReady? 212
Clear Understanding of the Problem 212
Clear Understanding of the Technology 212
Goalsfor Software Architecture 213
Extensibility 213
Maintainability 213

Vil

viii

Contents

Chapter 10

Chapter 11

Reliability
Scalability
UML andArchitecture
Packages
Package Dependency
Subsystems
Guidelines for SoftwareArchitecture
Cohesion
Coupling
Creating a SoftwareArchitecture
TheArchitect
A Process
SampleArchitecturefor the Timecard System
SetGoals
Group and Evaluate Classes
Show Technologies
Extract Subsystems
Evaluate against Guidelines and Goals

The Next Step

Introduction to Design
What IsDesign?
Are YouReady?
The Need for Design
Productivity andMorale
A Malleable Medium
Scheduling and Delegation
Design Patterns
Benefits
Use
Planning for Design
Establish Goals for the Entire Design
Establish Design Guidelines
Find Independent Design Efforts
Designing Packages or Subsystems
Design Effortsfor the Timecard Application
The Next Step

Design for the TimecardDomain and
TimecardWorkflow

214

241
241
241
242
243

243
244
245
246

246
247
248

249

Contents

Chapter 12

Establish Goals for theEffort
Performance and Reliability
Reuse
Extensibility
Review Prior Steps
Review of the Analysis Model
Review Architectural Constraints
Design for Goals
Apply Design for Each Use Case
Design for the Login Use Case
Design for the Record Time Use Case
Design for the Export Time Entries Use Case
Evaluate the Design
Implementation
User Entity Bean
Timecard Entity Bean
LoginWorkflow Stateless Session Bean
RecordTimeWorkflow Stateful Session Bean
Supporting Classes
ChargeCodeHome
ChargeCodeWrapper.java
Nodejava
The NextStep

Design for HTML Production
Design Goas
Goal 1: Support Modular Construction of Views
Goal 2: Keep HTML Production Smple
Goal 3: Support Preferences
Goal 4: Extensibility and Encapsulation
Design to Goals
Design for Goal 1: Support Modular Construction
of Views
Design for Goa 2: Keep HTML Production Smple
Design for Goa 3: Support Preferences
Design for Goal 4: Extensibility and Encapsulation

Filling in the Details

Implementation
IHtmlIProducer java
ComboBoxProducer java

262
266

323

8%e B HREY KEEELE

Contents

Chapter 13

Chapter 14

FormProducer.java
PageProducer.java
SubmitButtonProducer
TableProducer.java
TabularlnputFormProducer.java
TextFieldProducer.java
TextProducer java
IConcreteProducer.java
ProducerFactory java
FormProducerGeneric.java
PageProducerGeneric.java
TableProducerGeneric.java
TabularTnputFormProducerGeneric.java

The Next Step

Design for the TimecardUl Package
Establish Design Goals
Extensibility
Testability
Review Prior Steps
Review Architectura Constraints
Review AnalysisModel
Design to Goals
Design for Each Use Case
Create Design for the Login Use Case
Create Design for the Record Time Use Case
Implementation
LoginServletjava
RecordTimeServlet.java
BaskServlet.java
The Next Step

Design for Billl ngSystem Interface
Identify Goals
Clarity
Performance and Reliability
Extensibility
Reuse Potential
Review of Analysis Model
Review of Architecture

Contents

Design 403

Sequence Diagram for Export SpecificUsers 406

Sequence Diagram for Export All Users 406

Participating Classes 406
Implementation 407

ExportCriteriajava 407
ExportFilejava 412

Exp or tTimeEntr ie s A pplic ationjava 414

Conclusion a17

Appendix A Visual Glossary 419
Appendix B Additional Resources 435
Appendix C The CD-ROM 439
441

Index

Xl

Acknowledgments

Thanks to al of my former coworkers and bosses at Number Sx Software,
for their support, reviews, and insights. Specia thanks are due to the
cofounders, Rob Daly and Brian Lyons, for creating an amazing environ-
ment in which to work and to stretch professionally. Specia thanks to
Susan Cardinale, Greg Gurley, Kevin Puscas, Hugo Scavino, and Eric
Tavellafor their feedback and encouragement.

Thanksto John Haynes for his careful review and commentary.

Thanksto Mike Janiszewski and Jennifer. Ham, for their review, encourage-
ment, and support. Friends in need are friendsin deed.

Many thanksto thefine professionalsfrom John Wiley and Sons; Terri Hud-
son, Kathryn Mam, Angela Smith, Janice Borzendowski, and Brian
Snapp. Kathryn deserves special recognition for her ability to edit techni-
cal material while keeping an exhausted author motivated.

Thanks to the Wrights, for their consistent friendship, encouragement, and
lawn advice. We couldn't ask for better neighbors.

Thanks to my parents, for fostering a lifetime obsession with the printed
word.

1 will never be able to sufficiently thank my family for permitting me this
most selfish endeavor. How many evenings and weekends did | take
away? How many mornings did T wakebleary eyed and grumpy from too
little deep and too little progress? This book truly wasaoncein alifetime
opportunity for the skinny (formerly) kid who read too much, and you
two made it possible. Thank you!

xiii

About the*Author

CT Arlington has spent the last nine years developing client-server software
systems ranging from currency options valuation to barge scheduling to com-
plex corporate intranets. Over the last five years, he has become convinced
that the combination of Object Oriented Analysis and Design and good Soft-
ware Engineering practices can yield excellent systems in a sane work
environment.

CT'sfocusover thelast few yearshasbeen architecting and developing sys-
temsin Java These tended to be 3+ tier server side applicationsfor usein cor-
porate intranets. His favorite technologies for such systems include Servlets,
XML, EJB, and Object to Relational persistence frameworks. He also had the
good fortune to bethe lead developer for adlick Javadata visualizationtool for
barge scheduling. This project used Swing and a commercial 2D graphics
framework and convinced him that Java applications can meet demanding
performancegoals.

In these pursuits, CT has depended heavily on books on OO design, design
patterns, software engineering, Java, CORBA, EJB, and XML. While he has
read and enjoyed many great books over the years, he cannot imagine devel-
oping software without Grady Booch's OOAD with Applications, the Gang of
Four's Design Patterns, Steve McConnell's Rapid Development and of course,
Patrick Chan's The Java Class Libraries.

CT is an architect and development manager with Capital Onein Northern
Virginia

CT isaformer Rational Software certified instructor and aSun certified Java
Programmer, Developer, and Architect. He holds a Bachelor's in Applied
Mathematics from the University of Maryland at Baltimore County.

XV

OMG Press Advisory Board

KarenD. Boucher
Executive Vice President
The Standish Group

Carol C. Hurt
President and Chief Executive Officer
2AB, Inc.

lan Foster
Business Director
Concept Five Technologies

Michael Gurevich
Chief Architect
724 Solutions

V. "Juggy" Jagannathan, Ph.D.

Senior Vice President of Research and Devel opment
and Chief Technology Officer

CareFlow! Net, Inc.

CrisKobryn
Chief Scientist and Senior Director
Inline Software

Nilo Mitra, Ph.D.
Principal System Engineer
Ericsson

Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer
Object Management Group, Inc.

XVii

Introduction to Mgde_lﬂi'ng
Java with the UML

AsJavacompletes its move from a novelty language to the language of choice for Web-
enabled enterprise computing, Java developers are faced with many opportunities as
well as many chdlenges. We must produce systems that scale as the underlying busi-
ness grows and evolves at Web speed. Our customers’ appetite for functionality, scala
bility, usability, extensibility, and reliability rises each year.

Fortunately, Java provides a lot of support as we struggle to meet these demands.
First and perhaps foremost, Java is a small, tightly written object-oriented language
with excellent support for exception handling and concurrency built in. Of course, this
language runs on a pi atform-independent virtual machine that allows Java systems to
run on everything from a PamPilot to a Web browser to an AS400, with about a dozen
operating systems in between. From this solid foundation. Sun built and evolved one
of the most impressive class libraries you could ever ask for, including support for
internationalization, calendar management, database access, image manipulation, net-
working, user interfaces, 2D and 3D graphics, and more. Finaly, Enterprise JavaBeans
and Java 2 Enterprise Edition provide specifications for true cross-platform enterprise
computing. Many of the problems that have plagued enterprise developers for decades,
such as object-to-relational persistence, object caching, data integrity, and resource
management are being addressed with newfound vigor. These specifications, and the
application servers that implement them, allow us to leverage a wedlth of academic
research and practical experience. We are better equipped to develop enterprise sys-
tems than ever before.

Enterprise Java with UML

However, powerful tools do not guarantee success. Before developers can harness
the enormous power of enterprise Java technology, they need aclear understanding of
the problem and aclear plan for the solution. In order to develop this understanding,
they need away to visualize the system and communicate their decisions and cregtions
to awide audience. Fortunately, thelast few decades have also seen dramatic progress
in our ability to understand and model object-oriented systems. The Unified Modeling
Language (UML) is an open standard notation that alows developers to build visual
representations of software systems. These models enable devel opersto devise elegant
solutions, share ideas, and track decisions throughout the entire development cycle.
Also, toolsfor creating, reverse-engineering, and distributing softwaremodelsinUML
have matured greatly over the past two years, to the point where modeling can be a
seamlesspart of adevelopment lifecycle.

Thisbook describes software modeling with the UML, and demonstrates how devel-
opers can use UML throughout the software devel opment processto create better enter-
prise Java systems and more livable enterprise Java projects. The remainder of this
chapter discusses software modeling in more detail and presents some object-oriented
terminology and UML notation as a foundation for therest of the book.

BETEE this is a book for Java developers who are interested in modeling
software before they build it. It is based on my own practical experience as a
software developer, both painful and euphoric.

When you finish this book, you will be ableto:

» Communicate an understanding of OO modeling theory and practice to others.

» Communicate an understanding of UML notation to others.

« Critically review awide variety of UML software models.

* Use UML to create a detailed understanding of the problem from the user's per-
spective.

* Use UML to visudize and document a balanced solution using the full suite of
Java technologies.

* Use UML to describe other technologies and class libraries.

What Is Modeling?

A modd is a smplification with a purpose. It uses a precisely defined notation to
describe and simplify a complex and interesting structure, phenomenon, or relation-
ship. We create models to avoid drowning in complexity and so that we can under-
stand and control the world around us. Consider afew examples from the real world.
Mathematical modelsof our solar system alow meremortalsto cal culate the positions
of the planets. Engineers use sophisticated modeling techniques to design everything
fromaircraft carrierstocircuit boards. Meteorol ogistsusemathematical modelsto pre-
dict the weather.

Introduction to Modeling Java with the UML 3

Models of software sysemshelp developersvisualize, communicate, and vdidatea
system before significant amounts of money are spent. Software models dso help
structure and coordinate the efforts of a software development team. The following
sections describe some characteristics of models and how they contribute to software
development.

Simplification

A model of a system is far less complex, and therefore far more accessible, than the
actual code and components that make up the final system. It is much easier for a
developer to build, extend, and evauate a visual model than to work directly in the
code. Think of all the decisionsthat you makewhile coding. Every tune you code, you
must decide which parameters to pass, what type of return value to use, where to put
certain functionality, and a host of other questions. Once these decisions are made in
code, they tend to stay made. With modeling, and especially with a visud modeling
tool, these decisions can be made and revised quickly and efficiently. The software
model serves the same purpose as an artist's rough sketch. It is aquick and relatively
cheap way to get afeel for the actual solution.

The inherent simplicity of models also makes them the perfect mechanism for col-
|aboration and review. Itisvery difficult to involve more than one other devel oper dur-
ing the coding process. Committing to regular code reviews requires a great deal of
disciplinein the face of ubiquitous schedule pressure. A particular piece of asoftware
model can be reviewed for quality, understand ability, and consistency with the rest of
the model. Preparation time for reviews of amodel is dramatically lower than for a
comparable code walkthrough. An experienced developer can assimilate a detailed
model of an entire subsystem in a day. Assimilating the actual code for the same sub-
system can easily take weeks. This alows more developers to collaborate and review
more of the whole model. In general, collaboration and review of software models
leads to lower defect rates and fewer difficulties during integration. Also, software
models dramatically decrease the tune required to assimilate and review code.

Varying Perspectives

A singlemodel of a software system can describe the system from different perspec-
tives. One view might show how magjor parts of the system interact and cooperate.
Another view might zoom in on the details of a particular piece of the system. Yet
another view might describe the system from the users' perspective. Having these dif-
ferentviewshel psdevel opers manage complexity, ashigh-level viewsprovide context
and navigation. Once the developer has found an area of interest, he or she can zoom
in and assimilate the details for that area. Newly acquired developers find this espe-
cialy useful asthey leam their way around a system.

We use this technique in the real world. Consider the common street map, which
models the streets and buildings of acity. One part of the map might show the major
highwaysand thoroughfares of the entirecity, while another part might zoom in onthe
downtown area to show each street in detail. Both views are correct and valuable, in
different ways.

Enterprise lava with UMI

Common Notation

proposed solution and focus on the merits of the solution. Of course, thisrequires con-
sistent use and understanding of the common notation. Many other disciplines use a
common notation to facilitate communication. Experienced musicians do not argue
over the meanings of their symbols. They can depend on the notation to provide apre-
cisedescription of the sounds, which freesthem to collaborateto find the right sounds.

A precise software model in acommon notation alows developers to combine their
effortsand to work in parallel. Aslong as each contribution fits the model, the parts
can be combined into the final system. Modern manufacturing uses this technique to
lower costs and decrease production schedules. Based on a vehicle design, an automo-
tive manufacturer can purchase parts from hundreds of suppliers. Aslong aseach part
meets the specifications described in the design model, it will fit nicely into the final
product.

UML

TheUnified Modeling Language (UML) is alanguage for specifying, visuaizing, con-
structing, and documenting the artifacts of software systems. UML provides the pre-
cise notation that we need when modeling software systems. It is important to note
that the UML isnot just away to document existing ideas. The UML helps developers
create ideas, aswell as communicate them.

The UML was not thefirst notation for modeling object-oriented software systems.
Infact, UML was created to end the confusion between competing notations. Many of
the best and brightest academics and practitionersin the field of object-oriented soft-
ware development joined together in the mid- to late-1990s to create a common nota-
tion. Itisnow theinternational standard for modeling object-oriented systems.

The UML isan open standard controlled by the Object Management Group (OMG),
rather than any one individual or company. This book uses and discusses version 1.3
of the UML, which is the current version. The next major release of UML, 2.0, is
expected sometimein 2002.

The Basics

Before we diveinto modeling your systemusing UML, there are afew object-oriented
concepts that you need to understand before you start.

Abstraction

Anabstractionisasimplification or model of acomplex concept, process, or real-world
object. Ashumans, we need abstractionsto survive. Abstractions allow usto simplify
our understanding of theworld so that our understanding is useful without becoming
overwhelming. Do you thoroughly understand personal computers, televisions, CD
players, or even asimpletransistor radio? Can the same person understand these elec-

Introduction to Modeling lava with the UML

tronic devices and aso conquer the mysteries of cellular biology and human physiol-
ogy? How about the details of any two human endeavors, such as coal mining and pro-
fessiond football?

An abstraction is a simplification or mental model that helps a person understand
something at an appropriate level. This implies that different people would build rad-
icdly different abstractionsfor the same concept. For example, | ssemy refrigerator as
abig box with a door, some food inside, and a little whed that lets me set the temper-
ature. A design engineer sees my refrigerator as a complex system with an evaporator
fan, an evaporator, a defrost heater, a compressor, and a condenser fan, al working
together to move heat from theinside of the equipment to my kitchen. Thedesignengi-
neer needsthisrich view of thefridge to design an efficient and effective refrigerator.
1, on the other hand, am needlessly burdened by such details. | just want a cold glass of
soda.

A good abstraction highlights the relevant characteristics and behavior of some-
thing that istoo complex to understand in its entirety. The needs and interests of the
abstraction's creator determinethelevel of detail and empheasis of the abstraction.

Abstractions are even more useful when they help us understand how different
parts of alarger model interact together. In the object-oriented world, the interacting
parts of amodel are called objects.

Encapsulation

According to my dusty old copy of Webster's, to encapsulate means "to enclose in or
asif in acapsule." For object-oriented systems, the specifics of the data and behavioral
logic are hidden within each type of object. Think of encapsulation as acounterpoint to
abstraction. An abstraction highlights the important aspects of an object, while encap-
sulation hides the cumbersome internal details of the object. Encapsulation is avery
powerful tool in our effort to make reusable, extensible, and comprehensible systems.

First, encapsulating the nasty details inside of a system makes the system easier to
understand and to reuse. In many cases, another developer may not care how an object
works, aslong asit provides the desired functionality. The lesshe or she needs to know
about the object in order to use it, the more likely that developer isto reuse it. In short,
encapsulation reducesthe burden of adoptingadassor dasslibrary for useinasystem.

Also, encapsulation makes a system more extensible. A well-encapsulated object
allows other objectsto useit without depending on any internal details. Consequently,
new requirements may be met by changing the encapsul ated details, without affecting
the code that uses the object.

Object

An object is aparticular and finite element in a larger model. An object may be very
concrete, such as a particular automobile in a car dealer's inventory system. An object
may beinvisible, such asanindividual'sbank account in abanking system. An object
may have a short life, such as atransaction in abanking system.

Itisimportant to distinguish between the abstraction that similar objectsin asystem
share and the objects themselves. For example, the abstraction comprising cars in a
dealer's inventory system certainly includes the make, model, mileage, year, color,

Enterprise Java with UML

purchase price, and condition. The object, which is a particular car in the inventory,
might be a light blue 1996 Honda Accord, in good condition, with 54,000 miles on the
odometer.

All objects have state, which describes their characteristics and current condition.
Some characteristics, such asmakeand model for the car, never change. Other parts of
acar's state, such as mileage, change over time.

Objectsalsohavebehavior, which definesthe actionsthat other objects may perform
on the object. For instance, abank account may allow a customer object to withdraw
money or deposit money. A customer initiates awithdrawal, but the logic for perform-
ing the withdrawal lives inside of the account object. Behavior may depend on an
object's state. For example, acar with no gasis unlikely to provide desirable behavior.

Moreover, each object in a system must be uniquely identifiable within the system.
There must be some characteristic or group of characteristics that sets each object apart.
To continuethe car example, each car hasaunique vehicleidentification number.

In the UML, an object is represented as a rectangle with the name underlined, asin
Figure 11

The work in an object-oriented system is divided up among many objects. Each
object isconfigured for its particul ar rolein the system. Since each object has afairly
narrow set of responsibilities, the objects must cooperate to accomplish larger goals.
Consider a customer who wants to transfer money from one account to another at an
ATM. Thisfairly trivial example requires a user interface object, a customer object, a
checking account object, and asavings account object. This combination of narrow spe-
cialization and cooperation allows the objects to stay simple and easy to understand. A
method is a service or responsibility that an object exposes to other objects. Thus, one
object can call another object's methods. A method isloosely analogous to afunction or
subroutinein procedural programming, except that the method is called on a specific
object that has its own state. Thistight integration between data and behavior is one of
thekey distinguishing features of object-oriented software development.

Class
A classisagroup of objects that have something in common. A class captures apartic-
ular abstraction and provides a template for object creation. By convention, class
names start with an uppercase letter and use mixed case to mark word boundaries.
Each object created from the class is identical in the following ways:
« Thetype of data that the object can hold. For instance, a car class might specify
that each car object have string data for the color, make, and model.
* The type and number of objects that the object knows about. A car class might
specify that every car object know about one or more previous owners.
* Thelogic for any behavior that the object provides.

Figure 1.1 A car object.

Introduction to Modeling Java with the UML 7

Theactual valuesfor the data are | eft to the objects. This means that one car may be
a blue Honda Accord with one previous owner, while another car might be a green
Subaru Outback with two previous owners. Also, since the behavior may be sate-
dependent, two different objects may respond differently to the same request. How-
ever, two objectswith identical state must respond identically.

Consider amore detailed and completely silly analogy. Toy soldiers are created by
melting either green or brown plastic and injecting the molten plasticinto little molds.
The shape of the mold determines the height and shape of thetoy soldier, aswell asits
ability to grasp atiny rifle and carry aradio on itsback. The purchaser cannot change
the height of the toy or outfit it with a flamethrower. The class—I mean mold—does
not support these configurations.

However, thereis still work for purchasers of the toy soldier. They may provide or
withhold the rifle and radio, and they may organize the toys into squads for deploy-
ment against the hated Ken doll. They are configuring the objects—oops, | mean
sol diers—and determining the associations between them.

Objects provide thereal valuein an object-oriented system. They hold the data and
perform the work. Classes, like molds, are important for the creation of the objects,
though no one ever playswith them.

Inthe UML, aclassis represented as arectangle with the name in the top compart-
ment, the data hi the next compartment, and the behavior in the third compartment.
Figure 1.2 shows a UML representation of the ToySoldier class. Notice that unlike the
UML representation of an object, thename is not underlined.

Relationships between Objects

Object-oriented systems are populated by many distinct objects that cooperate to
accomplish varioustasks. Each object hasanarrowly defined set of responsibilities, so
they must work together to fulfill their collective goals. In order to cooperate, objects
must have rel ationshipsthat allow them to communicatewith oneanother.

Recall that the state and behavior for an object is determined and constrained by the
object's class. The class controls the state that the object possesses, the behavior that it
provides, and the other objects that it has relationships with. With this in mind, it is
logical to describe the relationships between objectsin a class diagram.

There are four types of relationships:

 Dependency
* Association

ToySoldier
-name:String
-rankString
~carryingRifle:boolean

+attackKenDoll)

Figure 1.2 The ToySoldier class in the UML.

Enterprist Java with UML

- Aggregation
« Composition

Dependency

Dependency is the weakest relationship between objects. An object depends on an
object if it has a short-term relationship with the object. During this short-lived rela-
tionship, the dependent object may call methods on the other object to obtain services
or configure the object. Redl life is full of dependency relationships. We depend on the
cashier at the grocery store to sl usfood, but we do not have along-term relationship
with that person. In the UML, dependency is represented by a dashed line with an
arrow pointing to the depended upon class.

Dependency relationships in object-oriented systems follow a few common pat-
terns. An object may create an object as part of amethod, ask it to perform somefunc-
tion, and then forget about it. An object may create an object as part of a method,
configureit, and pass the object to the method caller as areturn value. An object may
receive an object as a parameter to a method, use it or modify it, then forget about it
when the method ends.

Figure 13 shows a dependency relationship between the Customer class and the
Cashier class. This relationship reads as: "Each Customer object depends on Cashier
objects," Changesto interface of the Cashier classmay affect the Customer class.

Association

An association is along-term rel ationship between objects, hi an association, an object
keeps areference to another object and can call the object's methods, as it needs them.
Real lifeisreplete with association relationships. Consider people with their automo-
biles. As long as they remember where they |eft their car, the car will let themin and
take them to their destination. In the UML, association is represented by a solid line
between the two classes.

hi some cases an object may instantiate another object and keep areferencetoit for
future use. An object may also receive an object as a parameter to a configuration
method and keep areferenceto the object.

Figure 14 shows an associaion relationship between the Person dass and the Car
class Therelationship is read as: "Every Person object is associated with an unspeci-
fied number of Car objects" and "every Car object is associated with an unspecified
number of Person objects.” It may help to think of this as a"knows-about-a" relation-
ship, asin "each Person object knows about some Car objects”

Customer S

+ringUpFood()
+processPayment()

Figure 1.3 Sample dependency relationship.

Introduction to Modeling Java with the UML

9

Person Car

Figure 1.4 Sample association relationship.

Aggregation

An aggregation relationship indicates that an object is part of agreater whole. The con-
tained object may participate in more than one aggregation relationship, and exists
independently of the whole, For example, a software developer may be part of two
project teams and continues to function even if both teams dissolve. Figure 15 shows
this aggregation relationship.

Inthe UML, aggregation isindicated by decorating an association line with ahollow
diamond next to the "whol€e" class. The relationship is read as: "Each ProjectTeam
object hassome SoftwareDevel oper objects,” and "each SoftwareDevel oper object may
belong to one or more ProjectTeam objects.”

Composition
A composition relationship indicates that an object is owned by a greater whole. The
contained object may not participate in more than one composition relationship and
cannot exist independently of the whole. The part is created as part of the creation of
the whole, and is destroyed when the whole is destroyed. In the UML, composition is
indicated by decorating an association with a solid diamond next to the "whole" class.
Consider a small gear deep in the oily bowels of aninternal combustion engine. Itis
inextricably part of the engine. It is not worth the cost of removal when the engine
finally expires, and it is not accessible for replacement. Figure 1.6 shows this composi-
tion relationship. The relationship is read as: "Each Engine object always contains a
SmallGear object,” and "Each SmallGear object always belongs to a single Engine
object.”

> SoftwareDeveloper
ProjectTeam

Figure 1.5 Sample aggregation relationship.

m SmallGear

Figure 1.6 Sample composition relationship

10 Enterprise Java with UML

EATE 1t may be difficult to remember which relationship is aggregation and
which is composition. | offer a simple and somewhat silly mnemonic device for
aggregation. Aggregation sounds a lot like congregation, as in members of a
church. People may exist before joining a church. People may belong to more
than one church, or they may change churches. Likewise, people continue to
exist after leaving the church or after the church disbands or merges with
another church. As for composition, well, it is the other one. Sorry.

Navigability

Relationships between objects are often one-sided. For instance, in any car that | can
afford, the Car object controls the Wheel objects, but the Whed objects are unable to
control the Car. Figure 1.7 shows an association relationship between the Car class and
the Wheel class. Thearrow pointing to the Wheel class indicates that the Car may send
messages to the Wheel but that the Wheel cannot send messages to the Car. Thismeans
that a Car object may call the getSpinSpeed method on its Wheel objects and that the
Wheel object may return a value from that method; but the Wheel does not have a ref-
erence to the Car object, so it cannot call the startEngine method.

According to the UML specification, an association line with no arrows can have one
of two meanings. Developers on a project may agree that the absence of arrows means
that the association is not navigable. Alternatively, developers on a project may agree
that the absence of arrows means that the association isbidirectional.

Since there is no reason to have an association that is not navigable, the first inter-
pretation of an association with no arrows generaly means that the navigability has
not been determined. In this case, an arrow on each side of the line indicates bidirec-
tional navigability.

Developers on a project may agree that a tine with no arrows represents bidirec-
tional navigability. In this case, the double-arrow notation is never used and there isno
way to indicate an unspecified or not-navigable association.

For this book, | use double arrows to indicate bidirectional navigability. | prefer this
option because it allows me to defer consideration of the navigability of an association

Multiplicity
One object may have an association with a single object, with a certain number of
objects, or with an unlimited number of objects. Figure 1.8 shows several relationships

Car Wheel

+ startEngine() AR

Figure 1.7 Sample association with one-way navigability.

Person

18

Introduction to Modeling lava with the UML

1

Engine

SmallGear

+g00

1

[Fturmon()

Figure 18 Sample associations with multiplicity.

[+spinQ

with the multiplicity determined. Inthe UML, themultiplicity describesthe object that
itis next to. So, an Engine object may have many SmallGear objects, but each Small-
Gear object belongsto exactly one Engineobject. Each Car objectisassociated withone
or more Person objects, and each Person object may be associated with several Car
objects. Also, each Car object has exactly one Engine object, arid different Car objects
never share an Engine object.

X8 There is no default multiplicity. The absence of a multiplicity for an

association indicates that the multiplicity has not been determined.

Interface

Aninterfacedefinesaset of related behavior, but doesnot specify theactual implemen-
tation for the behavior. To be more specific, each interface completely specifiesthesig-
nature of one or moremethods, completewith parametersand return type. Aninterface

captures an abstraction, without addressing any implementation details.

A class realizes an interface by implementing each method in the interface. The
interface defines a set of behavior. The class makesit real.

Interfaces provide flexibility when specifying the relationship between objects.
Rather than specifying that each instance of a class has arelationship with an instance
of aspecific class, we can specify that each instance of aclasshasarelationshipwith an
instance of some class that realizes a particular interface. Aswe will see throughout
this book, creative use of this feature provides an amazing amount of flexibility and

extensibility.

For instance, a game might contain a sound simulator object that is responsible for
collecting and playing the sounds that emanate from various objectsin avirtual world.
Each SoundSimulator object is associated with zero or more objectswhose classesreal -
ize the INoiseMaker interface. From the Sound Simulator's perspective, the specific
type of noisemaker iscompletely irrelevant. Figure 1.9 showsthisrelationship.

1

<<interface>>
INoiseMaker

Figure 1.9 Sample interface.

12 Enterprise Java with UML

Polymorphism

Polymorphism, according to my dictionary, means having more than one form. In
object-oriented circles, polymorphism refers to multiple implementations of a single
abstraction. Abstractions are captured in classes and ininterfaces. So, we can get poly-
morphism by having more than one class inherit from abase class. Each class could
simply overridethe defaultimplementation provided by the base class. Wecan al'so get
polymorphism by having morethan oneclassrealizeaninterface. Each classmust pro-

To continue our sound simulator example for polymorphism through inter-
faces, consider two classes that make noise, Trumpet and Tiger. Both implement the
makeNoise method and realize the INoiseMaker interface. Each SoundSimulator
object is associated with some objects whose classes realize INoiseMaker. The sound
simulator does not need to know the specific class for each object. Instead, the sound
simulator just asks the object to make some noise. Figure 110 shows the two classes
that realize the INoiseMaker interface and the relationship between SoundSimulator
and INoiseMaker.

Multiple implementations of an abstraction can also be achieved by having more
than one subclass override the default implementation provided by the base class.
Figure 111 shows an alternative approach in which each SoundSimulator object is
associated with some objects that instantiate SimulationElement or a subclass of
SimulationElement. As before, the SoundSimulator knows that the object on the other
end of the association implements the makeNoise method, but does not know what
sound to expect.

Polymorphism hastwo very significant benefits. First, polymorphism allowsunlim-
ited flexibility within a running system. Different implementations of an abstraction
can be mixed and matched to achieve very interesting affects. The second benefit is
long-term extensibility for the system. Aslong as the abstraction is unchanged, new
implementations can be introduced without affecting the code that depends on an
interface. For example, adding a new class that redlizes INoiseMaker does not affect
the SoundSimulator class in any way.

i Lo INoiseMaker
i SR :
el
/ &
/ \
F ®
/ \
[Trumpet Tiger
[#makeNoise +makeNoise()

Figure 1.10 Polymorphism through realization.

to Modeling Java with the UML

13

[rmakeNoise(

[Trumpet Tiger

[rmakeNoise() [rmakeNoise()

Figure 1.11 Polymorphism through inheritance.

Modeling Software Systems with the UML

UML enables developers to build a single coherent model that describes a software
system from several perspectives. This combination of internal consistency and dis-
tinct views meansthat a variety of participants can use the same model and speak the
same language throughout the development process. Granted, some participantswill
only use part of themodel, but they can still follow the overall structure of themodel.

The Customer's Perspective

Most customers arerelatively disinterested in technology. They are far moreinterested
in the value that the system provides for them, that is, how it increases their produc-
tivity and makes their lives easier. Developers should gather requirements from the
customer's perspective, considering how the customer will interact with the system to
obtainvalue. Thisallowsthe customer to review and validate the requirementsfroma
very natural perspective, hisor her own. The customers can al so measure devel opment
progressfrom anindividual perspective.

UML providesseveral mechanismsfor documenting systemrequirementsfromthe
user's perspective. They are the use case diagram, atext description for each use case,
and an activity diagram for eech use case.

* A usecasedefines and describes adiscreteway inwhich users getvaluefromthe
system. A user might perform aseries of fairly complex steps to obtain a desir-
able result, such as withdrawing funds from an ATM or purchasing a book
online. Alternatively, a user may simply press a large red button labeled Run
Quarterly Sdles Report. User effort is not the determining factor. Instead, the
independent usefulness of the result is the key. A use case diagram models al
interactions between the user and a system in a single high-level diagram. This
diagram allows customers and developersto capture the intent and scope of the
systeminavery accessibleformat. The use cases can then be used to track devel-
opment progress and to guide devel opment activities.

Enterprise Java with UML

« The text description of each use case describes the use case, including the details
of the interactions between the user and the system.

« Anactivity diagramisavisua description of the interactions between the system
and the user for a use case.

Together, these diagrams hel p the customers and developersto fully understand the
system problem from the customer's perspective.

The Developer's Perspective

Developers must first understand the problem, then the solution, from their own per-
spective. Object-oriented systems force developers to describe a system in terms of
objectsthat cooperate to providefunctionality to the users, so object-oriented develop-
ersfocus on the objectsthat populate the system and the classes that define the objects.

UML provides several mechanisms for documenting a system from the developer's
perspective: class diagrams, state chart diagrams, package diagrams, sequence dia-
grams, and collaboration diagrams.

« A class diagram defines and constrains a group of objectsin detail. It shows the
state, behavior, and relationships with other objects that are mandated for each
object that instantiates the class.

A state chart describes the state-dependent behavior for a class. Specificaly, it
describes how an object responds to different requests depending on the object's
internal - configuration.

« A package diagram describes how different parts of a system depend on one
another based on the relationships between objects that reside in different parts
of the system.

« A sequencediagram showshow objectsinteract with one another to provide func-
tionality. A sequence diagram clearly indicates the order of the interaction; it is
less useful for determining the relationships between objects.

" A collaboration diagramalso shows how objectsinteract with one another to pro-
vide functionality. Collaboration diagrams provide a counterpoint to sequence
diagrams by clearly revealing the relationships between objects. However, they
are less useful for determining the sequence of interactions.

Modeling Process

UML isused to gradually evolve the understanding of a system. First, the developers
and customers use the UML to understand the problem from the customer's point of
view. Next the developers use UML to understand the problem from their own point
of view. This clear understanding of the problem alows the developers to use UML as
they invent a solution to the problem. Finally, the UML model is used as aresource by
theimplementers of the system. The chaptersin thisbook mimic the stages of the mod-
eling process.

Introduction 1° Modeling lava with the UHL 15

Requirements Gathering

When gathering requirements, developers seek to understand the problem from the
customer's perspective, without concern for technology or system design. Thisensures
that the developers arefocused onthe correcl problem. While no system isimmune to
requirements change or "scope creep,” adopting this perspective can prevent misun-
derstandings and dramatically reduce the severity of requirements changes.

In this process, developers create use case diagrams, text use case descriptions, and
activity diagrams. | introduce requirements gathering in Chapter 2, "Gathering
Requirements with UML." In Chapter 3, "Gathering Requirements for the Timecard
Application,” | begin gathering requirements for a sample application.

Analysis

In analysis, developers seek to understand the problem from their own perspective,
il without concern for technology. Building onthe understanding of the problem cre-
ated during requirements gathering, they discover the roles and responsibilities that
must be filled in the system. This builds a solid foundation for technology selection
and design of the system.

In the analysis process, developers creste class diagrams, sequence diagrams, and
collaboration diagrams. | introduce analysis in Chapter 4, "A Brief Introduction to
Object-Oriented Analysis with the UML." In Chapter 5, "Anaysis Model for the Time-
card Application,” | demonstrate analysisin an example.

Technology Selection

During technology selection, developers categorize the system in terms of its techno-
logical requirements, then select the most appropriate technologiesto fulfill thesewell-
defined needs. This orderly and disciplined approach to selecting technology trades a
fairly large upfront effort for decreased risk over the life of the project.

In the technology selection process, developers use all of the existing documents
and diagrams. They produce a high-level summary of the technological requirements
andalist of appropriatetechnologiesfor the system. No additional UML diagramsare
produced.

Technology selection is covered in several chapters. In Chapter 6, "Describing the
System for Technology Selection,” | explain the process for describing the technology
needs of a system, and reinforce these ideas by example. In Chapters 7 ("Evaluating
Candidate Technologies for Boundary Classes") and 8 (“Evaluating Candidate Tech-
nologies for Control and Entity Classes"), | present different technologies and describe
thelr suitability, before selecting appropriate technologies for the example system.

Architecture

In architecture, developers describe the system at ahigh level, and decompose the sys-
tem into smaller parts, such as subsystems. Relationships between parts are high-
lighted, while the details of each part are deferred. Technology selections are dlearly

16 Enterprise Java with UM1

shown as part of the architecture. Providing a high-level view of the system and its
component parts makes it possible for a large number of participants to evaluate the
feasibility of the architecture. Also, during design and implementation, the architec-
ture serves as an inval uable high-level guide to developers as they struggle to under-
stand the system as awhole.

Architecture builds on the cumulative understanding of the system as described in
the use case model and in the technology selection. During architecture, developers
produce primarily class diagrams and package diagrams.

| cover architecturein asingle chapter: Chapter 9, " Software Architecture,” explains
the process and demonstrates it through the sample system.

Design and Implementation

In design, developers use al of the results from the previous steps as they create an
intricate model of the objects that interact to provide the system's functionality. A
detailed design providesthe last chance to validate the solution before the extremely
expensive and labor-intensive implementation process begins. In about a day, asmall
group of developerswho are familiar with UML and with the system can preparefor a
thorough design review of a major subsystem. Compare this to the weeks that are
required to read and understand the code for amajor subsystem. A detailed design can
be created, reviewed, and revised in afraction of the time it takes to write the code.

Oncethe design is complete, it serves asa valuable foundation for implementation.
Developers are free to focus their efforts on the details of the implementation tech-
nologies, without constantly worrying whether their efforts will fit within the larger
system. Aslong as they follow the design, or reconcile any changes to the design with
other developers, their work will not be wasted. | cover design and implementationin
the remainder of the book: in Chapter 10, "Introduction to Design,” | explain the
process; | dedicate Chapters 11 (“Design for the Timecard Domain and Timecard Work-
flow"} and 12 {"Designfor HTML Production") to designsfor different partsof thesys-
tem.

WHAT’S ON THE CD-ROM

The book 's companion CD-ROM miams all the design documents mdm

The Next Step

Now that we have established a basic understanding of the terminology and the
processes involved, we can start with requirements gathering, which seeks to under-
stand the problem from the customer's perspective.

Gathering Requirements
with UML

Thefirst step to designing any enterprise application is to gather requirements for the
system. A system's requirements consist of a document (or a collection of documents)
that describes the functionality that the system provides. It is an agreement between
theend user, the developer, and the system's sponsor asto what the system should and
cando.

Requirements gathering is an interactive process whereby business analysts and
developers gather system requirements by interacting with end users, domain experts,
and other stakeholders. This highly iterative process is a combination of problem dis-
covery and consensus building that lays the foundation for the project's success.

In this chapter, I'll show you how the Unified Modeling Language (UML) can be
used in arequirements-gathering process, I'll outline several dassic paths that leed to
poor regquirements, then suggest ways that you can detect and avoid them.

m The UML notation and requirements-gathering techniques introduced
here will be used to capture requirements for a sample application in Chapter
3, "Gathering Requirements for the Timecard Application.” | use this sample
application throughout the book, so even if you are an expert in requirements
gathering, it might be useful to skim this chapter and read Chapter 3.

18 Enterprise Java with UML

Are You Ready?

Before you can gather requirements, you need to do two things:
1. Createaclear vision of the system.
2. Determinewho has the decision-making authority for the project.

Thefirst step is to create aclear vision for the system. This vision is described in the
vision document, a text document that presents an extremely high-level explanation of
the goals and scope of the system. The vision document can be in any format. In one
company, the vison document may be two paragraphs transferred from the napkins
that were handy during the dinner when the principal's spawned the idea for the com-
pany. In another organization, it may be aformal document that presents an exhaustive

and four-color graphs on fancy paper. However it is presented, a successful vision doc-
ument describes the system, its goals, and how the organization benefits from it. The
system godls are described at afairly detailed level to give the developers and the cus-
tomers the flexibility to clarify the system vision. The document aso highlights any
known scope limitations.

Thesecond stepistoidentify asponsor or sponsorsfor theproject. Gathering require-
ments without sponsorsis painful at best and disastrous at worst, because they are the
people who make final decisionsregarding budget, features, and schedule. Idedly, the
sponsors form a small decisive group that has the authority and vision needed to set-
tle disputes and to keep a clear focus for the project. In any system, compromises must
be made. For example, some desired functionality might be deferred to a later release
tomeet theschedule. Different groupsof usersmay havedifferent needs and godsthat
pull the system in different directions. Without aclear decision-making authority, itis
difficult to resolve issues and to keep them resolved. When decisions are made and
remadeinafrustrating cyclein an attempt to please everyone, developers often end up
over-committing themselves and, subsequently, end up disappointing everyone.

What Are Good Requirements?

Good requirements clearly and unambiguously state what the system does and for
whom. They answer questions such as Who uses the system? What value do users
receive from their use of the system? These questions must be answered before con-
sidering technology selection, architecture, and design, otherwise, developers will be
doomed to solve the wrong problems and be unable to make informed decisions about
technology and architecture.

Requirements gathering involvesfivekey steps:

1. Find the people who can help you understand the system.
2. Listen to these stakeholders and understand the system from their perspective.

3. Capture the way customers want to use the system, aong with the value pro-
vided, inan accessible model .

Requirements with UML

19

4. Create adetailed description of the interactions between the system and the cus-
tomers and between the system and other external systems.
5. Refactor the detailed descriptions to maintain readability and accessibility.

These steps are repeated until a solid consensus on what the system should do is
reached. Noticethat the goal isasolid consensus, not a 100 percent, perfect, consensus.
Gathering requirements, like any creative and collaborative endeavor, never reaches a
dear conclusion, as each iteration raises new subtleties and a new layer of details.
Requirements must not become an end in themselves. Requirements are useful only as
aform of communication and as a consensus-building process; they are not artistic
workswith intrinsic value. Each additional refinement of the requirementsyieldsless
and lessvalue. At some point, the project must move on.

Find the Right People

In order to gather requirements, you must solicit input from people at different levels
within the organization or user group. One group may understand the problem
domain and strategic goals, but they may not actually use the system. Another group
may not see the big picture, but may be intimately familiar with the day-to-day activi-
ties. These people are the system's stakeholders, those who have a significant interest
intheproject's direction and success. Stakeholdersinclude everyonefrom the end user
to the devel opment team to the senior managerswho control thebudget. Itisup to you
to establish areasonable rapport with awidevariety of stakeholders, for they will pro-
vide youwith the information you'll need to develop the requirements document.

Domain Experts

The domain experts are the strategic thinkers. They understand the organization and
the system. They set the goals for the system as well aslend insight to their particular
domain. These people are usually easy toidentify, asthey generally haveahigh profile
and occupy nice offices. They may have advanced degrees, many years of experience
intheir field, and asenior position, such as CEO, vice-president, or senior research fel-
low. Unfortunately, they adso tend to beincredibly busy, talk too fast, and assume that
everyone else knows and loves their field. To build the system that they need, you
must understand them. To achieve that, you must make sure that they appreciate this
simple truth and be confident that you will treat their timewith care. Whenever possi-
ble, prepare by learning the relevant terminology and concepts inherent to their field
before meeting with them, then baseline their expectationsby explaining your limited
background.

Subsequently, itis agood ideato verify your understanding of the conversationshy
paraphrasing them back to the source, preferably both verbally and inwriting. Persis-
tence and humility are key ingredients to your success.

End Users

Another important source of information is the actual end user. After dl, it is the end
userswho must accept and usethefinal product. Their importance seems obvious, yet,

20 Enterprise Java with UML

remarkably, many organizationsfail to solicit their input. Therefore, in some cases, you
may need to push for access to a representative group of users. Sometimes the reluc-
tance of management to grant access to the end usersis evidence of an honest effort to
protect the end users time. In other cases, institutional traditions and rigid hierarchies
erect the barrier. A medical doctor, for example, may balk at the idea that a licensed
practical nurse may haveval uableinsightsinto theactual use of amedical data-track-
ing system. A manager with 20 years of experience may not realize that it has been 15
years since he or she actually did the work, and that anew hire may have avaluable
perspective.

Be firm; excluding the actual users is not a viable option. Remember, developers
must understand the day-today pragmatics aswell asthe strategic value of the system.

*WARNING Never forget the end user.

Listen to the Stakeholders

Developers need insight and knowledge from the stakeholders. To facilitate this dia-
logue, you must temporarily suppress your own perspective and inclinations so you
can hear these stakeholders. In most cases, domain experts and end users are not con-
cerned with cool technologies or object-oriented design principles; they want to know
how they will benefit from the system. They are not interested in scarce technical
resources or the risks of adopting new technology; they need a solid schedule that they
can plan around. They arenot interested in user interface design techniques; they just

Until you can clearly restate the customer's needs in your own words, do not plan
the solution or consider the impact on the schedule. Above dl, be positive, and try to
think of the system in terms of the value that it provides to people. Thisisnot an intu-
itive perspective for most developers, myself included. Our training and natural incli-

natural tendency to consider the impact on our personal and professional lives. We
must overcome this mind-set—at least long enough to understand the needs of the
people on the other side of the table.

It is important to remember that considering the other stakeholders' perspective
does not mean committing to an impossible system or schedule. It means that devel-
opers are obligated to completely understand the requests and needs before contem-
plating feasibility and negotiating schedule.

m Gathering requirements sets the stage for development and makes-or
breaks-every development team's relationship with the customer and domain
experts.

Considering the customer's point of view in thisinitial stage often yieldsamazing
dividends, in addition to high-quality requirements, you can gain the trust and good-
will of the stakeholders. Then, later in the process, stakeholders may consider the devel-
oper's perspective when considering requests to defer features or adjust the schedule.

The dialogue between you and the clients should be captured via meeting notes or

Gathering Requirements with UML 21

transcribedrecordings. Transcribedrecordingsaremoreaccurate, but may makemany
peopleuncomfortable.Inany case, awrittendial oguethat canbeverifiedandbuilt
upon is an essential tool.

Develop Accessible Requirements

Requirements are useful if and only if people use them. If the user finds them turgid
and/or incomprehensible, then they cannot tell you if you are specifying the right sys-
tem. If developers find them obtuse and irrelevant, then the actual system will radi-
caly deviate from the requirements. While even the best requirements document is
unlikely to find itself on the New York Times best-seller list, a requirements document
must be readable and accessible to awide audience. Describing how the systemisused
at ahighlevel isan important step toward this goal.

m Requirements are useful if and only if people use them.

The high-level diagrams within the use case model in UML provide an excellent
mechanism for thispurpose. Usecasediagrams show discretegroupsof system usersas
they interact with the system. There are three steps to creating a use case model.

1. Identify the groups of people who will use the system.
2. Determine how these groups of people will get valuefrom the system.
3. Provide asimple and accessible view of the users and their use of the system.

The next sections take a closer look at each of these steps.

Find Actors

Thefirst step to requirements gathering isto identify the distinct groups of people who
will use the system. In UML, adistinct group is referred to as an actor. Other systems
that use the system or are used by the system are also actors. So, an actor isagroup of
people or asystem that is outside of the system and interactswith the system. To qual-
ify as an actor, the group must use the system in a different way.

It isimportant to note that differencesin the real world may not be relevant within
the system requirements. For example, managers often are considered a distinct
group of people in the real world, whereas in many systems, they are not separate
actors because they do not use the system in a manner that is different from the way
an employee uses the system. Consider a simple timecard system, in which every
employee entershis or her hours. A select few add valid charge codes. Itis possible that
some employees who add charge codes are managers, but that some are not. So man-
agers, in this case, do not need separate representation. Examples of reasonable actors
from various domainswill help clarify thisdistinction. The following groupsare sepa-
rate actorsin the given problem domain.

« Bank customers and bank tellers are separate actors because they have very dif-
ferent needs and privilegesin a banking system. For instance, customers cannot
see other customers' records.

22 Enterprise Java with UML

« Traveling salespeople and back-office personnel are separate actorsbecause they
have different needs and different access methods for a sales-tracking system.

* Students and the registrar are separate actors because they have very different
needs and privileges in a course registration system.

The following groups do not need to be treated as separate actors.

* Republicans and Democrats do not need to be treated as separate actors in a sys-
tem that gathers votes for an election. Party affiliation might be noted for each
voter, but it does not change the way voters use the system.

« Doctors and nurses do not need to be treated as separate actors in a system that
records quantitative medical data, such as heart rate, blood pressure, and tem-
perature. Both groups are well qualified to obtain and record the information,
and there are no differencesin the way that they perform the activities,

* Men and women do not need to be treated as separate actors in most computer

Onceyouhaveidentifiedtheactors, youarereedy tomoveontothenext step.

Find Use Cases

Thenext step isto identify the ways the actors get value from the system. Inthe UML,
themanner inwhich the system provides adiscretevalue to an actor is called a usecase.
A user might perform a series of fairly complex steps to obtain a desirable result, such
aswithdrawingfundsfroman ATM or purchasing abook online. Alternatively, auser
may simply pressalargered button|abeled Run Quarterly Sales Report. User effortis
not the determining factor. Rather, the independent usefulness of the result isthe key.

Itisimportant to keep each use case well focused, with asingle, clear purpose. Use
cases divide the requirements into sections, so focused use cases make the documents
easier to navigate and to understand. Use cases are also used for scheduling and esti-
mation, so rightly focused use cases facilitate accurate estimation and precise tracking.
Each use caseis dso used as abasis for atest case, so well-focused use cases convert
nicely toauseful test plan and providethebasis for objective progresstracking. Mono-
lithic use cases mean fewer divisions in the requirements documents and fewer mile-
stones.

If you can answer yes to the following questions, a use caseis well focused. Other-
wise, the use case may need to be split into several use cases.

« Does the use case provide a single discrete benefit?

 Can you describe that benefit in 20 to 30 words, without adding several occur-
rences of "and" or "or"?

« Does the actor tend to completethe use case in asingle sesson or sitting?

« Can you imagine the use case as a single test case in a coherent test plan?

Each use case must be significant and provide value in isolation. A use case may

depend on other use cases or be part of alarger workflow, but the user must obtain a
significant value from the use case alone. Individual steps, such as accepting user

Gathering R with UML

23

input, validating user input, retrieving data from a database, and formatting a result
are not good candidatesfor use cases. They smply do not make sense separately.

If you can answer yes to the following questions, then the use case is probably sig-
nificant and well isolated. Otherwise, the use case may redlly be part of some other use
case.

« Does the actor either gain significant information or change the system in some

« Could an actor perform the use case and then stop using the system for a signif-
icant time? This may not be the normal case, but it must be plausible.

Let'stake alook at the use casesfor abanking system as an example. A banking sys-
tem with the functions enter amount, select account, withdraw funds, deposit funds,
select source account, select destination account, and transfer funds as separate use
cases is too granular. The use cases do not make sense in isolation. For example, no
user would select an account and then walk away satisfied. Each of these activitiesis

The same system with a single use case—manage money—istoo ambiguous. A good
use case provides specific val ue to one or more specific actors. Manage money sounds
likeavision for any number of systems, not aparticular use casein abanking system.

Instead, abank system might reasonably have these use cases: deposit funds, with-
draw funds, and transfer funds. Each of these use cases provides concretebenefit to the
bank customer, as each moves the customer's money around in a useful and distinct
way. Each of these use cases makes senseinisolation. For instance, the user might com-
fortably walk away from the system after depositing money, and return some other
day to withdraw funds.

Describe Actors and Use Cases

Once you have identified the actors and use cases for the system, the next step is to
indicate which actors depend on which use cases. In the UML, astick figure represents
an actor, and alabeled oval represents a use case. A solid arrow pointing from an actor
to a use case indicates that the actor initiates the use case. Figure 2.1 shows that the
Customer actor usesthe Purchase Book use case.

This type of diagram serves as a very accessible view of the overall use of the sys-
tem. It allows developers and stakeholders to keep their bearings as they navigate
through a large requirements document. It aso helps end users to identify areas that
affect them, so they can efficiently contribute to those areas. Aswe will seeinthe next
section, the full requirements document contains awealth of information for each use
cae

Customer

Figure 2.1 An example use case diagram.

24 Enterprise Java with UML

Describe Detailed and Complete
Requirements

There are two ways to describe the requirements: use a text document to describe the
use case in detail, along with the interactions between the actor and the system for each
usecase; or describethe requirementsusingaUML activity diagram. TheUML activity
diagram shows the sameinteractions as described in the text document, butinavisual
form. The two documents have asimilar purpose and contain similar information, and
reinforceoneanother quitewell. Certainly, different peoplelearninvery differentways,
s0 having a readable text description and a highly precise visual description is an
advantage.
Each use case includes three elements:

» Use case description
« One or more flow of events
« Activity diagram
Let'stake alook at each of these elements.

Use Case Description

A use case description provides an overview of the use case, and specifies any special
features, such as preconditions, postconditions, performance requirements, security
requirements, and deployment constraints. Preconditions include any use cases that
must be completed before the actor may start the use case. Postconditionsinclude any
changes to the system that must be accomplished during the use case. Finaly, deploy-
ment constraints describe limitations on how the use case is accessed. For instance, the
actor may need tointeract with the system through afirewall or from ahighly portable
device. These constraints specify needs while leaving the solution as open as possible.

Flow of Events

Aflow of events describes a sequence of interactions that occurs asthe actor attemptsto
completetheusecase. A flow of events doesnot describe different variations; instead, it
follows a single path al of the way through the use case. Other paths through the use
case are described by other flows of events.

Eachinteraction in theflow is a text description of the actor'sinput and the response
from the system. Consider the interactions involved in the Withdraw Funds use case
from abanking system when the actor does everything right and the system performs
asexpected.

1. Customer inserts card and enters his or her persond identification number. The
system greetsthe customer by name, and presents alist of options, consisting of
withdraw funds, deposit funds, and transfer funds.

2. User sdlects withdraw funds. The system presents a list of accounts for the cus-
tomer to choose from.

Gathering Requi with UML

25

w

. The customer chooses an account. The system asks the user to enter the amount

of money for withdrawal.

The customer enters a positive multiple of $20. The system asks the customer if

theamount iscorrect.

. The customer responds that the amount is correct. The system thanks the user,
distributes the money, prints areceipt, and returns the customer's card.

Torestate: Thisfirst flow of events describes the interactions when everything goes
well. Certainly, thereare other less favorable possibilities, but itisoften best to describe
the normal flow before tackling the details of other possible flows, including disaster
scenarios. For example, think about when you give driving directionsto anew arrival
to your town or city. Most people describe the most direct route first, then provide
alternativeroutes onrequest. Thislogic holdsfor use cases. Someonewhoisnew tothe
system needs to understand the normal flow before he or she considers more complex
flows.

There are three types of flows through every use case:

Normal, or baseline flow. Captures the purpose of the use case by describing the
interactions when everything proceeds according to plan. The flow above for the
Withdraw Funds use case is an example of anormal flow.

Alternative flows. Describes variation by the actor. For example, the actor may
abort the session or become confused and wander through the system for awhile.
Or the actor may enter invalid dataand be forced to correct it before he or she can
continue. One use case may require several aternative flows. Alternative flows
for the Withdraw Funds use case include the entry of an invalid PIN and a
request to overdraw the account.

Exception flows. Describes variation by the system. Since systems are generally
prized for their consistency, these variations are errors. For example, the system
may be prevented from completing its normal response due to network failure,
disk errors, or resource limitations. Most use cases have at least a few exception
flows.

E

o

Activity Diagrams
An activity diagram is a UML diagram that shows all of the flows of events for ause
caseinoneplace. Toaccomplishthis, activities diagrams show different activitiesthat
the system performsand how different results cause the system to take different paths.
Activity diagrams depict a start state, activities that the system performs, decisions
that determine which activity is performed next, and one or more end points. Activity
diagrams aso have notation to describe activities that are performed in parallel.
Figure 2.2 shows the activity diagram for the Withdraw Funds use case. The solid
circle represents the start of the use case; the round-corner rectangles represent activi-
ties that the system performs. Each arrow represents a transition from one activity to
another. o, the first activity is the system asking the actor to enter his or her pin, as
shown in the Ask for PIN activity. The labeled arrow from the Ask for PIN activity to

26 Enterprise Java with UML

[not too many retries] [too many retries]

®
Invalid

pin entered Authorization

[invalid pin] —
Check for Too Many Retries
[valid pin]

withdraw funds selected

Present Accounts

account selected

amount entered

[insufficient funds]

funds available
Dispense Money, Receipt, Thanks

Figure 2.2 Activity diagram for the Withdraw Funds use case.

End of Normal Flow

the Validate PIN activity represents the transition between the two activities that
occurswhen theactor entershisor her PIN. Sincethere aretwo outcomes fromtheVal-
idate PIN activity, the next transition includes a diamond-shaped decision symbol.
Each of the outcomesislabeled with the associated decision criteria. If the PIN isvalid,
the transition goes to the Present Accounts activity; otherwise, the transition goes to
the Check for Too Many Retries activity. Following the path straight down, the actor
selects an account to transition from the Present Accounts activity to the Request
Amount activity. From there, the actor enters an amount to cause the transition from
the Request Amount activity. This transition contains a decision, with one outcome

Gathering Requirements with UML

27

leading back to the Request Amount activity and the other outcome leading down to
the Dispense Money activity.

Thestraight path from the Ask for PIN activity to the Dispense Money activity isthe
normal flow. The side paths for invaid logins and for overdrawn accounts are aterna-
tive flows. No exception flows are shown.

An activity diagram is not a flowchart While they look very similar and
share much of the same notation, they have very different purposes. Flowcharts
help implementers develop code by precisely describing the control logic for the
code. An activity diagram helps stakeholders understand the requirements at a
very precise level, and helps developers design the system, by precisely
describing how the actor uses the system and how the system responds.
Flowcharts describe the solution; activity diagrams describe the problem.

Some project teams|imit the creation of activity diagramsto very complex use cases
Thisisgenerally not agood idea. If theusecasereally issimple, developing an activity
diagram is straightforward and does not consume much time. Also, creating the activ-
ity diagram often unearths interesting issues that might not surface in a text descrip-
tion of theinteraction. Finally, creeting activity diagramsfor the smple use cases dso
familiarizes developers and stakeholders with the mechanism on easy use cases.

Refactor the Use Case Model

After each use case is fleshed out, the requirements gatherers must revisit and often
revise the use case model as awhole. Using the guidelines for isolation and focus, use
cases may need to be split up, merged, or clarified. Excessively complex use casesmust
be identified and fixed.

In some cases, a use case may seem well focused and isolated, but still be too com-
plex. Thisis often found in use cases that consist of complex workflows. The system
may not provide any value unless the entire workflow is completed, yet it may be dif-
ficult to comprehend the entire process at once. For example, consider the process of
ordering a book online. The use case that provides the value is Purchase Book. That
does not, however, specify the steps involved: The customer must find a book, con-
sider any reviews, enter his or her payment information and shipping information,
and, finally, purchase thebook. No mere mortal could understand the activity diagram
for this monolithic use case. Few organizations own a sufficiently large plotter to print
it. Writing or even reading this huge flow of events from the beginning to the end
would be exhausting. Finding a specific issuein aflow of events would be difficult.
Despite the theoretical correctness of the use case, it failsthe ultimate tes; it is not use-
ful to the stakeholders.

Thereare several mechanisms that manage this sort of complexity. Thefirst splits up
the use case and uses preconditions to describe the workflow. Another mechanism
usestheinclude and extend relationships as specified by theUML. Also, variability can
be expressed by actor and use case generalization. Let's consider these mechanisms as
applied to asimple book-ordering example.

28 Enterprise Java with UML

Split Up the Use Case

First, an unwieldy use case may be deleted and its functionality split into several use
cases. These use cases are connected by preconditions and postconditions. Precondi-
tions include any use cases that must be completed before the actor may start the use
case. Postconditions include any changes to the system that must be accomplished
during the use case. Figure 2.3 shows the Purchase Book use case split into many use
cases. Find aBook allows the customer to search for abook by different criteria; it has
no preconditions. View Reviews displays the reviews for a sdlected book; it has suc-
cessful completion of Find a Book as a precondition. Since each customer must enter
payment information at least once and each customer may buy many books, the Enter
Payment Information use caseis an optiond part of the workflow. The sameis true of
Enter Shipping Information. The Complete Purchase use case has completion of the
Enter Payment Information use case and the Enter Shipping Information use case as
preconditions. All preconditions for a use case are described in the description of that
Uuse case

This approach has several advantages. First and foremost, it breaks the use case
model into manageable pieces. Each new use case has significantly smaller flows of
events. The activity diagrams for the use cases no longer require an expensive plotter
and a magnifying glass. The overall use case model is far easier to navigate and to
understand.

Unfortunately, some information is hidden in this process. A reviewer must check
the preconditions to determine the order and dependencies of the use cases in the
workflow. There is no way to determine which use cases are optional and which use
cases are essentia to the workflow. While the layout of the diagram provides some
visual clues, it is not aprecise or clear description.

Find a Book

/ View Reviews

Enter Payment
Information
stomer
Enter Shipping
Information
Complete
Purchase

Figure 2.3 Use cases for the Purchase Books workflow.

Gathering Requi with UML

19

Use of Include and Extend Relationships

The UML provides two powerful and, at times, confusing relationships between use
cases. The extend rel ationship allows a use caseto beincluded asan optionin another,
or base, use case. The other relationship, include, alows ause case to alwaysinclude
another base use case.

Include
Inan include relationship, the base use case depends on the included use case because
it absorbsitsbehavior. Aninclude relationship is represented by a dashed arrow point-
ing from the base use case to the included use case. The relationship is stereotyped by
enclosing the word "include" within double angle brackets. The flow of events pro-
ceeds along in the base use case until the inclusion point is reached. At this point, the
flow of eventstor theincluded use caseisfollowed until it completes. After completion
of the included use case, the rest of the base flow of eventsis followed to completion.
Theinclusion is not optional; when the base use case reaches the inclusion point, the
included use case takes over the flow. Also, theincluded use case may be abstract, such
that different forms of the use case canbeincluded without changing thebase use case.
Include has two major advantages. First, the base use case is simplified, since the
included use caseis pulled out. Second, ause case may be included in more than one
base use case, so that common flows can be abstracted out. However, in order to qual-
ify, theincluded use case must fit the definition of ause case. Specifically, it must pro-
vide some isolated val ue to the actor.

Extend

In an extend relationship, the base use case does not include the subordinate use case.
Instead, the extension use case depends on the base use case and optionally adds its
flow of events to the base use case's flow of events. An extend relationship is repre-
sented by a dashed arrow pointing from the extension case to the base use case. The
relationship is stereotyped by enclosing theword “extend" within double angle brack-
ets. The base use case defines one or more extension pointsin its flow of events. Each
extension use case specifies the extension point at which it may beinserted, aong with
the conditions that must hold for theinsertion to take place. Asthe base use case's flow
of events progresses to an insertion point, the conditions are checked for the extension
use case. If the conditions are met, the extension use case's flow of eventsis followed
to completion. Next, the base use case'sflow of events picksup just after the extension
point.

In an extend relationship, the dependency isfrom the extension use case to the base
use case, as opposed to an include relationship, in which the dependency is from the
base use case to the included use case. Extend use cases are optional, while included
use cases must take over the flow if the base use case reaches the inclusion point.

Example

Let'stakealook at an example. Figure2.4 showsthe Customer actor initiating the Pur-
chase Book use case. Theinclude relationship between the Purchase Book use case and
the Find a Book use case indicates that the flow of events for the Purchase Book use

10 Enterprise Java wilh UML

s,

Find a Book

! £ o

| 7 View Reviews
<<include>> | 7

2
: ,/<<extend>>
IF 5o
¥
LR S O < Settend>>
Purchase a Book Enter Payment
Customer [Information
=
|
| S\ <<extend>>
<<include>> | By

|

|

A4 Enter Shipping

O Information

Complete Purchase

Figure 2.4 Purchase Books use case with include and extend.

case always includes the flow of the Find a Book use case. Similarly, the includerela-
tionship between the Purchase Book use case and the Compl ete Purchase use case indi-
cates that the flow of events for the Complete Purchase use case isalways followed, if
theflow of eventsfor the Purchase Book use case reaches theinclusion point.

The extend relationships between the Purchase Book use case and the remaining use
cases indicate that they are optiona. For instance, the customer may have aready
entered shipping and payment information and be quite content with it.

There are advantages to using the include and extend relationships. The original use
case is simplified because the flows of events in the base use case implement the
included or extended use cases. Also, the relationships between the original use case
and the subordinate use cases are far more precise and visualy apparent than is the
case for independent use cases and preconditions.

However, the precision of Include and extend comes with a price. It is not always
easy to explain the concepts; and, asnoted earlier, a use case must bewritten for awide
audience. Imagine a requirements review with 30 people in attendance. Now picture
trying to explain the include and extend relationships on the spot. If your use case
model benefits from this more advanced notation, then it may be necessary to educate

Gathering Requi with UML

31

the stakeholdersin small groups. Alternatively, it may be possible to show asimplified
use case model that omits the inclusion and extension use casss to the wide audience,
and reserve the more complex mode! for carefully targeted groups.

Use Case Generalization

In some situations, a use case may have several distinct paths. For example, there may
betwo waysin which to find abook. Customerswho have a clear idea of their needs
can search by title, subject, or even ISBN. Otherwise, customersbrowse in broad cate-
gories, such as mystery novels or home and garden. They may jump from book to
book, by following linksto similar books.

This combination of searching and browsing in one use case makes the Find a Book
use cae very difficult to develop and to understand. Fortunately, UML provides a
mechanism for exactly this situation. The Find a Book use case is converted into an
abstract use case, which means that it defines the value that is obtained by the actor,
but does not specify the interactions that are used to reach the goal. Next, multiple con-
crete use cases are written, with each one specifying a set of interactions that reach the
goal defined by the abstract use case. For the Find a Book use case, one concrete use
case might be Search for a Book and the other might be Browse for aBook. Figure 2.5
shows the abstract Find a Book use case as a generalization of the two concrete use
cases.

Use case generalization can help divide acomplex use case into more manageable
pieces. Inmany cases, just the act of creating the activity diagramidentifies good can-
didates for use case generalization. Look for parallel paths that have the same basic
purpose.

m Do not implement use case generalization based on use case
size and complexity alone.

Itis often tempting to split up a use case as the activity diagram and flow of events
becomes unwieldy. Disciplineand an understanding of the different mechanisms must
temper thisnatural instinct. Arbitrary use of sophisticated mechanisms|eadsto confu-
sion and eliminates many of the benefits of use cases.

When appropriate, use case generalization makes a use case model more precise
without making it much more complex. It is an excellent mechanism when there are
high-level alternatives in a use case, but both alternatives serve the same basic pur-

Theat said, aswith include and extend, use case generalization requires more sophis-
tication from the consumers of the use case model. In my experience, the concept issig-
nificantly easier to explain than include and extend. Also, it isvery easy to producea
high-level use case model that smply excludes the concrete use cases.

Actor Generalization

In many use case models, one actor is very similar to another actor, yet still has addi-
tional obligations or responsibilities. Inthe UML, an actor is shown asa specid type of

52 Enterprise lava with UML

Search for a Book Browse for a Book

2

Find a Book

A

I
| 7 View Reviews
v

<<include>>| 7

! 7/ <<extend>>

——-——>© <<extend>> Q
- SKextend>>

Purchase a Book Enter Payment
Customer g Information
AN
|
| 9 N<<extend>>
P

<<include>>!
|

|
v Enter Shipping

: Information

Complete Purchase

Figure 2.5 The Find a Book use case with use case generalization.

another actor by drawing ageneralization arrow to the more general actor. The gener-
aization relationship is intended to document real-world differences and similarities
between user groups. The more specific actor must initiate all of the use cases that the
more generic actor initiates; thus the more specific actor is actually atype of the gener-
alized actor.

Consider asimple hiring process, in which managers and employees both participate
intheinterview and selection processes, but in which only the manager discusses salary
and makesthe final hiring decision. Both perform the Interview Candidate and Evalu-
ate Candidate use case, but only the manager performsthe Tender Offer and Reject Can-
didate use cases. Figure 2.6 shows the first two use casesinitiated by the Employeeactor
and the second two use cases initiated by the Manager actor. But note, since the

Gathering Requirements with UML 33

-

Interview Candidate

=<

Employee ©

Evaluate Candidate

=

Reject Candidate

Figure 2.6 Use of actor generalization.

Employeeactorisageneralization of theM anager actor, theM anager actor alsoinitiates
the Interview Candidate and Eval uate Candidate use cases.

Actor generalization is appropriate only if the actor usesall of the use casesthat the
generalized actor uses, thusreally isa specia type of the generalized actor. Consider
an examplewith technical expertsand managers. In most companies, thereisno gen-
eralization relationship between the actors. Not all managers are technical expertsand
not all technical experts are managers. There isno reason to force thisinto a general-
ization relationship. Instead, simply show the actors separately, asin Figure 2.7,

m Actor generalization can become needlessly complex. Don't
impose a relationship where none exists. Remember, you can always eliminate
the actor generalization and simply show the relationships between each actor
and use case.

Actor generalization can simplify ausecasemodel, especialy if anew version of an
actor adds a few use cases while initiating many existing use cases. However, actor
generdization does add complexity and demand some incremental sophistication
fromtheconsumersof the use case model. If theactors namesarewell chosen, andthe

54 Enterprise Java with UML

£

Interview Candidate

o

Technical Expert Manager

Evaluate Candidate Reject Candidate

&

Determine Technical Qualifications

Figure 2.7 Separate actors, no generalization.

rel ationshipsarenotexcessively complex, most stakehol dersfindtheunderlyingidea
quitereasonable. Afterall,therel ationshi psbetweenactorsreflectandhighlightreal -
worlddifferencesandsimilariticsbetweenuser communities.

Guidelines for Gathering Requirements

It is important to keep the requirements at a consistent level of detail and to be thor-
ough. That said, it is also important to make sure the requirements-gathering process
does not become an end unto itself. Striking this balance between too little and too
much will result in a solid foundation for the entire devel opment process. The follow-
ingguidelinesgivegeneral adviceontherequirements-gathering processasawhole.

Focus on the Problem

Remember to concentrate on what the system does, and ignore questions about how it
works. For example, it isinappropriate to choose between two competing technol ogies
inarequirementsdocument, but it isnecessary toincludeany known deployment con-
straints. The customer may require access to certain functionality from aWeb browser,
which is arequirement and so must be noted for each use case. However, the decision
to use Java servlets as opposed to JavaServer Pages (JSP) isinappropriate in arequire-
mentsdocument. L ater, when the project focuses on technol ogy selection and architec-
ture, the requirements provide valuable information that shapes these difficult and
crucial decisions. Attempting to make the decisions while till gathering requirements
leads to hasty decisions that are based onincomplete information.

Gathering R with UML

35

Don't Give Up

Perseverance is often the hardest part of use case modeling. A large system may have
dozens of use cases with severa flows of eventsfor each use case: Thereisan activity
diagram for each use case. Be complete, and strive to maintain a consistent level of
quality and detail. The collective understanding of every system evolves over time,
and requires countless hours of review of the meeting notes and updates to the use
case model .

It often helps to devel op the requirementsin stages. First, develop the high-level use
case model, which identifies the actors and use cases. Validating this model with the
user builds consensus and clarifies the boundaries of the system. Next, develop
descriptions and flows of events for some strategically important use cases. It may be
appropriateto review this material with some of the stakeholders as you proceed. Con-
tinuethis process until you have at least adescription and the normal flow for each use
caseinthe model. After validating thismodel with the stakeholders, identify afew use
casesfor further exploration and digin. At this stage, itis appropriate to spend several
days on each use case, developing alternate and exception flows of events and consol-
idating the flowsin an activity diagram. After afew use cases have elaborated, it may
be necessary to refactor the high-level use case model, using techniques such as the
include and extend relationships between use cases or use case generalization. After
reviewing this block of work with the stakeholders, you must decide to design and
develop the well-defined use cases or elaborate additional use cases.

A commitment to compl ete requirements does not preclude other concurrent efforts.
For instance, once each use case has been described and reviewed, parallel efforts for
screen design, technology selection, and architecture may coexist with refinement of
the use case model. Obviously, these processes must not start too early; but judicious
overlapping of these activitiesisrelatively safe and often providesvaluableinsight. On
the other hand, it is very dangerous to consolidate the various documents or consoli-
date the efforts. Each effort has separate goals and deserves a separate schedule and
separate reviews.

Don't Go Too Far

Authors and speakers, myself included, use statistics to frighten devel opersinto gath-
ering comprehensive requirements. Having seen the effects of inadequate require-
ments, | believethat thistactic isjustifiable. Neverthel ess, requirements gathering can
be over-emphasized and drawn out past its usefulness. Remember, requirements are
not an end unto themselves. They are a foundation for the rest of the development
process. Foundations must be strong and durable; they do not need to be artistic mas-
terpieces.

In some cases the requirements-gathering process drags on and on due to a reluc-
tance to move forward or a desire to achieve perfect requirements. This tendency may
be exacerbatedfay a demanding or indecisive customer or by uncertainty about the next

dally vulnerable on their first project with s new methodology
| have seen some projects become mired in requirementslong
stopped, because it was easier to continue to impress the stakeholders

36 Enterprise Java with UML

with another round of requirements than to face an uncertain future. Of course, this
never works out well, as the next step must eventually be taken, and time spent end-
lessly refining requirements cannot be used on prototyping or technology training that
might remove some of the uncertainty.

Believe in the Process

Solid requirements are essential to your project's success. Without them, you are
doomed to solve the wrong problems, repeat your efforts, and anger your customer.
Attempting to save time by neglecting requirements invariably leads to extending the
duration of the project and higher costs. As Benjamin Franklin put it, "Haste makes
waste." Discovering a missing or misunderstood requirement during system test is
often catastrophic. Fixing an omission or mistake may require weeks or months of
development. In the meantime, marketing schedules are destroyed, expensive produc-
tion hardware sits unused, business opportunities are missed, and credibility is lost
forever, hi some cases, projects, jobs, even entire companies are lost. At best, develop-
erspour their heartsinto ayear's effort and produce a system that the customers think
they can live with, although they don't really see what that one screen is for and they
really wish that it worked differently.
Poor requirements lead to project failurein several ways:

Customer confidence in the development process and the devel opers erodes with
each misunderstanding. Each failure raises the pressure for the next attempt;
hence, communication between developers and stakeholders deteriorates rapidly.
Once communication breaks clown, the misunderstandings grow, and an adver-
sarid cloud settles over the project. It is very difficult to reverse this trend once it
starts.

The software base bloats as it expands to accommodate an ever-changing view of
the system. New requirements and new understandings of existing requirements
add layer after layer to the implementation. Continued over months and years,
this process can mean a tedious death of a project by a thousand cuts.

Developer morale collapses as they realize that they are spending more and more
time but accomplishing less and less. Each time a developer spends time solv-
ing the wrong problem, his or her faith in the process and hope for success
diminishes.

On the other hand, a good use case model is a solid foundation for the rest of the

project;

Developers begin anaysis, architecture, and design with confidence. They know
that the requirements will not shift radically beneath their feet, and they have a
clear source of information as they proceed. Certainly they expect to ask questions
and refine the requirements as they go, but the core valueis complete. Thisallows
themto focustheir attention on the sol ution. Technology selection and architecture
decisions are based on complete information. Also, since the overal problem is
well understood, developers may comfortably focus on afew use casesat a time.

with UML

Project managerstreat each use case as aunit of work for scheduling, risk tracking,
and estimation. Developers produce effort estimates and identify risks for each
use casein turn. This dlows the project manager and the senior technical staff to
develop avery sophisticated project plan that identifiesand attacksrisks early in
the project, by targeting particular use cases. For example, one use case may be
identified asahigh priority duetoitscomplex processing or toachallenging user
interface. Also, many project teamsare new tothe sol utiontechnol ogies. Selecting
smpleusecasesfor theinitial development effort may helpalleviatethiscommon
and serious risk. It is better to build on success than to overreach and live with
failure. So, project managers should leverage the use case model as they estimate
and schedule devel opment, managerisks, and grow their team.

Testers treat each use case as a basis for a section in the test plan. A well-written
flow of eventsform easily evolvesinto a test case. Remember, theflow of events
describes the interactions between the actor and the system. In the test case, the
actor's requests and inputs become test directions, and the system's responses
become the expected result. Of course, the use case iswritten without considera-
tion for particular screens or technology, so additional instructions must be
added. However, thebasic structure and narrative flow often remains unchanged
inthe evolution from flow of eventsto test case. This creates an interesting side
effect: People with experience developing test plans may be very proficient at
reviewing and writing use cases.

Stakeholders track progress objectively; either the latest release supports a use
case or it doesnt. Objective measurement tends to reduce tensions between
developers and stakeholders. Clearly understood bad news is ill better than
being completely in the dark. Completing three out of thefive usecasesisaclear,
if partial, success. Everyone knows what is complete and what is not complete.
Compare this to the equivalent measurement of a milestone being 60 percent
complete. Stakeholders tend to feel frustrated and mislead, as the system
progress is a mystery to them, and the percent-complete numbers never quite
move as expected.

How to Detect Poor Requirements

If gathering requirements is key to project success, then everyone must be doing it.
Tragically, this is not the case. Many organizations, both large and small, skim past
requirements or develop them so poorly that &l benefit islost. There are several com-

« Excessive schedule pressure
« Premature architecture and design

Thefollowingsectionsdescribethesecommonpathstopoor requirements, including
symptomsand remedies.

37

38 Enterprise Java with UML

Path 1: Excessive Schedule Pressure

Excessive schedul e pressure is the most common rationale for skipping or skimming
through the requirements-gathering process. It is also the worst possible combination:
The development team does not know what it is trying to accomplish, but they are
working too fast to notice. The pressure to get something, anything, out the door is
overwhelming. In the end, very bright people spend nights and weekends paying the
price.

There are two distinct variants on this path. In one, management is amost com-
pletely uninvolved. Their only concern isthe final milestone, so the constant refrain is
"When will you be done?" The aternative version is micromanaged pressure. In this
version, management obsessively tracks the schedule and misuses schedule-oriented
practices, such as commitment-based scheduling and time-boxing.

Symptoms

« Hard deadlines are determined before the objectives are defined.
« Developers make feature decisions as they code.
« Everyoneis coding, but there is no coherent or readable requirements document.

Solution

Education, redirection of energy, and verification are the keys to avoiding this path.
Managers, developers, and the stakehol ders must understand the process and impor-
tance of gathering requirements; and requirements reviews must be used to ensure
that requirements are complete before moving forward. If the scheduleistruly impor-
tant, managers and the entire development staff must redirect their energies toward
practicesthat dowork.

First, both devel opers and managers need to understand that trying to save time by
skimping on requirementsis a dangerous and counterproductive practice. Reinforce
thefollowing points:

« Incomplete requirements lead to expensive and time-consuming rework.

« Work thet is invalidated by anew requirement or a new interpretation is com-

pletely wasted.

 Thelonger it takes to catch missing or incorrect requirements, the longer it will

take to undo the damage.

« Committing to gathering solid requirements prevents rework, thereby shorten-

ing the actual schedule.

« Fostering positive relations with the other stakeholders during requirements

gathering sets the stage for win-win compromises on schedule and features.

Once everyone understands the need for good requirements, they must commit to
producing them. Specifically, managers must schedule time for requirements gather-
ing, and ensure that the requirement gatherers have access to the right stakeholders.

Gathering Requi with UML

39

reviewed for quality and completeness at scheduled intervals. At least some of these
reviews must include awide range of stakeholders. Gathering requirements takes skill
and a great deal of persistence With a little practice and a lot of willpower, every pro-
ject team can excel at this process.

Path 2: No Clear Vision

In this situation, the development team gathers requirements for a poorly defined
system. Without a solid system scope and vision, requirements tend to change and
grow at each requirements meeting. If there is no clear system sponsor, require-
ments change as developers attempt to please various potential sponsors. A lack of
vision often leads to requirement artifacts of unusually large size. These intricate
creations grow, but rarely improve. | have seen over $1 million (U.S.) spent gather-
ing requirements and prototyping, all without a clear vision of the system. At best,
the time is simply wasted. At worst, the final set of requirements actually impedes
progress because it is burdened by obsolete or contradictory requirements. Ironi-
caly, the requirements-gathering process and the developers often receive the
blame.

Symptoms

* Reguirements documents are very large and very convoluted.
* Reguirements are contradictory.
« Frequent changes are made to requirements.

* Requirements are unstable: They are included, excluded, and reinstated in a
bizarre birth, death, and reincarnation cycle.

« Corporate politics are an integral part of requirement meetings.

Solution

Developers can raise awareness of the risks associated with gathering requirements
without aclear vision. Unfortunately, the underlying political barriersto commitment
may bevery real. Perhaps thebudget is fragmented among different departments. Per-
haps the most likely sponsor swore off commitment to risky software development
projects aspart of aNew Y ear's resolution.

Thefirst goal istofind or create a sponsor. In some cases, there are stakehol derswho
face severe consequencesif the project does not succeed. These stakeholdersmay listen
to reason and become the sponsor. As always, finding receptive people and educating
them about risks and dangersis a delicate task. But the alternative isworse.

1f no sponsor can be found, the developers may till be able to bring some order to
the chaos. Rather than having one set of requirements that has pieces of each vision, try
to maintain adistinct document for each major vision. Thismay help the stakehol ders
se the dilemma. At the very least, the developers' lives will improve, as each docu-
ment staysrelatively simple.

10 Enterprise Java with UML

Path 3: Premature Architecture and Design

hi times of adversity, we revert to what we know and believe. Is it surprising when
developers forsake tedious and often contentious requirements meetings in favor of
technology selection, design, and code? It is difficult to spend endless hours establish-
ing the details of the system requirements when design and code beckon with the
promise of quick progress, objective results, and intellectual stimulation. As aresult,
requirements documents either atrophy from neglect or evolve to resemble architec-
ture and design documents. Either way, the quick progress is often illusory, because it
isprogressin a poorly defined direction.

Symptoms

« The requirements-gathering process ends, with no closure or consensus.
« Requirements documents contain implementation details.

Solution

There are two solutions to this situation, first, educate and encourage developers to
make requirements a priority. Second, make gathering requirements as easy as possi-
ble for developers.

Developers must understand the benefits of requirementsand the dangers of devel-
oping software without them.

Reinforcethefollowing pointsat every opportunity:

« Incomplete requirements lead to poor technology selection and architecture
decisions. The time spent making these decisions and implementing them can-
not be recovered.

« Solid requirements make estimation, scheduling, and testing possible. All of
these activities help the developer coexist with the other stakeholders, by base-
lining expectations and providing project visibility.

These messages are especially powerful when combined with commitment-based
scheduling. In this scenario, a developer develops requirements for part of a system,
then produces an effort estimate based on the requirements. This allows developersto
benefit from their own diligence.

hi many organizations, gathering requirements is unnecessarily burdensome for
developers. For instance, tedious formatting standards can be relaxed or the work may
be shifted to other personnel. Dedicated business analysts can interact with the cus-
tomer and start the process

The Next Step

This chapter established anumber of steps and guidelines for gathering requirements,
including gathering raw requirements, creating a high-level view of the requirements,
and describing the details of the requirements. Chapter 3 introduces a simple sample
application to demonstrate how you can use these techniques.

Gathering Requirements for
the Timecard Application

In this chapter, we'll simulate the requirements-gathering process for a simple time-
tracking application, using the process introduced in Chapter 2, "Gathering Require-
mentswith UML." Well use this example throughout this book.

For the purposes of this book, | had to keep the example simple, so
please keep in mind that while this book describes techniques that are
appropriate for much larger systems, demonstrating these real-world
techniques against a fairly small problem often forced me to over-engineer the
sample solutions. Another caveat; To keep the example small, the simulated

is i i and helpful.

In this example, the developer discovers that the primary stakeholder is the opera-
tions manager who manages the time-tracking process for the client organization.
Next, the developer works with the operations manager and an end user to under-
stand the system, then describes the system in a high-level use case model. Based on
feedback from the customer, the devel oper refines the use case model and increasesthe
level of detail. Finally, die developer refactorsthe use case model toimprove readabil-
ity and accessibility.

Thefinal product of this chapter is a use case model, complete with a high-level use
case diagram for navigation, as well as a detailed description of each use case. Together,
these elements combineto form amodel that isboth accessible and complete. Both fac-

42 Enterprise Java with UML

tors are critical, as stakeholders review the use case model to validate the proposed
system, and the development team treats the use case model as a basis for the entire
development process, from effort estimation to design and test.

Listen to the Stakeholders

Remember, asystemisdefined by theval uethat it providesto people. So, our goal dur-
ing this phaseis to understand the system from the customer's perspective. This sec-
tion describes a somewhat idealized dialogue between a developer, the operations
manager who isresponsible for time tracking, and an employee who usesthe system.
Their god isto describe the system'sfunctionality and purpose. Certainly, in the real
world, such ameeting would involve 5,10, or even 20 people, all with different needs
and perspectives. It might take many meetings over severa weeks to reach the first
solid understanding of the system.

m Raw requirements are the foundation for the whole development
process. There is only one way to get them: Co forth and ask-nicely. Then ask if
you got it right

SAMPLE NOTES FROM INIT MEETING

DEVELOPER; Who will use the application?

CUSTOMER: Employees will use it to record their billabie and nonbilable hours,

DEVELOPER: From where? Here and home and client sites? Behind firewalls?

CUSTOMER: Here at the office. Sometimes from home. Definitety from client
sites that are behind firewalls.

DEVELOPER: Okay, thai helps. Well, what does the timecard application look
like now?

CUSTOMER: It is an Excel spreadsheet tar each half-month. Each employee fills
in his or her copy and then emais it to me. It is pretty standard: charge
codes down the side and days across the top. The employee is able to
comment any entry.

DEVELOPER: Where do the charge numbers come from?

CUSTOMER: A separate spreadsheet has a list of valid charge codes, organized
by client and activity,

DEVELOPER: So, each charge code has a name, a client, and a project?
CUSTOMER: Yes, and also atype, like billabie or nonbillable.
DEVELOPER: Do you think you would ever need & deeper hierarchy?

Gathering Requirements for the Timecard Application

43

CUSTOMER: What?

DEVELOPER: Sorry, right now you ham client, project, and activity. Would you
ever need subprojects or subactivities?

CUSTOMER: No, | wouldn't think so.

DEVELOPER: Who manages charge codes?

CUSTOMER: Well, | add them as needed, and individual managers tell their
people what to bill to. They never really go away.

DEVELOPER: Are there any special cases you can think of? For instance, do
employees fill in ahead of time or anything like that?
CUSTOMER; oh, t see. The employee doesn't. If someone is going to be on

vacation for along time, or in the hospital, | take care of his or her
timesheets.

DEVELOPER: How will the data be used onceit is collected?

CUSTOMER: I'm going to export each month's hours to our new billing system.

DEVELOPER: Should the system automatically select the data range and all of
the employees?

CUSTOMER : If possible, | would like to select the date range, clients, and
employees that areincluded in the export.

DEVELOPER: Okay- The billing system lias an existing data format?

CUSTOMER: Ties, It expects XML.

PEVELOPER: Okay; we should be able to handle that. I'l see if can track down
the details for that.

DEVELOPER: Thank you very much for your time; 1 think we have something to
work with.... Can we meet again on Tuesday?

CUSTOMER: Sounds good.

In this dialogue, the customer and the developer discovered and refined the cus-
tomer's needs for the system. Notice that the developer asks a question, listens to the
answer, then either summarizes the response or asks a clarifying question, hi most
cases, the customer does not know exactly what he or she wants, and certainly is not
expected to anticipate the level of detail required for software development. So, itisup
to the developer or requirements analyst to shape the discussion and ensure that the
necessary information is gathered.

Based on this dialogue, the developers can begin creating the actual system require-
ments documents, starting with ahigh-level use case diagram.

44 Enterprise Java with UML

Build a Use Case Diagram

Building ahigh-level use case diagram hasthree steps: identify the actors, identify the
use cases, and finally determine the relationships between the actors and use cases.
Remember from Chapter 2:

« An actor usually represents a group of people who gain value by interacting
with the system. An actor may aso represent a system that is outside of the sys-
tem and that gamsvalue or provides valueby interacting with the system. Inthe
UML, actors are shown as stick figures. Thereis no distinction between human
actorsand external systems.

* A use case describes a set of interactions between an actor and the system that
provides a discrete benefit or value to the actor. Theval ue must beindependently
significant, yet well focused. In the UML, ause caseis shown as alabeled ovd.

There are only two reasons for an actor to be associated with a use case. Firgt, al
use casesareinitiated by at least one actor. In order toinitiate a use case, the actor
must be associated with it. In the UML, thisis shown by a solid arrow from the
actor to the use case. Once a use case is initiated, it may send notifications to
other actors or request information from other actors. This dependence on the
other actor(s) is represented in the UML by a solid arrow drawn from the use
case to the actor.

Find the Actors

Actors are discovered by reading the raw requirementsnotes, culling out participants,
and determining the distinct groups of users. This first attempt invariably contains
redundant names for the same actor, and may miss some actors entirely.

Find Candidate Actors
From the raw notes, the developer highlights the following dialogue:

:DE...‘. R: Who will use the appli

CUSTOMER: Employees will use it to record their billable and nonbillable |
Each employee fills in his or her copy and then emails it to me.

| DEVELOPER: Who manages charge codes? 3
s Well, I (oper add them as needed; and individual
managers tell their people what to bill to. They never really go away.

From these excerpts, it appears that the candidate actors are employee, operations

Gathering for the Timecard

45

Refine the Actors

Refining thelist of actorsis an interactive process. In many cases, the customershavea
dear view of the roles within their organization. Subsequent meetings will be greatly
simplified if developers adopt the users' terminology. Also, developers may need to
probe abit to determine whether there are differencesin theway different types of peo-
ple use the system. Remember, actors are determined by their use of the system, not by
differencesinjobtitleor organizational hierarchy.

Thefirst actor seems clear. Employees use the system to record their time. The next,
operations manager, seems essentid, but the name indicates a single person in the orga-
nization. What if that person goes on vacation or needs to delegate his or her responsi-
bilities as the organization grows? A brief flurry of emailswith the operations manager
determines that the actor's real name is "administrative user," with the understanding
that currently only one person isfilling thisrole.

A face-to-face meeting is needed to decide whether managers are separate actors.
They certainly have arolein the process, as employees must know which projects they
can bill to. However, under the current requirements, the managers do not use the sys-
tem to enforce these decisions. After some discussion, the customers agree that deter-
mining who has permission to bill to a charge code is not a requirement for the system.
So, managers are eliminated as an actor.

Thisleaves the following actors: employee and administrative user.

Find the Use Cases

Use cases are found by identifying candidate use cases from the raw notes and asking
what additional use cases are needed to support the obvious use cases. Then the guide-
lines established in Chapter 1, "Introduction to Modeling Java with the UML," are
applied to the candidates. These guidelines lead developers to split, merge, and elimi-
nate use cases until a solid set of use casesisidentified.

Find Primary Use Cases

These are the use casesthat characterize the system. From theraw notes, the devel oper
highlights the following dialogue:

DEVELOPER: Who will use the application
CUSTOMER: Employees will use it to record their billable and nonbillable hours.
CUSTOMER: It is an Excel spreadsheet for each half-month. Each employee fills -

in his or her copy and then emails it to me. It is pretty standard: charge

‘codes down the side and days across the top. The employee is able to

commgm any entry. 3
'DEVELOPER: Who manages charge codes?

46 Enterprise lava with UML

‘Well, 1 (op add them as needed, and individual

" tell their people wh bill to. They never really go away.

- DEVELOPER: How will the data be used once it is collected?

USTOMER: I'm going to export each month'’s hours to our new billing system.

DEVELOPER: Should the system automatically select the data range and all of
the employees? '

CUSTOMER: If possible; 1 would like to select the date range, clients, and
employees that are included in the export.

" DEVELOPER: Okay. The billing system has an existing data format?

'CUSTOMER: Yes, it expects XML.

'DEVELOPER: Okay; we should be able to handle that. I'll see if | can track down

t.

The first excerpt leads to the Record Time use case. The second |eads to the Com-
ment Time Entry use case. The third excerpt leads to the Create Charge Code use case.
Finally, the last excerpt leads to the Export Time Entries use case.

m Use short active phrases when naming a use case. When reading the use
case diagram, a reviewer should be able to say the name of the actor followed
by the use case and have it sound almost like a sentence. For example, a
diagram that shows the Employee actor initiating the Record Time use case
reads as "the employee records time."

Find Supporting Use Cases

Supporting use cases are not mentioned in the dialogue. They are found by asking what
the system needs before it can accomplish each use case. Consider the Record Time use
cast. Before an employee can record his or her hours, the system needs alist of charge
codesand alist of employees. Thefirst part, the charge codes, is already provided by the
Create Charge Code use case, but the existence of the employee is unexplained. So, a
new use case, Create Employee, is needed. The other use cases, Comment Time Entry
and Export Time Entries are supported by the Record Time use case.

The new list of candidate use cases includes Create Employee, Create Charge Code,
Record Time, Comment Time Entry, and Export Time Entries.

Evaluate Use Cases

Each use case must meet the isolation and focus guidelines as described in Chapter 2.
To summarize, each use case must be significant, so that it has valuein isolation. How-
ever, it must also be well focused, so that it does not provide more than one distinct

Gathering Requirements for the Timecard Application

benefit to the actor. Each use case is considered independently before checking the
wholeusecasemodel for consistency.

The Create Employee use case has a single benefit, as it only allows an administra-
tor to add an employee to the system. So, the Create Employee use case meets our
guidelines for focus. It is easy to imagine an administrative user receiving a request
from anew hire'smanager and addingthe new hireto the system asasingletask. Also,
the system is significantly changed, as it has gained a new end user, so the Create
Employee use case meets our guidelines for independent value.

The Create Charge Code use case dso has a single benefit, as it only alows the
administrative user to add acharge code to the system. Itiseasy toimagine the admin-
istrative user receiving a request from a project manager and adding the new charge
code as a single task. Also, the system is significantly changed, asit has gained a new
charge code that may be used by the end users. So, the Create Charge Code use case
meets our guidelines.

The Record Time use case seems slightly less focused, as it allows an employee to
view, update, and add time entries. However, none of these activities seems indepen-
dently valuable. Record Time has a single distinct value, despite its distinct subactivi-
ties. When a use case seems too large, but the subactivities are clearly too small, it is
wise to keep the high-level use case. Aswe will see later in this chapter, there are sev-
eral techniques that simplify complex use cases without losing their coherence. Cer-
tainly the Record Time use case has vaue in isolation, as it is the motivation for the
entire system.

The Comment Time Entry use case certainly meetsthe guidelines for focus, asit has
avery concretebenefit. However, it failsthetest for valuein isolation. Commenting an
entry ispart of alarger activity, recording time. So, the Comment Time Entry use case
isdeleted as ause case and becomes part of the details for the Record Time use case.

The Export Time Entries use case clearly has awell-defined and valuable purpose,
asit allows the administrative user to export the system's data

This process trims our list of use cases to Create Employee, Create Charge Code,
Record Time, and Export Time Entries.

Determine the Actor-to-Use-Case
Relationships

Each actor initiates one or more use cases, and eech use cae isinitiated by one or more
actors. Our final step in creating the high-level use case diagramiis to describe these
relationships for the actors and use cases. A solid arrow from the actor to the use case
indicates that the actor initiates the use case.

Consider each actor in turn. Based on the dialogue with the customers, the Employee
actor cannot initiate the Create Employee, Create Charge Code, or Export Time Entries
use cases. Certainly, the Employee actor must initiate the Record Time use case on a
regular basis.

The Administrative User actor clearly initiates the Create Employee, Create Charge
Code, and Export Time Entries. The person who fills the role of the Administrative
User actor is almost certainly an employee of the organization and therefore must
record hisor her time. However, he or she does so in the role of an employee. The only

47

48 Enterprise Java with UML

e

Create Charge Code
i Create Employee

Administrative " O TSR
y

User Export Time Entries

i o s
jt Record Time

Employee

Billing System

Figure 3.1 High-level use case diagram for the timecard system

reason a person would need to record time as an Administrative User would be to
record another employee's time. Revisiting the meeting notes, it is clear that this is a
requirement, as the administrative user records time for sick or vacationing employees.

Figure 31 showsthese relationships; it isthe first draft of the high-level use case dia-
gram. At this point, you should confirm the accuracy of the model with the customer.
The customer must recognize all of the actors and use cases. At this meeting, your cus-
tomer should provide a valuable sanity check, and point out any missing features.
Remember, a good use case model serves as a friendly and readable entry point into
your requirements. Y our customer must be able to easily understand it.

Describe the Details

Ausecasediagram providesahigh-level view of theentire system, but thisisnotasuf-
ficient foundation for design. For each use cass, you need to determine exactly how the
customer uses the system. Again, the emphasis is on the value and the workflow, not
on specific solutions.

Guidelines for Describing the Details

Any known deployment constraints are included at this point. For instance, if the end
user accesses the system from behind a firewall or from a portable device, you must

Regquirements for the Timecard

49

capture that requirement for any affected use cases. However, technology selection
decisions are not included, so it would be inappropriate to propose solutions to the
deployment constraints. Another common mistake is to think of a use case in terms of
screen design. Thisis dangerous, because some screens may support many use cases
and one use case may use severd screens in the final design.

Developing a flow of eventsrequires adeveloper or requirements analyst to play the
role of the end user and ask a series of questions. How does the flow start? What infor-
mation does the system demand from the actor? How does the system respond? How
does the flow end? The answers are captured in a list of inputs to the system and
responses from the system. A flow of events resembles atest plan without any details
about the screens or the format of the responses, hi some cases, the devel oper can inter-
act with the end users during this process, understanding their needs for each use case.
Otherwise, the developer must develop reasonable flows of events and have the end
users validate them.

It is a common belief that you come away with a very clear understanding of the
system after theinitial meeting with the customer. Infact, often, fillinginthe detailsfor
each use case is ahumbling and enlightening experience. As you develop each flow of
events and attempt to describe the preconditions and deployment constraints, you will
discover relevant questions and open issues. These can be listed as part of the use case
documentation and resolved at the first review of the entire use case model.

Each use case should follow a template. Though no two projects follow the same
template, it should look something like this:

Name of use case. A brief active phrasethat captures the purpose of the use case.

Description. A brief paragraph that explains the purpose of the use case, with an
emphasis on the value to the actors. If this information cannot be conveyed in a
brief paragraph, the use case may not be clearly focused.

Preconditions. A brief paragraphthat lists any use cases that must be succeed before
the use case is initiated and that describes the dependency.

Deployment constraints. A brief paragraph that describes how the system will be
used tofulfill the use case. For instance, a particular use case may be initiated by
an Employee actor who isbehind the firewall that protectsthe employee's client.
As neglecting this sort of constraint can have serious consequences, the informa-
tion must be captured as early as possible.

Normal flow of events. An ordered list of interactions that describes al inputs to
the system and responses from the system that make up the normal path through
the use case. The normal flow of events captures the intent of the use case by
showing the interactions when everything proceeds according to plan. This flow
of events is also referred to as the happyflow.

Alternate flow of events. An ordered list of interactions that describes dl inputs to
the system and responses from the system that make up a single alternative path
through the use case. An aternative flow of events captures the system's
response to variations by the user, such as entering invalid data or attempting to
perform steps in aworkflow in anunusual order. This section isrepeated for each
alternate flow of events.

50 Enterprise Jav

Exception or error flow of events. An ordered list of interaction that describes all
inputs to the system and responses from the system that make up a single excep-
tion path through the use case. An exception flow of events captures the system's
response to errors, such as unavailable system or external resources. This section
isrepeated for each exception flow of events.

Activity diagram. Shows al of the flows of events for the use case in one diagram.
It complements the flows of events and provides a valuable way to measure the
complexity of ausecase.

Nonfunctional requirements. A brief paragraph or two that describes any success
criteria for the use case that are not easily embedded in the flows of events. For
instance, the system might need to provide aresponse for the use case in less than
three seconds; or there might be an upper limit of seven mouse dlicks to navigate
through any flow of events for the use case.

Notes (optional). A list of resolved issues that don't fit well in any other category.
These may include restrictions on the system's functionality.

Open issues (optional). A list of questions for the stakeholders.

Let'stake alook at the use case documentation for our timecard application.

Sample Use Case Documentation
for Create Charge Code

Name of use case. Create Charge Code

Description. The administrative user actor uses the Create Charge Code use cage to

populate the time-tracking system with charge codes. Once added, acharge code
isavailable to al employees as they enter their hours.

Preconditions. None

Deployment constraints. None

Normal flow of events. Add a charge code to an existing project.

1. Theadministrative user seesaview of existing charge codes. Charge codes are
activities organized by client and project.

2. The administrative user adds a charge code to an existing project. The new
charge code appears in the view, and may be used by employees.

Alternate flow of events. New charge code for anew project for anew client.
Theadministrative user ssesaview of existing charge codes. Charge codesare
activities organized by client and project.

The administrative user adds a client. The new client appearsinthe view.

The administrative user adds a project to the new client. The new project
appearsintheview.

The administrative user adds acharge codeto the new project. Thenew charge
code appears in the view and may be used by employees.

Alternate flow of events. Duplicate charge code.

[l

w N

~

Gathering Requirements for the Timeiard Application 51

1. The administrative user seesaview of existing charge codes. Charg
activities organized by client and project.
2. The administrative user adds a charge code to an existing project. The charge
code already existsfor the project.
3. The system informs the administrative user that the charge code aready
exists.NLI changetotheview.
Exception flow of events. System is unable to add the charge code due to a system
or communication error.
1. The administrative user seesaview of existing charge codes. Charge codes are
activities organized by dient and project.
2. The administrative user adds acharge codeto an existing project. The system
isunable to complete the addition, due to a system or communication error.
3. The system informs the administrative user of the error, complete with avail-
able details. The view revertsto the previous state.
4. If possible, an error is added to alog.
Activity diagram. SeeFigure3.2.
Nonfunctional requirements. None
Open Issues.
» |sthere adefault set of activities?
« Can an employeebill to a project without specifying the activity?
« Is there information other than the name of the client, project, or activity?

Sample Use Case Documentation
for Create Employee

Name of use case. Create Employee
Description. The Create Employee use case allows the administrative user to add an
employee to the time-tracking system. Once employees have been created, they
are able to use the system to record their time.
Preconditions. None
Deployment constraints. None.
Normal flow of events. The administrative employee adds an employee.
1. Theadministrator ssesaview of al existing employeesby name.
2. The administrator adds an employee, with a name, email address, and pass-
word.
3. The new employee appears in the view. The employee can record his or her
hours.
Alternate flow of events. Employee exists.
1. The administrative user sees aview of al existing employeesby name.
2. The administrative user adds an employee, with a name, email address, and

52 Enterprise Java with UML

Display Clients, Projects, and Charge Codes)

Ask for Type of New Data

type entered

[client selected] [charge code selected]

Ask for Charge Code Data

Ask for Client Data

[project selected]

client data
entered

charge code data

Ask for Project Data entered

project data entered

[submission ok] [error found]

Update View

[duplicate found]

Show Conflict

Figure 3.2 Activity diagram for Create Charge Code use case.

password.
3. Theadministrative user isnotified of the conflict. No changeto existing data.

Exception flow of events. System is unable to add the employee due to a system or
communication error.

1. Theadministrative user ssesaview of all existing employeesby name.

2. The administrative user adds an employee, with a name, email address, and
password. The system is unable to complete the addition, due to a system or

Gathering uirements tor the Timecard 53

3. The systeminformsthe administrative user of the error, completewith avail-
abledetails. Theview revertsto the previous state.

4. If possible, an error isadded to alog.
Activity diagram. See Figure 33.
Nonfunctional requirements. None
Openissues.
« Isthere information other than the employee's name and password?
« Will the employee need to change his or her password?
« Are employees organized by department or category?

Sample Use Case Documentation for Record Time

Nameof usecase. Record Time

Description. The Record Time use case allows employees to track the hours that
they work. The Record Time use case alows an administrative user to record
hoursfor any employee.

Preconditions. None

Ask for New Employee Data

employee data entered

Store New Data

Isystem error]

Jupdate ok]

Record Error

[duplicate employee found]

.
Display Conflict

Figure 3.3 Activity diagram for the Create Employee use case.

54 Enterprise lava with UML

Deployment constraints. The Record Time use case must be accessible from client
sites and the employees homes. In the case of client sites, they will often be
behind the client's firewall.

Normal flow of events. An employee records his or her time.
The employee sees previously entered data for the current time period.
. The employee selects a charge number from all available charge numbers,
organized by dient and project.
The employee selectsa day from the current time period.
4. The employee enters the hours worked as a positive decima number.
. The new hours are added to the view and are seen in any subsequent views.
Alternate flow of events. An employee updates his or her time.
1. Theemployee seespreviously entered data for the current timeperiod.
2. The employee selectsan existing entry.
3. The employee changes the hours worked.
4. The new information is updated in the view and is seen in any subsequent

N

w

o

Alternate flow of events. An administrative user records time for an employee.
The administrative user is presented with alist of employees, sorted by name.

2. The administrative user selects an employee and sees previously entered data
for the current time period.

The administrative user sdlects a charge number from al available charge
numbers, organized by client and project.

The administrative user selects aday from the current time period.

The administrative user enters the hours worked as a positive decimal num-
ber.

[l

w

o s

6. The new hours are added to theview and are seen in any subsequent views.
Exception flow of events. System isunableto add the update to the timecard due to

[l

The employee seespreviously entered data for the current timeperiod.
The employee selects a charge number from al available charge numbers,
organized by client and project.
The employee selectsa day from the current time period.
The employee enters the hoursworked as a positive decima number. Thesys-
tem is unable to complete the addition, due to a system or communication
error.
The system informs the administrative user of the error, complete with avail-
able details. All additions and edits are undone together. The view reverts to
the previous state.

6. If possible, an error isadded to alog.
Activity Diagram. See Figure 34.

N

> w

o

Gathering Requirements for the Timecard Application 55

[administrative user]

Display List of Employees

select employee

[employee]

charge code and date selected

Prompt for Hours

Ask if Finished

[not finished]

[finished]

Display Error

Record Error

Figure 3.4 Activity diagram for the Record Time use case.

56 Enterprise Java with UML

Nonfunctional requirements. None
Open issues.

« Can an employee enter hours or edit hoursin a future timecard, for example,
just before avacation?

Sample Use Case Documentation
for Export Time Entries
Name of use case. Export Time Entries

Description. The Export Time Entries use case alows the administrative user to
save specified time-tracking datato aformattedfile.

Preconditions. None

Normal flow of events. The administrative user exports the data.
1. The administrative user selects arange of dates.
2. Theadministrative user selects asubset of clientsor all.
3. The administrative user selects a subset of employeesor al.
4. The administrative user sdlects atarget file.
5. ThedataisexportedtothefileasXML. Theadministrator isnotified whenthe
process is complete.
Exception flow of events, Systemis unableto export the data due to asystem error.
1. The administrative user selectsarange of dates.
2. The administrative user selects asubset of clientsor all.
3. The administrative user selects a subset of employees or al.
4. The administrative user selects atarget file.
5. The system isunableto export the data. The administrative user is notified of

6. If possible, the error isrecorded to alog.
Activity Diagram. SeeFigure35.
Nonfunctional requirements. None
Open issues.
* Are the data sdlection criteria sufficient?
s Arethedatasdlectioncriteriaunnecessarily complex?
« Do other export formats exist?

Gathering i for the Timecard

Ask for a Range of Dates

date range selected

Display a List of Clients

clients selected

Display a List of Employees

|employees selected

Ask for a File to Hold the Export Data

file selected

Figure 3.5 Activity diagram for Export Time Entries.

58 Enterprise Java with UML

Gathering More Requirements

Creating the detailed flow of events for use cases clarifies your understanding of the
problem domain and raises many issues. At some point, you accumulate enough new
questions tojustify a requirements review meeting with the customer. This meeting
hastwo goals:

« Tovaidateand improvethe current use case model, whichincludes the flows of

«i To resolve most of the outstanding questions and open issues.

Thekey istounderstand the system from your customer'sperspective. Itisimpor-
tant to stay focused on how the system provides value to the customer. But as you
describe the system at alower level of detall, it is easy to start contemplating possible
solutions, soitisessential to bedisciplined; resist thetendency to start architecture and
design at this point. To this end, it is very helpful to avoid user interface design. Dis-
cussions concerning the look and feel of the system can easily become discussions of
what isand isnot possiblewith particular technologies. Remember, focus on what the
customer needsfrom the system.

This requirements review meeting covers all of the use cases that have been devel-
oped. Participants must be prepared to discuss the details of the use cases, including
the flows of events, the activity diagram, the deployment constraints, and any open
issues. Inorder to ensure thislevel of preparedness, the participants must havetimeto
review the documents before the review meeting.

In many cases, the sheer volume of requirements forces the review to be split over
several meetings. Marathon meetings, with consecutive 8- to 10-hour days, areimpres-
sive-sounding, but result in uneven coverage of the requirements. By the end of the
second day, the participants are either worn out and apathetic or exhausted and com-
bative. Either way, thetimeisnot well spent. Consider instead meeting every other day
or performing smaller more frequent reviews throughout the requirements-gathering

As before, the results of the meeting should be captured in written meeting notes,
which should be validated by the participants. These notes will form the foundation
forthecommon understanding of the system.

EVELOPER: Let's start with the Create Charge Code use case. Does the prima;
flow make sense?

CUSTOMER: Yes. | don’t think we would ever need to add a charge code directly

to the client. If we do, we can just add a “general” project.

DEVELOPER: Are there other data iated with clients or projects—p

rders, contact infol i

Gathering for the Timecard

CUSTOMER: Yes, of course, but they are not part of this system.

DEVELOPER: Is there a default set of activities that are common to all projects?

CUSTOMER: No m pn[uc!s ‘have exactly the same activities, but there are
some Could the i select some
from a Jist dmmﬁﬂsmdtweoihers?matwoddsaveamﬁ
time and avoid using spellings or for the same activity.

DEVELOPER: ¥'ll add that. Can an employee bill 1o a project without specifying
the activity? Or directly to a client?

C 1f an employee needs to bill a project and activity...well
then we probably have a problem.

DEVELOPER: Are billing rates set for different activities for each client?

CUSTOMER: Bill rates vary by client, project, activity, and nmployee. Butwe -
really don’t want that in the timecard system.

DEVELOPER: Excellent; it helps to know where the system stops. Great. Let's -
move to the Add Employee use case. What do you think of the main flow?

CUSTOMER: | agree that the employees would be organized by name. There is
'no need to organize people by depamant for this application. We Ilam!
thought much about p or security. I know | hate d
passwords; people alwuys ‘write them down and post them on their
‘monitors.

DEVELOPER: So, should employees be able to change their p ds? Should
they be required to do so on their first login?

CUSTOMER: That would be great. And most of them will be used to that flow -
from other systems.

'DEVELOPER: Okay, I'll add that. Is there other information that we should be -
tracking—billing rates, contact information?

‘CUSTOMER: No; we may want to integrate that sort of thing in later, but for now
we want to keep it very simple.

DEVELOPER: Okay. Is there any other functionality we need here?

CUSTOMER: Well...I don’t know how hard this would be, but could the system
‘email the new users? Maybe to tell them they can start using the system and
‘to give them their password? =

DEVELOPER: We can add that. it's r
now.

CUSTOMER: Thanks. : :

DEVELOPER: Any other issues with this use case?

CUSTOMER: No, I think we have it. :

60 Enterprise Java with UML

. DEVELOPER: Great. Let's move to the Record Time mm%ndopuﬂlmk

- of the main flow?

o 1t makes d 1t

- DEVELOPER: Can an employee edit previ d:

‘ That is a tough ion. | worry that if we don’t let them do it, we

will be getting calls from employees saying, “Please, just this one time, |
need to add three hours...” And if they don't record them, we can’t bill for
them. | think that they should be aﬂeeohukat&mrwemushmwd
-~ . Theyll need to submit when they are done.
" DEVELOPER: Okay; how about editing future timecards?
- CUSTOMER: Yeah, | know that sounds useful, especially for vacations and stuff.
‘On the other hand, we want to avoid prebilling. We definitely should not
allow them to fill in next week’s timecard. Also, it should not be possible for -
people to fill in tomorrow’s timecard. It may be a pain, but some customers
audit our billing practices, and this would really help.
 DEVELOPER: Okay, I'll add that. Will a manager or administrater need to add
entries for sick or vacationing employees?
= CUSTOMER: Oh; 1 guess so. ﬂthaempluyeers out more than a week, thenan
i needs to fill in th
DEVELOPER: Can any admini do any employ @2
- CUSTOMER: Sure; fet's keep it simple.
- DEVELOPER: Any other functionality or issues?
- CUSTOMER: No. Interestingly, | thought that was the easy use case, but
brought up a lot of issues.

- DEVELOPER: Isn't that just the way? What do you think of the Export Time
. Entries use case? -
CUSTOMER: | like it. It will make it easy to generate the raw data for different
reports. It would be nice to filter by project within client.
DEVELOPER: Oh, of course. Any other output formats?

CUSTOMER: No, 1 can't think of any.

* DEVELOPER: Finally, a use case that was as simple as it looked.

* CUSTOMER: A nice way to finish out the meeting. Thanks.

DEVELOPER: Thank you; you have really imp d my und
system.

Requi for the Timecard 61

In this dialogue, the customers and the developer refined their collective under-
sanding of the system. Specificdly, they discovered some missing functiondlity,
excluded other functionality, and validated a significant portion of the use case model.
Following the meeting, the use case model must be updated to reflect the new under-
standing of the system.

Revising the Use Case Model

In many cases, a healthy dialogue with the customer will completely change your
understanding of the system. Remember, bom you and the customer are discovering
and inventing the system as you go. You should notice a shift from discussing basic
terms to delving into relatively subtle points. The first meeting and use case model
builds a common vocabulary and reaches a consensus on what the system should and
should not do. The second meeting uncovers missing pieces and resolves the special
cases. This section shows how the use case diagram and the details for each use case
are updated from the dialogue.

Revise the Use Case Diagram

Adding new information to the use case diagram follows the same pattern as during
its original. First, mine the didlogue for new actors and new use cases. Then vaidate
the candidate use cases against the guidelines for narrow focus and independent
value. Finally, look for new relationships between actors and use cases.

For this example, the dialogue does not reveal any new actors, so we'll move on to
thenew use cases

Find New Use Cases
The following excerpts indicate aneed for some new use cases.

CUSTOMER: We haven't thought much about passwords or security. | know |
personally hate assigned passwords; people always write them down and
post them on their monitors.

DEVELOPER: So, should employees be able to change their passwords? Should
they be required to do so on their first login?

CUSTOMER: That would be great And most of them will be used to that flow

from other systems.
The new candidate use cases are Login and Change Password

Evaluate Candidate Use Cases

Change Password iswell focused and certainly hasvalueinisolation, asit protectsthe
employee's privacy and security. So we add the Change Password use case to the
model.

62 Enterprise Java with UML

Loginislessclear. Itiswell focused, but it doesnot provide much value onits own.
In general, employees log in as a precursor to some more interesting task, such as
recording their time. On the other hand, most people describe it as a separate step, as
in "l log in, then record my time." Many development teams and UML gurus have
spent many hours disputing the status of Login as a use case. That said, no project has
ever failed because the wrong choice wasmade. For now, we'll consider it asaseparate
use case that is used as part of many more valuable use cases.

Find New Relationships

The following excerpts provide insight into the interactions between the system and
the actors.

'CUSTOMER: Well 1 don’t know how hard this would be, but could the syshem
email the new users? Maybe to tell them they can start using the system and
to give them their password?

'DEVELOPER: We can add that. It's much better to add it to the requirements

ISTOMER: We haveﬂ thought much about passwords or security. [know |
hate d ds; people always write them down and

pust them on their monimrs.

DEVELOPER: So, should employees be able to change their passwords? Should

they (the employees) be required to do so on their first login?

STOMER: That would be great. And most of them will be used to that flow

from other systems.

The first excerpt indicates that the Create Employee use case interacts with the
Employee actor by sending him or her an email. Thisisrepresented in Figure36 by the
solid linefrom the Create Empl oyee use case to the Employee actor. Y ou can verbalize
thisas, "The Administrative User actor initiatesthe Create Employee use case. Aspart
of the use case, the system sendsinformation to the Employee actor.”

The second excerpt shows that the Employee actor initiates the Change Password
use case. Also, the Change Password use caseis alwaysincluded in the Login use case
ifitistheemployee'sfirstlogin. Thisisshown by theincluderelationship (dashed line)
fromthe Login use case to the Change Password use case. Remember, the extend rela-
tionship indicates that the subordinate use case is optional. An included use case is
alwaysperformed if the flow of events reaches theinclusion point.

The second excerpt o reveals that the Employee actor initiates the Login use case.
Whileitisnot explicitly stated, it is reasonable to expect administrative users to log in
and change their passwords.

At this point, you update the use case diagram to match your new understanding of
the system. The updated high-level use case diagram is shown in Figure 3.6.

for the Timecard icati 63

)

s /sug P)
Change Password
A

Export Time Entries :
\ | <<include>>
I
/ :
O Administrative O Employee

User -
Login
Create Charge Code

Record Time

et

Create Employee

Figure 3.6 Revised use case diagram.

Revising the Use Case Documentation

In many cases, the flow of eventsfor ause case evolvesradically from theinitial draft.
Oddly enough, they never get shorter. Updating aflow of eventsisafairly mechanical
process of reviewing meeting notes and incorporating the changes. Perseverance isthe
key. If the list of open issues does not shrink over time, it may be asign that you lack a
clear and stable system vision.

The discussion of the Create Charge Code use case clarified the system scope. The
customer clearly seesthetimecard system asasimple and isolated system. It may seem
odd to explicitly exclude functionality in requirements. After al, requirements
describe what the system does, right? In my experience, it is well worth the effort to
document any known limitations of the system as they are discovered. This simple dis-
cipline avoids countless argumentsin which the customer contends that certain func-
tionality is clearly within the current schedule while the developers stare blankly as
they consider weekends about to be lost. The flow of events for the Create Charge
Code use case limitseach client to aname and alist of projects. Each project consists of
aname and a charge code. Nothing else is included—no purchase orders, no contact
information. This sort of restriction encourages precise thinking by developers and
customers. The message should be "spesk now or be willing to talk schedule |ater.”

64 Enterprise Java with UML

Review of aflow of events may introduce completely new requirements. For exam-
ple, the Administrative User Actor now is able to pick charge codes from alist of pre-
viously defined activities. This must be added to the flow of events.

You can see how discussions with the user can lead us to revise existing use cases,
add new use cases, place limits on system functionality, and add completely new
functionality. In general, this is a positive sign. Hopefully, by this point, everyone's
understanding of the system is maturing and converging to a common view. Conver-
sations are increasingly productive, as different parties agree on general principles
and common meanings for domain terms. The following samples demonstrate how
requirements evolve; they also serve as a foundation for the ongoing sample timecard
application.

Sample Use Case Documentation for Login (New)

Name of use case. Login

Description. The Login use case allows employees and the administrative user to
access the system.

Preconditions. None

Deployment constraints.

1. Employees must be able to log in from any computer, including home, client
sites, and on the road. This access may be from behind a client's firewall.

Normal flow of events. The administrative user or employee's username and pass-
word are valid.

1. The administrator or employee supplies a username and password.

2. Theuser is authenticated as either an administrator or an employee. Thisis not
a choice during the login; it is determined by the username.

Alternateflow of events. First Login
1. The administrator or employee supplies a username and password.

2. Theuser is authenticated as either an administrator or an employee. Thisis not
a choke during the login; it is determined by the username.

3. The user isinstructed to change his or her password.
4. Include the Change Password use case at this point.
Alternateflow of events. Invalid authentication information.
1. The administrator or employee supplies a username and password.
2. The user is notified that he or she has entered incorrect login information.
3. Thefailureislogged by the system.
4. The user is allowed to try again indefinitely.
Activity diagram. SeeFigure3.7.

1. The user's password must not be passed as plaintext.
Open |Issues. None

Q! tor the Timeeard

username and password entered

Verify meame@

[invalid login]

Record Error

[valid login]

[first login]

INCLUDE CHANGE PASSWORD

Welcome User to the System

Figure 3.7 Activity diagram for the Login use case.

Sample Use Case Documentation: Change
Password (New)

Name of use case. Change Password

Description. The Change Password use case allows employees and administrative

users to change their password.

65

66 Enterprise Java with UML

Preconditions.
1. The user must have logged in to the system.
Deployment constraints.

1. Employees must be able to log in from any computer, including home, client
sites, and on the road. This access may be from behind a client's firewall.

Normal flow of events. Employee changes his or her password.
1. The user enters his or her current password and new password twice,
2. Theuser isnotified that his or her password has been changed.
Alternate flow of events. Invalid current password.
1. The user enters his or her current password and new password twice,
2. The user isnotified that his or her attempt failed.
3. Thefailure islogged by the system.
4. Theuser is adlowed to try again indefinitely.
Alternate flow of events. New passwords do not match.
1. The user entershisor her current password and new password twice,
2. Theuser isnotified that his or her attempt failed.
3. Theuser is allowed to try again indefinitely.
Exception flow of events. System is unable to store new password due to a system
or communications efror.
1. The user enters his or her current password and new password twice.
2. The user isnotified of the error, complete with any available details.
3. Thefailureislogged by the system.
Activity Diagram. See Figure 38.

1. The user's password must not be passed as plaintext.
Open Issues. None

Sample Use Case Documentation for the Create
Charge Code Use Case (Revised)

Name of use case. Create Charge Code

Description. The Create Charge Code use case alows the administrative user to add
anew charge code to the system so that employees can hill to the charge code.
Since each charge code is specific to aclient and aproject, the administrative user
may need to add a client or project first.

Preconditions.
1, The user must be logged in as an administrative user.
Deployment constraints. None

Gathering Requirements for the Timecard Ikati 67

Ask for Current Password, New Password Twice)<

passwords entered

Validate Current Password

[invalid]

Record Error

[valid]

Verify New Passwords Match

Store New Password

[error storing data]

Display Error

Figure 3.8 Activity diagram for the Change Password use case.

Normal flow of events. Add a charge code to an existing project.

1. The administrator sees a view of existing charge codes for a selected project.
Charge codes arc activities organized by client and project.
The administrator selects from a list of common activities or enters a new
activity to create anew charge code for the selected project.
The new charge code appears in the view and may be used by employees.

N

w

68 Enterprise Java with UML

Alternate How of events. Administrator adds a new client and project.

1. The administrator sees a view of existing clients.

2. The administrator enters the name of a new client.

3. The administrator selects the new client and enters the name and description
for anew project.

4. Employeeswill not be able to hill to the project until the administrator adds a
charge code.

Alternate flow of events. Duplicate data; input charge code already exists at the
specified level.

1. The administrator sees a view of all existing charge codes. Charge codes are
activities organized by client and project.

2. The administrator attempts to add a charge code that has the same activity as
another charge code for the project. Once the list of common activities that
doesnot include duplicatesis created, thiswill be lesslikely to happen.

3. The administrator is notified of the conflict. No change to existing data.

Exception flow of events. System is unable to store data due to system or commu-
nicationsfailure.

1. The administrator sees aview of existing charge codes for a selected project.
Charge codes are activities organized by client and project.

2. The administrator selects from a list of common activities or enters a new
activity to create anew charge code for the sdected project.

3. The system is unable to store the new charge code.

4. The user isnotified of the error, completewith any available details.

5. Thefailureislogged by the system.

Activity diagram. See Figure 39.
Nonfunctional requirements. None
Notes.

1. Client and projects have a name and description. Other information, such as

contact information, billing rates, and purchase orders are kept elsewhere.
Open issues. None

Sample Use Case Documentation for Create
Employee (Revised)
Name of use case. Create Employee
Description. The Create Employee use case alows the administrative user to add an
employee to the system, so that the employee may enter his or her hours into the
time-tracking system.
Preconditions.
1. The user must be logged in as an administrative user.

for the Timecard

69

Gathering

@isplay Clients, Projects, and Charge Codes)

Ask for Type of New Data

type entered

i
[client selected] [charge code selected] Display Activities

Q\sk for Client Data

[project selected]

Ask for Project Data s
Ask for Charge Code

project data entered

client data entered

charge code data
entered

Store New Value

[submission ok]

[duplicate found]

igure 3.9 Activity diagram for the Create Charge Code use case.

inlerprise lava with UML

Deployment constraints. None
Normal flow of events. The administrative user adds a new employee.
1. Theadministrator seesaview of al existing employeesby name.
2. The administrator adds an employee, with a name and password.
3. The new employee appearsin theview.
4. Anemail is sent to the employee, instructing him or her to log in and change
hisor her password.
5. Theemployeecan login.
Alternateflow of events. Duplicate data; employeeaready exists
1. Theadministrator seesaview of all existing employeesby name.
2. The administrator adds an employee, with a name and password.
3. Administrator isnotified of the conflict. No change to existing data.
Exception flow of events. Systemis unable to add the employee due to a system or

1. The administrative user ssesaview of al existing employees by name.

2. The administrative user adds an employee, with aname and a password. The
system is unable to complete the addition, due to a system or communication
error.

3. The system informs the administrative user of the error, complete with avail-
able details. Theview revertsto the previous state.

4. If possible, an error is added to alog.

Activity diagram. See Figure 310.
Nonfunctional requirements. None
Open issues. None

Notes.

1, Eachemployee hasaname and password. All other information, such ascon-
tact information or billing rates is kept elsewhere.

2. Employees will not be organized by department.

Sample Use Case Description for Record Time
(Revised)

Name of use case. Record Time
Description. The Record Time use case allows any employeeto track hisor her own

Preconditions.
1. The user must belogged in.

Deployment constraints.
The Record Time use case must be accessible from client sitesand the employees’
homes. In the case of client sites, they will often bebehind the client's firewall.

for the Timetard icati 71

Ask for New Employee Data

Notify Employee by Email employee data entered

[update ok} fsystem error]

| found]
Record Error

Display Conflict

Figure 3.10 Activity diagram for the Create Employee use case.

Normal flow of events. Anemployee records his or her own time.

1. The employee sees any previously entered data for the current time period.

2. The employee sdlects a charge number from &l available charge numbers,

organized by client and project.

3. Theemployee selectsaday from the time period.

4. The employee enters thehours worked as a positive decimal number.

5. The new hours are added to the view and are seenin any subsequent views.
Alter nateflow of events. Employeeeditsexisting data.

1. The employee sees previously entered datafor the current rime period.

2. The employee sdects an existing entry.

3. The employee changes the charge number and/or the hours worked.

4. The new information is updated in the view and is seen in any subsequent

Alter nateflow of events. Employeesubmitstimecard ascomplete.

72___ Enterprise lava with UML

1. Theemployee sees any previously entered data for the current time period.

2. Theemployee elects to submit the timecard.

3. Theemployee s asked to confirm his or her choice and warned that he or she
will not be able to edit his or her entries.

4. Thetimecard is submitted; itis no longer available for editing.

Alternate flow of events. Administrator edits an employee's timecard.

1. Theadministrator selects an employeefromalist.

2. The administrator seespreviously entered data for the current time period.

3. The administrator selects an existing entry.

4. The administrator changes the charge number and/or the hours worked.

5. Theupdateislogged as an unusual activity

6. The new information is updated in the view and is seen in any subsequent
views.

Alt?rnateflow of events. Administrator submits an employee's timecard as com-
plete.

1. The administrator selects an employee from aligt.

2. The administrator sees any previously entered data for the current time
period.

3. Theadministrator elects to submit the timecard.

4. The administrator is asked to confirm his or her choice and warned that he or
she will not be able to edit his or her entries.

5. The submissionislogged asan unusual activity

6. Thetimecard is submitted:; it isno longer available for editing.

Activity diagram. See Figure 311
Nonfunctional requirements. None
Notes.

1. The employee can. only enter datafor one timecard at atime. If he or she has
not submitted a previous timecard, he or shewill not be able to enter hours for
thecurrent timecard.

2. Once a timecard has been submitted, it cannot be edited again.

3. Employees cannot enter time for days that have not started.

Open issues. None

Sample Use Case Documentation for Export Time

Entries (Revised)

The only change for this use case s the addition of Login as a precondition.
Name of use case. Export Time Entries

Description. The Export Time Entries use case allows the administrative user to
save specified time-tracking datato aformatted file.

for the Timecard

73

Figure 3.11 Activity diagram for Record Time use case.

74 Enterprise Java with UML

Ask for a Range of Dates

date range selected

Display a List of Clients

clients selected

Display a List of Employees

.employees selected

Ask for a File to Hold the Export Data

file selected

Export Time Entries

Figure 3.12 Activity diagram for Export Time Entries use case.

Preconditions.
1. The user must belogged in as an administrative user.

Deployment constraints. None

Normal flow of events The administrative user exports thetime entries.
1. The administrative user selects arange of dates.
2. The administrative user selects asubset of clientsor al.

Gathering Requi ts for the Timecard

75

3. The administrative user selects asubset of employeesor all.
4. Theadministrative user selectsatarget file.

5. Thedataisexported to thefileas XML. The administrator isnotified when the
processis complete.

Exception flow of events. System is unable to export the entries due to a system
error.

1. Theadministrative user selectsarange of dates.
Theadministrative user sdectsasubset of clientsor all.
The administrative user selects a subset of employees or dl.
The administrative user selects atarget file.

The systemis unable to export the entries. The administrative user is notified
of theerror.

If possible, the error is recorded to alog.
Activity diagram. See Figure 3.12.

@S w N

o

Open issues. None

The Next Step

Thischapter demonstrated the power of the UML for gathering requirements. A high-
level use case diagram makes it fairly easy to understand the system's purpose and its
benefit to the people who use it. At afar lower level of detail, the flows of events and
activity diagrams for each use case allow developers and stakeholders to reach a con-
sensus on thebehavior of the system. The UML provides a precise and expressive nota-
tion for building and sharing acollective understanding of the problemthat the system
must solve.

Now that the problem iswell understood from the customer's point of view, the
developers can continue development from a solid foundation. There will always be
misunderstandings and requirements changes due to new business needs, but the
number of surprises can be contained to areasonably low level. This enables develop-
erstowork in a more stable and successful environment, hi the next step, analysis, the
developers build an understanding of the problem from a devel oper's perspective.

A Brief Introduction to Object-
Oriented Analysis with the UML

The preceding chapters demonstrated how the UML is used to view a problem from
the customer's and end-user's perspective. During analysis, though the focusis still on
theproblem, it isfrom the devel oper's perspective. Analysis describeswhat the sysem
needsto do; it does not determine how it will do it. Thus the emphasisis still on under-
standing the problem, rather than selecting technology to solve the problem. These
details are determined later, in architecture, technology selection, and detailed design.

MV view of object-oriented analysis and design is influenced by the
Rational Unified Process, my experiences teaching Rational'* object-oriented
analysis and design course, and many fine texts by Crady Booch, Martin Fowler,
and Peter Coad. Any misinterpretations or oversimplifications are, of course, my
own.

Performing andysis for a system is somewhat analogous to staffing a brand new
company. Before collecting resumesand performing interviews, you havetofigure out
what roles need to befilled. In analysis, you determine the roles and responsibilities of
different parts of the system before you evaluate candidate technologies and actually
build or purchase the parts.

in this chapter, we will walk through the analysis phase of the project. In Chapter 5,
"AnaysisModel for the Timecard Application,” we'll use the conceptsintroduced here
when we create the analysis model for the Timecard application.

77

Enterprise lava with UML

Are You Ready?

that cooperate to meet the system'sgoal. In analysis, this effort islimited to determin-
ing the responsibilities of each object and the interactions among the objects. Analysis
is a technology- and implementation-independent description of the objects roles and
interactions, which is then used as abasis for technology selection, architecture, and
design.

There are two key stepsto prepare to begin anaysis. First, you must ensure that the
requirementsaresolidly and consistently defined. Next, if the project islarge enough
to merit multiple iterations, you must prioritize the use cases based on risk, signifi-
cance, and the abilities of your project team.

Solid Requirements

To begin analysis, the requirements must be solid, with ahigh-level use case diagram
and documentation for each use case. At a minimum, the documentation for each use
casemust contain the normal flow of events. Many use cases should be fully specified,
with alternate and exception flows of events. However, itisimportant to recognize that
though the requirements are solid, they are not complete.

Working with poorly formed requirements or attempting to achieve perfect require-
mentsensuresfailure. Balanceisthe key. If you discover radically new use casesdur-
ing analysis, it means you quit the requirements-gathering phase too soon and that
your requirements were not solid. That said, you might find a new use case that sup-
ports an existing use case, or realize that an existing use case must be refactored into
several use cases. Certainly, you must expect to refine your understanding of each use
caseduring anaysis.

Prioritizing Use Cases

Analysis may be performed for al of the use cases at once or for a targeted subset of
use cases, asin iterative development, hi iterative development, all of the use casesare
described during a comprehensive requirements-gathering phase. Next a set of use
casesisidentified and a mini-system is developed to meet these requirements. This
mini-system is created by performing analysis, architecture, technology selection,
design, code, and test for the selected use cases. The process of building the mini-sys-
tem is an iteration. The entire system is built incrementally, with a new set of use cases
added in each iteration.

Prioritizing the use cases makes it possible to attack the most important ones
together in thefirst iteration. Once thisfirst iteration is completed, the remaining use

manner, theoverall project risk isminimized, and the project can build alarge success
from a series of smaller successes, or overcome small failures rather than succumb to
onelargefailure.

A Brief Introduction to Object-Oriented Analysis with the UML

79

m\ It is always better to plan a series of small successes and accept the
occasional minor setback. Planning for one giant success often results in one
catastrophic failure.

Risk

Risk provides an important criterion when ordering use cases. It often makes sense to
atack risks early in the project. In this approach, a risky use case may cause the first
iteration to fail. On the bright side, there is plenty of money left in the budget and
plenty of time in the schedule so you can try other approaches. If the total scheduleis
going to lengthen, it is better to find out early. Either way, this approach ultimately
reduces risk and increases the predictability of the schedule.

There are many types of risk. A use case may push the state of the art for computer
sdence, depend on an intricate set of interactions with the end user, or have very
restrictive nonfunctional requirements. Consider a brief example: A credit card com-
pany is developing a Web-enabled system that allows customers to check their out-
standing balance, view the last month's transactions, pay the current bill, and apply for
more credit. Experience and focus groups determine that thereis no speed requirement
for the first two use cases, View Baance and View Transactions. People are used to
waiting several seconds for this sort of information.

In contrast, most people become anxious when money is changing hands. They
want the transaction completed and a printable receipt produced. So, the Pay Current
BUI use caseisrisky because it must meet demanding performance requirements. The
last use case seems to have a lot of risk, because it requires a computer to apply a com-
plex st of rulesto alarge amount of data, and produce an important answer. However,
thisishardly anew problem in the credit card industry, so in practice there may not be
much risk involved.

Significance

Some use cases capture the intent of a system, while other use cases play a supporting
role. In many systems, it isimportant to develop the more significant use casesin the
firstiteration. The supporting use cases can often be deferred by populating the system
with fake data. By developing the more significant use cases first, developers give the
other stakeholders a chance to see the system while there is till time and budget to
changeit.

Team Competency and Team Building

Whileitisimportant to pick use casesbased on risk and significance, you must not for-
get the developers. Ignoring team competencies can jeopardize both the project's suc-
cess and the long-term stability of the development team. Teams that are new to one
another, new to object-oriented development, and new to some of the candidate tech-
nologies must start with a small smple set of use cases.

80 Enterprise Java with UML

What Is Object-Oriented Analysis?

Since objects do the work in an object-oriented system, object-oriented analysis must
discover the objects that make up the system, describe their responsibilities, and deter-
mine their interactions. Again, this is done without considering the development lan-
guage or technology that will be used for the objects.

There are two key advantages to deferring technology selection. First, it alowsyou
to solve asimpler and more generic problem. It is easy to become absorbed in the intri-
cecies of a particular technology; and focusing on these details prevents a designer
from seeing larger patterns. Also, an implementation-independent analysis model
alowsfor more flexibility as the solution evolves. Strange combinations of technology
shortcomings and new requirements can lead to changes in the implementation strat-
egy. An implementation-independent analysis model helps developers to create clear
designs and providesinsurance against radical changes in the system architecture.

If analysis is not concerned with the specific technologies of the system, then what
questions does it answer? Analysis discovers the objects that interact to form the sys-
tem. When the analysis is completed, you have an understanding of what the objects
in the system need to do and, at a logical level, how they will doit. Asyou discover and
evolvethis detailed understanding of the system, youinvariably notice wesk areasin
the requirements. It is very common for developers to revisit some use cases with the
other stakeholders during analysis.

The Analysis Model

An analysis mode! contains two types of diagrams, which describe the objects and then-
interactions. These diagrams are organized according to the use case model, with each
use caseleading to severa diagrams.

The first diagram used for analysis is the class diagram. This diagram captures each
type of object in detail. Remember that the template for creating all objects of apartic-
ular typeiscaled aclass. So, aclass diagram shows the state and describes the behav-
ior that typifiesthe objects. The second typeof diagramisan interaction diagram. This
diagram describes the interaction between objects. It showshow one object configures
another object and how other objects use an object to reach an objective.

These diagrams form two very different views of the objects that make up a system.
Thefirst, the class diagram, showsthetemplatesfor the objectsin great detail. The sec-
ond diagram, the interaction diagram, shows the object in motion.

Relationship to Use Case Model

Andlysis builds on requirements gathering, so the analysis model builds on and is
structured by the use case model. Specifically, each use case in an iteration leads to a
class diagram that shows all of the different types of objects that participate in the use
case. Also, each flow of events for a use caseleads to an object interaction diagram that
shows how individual objects cooperate to perform the flow of events. Finaly, all of
the classes from all of the use cases are organized into groups, for consistency.

A Brief Introduction to Object-Oriented Analysis with Hie UML 81

Considering each use case separately aso helps decrease the total effort for andysis.
Obviously, devel opers must consolidateand refactor their model of the system asaddi-
tional use cases are considered, which adds to the effort. But the benefits of a divide-
and-conquer approach far outweigh the effort spent on refactoring. After all, finding
all of the objects for amoderately large system in one pass is impossible for most peo-
ple. Perhaps there is one genius in amillion who, like a chess grand master or brilliant
composer, can keep the whole model in his or her head. The rest of us must be content
solving the puzzle apiece at a time.

Steps for Object-Oriented Analysis

Object-oriented analysis can be broken into several discrete steps. For each use casein
the current iteration, you need to:

1. Discover candidateobjects.
2. Describeobject interactions.
3. Describe the classes.

Let's look at each of these steps in more detail.

Discover Candidate Objects

The first step in creating an analysis model is object discovery. In this step, developers
find a group of objects that contribute to the solution for a use case. These objects are
used as a starting point for the next step, describing behavior.

This section has two parts. Thefirst part enumerates some guidelines for discovering
objects. The second part discusses an actual process for discovering objects. Probably,
no two developers will perform this creative task in the exact same way; nevertheless,
this process can serve as a reasonable starting point for most developers.

In discussing objects, it is difficult to avoid discussing classes. After all, every object
isaninstance of aparticular class. Every class defines atype of object. Inthe UML, the
attributes and behavior common to a group of objects are documented in a class dia-
gram. There is no UML diagram that shows the data and behavior for an individual
object. The UML diagrams that show objects are dedicated to showing interaction and
cooperation between objects.

By discovering objects, you are implicitly discovering the classes that the
objects instantiate.

Guidelinesfor Discovering Objects

Beforediscovering objects, you should have some guidelinesfor the objectsand classes
that you will discover. Establishing these guidelines early in the process prevents con-

81 _ Enterprise Java with UML

fusion between developers, and facilitates development of a coherent and consistent
analysismodel. Thefollowing delineationsprovide some criteriaand checkpoints.

« Limit the responsihilities of each andysis dass.
« Use clear and consistent names for classes and methods.

Limit Responsibilities

A good class has asingle clear and coherent purpose or responsibility. This makes the
classeasier to understand, maintain, and extend. Simplicity and clarity of purposealso
make it easier for other parts of the system to use the class, which keeps the system
lean and elegant. Conversely, allowing large classes with many responsibilities can
cripple a project. These dasses are difficult to maintain, and over time may grow
beyond the comprehension of their creators. Thisseemsto betruefor al programming
paradigms: If you alow too much functionality to reside in a single function, proce-
dure, subroutine, class, module, or stored procedure, the eventual result is an incom-
prehensible "hot potato” that is shuffled from developer to developer until everyone
retires or leaves the project.

Analysis classes may seem excessively well focused and even contrived. It may
seem odd to have a class in analysis with three methods and no data. This discomfort
leads many developersto combine analysis classes or to add unrelated responsibilities
to an existing analysis class that appears too small. Doing so is dangerous. During
detailed design and implementation, asimple analysis class may evolve into areason-
ably complicated class or even a group of tightly coupled classes. User interface and
system interface classes invariably explode, as their full complexity is understood. In
general, creating small well-defined analysis classes is a sound philosophy. To that
end, strive to answer yes to the following questions:

1. Doeseechdasshaveasingle cear purposs?
2. Isthispurposeclear from aone-paragraph textual description?
3. Does each method fit within the responsibility of its class?

Use Clear and Consistent Names

For aclass to be useful to developers, it must be easy to understand from the outside.
Thismeans that class names and responsibilities must be clear and unambiguous from
the perspective of other developers and, whenever possible, other stakeholders. For
instance, a class that describes part of the business problem must make sense to an
industry expert. Clear dass and method names dlow other developers and stake-
holder to understand and validate the analysis model. This allows developers and
stakeholders to catch mistakes and misunderstandings before they threaten the suc-
cess of the project.

By definition, an object isan independent system element, with its own dataand the
capability to provide services as defined by its class. With this in mind, class names
should aways be nouns that describe the nature or responsibility of the system ele-

A Brief Introduction to Object-Oriented Analysis with the UML 83

ment. This distinguishes classes and objects from methods. By tradiition, class names
start with an uppercase letter and use mixed-case lettersto highlight word boundaries.
Sometypes of objectsarenatural nouns. Consider afew examples from different prob-
lems, such as Employee, Timecard, LinkedList, Binary Tree, BankAccount, and Mort-
gage. In other cases, aclassnameisadistorted verb. Thisis often the casewhen aclass
istypified by its responsibility for some action. Again, consider afew examples from
different problems, such as TaxCalculator, EventListener, PayrollProcessor, and Input-
Validator. The English language isfull of verbs that have mutated into nouns: People
who teach are teachers; people who tend gardens are gardeners; people who program
computers are programmers; peoplewho instruct are instructors.

CHECKLIST FOR NAMING OBJECTS

v Is the name of each class a noun?

 Will the name of each class and method be unambiguous to oth
developers who are less familiar with the system?

v Have you avoided meaningless “filler” names, such as manager, in favor of
descriptive names with well-defined meanings?

v Is the name of each method a verb or a combination of a verb and a noun?

Keep It Simple

Don't get too fancy when discovering analysis objects; that is, don't try to determine
the rel ationships between the objects. Don't name roles or create elaborate inheritance
hierarchies. Remember, thisisyour first attempt at a high-level solution. In short, don't
spend large amounts of time perfecting the first draft. Discover some objects, review
theresults, and defer the detalls until you have found behavior.

Process for Discovering Objects

Identifying the objects that make up the system is one of the most difficult parts of
andysis. The use case model is large and elaborate while the analysis model isjust a
blank sheet of paper, waiting to befilled. Aswith many complex and creative endeav-
ors, thehardest part isgetting started. Fortunately, the object-oriented community has
identified four commonly occurring types of objects that can be used in dmost every
andysismodel. They are:

« Entity

* Boundary

« Control

« Lifecycle
The following sections describe them in detail.

84 Enterprise lava with UML

Entity Objects

Entity objects encapsulate the business data and businesslogic of the system [Jacobson,
etal. 1999). They aregenerally fairly easy tofind, asthey arethenouns used to describe
significant parts of the problem. There are two ways to find entity objects. One
approachisto consider al of the data and behavior required to solve the problem, then
organize the data into related groups. The other approach is to identify the important
nouns as entity objects, then determine the data and behavior that each entity object
contains. While the latter is closer to object-oriented theory, reality lies somewhere in
themiddle for most developers. It makes senseto makealist of dl data, alist of behav-
ior, and alist of al theimportant-sounding nouns, then allocate the data and behavior
to different types of entity objects. During this process, you may find additional entity
objects, rename entity objects, or remove entity objects.

CHECKLIST FOR IDENTIFYING ENTITY OBJECTS

. ¢ Is the entity object a ﬁgﬁﬁam noun in the problem?

* ¥ Does the entity object contain information that is used to solve the system

. problem?

" v Does the entity object contain calculation or validation logic that is used to
- solve the system problem?

- ¢ Does the entity object make sense to experts who understand the system’s

- goals? :

For example, let'sfind theentity objectsfor our reoccurring example of withdrawing
funds from bank accounts, asintroduced in Chapter 2, "Gathering Requirements with
UML." Working through the normal flow of events and the activity diagram, there are
several important-sounding nouns, some data, and some behavior.

Nouns (candidate entity objects). Customer, user, account, money, receipt

Data. Personal identification number (PIN), customer name, amount for with-

drawal

Behavior. Vadidate PIN, withdraw funds, check for sufficient funds, dispense money,

print receipt, thank customer

First, we need to clarify the nouns, data, and behavior that we extracted from the
flow of events and the activity diagram. This leads us to perform the following
exclusions:

« Customer and user seem interchangeable, so we discard user and keep the more

descriptive customer.

* Money seems like part of a more significant entity, not an entity in its own right,

sowe discard it

* Receipt does not seem very significant; it seems more oriented toward the inter-

face with the user, so we discard it.

A Brief Introduction to Object-Oriented Analysis with the UML___ 85

« Dispense money, print receipt, and thank customer all seem to be very specific
partsof theinterface with the user, not core parts of the terminology of the prob-
lem, so we discard them.

After these exclusions, we are | eft with the following nouns, data, and behavior:

Nouns (candidate entity objects). Customer, account
Data. Personal identification number, customer name, amount for withdrawal
Behavior Validate PIN, withdraw funds, check for sufficient funds

Based on these lists, we can allocate data and behavior to the candidate entity
objects, as follows.

« Each customer object knows the name and PIN of the customer that it repre-
sents, and can validate the entered PIN.

« Each account object knows how much money is in the account that it represents;
it provideswithdrawal fundsand checksfor sufficient fundsasservices.

* No object ssems gppropriate to hold the withdrawal amount, so, we introduce a
new entity object that represents the transaction.

Wehave discovered threedistinct types of entity objects. Since each type of objectis
aclassin an object-oriented system, we can usethe UML notation for classesto capture
the work. Figure 4.1 shows all three classes with their data and behavior. Notice the
«entity> at thetop of each classhox.

m In many cases, the industry's terminology may be obscure or
even antiquated. You might be tempted to improve the terminology during
analysis; you may want to update or generalize a term for the convenience of
the developers. Don't Maintain domain-specific terminology, and educate
developers to use it. Changing the terminology makes conversations with the
stakeholders difficult, and is generally impolite. After all, a term may have been
around for a few hundred years and be part of the culture of the industry.

Account
Sidstring
-balance:float

+withdraw(float)
+isAmountAvailable(float):boolean

Zentity>>
Customer

-name:String

-pin:String

+validatePIN():boolean

<Zentity>>
Transaction
Sid:String
~account:String
-amountfloat

Figure 4.1 Entity classes for banking example.

86 Enterprise Java with UML

Boundary Objects

In Chapter 2, the actorsin the use case model were defined ay those people or systems
located outside of the solution system that will interact with the solution system.
Boundary objectsrepresent how thesystemwill interfacewith theactors.

Boundary objects are identified by examining the relationships between the actors
and the use cases in the use case diagram. As arule, each actor/use case pair formsa
boundary object in the analysis model. There are two types of boundary objects:

User interfaces. Allow the system to interact with humans.

System interfaces. Allow the system to interact with other systems.

For both types, boundary objects have a very narrow focus. User interface objects are

responsibleonly for presenting datato the user and accepting input from the user. Sys-

teminterface objects are responsible for communi catingwith another system. Business

data and business rules belong in entity objects, not in boundary objects [Jacobson, et

dl. 1999].

+ Does the user interface class describe the information that must be
displayed and the services that are offered?

v Does the user interface class defer all user interface design details

- Does the system interface describe the interaction with the external system?

v Does the system interface defer all protocol details? :

m The analysis model should not contain any user interface design details.
However, user interface prototyping may be performed concurrently with
analysis, as long as it is treated as a separate effort with a separate deliverable.

Consider the banking example with a Customer actor and two use cases, Withdraw
Funds and Transfer Funds. According to the rule of thumb, thereisaboundary object
for each actor/use case pair, so there are two boundary objects. This leads to two
objects withdrawFundsUI and transferFundsUl. From the normal flow of events and
the interaction diagram in Chapter 2, we see that the withdrawFundsU| has the fol-
lowing user interface-related behavior: soliciting a PIN, displaying accounts, allowing
the user to select an account, and soliciting the withdraw amount. As with entity
objects, thisbehavior is captured in a class diagram, since it isavailable to al instances
of theWithdrawFundsUI class. Figure 4.2 shows thisbehavior inaclassdiagram. Each
method isnamed from the perspective of the actor or object that uses the object.

m Use a consistent naming scheme for user interfaces and external
systems. Many projects append the suffix view or Ul to the end of the use case
name. If more than one actor initiates the use case, the actor's name should be
incorporated.

A Brief Introduction to Object-Oriented Analysis with the UML

87

<<boundary>>
WithdrawFundsUl

| senterPINQ

| +displayAccounts()

| sselectAccount()
enterWithdrawAmount()

Figure 4.2 WithdrawFundsUI class.

Boundary objectsappear very insubstantial duringanalysis. They may not haveany
data and may have easy-sounding responsibilities, such as "display accounts Resist
the urge to discount or ignore boundary objects. In many cases, their functionality isa
key criterion during technology selection, and greatly influences the design and archi-
tecture of the system. Boundary objects are only "thin" during analysis, because their
responsibilities are described at avery highlevel.

Control Objects

Control objects provide workflow and session services to other objects. The control
object bundles the complex series of requests to the entity objectsinto acommonwork-
flow that is easily accessed by the boundary objects. A high-level message from a
boundary object to the control object is converted into a series of messages from the
control object totheentity objects. Thisalowstheboundary object to concentrateonits
responsihilities while the domain object stays simple. Asarule, each use case has one
type of control object in the analysis model [Jacobson, et . 1999].

m The easiest way to identify control objects is to consider the system
without them.

Entity objects aresimple, witha small number of well-focused responsibilities. This
meansthat a boundary object with acomplex objective must send acomplex series of
requests to the simple well-focused entity objects. The trade-off is unpleasant: either
to have heavy and lessflexibleentity objects or to have complex boundary objects that
aretightly coupled with the entity objects. Neither optionis acceptable. Entity objects
must be smpleand flexible, so that they can provide businesslogic and business data
formany usecases. Evenwell-defined user interface and systeminterfaceobjectstend
to be difficult to extend and to maintain, so adding even more complexity is quite
dangerous.

Fortunately, acontrol object serves asan intermediary between the boundary objects
and the entity objects that cooperate in a particular use case. This alows the entity
objects to provide a simple set of services while the boundary objects defer the com-
plexity of interacting with the entity objects to the control object. Several boundary
objects may use a single type of control object for aparticular use case. For example, a
Web interfaceand aclient server interface might shareacommon type of control object.

8 Enterprise Java with UML

Perhaps areal -1ife example will makethis rather abstract idea more concrete. Con-
sider a customer ordering lunch in a sub shop on North Broad Street in Philadelphia,
specifically, a nice cheese steak on a freshly baked sub roll with mayo, mushrooms,
fried onions, and sweet peppers, but no tomatoes, no lettuce. But | digress. The cus-
tomer does not shout his or her order to the short order cook; most shops would frown
on such a breach of etiquette, instead, a designated order taker or cashier accepts the
request, queriesthe customer for additional drink and side preferences, settles thebill,
writes down the order on alittle piece of paper, and clipsit to the greasy range hood.

Thisinteraction isvery smple and convenient for the customers. They do not need
to get the cook's attention or direct their efforts in any way. They do not need to sepa-
rately request fries or the drink from busy employees. Once the order is completed,
they wait in quiet anticipation.

The little piece of paper aso simplifies the staff's tasks. The fry guy can fill drinks
and dish up some fries without worrying whose order it is. The cook is similarly free
to concentrate on the details of sub making; getting the ingredients together and in
proper balance, ignoring the customer's preferences, and wrapping the finished prod-
uct. Inthe end, the customer gets a delicious cheese steak with mayo, hot peppers and
tomato and lettuce.

So, asimple single point of contact, the order taker, simplifieslife for the customer
and allows the other employees in the shop to stay focused on their individual tasks.
Thisisexactly the roleof acontrol object. A control object encapsulatesthe interactions
with entity objects so that the boundary object can focus on the actor without making
additional demands on the entity objects.

CHECKLIST FOR IDENTIFYING CONTROL OBJECTS ‘

- v Does the control class model the application or workflow logic for the use
case?

- ¢ Does the control class delegate the actual business logic to the entity

© classes? Famtes

Consider the Withdraw Funds use case. Our simple rule of thumb indicates that
there is a single type of control object for each use case. Since the use case describes a
simple workflow for withdrawing money, it seems appropriate to introduce a With-
drawFundsWorkflow class, asin Figure4.3.

The behavior for this type of control object is determined by isolating the behavior
that is exposed by the entity objects and used by the boundary objects for the use case.
The behavior consists of validating the entered PIN, checking for sufficient funds, and
withdrawing funds. Remember, a control object does not actualy verify the PIN or
withdraw funds. Instead, the control object finds and uses one or more entity objectsto
process each request.

Object Lifecycle Classes

Object lifecycle classes keep track of entity objects. Object-oriented systems contain hun-
dreds or even thousands of entity objects. These objects must be created, located, and

A Brief Introduction to Object-Oriented Analysis with the UML 89

<<Zcontrol>>

| WithdrawFundsWorkflow

“validatePIN(:boolean
“+getAccounts()

+selectAccount()

+withdraw(float)
+isAmountAvailable(float):boolean

Figure 4.3 The WithdrawFundsWorkflow class.

sometimes destroyed. Control or entity objects may need to locate an entity object by
different criteria For example, a WithdrawFundsWorkflow object needs to locate a
specific Customer object, given the name or ID of the actual customer. There may be
several ways to create an entity object. Since the logic for creating, finding, and
destroying a particular typo of entity object may be used in many use cases, it is handy
to have a single type of lifecycle object for each type of entity object. As the developer
considers each use case in turn, the lifecycle class accumulates additional behavior. As
agenerd rule, thereisalifecycle class for each entity class.

.m Entity, boundary, and control classes have a long history as analysis
classes. Lifecycle classes, at least by this name, lack this pedigree. In fact as far
as | know, | just made up the term. In my experience, almost all designers
introduce something similar either late in analysis or very early in design. Most
designers use names from the intended implementation technology or from
their design experience. Some common examples include home, factory, and
container. None of these names seems appropriate for an analysis model, as
they all include design assumptions. While in general | frown upon the practice
of authors creating their own terms to describe existing ideas, it seems that
there is a vacuum to be filled here. So, | refer to such classes as lifecycle classes.

ENTIFYING LIFECYCLE OBJECTS

¥ Does the lifecycle class locate, create, or destroy entity objects?
 Is each lifecycle class dedicated to a single type of entity object?

For the Withdraw Funds use rase, both customer and account objects are located by
particular criteria. Figure 4.4 shows that CustomerL ocator lifecycle objects can locate

Kifecyce>> Kifecyde>>
CustomerLocator AccountLocator
::;:j:;,%“o’“o +findByCustomer()

Figure 4.4 The CustomerLocator class.

% Enterprise Java with UML

Customer objects by ID or name. Similarly, the AccountLifecycle objects can locate
accounts for a specified customer.

Describe Behavior

Once you've identified entity, boundary, and controller classes, the next step is to
determine how the associated objectsinteract, to realize the use cases.

This section has two parts. The first part enumerates some guidelines for describing
behavior. The second part discusses an actual process for describing the interaction
between objects. As noted before, probably no two developers will perform this cre-
ative task in the exact same way, but this process can serve as a reasonable starting
point for most developers.

UML usestwo diagramsto describe the interactionsbetween objects: sequence dia-
grams and collaboration diagrams. Sequence diagrams show how objectsinteract over
time. A sequence diagram allows you to track complex message sequences easily, but
does not show how objects are connected. Collaboration diagrams show connections
between objects, but are not very readable for complex sequences.

Objects interact by calling methods in other objects. Objects use this mechanism to
send information, request a service, or request information. In object-oriented termi-
nology, theseinteractions are described as messages, which are sent from one object and
received by another. While messages are named from the perspective of the calling
object, it isimportant to remember that the implementation is in the receiving object.
Think of the receiver as providing some standardized service that can be called by
other objects.

m To preserve your sanity, | recommend considering use cases one at a
time, developing sequence diagrams and a view of participating classes for
each use case in turn. As you add more use cases, you inevitably revise your
earlier work For instance, your understanding of the responsibilities of a
particular class often changes as you consider its role in various use cases.

GuidelinesforFinding Behavior
There are four rules to follow as you identify the behavior of objects as they cooperate
to fulfill a use case:
* Make sure the messages for each type of object fit together.
+ Clearly name each message.
« Completely satisfy the functionality for the use case.
+ Keep it smple.
The following subsections explain these guidelines in detail .

A Brief Introduction to Object-Oriented Analysis with the UML 91

Ensure Cohesion between Methods

The methods for a dass must form a coherent group, and they must fit the stated
responsihilities of the class. For instance, makeToast, makeEggs, and makejuice are
closely related behaviors that combine to fulfill the “"make breakfast" responsibility.
They make perfect sense as methods in a Cook class. If we add the changeOil method,
the methods no longer form asingle coherent responsibility.

You will be tempted to add a responsibility to an object that does not fit with the
existing responsihilities. The short-term convenience is not worth the long-term

Use Clear and Unambiguous Method Names

Each method must be named clearly and unambiguously from the perspective of the
calling object. A developer who wishesto use your object should not need to read your
source code to determine what the methods do. For instance, a class that has
getQuantity and getValue asits methodsis not likely to earn popularity awardsfor its
developer. You must remember chat the audience for your method names includes
other current developers, future developers, and you after along vacation.

Most method names can indicate the return type of the method. For instance,
getName should return a string that is the name of the object. A method called
setHeight is not expected to return anything, and almost certainly accepts anumeric
parameter that changesthe height of the object.

Completely Satisfy the Use Case

Y ou must ensure that the use caseis completely realized by your objects. Thisrequires
perseverance and good bookkeeping- Each step in each flow of events, and each activ-
ity and conditional in the activity diagram for the use cass, must be traceable to one or
more methodsin the objects. Sincethisisanalysis, the method may not bewell under-
stood, but it must exist.

Keep It Simple

Don't get too fancy during andysis; that meens defer any nonobvious parameters and
return types until design. Also, there isno need to determine the source of each object,
so don't bother creating elaborate inheritance hierarchies or arguing over the exact
relationship between two objects. Thereisno need to get bogged down in the details
when the whole landscape will change and evolve during design. For now, just use
classesto hold related behaviors.

CHECKOINTS FOR DESCRIBING BEHAVlR B

¢ Does each method have a clear purpose?

92 Enterprise Java with UML

t v Have you avoided wishy-washy names?
v Are all methods named clearly from the perspective of the calling object?

i 1o other develop

v Does the method name indicate what will be returned? For instance, a
getDate request might reasonably be expected to return some sort of Date
‘object, while a repaint request would not be expected to return anything.
v Are the methods in each class closely related to one another?

- ¢/ Do the methods in each class match the stated responsibility of the clas:
¢ Does each class still have a single concrete purpose?

A Process for Describing Behavior

This subsection shows how to find and describe the interactions between objects a
they cooperate to fulfill ause case. This process can be separated into three steps.

1. Add theprevioudy identified participating objects to a sequence diagram.
2. Work forward from the actor, finding behavior asyou go.
3. Validate the sequence from the end.

The following subsections build on the Withdraw Funds use case as introduced ii
Chapter 2and onthe candidateobjectsfound Inthe"Discover Candidate Objects' sec
tion of this chapter.

Add Participating Objects to a Sequence Diagram

Finallyitistimefor theplayersto takethefield. First, weadd theactor that initiatesthe
use case to the sequence diagram. Next, we add the boundary object, then the control
object, then the entity objects. This pattern ailmost always holds true. Each use caseis
initiated by an actor, so it makes sense to put the actor on first. Likewise, thereis
aways asingle boundary object between the actor and the use case, so it makes sense
to show that object next. There is alwaysasingle control object that servesas asingle
point of contact as the boundary object uses the entity objects. Finaly, there may be
many entity objects, depending on the complexity of the use case. Weiignore thelife-
cycle objectsuntil they are needed.

When arranging the actor and objects for a use case, you can derive the
order based on the way objects depend on one another; or you can follow the
slightly flawed mnemonic device of "simple as ABCE" for actor, boundary,
control, and entity.

Figure45 showsthe objects arranged in this smple pattern. Each object may show
itsname, its type, and its stereotype. The name of an object isthe underlined text to the

A Brief Introduction to Object-Oriented Analysis with the UML

93

|
| <<boundary>> <<control>> <<entity>> <<entity>>
Withdr UL i :Customer savings:Account
CustomerActor

1
I
1
|
I
I
\
I
|

1

| T
1 |
| |
1 |
| 1
| 1
1 |
| '
| |
' i

Figure 4.5 Empty sequence diagram for the Withdraw Funds use case.

left of the colon. The classthat the object instantiates isthe underlined text to the right
of the colon. The stereotype is at the top of the object box; itis always enclosed inside
angle brackets. In many cases, there is no need to name an object. For instance, in this
case, thereis only one object of type WithdrawFundsUI, so there is no need to nameiit.
But because most customers have a checking and savings account, it may be useful to
name the Account object.

Work Forward from the Actor

Once the objects are arranged on the sequence diagram, we can show how they inter-
act with one another. Remember, in object-oriented terminology, one object sends a
message to another object; the actual method implementation residesinsidethereceiv-
ing object. Each message is named for the method that it calls.

Since the actor always initiates the use case, it must send the first message. A mes-
sagein UML is depicted as asolid arrow from one object's dashed line to another. The
order of messages from top to bottom along the lines indicates the order in which they
aresent.

Figure 4.6 shows a first attempt at the sequence diagram for the normal flow of
eventsfor the Withdraw Funds use case. The sequence begins when the customer enters
his or her PIN. This message is received by a nameless WithdrawFundsUI boundary
object that asks a nameless WithdrawFundsWorkflow object to validate the PIN. The
WithdrawFundswWorkflow object, like al control objects, does not know how to perform
thistask directly. Instead, it knows which object to ask. It asks the Customer object that
isassociated with the user to validatethe PIN. Thereturnvalue of VALID bubblesup to
the WithdrawFundsU|I object. The return value is explicitly shown because the value
affects the sequence.

Next, the WithdrawFundsUI object needsto present alist of accounts to the user. So
the WithdrawFundsU!| object asks the WithdrawFundsWorkflow object for a list of
accounts. The WithdrawFundsWorkflow object asks each account for its name, and
returns alist. Notice that the return arrow is not shown for the getName messages, as
itisobviousfrom the method name, and the returnresult does notimpact the flow. The
display Accountsarrow from the WithdrawFundsU| object back to the object indicates
that the object calls amethod on itself to display accounts.

94 Enterprise Java with UML

T
enterPINO |
L
T

|
1
L L L EER i
L a0} saidaerng i
1
|
VAUD i
! ERCR
VALID ek e T i
i M i} !
|
+ getAccounts() getNamel i

IgetName()

LIST OF ACCOUNTS

dis%\%kmums?

i
_selectAccountl) 1 yjectpccount()
L E

enterAmount
R -

Figure 4.6 Initial sequence diagram for the Withdraw Funds use case.

Next, the customer sdlectsan account in the WithdrawFundsUl object, whichinturn
selects an account in the WithdrawFundsWorkflow object. Notice that the Withdraw-
FundsWorkftow simply absorbs the account selection for future use. Finaly, the cus-
tomer enters an amount, after which the WithdrawFundsU| passes the amount to the
WithdrawFundsWorkflow object. The WithdrawFundsworkflow object asks the sav-
ingsaccount if the funds are available, then performsawithdrawal against the savings

Validate the Sequence

Finally, when you believe you have discovered the required methods, you must vali-
date the sequence. To do this, work backward from the end of the |ast sequence, asking
whether each object has the information that it needs to provide the desired services.
An account object certainly knows how much money it has, and can remove money
fromitself, so the last two methods are okay. Thebeginning of the sequence, where the
WithdrawFundsUI object passes the amount along to the WithdrawFundsWorkflow,
seems reasonable—if you assume that the WithdrawFundsUl and the Withdraw-
FundsWorkflow objects are created as a pair of cooperating objects. The sequence aso
assumes that the WithdrawFundsworkflow object remembers the selected account.

A Brief Introduction to Object-Oriented Analysis with the UML 95

The previous sequence, in which the WithdrawFundsU| object passes the account
selection to the WithdrawFundsWorkflow seems similarly reasonable.

Working backward from the display accountsmethod, it isreasonableto expect each
account to know itsname. It isnot, however, clear how the WithdrawFundswWorkflow
object found the savings and checking accounts There are three alternatives: Firg, the
Customer object can hold a ligt of its accounts; second, the WithdrawFundsworkflow
object can usealocator object to find the accountsfor agiven customer; third, you can
defer the question until design. Aslong as you are consistent within your project, any
of these approaches s defensible, although | prefer the locator approach, asit provides
aconvenient list of the ways that each type of object is located.

Thefirst sequence raises asimilar question. A Customer object can certainly validate
aPIN, but how did theWithdrawFundsworkflow object find the Customer? Figure4.7
shows the same sequence diagram with these issues resolved.

Describe the Classes

The previous step used sequence diagrams to describe theinteractions between objects
for a use case. The interactions between objects require methods in classes and rela
tionshipsbetween classes. InUML, thisinformationiscapturedinastatic classdiagram.

Consider an object that sends a message to another object. In order to send the mes-
sage, the sender needs a reference to the receiver. This can be a permanent link, where
the sender keeps a reference to the receiver; or the sender can create a helper object,
send it a few requests, and then lose track of it. Also, the method must exist in the
receiving object. Since each class completely determines the data and behavior that its
instawcesb have, the method must be defined in the class that was used to instantiate the
object.

This section has two parts. The first offers general guidance for describing classes
and their relationships. The second part defines and demonstrates a simple process for
describing classes based on object interactions.

Guidelines for Describing Classes

Thereare three rules to follow as you describe the classes that support a use case:
1. Becomplete.
2. Keepitsimple.
3. Maintain coherent classes.

Be Complete

Each message in a sequence diagram must have a corresponding method in the associ-
ated class. Remember, when an object sends a message to another object it is actually
calling amethod that is implemented in the receiving object'sclass. So, every message
must match a corresponding method in a class.

<<boundary>> <<control>> <<entity>> <<entity>> <<entity>> <<lifecycle>> <<lifecycle>>
Ul |[3 i ntLo

1 I
1 1
|

:Customer || savings:Account || checking:Account || CustomerLocator || Accountlocator
G [i
T ! 1 | 1 1 I 1
| enterPINQ | I i 1 1 1 1
“——’. validatePIN() 1 1 1 I : :
(L
i ! : | findfyld0 | i i
! 1 ! t ! ! '
! findByCustomer()
: 1 2 : i F i : -
! ; | validatePINO _ | 1 1 | 1
— T
1 1 i 1 1 | 1
1 VALID | 1 1
| ! VALID b e) | | 1 \
IR MU oy BTN | 1 | I ! 1
! i getAccounts) ! H !) } !
i Bl U) S i i !
| ! ! | gethameg ! ! ! !
1 IST OF ACCOUNTS | | | | 1 1
O RO B e e 1 1 | i 1 i
I
I -
i 1| displayAccountsQ | ! :] | ;
i 1 i 1 i 1
! i | 1 1 1 ! 1
: ! | 1 1 | | | 1
CHAC I 1 I 1
I selectheeount, | | yiocinccounig . | ! ! ! . ,
! | I i} | 1 1
: terAl : ! | 1 | 1 |
I__enterAmount0 _ | ; 1 ! 1 1 H
T ™l enterAmount) _ | I ! i ;)
e
1 ! 1 1 | 1
| 1
z I withdraw() ' ! ! ! ! !
1 \~——’; isAmountAvaildble(float) ; ; | 1
i
! i YES | | i 1 1
i | R g e £l ! ! :
- 1 | 1 1 | 1 I
i 1 ! withdrawffloat) ! !] A
i i] 1 1 |
1 ! | | ' |
: i I

Figure 4.7 Sequence diagram for the Withdraw Funds use case.

A Brief Introduction to Object-Oriented Analysis with the UML 97

In order to send amessage, the sending object must have arelationship that is nav-
igabletoward thereceiving object. Thereceiving object may reply with areturnvalue
without requiring navigability toward the sender.

Itisimportant to establish the direction of relationships between classes. Asthe sys-
tem evolves, you need to know how different parts of the system depend on one
another.

Keep It Simple
Y ou don't want to miss anything completely, and you do not want to over-analyze the
problemduringanalysis. Remember, analysisprovidesauseful foundationfor design,
but the actual diagrams do not need to survive past design. Itissimply too difficult to
keep the analysis model synchronized as the design and architecture evolves.
However, you should not spend much time seeking out inheritance hierarchies or
determining themultiplicity of relationships. Do not spend hoursarguing over aggre-
gation or composition for arelationship that may not even exist in the design model.
If information seems obvious, then include it; otherwise, be very conservative as
you spendtimeinanalysis. Remember, the purpose of analysisisto discover and alo-

m Think of the analysis model as a rough sketch. You must complete it
before you start painting with expensive oils on an expensive canvas, but you
don't frame the sketch.

Maintain Coherent Classes

Each new flow of events for each use case introduces methods for existing classes. As
thiseffect ismultiplied over many flowsof eventsfor many use cases, itisdifficult to
keep the methods in each class consistent. So, after the sequence diagrams are com-
pleted and the classes are updated to reflect the behavior discovered through the
sequence diagrams, the classes must be reexamined. Some of the methods that accu-
mulated in aclass may not fit well together or may vary from the stated responsibility
of the class. In this case, the methods must be reallocated, so that each class forms a
coherent whole.

Process for Describing Classes
Therearethreestepsin describing classes:
1. Consolidatebehavior from objectsto classes.
2. Refactor classes to meet guidelines.
3. Find relationshipsbetween classes.

The following subsections explain these steps and demonstrate them against the
Withdraw Fundsuse case.

98 Enterprise Java with UML

Consolidate Behavior

In the WithdrawFunds use case, there is only one sequence diagram, as shownin Fig-
ure 4.7, In real systems, there are many sequence diagrams per use case and one class
diagram per use case. A class that supports more than one use case will appear in each
class diagram.

Theimplementation for each messageislocated in thereceiving object. Each object's
behavior is completely determined by the class it instantiates. So, for each message, we
identify the receiving object's class and make surethat the method isin the class. Also,
if a dass or amethod in adass is not used in any sequence diagrams, it should be
removed. Figure 4.8 shows the changesto the class di agram. The findByName method
in the CustomerL ocator class, the isAmountAvailable method in the WithdrawFunds
Workflow class, and the entire Transaction class have all been removed. Two new
methods, enterAmount in the Withdraw Funds Workflow class and getName in the
Account classare added.

Refactor Classes

You must examine each class to determine if it still has a well-focused responsibility
and if the methods are cohesive. WithdrawFundsUI, AccountL ocator, and Customer-
Locator are all unchanged or reduced, so they passour criteria.

<<boundary>
WithdrawFundsUl

+enterPINQ
+selectAccount()
+enterAmount()
displayAccounts()

<<control>>
WithdrawFundsWorkflow

Kifecyde>> 2 .
CustomerLocator :;Z“l‘t:ca::im?dboolean <Jifecycle>>
AccountLocator

+enterAmountON @y
+withdraw(floa
~+isAmountAvail

+'mdsy%mo
+indByl

[e(float):boolean findByCustomer()

<<entity>> <<entity>>
Customer Account
-idString -idsString
-account: -balanceifloat
-amount:fioat -

+isAmountAvailable(fioat):boofean

+getNameON W

+validatePIN(:boofean

Figure 4.8 Updated class diagram.

A Brief Introduction to Object-Oriented Analysis with the UML

99

WithdrawFundsWorkflow gained the enterAmount method and lost isAmount-
Available. The responsibility and nature of the WithdrawFundsWorkflow object has
not changed. It is till a simple control class that uses entity objects on the Withdraw-
FundsU! object's behalf.

Account added the getName method. It seems perfectly reasonable for an account
object to know and expose its own name, so Account isstill okay.

Find Relationships between Classes

For each message, there is a dependency or association from the class of the sender to
the class of the receiver. If the sender remembers the receiver across different messages,
it is a form of association. Multiplicity can be used to describe the relationship. An
object may share use of an object or may require itsundivided attention.

We use the sequence diagram shownin Figure 4.7 to determine interactions between
objects. There is arelationship between the WithdrawFundsUI class and the Withdraw
Fundsworkflow, as the WithdrawFundsU| object calls the validatePIN, getAccounts,
selectAccounts, enterAmount, and withdraw methods on the WithdrawFundswWorkflow
object. This relationship is shown in the class diagram in Figure 4.9. As there are no
messages from the WithdrawFundsWorkflow object to the WithdrawFundsU! object, it
is a unidirectiona relationship. The WithdrawFundsUI object remembers the With-
drawFundsWorkflow object over time, so it does not need to find it each time the actor
entersdata. It isnot clear how the WithdrawFundsU| object gets an initial reference to
the WithdrawFundsWorkflow object, but for now, we accept that they are a closely
cooperating pair of objects.

Notice that the WithdrawFundsWorkflow object remembers information, such as
the sdlected account and the amount to withdraw, for the WithdrawFundsUI. This
implies that each WithdrawFundsWorkflow object is dedicated to a single Withdraw
FundsUI. This dedication is captured by the multiplicity number, which is closest to
the WithdrawFundsUI class. Reading the relationship from the WithdrawFunds
Workflow tothe WithdrawFundsUI resultsin: " EachWithdrawFundsWorkflow object
is known about by exactly one WithdrawFundsU| object." Each WithdrawFundsUI
needs to use the same WithdrawFundsWorkflow object every time it receives input
fromthe actor, soit keepsareference to exactly one WithdrawFundsworkflow object.
Thisisindicated by the number 1 next to the WithdrawFundsWorkflow class.

There is only one CustomerLocator object that is shared by al WithdrawFunds
Workflow objects. There can, however, be more than one WithdrawFundsworkflow
object at atime, as each actor using the system gets his or her own WithdrawFundsU|
object, whichinturn getsits own WithdrawFundsWorkflow object. Thisisindicated by
the asterisk (*) next to the WithdrawFundsWorkflow class and the number 1 next to
the CustomerLocator class. The same logic determines the relationship between the
WithdrawFundsWorkflow class and the AccountL ocator class.

Clearly, there is some sort of relationship between the WithdrawFundsworkflow
class and the Customer class, as the WithdrawFundsWorkflow object sends a vali-
datePIN method to a Customer object. However, once the validation returns, the With-
drawFundsworkflow object never uses the Customer object again. It is possiblein an
aternate flow that the WithdrawFundsWorkflow object might remember the Cus-

100 Enterprise Java with UML

<<boundary>>
WithdrawFundsUl

+enterPIN()
+selectAccount()
~enterAmount()
-displayAccounts()

1

<<contro>>
WithdrawFundsWorkflow

+validatePIN(:boolean
+getAccounts()

+selectAccount()
+enterAmount()
+withdraw(float)
/
/
1 f 1
<ifecyde>> ! Kifecydes>
CustomerLocator F AccountLocator
|
/
+indByld() i +indByCustomer()
/
/
/
/
v &
<<entity>> <<entity>>
Customer Account
o id:String
-name:String s g
gl -balanceifloat
+validatePIN():boolean +isAmountAvailable(float):boolean
+getName()

Figure 4.9 Class diagram with relationships.

tomer object, perhaps so it can retry different PINs as the actor enters them. However,
we have only one sequence diagram, and it doesn't show any such memory or subse-

quent use. So, the relationship is a dependency.
Thereis clearly an association relationship between the Withdraw Funds Workflow
class and the Account class, as the WithdrawFundsWorkflow object locates some
Account objects, retrieves their names, then remembers them. Notice that the multi-
plicity of the WithdrawFunds Workflow objectsis|eft unspecified. This processhasjust
raised an interesting question: If a user can log in twice, can there be two Withdraw

A Brief Introduction to Object-Oriented Analysis with the UML 101

FundsUl objects, each with a WithdrawFundsWorkflow object? Each Withdraw
FundswWorkflow object would use the same Account objects. So, if multiple logins are
allowed, the multiplicity is *; otherwise, itis 1.

The Next Step

This chapter described and demonstrated techniques for understanding the problem
from adevel oper's perspective. Analysis describes the solution in terms of cooperating
objects and the classes that define them. It focuses on the responsibilities and behavior
of these objects, while ignoring the implementation technology.

This provides a solid foundation for subsequent technology selection, architecture,
and design efforts. Without analysis, developers are forced to simultaneously under-
stand the solution and the problem. This often leads to hasty or flawed decisions.

The next chapter reinforces the techniques and principles covered in this chapter,
and continues the sample timecard system introduced in Chapter 2, "Gathering
RequirementswithUML."

Analysis Model for the
Timecard Application

Now that we've walked through the steps for the analysis phase, let's walk through an
example. So far, we've gathered the requirements for our timecard application. The
next step is to analyze the requirements and trandate them into a language that the
developers can understand. Remember that we're not interested in the specific tech-
nologies yet; we're focusing on the model of how the system internals will work.

This chapter expands on the material from Chapter 4, "A Brief Introduction to
Object-Oriented Analysis with the UML." It provides asmall but fairly representative
example of the art and science of object-oriented analysis.

*NOTE The example in this chapter is continued throughout the book, so it is
recommended that even experienced object-oriented practitioners at least skim
the information.

Let's begin by walking through each step, from prioritizing the use cases to discov-
ering candidate objects and interactions to, finally, describing the classesin detail.

Prioritizing the Use Cases

Each use case must be ranked according to itsrisk, its significance to the user and to the
architecture, and its suitability given the skills of the team. Once the use cases are

103

104 Enterprise Java with UML

ranked in these categories, we must determine which subset of the use cases is most
important and makes sense in the first iteration of the system. This process often
involves trade-offs and compromise. For example, a use case might be very risky,
which would lead us to includeit in thefirst iteration. However, if the team is com-
pletely unprepared to succeed with that same use case, then a less risky and more
achievable use case must be selected as a compromise.

The Ranking System

Tomakelifeeasier, risk, significance, and suitability areforcedintoasmplequalitative
ranking sysem from 1 to 5. The higher the number, the more suitable the use case isfor

In Chapter 3, "Gathering Requirements for the Timecard Application,” we identi-
fied six use cases for the sample timecard application. Figure 5.1 shows the high-level
use case diagram. We must describe each use case in terms of itsrisk, significance, and
itssuitability given thecurrent state of theteam.

o /sug system k)

Change Password

Export Time Entries

i
> i | <<include>>

I

1

1

Administrative
User

Employee

0

Login
Create Charge Code

Record Time

-

Create Employee

Figure 5.1 High-level use case diagram for the timecard application.

Analysis Model tor the Timecard Application 105

Risk

When possible, you should attack risky parts of the system early in the develop-
ment cycle. Then, if the first approach fails, there is still time and opportunity to try
aternatives.

Before considering the risks involved with each use case, you must develop alist of
risksfor the project. Thefollowing risksare common to many projects, and so can serve
asastarting point as you list the risks for your project.

« Unacceptable system performance
* Unacceptable user interface

« Schedule uncertainty and schedule length

« Inability to adapt to new requirements

After some consideration, we determine that the user Interface isfairly straightfor-
ward. We also realize that performance may be critical, asthe end users are very busy
and will not appreciate any delays due to the timecard system. Due to our experience
on previous projects, we know that the stakeholders invariably increase the system's
scope over time and that the stakehol ders expect the new featuresto fit seamlessly into
the existing system. Therefore, we order the risks as follows, and resolve to consider
each use case with respect to the risks.

1. Unacceptablesystem performance

2. Inability to adapt to new requirements

3. Schedule uncertainty and schedule length

4. Unacceptable user interface

Beforewerank each use case according to risk, we need asimple descriptive way of
expressing different levels of risk. To that end, we ask developersif they are sure they
can solve the problem on their first try, and make them pick from the following to
answer:

1. Of course; our project team has solved that problem before.,

2. Certainly; our organization has solved that problem before.

3. There are third-party products, training, books, or other technical resources
available, but we do not have any in-house experience.

4. Maybe; we have heard of similar problems being solved.
5. | hope so, but we will be breaking new ground.

Aswewill seein the use case evaluations, this smplerisk "spectrum” helpsidentify
high-risk use cases that must be considered for inclusionin the next iteration.

Significance

A use caseissignificant to theuser and to thearchitectureif it isclose to the corevision
of the system. A significant use case captures the flavor and intent of a system. Other

106 Enterprise lava with UML

use cases may be very important, but in a supporting role. For example, the timecard
system cannot function without the Add Employee use case. On the other hand, the
Record Time and Export Time Entries use cases completely capture the intent of the
system.

Significance can be measured by asking developers how userswould react if the use
case were omitted from the iteration or replaced with simulated results. Make them
pick from thefollowing to answer this question:

They would barely notice, and they could easily use the system without it.

2. They would notice; but with a little imagination, the system would still make
perfect sense.

3. Mogt of the system could exist independently.

4. Some parts of the system could exist independently.

5- The system would be impossible to use without it.

[l

Aswewill seein the use case eval uations, this simple spectrum helpsidentify very
significant use cases that must be considered for inclusion in the next iteration.

Suitability

A use caseis suitable for the current project team if they can start working onitwitha
minimum of training and a relatively short learning curve. These two criteriaare espe-
ciadly important when new technologies, languages, and development techniques are
introduced to an organization.

Many organizations adapt to new technologies and techniques by putting their best
people on a superhigh-profile project. After all, the hype says that object-oriented
development and Java is the wave of the future, so why not invest in aweek or two of
training for the brightest people in the company and then watch them revolutionize
the company under intense schedule pressure? Of course, this is backward thinking,
becatise the company simultaneously alienates their best and brightest while making
them substantially more marketable.

It takes at |east six months to become proficient in acompletely new way of thinking,
and at least two or three monthsto becometruly proficientinanew language and devel-
opment environment. Development teams need time and practice under relatively low
pressure so that they can develop proficiency and confidence in the new techniques.

Since we are picking use cases for the first iteration and have not selected any tech-
nologies yet, it may be difficult to determine exactly how much the developers will
need tolearn. Incontrast, in thereal world, project teamsgenerally know whether they
will be adopting a new technique, such as object-oriented development. Also, they
generally know the language or family of languages that will be used. With this in
mind, we ask the developers to describe their comfort level with the technology and
techniques, and tell them to choose from the following answers:

1. Theteam definitely needs more seasoning before attempting this use case.

2. Theteam'scapabilitiesare probably sufficient for this use case, but may improve
substantially over the course of asingleiteration.

Analysis Model for the Timecard Application 107

3. Theteam's capabilities are probably sufficient and are unlikely to improve over
the course of asingle iteration.

4. Thereis no need for more seasoning. Either the team is already quite experi-
enced or the use caseis sufficiently straightforward.

5. Thereisno need for more seasoning. Theteam is experienced and the use caseis
straightforward. Money in thebank.

As we will see in the use case evauations, this simple spectrum helps protect the
development team by excluding inappropriate use cases from the next iteration.

For our examples, let's assume that we have a reasonably seasoned team. Most of
the developers have at least a year of experience with object-oriented development,
and almost everyone has at least ayear of experience with Java and at least a year of
experience developing software that usesrelational databases.

Let's walk through each use case and evaluate them according to risk, signifi-
cance, and suitability. Thiswill tell us which use cases should be included in the first
iteration.

Evaluation of the Export Time Entries
Use Case

The Export Time Entries use case allows administrative users to export a specified
rangeof timeentriestoaformatted XML file.

Risk
Certainly, there is some performance risk involved, since the system must extract

significant blocks of data from a set of data that grows larger with every new employee
and with the passage of time. This activity could be performed during off-peak

« This use case must be extensible, because the criteria for extracting timecard
entries may evolve and become more sophisticated over time.

« Thisusecaseisfairly easy to estimate, sinceit is simply amatter of finding time-
card entries and writing the data to a flat file.

« Theuseinterfaceisvery straightforward, so thereisno red risk of delivering an
overly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 2, "Certainly; our orga-
nization has solved that problem before," seems applicable.

Significance

Thisis avery significant use case. The whole point of a timecard system is to collect
and retrievetimecard entries for a variety of purposes. Level 5, "The system would be
impossible to usewithout it," iswell justified.

108 Enterprise Java with UML

Suitability

This use cae is relatively straightforward, and the team is certainly ready. Level 4,
"There is no need for more seasoning. Either the team is already quite experienced or
the use caseis sufficiently straightforward," seems appropriate.

Conclusion

Due to the high significance, this use case is very desirable as part of thefirst iteration.
Includingit would build credibility with the customer and provide architecturally sig-
nificant functionality.

Evaluation of the Create Charge Code
Use Case

The Create Charge Code use case allows administrative users to add charge codes for
use by the employees as they enter their hours.

Risk
Thereisvirtually no performance risk, since charge codes are added infrequently and
contain very small amounts of data
« The use case seems very well understood, so the extensibility risk is low.
« Thisusecaseisfairly easy to estimate, sinceitis simply amatter of adding data
to the system.
* Theuseinterface is very straightforward, so thereis no real risk of delivering an
overly complex user interface.

Overall, the risk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

While it is certainly very important in the final system, the Create Charge Code use
case is more of a support use case. During preliminary iterations, the customer is
unlikely to notice the differencebetween simulated charge codes and charge codesthat
are entered through the system. Level 1, "They would barely notice, and they could
easily use the system without it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
case is straightforward. Money in the bank," describes the development team's readi-

Analysis Model for the Timeiard Application 109

Conclusion

In the absence of any significant risk or significance, there is no compelling reason to
consider this use case for the first iteration.

Evaluation of the Change Password
Use Case

The Change Password use case allows any current user to change his or her password.

Risk
Thereisvirtually no performancerisk, since passwords are changed infrequently and
contain very small amounts of data.
« The use case seemsvery well understood, so the extensibility risk is low.
« This use case is fairly easy to estimate, since it is Ssmply a matter of changing
datain the system.
» The useeinterfaceisvery straightforward, so thereisno rea risk of delivering an
overly complex user interface.

Overall, therisk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

Like the Create Charge Code use case, the Change Password use case provides sup-
porting functiondlity. Level 1, "They would barely notice, and they could easily usethe
system without it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
caseis straightforward. Money in the bank," describes the devel opment team's readi-
nessfor thisuse case.

Conclusion

Therelatively low risk and lack of significanceindicates that this use case can be omit-
ted from thefirstiteration. Certainly it isimportant to the project, but it can be deferred
without affecting the stakeholders as they evaluate the system or the developers as
they design the system.

Evaluation of the Login Use Case

The Login use case allows any current user to validate his or her identity to the system
asaprerequisite to performing the other more interesting use cases.

110 _ Enterprise lava with UML

Risk
There is some performance risk, since large numbers of users may log in at the same
time. However, logginginisafairly straightforward processand does not involve alot
of dataor calculation. The performancerisk is low.

« Login isavery well-understood use case, so thereis little extensibility risk.

+ Login does not present much schedule risk, since it is very small and well

focused.
 Thereis no risk of an unacceptable user interface.

Level 1, "Of course; our project team has solved that problem before,” describesthe
Login use case perfectly.

Significance

The final system would be completely unacceptable without the Login use case, but
the end users could certainly evaluate the system without it. Still, the developers need
to make sure that their architecture supports this use case even if it is not included in
the first iteration.

Level 2, "They would notice, but with a little imagination, the system would still
make perfect sense," seems appropriate.

Suitability

Level 4, "There isno need for more seasoning. Either the team is already quite experi-
enced, or the use case is sufficiently straightforward,” seems very appropriate.

Conclusion

With some reservations due to the use case's architectural significance, Login is not
essential for the first iteration.

Evaluation of the Record Time Use Case

The Record Time use case allows any user to enter hisor her hours for the current time
period.

Risk

The performancerisk isvery significant, asmany userswill record their timein the last
few working hours of each time period. Also, users are rarely willing to accept poor
performance while performing "nuisance” tasks. For instance, people may be willing
towait 15 minutes for a funny video clip to download and queue up, but they become
aggravated if they have towait three minutesin agrocery storeline. Fillinginatime-
card generally falls into the category of undesirable tasks, so performance préb\eitis
must be avoided.

Analysis Model for the Timetard

111

* The use case seems very well understood, so the extensibility risk is low.
« Any estimate for this use casewill be complicated by the complexity and perfor-
mance requirements.
« The user interface is fairly complex, with charge code selection, comments for
entries, and an editable matrix of timeentries.
The Record Timeuse caseisfairly risky, due to the performance requirements and
user interface complexity. Level 3, "Thereare third-party products, training, books, or
other technical resources available, but we do not have any in-house experience,” is

appropriate.

Significance
The Record Time use case is very significant, asit captures the intent of the timecard

system. Itisdifficult toimaginean iteration without thisuse case. Level 5, "Thesystem
would be impossible to use without it," seems completely justified.

Suitability

The same complexity and risk that drivesus to include this use case in the first itera-
tion also forces usto carefully evaluateits suitability for theteam. Level 2, "Theteam's
capabilities are probably sufficient for this use case, but may improve substantially
over the course of asingle iteration," seems appropriate.

Conclusion

Clearly, many factorsencourage ustoinclude the Record Timeuse caseinthefirstiter-
ation. However, due to its complexity, we might want to manage the stakeholders'
expectations by spreading complete development of the use case over thefirst twoiiter-
ations. For example, the first iteration might include the complete user interface but
defer performance goalsto thenextiteration.

Evaluation of the Create Employee
Use Case

The Create Employee use case allows an administrative user to add an employeeto the
system.

Risk
Thereisvirtualy no performance risk, since employees are added infrequently, and
the process requires very small amounts of data.
* The use case seems very well understood, so the extensibility risk is low.
* Thisuse caseisfairly easy to estimate, Sinceitis smply a matter of adding data
to the system.

112 Enterprise Java with UML
eVErguser interf acenpleary straightfoserard, so theiieterfaceal risk of delivering an

Overal, therisk of the use case seems to be quite low. Level 1, "Of course; our pro-
ject team has solved that problem before," seems applicable.

Significance

Though very important in the final system, the Create Employee use case is more of a
support use case. During preliminary iterations, the customer is unlikely to notice the
difference between smulated employees and actual employees entered through the
system. Level 1, "They would barely notice, and they could easily use the system with-
out it," describes the likely response.

Suitability

Level 5, "There is no need for more seasoning. The team is experienced and the use
cae is straightforward. Money in the bank," describes the development team's readi-
ness for this use case.

Conclusion

In the absence of any significant risk or significance, there is no compelling reason to
consider this use case for thefirst iteration.

Select Use Cases for the First Iteration

iteration based on risk and significance. Record Time and Export Time Entries defi-
nitely belong in the first iteration. Create Employee, Create Charge Code, and Change
Password should all be deferred. Login could easily be deferred, but we will include it
to make the first iteration more reglistic.

By putting al of thearchitecturally significant use casesin asingleiteration, we give
the stakeholders a clear impression of the system after the first iteration, while the
developers can ensure the integration of the solutions to these key use cases.

Now that we have selected the use cases for the first iteration, let's perform the
remaining analysis steps for those use cases.

Discover Candidate Objects

[nthis step, developers find candidate objects that interact to provide the functionalil
as described in the use cases. Remember, this process is greatly simplified by dividir
objectsintofour categories: entity, boundary, control, and lifecycle.

While discovering objects, it isimportant to limit the responsibilities for each obje
andto use clear and consistent names for each object and for each method in each objei

Analysis Model for the Timecard Application 113

Sincewe arejust starting analysis, we will not spend time determining the relation-
ships between objects. These relationships are clarified in the remaining steps of the
process. Also, there is no point in specifying the type of every attribute or in creating
elaborate inheritance hierarchies. We will keep it simple, and not try to perfect the
roughdraft.

Discover Entity Objects

For each use case, we search each flow of events to find nouns, data, and behavior.
Nouns may become entity objects, the data may become attributes of the objects, and
the behavior is allocated to one or more objects. The nouns for each use case are con-
sidered separately before considering them together.

Record Time Use Case
Working through the normal flow of events, we highlight the following candidate
objectsand data:

1. The employee seesany previously entered datafor the current time period.

2. Theemployee sdlectsacharge number from all available charge numbers, orga-

nized by client and project.

3. The employee selectsaday fromthe time period.

4. The employee enters the hours worked as a positive decimal number.

5. The new hours are added to the view and are seen in any subsequent views.

Thefollowing pieces are highlighted in thefirst alternate flow of events—employee
edits existing data:

1. The employee sees previously entered data for the current time period.

2. Theemployeeselectsanexistingentry.

3. The employee changes the charge number and/or the hours worked.

4. The new information is updated in the view and is seen in any subsequent

The following pieces are highlighted in the next aternate flow of events—employee
submits timecard ascomplete:

[

The employee sees any previously entered data for the current time period.

. The employee elects to submit the timecard.

. The employee is asked to confirm his or her choice and warned that he or she
will not be able to edit his or her entries.

4. Thetimecard is submitted; it isno longer available for editing.

w N

Theremaining flowsof eventsdo notintroduce any new information, sowemoveon.
Next, we produce a smple aphabetic list of nouns, then judge each one. This
process weeds out unneeded and duplicate entity objects. It dso identifies nouns that

114 _ Enterprise Java with UML

are more appropriate as attributes inside an object as opposed to an independent
object.

1. charge code

2. charge number

Clearly, charge code and charge number are synonyms. Since charge code is more
common in the other documentation, wediscard chargenumber and keep charge code
asatype of entity object.

3. client

Client dso seems like a reasonable type of entity object.

4. day

Day does not seem like an independent type of object. Instead, it seems like data
within an object.

5. employee

An employee seems like an independent entity object.

6. existing entry

Anentry inatimecard may be the object that holdsthe day. We tentatively makethis
atype of entity object.

7. hours

8. hoursworked

Hours and hours worked are synonyms, but hours worked is far more descriptive,
so we discard hours. Hours worked becomes data in the newly discovered entry
objects. Thisconvinces us that the entry object isjustified.

9. previously entered data

Previously entered data duplicates entry, so we discard it.
10. project

Project becomes a type of entity object.

11 timecard

Timecard becomes atype of entity object.
12 time period

T8neperiod describes atimecard, so it becomes datainside each timecard ohjiest:
View objectsareboundary objects, sowereject view.

We're done with the Record Time use case. Our entity objects are: charge code,
client, enployee, existing entry, hoursworked, project, and timecard.

Analysis Model for the Timecard Application 115

Export Time Entries Use Case
Working through the normal flow of events, we highlight the following candidate
objects and datafor the Export Time Entries use case:

1. Theadministrative user selectsa range of dates.
The administrative user selects asubset of clientsor all.
The administrative user selects a subset of enployeesor al.
Theadministrative user selectsatarget file.
The dataisexported to the file as formatted XML . The administrative user is
notified when the process is complete.
Next, we produce a simple aphabetic list of nouns, then judge each one.

o~ weN

1. administrative user

Administrative user seems plausible as an entity object.

2. clients

Client has already been identified as a type of entity object.

3. formatted XML

This sounds more like a description of the output file than a type of entity object.

4. data

This data refers to a group of entries from a group of timecards. Since these are
aready entity objects, no new objects are needed.

5. employees

Employeeisaready atype of entity object.

6. range of dates

Range of dates sounds like data within another object. We add a new entity object;
export request, even though it did not show up in the flow of events.

7. targetfile

This could easily be held as data inside the export request.
So, this use case gives us two new entity objects: administrative user and export
request. Now, let's look at the next use case.

Login Use Case
Working through the normal flow of events, we highlight the following candidate
objects and data for the Login use case:

1. Theadministrative user or employee supplies ausername and password.

2. Theuser isauthenticated as either an administrative user or an employee. This
isnot a choice during the login; it is determined by the username.

116 Enterprise lava with UML

Now we produce asimple alphabetic list of nouns, thenjudge each one.
1 administrativeuser

Administrativeuser hasalready beenidentified asatypeof entity object,
2. employee

Employee has aready been identified as atype of entity object.

3. password

Password seems more appropriate as data within the employee and administrative
user objects.

User isjust ageneric reference to an employee or administrative user.
5. username
Username seems more appropriate as data within the employee and administrative

user objects.
After evaluating this use case, there are no new entity objectsto add to our list.

Consolidate the Entity Objects
Our ligt of entity objectslooks like this:

administrative user

charge code

client

employee

existingentry

hoursworked

project

timecard
The only two types of entity objects that seem similar are administrative user and
employee. They are both types of users, one with administrative privileges and one
without. So, we decide to eliminate both types of objects and add user.

The dassdiagram in Figure5.2 shows the different types of the entity objects.

Discover Boundary Objects

Our next step isto identify the boundary objects for our use cases. Remember the rule
for boundary objectsinanalysis: oneboundary object per actor/use case parr.

For the Export Time Entries use cass, this leads to aboundary object that serves as an
interface between the administrative user and the system. It dso leads to aboundary-
object that serves as an interface between the system and the external billing system.

Analysis Model lor the Timemd

«entity» «entity» «entity»
Client Project ChargeCode

<<entity>> <<entity>> <<entity>> <<entity>>
User i rd Entry

-day -dateRange
P h -targetFile

Figure 5.2 Entity classes.

For the Record Time use case, the ruleleads to two boundary objects, onethat serves
as an interface between the administrative user and the system and one that serves as
an interface between regular employees and the system. This is true despite our earlier
decision to merge the administrative user and the employee into a single entity object.
Boundary objects are discovered based on the way people or external systems use the
system, not on how they are represented inside the system.

For the Login use case, therule leadsto two boundary objects, one that servesasan
interface between the administrative user and the system and one that serves as an
interface between employees and the system.

Following a standard naming convention simplifies this process. We use Ul asasuf-
fix for any user interface objectsand Systeminterfacefor any systeminterfaces. If more
than one actor initiates the use case, the boundary classes must be named distinctly.
Applying these guidelines to the preceding decisions |eads to the boundary classesin
Figure 53.

<<boundary>> <<boundary>> <<boundary>>
ini iveLoginUl oginUl |ExportEntrie

ey

<_<boundf1ry>> i <<bount:|ary> <<boundan>>
RecordTimeAdministrativeUl i o £.

[

Figure 53 Boundary classes.

118 Enterprise Java with UML

Discover Control Classes

Therulefor control classesin analysisis one type of control object per use case. A con-
trol object encapsulates the workflow for the use case. This allows the entity objectsto
stay well focused while the control object provides asimpleinterface to the boundary
objects.

When devising aname for atype of control object, remember to keep it simple. It
makes sense to pick a reasonable suffix, such as Workflow and stick with it. In many
cases, simply adding Workflow to the use case name s sufficient. No points are given
for style. Simplicity and consistency are far more important.

» For the Export Time Entries use case, this leads to a control class called Export-
TimeEntriesWorkflow.

« For the Record Time use case, this leads to a control class called RecordTime-
Workflow.

« For the Login use case, this leads to a control class called Login Workflow.

Figure 5.4 shows these control classes.

Discover Lifecycle Classes

Thereisno easy rulefor discovering lifecycle classes. A lifecycle object is used to cre-
ate, locate, and destroy entity objects. In analysis, alifecycle class alows developersto
consolidate the different ways a certain type of entity object is located and created.

In many cases, it makes sense to see how entity objects are used before creating life-
cycleclasses. Therefore, wewill not attempt to discover any lifcycle dasses at this point.
Instead, we will defer their discovery to the next step, describe object interactions.

Describe Object Interactions

In this step, we use sequence diagrams to model the interaction and cooperation
between objects as they fulfill a use case. This requires a sequence diagram for each
flow of events and a classdiagram for each use case. The classdiagram showsall of the
classes that define the objectsthat participate in the sequence diagrams.

During this step, we use the flows of events and the activity diagram for the use
case, as well as the entity, boundary, and control classes that we discovered in the pre-

vious step.
<<contro[>> <<control>> <<control>>
ExportTi i dTi Logi
I
|
ks

Figure 5.4 Control classes.

Analysis Model for the Timecard

119

It is often helpful to discover some behavior for each class before starting the
sequence diagrams. These methods often help shape the sequences, and they can
always be moved or removed if they do not fit. Thisis especialy true for developers
who are migrating to object-oriented development from procedural development.
Novice object-oriented developers tend to mutate the objects into verbs and the meth-
ods into data, as in a data flow diagram. Finding the objects and some methods in a
separate step helps prevent this natural tendency.

*WARNING Objects should be nouns, and methods should be verbs. If your
sequence diagram has verbs for the objects and nouns for the methods, you are
reverting to procedural habits by creating data flow diagrams.

Add Tentative Behavior for Login

Walking through the normal flow in the activity diagram, we see that the system asks
for the username and password. Clearly, this must be performed by the LoginUT
objects, as they handle dl interactions with the external actors. So we add a display-
LoginForm method to both user interface classes.

Next, the actor entersvalues for the username and password. The actor must some-
how indicate that he or sheis done, so we add a submitNameAndPassword method to
the user interface classes.

In the next activity, the system verifies the username and password. Clearly, this
business logic does not belong in the boundary objects. We give the responsibility to
the LoginWorkflow objectsby adding the validatel ogin method to the LoginWorkflow
class. However, the LoginWorkflow object will not actually know whether aparticular
name and password pair is valid. Since the user objects already have this information,
we make the LoginWorkflow object find the right user and ask him or her to validate
the login, so we add a validatel ogin method to the User class. For the LoginWorkflow
object to find the right user, we need a lifecycle object that searches for users by user-
name, o, we create a UserLocator class with a findByName method.

In the final activity of the normal flow, the system welcomes the user, sowe add a
displayWelcome method to the user interface classes.

Walking through the activity diagram lets us find behavior and alocate methods to
the dassesidentified earlier. All of these decisons arecaptured in Figure 5.5. Next, we
must use a sequence diagram to visuaize and verify thisbehavior.

Build Sequence Diagrams for Login

Now that we have identified several types of objects, and alocated responsibilities to
them, we must show how the objects work together. First, we arrange the initiating
actor and the objects on a sequence diagram. Since the actor initiatesthe sequence, we
place the actor in the top left. Since the actor interacts with the system through the
boundary object, we place the boundary object to the immediate right of the actor.
Since the control object serves as a single point of contact between the boundary object
and the entity objects, we place the control object between them.

120

nterprise Java with UML
«boundary» «boundary>

AdministrativeLoginUI EmployeeloginUl
+displayLoginFormO +displayLoginFormO
+displayWelcome() +displayWelcomeO
H+su bmif Q Hsubmi 0

<<control>>
LoginWorkflow

+validateLogin()

<<entity>> <<lifecycle>>
User UserLocator
-username
-password ol 0
+validateLogin() -

Figure 5.5 Participating classes for Login.

We repest this process for the normal flow and some of the alternate flows. At some
point, the sequence diagrams become repetitive, so we stop making them. Deciding
when to stop is a delicate balancing act; including too few sequence diagrams leads to
missed behavior, while too many sequence diagrams leads to extra work, as each
sequence diagram must be kept up to date and improved throughout the anadlysis and
design process.

Normal Flow for Login

The actor asks the boundary EmployeeloginUI object to display the login form. The
actor then fills in username and password and submits them to the system. The
EmployeeloginUI object asks the control LoginWorkflow object to vaidate the login
workflow. To satisfy this request, the LoginWorkflow object asks the UserLocator
object to find the User object that corresponds to the name. Once the LoginWorkflow
object gets the right User object, it asks it to validate the password. Once the Login-
Workflow object receives a response, it passes it back to the EmployeeloginU! object.
When the EmployeeloginUI object receives the valid response, it displays a welcome
message, and the flow is complete. Figure 56 shows this sequence.

Analysis model lor lilt Timecatd Application 121

<<boundary>> <<contro[>> <<ennty>> <<I|iecyde>>
: EmployeeloginUl L mWorkﬂuw User _:UserLocator

T

A

m| Io _EmployeeActor

displayLoginFormQ
submitNameAndPassword()

__validatelogin0 | \

i ﬁndavﬁameo

USER DBJECT !

1
i

i

i

] |

i |

i |

| |

1 i |

D displayiveicome) i |
i |

i |

| |

| |

| |

i i

| |

i i

‘
-
=
‘
‘
‘
‘
‘
‘
‘
‘
‘
|
i ‘
VALID,
: K |
;
‘
‘
,
‘
‘
‘
‘
‘
|
|
‘
|
!

Figure 5.6 Sequence diagram for the normal flow of Login.

Alternate Flow for Invalid Password

This sequence proceeds exactly as in the normal flow, until the User object responds
with INVALID to the validatel ogin method. This response is propagated up to the
EmployeeloginUI, which must display an invalid password message to the actor.
Since there is no method in the EmployeeloginUI, we add one, displayError message.
Figure 5.7 shows the complete sequence.

Alternate Flow for Unknown User

This sequence proceeds exactly asin the normal flow, until the UserLocator responds
with aNULL when asked to locate the user by his or her name. Obvioudly, the Login-
Workflow cannot ask an unknown User object to validate the password, so it returns
INVALID tothe EmployeeloginUI object. Asinthesequencefor thelnvalid password,
the EmployeeloginUt callsits own displayErrorM essage method.

Enterprise lava with UMt

<<boundary>> | <Scontrob> <<el nmy>> <<I|lecyc|e>
_:EmployeeLoginUl _i LoginWorkflow UserLoca(or

displayLoginForm()
L L VRSN

=i o O
i
|
|
|
|
|
|
|
|
|
|

submitNameAndPassword() |

HEo b |

)
|

i
H findByNome(

e __ _USR ROBECT______ i
validateLogin) |
lk_INvAUD __ |

T
|
|
|
|
1
i
i
i
|
| validateLogin()
|
|
|
|
i
|
i
|
|
|
i
i
|

INVALID

i i
| |
| |
| |
| |
> displayErrorMessage()]]
| |
i |
| |
| |
i |
| |
| |
| |

Figure 5.7 Alternate flow for invalid password.

Validate Sequences for Login

In the previous sequences, we found behavior by following the flow of events forward. No*
we must verify the sequences by going backward through each sequence. At each step, v,
determine whether the object has the information it needs to respond to the request.

Normal Flow

The last method call is display Welcome from the EmployeeloginU! to itself. Certainly, the
EmployeeloginUi can greet the user by his or her username.

The previous method is from the LoginWorkflow object, which asks the User object to val-
idate the login. The LoginwWorkflow object knows about the User object because it just asked
the UserL ocator object to find it. Since each User object has ausername and apassword, it can
easily determine whether the password matches.

The previous method is the LoginWorkflow, which asks the UserLocator to find the User
object that corresponds to the username. Though it is not dear how the LoginWorkflow object
knows the UserLocator object, it is safe to assume that any object can use the dedicated User-

Analysis Model for the Timecard Application 123

<<boundary>> <<contru|>> <<enmy>> <<|rfecycle>>
: EmployeeloginU| rLocator

y
< EmployeeActor

displayLoginForm()

submitNameAndPassword()

validateLogin)

]
i
i
i
i
i
i
: findByName()
i
) INVALID

k> displayErrorMessage()

Figure 5.8 Alternate flow for unknown user.

Locator object. The details are deferred until design. Certainly, the UserLocator must
be ableto locate any User object; that isitsjob.

The previous method is the Employeel oginUI object, which asks the LoginWork-
flow object to validatethelogin. Thoughitisunclear how the Employeel oginUT object
knows about the LoginWorkflow object, it is reasonable to assume that these two
objects are a cooperating pair, and that either the Employeel oginU| created the Login-
Workflow or they were both created by the same application-level object. Again,
this detail is deferred until design. While the LoginWorkflow cannot perform this task
on its own, it knows where to go for this information. This is the nature of control

ects.

Certainly, the Employ eeloginUl object knows how to display the login form and
accept user input. It is unclear how the actor and EmployeeloginUl are hooked
together. This depends on the implementation strategy, and may be profitably deferred
until design.

124 Enterprise Java with UML

Sequence Diagrams and Class Diagrams

for the Remaining Use Cases

The sequence diagrams and class diagrams for the Export Time Entries and Record
Time use cases are shown in Figures 5.9 through 5.13 withlittle explanation. These dia-
grams complete the analysis model that is used as a basis for the remainder of the
book, but they do not introduce any new techniques or issues.

<<boundary>>
ExportEntriesUl

[displayCriteriaQ
|+displayDateRangeEditor()
|+enterDateRange()
|+displayClients(<<boundary>>
[+selectClients() BillingSysteminterface
|+displayEmployees)
l+selectEmployees()
|+displayFileSelctor()
|+enterOutputFile()

FwiiteFleForExport()

[+submitRequest()
0
<control>>

[+findAllG) [rexportForCriteria() [FhndAl0 |
<ifecyde>> Entry [ExportRequest

day dateRange

[targetFile
[+findForCriteria() [+ getChargeCode)

[+getDay()

+getHours()

[+getUser)

Figure 59 Participating classes for Export Time Entries.

Analysis Model for the Timecard Application

125

getuser(

B

1 H H
1 1 1
i H 3
- sdmiisiativelser : i |
i |
1 displayCriteia) |
3 i
3 > dislayDateRangeEditor)
: |
A
> displayClients() |
selectclients(| |
kD !
! findAllQ:
'USER DBJECTS
D displayEmployees()
selectEmployees()
> dsplysiesecory
el il i H
submitRequest() | i !
G it | ! +
exportrorcrieria ;
| SRR
1 findForCriteria() |
H ety
: getChargeCode()
| ge0ay0
gettous)

witeFleForExportQ

Normal flow for Export Time Entries.

<<control>> <difecyde>> |, <lifecycle>> | <lfecycle>> | | <Sboundar>>
;] T 7 7 T
! ! |]

126 Enterprise Java wia UM

<<boundary>>
RecordTimeUl

+displayEntries()
+updateEntries()
+submit()

<<control>>

+getEntries()
+updateEntries()
+submit()

entity>> - —_—
Usés <.<ent|ty>> <<entity>>
-username Period ot
imePerio -day

-password :
+getCurrentTimecard() +getEntries() -hoursworked

+setCurrentTimecard() +setEntries() +getChargeCode()

+validateLogin() +create() +getDay()
+getHours()

+getUser()

Figure 5.11 Participating classes for Record Time.

Describe Classes

In this step, we determine the relationships between classes that are required to sup-
port the interaction between objectsin the flow of events. Thisis accomplished by cre-
ating a class diagram for each use case. This means that several sequence diagrams
contribute to each class diagram.

Remember, each time an object calls a method in another object thereis a relation-
ship between the objects. This relationship is captured in the class diagram. In analy-
ds we want to fully specify the relationships between entity classes while loosely
specifying the relationships between boundary and control classes and between con-
trol and entity classes. Of course, we should determine that a relationship exists and
determineits direction. However, any decisions asto multiplicity or type of association
are pure speculation. Different technologies and different techniques|ead to different
patterns of association.

Determiningtheneed for arelationshipissimplebookkeeping. Every messagefrom
one object to another requires a relationship from the sending object's class to the
receiving object's class- Determining the type of the relationship is abit more complex.

Analysis Model for the Timecard Application 127

<<boundary>> <<control>> <<entity>> <<entity>>
_:RecordTimeU | | : RecordTil _User _: Timecard
T i i i
i i i i
i i i i
i i i |
i i i i
. | i | |
: EmployeeActor ! a | !
i i i i i
| displayEntries() | 1 i |
i i i
| | getEntries() ! i]
i SR o T i i
! ! IgetCurrentTimecard()| !
e
i i h d i
! ! ! getEntries() !
i i i i |
; i
i ‘{ k,__E“LR!QBL‘EGE‘___A‘
} WENTRY OBJECTS _ | | i
i I | i |
i 1 i i i
: ‘ i : :
! displayEntries() | |
i i
! updateEntries() ; | |
i i i
] updateEntries) | f i
i i i
i i 7 d
i i i
i i i
i | i
i i i
| 1 i
i i i

Figure 5.12 Normal flow for Record Time.

It is a dependency if the sending object creates the receiving object, usesit, then loses
it, or if the sending object receives the receiving object as a method parameter, usesit,
and failsto keep it. During analysis, this may be difficult to determine, as there areno
method parameters. Fortunately, these decisions are not important during andysis

Find Relationships for Login

Wefind relationships by working forward in the sequence diagram for thenormal flow
of the Login use case. The EmployeeloginUI object callsthevaiidatel ogin method in
the LoginWorkflow object. This implies a relationship from the Em ploy eel oginUl
classto the LoginWorkflow class. Thereisalso arelationship from the LoginWorkflow
classtotheUser classand theUserL ocator class. Thereturnvaluesdonot indicaterela-
tionships, since an object does not need a reference to provide a response.

Now that we have determined the direction of the relationship, we consider the type
of eachrelationship. Atfirst, it seemsasif thereis no reason for the EmployeeloginUI

128 Enterprise Hva with UML

<<boundary>> <<control>>
: RecordTimeUl : RecordTimeWorkflow

Emplo‘yeeA;tnr | |

<<entity>> <<entity>>
= User : Timecard
1 I
| 1
1 1

U submitg | ; ; ;
! o swbmito ! i |
i 1 } create:() i
‘1) T setCumrentimecard() | !
| —

|

!

|

|
| I 1
| 1 I
I | 1
1 1 I |
1 I | |
1 1 | I
1 | 1 1
' t '
| | | 1
I | 1 |
1 | 1 1
| | 1 1

Figure 5.13 Submit timecard flow for Record Time.

object to keep areference to the Login Workflow object. However, a quick glance at
the activity diagram for the Login use case shows that the EmployeeloginUT
alows the user to reenter his or her username and password. It makes sense for the
Employeel oginUI object to keep areferenceto the LoginWorkflow object, sotherela
tionship is an association.

Therelationship between the LoginWorkflow object and the UserL ocator object fol-
lowsthe samelogic. The L oginWorkflow object should keep areferencein caseit needs
it for subsequent login attempts, so the relationship is an association.

The LoginWorkflow object does not need to keep a reference to the User object, as
the LoginWorkflow object looks up the User object each time, so the rdationship is a
dependency.

Figure 5.14 shows these relationships.

Find Relationships for Export
Time Entries

The ExportEntriesU| object uses the ClientL ocator object and the UserL ocator object It
a0 uses the ExportEntrieswWorkflow object. The ExportEntriesworkflow object uses
the EntryL ocator object, the BillingSystemInterface object, and many Entry objects. No
object isreused, so dl of the relaionships may be treated as dependencies.

Analysis Model for the Titnecard

129

<<boundary>> <<boundary>>
inistrativeLoginUl EmployeeLoginUl
+displayLoginForm() +displayLoginForm()
+displayWelcome() +displayWelcome()
<<control>>

+validateLogin()|

s
s
#
s

<<entity>> <<entity>>
User UserLocator

-password
+validateLogin ()|

-+indByName(

Figure 5.14 Participating classes for Login.

Notice that the ExportEntriesUl object interacts directly with the ClientLocator and
the UserLocator, rather than going through the control object. The class diagram high-
lights this deviation from our normal pattern.

Figure 515 shows these relationships.

Find Relationships for Record Time

TheRecordTimeU! object usesthe RecordTimewWorkflow object, whichinturn usesthe
User object and the Timecard object.

The RecordTimeU! object keeps a reference to the RecordTimeWorkflow object, and
uses it to update the entries, so the relationship is an association.

The RecordTimeWorkflow object keeps a reference to the User object. This object is
used when the RecordTimeWorkflow object submits the old timecard and replaces it
with anew trmecard, so the relationship is an association.

The RecordTimeWorkflow object keeps a reference to the Timecard object. This
object is used when the RecordTimeWorkflow object sets the entries for the Timecard
object, so the relationship is an association.

Figure 5.16 shows these relationships.

130 Enterprise Java with UML

<<boundary>>
ExportEntriesUl

+displayCriteria()
+displayDateRangeEditor()
+enterDateRange()
+displayClients()
+selectClients()
+displayEmployees()
+selectEmployees()

~ |+displayFileSelctor()

Y 2 +enterOutputFile() L
<<lifecycle>>! +submitRequest() <<lifecycle>>
UserLocator "I 0 ClientLocator
I
+indAll() \|/ +indAllQ)
<<control>>
Export i
<<boundary>>
+exportForCri TR
i 0
’ +writeFileForExport()
I
7 . !
o |
\4 N
% <<entity>> 14
<<lifecycle>> Entry <<entity>>
EntryLocator *[day |[ExportRequest
+findForCriteria() +getChargeCode() -targetFile
+getDay()
+getHours()
+getUser()

Figure 5.15 Participating classes for Export Time Entries.

Analysis Model for the Timeiard Application 131

<<boundary>> <<boundary>>
RecordTimeUl ini: iveUl
+displayEntries() +displayEntries()
+updateEntries()| +updateEntries()
+submit() +submit()
<<control>>

+getEntries()

+updateEntries()

+submit()

\ <<entity>>

<<entity>> <<entity>>

User Timecard v Eniy
[ocame -timePeriod B i
= +getEntries
+getCurrentTimecard() +§etEmries(()) +get[C)hargeCode()
+setCurrentTimecard() +create() +getDay()
+validateLogin() +ge$our8()

+getUser

Figure 5.16 Participating classes for Record Time.

The Next Step

This chapter focused on some of the use cases, based on their risk, significance, and
suitability. For each of these use cases, we used the flows of eventsto find some entity,
control, and boundary objects. In the next step, we use sequence diagrams to describe
the interactions between the objects. Finally, we use class diagrams to show the rela-
tionships between objects.

At this point, we have a good understanding of the system from the stakeholders’
el the dieveltpers' point of w@hwitiBhis understandivgy provietemiansotid foupriatEsses

Describing the System
for Technology Selection

The previous chapters detailed how to use aconsistent process and the UML to under-
stand a system from the stakeholders' and developers' perspective. That effort leads to
avery complete and detailed view of the problem. In this chapter, you'll learn how to
describe and categorize the system so that technology experts can determine the most
suitable technologies, without being overwhelmed by the intricacies of the problem.

In some cases, the developers who gather the requirements and develop the analy-
sismodel may aso determine the best technologies. In other cases, the devel opers may
use a variety of resources within and even outside of the organization. Having a
higher-level description of the proposed system alows more and a wider variety of
people to contribute to the technology selection process.

Perhaps a red-world exampleisin order. Architects can sdlect materias and build-
ing technology for a proposed structure without understanding exactly how the build-
ing will be used. They do, however, need to know if the building is planned for
residential, commercial, or industrial use, and they need a rough estimate of its size or
capacity. They don't need to know what each room will be used for or who will occupy
each space. Based on thislimited and high-level view of the building, an architect can
choose between wood, concrete, or steel for the building's skeleton. The same holds
truefor acomputer system; the technology experts need to know only the basics about
the system in order to choose the right technology to make the system work.

133

114 Enterprise lava witli UML

Are You Ready?

In. order to describe the system for technology selection, you must have aclear under-
standing of the system. Without this understanding, developers are doomed to solve
the wrong problem or to deliver unusable solutions. For example, a technology may
meet al of the functional requirements but fail to function in the user's actual envi-
ronment, due to hardware limitations, nonstandard operating systems, or network
topology.

These misunderstandingscan beavoided by gathering requirements, completewith
deployment constraints and nonfunctional requirements for each use case. The analy-
ssmodel helps developersidentify common parts of the system that can be considered
together during technology selection. In some cases, the developers must gather addi-
tional information, such as the expected the number of concurrent users, the expected
volume of data, and the deployment environment.

There aretwo significant steps to create a description of the problem for technology
selection:

1. Group andysisdases
2. Describe each group.
Let'slook at each of these.

Group Analysis Classes

In the previous chapters, we developed an analysis model that identified entity, con-
trol, boundary, and lifecycle classes for each use case. Before performing technology
selection, we will group similar analysis classes together. This alows developers to
consolidate the decision making process and helps ensure a coherent solution.

Different types of analysis classes connect in different ways, so you need to consider
eech of the following separately:

« Boundary dasses between humans and the system

« Boundary classes between an external system and the system

« Control, entity, and lifecycle classes

Boundary (User Interface)
Theboundary classes between humans and the system are more commonly known as
the user interface. There are three main criteria for grouping user interface classes for
technology selection:

* User group

+ Deployment constraints

« Complexity of the user interface

Describing the System for T¢ Selection

155

Whenever possible, you should use asingle technology for all user interface classes
in the system. If thisis impossible, al of the user interface classes for each group of
users should use the same technology. Limiting and consolidating the user interface
technologies greatly decreases deployment costs such as distribution, training, and
support. Systemsthat depend on a patchwork quilt of different technologies tend to be
difficult for new usersto learn and for developers to maintain, extend, and support.

Unfortunately, varying deployment constraintsand user interface complexity often
complicates this godl. If the user interface classesin agroup have radically different
deployment constraints, then it may be necessary to split up the group. The same
process must be followed for user interface complexity.

User Croup

Inthe UML, actorsin the use casemodel represent distinct user groups. Thismakesit
very easy to identify agroup of user interface classes: just group the boundary classes
that are used by an actor.

For example, a banking system may use one presentation technology to alow cus-
tomersto pay hillsonline, and another technology to allow bank tellers to manage new
and existing accounts. Thisenablesthe developers to select onetechnol ogy for the cus-
tomers based on their needs for low deployment cost and universal access, while
selecting the other technology based on the bank tellers’ needs for ease of use and full
functionality.

Deployment Constraints

When dividing the user interface classes into groups, it is important to consider
deployment constraints. In order to be suitable for al of the user interface classesin a
group, the technology must meet the most restrictive deployment constraint. If one
class has more restrictive deployment constraints, it should be split out to a separate
group.

The deployment constraintsare found in the description of the use case that led to
the creation of the user interface boundary class during analysis. For instance, a use
case may specify that it must be accessible from behind a firewall or from any com-
puter that is connected to the Internet.

User Interface Complexity

The complexity of the user interface must be considered when dividing the user inter-
face classesinto groups. If most of the user interface classesinvolve simple dataentry,
a sophigticated data visualization class may need to be considered separately when
selecting technologies. Attempting to push atechnology past its strengths often will
cause headaches as the system evolves and expands. A technology that isjust barely
capable of supporting the current user interface may not support future desires for
moreuser interfacesophistication. Therefore, itisimportant toconsider userinterface
complexity in grouping user interface classes.

136 Enterprise Java with UML

User interface complexity can be derived from the flows of eventsfor each use case
and by examining the responsibilities of each user interface boundary class.

Boundary (System Interface)

Each boundary class that controls the system's interaction with another system must
be considered separately. Whileit is desirable to use the sametechnology for all system
interface classes, it may not be possible. In many cases, existing external systems dic-
tatetheinterface. For example, asystem may exposeitsfunctionality through CORBA
or EMI, or support a standard protocol such as HTTP or FTP. External systems may
require special formatting for the data, such as XML or aproprietary data structure.

Itis easy to group the system interface classes, as each isits own group. Later, after
technologies have been selected, it may be possibleto combine systeminterface classes
or sharecommon functionality.

Remember, system interface classes encapsul ate the interactions between your sys-
tem and an external system. So, when describing aboundary class, use the flow of
events and the responsibilities in the system interface class to derive the technology
needs for the boundary class.

Control, Entity, and Lifecycle

Recall thedifferent responsibilitiesheld by control, entity, and lifecycleclasses. Control
objects convert high-level messages from the boundary objectsinto many simplemes-
sagestoentity objects. Thisallowstheentity objectstostay very focused and assimple
as possible while providing a convenient interface to the boundary objects.

Entity objects hold the persistent business data and business rules for the system.
Lifecycle objects create, locate, and destroy entity objects. All control, entity, and life-
cycle classesin a system should use the same technology or related technologies. After
all, they areclosely related, as control objects uselifecycle objectsto obtain references
to entity objects, then interact with those entity objects to fulfill the functionality for a
use case. A lot of data and object references are passed about. In many cases, transac-
tions must be started and completed. The alternative, a patchwork quilt of technolo-
gies, is often unpleasant to develop and extend. With these factorsin mind, it is highly
desirable to select asingle technology or aclosely related family of technologies for all
of thecontrol, lifecycle, and entity classes. Theremay be someesoteric exceptiontothis
rule, but | have never encountered it.

Describe Each Croup

Once you have identified some groups of dasses, you can describe each group's char-
acteristics with respect to technology requirements. For example, you might categorize
a group of user interface dasses according to the complexity of the interface and
according to its deployment constraints. Every user interface can beloosely located in
aspectrum of complexity that ranges from simple data entry to dlick interactive graph-
ics. It canaso belocated in aspectrum for deployment constraints.

D ibing the System for Technology Selectio

Theredl payoff comeswhen you use the same descriptive spectrums to describe- the
strengths and weaknesses of each technology. For instance, a user interface technology
may be perfectly adequate for onelevel of complexity, but beinappropriate for amore
complex level. Using the same descriptive spectrum to describe both the problem and
the prospective solutions greatly simplifies the technology selection process and
removes much of the uncertainty and guesswork.

| suggest a spectrum of descriptions for the following areas:

« User interface complexity
« Deployment constraints for user interfaces
« Number and type of users

Available bandwidth

Types of system interfaces

« Performance and scalability

Let's examine each spectrum in detail.

m

User Interface Complexity

GUI complexity is themost important criterion to consider when selecting atechnol-
ogy for user interface classes. It isincredibly important to be clear on what your user
wants and needs before making this decision. It would be horrible to be 80 percent
done with ayear's worth of tedious HTML and JavaScript generation only to find that
you cannot satisfy your customer with an HTML-only solution. It would be equally
painful to discover that you have completely overdesigned the interface and that what
they redlly need is tabular data that will load into their PAmPilot's Web browser. It is
often difficult to extract such decisions from a user community that may not even
know, collectively, what it wants. | offer my empathy, along with the caveat that thefol-
lowing sectioniscompletely uselessif you cannot establish solid requirements.

In describing the complexity of a user interface, it is helpful to have some descrip-
tive categories to which to compare. With this goal in mind, consider arange of com-
plexity from simple dataentry to interactive graphics:

Simple data input. A smple datainput user interface allows auser to enter datainto
the system. It may help the user by presenting a list of choices or by performing
smplefield-level validation for dates or numbers. At the very leest, the technology
must dlow text entry, as with a command prompt or text entry field. However,
mostusersexpect alittlemore; consequently, simpledatainputinour modern era
often includes some not-so-simple widgets, such as drop-down selectors, sdec-
table lists, radio buttons, checkboxes, and scrollable text entry fields. Field-level
validation, such as a check for vaid dates or numeric data, may aso be included.

Static view of data. A static view of the data can be atable, tree, or graph that is
unaffected by changesin the underlying system data. Itisequally unresponsive
to the user's desire to see more or less data or to change a sort order. The view is
essentialy a snapshot of some underlying data in the system. If users want to
vary the presentation or see the latest data, they must have the system regenerate

136 Enterprise Java with UML

the entire view. For example, consider alist of books and prices from an online
bookseller. The datais constant; customers must resubmit their request whenever
they need the latest information. Also, if customers want to exclude some books,
they must enter new search criteria

Customizable views. A customizable view allows a user to customize the presenta-
tion of static datawithout making anew request to the server. For example, given
tabuiar data, the system user may filter the data, select the sort order, and hide
particular columns. Given a graph, the system user may zoom in on one part of
the graph or filter the data to create anew graph. The datais constant; only the
presentation changes. For example, if you have a table of 50 used cars, auser can
sort and re-sort by price, manufacturer, or cargo capacity, all without submitting
anew request to the server.

Dynamic view of data. A dynamic view of datais automatically refreshed to stay
currentwith the underlying system data changes. Thereis no need for the user to
request an updated view. Either the view is updated whenever the underlying
data changes or the view is periodically updated. A news ticker isa good exam-
ple. The user does not request the updated information. It simply appears unbid-
den and, often, unwanted.

Interactive graphics, interactive graphics are similar to dynamic views; the graphi-
cal view is automatically updated as the underlying system data changes. How-
ever, interactive graphics take this one step further. The user can update the
underlying data by manipulating the grgphics. This level of interaction can be
very useful for visualizing resource allocation, interactive simulations, and devel-
oping collaborative designs.

A networked version of the game Doomis a good, if extreme, example. Each
player uses interactive graphics to view and change the underlying data in the
system. By keeping al of the remote views synchronized, the system allows the
player to interact with one another and with the computer-generated players.

Other systems use interactive graphics to alow auser to change data visu-
aly, then seethe effectsascal cul ated by the system. Microsoft Projectisan excel-
lent example of thistype of application. A user can change the scheduled end date
for an activity by dragging it to the right on a timeline. The application deter-
mines if the change has a ripple affect on other activities. If so, it updates both the
underlying data and the visual display. This gives the user accessto an intuitive
visual interface to evaluate complex project scheduling options.

These categories describe a spectrum of user complexity from very smple to very
complex. A similar spectrum can be used to describe deployment constraints.

Deployment Constraints for

User Interfaces

It is impossible to characterize a group of user interface classes without considering
how the classes will be deployed. For most systems, the deployment constraints are as
important as the complexity of the user interface. After al, great functionality doesnot
help anyone if the intended audience cannot use the system.

Describing the System for Technology Selection 159

When you describe the deployment constraints for a user interface, it is helpful to
have some descriptive categories to which to compare. With this goa in mind, consider
arange in deployment scenarios from ahandheld device accessing the system over the
Internet to a few dedicated workstations accessing the system on a high-speed LAN:

Handheld device. This deployment constraint requiresthe user interface to work on
a handheld device, such as a PAmPilot or perhaps even a cellular phone. While

wireless technology improves and tiny user interfaces mature.

Any Web browser on the Internet. This deployment constraint requires the user
interface to perform acceptably on any browser, on any computer, over the sow-
et possible dial-up connection. Some browsers may not support images, much
less dynamic HTML, so the user interface must be presented or at least pre-
sentable in a text-only form. Whilerare, this constraint is aredlity, especialy for
government sites that provide access to people with disabilities. In other cases,
the computer may be old, Sow, and behind a corporate firewall, or old, dow, and
connected to a painfully slow modern. In both cases, the system must perform
adequately, despite the restrictions. There aso is no limit to the number of con-
current usersin this scenario.

Late-model Web browser on the Internet. This deployment category relaxes the
constraints ahit, by ensuring that each Web browser is no more than a few gener-
ations old. If this assumption is true, we know that the computer is also no more
than one or two generations old, since significantly older computers cannot sup-
port resource-hungry late-model browsers. Thereis aso no limit to thenumber of
concurrent usersin this scenario. Thisis the target deployment scenario for most
commercia Web sites.

Late-model browser on anetwork. Thisdeployment category assumes alate-model
Web browser and a reasonably |ate-model computer on the same network that
contains the system. The number of concurrent usersis certainly fewer than the
total number of users on the network. Thisisacommon deployment scenario for
systems that are deployed on corporate intranets.

Specific browser on a network. This deployment category restricts the users of a
system to asingle version of a specific browser. The number of concurrent users
iscertainly fewer than the total number of users onthenetwork. Thisisadightly
less common deployment scenario for systems that are deployed on corporate
intranets.

Dedicated workstations on a network. In this scenario, users implement software
installed on workstations to access the system. This allows the devel opers to com-
pletely control the software on both the server and the client. The number of
dients that are installed limits the number of concurrent users. This is a tradi-
tional client/server approach.

These categories describe a spectrum of deployment constraints from very restric-
tive to completely under the control of the developers. A similar spectrum can be used
to describe the number and type of users.

140 Enterprise Java with UML

Number and Type of Users

Thenumber of usersinfluences technology selection in two ways. First and foremost, a
high number of usersforces the technology for the entity, control, and lifecycle classes
to sclewell. A highnumber of users also influencesthe selection of user interface tech-
nology. A larger audience makes ease of deployment and support costs major factors.

A system with many users must keep the incremental distribution, deployment, and
support costs low. Distribution and deployment costs can be reduced, by allowing
users to download the client software or by offering the entire service as a Web site.
Support costs encourage simplicity over flash and extra functionality.

The type of users aso influences the technology selection. An enthusiastic group of
userswho gain alot by using the system will accept a shghdy more difficult deployment
process. Their vested interest in the system makes them more accommodeating and flexi-
ble. On the other hand, userswho have little to gain or who areforced to use a system to
perform anuisance task, such as filling in their timecard or paying personal property
taxes, arelessaccommodating, inwhich case, the technol ogy must be essy to use.

In describing the expected number and type of users for a system, it is helpful to
have some descriptive categoriesto which to compare. With thisgoal inmind, consider

Small number of dedicated users. Thisis asmall group of users who help define
the system and who directly benefit from the system. Distribution, installation,
training, and support may be cost-effectively customized to fit their needs. Func-
tionality is usually the priority, as these groups are often willing to invest their
own time and energy as they leam the system, hi many cases, the users spend
much of each working day intertwined with the system.

While this seems like an esoteric category, examples can be found in many
industries. Air traffic controllers useimmensely complex systemsto visualize the
location and path of commercial air traffic. Stock traders use highly customized
and proprietary systems to analyze risk and determine values for securities.
Resource planners in the oil industry use complex systems to keep expensive
refineries operating at high efficiencies while keeping inventory costs low and
fulfilling contracts. Call center systems allow people to handle huge volumes of
callsfor customer or technical support.

General use within an organization. Thisis a much larger group of users, who are
generally less motivated with respect to the system. In some cases, amost every-
one in a company with tens of thousands of employees on three continents
depends on asystem. These systemstend to support the organi zation, rather than
contributing directly to the core business. Examplesinclude timetracking, bene-
fits management, safety compliance, and information sharing.

Large audience with high interest. In this scenario, a system must serve a large
audience of very involved participants. The users may be geographically sca-
tered and otherwise unconnected from one another. The users may log on to the
system to exchange information or to collaborate. The Internet was actualy
dechiyame forrmof thi seaudi enbensesearcheos|alhor abeded to shaérdatment!

Describing the System for T Selection

141

This audience is generally willing to accept some inconvenience, as the
system holds great value for them. For example, researchers may be willing to
download and install fairly complex softwareif it will help them visualize mathe-
matical models for weather or burning buildings, for example. An audiophile
may be willing to do aimost anything to hear his or her favorite recording artist's
new track aweek early.

In many cases, this audience is virtually self-supporting, as the community
members help one another through the inevitable pitfalls of installing and using
the software.

Huge audience with low interest, hi this scenario, a system must attract and serve
arelatively fickle audience. This, of course, is the audience for most consumer
Web sites. Visitors are alienated easily by systems that start slowly or that waste
their timein any way. Both potential and existing customerswant avery pleasant
and efficient experience, and they are certainly not going to accommodate the
systemin any way.

These categories describe a spectrum of users from a smal number of dedicated

users to a large number of relatively disinterested users. A similar spectrum can be
usad to describe the available bandwidth.

Available Bandwidth

Availablebandwidthis another key factor when selecting technologies. Some combi-
nations of technologies alow the developers to meet low bandwidth restrictions, while
other technologies exacerbate bandwidth constraints. The descriptive categories for
bandwidth ranges from adial-up connection to an Internet service provider at oneend
and a dedicated network at the other:

Dial-up Internet connection. Thisis till themost common type of connection to the
Internet. Supporting speeds from roughly 26 K Baud (thousand bits per second) to
56 KBaud, adia-up connection is stitable for systems that let users view text and
images, listen to streaming audio, and enter text data. Itis painfully dow for any
sort of real-time video or other media.

Fast Internet connection. Fast Internet connections include a variety of technolo-
gies, including digital data transmission over phone lines, cable and satellite
transmission, and shared direct transmission lines to the Internet backbone.
These connections allow users to view text, images, and even streaming video
without significant discomfort.

Dedicated network between client and server. A dedicated network alows the
client and the server to exchange data at very high speeds. Even an inexpensive
home network can easily support 100 million bits per second over relatively short
distances.

These categories describe a spectrum of bandwidth from dial-up connections to a

dedicated network. A similar spectrum can be used to describe different types of sys-
teminterfaces.

142 Enterprise Java with UML

Types of System Interfaces

In some cases, the technology for a system interface is determined by an existing exter-
nal system. Otherwise, you must describe the system interface, then select an appro-
priate technology. Obvioudly, this process must be coordinated with the development
team for the external system. System interfaces divide into three categories:

Data transfer. Many system interfaces exist solely to transfer large blocks of infor-
mation from system to system. Such interfaces are traditionally referred to as
Electronic Data Interchange (EDI) interfaces. The exchange of data may be per-
formed at preset intervals or it may be performed on demand. In any case, one
system takes a snapshot of its internal data, formatsit for the other system, and
sendsiit to the other system. The receiving system must read the information and
update its own internal information. Each interaction has its own agreed-upon
data structure, so that both sides can read and write the records.

Datatransfer interfaces are \ery common in business and financia systems.
Semi-independent branch office systems retrieve the latest data from the home
office. The home office collects the day's transactions from its satellite offices.
Money flows from bank to bank. Business partners exchange data and make
commitments,

Services through a protocol. The next form of system interface allows a system to
make requests through an agreed-upon protocol. A server allows aclient system
to authenticate itself and request data or services by sending predefined codes
and values. This arrangement alows very structured access to the server, with
substantially moreflexibility than a simple data interchange.

Some protocols have been standardized for widespread use. For example,
theFile Transfer Protocol (FTP) allowsdlientsto move filestoand from the server.
The HyperText Transfer Protocol (HTTP) adlows a dlient to retrieve data from a
Web server and to post requests to a Web server. Many organizations develop
their own protocols to provide services and exchange more arbitrary information.
Protocol-based interfaces use many of the same techniques as data interchange
interfaces. It may even be difficult to distinguish between asimple protocol and a
complex data interchange. However, protocol-based interfaces generally allow-
more flexibility and add behavior to the data. For instance, a data interchange
interface sends a large block of data and letsthe receiver determine the next step.
A protocol-based interface might send asmall block of dataaspart of acommand,
thenwait for the response before deciding what to do next.

Direct access to system services. This type of interface allows a client system to
directly call designated methods in the server. The server exposes certain meth-
ods for remote access The client passes the name of the method and any input
arguments as a request to the server. The server calls the actual method and
passes the result back to the client.

Procedural versions of this type of interface are called Remote Procedure
Cdls (RPCs), while object-oriented versions of this system use the open standard
Common Object Request Broker Architecture (CORBA), Microsoft's Distributed

Describing the System for Te Selection

143

Common Object Model (DCOM), or Sun's semi-open standard Remote Method
Invocation(EMI).

This type of interface can provide a very flexible and intuitive interface
between two systems. In many cases, it is infinitely easier to expose parts of an
exigting system in this manner than to implement an entire protocol between two
systems.

These categories describe a spectrum of systeminterfacesfrom simpledatatransfer
to remote access to the system's functionality. A similar spectrum can be used to
describe the performance and scal ability issues for a system.

Performance and Scalability

Performance and scalability requirements are increasingly important factors in the
selection of technology for control, entity, and lifecycle classes. Performance must be
balanced against dataintegrity in any multiuser system, and there aren't many single-
user systems |eft. Also, as concurrent users and data are added to the system, the sys-
tem must scale well so that the user experience stays tolerable.

Several factors complicate the devel opment of high-performance and scalable sys-
tems. Certainly, theamount of data and thenumber of concurrent usersimpact theper-
formance. However, high-performance databases can handle large amounts of data
with ease, and high-speed networks minimize the impact of additional users. One fac-
tor that dramatically affects performance is concurrent access and updates of data
Some systems must contend with multiple users modifying the same data. In order to
keep the dataintact while meeting performance requirements, these systems must use
sophisticated locking strategies.

Thereare several descriptive categoriesthat affect scalability and performance:

Read-only. Some systems dlow users to view the system data, but do not alow
them to update it. While this sounds quite restrictive, many very important sys-
temsfit this description. For instance, a system may alow a stockbroker to ana-
lyze and visualize therisk in his or her portfolio, without allowing him or her to
buy or sell securities. A safety compliance system may allow a user to search for
safety regulations, without alowing that person to change the regulations. In
fact, many systems allow amass audience to view data, while narrowly restrict-
ing changesto the data.

Isolated updates. In many systems, many users change the system's data, but the
changes do not conflict with one another. An online store may have many cus-
tomers, but they cannot change one another'shilling or shipping preferences. Of
course, this example falls apart if two people are alowed to log in as the same
user, at the sametime.

Concurrent updates. In other systems, many users change the system's data, with
some of the changes affecting the same data. An onlineairlinereservation system
alows many usersto reserve a seat on aparticular flight. Sincea flight holds a
limited number of passengers, each reservation affects avery important piece of
data, the number of remaining seats on the flight.

144 _ Enterprise Java with UMI

These categories describe aspectrum of factorsthat affect the performance and scal-
ahility of a system. Now we have several decriptive spectrums that alow us to
describe a system's technology needs.

Technology Requirements for the
Timecard Application

Now that we have the descriptive spectrums, let's apply them to our Timecard system.
This section divides the analysis classes into groups and uses the descriptive categories
to describe the technology requirements for each group. These descriptions will be
used in subsequent chapters, when we select technologies for each group.

Find Groups of Analysis Classes

Thereareat leest three distinct groups for the Timecard application: the user interface
classes, the system interface for the external time entry repository, and the control,
entity, andlifecycleclasses.

While the deployment constraints for the employee's user interface classes are more
restrictive than the administrative users' user interface classes, the user interface com-
plexity isexactly the same. Therefore, any technology that satisfiesthe employees, with
their additional requirements for remote access, will also satisfy the administrative
users. Treating dl of theuser interfaceclassesasasinglegroup will greatly simplify the
Timecard application.

There is only one external interface class, the BillingSysteminterface. It must be
treated as a separate group.

Unless there is some compelling reason, the control, entity, and lifecycle classes
should be treated as asingle group. This group contains al of the application logic and
business logic for the system.

These decisions |eave us with the following groups of analysis classes:

« All user interface classes

« The system interface for the external hilling system

« All application and business logic classes
Let'sfocus on the user interface dassesfirst.

User Interface Complexity

To determine the complexity of the user interface, we need to consider each user inter-
face class in turn. Since al of the user interface classes are grouped together, the
selected technology must support the most complex user interface class.

The descriptive categories for user complexity are:

* Simple data input
« Static view of data

D the System for T¢ Selection

145

 D@natoizaiseol dsta

« Interactive graphics

The group includes the following analysis classes we documented in Chapter 5,
"Anaysis Model for the Timecard Application”:

AdministrativelL oginUl. The Administrativel oginU| alowstheusersto enter their
username and password as proof that they are authorized to use the system.
Examining the class and its methods, as shown in Figure 6.1, it is clear that the
purpose of the AdministrativeLoginUl class is best described as simple data
input.

EmployeeLoginUI. Since the Employeel oginU! class provides the identical func-
tiondity asthe Administrativel oginUI class, it must have the same user interface
complexity: smple datainput. Figure 6.2 shows the methods for the class.

ExportEntriesUl. The ExportEntriesUl class alows administrative users to export
time entries to the Time entry repository. Examining the class and its methods, as
shown in Figure 6.3, it is clear that the ExportEntriesU| class both displays exist-
ing data, such as a ligt of clients, and allows export criteriato be entered. There is
no indication that the data is dynamically updated, so we conclude that the pur-
pose of the ExportEntriesUl classis best described as smple data input and static
view of data.

RecordTimeAdministrariveUl. The RecordTimeAdministrativeUl alows adminis-
trative users to enter hours for any employee. Examining the class and its meth-
ods, as shownin Figure 6.4, it isclear that the RecordTimeAdministrativeUl class
displays existing time entries, and alows the user to enter new time entries and
update existing time entries. We conclude that the purpose of the Record-
TimeAdministrativeUl classisbest described as smple datainput and static view
of data.

RecotdTimeUI. The RecordTimeU! allows employees to enter their hours. Since the
RecordTimeU! class provideslessfunctionality than the RecordTimeAdministra-
tiveUl class, we conclude that it has the same description, smple data input and
static view of data. Figure 6.5 shows the methods for the class.

<<boundary>> <<boundary>>
AdministrativeLoginUl EmployeeLoginUl
+displayLoginForm() +displayLoginForm()
+displayWelcome() +displayWelcome()
+submitNameAndPassword ()’ +submitNameAndPassword ()

Figure 6.1 AdministrativeLoginUl class.

Figure 6.2 EmployeeloginU! class.

146 Enterprise lava with UM|

<<boundary>>
ExportEntriesUl

+displayCriteria()
+displayDateRangeEditor()
+enterDateRange()

+displayClients()

<<boundary>>
RecordTimeAdministrativeUl

+displayEntries()
+updateEntries()
+displaySucess() +submit()
Figure 6.3 ExportEntriesUl class. Figure 6.4 RecordTimeAdministrativeUl class.

<<boundary>>
RecordTimeUl

+displayEntries()
-+updateEntries()|
+submit()

Figure 65 RecordTimeUl class.

Deployment Constraints for
User Interfaces

Examining theuse case descriptions covered in Chapter 3, " Gathering Requirementsfor
thelimecard Application," there seem to be two distinct sets of deployment constraints
The Login and Record Time use cases for the employee must be accessible from amost
anywhere, while the use cases for the administrative user have no such restrictions.

Recall that all of the user interface classes have been grouped for technology selec-
tion. So, one user interface technology will be selected, and it must meet the mart i
restrictive deployment constraints.

First we survey the use case descriptions to determine the individual deployment
constraints. Based on thisinformation, we select a descriptive category that fitsal at
the use cases. Revisiting the use case descriptions in Chapter 3, we find the following
deployment constraints:

Login use case. Employees must be able to log in from any computer, including ,
home, dient sites, and on the road. This access may befrom behind adlient'sfoe-
wall.

Describing the System for Technology Selection

147

Record Time use case. The Record Time use case must be accessible from dlient sites
and employees’ homes. In the case of client sites, they will often be behind the
client's firewall.

Next, we need to pick the descriptive category. The descriptive categories for
deployment constraints are:

Handheld device

Any Web browser on the Internet
Late-model Web browser on the Internet
Late-rnodel browser on anetwork
Specific browser on anetwork
Dedicated workstations on anetwork

Sincethe empl oyee must be able to access the system from home and client sites, we
can exclude categories 4, 5, and 6. There is no indication that handheld devices are
used, so we can exclude category 1. Thisleavesus with option 2, "any Web browser on
the Internet," and option 3, "late-model Web browser on the Internet." The deploy-
ment constraints in the use case descriptions do not determine which of these two
optionsis most appropriate.

In this case, we might ask the stakeholders, or use a smple email survey to clarify
the issue. For our example, let's assume that al of the employees already use late-
model browsers, sowe choose option 3, "late-model Web browser on the Internet.”

[l

o g wN

Number and Type of Users

The number and type of users can usually be deduced from the use case model.
Remember, each distinct group of usersis represented by an actor in the use case doc-
umentation. In the Timecard application, there are only two actors, employee and
administrative user. The employee actor representsall employeeswho usethe system
to record their time. The administrative actor represents people who administer the

system.
The descriptive categories that describe users are:

1. Small number of dedicated users
2. General use within an organization
3. Largeaudiencewith high interest
4. Huge audiencewith low Interest

Since dl employees use the system to record their hours, category 2, "genera use
within an organization," seems very appropriate for the user interfaces that support
the Login and Record Time use cases. Option 1, "small number of dedicated users,"
seems more appropriate for the user interface that supports the Export Time Entries
usecase. However, wehave decided to pick asingleuser interfacetechnol ogy that sup-
ports the most restrictive case, so we select the more challenging option, number 2,
"general usewithin an organization.”

148 Enterprise Java with UML

Available Bandwidth

Availablebandwidth can usually be deduced from the deployment constraints on spe-
cific use casesand from the descriptions of the actors. For example, if all the actorsuse
the system at a single facility, bandwidth may not be an issue. If some actors use the
system from remote facilities, from home, or while traveling, bandwidth may be an
important factor.

The descriptive categories for bandwidth are:

1. Did-up Internet connection

2. FestInternet connection

3. Dedicated network between client and server

From the deployment constraints in the use case descriptions, we see that the
employee must be able to use the system from "any computer, including home, client
sites, and ontheroad." Thisclearly excludesthe last two categoriesand leavesus with
"dial-up Internet connection.”

Types of System Interfaces

System interfaces are best described by examining the complexity of theinteractionas
documented in the flow of events for the use case(s) that use the external system. We
must ask questions such as: What data is exchanged? Which services are obtained?
How flexible is the interface?

The descriptive categories for systeminterfacesare:

1. Datatransfer

2. Services through aprotocol

3. Direct accessto system services

The only system interface, the BillingSysteminterface, does not demand any ser-

vices of the billing system. Instead, it simply sends ablock of time entries to the exter-
nal system. Category 1, "datatransfer,” is clearly the right choice

Performance and Scalability

The performance and scalability factors are generally found by examining the class
diagrams and sequence diagrams from the analysis model. These diagrams describe
the data access and update patterns that influence performance and scal ability. Unfor-
tunately, these diagrams cover asingle use case at atime. It isup to the developers to
consider the effects of severa use cases occurring concurrently.

The descriptive categories for performance and scal ability are:

1. Read-only
2. |solated updates
3. Concurrent updates

Describing the System for Technology Selection 149

To determine the most appropriate category, we must consider how multiple users
performing the use cases simultaneously affects each entity object. In many cases, a
cursory glance at the activity diagram and sequence diagrams for a use case is suffi-
cient. In other cases, developers must examine the sequence diagrams to see exactly
how the entity objects are used. It seems profitable to consider each use case in turn
before considering theimpact of usersperforming different use cases simultaneously
onthe categorization. The following sections each describe the performance and scala
bility factors for anindividual use case.

Login use case. In the Login use case, the system locatesthe user entity object that
corresponds to the actual employee. Oncethe object islocated, it must determine
if the password isvalid. Thisrequiresthe system to read the password from some
sort of persistent store. No data is updated, so "read-only" is the appropriate
description. The sequence diagram in Figure 6.6 shows this interaction between
the objects.

A
<<boundary>> <<control>> <<entity>> <<lifecycle>>
: EmployeeLoginUI : LoginWorkflow : User : UserLocator
T T T
i i
; |
| I
i |
! |
o r | | |
1 !) !
| displayloginFormQ | i i
| submitNameAndPassword() | i
; | validateLogin() |
| |
i findByName()
o __ _USEROBECT __ A _

i
VALID,
i< ________
i _vaub___

:

: > disployelcome0 READ ONLY
‘

: !

:

:

|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
| |
| !
| |
| 1
! validateLogin(!
i i
| i
| |
| |
| |
|
|
1
i
|
| i
i i
| |
| |
i |
| |
| |
i i

Figure 6.6 Data access for the Login use case.

150 Enterprise Java with UML

Export Time Entries use case. In the Export Time Entries use case, the system
locates client, user, and time entry objects. It also retrieves the details for each
time entry object. It does not update any system data, so "read-only" isthe appro-
priate description. Figure 6.7 shows these interactions.

<<boundary>> <<controb>> <dlifecye>> || <ifecyce>>
_ExportEntriesUl : i sEntrylocator || EMY || ; lientlocat
frativelser

displayCiteriaQ
R i

> displayDateRangeEditor()

enterDateRange()
it i

> displayClients()

N T R c RO NONR Iy

selectClients()
findAlg
PR ST U A S R
> displayEmployees(, i
selectEmployees() i i
5 5 :
> diplyeeselcor), | READ ONLY
| enterOutputfile(y | i
| _submitRequest() | 3’ 5 3 3
H | expontForCriteriaQ ! 3 "‘ {‘
findForCriteria() "
getChargeCode()
getDay)
getHours)
getUser()
|
> witeFie) |
. _sootoc i
|
> displaySucess() i
|
|

Figure 6.7 Data access for the Export Time Entries use case.

b

!
:
:
i
ieiag ‘ UPDATE
i updateEntries() | : /
| ! setEntries() |
‘ . j
!
:
‘
:
‘
j

Describing the System for T Selection

151

Record Time use case. In the Record Time use case, the system retrieves and dis-
plays the time entry objects. After the user updates the entries, the system must
update its datawith the new data. Therefore, the use case must be described with
either "isolated updates’ or "concurrent updates.”

Each employeecan only record hisor her own hours, sothereisno danger of
concurrent updates dueto different employeesusing the system at the sametime.
We can easily preclude the same employee from logging in twice, so thereisno
danger of the same employee recording hoursin multiple sessons. However, the
administrative user can initiate the Record Time use case on behdf of any
employee. So, two administrative users or one administrative user and the actual
employee could record time for the same employee at the same time. The Record
Time use case does introduce a risk of "concurrent updates." Figure 6.8 shows
theseinteractions.

!
!

| i

> displayEntries) !
!

:

!

!

!

'

e o RO AS Dy

| '
| 1
| i
| I
I I
| |

:lk-u 6.8 Data access for the Record Time use case.

control: ity: i
2 imeUl | | i : User : Timecard
T 1
i i
i i
i I
1 |
' i i
| |
' i i
| displayEntries() | !
s | |
¢ getEntries() i 3
! getCurrentTimecard() | !
H jetCurtentimecnrdQ)
} 4 e
! | getEntries() i READ ONLY
i i i
: : L o ENTRYAOBIECTS - 1 |
i i |
: \ENTRY OBJECTS _
i
i
i
i
i

151 Enterprise Java with UML

The Next Step

Describing the technology requirements of a system forces you to carefully examine
the requirements and analysis model for the system. For real-world systems, thisisa
very daunting prospect. Hundreds of pages of documentation must be read and
understood as the system is gradually categorized. However, the result is well worth
theeffort, as the technology requirements for acomplex system, with many interesting
nuances and subtleties, can be summarized in afew paragraphs.

This summary is used to facilitate technology selection and to enable the participa-
tion of more people in the selection process. For instance, developers with experience
in a given technology can easily use the summary to evaluate the suitability of that
technology. They can share their expertise without spending countless hours learning
the system. Summarizing thetechnology requirementsfor asystemisasouseful if you
are not using outside expertise. By producing the summary before considering tech-
nology, developers avoid any urge to pick atechnology and then justify its suitability
for the system. It is very common for developers to semi-consciously select a technol-
ogy before evaluating its suitability. This leads them to see the areas where the tech-
nology fits, while and sometimes glossing over the areas where it does not.

The next two chapters use the following to describe and select technologies for the
Timecard application:

« User interface complexity: Simple datainput and static view of data.

» Deployment constraints for user interfaces: Late-model Web browser on the
Internet

« Number and type of users: General use within an organization

« Available bandwidth: Dial-up internet connection

« Types of system interfaces: Data transfer

« Performance and scalahility: Concurrent updates

Evaluating Cahdidaté
Technologies for
Boundary Classes

Now that we've grouped our classes and described each group, we're ready to exam-
ine the classes and select the technologies that will achieve our system requirements.

This chapter describes how to describe and evaluate candidate technologies for
boundary classes. Tt begins with an introduction of a standard format for describing a
technology that we can use. Then, well apply the template to severa technologies.
Once this is done, we'll use the technology requirements from Chapter 6, "Describing
the System for Technology Selection,” and thetechnology descriptionsto find theright
technologies for the boundary classesin the Timecard system.

Technology Template

When learning a new technology, it is easy to become absorbed in the details and miss
important information. Most developers, myself included, lose objectivity as they
leam about the latest and dlickest technology. Given ashiny new hammer, all | sseare
nails. The following template helps mefocus my efforts and stay grounded as| assm-
ilate anew technology. 1 suspect that, with some modifications, it may serveyouina
smilar way.

Each technology description contains the following elements:

Name and description. This section provides the name, acronym, and origin of the

technology beforebriefly summarizing it. The emphasisison thenatureand pur-
pose of the technology, rather than any of the details.

153

154 Enterprise lava with UMI

Gory details. This section uses class diagrams, sequence diagrams, and code sam-
plesto describe how the technology works and how it is used. While hill cover-
age of each technology is not possible, this section does capture the flavor and
general use of each technology. For moreinformation about specific technologies
discussed here, refer to Appendix B, "Additional Resources.”

Strengths. This section describes areas and uses in which the technology excels.

Weaknesses. This section describes any pitfallsor limitations of the technology.

Compatible technologies. This section discusses common combinations of tech-
nologies that leverage the strengths of the candidate technology,

Cost of adoption. This section quantifies the costs of adopting the technology. Spe-
cia emphasisisgiven to the difficulty of acquiring expertisein the technology. It
also mentions any product costs or licensing issues.

Suitability. This section uses the descriptions established in Chapter 6 to describe
the situations for which the technology is suitable.

With areasonable template for describing technol ogies in hand, we can explore sev-
eral technologies that can be used to implement boundary classes.

Swing

Swingis Sun'sframework for GUI development. It continuesto receive well-deserved
accolades for fulfilling Sun's "write once, run anywhere" philosophy for user interface
development and for its object-oriented design. A Swing application, or applet, looks
and behaves the same on any compliant JavaVirtual MachineJVM). Since VMsexist
for Microsoft Windows, most flavorsof UNIX, and Linux, devel opershavealot of free-
dom in developing and deploying Swing-based products. | continue to be impressed
when the code | write at night on my PC runs fine under Solaris the next morning.
Whilefar from perfect, Swingisasolid implementation of agreat vision.

Another, less-hyped, characteristic of Swing is its clear separation of model and
view classes. Swing provides many valuable model classes that can be used with
Swing view components, with other presentation implementations, or as independent
data structuresin amodel. Once amodel object is constructed, it can be wired to one
or more view objects. The view objects are kept in sync with the model by an event
model. For example, consider a list component that is wired to an underlying list
model object. Updates to the model are automatically reflected in the list component.
Similar model and view parrs are available for pull-down lists, trees, and tables, to
nameafew.

In an effort to make the view and model separation even more flexible and power-
ful, Swing's architects made eachmodel an interface, and provide adefaultimplemen-
tation. Custom implementations of the model interface work seamlesdy with the
corresponding view objects. For example, a developer could provide a fancy imple-
mentation of ComboBoxModel that keeps the elements in al phabetical order.

Many of Swing's early weaknesses, such as poor |DE support, poor performance,
and unsettling instability inthe API, have beenresolved. Undoubtedly, it will continue

Candidate T ies for Boundary Classes

155

to improve incrementally, it is now a stable and legitimate aternative for GUI devel-
opment. | predict that Svingwill complete its move from aleading-edge technology to
amainstream technology over the next few years.

Gory Details

Swing isanincredibly large and rich classlibrary. It isimpossible to do it justice here.
However, | can cover some important facets of Swing that, hopefully, will captureits
elegance and its versatility,

Separation of Model and View

In our analysis model, user interface classesare carefully separated from entity classes,
because they have very different responsibilities. Encapsulation is the key goal. Busi-
ness data and business logic are encapsulated in the entity classes so that they are easy
to find, easy to extend, and easy to reuse. Presentation logic and user interaction logic
are encapsulated in the boundary class, so that they are easy to find, and can be
extended without affecting other classes. Also, this separation allows developers to
speciaize; one set of developers acquires knowledge of the business while another
focuses on user interface design and the details of the presentation technology.

Swing has built-in support for this separation. Like all user interface class libraries,
Swing comes with a rich array of widgets, including everything from text entry to
progress bars to tree controls. However, Swing also includes classes that represent the
data in a view-independent way. These classes are called model classes, based on trie
common synonym for entity classes. Swing model classes organize data into lists,
trees, and tables, just to name a few. These models are completely independent of the
view, and may be useful even if no view is involved. This is especialy true of the
DefaultTreeModel, which provides methods for adding nodes to a tree, removing
nodes from a tree, traversing atree, and generating a list of nodes from a leaf node to
the root node.

By design, Swing model classes are highly extensible. In each case, Swing provides
an interface that defines the behavior for the model, aswell as a default implementa-
tion. This approach alows developers to solve straightforward problems with little
effort, while allowing developers to handle more complex modeling problems with
proportionally more effort.

Consider alist of objectsand the corresponding graphical widget for displaying the
objects in a pull-down combo box. In Swing, all concrete combo box model classes
must implement the ComboBoxModel interface if they intend to be used by graphical
combo box components. TheclassJComboBox containsall of the presentation and user
interaction logic for producing combo box widgets. Each JComboBox object hasauni-
directional association with exactly one object, whose class implements the Com-
boBoxModel interface. The JComboBox object is completely protected from the
implementation details of the model; aslong as the object supports al of the methods
inthe ComboBoxModel interface, the JComboBox object's needs are satisfied. Notice
that one ComboBoxMode!l can support many JComboBox objects. Figure 7.1 shows
these relationships. Sun provides the DefaultComboBoxModel as a quite reasonable

156 Enterprise lava with UML

<<Interface>>

ComboBoxModel
+ getSize() : int
+ getElementAt(index : int) : Object 1 5 =

+ getSelecteditem() : Object
+ setSelecteditem(item : Object) : void
+ addListDataListener(] : ListDataListener) : void

/ N

/ .
/ 5
/ g 5
DefaultComboBoxModel s
SortedCombo
+ DefaultComboBoxModel() BoxModel
+ addElement()
Custom implementation
From Sun
Figure 7.1 Comb del and impl

implementation of the ComboBoxModel interface. More complex implementations,
such as a lig model that sorts its contents, must implement the ComboBoxModel
interface.

Event Model

In many applications each graphical view object must stay up to date with its underly-
ing model object. The most obvious approach is to have the model object notify each
view object when achange occurs. However, thisintroduces a dangerous mutual asso-
ciation between the model object and the view objects, as shown in Figure 7.2 for the
JComboBox and itsassociated model class. The JComboBox object callsthe getSizeand
getElementAt methods on the ComboBoxModel object, and the model object callsthe
interval Added notification method on the view object whenever an object is added to
the model. This mutual association makesit impossible to reuse the model classwith-
out aso reusing the view class, which is often inappropriate. Also, allowing a model
cdassto access one method in the view class may lead developersto use other methods,
until the two classes are tightly coupled.

The architects of the Swing class libraries needed a way to update view objects to
reflect changes to the model objects’ state, without introducing direct dependencies
from the model classes to the view classes. Fortunately, there is a well-defined and
well-respected design pattern that solves this exact problem, called Observer [Gamma
1995]. Inthis pattern, the observer classimplements an interface that contains al of the

Evaluating Candidate Technologies for Boundary Classes 157

<<Interface>>

ComboBoxMode) JComboBox
1 *
+ getSize() - int +i di
int) : Object + intervalAdded()
+ contentsChanged()

+ getElementAt(inde:
+ getSelecteditem() : Object
+ setSelecteditem(item : Object) : void

o

|
|
|
i 3
|
|
I

N

[Defaultc 1] [:..m,ar d -J
& 1]

Figure 7.2 A bidirectional association between view and model.

notification methods. An observer object is registered with the observed object. When
achange occurs, the observed object must notify each registered observer. However,
the observed object does not depend directly on the observers; it just knows that they
implement the observer interface.

In Swing, this pattern is implemented by requiring the view objects to register
themselves as listeners on the model objects. Swing adds an additional twist, as the
JComboBox does not know the specific implementation of ComboBoxModel. It
only knows that the model object implements the ComboBoxModel interface. Since
JComboBox implements ListDatalistener, it is able to add itself as a listener to the
model object. Once the model object has areference to the listener, it can use theinter-
val Added or contentsChanged methods to notify the listener of changes. The bidirec-
tional association is avoided, because the model object does not know about
JComboBox objects, just ListDatal isteners. Figure 7.3 showstheway inwhich Swing's
event model works for JComboBox objects and the underlying model.

The Observer pattern alows the objects to communicate with one another while
keeping themodel independent of the view and providing an amazing amount of flex-
ibility. An application can create a particular type of ComboBoxModel, such as a
DefaultComboBoxModel. The application can then create a JComboBox object that
receives a reference to the model object in its constructor. However, the JComboBox
object does not know or care which concrete implementation of ComboBoxModel it
receives. JComboBox's constructor calls the addListDatal istener method on the Com-
boBoxModel object. This registers the JComboBox as a listener on the model. Finally,
the JComboBox object extracts the current state of the ComboBoxModel and uses the
informationto popul ateitself.

When the DefaultComboBoxMode!l object receives new elements, it notifies each
registered ListDatal istener object by calling its interval Added method. In the case of

158 Enterprise lava with UML

<<Interface>>

ComboBoxModel JComboBox
+ getSize() + intervalRemoved()
e gemmey
+ getElementAt() i . | +intervalAdded()
+ getSelecteditem() + contentsChanged()
+ setSelecteditem() + JComboBox()

+ addListDatalistener() T
I
A I
|
|
| v
I
1 <<Interface>>
DefaultComboBoxModel ListDataListener

+ DefaultComboBoxModel() |, | T intervalRemoved()
+ addElement() + intervalAdded()
+ contentsChanged()

Figure 7.3 Observer pattern in Swing.

the JComboBox object, it knows to repopulate itself to reflect the model. Figure 7.4
shows the Interaction between objects, while ignoring the interfaces.

Combining User Interface Components

Swing includes amost 50 user interface classes, from entire tables to tiny tooltips and
everything in between. While many of these classes areindependently impressive, any
real userinterfacerequiresdevelopersto connect user interfaceobjectsin sophisticated
combinations. A user interface might include a tree control and a detail editor that
alows the user to view and update the datafor theitem that is selected in the tree con-
trol. This navigation and editing tool might live inside of a larger user interface that
includes a menu bar and atoolbar with icons.

Thekey to Swing's power and flexibility liesin the breadth and sophistication of the
user interface classes themselves and in the ease with which devel opers can assemble
acomplicated whole from relatively simple parts. In providing this functionality, the
Swing classes make excellent use of the Composite design pattern JGamma 1995]. A
JPanel is a Swing class that extends JComponent. Figure 7.5 shows how a JPanel object
can hold any number of other JComponent objects, i ncluding other JPanels. This gives
Swing developers full freedom to compose several components into a group, then use
several groupsto build astill larger user interface.

Evaluating Candidate Technologies for Boundary Classes 159

- DefaultC

1. DefaultComboBoxModel() |

Repeat as needed

Figure 7.4 Object interactions for the Observer pattern in Swing.

JComponent

MR Vo W S SRt G|
* m
+ repail * VoIl < P
paint() : void b =t 5

+ getPreferredSize() : Dimension

And many, many more

JComboBox
3 o7 e]

JPanel

1 | +add(c : JComponent) : void

Figure 7.5 Use of Composite design pattern.

160 Enterprise Java with UML

Layout Managers

Combining many componentsto formacoherent user interface requiresthe devel oper
to determine how the components will be organized relative to one another, and how
each component handles changes to the size of the enclosing window. Swing provides
severa classes knownaslayout managers, that al low devel operstocontrol thelayout of
components within a container. Each JPanel object has exactly one layout manager
object, whichisaninstanceof aclassthat implementsthe L ayoutManager interface. As
shown in the one-to-one relationship between JPanel and LayoutManager in Figure
7.6, each LayoutManager object is dedicated to a single JPane’. Since the JPanel has a
referenceto the LayoutManager interface, it can useany concreteimplementation of
LayoutManager without modification.

Putting It Together

Swing makes excellent use of the Observer pattern to keep the model and presentation
classes separate while keeping the views in sync with the model.. It also uses the Com-
posite pattern to alow the incremental construction of arbitrarily complex user inter-
faces. Flexibility is constantly increased through the creative use of interfaces. Infact,
asyou can seein Figure 7.7, every single association relationshipis to an interface or to
abase class, rather than directly to a concrete implementation class. This means that
any JPanel can contain any number of different components, and use any layout man-
ager. A JComboBox can use any model that implements the ComboBoxModel inter-
face, and a DefaultComboBoxMode! object can keep any object up to date, aslong as
the object's class implements the ListDatalistener interface. Swing's developers
clearly designed with flexibility and extensibility inmind.

A Small Sample

Thefollowing sample application shows how several JComboBox objects can present
the elements of the same ComboBoxMode! object. A separatetext entry frame is used
to add items to the model. Each time an object is added as an item in the ComboBox-
Model object, itisimmediately availableinall of the JComboBox objects.

Let'stakealook at thefilesthat produce the combo boxes and the entry widget. The
UpdatedChooser's congtructor receives a reference to an object that realizes the Com-
boBoxModel interface. This UpdatedChooser's only job is to pass the model object
along to the JComboBox and display the JComboBox inside of aframe. Itisnot at al
involved inthe Observer pattern.

The main method of UpdatedChooser, which as you know serves as a static entry
point into this little application, constructs anew DefaultComboBoxModel and passes
it to the constructor of a few UpdatedChooser objects. Notice that the constructor for
the UpdatedChooser objects only knows that the parameter is an object whose class
implements the ComboBoxModel interface. The mam method could use any other
implementation of ComboBoxModel, without affecting the code for the Updated-
Chooser.

Candidate T for Boundary Classes 161

JComponent

: Sy
+ repaint() :voud. ; 3 e
+ getPreferredSize() : Dimension

And many, many more

JComboBox

JPanel

1 | +add(c: JComponent) : void
1

<<Interface>>
LayoutManager
+ addLayoutComp : String, ¢ : C : void
+ layoutContai iner : Container) : void
T %
| \\
| N
| 39
GridBagLayout ‘ FlowLayout ‘ BoxLayout ‘

e

And a dozen more

Figure 7.6 Layout managers.

UpdatedChooser.java
package com.wiley.compBooks . EJwithUML. SwingExamples;

import javax.swing.*;
Ju

+ Each instance of UpdatedChooser consists of a JFrame with a

And many, many more

>>
W, 1 r<<llnterface id

I
<<Interface>>

|
ListDataListener * | DefaultcomboBoxModel
< S>> t |

L A0 B DAL S

s 7 Az
I
|
1
|

And more at your discretion

s
7z
4
s

s
z
GridBaglLayout

N
¢
N
e’
\
~

FlowLayout | l BoxLayout l

And a dozen more

Figure 7.7 All together now.

PR

ey
pul

Candidate T¢ ies for Boundary Classes

163

JComboBox inside of it. The JComboBox allows the user to
select from the items in a ComboBoxModel.

The ComboBoxModel is passed in as a parameter to the
constructor and is used to construct the JComboBox. This
allows the JComboBox to register itself as a listener on
the model.

blic class UpdatedChooser extends JFrame
public UpdatedChooser (ComboBoxModel model)
super ("Updated Chooser Exampple");

// construct a JComboBox that displays the model
JComboBox chooser = new JComboBox (model) ;

// add the JComboBox to the main container for this JFrame
this.getContentPane () .add (chooser) ;
this.pack();

this.addWindowListener (new ExitListener());
this.setVisible (true);

public static void main(String[] args)

(
/* create a combo box model and pass it along to a few

presentation and update objects */

DefaultComboBoxModel model = new DefaultComboBoxModel () ;
new UpdatedChooser (model) ;
new UpdatedChooser (model) ;
new TextEntryFrame (model) ;
new TextEntryFrame (model) ;

TheTextEntry FramekeepsareferencetotheDef aultComboBox Model object, which

itreceivesinits constructor. The constructor aso adds atext field and an OK buttonto
the frame, and registers the TextEntryFrame object as an action listener on the button.
When the OK button is pushed, Swing's framework callsthe TextEntryFrame object's
actionPerformed method, which reads the text field and adds the resulting string to the
model.

TextEntryFramej ava
package com wi | ey. conpBooks. EJwi t hUM.. Swi ngExanpl es ;

164 Enterprise Java with UML

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

Jex
* Each instance of the TextEntryFrame class contains a text
field and an "OK" button. Each instance also receives a
* DefaultComboBoxModel object as a parameter to its
constructor.

*

* Whenever the user presses OK, the TextEntryFrame reads

the text field and adds the contents to the

* DefaultComboBoxModel .

*

public class TextEntryFrame extends JFrame implements
ActionListener

private JTextField field;
private JButton button;
private DefaultComboBoxModel model;

public TextEntryFrame (DefaultComboBoxModel model)

{

super ("Entry Frame");

// initialize instance variables
this.model = model;

field = new JTextField(15);
button = new JButton("OK");
button.addActionListener (this) ;

// Get a new box container

Box box = Box.createVerticalBox();
box.add(field) ;

box.add (button) ;

// BAd the box container to the main container of this JFrame
this.getContentPane () .add (box) ;

this.pack () ;

this.addWindowListener (new ExitListener());

this.setVisible (true) ;

/** Implement behavior for ActionListener interface */
public void actionPerformed (ActionEvent ae)
{
// read the text field and add it to the model
String text = this.field.getText ().trim();

Evaluating Candidate Technologies for Boundary Classes 165

model.addElement (text) ;

this.field.setText ("");
}
}

This fairly small sample shows how the Observer design pattern worksbehind the
scenesin Swing. Al] the devel oper hasto do iswiretheright objectstogether using the
addX X X Listenermethods.

Now that we have explored some of the inner workings of the Swing classes, let's
continue to discuss the strengths and weaknesses more specifically.

Strengths

Swing's strengths lie in its limitless flexibility and richness, its cross-platform nature,
and in the clear separation of model classes from view classes. Thefirst two strengths
alow developers to create incredibly slick user interfaces that look and behave the
same on dozens of platforms, from Microsoft Windows to Linux to high-end UNIX
workstations. Used effectively, the clear separation of model classesfrom view classes
alowsdevelopersto write extremely extensible and readable code.

Swing has very reasonable performance and usability characteristics. Certainly, no
oneiswriting the next commercial 3D point-and-shoot game in Swing and Java 3D, but
Swingisquitesuitablefor businessapplications or eveninteractivedatavisualization. In
fact, several popular arcade games from the 1980shave found new lifeas Swing applets.

Weaknesses

Swing is not a low-end GUI solution. Some organizations buy an IDE, send their
PowerBuilder and Cobol programmersto aweek of Javatraining and aweek of Swing
training, and expect to be tip and running the next week. It isnot possible. Learning to
develop Swing applications takes time, and is easier with a strong background in
object-oriented user interface development. Consequently, Swing may be precluded
dueto alack of expertise.

Compatible Technologies

Swing applications, or applets, integrate well with all server-side Java technologies,
such asRMI, JDBC, and EJB. For example, aboundary object that isimplemented in
Swing can interact with remotely deployed control or entity objects that are imple-
mented with RMI or Enterprise JavaBeans. It isaso possible to locate the boundary,
control, and entity objects in the same virtual machine. For example, a Swing bound-
ary object may talk directly to control and entity objectsthat use JDBCtoretrieveinfor-

166 Enterprise Java with UML

Cost of Adoption

Swingisprovided free as part of the standard JDK,, but there are costs of adoption. First
and foremost, to be successful with Swing, your project must fill the roles of Ul
designer, architect, and Swing developer.

Ul Designer

It is aways good to have a user interface designer who can address usability and
human factors. A Ul designer devises alternative interface strategies that meet the
requirements, and works with the stakeholders and the devel opers to determine which
approach is most suitable for the project. Detiverables range from screen shots in a
drawing program to thin prototypes.

Architect

Swing user interfaces can degenerate into a series of unconnected works, with no two
screens following the same format or using the same components. An architect can
reduce this effect by establishing reusable components, such as button panels, layouts
forinput forms, and default windows. This allows developersto easily change the look
of the entire application by altering the reusable components. The alternative requires
each screen to be laborioudly edited, perhaps for something as trivial as the back-
ground color or the space between buttons.

The architect can also keep the code base sane, and avoid costly rework by establish-
ing standards for exception handling, error logging, and the use of layout managers.

The architect for a Swing-based user interface must have a strong knowledge of
object-oriented principles, extensive design experience, and a clear grasp of the Swing
architecture and event model.

Developer

At minimum, a Swing developer needs a solid understanding of the event model, lay-
out managers, and some basic components. However, every Swing project needs at
least one developer who knows the full breadth of classes that make up Swing. Almost
any GUI component you can dream up can be built from Swing's dasses. The trick is
knowing where to start.

Developers who have solid object-oriented skills and a strong background in user
interface development can migrate to Java and Swing without too much difficulty.
However, it does take time and practice. A C++ developer with Motif experience
would need a few months before he or she was truly comfortable with Java and the
Swing class libraries. An experienced Java developer with GUI development experi-
encein some other language might take considerably less time.

Developers who are migrating from a procedural background to Java and Swing
may be overwhelmed by the challenge of learning object-oriented development, Java,
and the intricacies of Swing. Most developers in this situation should gain experience
with Javabefore tackling Swing.

Candidate T ies for Boundary Classes

167

Suitability
In Chapter 6, we discovered the following descriptive categories:
« User interface complexify
« Deployment constraints for user interfaces
« Number and type of users
* Available bandwidth

Let'sevaluate Swing to seeiif it isasuitablechoice for our system.

User Interface Complexity

Swing is certainly capable of handling smple datainput and static data presentation
tasks. It comeswith afull array of input widgets, including text entry fields, pull-down
selectors, radio buttons, scrollable lists, and nifty diders. Presentation classes include
tebles, tree controls, and image maps. In addition:

* Swing also easily supports customizable views, such as sorted tables and filtered
tables.

« Dynamic views of data are incredibly easy to implement in Swing, as its archi-
tecture has built-in support for change propagation, and stresses a clear separa-
tion between the data and the presentation of the data. Once a view object is
connected to an underlying data or model object, any changes to the model
object automatically cause changes to theview object.

 Swing can be combined with the Java 2D or Java 3D graphicsframeworksto pro-
duce some very impressive interactive graphics. By manipulating the view, a
user can update the underlying data.

In summary, Swing supportsthe entire spectrum of user interface complexity, from
smple datainput to interactive graphics.

Deployment Constraints for User Interfaces

Thefirst two deployment constraints, handheld devices and any Web browser, clearly
arenot supported by Swing. However, most late-model Web browsers do include sup-
port for Swing applets, either directly or through the Javaplug-in. Almost every work-
station, from UNIX to Linux to Microsoft Windows, has a Java virtual machine, and
therefore supports Swing applications.

Number and Type of Users

Swing is easily appropriate for a small number of dedicated users. Deployment and
support of a Swing applet or dedicated application may easily be justified for low
numbers of users.

Swing may also be appropriate for general use within an organization, if the com-
plexity of the user interface makes Swing a desirable choice. However, Swing does

168 Enterprise lava with UMI

have some incremental support costs. Swing applications must be installed on each
user'sworkstation, completewith the appropriate Javavirtual machine. Swing applets
do not need to be individually installed, but an appropriate browser or Java plug-in
must be present.

Smilar considerations apply to using Swing for alarge audiencewith highinterest.
If the complexity of the user interface and the system is sufficiently compelling, users
will install the Java virtual machine, Javaplug-in, and appropriate browser.

Swing is completely inappropriate for huge audiences with low interest. Any users
who do not have a suitable configuration will not take time out of their day to install
new software.

Available Bandwidth

Swing canbe avery attractive option even for low-bandwidth scenarios. Swing applets
do require the client browser to download the class files before running the applica-
tion. However, the classfilesfor areasonably complex application are still smaller than
three largeimages.

Once it starts running, a Swing applet can actually use less bandwidth than other
user interface technologies. The server does not need to control the presentation;
instead, the server can send the smallest possible amount of data or even compressed
data.

With alittle creativity, Swing isappropriate for all bandwidth categories, from dial-
up connections to dedicated networks.

Java Servlets

The Servlet API is Sun's flexible and extensible framework for server-side develop-
ment. Within the Serviet AP1, the HTTP package protects developers from tiresome
HTTP protocol details and allows them to focus on their own unique data presentation
problems. Servlets are used in conjunctionwith aWeb server to create dynamic content
based on the user's input.

There are a severa key terms that are critical to an understanding of servlets. These

HyperText Transfer Protocol (HTTP). Specifiesacommunication protocol between
Web clients and Web servers. It specifies valid request and response formats,
error codes, and datatypes. By complying with HTTP, a Web browser is able to
communicate with millions of Web servers, regardless of their hardware, operat-
ing system, or Web server vendor.

HTTPisaconnectionlessprotocol, in that thebrowser doesnot keep aconnec-
tion open nor send multiple requests across it. Instead, each request requires a
new socket connection to the Web server. The connection is closed as soon as the
requestiscomplete.

HTTP request. A group of data sent from the browser to the Web server. An HTTP
request includes the name of the requested page, descriptive information about

Evaluating Candidate Technologies for Boundary Classes 169

the browser, acceptable datatypes for the response, any cookies that were
dropped by the target server, and any data as entered by the user. In a nutshell,
each HTTP request packages arequest from the user into a format that any Web
server can understand.

HTTP response. A group of data sent from the Web server to the Web browser in
responseto a request. An HT TP responseincludes descriptiveinformation about
theserver, an expiration datefor theresponse, and formatted data. Theformatted
data might be plaintext, formatted HTML, an image or even binary data. The
browser isresponsible for displaying the formatted data.

Form data. HTTP allows Web browsers to collect data from the user and pass it
aong to the Web server as alist of strings. The user fillsin an HTML form in
his or her browser and submits the data. The browser packages the form data as
part of the HTTP request and passes it to the Web server as part of a HTTP
request.

Cookie. When abrowser loads apage, the page may ask the browser to savearela-
tively small chunk of data on the client machine. This chunk of datais called a
cookie. Tf the browser acceptsthe cookie, then thebrowser storesthe dataand the
name of the site that "dropped" the cookie.

When a browser sends a request to a Web server, it appends al of the cook-
ies previously dropped by that site. This allows the Web server to keep track of
each user so it can simulate a continuous interactive session.

HTTP servlet. A Java class that accepts an HTTP request and fills in an HTTP
response. Serviets extend javax.serviet.http.HttpServiet, which protects them
from the messy details of parsing HTTP headers, retrieving form data, and for-
matting HTTP data for the response.

Theactual processing occursinside of the serviet's doGet or doPost method,
which accepts the HTTP request and HTTP response objects as method parame-
ters. The doGet or doPost method uses the HTTP request object to retrieve any
form data, then builds the formatted response data.

Servlet engine. Allows a Web server to redirect incoming requests to a deployed
servlet. The Web server must be configured to associate certain relative URLs
with servlets. When the Web server receives an HTTP request for one of these
URLs, it captures the request and passes it aong to the serviet engine. If
the servlet is not dready active, the servlet engine loads the servlet class
and instantiates it. Next the servlet engine creates a response object and wraps
the request data in a request object. These well-encapsulated and easy-to-use
objects are gift-wrapped and presented to the serviet's doGet or doPost method.
The servlet uses the request and any other resources at its disposal, including
database connections, Enterprise JavaBeans, and HTML formatting codetofill in
the response. The response from the serviet can be an HTML page, an image, or
afile.

For more detailed information about any of these technologies, refer to the addi-
tional resourcesinAppendix B.

170 _ Enterprise Java with UML

Gory Details

Servlets make life easier for developersby retrieving form data in a convenient form
and by managing sessions and sesson data. However, alot of work remains for the
developer, who must build huge quantities of HTML and keep the system safe despite
concurrent accessfrom the Web server.

Retrieving Form Data

When a request is received from the Web server, the servlet engine creates the
HttpServletRequest object, parses the form data out of the raw request, and adds the
form data to the HttpServietRequest object. This encapsulates the logic for reading
HTTPin the servlet engine. The doPost or doGet methods of the processing servlet can
use the getParameterNames and getParameter methods of HttpServietRequest to
extract each piece of formdata.

Sessions

Serviet engines use cookies or hidden form data to keep track of different users by
unique identifiers and to simulate a continuous session. Remember, each request is a
distinct connection, and contains any cookiesthat have been dropped by the Web server
onto theclient. If thereisno identifying data accompanying the request, then the serviet
engine creates a new sesson. If identifying data exists, the serviet engine verifies that
the sessionis till active. If 5o, it treats the request as part of a continuing sesson.

Consider areal-world analogy. When you make aflight reservation with an airline
by phone, the booking agent gives you aconfirmation number at the end of the call. It
isup to you to write thisnumber down and make surethat you do not confuse it with
the confirmation number for your rental car. If you need to make changes to your
flight, you smply call the airline and provide the confirmation number. This enables
the booking agent to easily find the relevant transaction out of tens of thousands of
similar transactions. To complete the analogy: Y ou are the Web browser; the booking
agent is the servlet engine; and the confirmation number is the cookie:

When the servlet engine receives a request from the Web server, it constructs a
HttpServletRequest object that encapsulates the request information. The serviet
engine aso attaches the HttpSession object to the HttpServletRequest. This session
object isespecially valuable to servlet developers, asit allows them to store references
to any object in amap of name and value pairs. Thismakesit really easy to associate
different useful objectswith auser and to retrieve them by name when processing sub-
sequent requests. Figure 7.8 shows how the sesson and request information is pack-
aged and delivered to the doGet and doPost methods of the servlet.

HTML Production

Servlets usually obtain a PrintWriter from the HttpServietResponse. This alows the
serviet to send a stream of formatted text data back to the Web browser. Most servlets
fill the response stream with HTML, lots and lots of gruesomely complex HTML. For
many projects, this leads to aseries of one-of-a-kind works of art, with each developer

Candidate Technologies for Boundary Classes

171

HttpServletResponse
, S B SR Rl

+ getWriter() : PrintWriter
7

ol HttpServiet

response void

5 &)k - g
i : response : : void

.
5

[HttpServietRequest

| + getsession) : Httpsession

+ getParameterNames() : Enumeration

+ getParameter(name : String) : String
{2

!
s

HttpSession

| + getAttributeNames() : Enumeration

|
|
|
L

+ getAttribute(name :
+ setAttribute(name:String, value : Object) : void

Figure 7.8 Sessions and servlets.

embedding hundreds or even thousands of lines of hard-coded HTML tags and
JavaScript in each servlet. Thisbrute-force approach is survivable until the developers
receivearequirement f oranew look or behavior that affectsmany dynamically gener-
ated Web pages. It could be something as simple as applying a new look to every table.
Developers must comb through each servlet, searching for tables and making the
desired change. Each new work exacerbates this problem, until it becomes prohibi-
tively expensiveto make any wholesde changes.

Producing complex pages of HTML in a clean and reusable manner is a chalenge
that all serviet projects must accept. The project team must create a reusable set of
HTML production classes that are used throughout the project. For instance, there
might be asingle class for creating HTML tables and another for creating a group of
radio buttons. These classes must be configurable so that they can be used in avariety
of situations, yet be smple to use. In some cases, a separate class or subclass must be
created to accommodate a specific browser. Thisapproach has three major advantages:
Firgt, the code base stays smal and is easier to understand and to extend. Second,
applicationwide changes affect only afew classes. Finaly, since each HTML produc-
tion dlass is reused throughout the application, sufficient time can be spent on effi-
ciency, quality, and appearance.

172 Enterprise Java with UML

m For one approach to this challenge, see Chapter 12, "Design for
HTML Production.”

Concurrent Access

In developing servlets, it is easy to forget that the code in their doGet or doPost
methods may be called by more than one thread at a time. However, since all produc-
tion servlet engines process requests concurrently, this is an unavoidable redlity. It is
up to the servlet developer to make sure that any resources that are shared between
servlet instances are thread-safe, by synchronizing the appropriate methods or code
blocks.

Strengths

Servlets areincredibly smpletolearn. A simple "helloworld" serviet takes only a few
lines, and once developers understand the session management logic, a shopping cart
servletis quite trivial.

Servletsprotect developers fromthe HTTP's complexity, asdl of the nasty details of
parsing and building HTTP headers and payloads are hidden within the HTTP serviet
Classes.

Weaknesses

Though servlets are technically very sound and very easy to learn, by having a sepa-
rate servlet for each dynamically generated page, and by lumping data access and
HTML production into the doGet or doPost method, it is aso very easy to create a
maintenance and extensibility nightmare. Despite the simplicity of the servlet classes,
servlet-based systems must still be designed with extensibility and flexibility in mind.

Compatible Technologies

Serviets are very compatible with Web technologies, such as HTML, DHTML,
JavaScript, and XML. Serviets are often used to create elaborate, dynamically gener-
ated Web pages that produce content in these forms.

Servletsareaso quite compatiblewith server-side technoiogies, such asJDBC, RMI,
and EJB. A servlet boundary object can easily access aremote control or entity object
using RMI or EJB. Aswith Swing, the variationsare limited only by your architectural
imagination.

Cost of Adoption

The servlet classes are provided free as part of the enterprise edition of Java, and most
commercia quality Web servers include a serviet engine. However, there are other
costs of adoption. First and foremost, to be successful with serviets, your project must
fill the roles of Ul designer, architect, and serviet developer.

Candidate T ies for Boundary Classes

173

Ul Designer

It is aways good to have a user interface designer who can address usability and
human factors. A UT designer devises alternative interface strategies that meet the
requirements, and workswith the stakeholders and the developersto determine which
approach is most stitable for the project. Deliverables range from screen shotsin a
drawing program to thin prototypes.

This is especially important in servlet development, where user interfaces are lim-
ited by the capabilities and idiosyncrasies of the users browsers. Creativity and per-
sistence are definitely required. Also, the user interface designer for a servlet-based
interface must constantly refresh his or her skills, as browsers and Web technologies
evolve and mutate at a disturbingly quick pace. At the very least, designers must know
or beonasharplearning curvefor HTML, DHTML, JavaScript, XML, and XSL.

Architect

Servlet-based user interfaces can degenerate into a series of unconnected works, with
no two following the same format or producing HTML in the same way. An architect
can reduce this effect by establishing reusable HTML production classes to produce
everything from tables and trees to frames and the enclosing page. This allows devel-
opers to easily changethe look of the entire application by altering the reusable HTML
production classes. The alternative requires each servlet to be laboriously edited, per-
haps for something as trivial as the background color or the space between buttons.

Thearchitect can aso keep the code base sane and avoid costly rework by establish-
ing standards for exception handling, concurrency, error logging, and the use of ses-
son data

The architect for a servlet-based user interface must have a strong knowledge of
object-oriented principles, extensive design experience, an understanding of Web tech-
nologies, and aclear grasp of the servlet architecture.

Servlet Developer

Compared to Swing, servlets require substantially less object-oriented sophistication,
and frequently havea significantly shorter |earning curve. Thisis especially truewhen
the architect or other senior developer defines the intent of each serviet, and the Ul
designer prototypes the HTML and associated Web scripting. Given these assump-
tions, servlet development may serve as an excellent first project for abudding Java
developer.

If the architect and user interface designer roles are not filled, then the servlet devel-
oper is forced to know everything from object-oriented design to DHTML to
JavaScript. This requires a strong object-oriented Java developer who understands
Web technologies and who can visualize usable interfaces.

Suitability
In Chapter 6, weidentified the following descriptive categories:

174 Enterprise Java with UML

* User interface complexity

+ Deployment constraints for user interfaces
* Number and type of users

* Available bandwidth

Let's see how suitable servlets are for each of these requirements.

User Interface Complexity

Servlets, in combination with HTML, can easily support simple data input and static
viewsof data. First, aservlet formatsthe HTML for acustomized form. When the user
submits the form, the form data is sent to a servlet for processing. The servlet can use
any other datasources, such as database connections, Enterprise JavaBeans, or external
systems, to create a response. The response is usually formatted HTML, although it
could be afile or animage.

Customizable views, in which the user can manipulate the view without making a
separaterequest to theserver, aremuredifficult. Remember, theserviet respondstoeach
request with a single block of data that is interpreted by the browser. So, the formatted
response must i nclude some combination of more complicated Web technol ogies, such
as JavaScript and DHTML. These solutions depend on the browser to correctly render
them, and they must be customized for each browser vendor and browser version.
Therefore, creating customizable views using servlets is a complex undertaking that
requires patience and a sophisticated understanding of Web technologies.

Dynamic viewsof the dataare equal ly problematic. Remember, adynamic view keeps
current with the underlying model, either by receiving notification when a change
occurs or by periodicaly retrieving the new data. With serviets and Web browsers, the
first option isimpossible; the server does not maintain a connection to the Web browser
andtherefore cannot notify it when the datachanges. The second option can be achieved
by using JavaScript to reload the entire page or aframe at suitable intervals. Of course,
thisisnot very efficient, asall of thedata, notjust the updates, must beretrieved. Aswith
customizable views, creating dynamic views using servlets is a complex undertaking
that requires patience and a sophisticated understanding of Web technologies.

Interactive graphics, in which the user sees changes as they occur, and updates the
underlying databy interacting with the graphics, are not possible with servlets and an
unmodified Web browser. Just rendering the graphics requires some form of plug-in,
such asaVRML or ActiveX viewer. Propagating changes back to the server is even
moreproblematic.

Servlets are most appropriate for simple data input and static views of data. Cus-
tomizableviewsand dynamic views of dataare quite possible, but depend on browser-
specific Web technologies, such asJavaScript and DHTML. Interactive graphicsarenot
possiblewith servlets and standard Web browsers.

Deployment Constraints for User Interfaces

Servlets can support the entire range of deployment scenarios; the hard part is to gen-
erateHTML that presentswell for thedifferent users. For instanceamicro-Web browser

Evaluating Candidate Technologies for Boundary Classes

on a handheld device will not present large images very well, so the HTML produced
by the servlet must include an alternative textual description in place of theimage.

Number and Type of Users

Servlete are very appropriate for &l user communities. The users should not even
notice that servlets are being used. They will know that they requested information
from aWeb server and that they received information in response. They do not need to
alter the configuration of their Web browser or accommodate the systemin any way,

Available Bandwidth

Servlets are generally appropriate for al bandwidth levels. However, there are some
limitations when attempting to stretch the capabilities of the browsers while con-
strained by low bandwidths. Remember, the browser simply renders the formatted
HTML as sent by the Web server and servlet engine. This HTML contains data, pre-
sentation instructions, and any special processing logic, al in a form that the browser
can interpret. In some cases, this may lead to an amazingly large quantity of HTML.
For instance, implementing a customizable view by making each option a separate
layer may replicate most or dl of the data for each layer. Similarly, implementing a
dynamically updated view by reloading the page periodically forcesthe servlet to wend
al of the dataand presentation instructions eech time.

XML

Theextensible markup language (XML) isarare example of an extremely hyped tech-
nology that redlly is worth the hoopla. Since its specification by the World Wide Web
Consortium (W3C) in 1998, XML has become the standard mechanism for storing
and exchanging descriptive data via eectronic data interchange (EDI). Industry
groups and government agencies are establishing XML document formats to describe
everything from astronomical data to job descriptions to workflow management.
Other common uses include conflgurallon files, flexible data storage, and language-
independent object serialization.

XML documents are valuable for people as well as computers. XML documents are
precise enough for computers to create, read, and update them. Most people find them
fairly easy towork with, especialy with theaid of an XML authoring tool. For example,
authors might use XML to divide adocument into sections and to describe the suitabil-
ity of the document for various audiences, based on their language and organizational
role. An XML-based document management system can tailor each user's view of the
documents based on the user's profile and this suitability description.

Before continuing this discussion in more depth, there are a few key terms that must
be defined:

Element. XML divides a document into elements. Each element may contain data,
attributes, and other elements. Conceptually, elements are rather like nodes in
atree

175

176 Enterprise Java with UML

Document type definition (DTD). Defines the structure of a set of documents.
Specifically, aDTD defineswhich elementscan be part of each element, and how
many and in what order. The notation is reasonably smple and consistent with
other pattern definitions, such as regular expressions.

Parser. Breaks a document into a tree of elements, and validates the document's
structure against the DTD. Note that the validation tests for presence of the cor-
rect dements, attributes, and data within defined elements. It does not test data
against an allowable range, or even differentiate between lettersand numbers.

Authoring tool. Helps a human read and write XML documentsthat are valid for a
particular DTD. Authoring tools save typing and your sanity, so you want one of
these.

Now we can plunge into the details of XML.

Gory Details

XML allows people and computersto creste and read documentsthat present dataand
describe themselves. This section discusses the structure of XML documents and the
technology for creating and parsing XML documents.

Self-Describing Documents

Every piece of datainan XML document isinside of an element or isanamed attribute
of anelement. Aslong asthe author of the DTD picksexplanatory namesfor elements
and attributes, the XML document is self-describing. This eliminates an entire class of
errorsthat have plagued EDI developersfor decades. Traditionally, a protocol or data
interchange format described the meaning and allowable values for each position in
eech record. Imagine the resulting chaos if a program reads field 11, which is Socia
Security number, as field 12, which is age in seconds since 1970. Also, changing the
interchange format may ruin existing documents; you certainly cannot safely ddetea
field or insert onein the middle.

Now consider a self-describing document format, such as XML. Thereis never any
argument over theidentity of apiece of data. Thenameliterally surrounds thedata. Of
course, there may be arguments over the associated units or how to interpret the data,
but thisis hardly the technology's faullt. Also, anew element can be added anywhere
in the document. As long as it is optional, no existing documents break. This redly
helpswhen different organizations create documents that are similar but not identical
in structure.

For example, XML can be used to describe atransactionin aformthat iseasy to read
and unambiguous for both humans and computers. Consider the following brief snip-
pet of XML that describes a single transaction in which someone gets very lucky on
February 1,1999.

<transactions>
<date>
<day>1</day>

Evaluating Candidate Tt for Boundary Classes

177

<month>Febuary</month>
<year>1999</month>
</date>
<amount >
<value>1000000</value>
<units>USD</units>
</amount >

</transaction>

Consider thealternativeapproach of smply allocating aparticular number of bytes
for each field. Tiny disagreements in the size or starting index of 3 field can lead to
strange and sometimes difficult-to-diagnose problems. The following densely packed
line shows the same data as in the preceding XML sample; however, the meaning of
each byteis|eft to the human or computer that reads theline.

01Febuary 19991000000USD

Parsers

Parserscomeintwo flavorsand use two parsing methods. First, parserseither validate
the document against the DTD or they don't. Thus, parsers are often described as vali-
datingor nonvalidating. Thefirst parsing method, the Smple API for XML (SAX), isan
event-based parser that deserves recognition for its elegance and the fact that its
acronym encapsulates two other acronyms. The second parsing method, the Docu-
ment Object Model (DOM), builds atree of elementsin memory.

SAX

AsaSAX parser worksitsway throughaXML document, it notifiestheregistered doc-
ument handl er whenever an element beginsand ends. This alows the handler to react
to the content apiece at atime, soiit can build objectsor perform any required actions.
Any extraneous information is discarded, with no wasted memory. Also, it iseasy to
stop parsing at any point. For instance, an application might parse through a docu-
ment looking for thefirst valid record. WithaSAX parser, itiseasy to stop becauseit is
processing one record at arime.

Writing applications that use a SAX parser can be somewhat tedious, however, as
each event must be caught, identified, and processed. Thisis especially painful when
the processing depends on where the element occurs in the tree.

DOM
DOM parsers are generally built ontop of aSAX parser; they provide an extralevel of
convenience. A DOM parser buildsatreestructurefrom thedocument. Oncetheentire
document has been parsed, this tree structure can be navigated and explored at length.
Also, anapplication can modify the DOM treeand saveit asanew XML document. So,
for many applications, aDOM parser isthe clear choice.

Unfortunately, this convenience may come at aprice. Theentire document isparsed
and held in memory before the tree of elementsis returned to the application. DOM
parsers are notoriously wasteful if the document is large and the application needs

178 _ Enterprise Java with UML

only a fraction of the data. Or are they? Some DOM parsers accept event handler
objects and notify them when certain events occur. For instance, IBM's venerable, and
horribly named, xml4j parser allows an application to register element event handler
objects with the parser. These handlers are notified when matching elements are com-
pletely parsed. In this scheme, the dement handler can do nothing, replacethe element
with another element, or consume the element completely. If the parser supports this
sort of scheme, then developers get the convenience of a nice DOM tree without the
wasted space.

IETEIH BM's xmlgj has been integrated into Apache's open source toolkit
for XML. It is now called Xerces. While the name is undeniably cool, it is even
less explanatory.

Strengths

XML greatly improves data interchange between peer systems and between people
and systems, it dramatically decreases development time and minimizes the risk of
translation errors. In short, it actually deserves its hype.

Weaknesses

If network bandwidth is avery high priority, then an XML document with more bytes
spent on element names than on the actual data values may be afoolish luxury. Other-
Wise, itisa great way to exchange data.

Another less obvious weakness of XML isits natural hierarchical structure. While
XML isperfect for treelike data, it isnot such anatural fit for webs of interconnected
nodes. Relationships must be stored as data. This may seem awkward, and prove to
be error-prone, as deleting a data element requires the deletion of the associated
relationships.

Compatible Technologies

XML can be used by any Java application, applet, or servlet. It is used to store infor-
mation on both clients and servers, and to communicate between different parts of the
same system and between different systems. It truly iswell onitsway to ubiquity.

Cost of Adoption
Use of XML requires several, some, or all of the following roles.

DTD Author

DTD authors determine the structure of XML documents. At aminimum, they need a
mastery of the data that is described in the document, and a facility with the syntax

Candidate Te ies for Boundary Classes

179

andidioms of DTDs. Fortunately, DTDs arefairly straightforward, and there aremany
excellent texts on the pragmatics and theory of DTD construction. Also, an effective
DTD author needs a strong vision for the future of the document.

In some cases, the DTD author may not have sole control over the document's struc-
ture. In many cases, XML dcx:uments help diverse organi zations exchange information.
Each organization promotes certain perspectives and interests as the document struc-
ture evolves by consensus. A DTD author in such a situation needs patience and persis-
tence in unusually large quantities, as well as skillsin negotiation and compromise.

Document Author

Oncethe DTD solidifies, actually authoring XML documentsisfairly straightforward.
Tools automate much of the drudgery, and prevent invalid XML based on aparticular
DTD. This frees the document author to concentrate on the actual data.

In some cases, humans do not create XML documents. Instead, XML documents are
generated by a system. For instance, a system may extract data from a database and
convertitinto XML. In this case, thereisno need for ahuman document author.

Developer

XML development requires developers to learn at least one parser technology. Fortu-
nately, documentation and sample code for XML parsers is readily available. XML
development does not generally require extensive knowledge of the Java class libraries.

Suitability

Recall from Chapter 6 that system interfaces can be divided into three categories: data
transfer, services through a protocol, and direct access to system services. This section
explores XML applicability for these three categories.

Data Transfer

XML isvery useful for data transfer between systems. XML was created in part asa
moreflexible and easy-to-use alternative for electronic data interchange. One system

and send the document across to the other system. The receiving system can use a
parser to recover the document. Once a system has recovered a document, it can
process each element individually or build a set of interrelated objects.

XML isan excellent choice for system interfaces that emphasize data transfer.

Services through a Protocol

XML isalso very useful for system interfaces that allow one system to receive services
through series of requests and responses. One system builds an XML document and
sends it over a socket connection to the server system. The server parses the request,
performs any required actions, builds a response XML document, and sends it back to

180 Enterprise Java with UML

the client system. The sameflexibility and extensibility characteristicsthat make XML
anideal EDI technology areassetsinthissituation. Also, thereadability of XML isvery
helpful when debugging the interactions between the client and server.

Direct Access to System Services

Thistype of system interface exposes some of its methods for remote access. XML is
gaining acceptance as an object seridization mechanism for use with language-
independent remote method invocation. Hopefully, this will allow greater interoper-
ability between EJB and CORBA systemsin thenear future.

Technology Selections for the
Timecard System

Now that you have anunderstanding of thedifferent technol ogies available for bound-
ary classss, |et's use the technology requirements from Chapter 6 and the technology
descriptionsfromthischapter to select technol ogies for the Timecard system'sbound-
ary classes. Welll also need to consider the cost of adopting the technology.

The boundary classes break into two groups: user interface classes and the system
interfacewiththebilling system.

User Interface Classes

Recall from Chapter 6 that we lumped dl of the user interface classes for the system
intoasinglegroup for technology selection. Also, we characterized those user interface
classesin severa aress.

« User interface complexity: Simple datainput and static view of data

 Deployment constraints for user interfaces: Late-model Web browser on the
Internet.

* Number and type of users: General use within an organization.
« Available bandwidth: Dial-up Internet connection.

Based on these descriptions, we must choose between servletsand Swing. Let's exam-
inethemindividually.

User Interface Complexity

Both technologies are perfectly capable of supporting simple data input and static
views of data. Neither technol ogy has an advantage. Wewill have to base our decision
onother criteria.

Deployment Constraints for User Interfaces

Servlets can be used to produce dynamic Web pages for display in any late mode:
browser. Swing is also appropriate for deployment as an applet under these same or-

Evaluating Candidate Technologies for Boundary Classes 181

cumstances, sinceal latemodel browserseither haveabuiltin Javavirtual machineor
supported the Java plug-in. This may require the user to install the Java plug-in or
change the configuration of their browser.

While these accommodeations seem trivial to developers and other power users, some
usersmay resist, due to security concerns, lack of time, or for sheer perverse pleasure.
Making any additional demands on the user results in extra demands on the develop-
ment or deployment staff for the system, so serviets have a slight advantage over Swing.

Number and Type of Users

Servlets are appropriate for any number of users. Swing applets are appropriate for
general usewithin an organization. However, there must be some advantage to using
Swing, to offset the incremental support coststhat result from deploying an applet to a
large and often unmotivated audience. In this case, there does not seem to be any
advantage to using Swing, asthe user interface seems straightforward. Therefore, the
advantageisto serviets.

Available Bandwidth

The Timecard system must support low-bandwidth scenarios, such as traveling
employees using a slow dial-up connection. On the other hand, updating a timecard
does not require much data. Either Swing or serviets are perfectly appropriate. There's
no advantage to either technology. Wewill haveto base our decision on other criteria.

Cost of Adoption

The cogt of adopting servlets for this application is quite low, as the user interface is
fairly straightforward. The Ul designer and servlet developers should have a reason-
ably easy time. Asfar asuser interface classes go, this project is appropriate for devel-
operswith low to moderate experience in Web technol ogies and Java development.

Thecost of adopting Swing for thisapplication could be abit higher, dueto the com-
plexity of Swing development. Unless the developersalready know Swing, and do not
know any Web technologies, the cost of adoptionisclearly higher for Swing. Servlets,
therefore, have the advantage.

Conclusion

The Timecard application could reasonably be implemented with either Swing or
servlets. However, there are no indications for choosing Swing over servlets. hi the
absence of any strong preference on the part of the development staff or the users, we
will use serviets.

System Interface with the Billing System

Recall from Chapter 6, that the interface with thehilling system is simple data transfer.
Finally, weget an easy decision. XML letsuscreateaflexibledatainterchangeformat;

182 Enterprise lava with UML

% %
/ \\

7

/ 3
% \
7 \

¥ \

javax.serviethttp xmlparser

Figure 7.9 Package dependencies and technology selection.

anditcomeswithfreetoolsand parsers. We happily follow therest of theindustry and
select XML.

The Next Step

UML provides package dependency diagrams that show the relationships between
large parts of the system. In this case, we can show that the user interface classes
depend on the servlet classes, while the billing system interface depends on an XML
parser of undetermined origins. Figure 7.9 shows our technology selectionsfor thetwo
groups of classes.

Now that we have selected technologies for the boundary classes, we can turn our
attentionto thecontrol and entity classes.

Evaluating Candidate
Technologies for Control
and Entity Classes

The control and entity classes comprised the second group of analysisclasses we iden-
tified in Chapter 6, "Describing the System for Technology Selection.” In this chapter,
welll use the template | introduced in Chapter 7, "Evaluating Candidate Technologies
for Boundary Classes," to describe and eval uate the candidate technol ogies for imple-
menting this group of classes. The first step is to apply the simple descriptive template
to several technologies, before using the technology requirements descriptions from
Chapter 6 to find the right combination of technologies for the control and entity
classesin the Timecard application.

The technologies we'll evaluate are Remote Method Invocation (RMI), Java Data-
Base Connectivity (JDBC), and Enterprise JavaBeans (EJB). However, we eval uate the
suitability of RMI and JDBC together, sincethey are often used together.

RMI

Remote Method Invocation (RMI) was added to version 11 of the Java Development
Kit (JDK) to allow remote access to objects. It is important to understand RMI both
asan alternative to EJB for smple applications and as atechnology that directly sup-
ports EJB.

RMI hasasimple and wonderful purpose. It allows aclient object on onehost to call
methods on an object that resides on another host. The client objects use a stub object to

183

184 Enterprise lava with UML

communi catewithaskel eton object ontheserver. Fortunately, RMI anditstoolsprovide
the stub and skeleton objects, which do all of the hard work. Figure 8.1 shows commu-
nication between a client and art RM1 server. While the client thinks it is calling a
method on aremote object, it isactually calling a method on a stub object in the same
virtual machine (VM). The client stub converts the method parameters into data and
sends them across to the waiting server skeleton. (Note: The client stub and the server
skeleton livein different virtual machinesand may even belocated on different conti-
nents, so the communication between the stub and the skeleton is over a network con-
nection.) The client stub then waits for a response. Once the skeleton receives the data,
it converts the data back into parameter objects and cdls the same method on the
implementation object. The return value, if any, is converted into data and sent back
across the socket connection to the waiting client stub that converts it back into an
object and passesit dong to the client.

Gory Details

RMI consists of ahandful of classes and interfaces and a few simple tools. Thanks to
this simplicity, a reasonably experienced Java developer can learn enough to have a
remote HelloWorld server up in a few hours. However, designing an efficient and
effective RMI server is abit more challenging. RM| developers must consider what
data is passed for each remote method, and protect against concurrent access to their
RMI server's objects. As explained in the next section, RMI is both very simple and
very complex.

Client
Application

Network

Figure 8.1 RMI communications between clients and servers.

Candidate Te ies tor Control and Entity Classt

Classes and Interfaces

Consider auser interfacethat uses RMI to access somefunctionality on aremote server.
Each ClientView object has a reference to an object that implements the Some-
Remotelnterfaceinterface. For theclient, the object that implements the SomeRemote-
Interface interface is an instance of ClientStub. When one of theinterface methods is
called, the ClientStub object converts each parameter and sendsit over the socket to the
server. It then waits for aresponse. The responseiseither areturntypeor anerror. If it
is an error, then the ClientStub converts the raw data into a RemoteException and
throws the RemoteException to the calling client. Otherwise, it converts the returned
dataand returnsit to the calling client. Figure 8.2 shows the classes and interfaces for
thissimple scenario.

On the server, the Somemplementation dass extends UnicastRemoteObject and
implements the SomeRemotelnterface. A ServerSkeleton that has a socket connection
totheClientStub hasareferencetotheactual implementation. When the ServerSkeleton
receives data from the socket, it converts the data to parameters and calls the correct
method on the Somelmplementation object. If any RemoteExceptions are thrown, they
are converted to data, and the datais sent back acrossthe socket. Otherwise, the return
value is converted to data and sent back across the socket.

Fortunately, developers do not need to write the complex code that dwells inside of
the stubs and skeletons. Sun Microsystems provides atool, caled rmic, aspart of the
JDK, which produces the stub classfilesbased on your classfiles. It isup to you tobun-
dlethe class files so that the client and server applications can find them.

<<interface>>
java.rmi.Remote

<<interface>> [Centstub |
i ol > A
]

T

I

I

I

1

I

I

Object f 7 fion |

Figure 82 Classes and interfaces for RMI.

186 Enterprise Java with UML

BTN 10 DK 1.1, rmic also produced custom skeleton class files. As of JDK
12, the skeleton is part of the RMI server.

Remote Object Registration

Before aclient can reference a remote object, the RMI registry must be running on the
server, and the remote object must be registered with the RMI registry. The RMI reg-
istry issimply alava application that listens on a port for incoming requests. When it
receives arequest for aparticular object, it tries to match the request against all of the
implementation objects that have registered. A remote object isinstantiated by a Java
application, which then uses the static bind or rebind method in the Naming class to
register the object with the RMI registry.

The following code snippet shows how aremote object for the examplein Figure 8.2
is instantiated and registered.

public static void main(Stringl] args)

try

{

System.setSecurityManager (new RMISecurityManager());

SomeImplementation remotebject = new SomeImplementation();
Naming.rebind("SomeServer", remoteObject);

catch (Exception e)

{

e.printStackTrace () ;

)

Parameter Passing

Sofar, | have glossed over a great deal of complexity by ignoring how parameters and
return types are converted to and from data. Consider what happens when a client
object calls amethod on aremote object reference. Before the client stub can pass the
request to the server, it must convert the parametersinto data. Thisis known as serial-
ization. When the response is received, the client stub must convert the data back into
areturnvalue. Thisisknownasdeserialization.

There are three types of serializable data that can be used as parameters or return
types in RMI: primitive data, serializable objects, and remote references.

Primitives

Primitive data types are very convenient for use with RMI, as there is no need to con-
vert primitive data types to data; they are already simple data They alow remote
clients to configure the remotely accessible object and to request data from the
remotely accessibleobject.

Evaluating Candidate Tediimlogies lor Conlrol anil Enlily Classes 187

Serializable Objects

Thedlient stub must convert each parameter objectinto data. If the object contains prim-
itive data, then this process is fairly straightforward. The stub simply seridizes the
object by sending the name of the object's class and al of the object's data. However, if
the object contains other objects, then they must be serialized aso. So, serializingasin-
gle object can lead to the serialization of an entire network of connected objects.

Java providestwo mechanisms that hel p developers manage the serialization process.
First, an attribute canbemarked astransientintheclass. Transient dataisignored during
serialization. Also, in order for an object to be serialized, the class must implement the
Serializable interface, which has no methods. By allowing a class to implement Serializ-
able, adeveloper isstating that objects of that type are reasonable for serialization.

Each object that is serialized on the client was instantiated from a particular class.
When the skeleton on the server receives the serialized data, it instantiates an object of
the same class and loads the datainto it. Thisrequires that the same version of the class
exist on both the client and the server.

In remote method calls, a serialized copy of the object is passed to the server, so any
changesto the passed object's state on the server do not affect the original object on the
client.

RemoteReferences as Parameters

When the stub is converting the parameters, it checks for objects that implement
javarmi.RemoteObject. These parameters are not serialized. Instead, their stubs are
serialized and sent in their place. Thus, the server receives as a parameter a stub object
that connects back to the remote object on the client machine.

Thread Safety

When an object is registered with the RMI registry, it is open for access by concurrent
threads. RMI, like most distributed architectures, allows more than one client to access
the server at the same time. So, the remote object and every object that the remote
object has a reference to must be designed with thread safety in mind. It is up to the
developer to make sure that any resources that are shared among client requests are
thread-safe, by synchronizing the appropriate methods or code blocks

Development and Deployment

Applicationsbased on RMI have a reasonable, if somewhat tedious, development and
deployment cycle. In order to develop and deploy a RMI-based system, you need to
follow these steps:
1. Writeremoteinterfacesand implementationsfor the server.
. Use the rmic command to generate stub classes.
. Write dient applications.
. Distribute stub classes and any common domain classes to the client.
. Start the RMI registry.

[SIF AN

188

Enterprise Java with UML.

6. Runthe main application to register the remote objects with the registry.
7. Starttheclients.

Most of these steps can be automated in abuild or make file.

Common Uses of RMI

EMlisafairly simpleand veryflexibletechnology. There arethree waysinwhich EMI
can expose business logic to clients:

» Remote object that hides entity objects
+ Direct access to entity objects
» Direct access to entity objects with event notification

Thefollowing sections describe these common uses in more detail.

Remote Object That Hides Entity Objects
(Strict Layering)

In many cases, it is possible to completely isolate the user interface objects from the
entity objects. As discussed in Chapter 3, "Gathering Requirements for the Timecard
Application/' this separation helps simplify the user interface while keeping the enti-
ties well focused. When the user interface objects are distributed, the control object
may exposeits methodsthrough RMI. Figure 8.3 showsthe UpdateTimecardControl as
aremoteinterface that isimplemented by the UpdateTimecardControlImpl class. The
UpdateTimecardControl object keepstrack of theemployeesand receivesthe employee
ID as the first argument of each method. This allows the UpdateTimecardControl
object to get the current timecard from the correct employee and call the appropriate
method on that timecard.

There is only one remote object, the UpdateTimecardControl. None of the entity
objects are exposed as remote objects. All of the parameters and return types are sm-
ple objects, primitives, or enumerations of simple objects.

Hiding the entity objects keeps the remote client isolated from the remote objects.
All interactions funnel through a very straightforward interface. This reduces the
deployment burden, because aslong asthe UpdateTimecardControl interfaceremains
the same, the domain objects can be atered without impacting the dlients.

Direct Access to Entity Objects (Relaxed Layering)

An alternative design allows the user interface to directly access the entity objects.
Since the user interface and entity objects are on different hosts, EMI is used to expose
theentity objectsasremoteobjects. A locator object isregistered asaremoteobject. The
locator object'smethodsallow the user interfaceto find Timecard objects. Rather than
receiving aserialized copy of thetimecard object, the user interface receives aremote
object reference to the specified timecard object. Thereafter, the user interface commu-
nicateswith thetimecard object viaEMI. Figure 8.4 showstheclassesand interfacesfor
this aternative.

<<Interface>>
java.rmi.Remote

i UpdateTimecardControl

<<Interface>>

+ setHour(employeeld : String, chargeCode : String, date : Date, hours : float) : void

+ getStartDate(employeeld : String) : Date

+ getChargeC 1 String) ©

|
|+ getEndDate(employeeld : String) : Date
|

+ 1 String) :

A

java.rmi.UnicastRemote

UpdateTimecardControlimpl

Employee

+ getCurrentTimecard() : Timecard

1

:

o

<<Interface>>
Timecard

+ getStartDate() : Date
+ getEndDate() : Date

+ getChargeCodes() : Enumeration
+ getHours() : Enumeration
+ setHours(chargeCode : String, date : Date, hours : float) : void

Figure 8.3 Remote access to control object.

190 Enterprise Jai

<<Interface>>
java.rmi.Remote

+ getChargeCodes() : Enumeration
+ getHours() : Enumeration

<<interface>>

Timecard <<Interface>>
TimecardLocator

+ getStartDate() : Date

+ getEndDate() : Date + findTimecardByEmployee(id : String)

+ setHours(chargeCode : String, date : Date, hours : float) : void

TimecardLocatorimpl
| ERIBIE e Tt LT SR

Timecardimpl
b
RN |

Figure 8.4 Remote access to entity objects.

Notice that each change to the Timecard interface requires anew deployment. Itis
important to note that changes to the internal implementation of the Timecard class

:nay not requireredeployment.

Direct Access with Event Notification

Itiscommon for objectsto track the state of another object. Thisallows aview to stay
in sync with an underlying entity, or one entity to monitor agroup of entities. Fortu-
nately, the Observer design pattern [Gamma 1995] allows an object to receive an event
notification whenever the state of another object changes. The object of interest does
not know the specific type of each registered observer. Instead, the object of interest
keepsreferencesto any object that implementsasimplenoatificationinterface.

Java uses the Observer pattern both in)avaBeans with PropertyChangeL isteners
andin AWT and Swingwith different typesof listenersfor different events.

L0243 For a more thorough description of the use of the Observer design
pattern in Swing, see the Cory Details section for Swing in Chapter 7.

Candidate Te for Control and Entity Classes

191

In some cases, the observer object and the observed object may reside in different
virtual machines, perhaps on different continents. One solution to this scenario
extends the JavaBeans event model to notify remote clients of changes in an entity
object'sstate. For example, an object might provide aremote method to register remote
property change listeners. The property change listener must also be remotely accessi-
ble, sothat the object of interest can notify it of changes. Figure 85 shows some classes
andinterfacesthatillustratethisscenario. AnInterestingThing objectisregisteredwith
the RMI registry. Once aclient gets areferenceto the InterestingThing, it can register a
listener object. Whenever a client changes the state of the InterestingThing by calling
its changeSomething method, the InterestingThing must cal the propertyChanged
method on each registered listener.

<<interface>>
java.rmiRemote
e e |

<<Interface>> <interface>>
RemotePropertyChangelistener InterestingThing
+ propertyChanged() i ha void
Yol

icastRemoteObject

I
|
I
1
I
I
I
!
|
I
I
|
|
I
I
I

InterestingThingimpl

RemotePropertyChangeListenerimpl
e e

Figure 85 Remote event notification.

192 Enterprise lava with UML

Strengths

RMI isagreat starting point for distributed applications. It makes distributed comput-
ing palatable to devel opers by hiding the nasty details of serializing and deserializing
parametersand return values. There arenot many classesor interfaces to learn, and the
rmic and rmiregistry tools are very easy to use. Also, the error handling is fairly
straightforward, assuming abasic knowledge of exceptionhandlinginJava. Itisavery
elegant and easy-to-assimilate technology. Moreover, it worksbetween any hoststhat
have a compliant virtual machine. For example, a client on a PC can easily access a
remote objectonaUNIX server.

Weaknesses

RM I leaves scalability, fault tolerance, load balancing, and dataintegrity concerns up
to the developers. Thisisanintentional limitation in Sun'svision for RMI, not aweak-
ness in the execution of the vision. In any case, using RMI for an enterprise dlass sys-
tem requires developers to consider a host of issues, from object and resource pooling
to redundancy to thread safety. In many cases, designing and implementing smple
solutions for these issues may be reasonable. Otherwise, the architecture must include
more sophisticated technology that leverages RMI, such as Enterprise JavaBeans.

Compatible Technologies

KMI and JDBC are often combined to form aremotely accessible and persistent control
and entity layer. This allows a central repository of application, business logic, and
business data to support avariety of user interfaces and peer systems.

Methods that are exposed through RMI can be called from any Java code, including
servlets, applications, and applets.

Cost of Adoption

While RMI isprovided free aspart of the standard JDK, there are other costs of adop-
tion, hi order to be successful with RMI, your project must fill the roles of architect and
RMI developer.

Architect

The architect for a RMI-based system needs a clear understanding of the performance
and scalability issues involved with different design choices: Choices between strict
and relaxed layering and for event notification need to be made early in the develop-
mentcycle.

Also, the architect must establish clear guidelines for exception handling, error log-
ging, andnamingfor different typesof commonRMI classesand interfaces. Thisupfront
effort yieldshugedividendsin the form of asmaller and more readabl e code base.

The architect must have a strong background in distributed object-oriented devel-

Candidate Te for Control and Entity Classes

193

RMI Developer

RMI developers need to understand distributed development, threads, and concur-
rency. A clear understanding of these issuies is more important than the actual Java
classes and programming techniques, which are actually fairly straightforward. A
developer with ilie right experience can easily pick up the RMI specifics from a few
examples. So, asystem or subsystem that is dominated by domain data and RMI may
serve as an excellent entry point for a developer whoistransitioning to Java from, say,
C++ and CORBA.

RMI developers do need a strong understanding of synchronization, exceptions,
serialization fromthejava.io packageand, of course, thejava.rmi package.

JDBC

Java DataBase Connectivity QDBC) wasintroduced in JDK 11 JDBC isathin, object-
oriented wrapper around the full functionality of SQL. You can create, read, update,
and delete the schema and the data; execute stored procedures, commit or roll back
transactions, and even fiddle with isolation levels. If you can do it in SQL, you can do
itwith JDBC.

Using JDBC to save afew objects to adatabase is very easy. You just figure out the
mapping from the object's data to the table's fields, and the rest is straightforward
drudgery.

Real systems tend to be a bit more complex. Problems begin to crop up when you
have different flows through the system that all update an object but that al have dif-
ferent transacti on boundaries. Where do transactionsoriginate? Whereiseach transac-
tion committed? Who creates database connections, and can they be reused? Also, no
useful object isanisland. How do you store the relationships between objects? When
you load an object, do you load al of the objects that the object knows about, or do you
wait until they are needed? How many objects can you store in memory?

Fortunately, alot of very smart people have dedicated their careersto solving the puz-
Zlesinherent in object-to-relational persistence. Thisbody of work canbe consumed and
leveraged by absorbing the theory and by using commercia objecMo-relational map-
ping products. Also, EJB servers are becoming increasingly sophisticated in this area.

Gory Details

JDBC allows developers to write database-independent code while still getting the
performance of drivers, which are written and tuned by the vendor.

As you explore the technology in this section, be alert for crestive uses of object-
oriented principles, such as encapsulation, interfaces, and polymorphism. In addition
toitstechnical merits, JDBC isvaluableand accessible example of object-oriented the-
ory as applied to avery real problem.

194 Enterprise Java with UML

Drivers, Connections, and Statements

JDBC derives much of its appeal from the freedom it gives developersto almost com-
pletely ignorethe differences between databases. JDBC requires the codeto load oneor
more drivers and to request a specific connection from the DriverManager. After that,
therest of the codeisentirely generic. Many projects use aconfigurationfileto hold the
connectioninformation and the driver class namesthat must be registered. This means
al of the code can be blissfully unaware of the database specifics. Let's examine some
of the classes and interfaces that perform thisrather impressive feat.

The Driver interface definesthe methods that are required to determineif adriver is
suitable and to open a connection. If it is, database vendors must provide a specific
implementation class for the Driver interface, which encapsulates the details of open-
ing aconnection to their specific type of database, and providesinformation about the
supported features for their database and their driver.

The thoughtful developers at Sun also protect developers from worrying about the
individual drivers by supplying a class, DriverManager, that collects drivers and
determines which onefitsaparticular situation. When a concrete implementation of
the Driver interfaceis|oaded, it must register with the DriverManager classby calling
the static registerDriver method. Later, when an object needs a connection to a data-
base, it calls the static getConnection method on the DriverM anager dass Thismethod
searches the DriverManager's list of drivers until it finds one that matches the
requested database type. It then asks the driver to open aconnection to the database by
calling the connect method on the driver. Assuming that all goes well, this connection
isreturned to the requesting object. Figure 86 showsthe sequence diagram asan appli-
cation first registers two drivers and then obtains a connection that fits the second
driver.

Notice that this connection is really a vendor-specific implementation of the Con-
nection interface. Connection objects allow full control over the current transaction,
through the commit and rollback methods. If the database allows it, they aso alow
configuration of theisolation level for subsequent transactions on the connection.

Consequently, the code that you or | write deals solely with the DriverManager and
the Connection and Statement interfaces. We are protected from all of the database-
dependent variations that are hidden inside of the vendor-supplied implementation
classes. Figure- 8.7 shows the classes and interfaces required to obtain a Connection
object and a Statement object. Thevendor must supply a chain of database-dependent
implementation classes, as shown on the right, that implement the chain of interfaces
shown on the |eft. Thiselegant scheme simplifies development for application devel-

New and Improved Result Sets

InJIDBC 2.0, the createStatement method in the Connection interface accepts two new
integer parameters. The first determines how the result set can be traversed. In previ-
ousversionsof JDBC, theresult set istraversed from beginning to end, with each row
seen exactly once. Thisisoneoption for thefirst parameter. Another option allowsthe
result set to be traversed in any order, and for multiple visits for each row. The next
parameter determinesif theresult set can be updated.

Candidate Te ies for Control and Entity Classes 195

: Class : ClassLoader ’ driverd : Driver

I1. forName(String) | I | |
1.1

driverB : Driver

‘ : DriverManager

1.1.1. it

I

l I

. forName(String)| |
3.1.load(String)._ |

Iﬂ 3
ST G || 4

4. getCe

Retums FALSE

|
|
I
I
1
| | Returns TRUE
| I

|

I

I

|

I

|

|

I

\
1
I
|
|
|
i

1
|
|
|
|
I
I
|

Figure 86 Register and use drivers.

Theresult set contains severa distinct types of methods. These methods traverse the
result set, retrieve data from the result set, update datain the result set, and refresh the
result set from the database.

Thetraversal methods move the current row within the result set. In older versions,
the only traversal method is next. Each record is seen once, from top to bottom. The
new version adds methods to move about the result set in both directions, jump to
arbitrary rows, and revisit rows.

The dataretrieval methods are very similar to previous versions. Support has been
added for additional datatypes, but the pattern is the same.

Anentirely new set of methods has been added to update the data. The current row
can be deleted or have its data changed. A new row can be added by moving to the
insert row, which serves as a buffer, and by updating each column for the new row.
After changes have been made, the updateRow method submits the changes to the
database.

196 Enterprise Java with UML

DriverManager

+ getConnection(url : String) : Connection
+ getConnection(url : String, user : String, password : String)
+ getConnection(url : String, info : Properties) : Connection
+ registerDriver(driver : Driver)

1

<<Interface>>
Driver

+ acceptsURL(url : String) : boolean

| + connect(ur String,info : Propertes) : Connection
T

I

l

| <<interface>>
Connection
v
+ createStatement() : Statement VendorSpecificConnection
int, resultSetC <int) : Statement S S

+ commit() : void

+ rollback() : void

+dose() :void

+ getTransactionlsolation() : int
+ setTransactionlsolation(isolation : int)

T
|
1
<<nterface>>
Statement

J
VendorSpecificstatement

Figure 87 JDBC classes.

********** |
+ executeQuery(_]

Another completely new method, refreshRow, has been added to reread the current

row from the database.

Figure 88 shows the classes for retrieving and using a result set. As before, the ven-
dor must supply achain of database-dependent implementation classes, asshown on
theright. These classesimplement the chain of interfaces on the left.

Strengths

Like RMI, jDBC is a great starting point; database-independent code is easier than
ever. Aslong asthereis aJDBC driver for your favorite databases, and as long as you
stick to SQL-compliant datatypes and syntax, you can change databaseswith ease. The

class libraries are easy to understand, and behave as expected.

Evaluating Candidate Technologies for Control and Entity Classes 197

<<Interface>>
Connection

+ createStatement() : Statement
int, resultSetC

+ P
~ commit() : void

~ rollback() : void

+ close() : void

+ getTransactionlsolation() : int
+ sefTransactionlsolation(isolation : int)

+int) : Statement

VendorSpecificConnection
<r-—-—

<<Interface>>
ResultSet

+ absolute()

+ relative()

+ afterLast()
+last()

+ beforeFirst()
+firstQ)

+ previous()
+next)

+ getint()

+ getint()

+ deleteRow()
+ moveTolnsertRow()
+ insertRow()
+ updatelnt()
+ updateRow()
+ refreshRow()

Figure 8.8 Result sets.

Weaknesses

<<Interface>>
Statement
e e e

+ executeQuery(sql : String) : ResultSet

I
I
I
I
I
|
|
I
I
|

777777 VendorSpecificStatement

T
|
|
|
|
|
|
I
I
I
|
|
I

VendorSpecificResultset
e i s A R SALS

LikeRMI, JDBC leaves many issues to the developer. Larger datasets and more com-
plex transactions reguire caching, transaction management, and connection pooling. In
many cases, designing and implementing simple solutionsfor these issues may berea-
sonable. Otherwise, the architecture must include more sophisticated technology that
leverages JDBC, such as acommercial object-to-relational framework or Enterprise
JavaBeans.

198 Enterprise Java with UML

Compatible Technologies

RMI and JDBC are often combined to form aremotely accessible and persistent control
and entity layer. This allows a central repository of application, business logic, and
business data to support a variety of user interfaces and peer systems.

daBdisan be used to access a database fiad any Java code, including servietspmppts:

Cost of Adoption

JDBC is provided free as part of the standard JDK, but there are other costs of adopting
it. In order to be successful with JDBC, your project must fill the roles of architect and
JDBC developer.

Architect

Architects for JDBC-based systems must be familiar with many performance, scalabil-
ity, and data integrity issues. Database connections, which are fairly expensive to
establish, must be used efficiently. Transactions must be started and completed. Map-
pings from objects to database tables must be established in aflexible and extensible
manner. The simple class library makes JDBC development look easy, but there are
many subtleties that, if ignored, can cripple aproject.

The architect must have a solid object-oriented background and some experience
with object-to-relationa persistence.

JDBC Developer

Developing JDBC-based applicationsis generaly straightforward. The classlibrary is
extremely clear and easy to use. A basic understanding of transactions and SQL is
needed. Developers who are migrating to Java may find JDBC to be a comfortable
starting point.

Suitability of RMI and JDBC
In Chapter 6, we identified two descriptive categories:

« Number and type of users
« Performance and scalability

Let's evaluate how RMI and JDBC perform in these categories.

Number and Type of Users

RMI and JDBC are certainly avalid choicefor the first three audiences: a small number
of dedicated users, generd use within an organization, and a large audience with

Candidate Te ies tor Control and Entity Classes

199

high interest. As the number of users and the data accessed grows, developers will
need to cache objects and pool resources, but these are common problemsin large-scale
development.

This combination is less applicable for huge audiences. At some point, the perfor-
mance characteristicsof RMI, like any distributed technology, will be overwhelmed by
the demands of a mass audience. Unfortunately, RMI does not support any form of
load bal ancing acrossservers. In some cases, it may be possibleto create asimplearchi-
tecture that spreads the load across several hosts. However, this is not an easy task.
Redlly large audiences usually require a more formal and scalable solution, such as
EJB, whichleveragesbothRM| and JDBC.

Performance and Scalability

Acombination of RMI and JDBC is certainly areasonable choice for read-only systems
and for systems that alow isolated updates. These systems do not require any special
design for transaction management or data integrity. The combination is also appro-
priate for systems that allow concurrent updates of data. However, in this case, the
developers must supply their own architecture for coordinated transaction manage-
ment on top of the simple control provided by JDBC.

EJB 11

The Enterprise JavaBeans specification, whichispart of the Java 2 Enterprise Edition,
completely specifies a framework that exposes business objects to remote dlients. It
builds heavily on the lessons and innovations of CORBA, while defining a more com-
prehensive suite of services, including object caching, transaction management, object-
to-relational persistence, and security. Any developer who has struggled toimplement
these services for his or her own distributed application knows that doing so is both
painful and risky.

EJB implementations tend to depend heavily on the technol ogies described so far.
They use RMI to provide distributed access, JDBC asabasisfor persistence, and XML
to describe the deployment decisions.

Several terms are essentia to understanding of EJB. Theseare:

Entity bean

Home interface

* Session bean

Remote interface
Implementation

Deployment descriptor
Bean-managed persistence
Container-managed persistence

200 _Enterprise Java with UML

-thanaEaNsactionboundaries
+ Persistence

The following sections give a genera overview of these terms. Resources for more
information on these topics can befound in Appendix B.

Entity Bean

Entity beans are remotely accessible components that expose business data and busi-
nesslogicfor an EJB system. Each entity bean representsasingleindependent and per-
sistent entity in the domain. Anindividual employee and an employee's timecard are
both appropriate entity beans.

Individual pieces of data, such as aname or contact information, may be contained
within entity beans, but they are not good candidates for separate entity beans. Listsor
collections of entities do not need to be wrapped inside of another entity bean. This
roleis played by the home interface, as explained next.

Entity beans generaly evolve very cleanly from entity objects in the analysis
model.

Home Interface

Entity beans are only useful if dlients can create, locate, and destroy them. Thisisthe
role of the home interface. Each home interface specifies remotely accessible methods
for the creation, location, and destruction of one type of entity bean. For example, if a
system has entity beans for employees and for timecards, then the system has separate
home interfaces for employees and for timecards. Home interfaces generally evolve
nicely from the object lifecycle analysis objects.

Session Bean

Session beans are remotely accessible components that expose high-level business
logic and workflow logic that spans multiple entity beans. Session beans simplify and
support accessto entity beansin several ways. A session bean translates anindividual
high-level request into many requeststo many entity beans. In trandating the request,
the session bean may protect the caller from knowledge of the entity beans by return-
ing simple data or collections of smple data.

Session beans do not generally update domain data directly. They frequently call
methods on entity beans that change the persistent state of the entity bean.

Despitethe superficial similarity innames, EJB session beansare completely distinct
fromHTTPsessions. A single HTTPsession may use many session beansto accomplish
many subtasks during asinglelogin.

Session beans typicaly evolve fairly cleanly from control objects in the analysis
model.

Candidate T¢ for Control and Entity Classes

201

Remote Interface

Each entity and session bean has an interface that definesitsremotely accessible meth-
ods. Whenacall to abean'shomeinterface returns an entity object, itisactually return-
ing a reference whose type is the corresponding remote interface. All access to the
entity beanisaccomplished throughthisremoteinterfacereference.

Implementation

Each entity and session bean hasanimplementation that realizesthe Entity Bean or Ses-
sionBeaninterface. Theimplementation containsthe Javacodefor thebusinesslogicfor
entity beans, and the workflow logic for session beans. It does not implement the home
and remoteinterfaces. Theimplementation also defines persistent instance data.

Deployment Descriptor

The deployment descriptor is an XML document that describes how the entity and ses-
sionbeans are deployed. It describeseverything from the location of classfilesto deci-
sonsabout persistence, transactions, and security.

Container

AnEJB container holdsentity and session beans. Itisresponsiblefor avariety of house-
keeping activities, from object caching to transaction management to managing
resource pools. The interactions between beans and their enclosing container are
tightly defined in the EJB specification. Thefollowing are someinteresting aspectsto
the relationship between beans and their enclosing container.

Object caching. A large-scale enterprise system may hold data for thousands or
even millionsof entity beans. However, at any point intime, most entity beansare
not being accessed. It is up to the container to determinewhich entity beans need
to be active due to current or recent usage. When the container takes beansin or
out of service, it notifies the bean via callback methods, such as gjbPassivate and
gbActivate.

Concurrent access. In order to preserve dataintegrity, the container controls access
to each entity bean. Many clients or session beans may have access to the same
bean, but each method call must complete before another method call can start on
that bean. Notice that a series of calls from different clients may be interleaved.
Also, callstodifferent beansof the sametypemay beexecuted simultaneously.

m The EJB specification precludes developers from using the
synchronized keyword in beans or code that is called from beans.

Transaction management. The container aso enforces any transaction requirements
specified in the deployment descriptor. By moving the decisions out of the devel-
oper's codeand requiring the container to enforce it, the EJB specification gives

202 Enterprise Java with UML

the developer alot of flexibility and opportunity to procrastinate or experiment.
For example, developers can defer any serious thoughts on transaction bound-
ariesuntil late in aproject without disturbing existing code.

Persistence. The container aso determines when each entity bean needs to be
saved, and hi the case of container-managed persistence, uses the mapping in the
deployment descriptor to save the data.

Bean-Managed Persistence

In bean-managed persistence, the entity bean loads and saves its own data. The entity
bean does not need to determine when it is time to load or save. Bean-managed per-
sistence requires devel opersto embed JDBC code within the bean'simplementation.

Container-Managed Persistence

In container-managed persistence, the developer specifies a mapping between each
piece of persistent data and afield inatable in the database. This mapping is storedin
the deployment descriptor.

Transaction Boundaries

The container determines transaction boundaries based on decisions that are recorded
in the deployment descriptor. For each remotely available method, developers specify
if the method should join an existing transaction, start its own transaction, or execute
outside of any transaction.

Gory Details

EnterpriseJavaBeansisafairly complex technology, with lotsof terms, concepts, rules,
classes, and interfaces to leam. However, one thing is certain: using EJB is infinitely
better than trying to produce your own scalable remote object framework.

Classes and Interfaces

In order to gain all of the benefits of an EJB system, the developer must create classes
and interfaces that fit within the specification. Specifically, for each Enterprise Java-
Bean, the developer must provide aremoteinterface, a homeinterface, and animple-
mentation class. Eachremoteinterface, whichdefinesthepublicfaceof thebean, must
extend the EJBObject interface as provided by Sun. Each home interface must extend
the ElBHomeinterface, aso provided by Sun. Eachimplementation classmust realize
the EntityBean interface.

Notice that the implementation class does not implement the home and remote
interfaces. Thisisagood thing, asyou really do not want towrite code for some of the
methodsin EJBObject and EJBHome. Thesetasksare | eft to the vendor, who suppliesa
proxy class that implements your remote and home interfaces. Since these interfaces

Evaluating Candidate Technologies for Control and Entity Classes

extend Sun's interfaces, the proxy must provide behavior for your business behavior,
as described in your remote interface, the bean lifecycle behavior, as described in
your home interface, and the behavior defined by Sun in the EJBObject and EJBHome
interfaces.

Obvioudy, the container vendors cannot be expected to anticipate your business
logic, yet their proxy classis expected toimplement your remote interface. This forces
the proxy to delegate each request for a business method to an instance of the imple-
mentation class.

Figure 89 showsthe classes and interfacesthat are provided by Sun, the application
server vendor, and the developers.

Stateful Session Beans

Session beans are divided into two distinct categories, stateless and stateful . A stateful
sesson bean maintains a dialogue with the client application, in which the session
bean remembers past requests, and uses them to simplify subsequent requests. For
example, a stateful session bean for an online store might allow the customers to sdlect
aproduct, enter their billing information, then enter their shipping information, and
finally confirm the purchase. This allows each interaction to stay smple, while useful

203

<interface>>
javax.eib.EIBObject

<<Interface>>
javaxejb EntityBean

<dnterface>>

+ getEIBHome() : ElBHome
+ getHandle() : Handle

+ getPrimaryKey(: Object

+ isidential(o : EI80biect) : boolean

+ getEIBMetaData) : EIBMetaData
+ getHomeHandle() : HomeHandle
++ remove(handle : Handle) : void

+ efbActivate() : void

+ ejbLoad() : void

+ ejbPassivate() : void
void

-+ remove(:void + biec) :void
<interface>> <interface>>
Coolthing CoofThingHome

+ doSomething(desc : String) String

\
\
\
\
\

-+ findByPrimaryKey(id : String) : CoolThing.
+ create(name : Sting)

o
%
v
#

2
ContainersuppliedProry

+ ejpStore() : void
+ setEntityContext(context : EntityContext) : void
+ unsetEntityContext() : void

z

Coolthingirnpl

*+ name : String

+efbCreate(name : Sting)
-+ ejbPostCreate(name : Sting)
-+ doSomething(desc :String) :Sting

-

Figure 89 Interfaces and classes for a simple entity bean.

+ elbActiate(: void
+efpLoad) :void

+ ejbPassivate() : void

+ eibRemove() : void

+ ejbStore() : void

+ setEnttyContext(context EniyContex) ¢ void
+ unseténtityContext) : void

204 Enterprise Java with UML

This convenience comeswith aprice. The stateful session object takes up memory,
and must be managed by the container until the session is completed by the client
application. If the container runslow on memory, it must serialize the bean and recover
itwhen the client makes another request. Also, thereisno guarantee that the client will
gracefully end the session. This forces the container to worry about timeouts and
cleanup for orphaned stateful session beans.

Control objects that provide a conversational workflow for the client are generally
very appropriate as stateful session beans.

Stateless Session Beans

A stateless sesson bean is not required to remember any conversational state from
request to request. In fact, the same client making multiple requeststo the same state-
less session bean may actually receive adifferent instantiation each time.

Thisisvery efficient, asthe container can keep a small pool of stateless session beans
for use by many clients. There is no need for the container to manage relationships
between the session beans and the client application.

Stateless session beans often evolve from control objects, which convert a single
method into a series of smaller requests, and consolidate the results.

Development Workflow, Assuming
Container-Managed Persistence

As a system is designed and implemented with EJB, development breaks into fairly
distinct pieces. First, developers determine the business datathat residesin each entity
bean, dong with the remotely accessible interface that exposes the data. At the same
time, session beans are identified from control objects in the analysis model. They
encapsulate the high-level business logic and workflows that span multiple entity
beans. After these two efforts solidify, a separate effort maps the data in the entity beans
tofieldsin a relational database. The mapping is held in a deployment file, notinthe
codeitself. Asthese efforts mature and are exercised against actual dataand usage sce-
narios, developers can determine the most appropriate transaction boundaries and
permissions for remotely accessible methods. Again, these decisions are kept in a
deployment file, not in the code.
So, development of an EJB system breaksinto the following primary steps:

1. Allocation of business data, business logic, and control logic to entity and ses-
sion beans.

2. Mapping entity data to persistent data store.

3. Determining transaction boundaries and security.

Thekey isthat each step does not affect the previous steps. For instance, the codefor
the entity beans and session beansis completely unaffected by the mapping from the
data to the database. Even the data mappings are independent of the decisionsregard-
ing transaction boundaries and security.

This clear division between software development activities may be EB's greatest
contribution to enterprise development. By alowing developers to defer and revisit

Evaluating Candidate Technologies for Control and Entity Classes 205

different steps without destroying the existing work, use of EJB technology can dra-
matically decrease project risk.

Strengths

By providing a coherent framework of services and standards, EJB greatly simplifies
the development of enterprise systems. EJB allows developers to leverage several
decades of research and innovation in transaction management, object-to-relational
persistence, object caching, and resource management. Standing on the backsof giants
allowsusto approach formidable projectswith confidence. Thefollowing section dis-
cusses some speci fi c advantagesof EJB.

Object Lifecycle Management

Object lifecyclemanagement includes creating, locating, caching, and deleting objects.
In EJB, the methods for performing these tasks are defined in the home interface. In
most cases, no code is written by the developer to realize these methods. Instead, the
container uses SQL statements and database mappings as defined in the deployment
descriptor to realize them at runtime.

This approach has two tremendous advantages. First, developers save a great
dedl of effort that would otherwise be spent writing tedious JDBC code to load
and save objects as well as complex and error-prone code for caching objects. Also,
entity beans can easily be reused in other systems, since developers follow standard
conventions.

Transaction Management

In EJB development, transaction boundaries may be handled within the code or
described in the deployment descriptor. The first approach gives developers limitless
flexibility, while the later approach is incredibly easy to use and allows developers to
revisit their decisions without disturbing the existing code base,

Security

EJBs provide security by allowing developers to specify which users can access each
method. This approach allows developers to control system accesswith a great deal of
precision and at a fine granularity. Of course, the user interface must handle invalid
requestsgracefully or prevent usersfromattemptingtoaccessforbi ddenfunctionality.

Persistence

Aswithtransaction management, EJB development offerslimitlessflexibility for beans
that require custom persistence code or easy point-and-click descriptions of the map-
pingfromentity bean datato databasefields. Whil ethisiscertainly not uniqueto EJB,
itistill ahuge advantage.

206 Enterprise lava with UML

Vendor Neutrality

Since the relationship between the container and the enclosed beans is very well deter-
mined by the EJB specification, a set of beans can be redeployed within a different
compliant container with proportionally little effort. This allows developers to scde
their system by changing the container, not the code. For instance, a system might
be developed within afree or cheap container, initially deployed inside of a midrange
container, and then redeployed to a fancy cluster of high-performance EJB servers.
Also, containers may be selected based on particular strengths, such as superior trans-
action management or scalahility.

Portability and Reuse

By definition, every EJB developer follows the same specification. This greatly
increases reuse potential. There isno worry that a bean will not fit the persistence or
security scheme of the new system. So, a bean that fits nicely with the new system's
domain can never be excluded due to implementation decisions.

Weaknesses

While EJB development has many advantages, it is not without a price. Application
serversthat provide substantial val ue comewith substantial price tags. Also, Enterprise
JavaBeans require developers to comply with the EJB specification, master the applica
tion server's deployment tool, and endure painful code-deploy-test cycles.

Compatible Technologies

Enterprise JavaBeans cart be accessed from any kind of application, applet, or serviet.
It can be used to create entity and control objectsthat are accessed from almost any sort
of boundary objects.

Cost of Adoption

Commercial-quality application serverswith EJB support arequiteexpensive. Y ou pay
the vendor so that you will not have to solve the rather nasty problems associated with
enterprise development. If your project really needs the strengths of EJB, the costs of
not using it may be incredibly high. Your development team must provide solutions
for the object caching, persistence mapping, and transaction control needs of a scalable
enterprise system. On the other hand, using EJB should decrease risk and speed up the
development cycle.

If you worry that finding or cultivating EJB developers is difficult and
expensive, consider the option: finding the developers who are qualified to
develop an alternative solution to each of the problems that EJB solves.

Candidate T ies for Control and Entity Classes

207

In order to be successful with EJB, your project must fill the roles of architect, bean
developer, and deployer.

Architect

Avrchitectsfor EJB systemsneed knowledge of the EJB specification, theJ2EE platform,
distributed computing, object-to-relational persistence issues, transaction manage-
ment, concurrency, exception handling, and architectural patterns. Experience with
CORBA or another distributed computing technology may be helpful. This role
requiresawide breadth of knowledge, aswell aspractical low-level experience.

Bean Developer

In many cases, bean development is fairly straightforward. Knowledge of transaction
basics, exceptions, and the Javalanguage is essential. No particular breadth of knowl-
edge of the Javaclass|ibrariesisrequired.

Deployer

A bean deployer needs a basic understanding of transactions, concurrency, resource
pools, and security. A deployer does not need to implement any of these areas in code;
instead, he or she must make deployment decisions that maximize performance while
protecting dataintegrity.

In-depth knowledge of the application server and its associated deployment tool is
also essential. Expertisein the Javaprogramming languageis not necessary.

Bean deployment is not like other design and code activities. It is closer to system
administration or database ad ministration.

Suitability
hi Chapter 6, weidentified two descriptive categories:

* Number and type of users
« Performance and scalability

Let's take alook a how EJB meets these criteria

Number and Type of Users

EJB is certainly avalid choice for all four types of audience: a small number of dedi-
cated users, general use within an organization, a large audience with high interest,
and ahuge audience with low interest. As the number of users and the amount of data
accessed grows, the capability of an EJB server to cache objects and pool resources
becomesincreasingly important.

While load balancing and clustering will never be easy, vendors of commercial
application servers are already focusing on this challenge. It is important to note that

208 Enterprise Java with UML

several of the application server vendors, including BEA, IBM, and Sun, have exten-
sive experience with enterprise system development and clustering technology.

Performance and Scalability

EJB isnot aways areasonable choicefor read-only systems and systemsthat allow iso-
lated updates. These systems make use of asmall st of EJB's strengths, such as object
caching. And if the system has demanding performance requirements, using EJB may
actually increaseoverall projectrisk.

EJB real ly startsto show itsvaluewhen faced with concurrent updates of the system
data. Thecombination of object caching and transaction managementismoreefficient
than 99 percent of all in-houseefforts. Also, EJB devel opersand depl oyerscan manip-
ulate the transaction boundaries without atering a single line of code. Thisisinvalu-
able when attempting to achieve just the right balance between data integrity and
performance.

Sample Technology Selection

This section uses the technology requirements from Chapter 6 and the technology
descriptions from this chapter to select technologies for the Timecard system's control
and entity dasses. It also considersthe cost of adopting the technology.

One choiceis acustom implementation based on RM! and JDBC. Theother choiceis
anEJBimplementation.

Lefs review the Timecard application's technology requirements as developed in
Chapter 6 and proceed from there.

Technology Requirements

The relevant areas for control and entity classes are number and type of users and per-
formance and scalability. The results were:

« Number and type of users: General use within an organization
« Performance and scalability: Concurrent updates
Based on these descriptions, we must choose between the custom combination or EJB.

Number and Type of Users

RMI and JDBC certainly make avalid combination for general usewithinan organiza-
tion. As the number of users and the data accessed grows, developers will need to
cache objects and pool resources, but these are common problems in large-scale devel-
opment.

Recall that RMI and JDBC do not provide any clustering or load-balancing frame-
work. However, it seems unlikely that any one company's Timecard application will
require acluster of serversto meet demand, so thisisnot a factor.

Candidate for Control and Entity Classes

209

EJBiscertainly appropriate for general use within an organization. It hasthe object-
caching and resource-pooling capabilities that greatly simplify system development.
Conclusion: EJB hasadight advantage.

Performance and Scalability

A combination of RMI and JDBC is appropriate for systems that allow concurrent
updates of data. However, in this case, the developers must supply their own architec-
ture for coordinated transaction management on top of the smple control provided by
JBC.

EJB is designed with concurrent updates in mind. Supporting them in this case
should not require any great effort or creativity. EJB hasthe advantage.

Cost of Adoption

This category is more difficult and subjective to assess. First, for most systems, the
licensing costisnot financially significantwhen compared to payroll. Certainly, appli-
cation servers are expensive. However, reducing the project staff by one person over a
year or reducing the schedule by a month or two is worth a lot of money. Such modest
reductions in effort are very reasonable when comparing EJB with RMI/JDBC for a
challengingproject.

Now let us consider the remaining cost of adoption: assembling ateam. EJB has one
huge advantage over RMI/JDBC in this area. With EJB, you must acquire one or two
experts who understand the technology and the application servers. With RMI/JDBC,
you must acquire one or two experts who must develop a framework and usage guide-
lines for persistence, resource pooling, and object caching. Either way, to avoid chaos,
you must alow most developersto work within a fairly narrow and well-documented
framework. However, with EJB, the framework and guidelines already exist, along
with books, seminars, and online tutorials. Even the best in-house solutions cannot
reachthislevel of sophistication. Therefore, EJB reducestheworkload on the architect
while making al of the developers more productive.

If EJB istechnically suitablefor an application, it ssemswise to useit. Whileitis dif-
ficult to balance salaries againgt licenses, the advantages of EJB seem fairly clear.

Conclusion

The Timecard system could clearly be implemented with RMI/JDBC or EJB. However,
given the dight advantage for EJB in each category, it seems prudent to select EJB.

.mm Some companies are selecting EJB as an implementation
technology even before they establish their requirements. Unfortunately, not all
systems are appropriate for EJB, and choosing EJB when the technical
requirements do not indicate it may be very risky. For instance, some systems
place a high premium on speed, but do not have data integrity issues. Using EJB
for such a system may decrease development time but fail to meet the
performance requirements.

210 _ Enterprise lava with UML

The Next Step

We selected technologies for the boundary classes in Chapter 7, and for the control and
entity classes in this chapter, we areready to move forward with our understanding of
the solution. Next, in architecture, we elaborate and structure our growing under-
standing of the solution.

Softwar e Architecture

In previous chapters, we discussed techniques for understanding a problem from the
users and developer's perspective. In Chapters 6 (“Describing the System for Tech-
nology Selection"), 7 ("Evaluating Candidate Technologies for Boundary Classes’),
and 8 ("Evaluating Candidate Technologies for Control and Entity Classes'), we dis-
cussed a disciplined approach to technology selection and selected technologies for
each group of andysis. Findly, we have the information we need to describe aviable
solution to the system problem. The software architecture is exactly that: Itis a high-
level structural description of the solution for the system.

A software architecture composes groups of classes into a coherent solution, and
shows how the pieces are structured with respect to one another. The emphasis is on
thestructure and relationships, not on the details of each piece. Thisissimilar toablue-
print for a building, which shows the dimensions of the building and indicates the
building materials, while omitting details about the interior of the building and the
actual construction techniques.

As they work on their specific parts, a software architecture allows developers to
understand the entire system as a coherent whole. More people can understand and
review the solution before it isimplemented, and this hel psto minimize confusion and
facilitatesamore orderly devel opment process. A solid architecture diffusesconfusion
and creates aclearly defined goal. Thishasasignificant effect on developer moraleand
productivity. Just as a blueprint helps separate teams of carpenters, electricians, and
masons to contribute efficiently to a greater goal, a software architecture helps devel-

211

212 Enterprise Java with UML

opers coordinate their efforts around a common and consensud understanding of the
solution.

| am continually shocked at how little emphasis is placed on architecture in our
industry, especially compared to other industries. No builder would commit to a pro-
jectwithout reviewing detailed plans, yet even sophisticated software companies often
spend more money on catering than on the software architecture. The resultis al too
common and all too predictable: Developers flounder about, unsure how their efforts
contribute to the whole system. Periodicaly the code from different developers and
from different teams is merged and tested. At this point, a host of incompatible inter-
faces and inconsistencies brings the entire process to a halt. After the finger-pointing
subsides, the developers resolve their integration issues as quickly as possible and
describethe changes as "bug fixes" Not apretty sight.

Are You Ready?

Before you can create a software architecture for your system, you must have a clear
understanding of the problem and a clear understanding of the technologies that will
be used.

Clear Understanding of the Problem

You need solid requirements, analysis classes, and sequence diagrams for a represen-
tative subset of the use case model. This model of the system forms and documents
your understanding of the problem that will be solved. Failing to understand the prob-
lem from the users' perspective leads to the dreaded, "That's nice, but..." reaction at
the first large-scale demonstration. Failing to understand the problem from the devel-
opers perspective often leads to abrittle architecture that cannot easily meet the func-
tional requirements of the system.

Clear Understanding of the Technology

You need a clear understanding of the technologies, including their strengths, weak-
nesses, and compatibilities. This information is invaluable as you organize the solu-
tion. In some cases, technologies may not be directly compatible. For example, you
may create an additional piece of the system solely to adapt a commercialy available
class library for use in your system. In other cases, the technology may not support a
desired relationship. Time spent upfront understanding the technologies prevents a
widearray of difficulties, and greatly lowersyour risk of spectacular failure.

Y ou should aso consider the difficulties in adopting a technology when dividing a
systeminto parts. After all, actual humans, who may not know al of the technologies
involved, mustimplement each part. Y ou must ensure that each part issufficiently lim-
ited in the technology it uses, so that a reasonably small group of your organization's
developers can master the required technologies.

Software Architecture

Never forget the developers. At first, it seems that architecture is all
about technology and object-oriented theory. Certainly these factors are
important, but an elegant and technologically impressive solution may still fail
if your organization is not prepared to implement it As a professional, with
obligations to customers and to your peers, it is better to succeed quietly than
to fail spectacularly.

Goals for Software Architecture

A good software architecture is also the result of an endless series of compromises and
trade-offs. Moving closer to one goal may inadvertently move the architecture away
from another goa. For example, increasing the scalability of a system usually makes
the system more complex and more difficult to maintain. Using anew technology may
reduce technical risk, but increase schedule risk as developers scramble to adopt the
technology. In short, perfect architecturesare sought, but are never found.

m Architecture, like politics, is the art of the possible.

Most software architectures have some or al of the following goals, either implicitly
or explicitly, but it is better to spell out the goals explicitly, so that they can be priori-
tized and monitored. This does not need to be an elaborate process; it can even be a
simple list for interna use.

We will refer back to these goals as we discuss various techniques for creating a
high-quality softwarearchitecture.

Extensibility

Enterprise systems are expected to provide value over many years. Over time, a suc-
cessful system evolves to meet the changing needs of the customer. Completely new
functionality may be added, or existing functionality may change radically. A good
system architecture must easily assimilate small changes, gracefully adapt to large
changes, and surviveradical changes. In order to produce an architecture that handles
change well, the architect must have a solid vision about what can change and what is
truly fixed.

Maintainability

Over adecade, a large enterprise system may be developed and maintained by 50 or
even 100 different people. The original developers often |eave the project to create the
next big thing, perhaps with an entirely different organization. In those 10 years, even
stalwart maintenance developers are promoted or retire. Therefore, bug fixes and
requirements may have to be made with little or no help from the origina system

213

214 Enterprise Java withUML

architect and developers. This meansthat the system architecture must be accessible to
an entirely new group of developers. Simplicity and clarity may need to be balanced
against extensibility or performancegoals.

Reliability
Many systems have nonfunctional requirements that specify the reliability of the sys-
tem. These requirements may limit system downtime or prohibit any downtime. Reli-
ability certainly constrains shape as well as the technology selection and architecture
for the system.

Scalability

Many systems have goals for the number of concurrent users and the amount of data
that the system will contain. These scalability goals must be considered when devel-
oping the system architecture. Otherwise, the system may meet the functional require-
ments but fail to scale as the business it serves grows. This often leads to a series of
desperate attempts to improve performance, followed by unchecked finger-pointing,
and finally to a complete redesign of the system.

With these goals in mind, we can consider some theory and pragmatic techniques
that will help you develop strong software architectures.

UML and Architecture

Architecture is al about managing complexity by dividing the solution into small
pieces, then combining the small pieces into larger, more coherent structures. Fortu-
nately, there are several object-oriented principles that assist us in this endeavor. As
aways, UML is used to visualize and communicate our decisions.

The following concepts are especialy helpful.

* Packages
Package dependency diagrams
* Subsystems
« Layers

The following sections examine each concept in detail, and provide the applicable
UML notation.

Packages

InUML, agroup of classesis known as a package. A package may aso contain other
packages, so that developers can construct arbitrarily complex groupings and sub-
groupings.

Software Architecture 215

Packages are valuable for several reasons. First, when classes are organized in logi-
cal groups, it isfar easier to find classes and understand the system. Packages servethe
same purpose as folders in an email system or directories in afile system; they help
keep us sane.

There are two distinct approaches to grouping classes. Classes can be grouped
according to similar responsibilities, even if they do not collaborate. Classes can be
grouped because they collaborate to fulfill a larger responsibility, even if each of the
classes has very differentindividual responsibilities.

Similar Responsibilities

It makes sense to group classes that have the same responsibility, but vary in their
implementation. The classes form agroup of alternatives, not a group of collaborators.
For example, there are several implementations of the Border interface in Java's
javax.swing.border package. Each implementation has a different way of drawing a
border around acomponent. Figure 9.1 shows severa of the alternative border classes
and theinterfacethat they all realize. Packaging the different borders together make sit
easy for developersto find the right alternative for their needs.

In this case, al of the classes realize the same interface. While this is desirable in
many cases, itisfar from essential. A package may hold classes that have very similar
responsibilities, but do not realizethe sameinterface.

Collaborations

Another package may gr
fulfill a significant respor

<<Interface>>
Border

+ getBorderinsets()
+ isBorderOpaque()
+ paintBorder()

Figure 9.1 Alternative borders.

216 Enterprise Java with UML

uncompressing dataare held in thejava.util.zip package. The classeshave quitediffer-
ent responsibilities. The ZipOutputStream writes compressed data to an arbitrary out-
put stream. It allows client objects to start anew entry, write data, and close the entry
when they are done writing. This process may be repeated for any number of entries.
A ZiplnputStream object reads compressed data from an arbitrary input stream and
uncompressesit, oneentry at atime. A ZipFile usesaZipl nputStream to provide con-
venient functionality for reading compressed data from a file. Figure 9.2 shows the
classes for compressing and uncompressing data using the Zip format. Each class has
a separate responsibility, and collaborates with the others to meet a larger goal.
Notice that changesto theimplementation of one classin this package may ripple to
the other dasses in the package. For example, any change to the compression logic in
the ZipOutputStream causes acorresponding changein the uncompressionlogicinthe
ZiplnputStream. However, no class outside of this package should need to depend on
the implementation of any of these classes. Together, these classes fully encapsulate

Packages are also a useful unit of work that can be designated to a small team. If a
team takes responsibility for a package, that package must be sized appropriately, and
all of theimplementationtechnology must fall withintheteam'sexpertise. In order to
divide up theeffortin thisway, each package must be fairly independent, so that it can
be developed and tested separately.

ZipFile

+ entries() : Enumeration
+ getEntry(name : String) : ZipEntry
+ getinputStream(entry : ZipEntry)

5
d 5
\
ZipOutputStream ZiplnputStream
+ putNextEntry(e : ZipEntry) + getNextEntry() : ZIpEntry
+ closeEntry() + ZiplnputStream(in : InputStream)
+ ZipO : 0
- - < 7
~
Y & g
oo ¥ p
ZipEntry

Figure 9.2 Collaborating classes.

Software Architecture 217

Package Dependency

Package dependencies show how changes to classes can ripple throughout the system.
A dashed dependency arrow from package A to package B indicates that there is at
least one class in package A that uses at least one class in package B. This means that
some changes to the dassesin package B will ripple to affect the dassesin package A.
Other changes to package B may not affect package A at al. The absence of a depen-
dency arrow from package B to package A would indicate that the classes in package
A may change as much as you wish, with no effect on the classes in package 8. Figure
9.3 shows package A depending on package B

Package dependencies may be direct, as in Figure 9.3, or indirect. If package A
depends on package B, and package B depends on package C, then it is possible for a
change to a class in package C to require a change to a class in package B, which
requires achangeto aclassin package A. Package A indirectly depends on package C.
This has tremendous implications when attempting to reuse a package in a new sys-
tem. Trying to extract the desired package may require radical surgery, as each of its
dependencies must be extracted, along with each of the dependency's dependencies.
With this in mind, examining the package dependencies helps developers gauge the
difficulty of reusing apackageor aclassfromapackage.

Package dependencies are often shown in high-level views, called package depen-
dency diagrams, which ignore the individual classes and show all of the packages and
their dependencies. These diagrams allow developers to measure the complexity of a
systemin ahigh-level view and help them evaluate the effects of a proposed change to
the svstem.

EITA A package dependency diagram is like a road map. Itonly helps you ifit
is up to date.

Avoiding Mutual Dependency

We refer to packages that depend on one another, either directly or indirectly, as mutu-
ally dependent. Figure 94 shows the Userlnterface package and the BusinessObjects
packages depending directly on one another. Figure 9.5 shows the User| nterface pack-
age depending directly on the SessonManagement package, which depends on the
BusinessObjects package, which completes the cycle by depending on the Userinter-
face package.

B

A B

Figure 9.1 Package A depends on package B.

118 Enterprise Jata with UML

Userinterface

BusinessObjects

Figure 9.4 Direct mutual dependency.

Userinterface

SessionManagement

BusinessObjects

Figure 95 Indirect mutual dependency.

Mutual dependencies are definitely worth avoiding. Their presence dramatically
decreasesyour ability to predict the effectsof changesto the system, asachangein one
package can ripple throughout the dependency cycle.

Mutual dependencies also reduce the architect's ability to limit and control the com-
plexity of the system. Packages tend to intertwine over time, as the challenges and

219

Software Architecture

pressures of detailed design and code lead developers to discover ways in which the
packages can cooperate to meet the needs of the system. A mutual dependency
between packages gives free rein to this tendency. If the packages are already depen-
dent on one another, it is difficult to fight the urge to add one more dependency. This
processgradually increases complexity while decreasing extensibility and reusability.

m When creating package dependency diagrams, organize the packages so
that the dependency arrows all point horizontally, down, or diagonally down.
Following this convention makes it very easy to spot dependency cycles, as they
will require an upward arrow.

Onceyou accept that mutual dependency is dangerous, you must break the cycle by
reorganizing the classes within the packages or splitting some classes into new pack-
ages The examplein Figure 9.5 isamutual dependency because the BusinessObjects
package depends on the UserInterface package. This may seem necessary for some
applications, as the user interface may demand notification whenever the business
objects change. However, we can use the event model from JavaBeansto achieve this
effect while removing the mutual dependency cycle. The user interface classes can
implement the PropertyChangeListener interface as found in javabeans. The user
interface objects can then be registered aslisteners on the business objects. Thisallows
business objectsto notify registered listeners of changeswithout knowing their specific
class. Figure 9.6 shows the new package dependency diagram without the mutual
dependency cycle.

Subsystems

A subsystem is a package that completely encapsulates its implementation. Client
objects access the subsystem's functionality through anarrowly defined interface. As
long as the interface does not change, the dependent classes do not need to change.

For example, a project may need a logging subsystem. In UML, the subsystem is
shown as a stereotyped package, and the subsystem directly realizesthe interface. Of
course, we know that there must be some implementation class hidden inside of the
subsystem and that the running system needs an instance of the implementation class.
We need to expose this instance to the objects that need it, without having them
depend on its constructor or its specific type.

Fortunately, the Singleton design pattern [Gamma 1995 is a perfect match for this
problem. Weintroduceanew class, LoggerSingleton, which hasapublic static method,
called getLogger, that returns an ILogger reference. The LoggerSingleton instantiates
the Loggerlmplementaticm once, and passesthat singleinstance to each caller.

Figure 9.7 shows the LoggingSub system and the ILogger interface in a class dia-
gram. A more conciseview of the same scenario is shown in 9.8.

To summarize, asubsystem hides functionality that can change — theimplementa-
tion— behind something that will not change— theinterface. Subsystemsfacilitateeffi-
cient development, support system configuration, and alow the system to evolve as
requirements change.

220 _ Enterprise Java with UMI

e

UserInterface

SessionManagement

BusinessObjects

Figure 9.6 Breaking the dependency cycle.

<<Interface>>
ILogger
(from LoggingSubsystem)

java.beans

PRERES I

<<subsystem>>
LoggingSubsystem

ersingleton
(from LoggingSubsystem)

<<class>> + getLogger() : ILogger

flniony |

+ writeError(msg : String, e : Exception) : void

Figure 9.7 A logging subsystem.

v

~~—__| roggerimplementation
(from LoggingSubsystem)

Software Architecture

<<Interface>> \
ILogger <<subsystem>>

(from LoggingSubsystem) |- ——— | LoggingSubsystem

+ writeError()

Figure 9.8 A logging subsystem with no details shown.

Efficient Development

Subsystems with well-established and consensual interfaces allow developers to work
in parallel. The devel operswhose code depends on the subsystem do not actually need
a fully functional version of the subsystem. All they need is a stub or trivial imple-
mentation of the subsystem and confidence that their code will integrate seamlessly
with the real subsystem. This enables one set of developersto work on the subsystem

without impeding the progress of the other developers.
To continue our logging subsystem example, the initiad version of the subsystem

simply writes the formatted messages to standard out. A subsequent version will write
messages to a recycled error log file.

Variability and Configuration
Multiple subsystems may implement the ssme interface in very different ways. Once
an implementation is selected, the rest of the system ignores the choice. Thisallows a
development team to easily configure and deploy variations of a system.

For example, some clients for a system may want to log to an error filewhile others
want to log to a database. One approach isto use a configuration file to tell the Log-
gerSingleton which implementation classto instantiate. This providesalot of flexibil-
ity without breaking any existing code.

Extensibility
A subsystem'simplementation is hidden. As long as the interface does not change, the
implementation of the subsystem can freely evolve to meet new or expanding require-

ments.

For example, arequirement to add atimestamp to the formatted errors produced by
our logging subsystem can be accommodated by changing the implementation class.
Thereisno need to change the interface or ater the code that calls the logger's writeEr-

ror method.

Guidelines for Software Architecture

As you develop a software architecture, you must keep some guiding principles in
mind. The first, cohesion, helps you organize parts of the system into logical groups.
The second, coupling, helps you keep groups independent and understandable.

221

222 Enterprise lava with UML

Cohesion

Cohesion describes how members of the same group are related to one another. Strong
cohesion indicates that the members of the group belong together. Weak cohesion indii-
cates that the grouping is arbitrary or evenillogical.

Cohesion can be applied to a group of methods inside of a class, a group of classes
inside a package, and a group of packages. Given the members of the group, an out-
sider should be able to deduce the overall responsibility of a cohesive group. For
instance, what is the responsibility of aclassthat has these methods: makeEggs, make-
Toast, makeHashBrowns, and makejuice? The responsibility, make breakfast, isfairly
clear, so these methods have strong cohesion within a class called Cook.

A similar level of cohesion should be demanded of classes within a package and
packagesin alayer. Groups with weak cohesion are hard to understand and to remem-
ber. They make asystem more difficult to maintain and to extend.

Coupling

Coupling describes the level of dependence between different groups. Tight coupling
indicates that the groups are very interdependent and that changes to one group may
require acomplex ripple of changes to the other groups. Loose coupling indicates that
the groups are relatively independent. Loose coupling invariably makes the groups
and their relationships easier to understand, maintain, and extend.

Coupling can be determined for a group of methods inside of a class, a group of
classes inside a package, and a group of packages. However, the amount of permissi-
ble coupling varies greatly between the different types of groups. For instance, the
methodsin aclass may betightly coupled, asthey interact with the sameinstance vari-
ables and frequently call one another. At the next level up, classes within a package
should be less interdependent. They should not depend at all on one another's imple-
mentation, and they should depend on afairly narrowly defined set of methods. The
coupling between packages should be even looser. Whenever possible, they should
depend on one another through interfaces rather than implementation.

Creating a Software Architecture

Creating asolid architecture requires a dedicated effort within the project. Choosing an
architect and committing to areasonably disciplined process for creating an architec-
ture pays immense dividends throughout the life of the project.

The Architect

The software architect works with other senior developers to determine the architec-
ture of the system, including technology selection and subsystem design. Architectural
mechanisms, such as error-handling and caching strategies, must be defined before
developers need them. Subsequent responsibilities include eval uating detailed designs
for conformance with the architecture, revisiting the architecture, and encouraging

Software Architecture

developers to use good OO and software engineering practices. These practices
include use of the UML, solid OO design principles, the educated use of design pat-
terns, iterative development, and design and code reviews.

A softwarearchitect needs extensiveexperience devel oping object-oriented systems
and mentoring technical people. Language and technology expertiseareaso required.
It is impossible to select technology and decompose a solution into the right pieces
without getting your hands dirtied in the details.

Strong communication and peopleskills are equally important. An architect mustbe
abletohold and defend strong opinions, or theprojectwill lack technical vision. Onthe
other hand, architectsmust build consensus and mentor developers. They areobligated
to push back against excessive and destructive schedule pressure, yet they must work
closely with project mangers to manage risks and ensure the project'stimely success.

Architecturea sorequiresanodd mix of personality characteristics. To besuccessful
inthe short term, architects design a high-level solution with incomplete information
whileunder schedule pressure. This requiresthem to be decisive, knowledgeable, and
persuasive. To be successful over thelife of the project, they must accept and improve
theirinevitably flawed ideas. They must behumble enoughto admit their ownfailings
infull view. They must aso work with project management and highly technical peo-
pleto resolve issues that range from risk mitigation and iteration planning to mecha:
nisms and subsystem interfaces.

In my experience, this responsibility cannot be distributed among multiple archi-
tects for asystem. Certainly, a good architect gathers input from many participants,
and builds consensus among the senior technical people. However, the final responsi-
bility cannot be shared. Cohesive and coherent solutions are not made by committee.
Once the overall solution has been developed, individual parts can be delegated to
designers, but there must be one coherent vision and one accountable person.

A Process
Creating asolid architectureinvolves severa steps:
1 Setgods.
2. Groupdases
3. Show technologies.
4. Extract subsystems.
5. Evaluate against guidelinesand gods.
Thefollowing sections discuss each step in detail.

Set Coals

Earlier inthis chapter, we discussed godsfor extensibility, maintainability, reliability,
and scalability. Y our system may have some of these, and perhaps other, godls. In any
case, you must establish the gods and have some idea of their relative importance.
Remember, architecturerequiresyoutomakeaseriesof decisionsbased onincomplete
information, and amost every decision has some unintended side effect.

223

224 _ Enterprise Java with UML

Setting clear prioritiesisalso anice counterpoint to risk management. Risk manage-
ment tracks &l of the outcomes that you want to avoid. Goals are al of the outcomes
that you want to foster. Either way, establishing priorities does not need to be an
exhaustive process. Most projects need only apage or two of very informal text to get
ahuge benefit. Just discussing godls or risks on aregular basis is ahealthy exercise, as
it encourages people to think about the project as a whole.

Croup Classes

Classes can be grouped into packages to keep collaborators together or to keep similar
classes together. This choice is not easy. You must consider coupling and cohesion as
well as the potential for variability and reuse. In general, classes that may bereused in
different situations should be organized together by responsibility. Grouping them by
responsibility rather than by collaboration helps to keep them independent of any one
type of use. Classesthat are dedicated to a single collaboration must be packaged with
the other classes that they support.

1 tend to group different types of analysis classes into layers by responsibility. For
example, more than one control class can use each entity classes, so the entity classes
belong inalayer. The sameistruefor the control classes, as each control class caninter-
act with different versions of the same boundary dass

Within each layer, the classes often divide into packages. For example, the entity
layer may contain several packages or even subsystemswith clearly defined responsi-
bilities. The control layer may be divided into groups of control classes that interact as
part of alarger workflow for aparticular type of user.

The layers and the packages within each layer must be shown in one or more pack-
age dependency diagrams.

Show Technologies

We selected technologiesin Chapters 7 and 8, so this step isfairly mechanical. Each use
of atechnology must be added to the package dependency diagram(s) that shows the
appropriatepackage.

Extract Subsystems

Remember that subsystems facilitate efficient development, support system configura
tion, and allow parts of the system to evolve independently as requirements change.
Candidate subsystems can be found by looking for packages that have a clearly
defined interfaceand loosecoupling with the rest of the system. Withinthe candidates,
look for packages that can be developed independently and/or that encapsulate
volatilerequirements.

Evaluate against Guidelines and Coals

You must periodically evaluate the architecture against the goals and against the
guideline of high cohesion and loose coupling. UML and modeling tools alow you to

Software Architecture

225

review and revise amodel with little waste. UML aso alows you to efficiently com-
municate the structure of the system with other developers. Given these advantages,
thereis no reason not to review, collaborate, and revise the architecture.

You must accept the simple fact that initially, all architectures are
flawed. Software systems are horribly complex, and we have a finite capacity to
manage complexity. You will not get it right the first time. You can fix itin a
high-level tool or you can fix it in code.

Sample Architecture for the
Timecard System

Now that we have discussed the theory and process for creating a software architec-
ture, let'screate the architecture for the example Timecard system. We'll walk through
each of the steps:

1 Setgoals.

2. Group classes.

3. Show technologies

4. Extract subsystems.

5- Evaluate against guidelines and godls.

Set Goals

Thefirst stepisto set gods for the system. In some cases, agoa is given weight by an
explicit requirement. For example, reliability and scalability requirements are often
plainly stated in the supplementary requirements. Developers usually determine
maintainability and extensibility goals. Thismakes sense, asthe devel opers know how
the systemwill be developed and can estimate the stability of the requirements.

Extensibility. Whileall systems change, the Timecard application seems fairly well
focused. It gatherstimecard datafrom the user. It does not analyze that data, bill
dients, or caculate the pay for each employee. If | ever see such awell-defined
system outside of abook, | may just dance alittlejig. Caveats aside, we conclude
that extensibility isnotahugepriority.

Maintainability. The Timecard system must be easy to comprehend and to main-
tain. The company has separate teams for maintenance and for new projects, so
the system will be transitioned to anew group.

Reliability. Aspartof theinfrastructureof acompany, the Timecard systemmust be
reliable. However, it isnot responsible for credit card processing or life support.
Scheduled downtimeisperfectly acceptable. Unanticipated downtimeisnot.

Scalability. The Timecard system must scale to accommodate more dataand more
users, as the company plansto grow rapidly.

226 Enterprise Java with UML

Explicitly defining these goalsand their relativeimportance hel ps shape subsequent
architectural and design decisions. In this casg, it is useful to know that we can sacri-
fice some extensibility to increase scalability, if the opportunity arises.

Group and Evaluate Classes

The next step is to group our classes into candidate packages and evaluate their cohe-
sion. To do this, we'll identify some groups of classes from the analysis model and
examine their responsibilities. We want each group of classes to be closdly related, so
that the resulting package has a clear and well-defined purpose.

Grouping Classes

In Chapter 5, "Analysis Model for the Timecard Application,” wewere able toidentify
five distinct groups of classes:

* Entity dasses

 User interface classes
 Control classes

« System interface classes
* Locator classes

We will consider these groups as candidate packages and evaluate them for strong
cohesion. If the packages exhibit strong cohesion, we will use the class diagrams cre-
ated in analysis to evaluate them for loose coupling. In some cases, this smplistic lay-
ering approach will fail because the collaborations between classes of different types
are stronger than the collaborations between classes of the same type. However, it is by
far the easiest approach, and it is often sufficient.

Let's consider each candidate package separately.

Entity classes. Thisisour first group of classes, which wereidentified in Figure5.2.
Mot of the classes describe atightly related set of business conceptsthat are core
to our understanding of atimecard. The only class that does not fit is ExportRe-
quest, which has nothing to do with timecards in general. We decide to exclude
ExportRequest from the package and look for abetter fit.

We aso need a name for this group of packages, as entity classes is smply
too vague. Sinceall of the classes are part of our mode! of atimecard, the package
name becomes TimecardDomain. Figure 9.9 shows the classes for the package.

User interface classes. This is our second set of classes, shown in Figure 53. These
classes al encapsulate the logic needed to present data and interact with the user
for time entry. In Chapter 7, we decided to use one user interface technology,
serviets, for all user interface dasses. Based on this decision, there is no reason to
keep separate classes for the AdmmistrativeL oginUl and the RecordTimeAdmin-
istrativeUl.

The name for this package should reflect the application and the technology,
0 it becomes TimecardU!. Figure 9.10 shows the classes for the package.

Software Architecture 227

(et e e |

TimecardDomain
(from Logical View)

e
s SR T BTG .
T |

ExportRequest
(from BillingSysteminterface)

x

Figure 9.9 The TimecardDomain package.

TimecardUI

(from Logical View)

’7 i 1 1 oginUl ‘ p

X *

Figure 9.10 The TimecardUl package.

228 Enterprise Java with UML

=S54

TimecardWorkflow
(from Logical View)

ExportrmeEr o]

Figure 9.11 The TimecardWorkflow package.

Control classes. The third group of classes we identified in Chapter 5 were control
classes, shown in Figure 5.4. These all encapsulate various parts of the timecard
entry or timecard processing workflow. All of these workflows seem to use the
same entity classes and are reasonably cohesive.

Since each of the classes contains a workflow for the timecard system, the
name of the package becomes TimecardWorkflow. Figure 911 shows the classes
for the package.

Billing system interface. The BillingSystemlinterface class was the fourth group of
classes, shown in Figure 53. This aso seems like a good home for the Export-
Request class, which was excluded from the TimecardDomain package. The
package encapsulates the logic for generating the export data and also contains
the export request. This seems to be reasonably strong cohesion.

Sincetheclassisasysteminterfacetothebilling system, the packagebecome
the BillingSysteminterface. Figure 9.12 shows the classes for the package.

<<subsystem>>
BillingSysteminterface
(from Logical View)

Figure 9.12 The BillingSysteminterface package.

Software Architecture

Locator classes. Becauise we are using EJB to implement our entity classes, we will
not need separate locator classes. The functionality is provided by the Home
interface for each entity bean.

As described, each package has a clear purpose and strong cohesion between its
classes. Next we need to see if the packages are tightly or loosely coupled.

Describe Coupling between Packages

In the next step, we use a package dependency diagram to evaluate the coupling
between packages. Recall that package A depends on package E if thereisaclassin A
that has a relationship with aclassin B.

Fortunately, we collected a lot of information about the dependencies between
classes during analysis. Figures 5.14 to 5.16 showed the dependencies between classes
for each use case. We must merge these three diagrams into one class diagram, then
summarize that diagram in a package dependency diagram.

Figures 913 to 9.15 show the diagrams exactly as they appeared in Chapter 5.

From these class diagrams, we can produce a single class diagram that shows al of
the dependencies between all of the classes. This is a highly mechanical process, in

<<boundary>> <<boundary>>
iveLoginUI EmployeeLoginUI

+displayLoginForm() +displayLoginForm()
rdispia_yWe\cume()]+disp\ayWe\come()
‘ dPassword() i i

=
<<control>>
Coc .

+validatelLogin()

s
&
4
.

<<entity>> <<entity>>
User UserLocator

-password
+validateLogin()|
Figure 9.13 Participating classes for Login.

+findByName()

229

230 Enterprise Java with UML

<<boundary>>
ExportEntriesUl

+displayCriteria()
+displayDateRangeEditor()
+enterDateRange()
+displayClients()
+selectClients()

+displayEmployees()
+selectEmployees() i
_ = 7 |+displayFileSelctor() 35
7 i +enterOutputFile() T
ifecyde>> +submitRequest() D ifeqydes>
Userlocator - 0 ClientLocator
I
+indAll() U +findAll()
<<control>>
g <<boundary>>
FexportForCiiteriaQ My BillingSysteminterface
+writeFile()
7’ T N +writeFileForExport()
s 1 %
7 | N
£ | 2 x
’
% A\ 3
< <<entity>> b2
<<lifecycle>> 3 Entry <<entity>>
EntryLocator -‘day p— ExportRequest
+findForCriteria() +getChargeCode() -targetFile
S e +getDay()
+getHours()
+getUser()

Figure 9.14 Participating classes for Export Time Entries.

which each relationship in each of the participating classes diagramsisadded toasin-
glediaeram.

- In real life, you need automated tool support to find dependencies. You
just can't spend several days finding each relationship in a large model.
Fortunately, this is exactly the sort of mindless drudgery that these tools were
created to do.

Figure 9.16 shows the classes and their dependencies. Along theway, wenoticethat
the ExportEntriesU| has direct dependencies on classes from the TimecardDomain

Software Architecture 231

<<boundary>> <<boundary>>
Recond [RecordTimeAd rativeU
[tsubmit) {ssubmitg
<Zcontrob>
[+getEntries)
|+updateEntries()
[+submit0
entity> e >
User Timecard L
Le FimePeriod oy
|passwor -
s [+getEntries) [fetChargeCode0)|
i [+setentries() o
|+validateLogin Ll :g:‘l:ours()
getuser

Figure 9.15 Participating classes for Record Time.

| 1 L 1

EmployeeLoginUl ‘ [RecordTimeut ‘
ExponEntiesUl
(from Timecard) (o Tinecord) | s O

1
1
1
|
I
|
1
1
1
i

Logoriow
(rom TimecardWorkfiow) SR ExportTimeEntriesWorklow ‘ J Eportequest ‘

|t | ; |

B e e S
! BilingSystemintertace

(from BillingSysteminterface) |

o

TN A

v
& e LJ e Timecard M =% Exy 2 { J mecnmcm
=

e

Clent
(from TimecardDomain)

Figure 9.16 Classes and relationships.

252 Enterprise Java with UML

package. This seems odd, as dl of the other user interface classes depend on dlasses
from the TimecardWorkflow package, which in turn depends on the TimecardDomain
package. Our knowledge of EJB indicatesthat direct relationships from user interfaces
to entity beans are not desirable, and we would like to keep the relationships consis-
tent. Thisleads usto force the ExportEntriesUl to work through the classesin the Time-
cardWorkflow package.

The next step is to produce a package dependency diagram from the class relation-
ships. Each relationship from a class to another classin a different package leadsto a
package dependency. For example, the relationship from RecordTimeUl (in the Time-
cardUl package} to the RecordTimeWorkflow (in the TimecardWorkflow package)
leads to a dependency from the TimecardU| package to the TimecardWorkflow pack-
age. Again, thisis a highly mechanical process, best |eft to atool.

The package dependencies seem fairly reasonable. There are no circular dependen-
cies. Also, the packages that we might expect to be reusable, such as TimecardDomain
and BillingSysteminterface do not have any dependencies.

TimecardUI

v
TimecardWorkflow

T S

I e

| e

| ~

(

I

! <<subsystem>>
} BillingSystemInterface
|

I
\

TimecardDomain

Figure 9.17 Package dependencies.

Software Architecture

There is strong cohesion between the classes in each package, and loose coupling
between the packages. We have apreliminary structure for our system.

Show Technologies

Fortunately, dl of the technology selections for our Timecard system were made in
Chapters 7 and 8. Recdl that the entity and control dasses will use Enterprise Java
Beans, while the user interface classes will become servlets. Also, the BillingSystem-
Interface classwill useXML. AH wehaveto do isadd apackage for each technology to
the package dependency diagram. Use of atechnology is shown by drawing a depen-
dency line from the original package to thetechnology packagethat it uses. For exam-
ple, the TimecardUI package depends on the Serviets package. Figure 9-18 showsthe
updated diagram.

Extract Subsystems

Thenext step is to identify the candidate subsystems. These can be found by looking
for packages that have a clearly defined interface and loose coupling with the rest of
the system. Within the candidates, look for packages that can be developed indepen-
dently and/or that encapsulate volatile requirements.

The mog likely candidete subsystem is the BillingSysteminterface, which offers a
very simple service to the rest of the system and is completely encapsulated. Also,
since the hilling system is an independent system, there is always a chance that the
interfacemay change.

We decide to make the BillingSysteminterface into a Javainterface, and make the
ExportTimeEntriesWorkflow objects have arelationship through the interface. At this
point in the process, this sort of decisionis all but free. It takeslonger to make the deci-
sion than to perform the changesin aUML modeling tool. How long would it takein
code?

Figure 919 shows the BillingSysteminterface as a subsystem that redizes the
IBillingSysteminterface interface. Notice that the TimecardWorkflow depends on the
interface, not the subsystem directly.

Evaluate against Guidelines and Goals

Now that we have a reasonable draft architecture, we must evaluate it against our
quidelines and our goals.

Recall that thegoalsfor the Timecard system emphasized maintainability, reliability,
and scalability. Extensibility was less significant, asthe system has a very stable vision.

Maintainability and Extensibility

Each package has a very well-defined set of responsibilities, and the packages are well
encapsulated. These factors are quite encouraging when planning for an easy-to-
understand and easy-to-maintain system. Also, the system is based on reasonably

233

234 Enterprise Java with UML

TimecardUl

Servlets

EJB Session
Beans

BillingSysteminterface

EJB Entity
Beans

Figure 9.18 Package dependencies with technology.

standard technology, so the future developers will have aweslth of resources outside
of the system documentation.

Thereisone concern. Theuser interface dasseswill beimplemented as serviets, and
the technology description for servletswarns us about producing HTML in a haphaz-
ard fashion (see Chapter 7). The following excerpt from the architect's role in serviet

Software ~ Architecture 235

EIB Session
Beans

<<subsystem>>
BillingSysteminterface

EJB Entity
Beans

Figure 9.19 Package dependencies with subsystem.

Servlet-based user interfaces can degenerate into a series of unconnected
works of art, with no two following the same format or producing HTML in
the same way. An architect can reduce this effect by establishing reusable
HTML production cdlasses to produce everything from tables and trees
to frames and the enclosing page. This alows developers to easily change
the look of the entire application by atering the reusable HTML production
classes. The alternative requires each sarviet to be laboriously edited, perhaps
for something astrivial as the background color or the space between buttons.

256 Enterprise lava with UML

We decide to follow this advice, and add an HTMLProduction package to the
architecture.

Reliability and Scalability

Most of the system's reliability and scalability concerns can be isolated to the Tinie-
cardDomain and Timecard Workflow packages, which will be implemented as Enter-
prise JavaBeans. Picking the right server and alocating plenty of time for design and

TimecardUl
a ¥ ~
» I R
£ 1 o
| RN
|
HTMLProduction | Servlets

I
|
|
|
|
v

TimecardWorkflow SR Bk

| SR IBillingSysteminterface

1

1

1

EJB Session |
Beans

<<subsystem>>
BillingSysteminterface

TimecardDomain 5

XML

EJB Entity
Beans

Figure 9.20 Package dependency diagram with HTMLProduction package.

Software Architecture

237

prototyping with a red application server should address these concerns. These are
tactical effortswithin the design process; the architectural choice of EJB for these com-
ponentsisvery sound.

The updated package dependency diagram in Figure 9.20 shows the TimecardU!
package using the TimecardWorkflow package as well as the HTMLProduction
package.

The Next Step

This chapter identified architectural goals, determined the structure of the system, and
defined the relationships between the packages. These elements provide context and a
solid foundation as we fill in the details of the solution during design. As we make
decisions during design, we can evaluate them against the package dependency rela-
tionships that we have established.

Introduction to Design

Design builds on the understanding of the problem as developed during requirements
gatheringand analysis, itisan attempt to fully understand the solution as constrained
by the structure developed during architecture. The goal of design isto make the next
step, implementation, as simple and efficient as possible. It is your last chance to make
changes quickly and efficiently in atool and anotation, rather than in code and other
deliverables.

What Is Design?

An object-oriented design is a detailed description of the objects that work together
to fulfill the system's requirements. Design describes the solution, in great detail.
It specifies instance variables, method parameters, return types, and technology
details.

Design uses the same diagrams as andlysis, and for the same purposes.
Sequence diagrams show interactions between objects. Class diagrams show the
structure, behavior, and relationships that objects of particular typeshave in common.
With the added level of detail, the diagrams in design are much larger and more
intricate.

239

240 _ Enterprise Java with UML

Are You Ready?

Good designs are built on a solid foundation, including a clear system vision, a solid
use case model, a fairly complete analysis model, careful and appropriate technology
selection, and a resilient architecture.

Premature design risks project failure in several ways. If the system vision or use
case model is incomplete or inaccurate, then even a brilliant design may solve the
wrong problem. Omissions and inaccuracies in the analysis model lead to an incom-
plete architecture and poor technology selections, which in turn lead to a flawed
design. If the analysis model isincomplete or inconsistent, the design mode] will prob-
ably perpetuate these omissions or errors.

Each step in the development process feeds the next, so that a good design is not

possibleunlesstheprecedingstepsarecompl eteandof highquality.

The Need for Design

Omitting or neglecting design is prohibitively expensive and insanely risky. Without a
good design, developer productivity and morale suffer. Inconsistent code and incom-
patible modulesare acertainty. Discovery of deficienciesin thearchitectureisdelayed
because there is no way to see the larger picture. Accurate scheduling is impossible,
since the problems are not well understood before coding begins. Flawed ideas and
incompatible implementations that are not caught until integration or system test are
incredibly expensivetofix.

My grandfather, who built residential and commercia buildings back in the days
whenthey still laid bricksand cut lumber to fit, used to say, "Measuretwice, cut once
This captures the essence of design for me. Y ou are about to write code, which tendsto
resist change. A little extra effort in design often prevents painful rework later.

On the other hand, it is far cheaper and less time-consuming to make decisions in
design than in code. Also, aclear design model enables more developers to understand
and review more of the system, which makes it possible for them to understand their
own responsibilities and contribute to the overall success of the project through design
discussions and reviews. Moreover, project managers and senior developers can esti-
mate effort more accurately it their estimates are based on aclear and concrete design.

Productivity and Morale

Implementing high-quality systems is a complicated process. New technology, com-
plex requirements, and extreme schedule pressure create challenging and oftentimes
frustrating puzzles for developers. Complex code must be developed, tested, and inte-
grated with other developer's equally complex code. Anyone who has tried it knows
that design and implementation are by turns daunting, exhilarating, frustrating, and at
timesaddictive.

Momentum is an important key to thriving in this environment. Small successes
lead to more successes and help the entire team build confidence and credibility. On

Introduction to Design 241

the other hand, failure and wasted efforts destroy momentum. In order to gain and
mai ntain momentum, developers must have arealistic and complete architecture and
design for the system. Thisfacilitates realistic expectations, partitions the project into
reasonable and achievable parts, and avoidsincompatibilities between different devel-
opers modules.

Design helps developers succeed, and incremental success motivates developers
more than any other stimulus. Okay, high salaries help, but a chance to produce high-
quality work in a sane effortis a major motivator for most of us.

A Malleable Medium

UML in amodem tool can be shaped and reshaped very essily. It is a very malleable
medium. Code is not so easy to work with. Code is dispersed over hundreds of files,
with avery low level of detail obscuring the larger patterns. A UML model in amod-
erndesign tool isinfinitely easier to assimilate, change, and extend.

Remember, the step after design is implementation. Mistakes that are not caught
beforeimplementation are often vety expensiveto fix. Fixingincompatibleinterfaces
can take weeks, with developers alternating between coding, testing, and blaming. A
poor architecturethat survives into implementation often leads to months of rework or
eventoproject failure.

Even radical surgery on afairly large UML model can be completed in a hundred
person-hours. Relationships between classes can be changed with a click of amouse.
Responsibilities easily migrate from class to class. A class becomes an interface with
several concrete alternative implementations. Classes and packages split or merge
with relative ease.

Moreover, adeveloper who knows UML can review the design for a large subsys-
tem in ashort day. Compare this to the weeks consumed developing a serious under-
standing of the code for alarge subsystem. Consistent and thorough review of design
artifactsisfar more economically feasible than asimilar review of code

Scheduling and Delegation

A sound design makes estimation, scheduling, and delegation possible. Given a thor-
ough design, a developer estimates the effort required for esch ciass. The sum of these
estimates is invariably more accurate than a rough guess based on the requirements.
This gives the project manager something solid to work with. A solid design also
alows developersto develop afew dasses or apackage and then integrate their code
with the rest of the project. Delegation without adesign isfar lessefficient, and gener-
ally requiresasignificant effort duringintegration.

Design Patterns

Adesignpattern isawell-defined, well-documented, and time-tested sol ution toacom-
mon problem in software design. Each pattern has aname, a problem description, a

242 Enterprise Java with UML

solution, a discussion of the consequences, a sample implementation, and a list of
related patterns [Gamma 1995].

Problem description. Describes the specific problem that the pattern isintended to
solve, This allows developersto quickly search through acatalog of patternsand
extract the one or two that seem appropriate for more careful consideration.

Solution. Describesthe objectsand their interactionsin afairly abstract way, sothat
the pattern can be applied to avariety of designs, in most cases, a more concrete
exampleis used to clarify and explain this generic solution.

Conseguences. Discuss the positive and negative impact of using the pattern to
achieve common design goals. This helps developers to determine which candi-
date pattern isbest for their situation, and may lead them to modify the pattern
when applying it to their own design.

Sample implementation. Shows how the solution can be implemented in at least
one object-oriented language. This makes the solution more concrete for devel-
opers, and provides a solid proof of concept for cynical practitioners.

Related patterns section. Shows how other patterns can support or extend the pat-
ternin question. In many cases, patterns can be combined to form very resilient
and elegant designs.

Benefits

Without getting too mushy, | must say that learning and using design patterns radi-
cally changed the way | design software, and solidified my grasp of object-oriented
theory morethan any other experience.

Design patterns help developers design better software in two very significant
ways:
* They provide a common language for collaboration and documentation.
« They reinforce object-oriented theory.

Common Language

Learning design patterns takes patience and effort. Each pattern takes time to assimi-
late, and there arealot of patterns. However, the effort only adds to theincredible rush
you get when you realize that the developer across the table shares a common lan-
guage and that you just compressed three hours worth of design discussion into 15
incredibly productive minutes. A group of developerswho al understand design pat-
terns can communicate in a common language that is both expressive and compressed.

Design patternshelp developers communicatetheir designsquickly and efficiently.
Any uncertainty can beresolved by consulting awidely accepted source. Thisworksin
design meetings, design documents, and code

m In the same way a well-understood pattern enables you to
communicate effectively, a misunderstood design pattern will confuse people
just as effectively. You must know the patterns that you use.

Introduction to Design 243

Reinforces OO Theory

Object-oriented theory and practices are not intuitive for most people. They require
usto think abstractly, analytically, and creatively—all at the sametime. In my experi-
ence, exposure to good object-oriented design is the best way to refine your own
understanding and to improve your own habits. Design patterns apply object-oriented
practices to a clearly defined problem. This makes them excellent case studies for
object-oriented design. It is interesting to see the consequences of different decisions
and to see how the same techniques can be used in radically different ways.

Use

Fortunately for us, many design patterns have been captured in books, articles, and
online repositories. An entire community of devel opers donates an enormous amount
of time, effort, and expertise as they revise and extend a collective catalog of design
patterns. Thebest single source for design patternsisthe seminal book Design Patterns:
Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley-Longman, 1995). These authors are
often referred to as the Gang of Four; thus, their book is often referred to as the GoF
book.

Design patterns are best applied to a well-defined problem. Fortunately, analysis
and architectureidentify lots of problemsfor us to solve. In many cases, you can apply
aseries of design patterns to a package or small group of packages. Each pattern helps
provide some functionality or helps reach a design goal.

Planning for Design

Tobesuccessful, design must beacoherent and unified effort. Unfortunately, designis
naturally a divisive process. Design breaks people into small teams or even isolates
peopleby themselves. Each team or personisthenimmersed in the details of new tech-
nologies and the challenges of object-oriented design. Becoming absorbed in the
design of his or her piece, to the exclusion of all other interests, is a natural part of the
process, as the designer struggles to make sense out of complexity.

Once design begins, each design effort will go its own way for awhile. Failure to
accept this reality often leads to slow, painful progress, as developers are constantly
expected to see the whole picture and ensure that their work fits with everyone else's
work, hi order to simulate acoherent and unified effort, weestablish clear goasfor the
entire design before giving devel opers the freedom to work on their separate efforts.
The following steps summarize this process:

1. Establish goalsfor theentiredesign.
2. Establish design guidelines.
3. Find independent design efforts.
Each of these steps is described in detail in the subsections that follow.

244 Enterprise lava with UML

Establish Goals for the Entire Design

Every system contains amillion decisions. Many of these decisions are more compro-
mise than brilliant discovery of perfect truth. This is as true for design asiit is for
requirements and architecture. Establishing design goals before making decisions
helpsmaintainthe consistency of the system, and makes each decision easier.

One person's well-focused system is another person's overly restricted disappoint-
ment. Anarchitectureor technology selectionmay tradeperformancefor functionality
and extensibility. Or it may partition subsystems to accommodate the devel opment
team's available skill st or to maximize the reuse potential of a subsystem. Design
decisions often balance clarity, performance, reliability, extensibility, and reuse poten-
tial. Wewill refer back to these common goals aswe discuss varioustechniquesfor cre-
atingahigh-quality softwaredesign.

Clarity

Clarity and understandability isakey goal for every design. Developerscannot review
or implement something that they cannot understand. Faced with an unclear design,
most developers either attempt to follow the design and develop confusing code or
simply ignore the design entirely. Clear and unambiguous designs often lead to code
that is easy to maintain and to extend.

Clarity is increased by keeping strong cohesion for methods in classes and for
classes in packages. Loose coupling makes the interfaces between packages tight and
easy to understand. Encapsulation improves readability by limiting what you need to
know to use aclass.

Performance and Reliability

Many systems have demanding performance and reliability requirements, hi most
cases, performanceand reliability goalscan bereached by picking theright technology,
then designing to the technology's strengths. Developers must understand how the
technology exchanges data between different tiers and how the technology ensures
data integrity. Establishing performance and reliability goals early in the design
process encourages developers to consider these issues, rather than procrastinating
and hoping for the best.

Extensibility

Extensibility isalmost alwaysapriority, evenif the customer does not realizeit. Asthe
needs of the organization change, the system must be able to accommodate the new
redlity.

As arule, loose coupling and strong cohesion make it more likely that the classes
that need to change will reside in the same package and that the package will be
loosdly coupled with the rest of the system. This limitstheripple effect of each change.

If you canidentify areasthat arevery likely to change, you may beableto design the
variability into the system, by encapsulating the variability inside of a swappable sub-
system or by designing the system to use configuration data. Of course, this requiresa

Introduction to Design 245

very clear vision of the future of the system; and if you are wrong, you have wasted
time and increased the complexity of the system.

Reuse Potential

Reuse of classes, both within a project and between projects, is a tremendous selling
point for object-oriented technology. Reusable classes must have a generically useful
abstraction and well-encapsulated data. When aiming for reuse, keep dassessmall and
well focused. Also, in order to reduce the burden on the person who wants to adopt or
adapt your class or package, keep the dependencies to a minimum and make the
abstraction easy to use and understand.

AT Despite the hype, reuse never conies for free. You must design with
reuse in mind, or be willing to clean up an existing design to gain reusability.

Establish Design Guidelines

Itisimportant to have projectwide guidelines during design. This unifiesthe efforts of
thedifferent designersor teamsof designers. Each designeffort should usethe samedia-
grams, describe the solution at the samelevel of detail, and follow the same naming con-
ventions. Thefollowing guidelines form a reasonable starting point for most projects.

Diagrams for Each Use Case

Use severa sequence diagrams to describe each use case, one for each significant flow
of events. Also, a single class diagram should be used to capture the relationships
between al of the classes that participate in the different sequence diagrams. In some
cases, state diagrams can be used to show state-dependent behavior for a particular

Level of Detail

Thelevel of detail for design isfar lower than for analysis. Each method must be fully
specified, completewith arguments and return types.

Also, any object that is used in a sequence diagram must be located or created, either
in the same sequence diagram or in a supporting sequence. In anaysis, sequences are
often supported by a series of minor miracles, with objects simply appearing when
needed. In design, objects are created, kept for future use, located, and finally
destroyed.

Naming Conventions

Name each method with a well-selected verb or acombination of averb and anoun;
paint and open are good examples from the Java class libraries. The name of the
method should match the return type, if any. For instance, amethod that returns aref-
erenceto a Timecard object might becalled getTimecard or getCurrentTimecard.

246

Java with UML

Each class should be named with anoun, acombination of nouns, or acombination
of adjectivesand nouns. String, Menultem, and OutputStream are good examples from
the Java classlibraries.

The purpose of each class and each method must be clear and unambiguous to other
developers. This usually precludes the use of filler class names, such as manager.
Whenever possible, clearly defined terms from design patterns, such as Factory or
Singleton, should be used as part of applicable class names.

Cohesion

Each set of methods within a class must form a cohesive whole. This requires them to
have a common god or responsibility. Similarly, the classes inside of each package
must have a unifying purpose or nature. Classes and methods must not be grouped,

Find Independent Design Efforts

hi order to divide up the design effort, you must identify packages or groups of pack-
ages that are loosely coupled with the rest of the system. This allows developers from
different effortsto agree ontheinterfacesbeforestartingindependent design activities.

Packages that are tightly coupled must be designed together. Packages that are
loosely coupled and well encapsulated are good candidates for independent develop-
ment. Subsystems are perfect for independent development. By their very definition
they are independent and well encapsulated.

Each independent design effort must fit the technical abilities of asingle team. This
may require an otherwise coherent design effort be divided into smaller efforts that
more closely match the skill sets of existing teams. Otherwise, this may require reorga-
nization and training of team members to improve skill sets

Designing Packages or Subsystems

The design for a package or subsystem builds on the analysis model, including class
diagrams and sequence diagrams. While each package is designed and implemented
asaseparateddiverable, al of the packages cooperateto redlize the use cases Aspart
of theinitial design of the package, developersmust identify (he use cases that include
the package. This process highlights the interactions between the package and the
other packages that are involved in the use case. At this point, the developers must
cooperate with the developers of the other involved packages to finalizethe interfaces
between the packages.

A package or subsystem design is also constrained by the architecture and the over-
al goasfor the system. Specifically, the architecture determines the permissiblerela
tionships between the system's packages. Each time a class in the package uses a dass
outside of the package, it establishes a dependency between these packages. These
new relationships must be evaluated for compliance with the architecture.

Introduction to Design 247

Each package or subsystem may haveits own goas. For instance, a package of user
interface classes may need to be highly flexible and extensible, while a package of
entity classes may need to be well encapsulated and meet demanding performance
goals.

Thefollowing steps must be followed for each design effort:

1. Identify goals and priorities. While goals are established for the entire design,
not every design effort can influence each goal. Each design effort must identify
the goals and priorities that it can and cannot impact. Thisis usually clear from
the technology involved and from the purpose of the package or subsystem. For
instance, the design effort for the TimecardDomain and Timecard Workflow
packages will undoubtedly have a most noticeable effect on performance, asit
controls persistence and the flow of data. On the other hand, the design efforts
for the Html Production framework and the TimecardU! package wil] have a
grester effect on extensibility, sinceuser interfaces are notoriously vulnerableto
requirements changes.

2. Review prior steps. Previous steps created an analysis model, selected tech-
nologies, and established structural constraints for the design of the Timecard
system. Each design effort must review, then follow theseinputsand constraints.
Theanalysismodel describes the problem from the devel oper's perspective. As
such, it is the best resource when designing packages and subsystems. In many
cases, the responsibilities of aclass or package can be directly extrapolated from
the responsibilities of analysis classes.

Designtogoals. Insome cases, the high-level designisalmost completely deter-
mined by thetechnology. For instance, Enterprise JavaBeansdevel opment com-
pletely determines much of your design. Decisions must be made for each use
case to meet goals, but there are no sweeping design decisionsleft to the devel-
oper. In other cases, it isup to the devel opers to design the package or subsystem
tomeet thegoals. Design patterns may serveasavaluableresourcein thishighly
creativeanditerativeprocess.

Apply design to use cases. Applying the high-level designto the use casesvali-
dates and invariably improves the design. In this process, the high-level design
developed in the previous step is applied to each use case in turn, until the
designisfully fleshed out and al the applicable use cases are met or the design

w

»

Design Efforts for the Timecard Application

The Timecard application seemsto naturally break into four design efforts:
« TimecardDomain and Timecard Workflow packages
« HtmlProduction framework
« TimecardUI package
« BillingSysteminterface subsystem

248 Enterprise Java with UML

The TimecardDomain and TimecardWorkflow packages should be designed to-
gether, because they are so dosdy related. They depend on the same technologies, and
are very tightly coupled.

The HtmlProduction framework should be designed as a separate package from the
TimecardUlI. ftis the only package that produces the actual HTML for the system. The
TimecardUI package clearly usesit and should drive its development, but the Html-
Production framework should be able to evolve independently. One approach is to
build aminimum set of functionality for the HtmlProduction framework before start-
ing the design and implementation of the TimecardU| package. With this minimum
functionality established, the HtmlIProduction can grow in sophistication while the

TimecardUl is designed and implemented.
The BillingSysteminterface subsystem is a natural independent design activity.

Since the rest of the system does not depend oniit, it can be developed concurrently or
deferred until development resources are available.

The Next Step

We have spent the last 10 chapters building up to this point, improving our under-
standing of the problem, selecting technology, and structuring the solution. Now it is
timeto use UML tobuild adesign model for the Timecard application.

Each of thefollowing chsptecs shows how UML can be used to design a package or
subsystem. The analysis model is used to determine each package's functionality and
interfaces with other packages. Well-defined goals are met by applying object-oriented
principles and design patterns. Findly, the design is evaluated for compliance with the
architecture and the overall goals of the system.

In Chapters 11 through 14, the design is used as a basis for actual Javacode. Thisis
intended to reinforce the basic principles and to show how modeling in UML simpli-

fies the coding process.

Design for the TimecardDornain
and TimecardWorkflow

Thedesign for the TimecardDornain and TimecardWorkfiow packagesbuildsheavily
on the analysismodel, technology selection, and architecture we developed in Chapter
5,"AnalysisModel for the Timecard Application,” Chapter 8, "Evaluating Candidate
Technologies for Control and Entity Classes” and Chapter 9, "Software Architecture.”
The analysis model in Chapter 5 showed how the boundary, control, and entity classes
collaborateto fulfill the system's requirements. Chapter 8 described Enterprise Java-
Beans and someof the decisionsthat must be made when devel oping with EjBs. Chap-
ter9constrai nedtherel ati onshi pshetweenpackages.

This chapter builds a sample design and implementation for the TimecardDornain
and TimecardWorkfiow packages. It follows the steps described in Chapter 10, “Intro-
duction to Design":

1. Identify godsand prioritiesfor the effort.
2. Review prior steps.

3. Designtogods.

4. Apply design to use cases.

Thefollowing sections apply each step to the Timecard Domain and TimecardWork-
fiow packages.

249

250 _ Enterprise lava with UML

Establish Coals for the Effort

Establishing goals up front makesit easier to make consistent decisionsduring design.
This is important, as design is al about making an endless series of decisions, gener-
ally under fairly strong schedule pressure.

The most important gods for the TimecardDomain and TimecardWorkflow pack-
ages are performance, reliability, and reuse potentia. Extensibility isless of apriority,
since the system is very well understood and has a narrow focus.

Performance and Reliability

Performance and reliability areimportant goals for the entire Timecard system. After
all, alot of people depend on a corporate Timecard system, and they do not have time
to wait.

The classes in the TimecardDomain package contribute greatly to the performance
and reliahility of the entire system. The classes that reside in the TimecardDomain
package are responsible for the availability and integrity of the timecard data itself.
Design decisions for the TimecardDomain package dramatically impact the time
required for data access and data updates. For instance, decisions on how the datais
represented in the database and how the data maps to entity beans greatly impact the
speed and efficiency of the EJB container asit services requests for data.

The classes of the Timecard Workflow package have a different but equally signifi-
cant impact on performance and reliability. The TimecardWorkflow classes contain
the methods that client objects use to get access to the data and services provided by
the TimecardDomain objects. The Workflow object may require the client object to
make severd requests, onelargerequest, or somevariation in between. Remember that
the Client and TimecardWorkflow classes are invariably in separate virtual machines
and are often on separate hosts. This makes the efficiency of the data flow very impor-
tant, since even a fast network is far dower than the host's internal data bus, and the
data must be serialized and deserialized at every turn.

Reuse

Reuse is another important goa for the TimecardDomain and TimecardWorkflow
packages. To reach this goal, each entity bean in the TimecardDomain package should
beuseful in awide variety of workflowswithin the Timecard application, and most of
the session beans in the TimecardWorkflow package should be able to support new
user interface classes as new views of the system evolve.

Extensibility

While extensibility isless of a priority, experience indicates that there are no static sys-
tems. Extensibility is improved by encapsulating potential variability and by keeping
the classes small and narrowly focused.

Design for the TitnecardDomain and TimecardWorkflow 251

Now that we have established some goals, we must review the prior decisions that
affect the design effort.

Review Prior Steps

Severa prior stepsdrive design. The analysis model describes exactly what the system
will do, from a developer's perspective. The architecture describes the structural and
technology decisions that constrain the design. In this section, we review the analysis
model and the architectural decisions.

Review of the Analysis Model

Our first task requires us to work through each analysis diagram, first to refresh our
understanding of the sequence of interactions between the objects and then to identify
any important characteristics. We'll consider the Login, Record Time, and Export Time
Entries use cases.

The Login Use Case

The Login use case contains several flows. First, there is the normal flow in which
everything proceeds according to plan. Next there are alternate flows for invalid pass-
words and unknown users.

Normal Flow for Login (Analysis)

The actor asks the boundary EmployeeloginUI object to display the login form, as
shown in Figure 111 The actor then fills in username and password and submits them
to the system. The Employeel_oginUI object asks the control LoginWorkflow object to
validate the login. In order to satisfy this request, the Login Workflow object asks the
UserLocator object to find the User object that corresponds to the name. Once the
LoginWorkflow object gets the correct User object, it asks it to validate the password.
Once the LoginWorkflow object receives a response, it passes it back to the Employ-
eeloginUl object. When the EmployeeloginUl object receives the valid response, it
displays a welcome message and the flow is complete.

The only object in this sequence that is outside of our current design effort is
Employeel oginUl. There s only one request from the Employeel_oginU! object to the
LoginWorkflow object, validatelL ogin. This request includes very smple data and
receives a simple yes/no response.

Alternate Flow for Invalid Password (Analysis)
The sequencefor aninvalid password proceeds exactly asinthenormal flow, until the
User object responds with INVALID to the vaidatel ogin method. This response is
propagated up to the EmployeeloginUl, which must display an invalid password
message to the actor. Figure 112 shows this sequence.

252 Enterprise Java with UML

trol tity
: EmployeeloginUl : Logis : User

T

i

i

1

|

A 1

i

_ EmployeeActor 1

i . i

displayLoginForm() I

| submitNameAndPassword() |‘
—_— Ty

i

i

validateLogin()
i

findByName()

|
! G2 EEE AUSER BIMECHL Sead s 0t

!
!
|
|

\ ' |

E> displayWelcome() i

i |

; |

! !

| |

' |

! |

g !

] !

1
1
|
1
1
1
I

Figure 11.1 Sequence diagram for the normal flow for Login (analysis).

Thissequenceisincredibly similar to the normal flow. Within the Timecard Domain
and TimecardWorkflow packages, thereis no difference in what is done, only in the
response values, so we will not need to develop a separate design sequence diagram
for thisflow of events.

Alternate Flow for Unknown User (Analysis)
The sequence for an unknown user proceeds exactly as in the normal flow, until the
UserLocator responds with a NULL when asked to locate the User object by name.
Obvioudly, the LoginWorkflow cannot ask an unknown User object to validate the
password, o it returnsINVALID to the EmployeeloginUI object. Asin the sequence
for the invalid password, the EmployeeloginUI calls its own displayErrorMessage
method. Figure 11.3 shows this sequence.

Again, the sequenceisincredibly similar to the normal flow. However, it does high-
light thereaction of the L oginWorkflow object when the User object cannot belocated.
Itisnot an error or exception case, but rather areasonable outcome.

Design tor the TimecardDomain and TimecardWorkflow 253

<<lifecycle>>
: Userlocator
.
T
i
i : :
\ i |
[EmployeeActor | i i
i i | i
displayloginForm) | 1 i
i
submitNameAndPassword() | ! i
el s {
i | validateLogin() i !
| |)
: : i findByName() 3
i |)
| ! 2 USER OBJECT :
i et ANl e o e 1
; ! validateLoginQ | i
hgdvelidaisiogmo -)
| i d i
i i 1 I
| ; o INVALD _ _ | ;
| i i
INVALID
i DR ST | |
1 1 I I
Il ! i I
I 3\> displayErrorMessage() } !
| — | i
i |
; ;
i

1 1
1 |
I |
I i

Figure 11.2 Sequence diagram for invalid password (analysis).

Participating Classes (Analysis)

The user interface objects use LoginWorkflow objectsto validate the user'slogin data.
The resulting relationship needs to be an association, so that the user interface objects
can reuse the same LoginWorkflow object for login retries.

The LoginWorkflow object finds and uses a User object, but does not need to
remember it for future use. So, the resulting relationship is a dependency. The Login-
Workflow object uses a UserLocator object, and does keep it for future use, so the
resulting relationship is an association. These relationships are shown in Figure 114,

The Record Time Use Case

The Record Time use case contains two flows of events. Firs, thereis the normal flow
in which everything proceeds according to plan. Next there is an alternate flow for
Submit Timecard.

254 Enterprise Java with UML

—r <<boundary>> <<control>> <<lifecycle>>
| i : Logi : Userl ocator
/‘ T T T
1 i i
i i
7 ‘
75\ |
: EmployeeActor i

|

|

|

|

i

| displayloginForm() !
B e Ml WA

|

submitNameAndPassword () }
e

|

|

validateLogin()

1
findByName()

’
!

!

!

!

!

!

:

!

!

!

i

|

!

} 1
! D displayErrorMessage()
] h
! |
| '
! '
! ;
| i
| !
' ;
' !
: !
i |
i i
i i

Figure 11.3 Sequence diagram for unknown user (analysis).

Normal Flow (Analysis)

The normal flow for the Record Time use case begins when the actor requests the cur-
rent entries. The RecordTimeU| object calls the RecordTimeWorkflow object's getEn-
triesmethod, which magically has areference to the correct User object. Given the User
object, the RecordTimeWorkflow object asks it for its current Timecard object. The
RecordTimeWorkflow object can then ask the Timecard object for itsentriesand return
them to the RecordTimeUl. After the Employee actor updates the time entries, the
RecordTimeUI object uses the updateEntries method on the RecordTimeWorkflow to
propagatethe changes to the system. The RecordTimeWorkflow object calls the setEn-
tries method on the previously stored reference to the Timecard object. These interac-
tions are shown in Figure 115

Submit Timecard (Analysis)
The Submit Timecard flow of events describes how the actor marks his or her current
timecard as submitted and gets a new current timecard. Once the actor decidesto sub-

Design lor the TimefardDilnnin_and linmardWorkflow 255

<<boundary>> <<boundary>>
ini: iveLoginUl EmployeeLoginUl
+displayLoginForm() +displayLoginForm()
+displayWelcome() +displayWelcome()
i d rd0 i 0
<<control>>

LoginWorkflow

+validateLogin()|

7z
#
s
e
<<entity>> <<entity>>
User UserLocator
-pasfwcrd s +findByName()
+validateLogin()

Figure 11.4 Participating classes for the Login use case (analysis).

mithisor her current tiinecard, the RecordTimeU| object call sthe submit method onits
RecordTimeWorkflow object, which knows the User and the Timecard objects. The
RecordTimeWorkflow creates anew Timecard object and setsit as the current Time-
card object for theuser. The old Timecard object still exists, butitisnot acurrent Time-
card, so it cannot be edited by the user. These interactions are shownin Figure 116.

Participating Classes (Analysis)

Each method in the sequence diagrams requires some sort of rel ati onship between the
object calling themethod and the object that containsthe method. Each RecordTimeUl
object is associated with an undetermined number of RecordTimeWorkflow objects.
The undetermined multiplicity indicates that during analysis we did not know
whether RecordTimeU| objectswoul dhavededicated RecordTimeWorkflow objectsor
would share them. Each RecordTimeWorkflow object is associated with the User and
Timecard objects. Theserelationshipsare shownin Figure 11.7.

The Export Time Entries Use Case

The Export Time Entries use case containsasingleflow of events, thenormal flow.

156 Enterprise Java with UML

<<boundary>> <<control>> <<entity>> <<entity>>
_:RecordTimeUl | | : RecordTimeWorkflow s User ~Timecard

i | i |
I I I I
I i I I
i I I i
i I I i
loyeeActor ! ! ! :
1 I I 1
I 1 I I 1
| displayEntries() | | i i
RS e . | | I 1
i ‘: getEntries() f { |
1 I
! ! IgetCurrentTimecard() ! !
I I I 1 1
! ! ! getEntries() o
1} I ! 1 1
j i ic— - _ENTRYOBJECTS _ - |
; I I
; ENTRY OBJECTS _ | ! :
1 I ! I I
1 I I I 1
1 I I I
! D displayEntries() ; |
I I ll 1
| updateEntries() | | . i
= | I !
updateEntries() | ! |
1 I
setEntries() :

]

1

I

1

i

I

I

I
1
T
|
I
|
1
I
I
|
|
|

|
|
I
I
|
|
I
1
|
I
|
|

Figure 11.5 Sequence diagram for the normal flow of Record Time (analysis).

Normal Flow (Analysis)

Thenormal flow for the Export Time Entries use case begins when the ExportEntriesU|
object builds the display by asking the ClientLocator for alist of clients and the User-
Locator for alist of employees. The administrative user selects various criteriaand sub-
mits the request. The ExportEntriesUl object calls the exportForCriteriamethod on the
ExportTimeEntriesworkflow object, which uses the Entry Locator's findForCriteria
method to get alist of time entries that match the criteria. The details for each entry are
extracted from each entry object and written to a file for export. This sequenceis shown
in Figure 118

Desian for the TimecardDomain and TimecardWorHlow 257

<<boundary>:| <<control>> <<entity>> <<entity>>
: RecordTimeUl : RecordTimeWorkflow - User : Timecard
: EmployeeActor } }]
i submit() i i :
: submit() i !
P 1
i
i
i

t :
setCurrentTimecard()
I

P a0 PN

i
1
i
i
I
i
i
i
i

create() !
T
i
i
I
i
i
i
1
1
1
1
1
1
1
I

1
|
|
1 |
1 1
1 1
1 |
| |
1 |
1 I
1 1
1 |
1 I
I I
1 1
I I
I I
I i
I |
I I
1 |

1
1
|
|
1
i
I
|
1
I
I
I

Figure 11.6 Sequence diagram for the submit Timecafd (low of events (analysis).

Participating Classes (Analysis)
Each method call in the sequence diagram requires a dependency or association in the
participating classes diagram. A fairly mechanical process yields the relationships, as
shown in Figure 11.9.

The ExportEntriesUl does directly depend on the ClientLocator and the UserLoca-
tor; this dependency violates the structural constraints defined by the architecture.
This must be remedied during design.

Review Architectural Constraints

For the Timecard application example, the server-side entity and control classes are
implemented in Enterprise JavaBeans. The Timecard Workflow package, which con-
tainsthe control classes, depends on EJB session beans. The TimecardDomain package,
which containstheentity classes, dependson EJB entity beans.

Thearchitecturea so precludesclassesin theTimecardU| packagefrom having direct
relationshipswith classesin the TimecardDomain package. Instead, they must delegate
any requests for information or services to a control class in the TirnecardWorkflow.
Thisis shown in the lack of a dependency from the TimecardUI directly to the Time-
cardDomain. Figure 1110 showsthese dependency rel ationshipsin apackage diagram.

258 Enterprise Java with UML

<<boundary>> <<boundary>>
RecordTimeUl RecordTimeAdministrativeUl
+displayEntries() +displayEntries()
-+updateEntries() +updateEntries()
+submit() +submit()
<<control>>
+getEntries()
+updateEntries()
+submit()
7 . <<entity>>
<<entity>> <<entity>>
User i & d Eutyy
-username -timePeriod .
+getCurrentTimecard()| +setEntrie58 teetChargeCode()
+setCurrentTimecard() +create() +getDay()
+validateLogin() tgettlours()
+getUser()

Figure 11.7 Participating classes for the Record Time use case (analysis).

m If you are not familiar with Enterprise Java Beans, review the
technology description for EJB in Chapter 8.

Design for Goals

Enterprise JavaBeans constrains the devel oper to afairly small number of decisions. In
this section, we discuss some of the design decisions that are important in EJB devel-
opment. In the next section, "Apply Design for Each Use Case" we will make these
decisions for each bean involved in the use case.

Every technology forces the developer to make certain design decisions in order to
meet hisor her goals. EJB isno exception. It forcesyou to:

1. Choose between stateful or stateless for each session bean.

2. Choose between container-managed or bean-managed persistence for each
entity bean.

Design for the TimecardDomain and TimecardWorkflow 259

<difecyde>>
+Userocator

<lfecydle>>
Ciientlocator

>
m—l Entry

4% °
| RN e i i it v || TR AR, 4 -Zl-of-glot--f---me- -
I
V4 g = i
,wﬁ
H

displayEmployees()

F <<controb>>

exportForCriteria)

=
§> dislaysucess)

<omia>
<:>

displayCreria)
enterDateRange()
seledEmployees()

enterOutputFile(
submitRequest()

!
h
|
i
H
i
0
|
|
|
i
i
i
i
i
I
i
i
i
i
h
i
|
i
i
|
|
|
|
i
|
|
|
|
i
i
i

Figure 11,8 Sequence diagram for the normal flow of Export Time Entries use case.

260 Enterprise Java with UML

<boundary>>
ExportEntriesUl

[rdisplayCriteria()

|+enterDateRange()
|+displayClients()
|+selectClients()

|+displayEmployees()
|+selectEmpioyees(i
|+displayFileSelctor() B
|+submitkequest(D [Sifeydess
[islaysucess) |ClientLocator
H L]
& [FndAT)
contrab>
[ExportTimeEntriesWorkflow
FexportForCiteria) mEpstemintariace
[twriteFleQ o
= T = [FwiterileForExportQ
. 1 N
/ 1 N
i | N
A Vv N
& <<entity>> Y
ecyde>> B Zenti>>
EntryLocator day [ExportRequest
hoursWorked Eiine
[FindrorCriteriag)] pclirgaCodag) targetfile
etDay)
|+getHours()
|+getuser)

Figure 11.9 Participating classes for the Export Time Entries use case.

Stateless or Stateful Session Beans

Recall from Chapter 8 that stateless session beans do not hold any conversational state
from request to request. Thismakes them very efficient, but decreasestheir usefulness
for session beans that must moderate a series of requests from the same client object.

conversationa state with the client object, since it can remember information from pre-
vious requests that were made by the client object. This alowsit to accumulate infor-
mation for a consolidated transaction, such as a shopping cart, or remember previous
results soit does not need to rebuild them.

For each session bean, the sequence diagrams reveal the pattern of requests from the
client object to the session bean. If the session bean holds information from request to
request, it is best modeled as a stateful sesson bean. Otherwise, the default choice
should be stateless, since stateless session beans are much more efficient and place less
of aburden on the bean container.

Container-Managed or Bean-Managed Persistence

Each entity bean has data that must be persisted to the database. Container-managed
persistence allows the developer to isolate the persistence information in the deploy-

Design for the TimecardDomain and TimecardWorkfiow 261

TimecardU!

HTMLProduction

Servlets

\
TimecardWorkflow <<lInterface>>
_J-——>]| milingsysteminterface

EJB Session
Beans

<<subsystem>>
BillingSysteminterface

TimecardDomain

XML

EIB Entity
Beans

e 1110 Architectural decisions and constraints.

rnent descriptor. This alows the developer or deployer to specify the object-to-rela-
tional mapping and the transaction boundaries in a very concise form, without modi-
fyingany code. Thisisthedefault choice.

Bean-managed persistence forces you to write database access and transaction man-
agement code directly in theentity beans. However, it also provides unlimited flexibil-
ity. The most common reason to use bean-managed persistence is to achieve a tricky

262 Enterprise Java with UML

object-to-relational mappingthat isnot supported by the deployment tool. Thisisless
preferable, but till fairly common.

Apply Design for Each Use Case

Remember, adesign model isonestep away fromimplementation. So, weneed to care-
fully build a model that applies all of these decisions to dl of the use cases in the
requirements model. This model will provide a solid foundation for a clean and con-
sistent implementation. Asin analysis, the domain mode! includes sequence diagrams
and a view of the participating classes for each use case. Unlike anaysis, the design
model is extremely detailed and thorough. Each return type and parameter must be
shown. Each object must be created or retrieved beforeit is used. Significant mysteries
and ambiguity in the design model lead to problems and poor solutions during imple-
mentation.
I'n designing an EJB-based solution for each use case, we follow these steps:
1. Consider each of the key design decisions for EJB development, as well as the
goasfor the package.
2. Build sequence diagrams for the normal and alternate flow of events as identi-
fied in the use case model.
3. Buildaclass diagram that showsall of the classesthat participatein the use case.

Well follow these steps for the Login, Record Time, and Export Time Entries use
casesin the Timecard application.

Design for the Login Use Case

We are finaly ready to start our design based on the first use case, Login. Let's walk
through each of the steps.

Key Design Decisions for Login
We need to make two key design decisionsfor the Login use case.

« Isthe LoginWorkflow object a stateless session bean or a stateful session bean?

« Is there any indication that bean-managed persistence is required for the User
entity bean?

Thereis no indication in the sequence diagrams that the LoginWorkflow needs any
data from or about previous attempts. A quick glance at the system's requirements
reveals that there is no limit on the number of login attempts, so there is no need for a
counter of login attempts. For performance reasons, we use stateless session beans by
default. Thereisno reason not tofollow that rule of thumb in this case.

The data for each User entity bean consists of a username and a password.
Both fieldsare strings. Thereis no indication for bean-managed persistence, sincethe
data is incredibly simple and the database schema is controlled by the development

Design for the TimecardDomain and TimecardWorkflow

Create Sequence Diagrams and Participating
Classes for Login Use Case

Now that we have refreshed our memory of the analysis model and made some design
decisionsbased on the architecture and on the analysis model, it istime to do the actual
design for the Login use case. Wewill create sequence diagrams for the normal flow
and for the dternate flow for an unknown user. Working from the analysis sequence
diagram, we can simply apply the technology selections to each object. The messages
arebasically the same, just with more details.

Normal Flow

In thefirst part of the sequence diagram, shown in Figure 1111, the login servlet asks
the LoginWorkflow session bean to validate the user. The Login Workflow session bean
calls the findByUsername method on the UserHome, which returns a remote reference
to the appropriate User entity bean. The LoginWorkflow calls the isPasswordvdid
method on the User entity bean and returns the result.

Notice that this diagram does not attempt to show any behavior within the user
interface object. For this design effort, we are mostly concerned with the interactions
with the objectsfrom the LoginWorkflow and LoginDomain packages.

Our earlier decision to make the LoginWorkflow a stateless session bean is validated
by this sequence. There is no need for the LoginWorkflow to keep any information
between method cdls. It receives both the username and the password each time, and
it uses the UserHome to find the right User entity bean each time.

m The Java Naming and Directory Interface (JNDI) lookups of the
LoginWorkflow and the UserHome are not shown. This seems appropriate, as
they are so incredibly repetitious and common.

Alternate Flow for Unknown User
Similar to the normal flow, the login serviet in the aternate flow asks the LoginWork-
flow session bean to validate the user. The LoginWorkflow session bean callsthe find-
ByUsername method on the UserHome. Since the User object does not exist in the
system, the UserHome returns a null reference. The LoginWorkflow session bean
returns false, as the user's login information is clearly not valid. Figure 1112 shows
thissequence.

This sequence is very similar to the normal flow. Other than some interna logic
within the LoginWorkflow session bean, thereisno new information here.

Participating Classes
The validateL ogin message from the LoginServiet to the LoginWorkflow requires a
dependency relationship between the LoginServlet class and the LoginWorkflow class.
The other messages in the sequence diagram lead to the dependency relationships
shown in Figure 1113 Noticethat none of the objects retains any information between
messages, so al | of the relationships are dependencies.

Itisalwayswiseto verify that none of the relationships between the classesviolates
the structural decisions that were made during architecture. In this case, you can see

263

<<serlet>> <<SessionRemote>> <<EntityHome>>

<<EntityRemote>>

: LoginServlet : LoginWorkflow _ UserHome < User
: Em ree

| | | 1 1
|_1.enter and password | I I 1
1.1. validatel Bl |)
1.1.1. findByUsername(name) ! ;
|
USER REF |
S e e |
‘ I
I
1 1
11 asswordValid(passwor d) -

1

I

Bl e e g R
TRUE
LA e R IREE L Bl AR L

i 1
| 1
| 1
| 1
| |
1 1

& Figure 11.11 Sequence diagram for normal flow.
»

9T

<<SessionRemote>> <<EntityHome>>

/ <<senlet>>
- LoginServiet : LoginWorkflow : UserHome

: Employee

'LL enter username and password { :
1.1. validateLogin(uname, password) ,‘

I
|
I
i
|

Figure 11.12 Sequence diagram for unknown user.

266 Enterprise Java with UML

<<serviet>>
LoginServlet

(from TimecardUI)

5
|
|
|
|

<<SessionRemote>>
LoginWorkflow
(from TimecardWorkflow)

+ validateLogin()

/
S
%
/
e
<<EntityHome>> <<EntityRemote>>
UserHome User

(from TimecardDomain)

(from TimecardDomain)

+ findByUsername()

+ isPasswordValid(password : String) : boolean

Figure 11.13 Participating classes for the Login use case.

that the dependencies exactly match the package dependencies specified in architec-
ture. The user interface class depends on the Workflow class, which in turn depends on
the user entity bean dlasses, which resides in the TimecardDomain package.

Now that we have afairly complete design for the Login use case, the next sep isto
design the Record Time use case.

Design for the Record Time Use Case

To design the Record Time use case, we follow the same steps as those used for the
Login use case design. First we consider the key design decisions, then create sequence

Design for the Timecardpontain and TimecanWorfcflOH 267

Key Design Decisions for Record Time

We need to makethreekey design decisionsfor the Record Time use case:

« Isthe RecordTimeWorkflow object a stateless session bean or a stateful sesson
bean?

« How shouJd data be returned from the session beansto the Ul: asremote refer-
ences or smple data?

* How should the persistent data be stored and mapped to entity beans?

Stateless or Stateful Session Bean?

Intheanalysismodel, theRecordTL meWorkflow object appearstohold areferenceto
the Timecard object. If we carry this approach over to design, the RecordTimeWork-
flow sesson bean must keep a reference to the Timecard entity bean, which means that
it must bea grateful sesson bean.

Holding a reference to the Timecard entity bean would save the RecordTimeWork-
flow fromhaving to find the right User entity bean each timeit needs to get the current
Timecard bean. It amost certainly makes senseto avoid the extra database access and
makeRecordTimeWorkflow astateful sessonbean.

Remote References or Simple Data?

RecordTimeWorkflow objects alow RecordTimeUl objects to obtain a lot of informa-
tion about the current Timecard object. There are two fundamental ways that this goa
can be accomplished. Firgt, the Record Time Workflow object can return remote refer-
encesto any entity beansthat the RecordTimeUl needs, alternatively, theRecordTime-
Workflow canreturnsimpledata.

Returning remote references allows the receiving object a lot of flexibility, becauseit
can call any availablemethod on the remote reference. For timecard data, this sort of
flexibility seemsexcessive. The RecordTimeUl hasvery narrow needs. Also, allowing
the RecordTimeU| object to have direct aocess to an entity bean violates the structural
congtraints established during architecture, as it introduces a direct dependency
between the TimecardU! package and the Timecard Domain package.

IEITE 1n E3B development, itis usually better to have the session beans retum
simple data or a collection of simple data. The client already has a remote
reference to the session bean, and every remote reference introduces overhead
on both the ciient and, more importantly, on the server.

Persistent Data and Design Implications
Intheanalysismodel, each Timecard object contains many TimeEntry objects, onefor
each date/charge code combination. Thisis areasonable way to express the relation-
ship between hours, charge codes, and dates for an employee in the analysis model.
However, it may not be aprudent design strategy.

A separate TimeEntry entity bean for each employee, charge code, and date combi-
nation can lead to an explosion of entity beans. Consider a typical employee, with four

268 _ Enterprise lava with UML

charge codes in each seven-day timecard. That employee's timecard is associated with
28 TimeEntry beans. As the system scales, to, say, 1,000 employeesupdating their time-
cards each hour on Friday morning, the application server must load 1,000 employee
entity beans, 28,000 TimeEntry entity beans, and many charge code entity beans. Cur-
rent experience with EJB systems indicates that creating tens of thousands of fine-
grained entity beanshasan adverse affect on performanceand scal ability. Eachtimean
entity bean is loaded, a record must be read from the database, and a pooled object
must beinitiaized with the data. This takes time, and forces the container to do more
work tracking the objects and maintaining apool of available entity objects.

What is the alternative? We need a way to hold charge codes, hours, and dates for
each Timecard entity bean, without requiring a separate entity bean for each combina
tion. Let's consider each type of datain turn.

Charge codes. We cannot store the timecard ID in each charge code, since each
charge code is used by many timecards. Using a lookup table in the database is
appealing but makes container-managed persstence (CMP) intractable. Since we
really want CMP, we need to store dl of the charge codes for atimecard inasin-
gle field. The solution is to seridlize the charge code IDs into a string. Is this a
kludge or is this an application of the classic maxim "keep it simple? "

On the one hand, the database no longer meets the criteria for first normal
form; asasinglerow, column intersection isused to store multiple values. Data-
base administrators throughout the organization may cringe, mock, then attack.
They will rightly claim that we have ruined the reporting capabilities of the data-
base, as the combined field is useless for queries. However, if the database isa
subordinate tool for the application server, thismay be irrelevant.

If breaking normalization is too high a price to pay, we can use bean-man-
aged persistence (BMP) for the Timecard entity bean. This alows us to have a
TimeEntry tablewith timecard ID, dateindex, charge code, and hoursin the data-
base. Each Timecard entity bean builds itsdlf by reading entries from the table,
and stores itself by writing entries to the table.

Hours. Each Timecard entity bean must aso hold a list of hours, one for each com-
bination of charge codes and day. Again, in order to use CMP, we need to storeall
of the hoursin asingle field. If we broke the database schema for charge codes,
we can certainly store an ordered list of floats in a string field. Otherwise, the
Timecard entity bean must use bean-managed persistence.

Again, the choice is the same: CMP provides convenience but reduces the
flexibility of the database. BMP maintains the flexibility of the database, but
requires the devel opers to write their own database access and transaction man-
agement code in the bean implementation.

Dates. Since we need only days, not hours or minutes, it is efficient to store the day
of theyear and the year for the start of thetimecard. Also, we might want to store
the length of the rime period in days, in case the customer ever decides to move
away from a standard seven-day time period.

There are three choices for persisting Timecard entity beans:

Use many fine-grained TimeEntry entity beans. This alows us to use CMP and
keep the databaseinfirst normal form. However, it undoubtedly impactsthe sedl-

Design for the TimecardDomain and Til orkflow

269

ahility of the system, since the system will require approximately 28 timecard
entries per employee per week.

Normalizethedatabaseand useBM Ptokeep all of thedatafor atimecard within
the Timecard entity bean. Keep the persistent data in well-normaized tables
with aseparate row for eechtimeentry. BMPallowsustowritethe SQL tojointhe
timecard and time entry datato build the consolidated Timecard entity bean. This
is abit harder to implement, but makes the database more useful for reporting
and enables flexible queries against the time entry data.

Keep thedatafor atimecard withinthe Timecard entity bean. Keep the persistent
data in one table that stores al of the hoursin asingle field and al of the charge
codes in another field. Thisviolation of first normal form alows us to use CMP,
but it also reduces the database to a simple data store. Generating reports from
the database becomes very painful. For example, if we want a list of all time
entries for a particular client, we would have to extract the charge codes list out
of every timecard and parse for the client.

Since we desire the convenience of CMP, and there is no requirement for extra
reporting, there is no reason not to use the third option.

Create Sequence Diagrams and Participating
Classes for Record Time Use Case

Now that we have refreshed our memory of the analysis model, and made some
design decisions based on the architecture and on the analysis model, it is time to do
the actud design for the Record Time use case We will create sequence diagrams for
thenormal flow and the Submit Timecard alternate flow.

Normal Flow

The normal flow begins when the actor requests the current entries. The RecordTime-
Servlet asks the RecordTimeWorkflow's home interface for a remote reference to a
RecordTimeWorkflow session bean. The RecordTimeServlet can then ask the Record-
TimeWorkflow session bean for the charge codes, dates, and hours that make up the
current timecard. Notice that the first request for information requires the Record-
TimeWorkflow to find the User object and ask for its current Timecard object. Subse-
quent requests use the references as held by RecordTimeWorkflow, which is a stateful
sesson bean.

The interaction between the RecordTimeWorkflow session bean and the Timecard
entity bean is quite straightforward. Each time the RecordTimeWorkflow receives a
request for information, it passes the request on to the Timecard entity bean, and
returns the result. Each time the RecordTimeWorkflow receives an update command,
it passesit along to the Timecard entity bean. Figure 1114 shows this sequence.

Submit Timecard

The Submit Timecard flow begins when the actor sends the submit command to the
servlet. The RecordTimeServiet asks the RecordTimeWorkflow session bean to submit
thetimecard. Noinformation is passed aspart of thisrequest. The RecordTimeWorkflow

L === E=EE

| 1-dsplyenties() i

1.
L

1.2 getChajgeCodes() o
T " Sl s —
i U
1 12:2. getCumentTimecard()

123. getChageCodes()

1.3. gefDates()

131, getDates()

14, getHours()

£

. ghtHours()

| 2. updateEntries()

2.1.1. addChargeCodefcient, project, name)

ﬁﬂ_k 221, sethours(hours)

I |

PIEEENY SN St S g 3 N

I U

N
s Figure 11.14 Sequence diagram for normal flow.

% <csenlet>

Employee

I

Design for the TimecardDomain and Til ow

271

session bean uses a previously established reference to the User object to ask it to sub-
mit the current timecard. The User object uses the Timecard entity bean's home inter-
face to create anew Timecard. It keeps this as the new current timecard. Figure 1115

Participating Classes
As always, each message in the sequence diagram requires a relationship in the class
diagram. Notice that the structural constraints established in architecture have been
met, as the classes in the TimecardU! package depend on classes in the Timecard-
Workflow package, which depend on classes in the TimecardDomain package. These
exactly match the structural constraints that were introduced in architecture. Figure
1116 shows the participating classes and their relationships.

Now that we have a fairly complete design for the Record Time use case, we turn
our attention to the Export Time Entries use case.

Design for the Export Time Entries

Use Case

To design the Record Time use case, we follow the same steps as used for the Login use
case design. First we consider the key design decisions, then create sequence diagrams
and aclassdiagram.

: User ‘ TimecardHome|

1. submit() : I I

1.1. submit ! | }
I |
I |
I} |

1.L1. submitTimecard(}

1.1.1.1. create(username), |

| '74—?
|

i

Figure 11.15 Sequence diagram for Submit Timecard flow.

272 Enterprise Java with UML

<<EntityHome>>
UserHorme
(from TimecardDomain)

e et e
+ findByUserame(name : String)

<<SessionHame>>
RecordTimeWorkflowHome
(from TimecardWorkflow)

+ create(usemame : Sting)

<<SessionRemote>>
RecordTimeWorkflow
(from Timecardworkflow)

<<servlet>>
RecordTimeServiet
(from Timecardur)

+ getChargeCodes() : Enumeration
+ getDates() : Enumeration

+ getHours() : Enumeration
+addChargeCode(clent : String, project : String, name : String) : voi
+ setHours(hours : Enumeration)

+ submit()

+ displayEntries)
+ updateEntries()

<<EntityRemote>>
Timecard
(from TimecardDomain)

<<EntityRemote>>

ser
(from TimecardDornain)

+ getChargeCodes() : Enumeration

+ getDates() : Enumeration
+getHours() : Enumeration

+ addChargeCode(client : Strng, project String, name : String) : void

+isPasswordVelid(password String) : boolean
+ getCurrentTimecard() : Timecarc
+ submitTimecard()

s Bt

|
1
1
I
i
1
1

Y
<<EntityHome>>
TimecardHome
(from TimesardBomain)

+ create(usemame : Strng) : Timecard
+ findByPrimanyKey(key : String) : Timecard

Figure 1116 Participating classes for the Record Time use case.

Design for the TimecardDomain and TimetardWorktlow 273

Key Design Decisions for Export Time Entries

Only one key design decision remains: whether to use a stateless or a stateful session
bean. The design for the other use cases has determined the design for all of the entity
beans.

Stateless or Stateful Session Bean?
Thereisno indication in the sequence diagrams that the ExportTimeEntriesWorkflow
needs any data from or about previous attempts. In fact, we expect export requests to
be few and far between compared to other system functionality.

For performance reasons, we use stateless session beans by default. Thereis no rea-
son not to follow that rule of thumb in this case.

Create Sequence Diagrams and Participating
Classes for Export Time Entries Use Case

Thereis onjy one significant flow of events, the normal flow.

Normal Flow
In the normal flow, the ExportTimeEntriesServiet retrieves lists of users and clients
from the ExporrTimeEntriesWorkflow, which uses their respective home interfaces to
actually find therelevant entity beans. The serviet usesthe criteria entered by the user
tobuildan ExportCriteriaobject, whichit sendstothe ExportTimeEntriesWorkflow as
an argument to the exportForCriteria method.

TheExportTimeEnrriesWorkflow isresponsiblefor all interactionswiththe Billing-
Systerninterface. Each candidatetimeentry issent tothe BillingSysteminterface, which
isresponsible for using or rejecting the record. Figure 1117 shows this sequence.

Participating Classes

Each ExportTimeEntriesServlet object depends on a ExportTimeEntries Workflow
object and an ExportCriteria object, because it crestes a ExportCriteria object and
passes it dong to the ExportTimeEntriesWorkflow object when it calls the exportFor-
Criteria object.

Notice in the sequence diagram that the ExportTimeEntriesworkflow depends on
many entity beans, but does not keep any referencesto any of them. This indicatesthat
the ExportTimeEntriesWorkflow is perfectly acceptable as a stateless session bean, as
we planned. Figure 1118 shows the participating classes and their relationships.

This concludes the design for the Login, Record Time, and Export Time Entries use
cases. The next, and last step beforeimplementation isto evaluate our design.

Evaluate the Design

Now that we have completed the exhausting and exhaustive design for each use case,
we must eval uate the design against our goals and for compliance with the structural

~
~
B

% <senets> I d | g I L I
: : el bl Ko . et
Eplpyes. T
GisplayCriterin0 1.1, getClents(! ! {) :
L fnatg | ! ! ! i
B i SR | 1 |
i I
1.1.2. gethame) } |
1
I
1.2. getUsers() I 1 I
12 findally ! I 1
! 1 I
122, getName() [, 1 | |
|_|j 1 I
1
| 1
T | i
T 2. exportEnties) | | 2.1. addvalidClient(client)
! 22, addvalidujer(usen) [l RrepeaY as
| 23 setbhteRange(begin, dnd) 4] NEEDED

Figure 11.17

2.0, exportForCiiteria(crteria)

G
I
I
1
1

REPEAT AS
NEEDED

| 241 openexpprtFle(name, aitLF‘via)

T

|
2.42. fihdByUser(user)

4.3, getChargeCod

344 getbates)

A

245, getriours)

2456 pdd

a7,

data, diegthours)
I

Sequence diagram for normal flow.

P e 1= (=

S PRI A S AR P

Design for the TimecardDomain and TimecardWorhtlow 275

<<senlet>> ExportCriteria [<Etityremots>.
""""" + addvalidClient()
+ displayCriteia + setDateRange) P
+ exportEntries() + addValidUser() + getDates()
% + getHours()
% + addChargeCode() |

+setHours)

<<EntityHome>>
UserHome
(rom TimecardDomeain)

+ findByUsemame()
+findAllQ

1
1
1
I
I
1
I

<<SessionRemote>>
ExportTimeEntriesWorkflow
from TimecardWoriow)

<<lnterface>>
BillngSysteminterface |
(from Billngsysteminterface)

+ exportForCriteria()]

+ openExportFile()
+ addCandidateEntry()
+ closeExportfile()

+ getClients()
_ =7 +getuserso
<<EntityHome>> e o F i

ClientHome |~ & !
(o TimecardDoman) 5

+ create()
+findyld()
+findAllg

<<Enfityome> |
TimecardHome
(rom TimecardDomain)

<<EntityRemote>>
Client
(rom TimecardDomain)

(fom TimecardDomain)

¢ cmata() + getName()
+ findByPrimaryKey()

+findByUser()

= 3
+ getCurrentTimecard()
i 0

+
+ getName()

Figure 1118 Participating classes for the Export Time Entries use case.

constraints from architecture. Recall that the primary goals for this design effort are
reuse, performance, and reliability.

Performance and reliability. The design works toward our performance and relia-
bility goals by leveraging EJB's strengths and by staying away from its week-
nesses- Reviewing the sequence diagrams, we can seethat remote connections are
kept to @ minimum and that the data access emphasizes speed for the Record
Time use case, which isthe most demanding of the common use cases.

Reuse. We have achieved afairly high level of reuse within the system. The same
entity beans, such as Timecard, are used by several sesson beans. Examining
the methods for each bean, we can see that the methods are closely related and
fulfill a clear responsibility. Based on these observations, we can use formal
OO terminology and say that each bean is well encapsulated and has strong

276 _ Enterprise Java with UML

cohesion. Thus, there may be reuse opportunities with new systems within the
organization.

The participating class diagrams show that the design fits the structural constraints
in dmost every case. The ExportTimeEnrryServlet, from the TimecardU! package,
depends on the ExportCriteria, which residesin the Bill ingSy stem Interface package.
This requires an updated package dependency diagram, as shown in Figure 11,19, but
does not introduce any major issues, such as cyclical dependencies or tight coupling.

Finally, we are ready for implementation.

TimecardUl Servlets
| e
| R
| %
| %
i 5
HTMLProduction | \\
1 s
I S
ks
1
\% a2
TimecardWorkflow <<Interface>>

_______ > IBillingSysteminterface

Iy

T
I
g £ 0 :
|
EJB Session | :
Beans 1
| <<subsystem>>
i BillingSysteminterface
|
\
<
> 3
TimecardDomain N
XML
T
i
EJB Entity
Beans

Figure 11.19 Revised package dependencies diagram.

Design_tor the TimecardDomain and TimecardWorkflow 277

Implementation

Now that the design is complete, and we have evaluated it, we have a solid founda-
tion for implementation. We will make someimportant decisions during implementa-
tion, but we made most or al of the major structural decisions during andysis,
architecture, and design. For example, we know each significant class, its responsibili-
ties, and itsrelationships with other classes. We know how each entity bean holds data
and how the session beans package that data for consumption by the user interface
classes.

Theimplementation will be split into two parts. First, there are core classes, which
are directly derived from the design model. Each section will show the derivation and
code for the different parts of each bean. Second, described in the last section, are some
helper classes. These classes arenot in the design; they will be discovered as part of the
implementation process.

m All of the code for this book is included on the CD-ROM. The package
names in the book match the packages in the CD-ROM.

User Entity Bean

The User entity bean, like all entity beans, requires three files: aremote interface, a
homeinterface, and an implementation dass

User.java

User javaisthe remote interface for the User entity bean. It definesdl of the remotely
accessible business methods for the bean, as shown in Figure 11.20. This class consoli-
dates behavior discovered in the Record Time and Login use cases.

All methods in User java must throw RemoteException, since they are remotely
accessible. Each method returns either void or aprimitive. All of the data serialization
ruleswe considered for RM| apply for EJB, so having primitivereturnvaluesand para-
meters is desirable, to keep versioning simple.

<<EntityRemote>>
User

+ isPasswordValid(password : String) : boolean
+ getCurrentTimecard() : Timecard

+ submitTimecard()

+ getName() : String

Figure 11.20 Remote interface for the User entity bean.

278 Enterprise lava with UML

package com.wiley.compBooks .EJwithUML. TimeCardDomain;

import java.rmi.*;

import javax.ejb.*;

[

* The User bean holds descriptive information about

* a user.

* User is the remote interface through which clients access

* the underlying entity bean.

i

public interface User extends EJBObject

{

/** Bnswers the name of this User bean. */
public String getName() throws RemoteException;

/** Bnswers true if the entered password matches this User's
password. */

public boolean isPasswordValid(String entered) throws
RemoteException;

/** Bnswers true if the password should be changed. */
public boolean isPasswordChangeRequired() throws

RemoteException;

/** Sets the password of this User bean. */
public void setPassword(String password) throws
RemoteException;

/** Bnswers the current timecard of this User bean. */
public Timecard getCurrentTimecard() throws RemoteException;

/** Sets the current timecard. */
public void setCurrentTimecard(Timecard timecard) throws
RemoteException;

UserHome.java

UserHome javaisthe home interface for the User entity bean. It definesal of the meth-
ods needed to find, create, or destroy User entity beans, as shown in Figure 1121
Each of the methods in UserHomejava throws RemoteException and either Creste-
Exception or FinderException. RemoteExceptions are thrown for network, seridiza-
tion, or class cast exceptions. CreateExceptions and FinderExceptions indicate logic

errors or data errors in the implementation.

Design for the TimecardDomain and TimecardWorkflow

<<EntityHome>>
UserHome

+ findByUsername(name : String)
+ findAll() : Enumeration

Figure 11.21 Home interface for the User entity bean.

Initially, itisquite surprising to see the findByUsername method returning an Enu-
meration. After al, logically, there should be only one User entity bean for each user-
name. The Enterprise JavaBeans specification mandatesthat primary keysareunique.
Any other criteria for afind method could yield more than one entity bean. So, the
findByPrimaryK ey method is the only find method that is permitted to return asingle
remote reference. Itis up to the developers to verify that other criteria are unique when
creating entity beans and to extract the entity bean's reference from the Enumeration
returned by the find method.

package com.wiley.compBooks.EJwithUML.TimeCardDomain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

Jax
* The User bean holds descriptive information about an

* employee.

* UserHome is the remote interface through which clients £ind
* and create the underlying entity beans.

%

./

public interface UserHome extends EJBHome

{

/** Answers an Enumeration that contains references to
* User beans that match the username. Should be unique. */
public Enumeration findByUserName (String name) throws
Fi eption, ption;

/** Bnswers an Enumeration that contains references to all
* User beans. */
public Enumeration £indAll() throws FinderException
RemoteException;

/** Answers a reference to the User bean, if it exists.*/

279

280 Enterprise Java with UML

public User findByPrimaryKey(String userId) throws
FinderException, RemoteException;

/** Bnswers a reference to the newly created User bean.*/
public User create(String name, String password) throws
CreateException, RemoteException;

UserBean.java

UserBean.javaistheimplementation for the User entity bean. It providesimplementa-
tionsfor the methodsin the home and remote interfaces.

Asaside effect of using container-managed persistence, all persistent data must be
public. This is unnerving to developers who spend afair amount of time convincing
other devel opersthat public dataisvulnerableto corruption, due to concurrent access,
and that making an instance variable public diminates their ability to check valuesand
propagate changes. With EJB, however, thesevery valid argumentsare rendered irrel-
evant, asthe container is the only object that deals directly with the bean implementa-
tion. If you want the benefits of CMP, you must follow the specification and trust your
applicationserver.

IZITILTA Enterprise JavaBeans should never be reused outside of an EJB
contextWithoutthe context. Enterprise JavaBeans are noteventhread-safe, as
the data is public, and use of the synchronized keyword is precluded by the
specification.

The reference to the current Timecard entity bean is private. Thisis perfectly okay,
sinceitisnot persistent. Instead of keeping apersistent reference, the User bean holds
the primary key of the current Timecard entity bean and usesit to obtain areference on
demand.

package com.wiley.compBooks .EJwithUML. TimeCardDomain;

import com.wiley.compBooks.EJwithUML.BibUEil. *;
import java.util.*;

import java.rmi.
import javax.ejb.*;
import javax.naming.*;

Jrr
* The User bean holds descriptive information about a user. *
* UserBean is the actual entity bean implementation.

ol

public class UserBean extends BasicEntityBean

{
public String id;
public String currentTimecardId;

Design for the TimccardDomain and TimecafdWorktlow 281

public String name;
public String password;
public boolean newUser;

private Timecard currentTimecard;

public UserBean ()
{
}

/** Creates a UserBean with the specified parameters. This is
* never called directly. */
public String ejbCreate(String name, String password) throws
RemoteException, CreateException

this.id = "User" +IdGenerator.getId();
this.name = name;

this.password = password;
this.newUser = true;

checkForDuplicates () ;
return null;

/#** Bctions performed after creation. This is never called
directly. */
public void ejbPostCreate(String name, String password.

/*+ Bnswers the name of this User bean. */
public String getName ()
{

return this.name;

/** Answers true if the entered password matches this
User's password. */
public boolean is PasswordValid(String entered

{
}

return this.password.equals (entered) ;

/** Answers true if the password should be changed. */
public boolean isPasswordChangeRequired ()
{

return this.newUser;

/** sets the password of this User bean. */

282 Enterprise Java with UML

public void setPassword(String password)
{
this.password = password;
this.newUser = false;

/** Bnswers the current timecard of this User bean. */
public Timecard getCurrentTimecard ()
{

try

{

if (this.currentTimecard null)

Context initialContext = getInitialContext () ;
TimecardHome thome =

(TimecardHome) initialContext .lookup ("TimecardBean”) ;
this.currentTimecard =

thome. findByPrimaryKey (this.currentTimecardId) ;

}

catch (NamingException e)

throw new EJBException(e.toString());

)

catch (FinderException e)

throw new EJBException(e,toString());
return this.currentTimecard;

/** sets the current timecard. */public void
setCurrentTimecard (Timecard timecard)
{
this.currentTimecard = timecard;
this.currentTimecardId = (String) timecard.getPrimaryKey();

/** Checks for duplicates. Overrides method from
BasicEntityBean.*/
public void doCheckForDuplicates() throws CreateException,

Fi ion n, ion

{

Context initialContext = getInitialContext();
EmployeeHome ehome =
(Empl)initialContext.lookup ("Empl "

Enumeration enum = ehome.findByUserName (this.name) ;

Design for the TimecardDomain and _Ti orkflow

283

if (enum.hasMoreElements())

throw new CreateException("Duplicate Employee: "
+this.name) ;

)

protected void doLoad() throws RemoteException,
NamingException, FinderException

{

}

1

Timecard Entity Bean

The User entity bean, like all entity beans, requires three files: aremote interface, a
homeinterface, and an implementation class.

Timecard.java

Timecard.javaisthe remoteinterface for the Timecard entity bean. It definesall of the
remotely accessible business methods for the bean, as shown in Figure 11.22. This class
consolidates behavior discovered in the Record Time, Export Time Entries, and Login

In the design, the methods to retrieve the current charge codes, dates, and hours
each returned an Enumeration. This is an appealing design, but it does not always
work well in practice. In many cases, the session bean passesthe results of arequest to
an entity bean back to the client. Thiscan lead to annoying versioning issues. The Enu-
meration for a Vector on an appiication server that isrunning within a VM from JDK
12 is not compatible with the Enumeration for a Vector in a servlet engine or Swing
application that isrunning withinaVM from JDK 11

<<EntityRemote>>
Timecard

+ getChargeCades() : Enumeration

+ getDates() : Enumeration

+ getHours() : Enumeration

+ addChargeCode(client : String, project : String, name : String) : vo id
+ setHours(hours : Enumeration)

Figure 11.22 Remote interface for the Timecard entity bean.

284 Enterprise Java with UML

m Itis prudent to have all remotely accessible methods return either
primitives or a custom class that wraps a group of related primitives. The same
is true for method parameters. This cannot be true for the find methods, as they
automatically return a remote reference or a collection of remote references.
However, in most cases, it is advisable to force clients to use session beans
rather than accessing the entity beans through their find methods.

package com.wiley.compBooks.EJwithUML.TimeCardDomain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

Jae
* The Timecard bean holds time entries for a date range.
*

* Timecard is the remote interface through which clients

* access the underlying entity bean.

* The order for hours is across the days for the first charge

* code, then across for the next charge code, and S0 on.

ah
public interface Timecard extends EJBObject
{
/** Answers a list of ChargeCodes for this Timecard.*/
public ChargeCodel] getChargeCodes() throws RemoteException;

/** Answers a list of Dates for this Timecard. */
public Date[] getDates() throws RemoteException;

/** BAnswers a list of Floats of the hours of this Timecard.*/
public float[] getHours() throws RemoteException;
/** Adds a charge code to this Timecard+/

public void addChargeCode (String clientName, String

projectName, String chargeCodeName) throws
RemoteException;

/** Sets the hours for this Timecard. */

public void setHours(float[] hours) throws RemoteException;

TimecardHome.java

TimecardHome.java is the home interface for the Timecard entity bean. It contains
all of the methods for creating and finding Timecard entity beans, as shown in Fig-
ure 1123

Design for the TimecardDomain and TimecardWorkflow 285

<<EntityHome>
TimecardHome

+ create(username : String) : Timecard
+ findByPrimaryKey(key : String) : Timecard
+ findByUser(user : String) : Enumeration

Figure 11.23 Home interface for Timecard entity bean.

Note the variety of find methods that can be used for an entity bean. In more tradi-
tiond Java development, each one-to-many relaionship is kept in the containing
object. In EJB development, the containing object's primary key isoften storedin each
object that it contains. At runtime, the containing object performsareverselookup on
the entity beansthat it contains. For example, each Timecard entity bean contains the
primary key of the User entity bean to which it belongs. If the User entity bean needs
tofind al of its Timecards, it uses afind method on Timecard's homeinterface.

This has a huge advantage, since relationships are kept in the data and are not real-
ized unlessthey are needed. However, it also breaks the encapsul ation of the contain-
ing entity bean. Any object can ask the Timecard's home interface for a list of dl
Timecards for agiven username. The User beanis not eveninvolved.

package com.wiley.compBooks . EJwithUML. TimeCardDomain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

Jxx

* The Timecard bean holds time entries for a date range.
TimecardHome is the remote interface through which clients
find and create

the underlying entity beans.

«
.
* The order for hours is across the days for the first charge
* code, then across

* for the next charge code, and so on.

a4

public interface TimecardHome extends EJBHome

{
/** BAnswers a reference to the newly created Timecard bean.*/
public Timecard create(String employeeId) throws

CreateException, RemoteException;

/** Answers an Enumeration that contains references to all

286 _ Enterprise Java with UML

* Timecards for the specified Employee/
public Enumeration f£indAllForEmployee (String employeeId)

throws Fi ion n;

/** Answers an Enumeration of references to Timecards that
* match the employee and start date. */
public Enumeration findTimecard(String employeeId, int
startDayOfYear, int startYear) throws FinderException,
RemoteException;

/** Bnswers a reference to the specified Timecard, if it

* exists. */

public Timecard findByPrimaryKey(String timecardId) throws
FinderException, RemoteException;

TimecardBean java

TimecardBean.java is the implementation dlass for the Timecard entity bean. As
designed, it holdsits charge codes as text in one string and its hours as text in another.
To make matters even more complex, the charge codes are actualy primary keys for
actual ChargeCode entity beans. The rest of the datais fairly straightforward.

Again, dl remotely accessible methods return a primitive or an array of primitives,
to avoid versioning issueswhen thevalue is deserialized on the remote client.

package com.wiley.compBooks.EJwithUML.TimeCardDomain;

import com.wiley.compBooks.EJwithUML.EjbUtil.*;
import java.util.

import java.rmi.*;

import javax.ejb.*
import javax.naming.*;

Jxx
* The Timecard bean holds time entries for a date range

* TimecardBean is the actual entity bean implementation
* The order for hours is across the days for the first charge
* code, then across for the next charge code, and so on.

74
public class TimecardBean extends BasicEntityBean

public String employeeId;
public String id;

public String chargeCodelds;
public String hoursString;
public int startDayOfYear;

Design for the TimecardDomain and _TimecardWorkflow 287

public int startYear;
public int numberOfDays;

private Vector chargeCodes = null;
private Date[] dates = null;
private f£loat{] hours = null;

public TimecardBean ()
{
}

/** Creates a TimecardBean with the specified parameters.

* This is never called directly. */

public String ejbCreate (String employeeld) throws
RemoteException, CreateException

this.id = "Timecard" + IdGenerator.getId();
this.employeeld = employeeld;

this.chargeCodeIds
this.hoursString

injtializeDates();

checkForDuplicates () ;
loadbates () ;
loadHours () ;
return null;

/** Actions performed after creation. This is never called

* directly. */

public void ejbPostCreate(String employeeld) throws
RemoteException, CreateException

public void ejbStore() throws RemoteException
{

storeHours () ;

storeChargeCodes () ;

}
sublic void doCheckForDuplicates() throws CreateException,
FinderException, NamingException, RemoteException
Context initialContext = getInitialContext();
TimecardHome thome =

(TimecardHome) initialContext .lookup ("TimecardBean") ;

// Timecards must be unique for employee and start date

288 Enterprise lava with UML

Enumeration enum = thome.findTimecard(this.employeeId,
this.startDayOfYear, this.startYear);
if (enum.hasMoreElements ())

{

}
}

throw new CreateException("Duplicate Timecard: ");

protected void doLoad() throws RemoteException,
NamingException, FinderException

1loadChargeCodes () ;
loadDates () ;
loadHours () ;

/** Answers a list of ChargeCodes for this Timecard.*/
public ChargeCode[] getChargeCodes ()

ChargeCode[] codes=newChargeCode [this.chargeCodes.size()];
for (int ctr=0; ctr < this.chargeCodes.size(); ctr++)

codes[ctr] = (ChargeCode)this.chargeCodes.elementAt (ctr) ;

b

return codes;

/#** Bnswers an Enumeration of Dates for this Timecard. */
public Date[] getDates()

return this.dates;

/** Rnswers a list of Floats for the hours of this Timecard.*/
public float(] getHours()

{

return this.hours;

/** Adds a charge code to this Timecard*/
public void addChargeCode(String clientName, String
projectName, String chargeCodeName)

try

if (this.chargeCodes null)

this.chargeCodes = new Vector();

}

Design for_the TimecardDomain and ecardWorkflow 289

Client client = null;
Project project = null;
ChargeCode chargeCode = null;

Context initialContext = getInitialContext();
ClientHome clientHome =

(ClientHome) initialContext.lookup ("Cli " ;
ProjectHome projectHome =

(ProjectHome) initialContext.lookup ("ProjectBean") ;
ChargeCodeHome chargeCodehome =

(ChargeCodeHome) initialContext.lookup ("ChargeCodeBean") ;

// Pind the client
Enumeration clients = clientHome.findByName (clientName);
if (clients.hasMoreElements())
{

client = (Client) clients.nextElement();
}
else
{

throw new RemoteException{"Client " +clientNames

" does not exist.");

// Find the project

Enumeration projects =
projectHome . findProject ((String) client .getPrimaryKey(),
projectName) ;

if (projects.hasMorsElements())

project = (Project) projects.nextElement ();
i
else
{
throw new RemoteException("Project " +projectName+
" does not exist.")

// Find the charge code

Enumeration chargeCodes =
chargeCodekone . £indChargeCode { (String)
project.getPrimaryKey (), chargeCodeName);

if (chargeCodes.hasMoreElements())

chargeCode = (ChargeCode) a tElement () ;

else

{

290 _ Enterprise Java with UML

throw new RemoteException ("ChargeCode "
+chargeCodeName+ " does not exist.");

this.chargeCodes.addElement (chargeCode) ;
}
catch (NamingException e)
{
throw new EJBException(e.toString());
}

catch (FinderException e

throw new EJBException(e.toString());

}

/** Sets the hours for this Timecard. */
public void setHours(float([] newHours
1
this.hours = new float [newHours.lengthl;
for (int ctr=0; ctr < newHours.length; Ctr++
{

this.hours[ctr] = newHours [ctr];

private void loadChargeCodes() throws NamingException,
FinderException, RemoteException

this.chargeCodes = new Vector () ;

Context initialContext = getInitialContext();

ChargeCodeHome chargeCodehome =
(ChargeCodeHome) initialContext .lookup ("ChargeCodeBean") ;

StringTokenizer tokenizer = mew
StringTokenizer (this.chargeCodeIds, "|");
while (tokenizer.hasMoreTokens ())
{
String id = tokenizer.nextToken();
ChargeCode code = chargeCodehome. findByPrimaryKey (id)
this.chargeCodes. addElement (code) ;

)

private void storeChargeCodes ()

{
try

{

StringBuffer buffer = new StringBuffer();

Design for the TimecardDomain and Ti

291

Enumeration codes = this.chargeCodes.elements();

while (codes.hasMoreElements ())

{
ChargeCode nextCode = (ChargeCode) codes.nextElement();
buffer.append ((String)nextCode.getPrimaryKey()) ;
buffer.append("[");

this.chargeCodeIds = buffer.toString();

}
catch (RemoteException e)
{
System.out.println(ve: " +e);

private void loadbates ()
this.dates = new Datelthis.numberOfDays];

Calendar calendar = Calendar.getInstance();
calendar.setLenient (true) ;
calendar.set (Calendar.YEAR, this.startYear);
for (int delta = 0; delta < this.numberOfDays; delta++
{
calendar.set (Calendar.DAY_OF_YEAR
this.startDayOfYear+delta) ;
this.dates[delta] = calendar.getTime();

)
3}
private void storefiours()
{
StringBuffer buffer = new StringBuffer();
for (int ctr=0;this.hours != null & ctr <
this.hours.length; ctr++)
{
buffer.append (""+this.hours [ctr]+"|*);
1

this.hoursString = buffer.toString();

private void loadHours ()
if (this.hoursString == null ||this.hours$tring.equals(""))
float[] hours = {Of,0f};

else

292 Enterprise Java with UML

StringTokenizer tokenizer = new
StringTokenizer (this.hoursString, "|");

int numTokens = tokenizer.countTokens();
this.hours = new float [numTokens] ;

for (int ctr=0; ctr < numTokens; ctrs+)
{
String hourString = tokenizer.nextToken();
this.hours(ctr] = Float.parseFloat (hourString);
}
¥
}

private void initializeDates ()

Calendar calendar = Calendar.getInstance();
this.startDayOfYear = calendar.get (Calendar.DAY_OF YEAR) ;
this.startYear = calendar.get (Calendar.DAY_OF_YEAR) ;
this.numberofDays = 7;

LoginWorkflow Stateless Session Bean

The LoginWorkflow stateless session bean consists of threefiles: aremote interface, a
homeinterface, and animplementation class.

Login Workflow/Java

LoginWorkflow.javacontains the oneremotely accessiblemethod for the L oginWork-
flow session bean, as shown in Figure 11.24.

Since LoginWorkflow is a stateless session bean, each method includes all of the
information needed to perform therequest. For example, setPassword must specify the
user, since the LoginWorkflow session bean does not remember whois logged in. In
fact, consecutive calls to a stateless session bean are frequently received by different
bean implementations. The container pools implementations, and can do as it pleases
with stateless session beans between method invocations.

<<SessionRemote>>
LoginWorkflow

+ validateLogin()

Figure 11.24 Remote interface for the LoginWorkflow stateless session bean.

Design for the TimecardDomain and TimecardWorkflow

package com.wiley.compBooks.EJwithUML.TimeCardWorkflow;

import java.rmi.*;
import javax.ejb.*;

Faon
* The LoginWorkflow allows client objects to validate users
* and update their paswords.
* LoginWorkflow is the remote interface through which clients
* access the underlying
* session bean.
*
M
public interface LoginWorkflow extends EJBObject
{
/** Answers true if the password is correct for the specified
* user. */
public boolean isUservalid(String username, String password.

throws RemoteException;

/** Answers true if the password is due to be changed. */
public boolean i

ired(string usernam
throws RemoteException;

/** Sets the password, if the old password is valid. */
public void setPassword(String username, String oldPassword,
String newPassword) throws RemoteException;

Login WorkflowHome.java

Login WorkflowHome.javaisthe homeinterfacefor the L ogin Workflow session bean.
It containsthe method by which Login Workflow session beans are created.

Since Login Workflow is a stateless session bean, there would not be much point to
including parameters in the create method. Nevertheless, we must specify the method.

package com.wiley.compBooks.EJwithUML.TimeCardWorkflow;
import java.util.*;

import java.rmi.*;
import javax.ejb.*;

/%

* The LoginWorkflow allows client objects to validate users
* and update their paswords.

* LoginWorkflowHome is the remote interface through which

* clients find and create the underlying session beans.
”

294 Enterprise Java with UML

w1
public interface LoginWorkflowHome extends EJBHome
{
/** Bnswers a reference to the newly created Activity bean.*/
public LoginWorkflow create() throws CreateException
RemoteException;

Login WorkflowBean.java

LoginWorkflowBean.javais theimplementation class for the LoginWorkflow sesson
bean.

Asyou can see in the code here for the isPasswordValid method, LoginWorkflow-
Bean obtains and uses remote references to entity beans as it needs them. Thereis no
way for one entity or session bean to directly get at an implementation been. Instead,
the entity or session bean must obtain a remote reference. Performance between two
local beansis dramatically better than the performance between a client object in a dif-
ferent VM and abean in an application server, even if both VMs are on the same host.
Otherwise, local aooess and remote aocess of a bean use the same remote and home
interfacesand very similar nameresol ution code.

package com.wiley.compBooks.EJwithUML. TimeCardWorkflow;

import com.wiley.compBooks.EJwithUML.EjbUtil.*;

import com.wiley.compBooks.EJwirhUML.TimeCardDomain.*;
import java.util.*;

import java.mmi.*;

import javax.ejb.*;

import javax.naming.*;

Jex
* The LoginWorkflow allows client objects to validate users
* and update their paswords.

* LoginWorkflowBean is the actual session bean implementation.
ol
public class LoginWérkflowBean extends BasicSessionBean
{
public void ejbCreate() throws CreateException
{
}

public void ejbPostCreate(
{
)

/*+ Answers true if the password is correct for the specified

Design lor the TimecardDomain and _TimecardWorkflow 295

e .
public boolean isUserValid(String username, String password)

{

try

{
Context initialContext = getInitialContext();
UserHome ehome =

(UserHome) initialContext . lookup ("EmployeeBean") ;
Enumeration employees = ehome.findByUserName (userpame) ;
if (lemployees.hasMoreElements ()
b
return false;

}
Employee employee = (User) employees.nextElement {);
return employee.isPasswordvalid (password) ;

4

catch (NamingException e)

{
}

catch (FinderException e

throw new EJBException("" +e);

throw new EJBException("" +e);

/** Bnswers true if the password is due to be changed. */
public boolean isPasswordChangeRequired (String username
{
try
{
Context initialContext = getInitialContext();
UserHome ehome =
(UserHome) initialContext.lookup ("EmployeeBean") ;

Enumeration employees = ehome.findByUserName (username) ;
if (lemployees.hasMoreElements ())
{

throw new EJBException("User does mot exist.");

User employee = (User) employees.nextElement ();
return employee.isPasswordChangeRequired() ;

}

catch (NamingException e)

throw new EJBException +e);

}

catch (FinderException e)

296 Enterprise Java with UML

{

throw new EJBException("" +e);

)

/** Sets the password, if the old password is valid. */
public void setPassword(String username, String oldPassword,
String newPassword)

{
try
{
Context initialContext = getInitialContext();
UserHome ehome =
(UserHome) initialContext.lookup ("UserBean") ;

Enumeration employees = ehome.findByUserName (username);
if (!employees.hasMoreElements())

{

throw new EJBException("User does not exist.");

}
User employee = (Employee) employees.nextElement ();

if (lemployee.isPasswordvalid(oldPassword))

throw new EJBException("0ld password is invalid.");

;
employee.setPassword (newPassword) ;

catch (NamingException e)

{

throw new EJBException (" +e);

}

catch (FinderException e)

{

throw new EJBException("" +e);
}
}

RecordTimeWorkflow
Stateful Session Bean

The RecordTimeWorkflow stateless session bean consists of three files: a remote inter-
face, a home interface, and an implementation class.

Design for the TimecardDomain and TimecardWorkflow 297

ReconfTimeWorkflow.java

RecordTimeWorkfTow.java contains all of the remotely accessible methods for the
RecordTimeWorkflow session bean, as shown in Figure 11.25,

SinceRecordTimeWorkflowis a stateful session bean, each method assumes a par-
ticular session, which involves asingle user and asingle current timecard. Thisalows
the getChargeCodes to have an empty parameter list.

Again, notice that each return typeis an array of primitives or an array of custom
wrapper objects that wrap primitives. This eliminates versioning issues when the
remote client object deserializes the object.

package com.wiley.compBooks.EJwithUML. TimeCardWorkflow;

import java.rmi.*;
import javax.ejb.*;
import java.util.*;

Jur

* The RecordTimeWorkflow allows client objects to record their
* time.

* RecordTimeWorkflow is the remote interface through which

*+ clients access the underlying session bean.

g
public interface RecordTimeWorkflow extends EJBObject
{

/** Answers an array of charge code wrappers. */

public ChargeC apper[] getChargeCodes() throws

RemoteException;

/** Bnswers an array of the dates for the current timecard.*/
public Date[] getDates() throws RemoteException;

/** Bnswers an array of the hours for the current timecard.*/
public float[] getHours() throws RemoteException;

<<SessionRemote>>
RecordTimeWorkflow

+ getChargeCodes() : Enumeration

+ getDates() : Enumeration

+ getHours() : Enumeration

+ addChargeCode(client : String, project : String, name : String) : vo id
+ setHours(hours : Enumeration)

+ submit()

Figure 11.25 Remote interface for RecordTimeWorkflow session bean.

298 Enterprise Java with UML

/** Bdds the specified charge code to the current timecard. */
public void addChargeCode (String client, String project,
String name) throws RemoteException;

/** Sets the hours for the current timecard. */
public void setHours(float[] hours) throws RemoteException;

/** Submits the current timecard. */
public void submitTimecard() throws RemoteException;

RecordTime WorkflowHome.java

RecordTimeWorkflowHome-javacontainsthemethodsfor creating RecordTimeWork-
flowHomesessionbeans.

Thecreatemethod requiresausername. This associatesthe RecordTimeWorkflow
session bean with asingle user for thelife of the session.

package com wi | ey. oonpBooks . EJwi t hUM. . Ti meCar dHor kf | ow -

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

Jre
* The RecordTimeWorkflow allows client objects to record their

* time.
* RecordTimeWorkflowHome is the remote interface through which
* clients find and create the underlying session beans.

*
o
public interface RecordTimeWorkflowHome extends EJBHome

{
/** BAnswers a reference to the newly created Activity bean.*/
public RecordTimeWorkflow create (String username) throws
CreateException, RemoteException;

RecordTimeWorkflowBean.java
RecordTimeWorkflowBean.java s the implementation class for the RecordTime Work-

Most of this code should be somewhere between familiar, and monotonous, by this
point. However, there is one new wrinkle, as the gbCreate method finds a User entity
bean based onthe username parameter. Thisbeanreferenceiskept for thedurationof
thestateful session.

Design for the TimecardDomain and TimecardWorkflow 299

The RecordTimeWorkflow session bean wraps the data for a charge code into a cus-
tom ChargeCodeW'rapper object. This avoidsthe versioning issues whileproviding a
convenient interface for the client object.

package com.wiley.compBooks.EJwitMML.TimeCardWorkflow,-

irport com.wiley.corapBooks .EJwithOML.TimeCardDomain. *;
import com.wiley.corapBooks.EJwithUML .Ejbutil.*;
impart java.util,*;

import java.rmi.
import javax.ejb.*;
import javax.naming.*;

s
* The RecordTimeWorkflow allows client objects to record their
* time

* RecordTimeWorkflowBean is the actual session bean
* implementation.

A
public class RecordTimeWorkflowBean extends BasicSessionBean

private Timecard timecard;
private Employee employee;

public void ejbCreate(String username)

throws
RemoteException, CreateException
k
try
{
Context initialContext = getInitialContext (};

UserHome ehome =

(UserHome) initialContext .lookup ("UserBean") ;
Enumeration employees =

= ehome.findByUserName (username) ;
if (employees.hasMoreElements())

{
this.employee = (Employee)

employees.nextElement () ;
this.timecard =

employee.getCurrentTimecard () ;
}

}
catch (NamingException e)

throw new RemoteException("" +e);
}

catch (FinderException e)

throw new RemoteException("" +e);

300 Enterprise Java with UML

public void ejbPostCreate (String username)
{
}

/** Bnswers an array of charge code wrappers. */
public ChargeCodeWrapper[] getChargeCodes ()

ChargeCode[] codes = this.timecard.getChargeCodes () ;
ChargeCodeWrapper [] wrappers = new
ChargeCode¥irapper [codes . length] ;

for (int ctr=0; ctr < codes.length; ctr++)

String codeName

codes [ctr] .getName () ;

Project project = codes[ctr].getProject();

String projectName = project.getName();
String clientName = project.getClient () .getName();

wrappers [ctr] = new ChargeCodeWrapper (clientName,
projectName, codeName);

return wrappers;

/** Bnswers an array of the dates for the current timecard.*/
public Date[] getDates()
{

return this.timecard.getDates();

}

/** Bnswers an array of the hours for the current timecard.*/
public float[] getHours ()

return this.timecard.getHours();

}

/** Adds the specified charge code to the current timecard. */
public void addChargeCode(String clientName, String
projectName, String name)

this.timecard.addChargeCode (clientName, projectName, name);

}

/** Sets the hours for the current timecard. */
public void setHours(float[] hours)
{

this.timecard.setHours (hours) ;

Design for the TimecardDomain and Ti kflow

301

)

/** Submits the current timecard. */
public void submitTimecard()
{

try

{

Context initialContext = getInitialContext();

TimecardHome thome =
(TimecardHome) initialContext .lookup ("TimecardBean") ;
Timecard timecard = thome.create((String)
this.employee.getPrimaryKey()) ;
this.employee.setCurrentTimecard (timecard) ;
}
catch (NamingException e)
{
throw new EJBException("" +e);
}

catch (CreateException e)

{

throw new EJBException("" +e);
¥
}
}

Supporting Classes

Therest of the classesfor this chapter support the classes that were found in the design.
Whileimplementing a design, developers often discover classes that capture common
functionality or provide significant functionality. As long as these new classes do not
significantly impact the architecture by introducing new dependencies between pack-
ages, this discovery processis ahealthy refinement of the design.

BasicSessionBean.java

The BasicSessionBean class removes some of the drudgery from creating implementa-
tion classes for session beans. It provides default implementations for al of the
required EJB methods. Except for theinitial context, all of the methods areempty.

package com.wiley.compBooks.EJwithUML.EjbUtil;

import java.rmi.*;
import javax.ejb.*;
import javax.naming.*;

public abstract class BasicSessionBean implements SessionBean

{

protected SessionContext context;

302 Enterprise Java with UML

public void ejbRemove() throws RemoteException
{
}

public void ejbPassivate() throws RemoteException
{
)

public void ejbActivate() throws RemoteException
{
}

public void setSessionContext (SessionContext context)
{
this.context = context;

)

protected Context getInmitialContext() throws NamingException

return new InitialContext();
}
}

BasicEntityBean.java

The BasicEntityBean.java class removes some of the drudgery from creating imple-
mentation classes for entity beans. It provides default implementations for all of the
required methods. Except for theiinitial context, al of the required methods are empty.

BasicEntityBean also provides acheckForDuplicates method that can be called from
the create method in each bean implementation. The checkForDuplicates calls
doCheckForDuplicates, which must beimplemented in the subclass. Thisalows Basic-
EntityBean to do the boring exception handling, while each subclassfillsin the inter-
esting duplicate checking logic.

package com.wiley.compBooks.EJwithUML.EJbUtil;
import java.rmi.*;
import javax.ejb.*;
import javax.naming.*;
public abstract class BasicEntityBean implements EntityBean
protected EntityContext context;
public BasicEntityBean ()
{
}

public void setEntityContext (EntityContext context) throws

Design for the TimecardDomain and Ti

303

RemoteException

this.context = context;

public void unsetEntityContext() throws RemoteException

{

this.context = null

public void ejbPassivate() throws RemoteException

public void ejbRemove() throws RemoteException

public void ejbLoad() throws RemoteException

try

{

doLoad () ;

catch (NamingException e)

{

throw new RemoteException(e.toString());

}

catch (FinderException e)

{

throw new RemoteException(e.toString());
)
¥

public void ejbStore() throws RemoteException
{
i

public void ejbActivate() throws RemoteException

public void checkForDuplicates() throws CreateException

{
try
{
doCheckForDuplicates () ;
8
catch (FinderException e)
{

throw new CreateException("BasicEntityBean: Unable to

304 Enterprise Java with UML

check for duplicates. " +e);
}
catch (NamingException e)
{
throw new CreateException("BasicEntityBean: Unable to
check for duplicates. * +e);
}

catch (RemoteException e)

throw new CreateException("BasicEntityBean: Unable to
check for duplicates. " +e);

protected Context getInitialContext() throws NamingException

return new InitialContext ();

}

protected abstract void doCheckForDuplicates() throws
CreateException, Fi ion, Nami; ion
RemoteException;

protected abstract void doLoad() throws NamingException
Fi. tion, ion;

Activity Entity Bean

TheActivity entity bean is a smple data repository with no behavior beyond a simple
check for uniqueness. An activity is a unit of work that can be used for a charge code.

Activity.java
Activityjava is the remote interface for the Activity entity bean. It defines all of the
remotely ssible methods for the Activity entity bean.

package com.wiley.compBooks.EJwithUML. TimeCardDomain;

import java.rmi.*;
import javax.ejb.*;

* The Activity bean holds simple descriptive information on a
* common activity that is performed by development teams. This
* activity may be used to create a ChargeCode.

* Activity is the remote interface through which clients
* access the underlying entity bean

Design for the TimecardDomain and TimecardWorkflow 305

4
public interface Activity extends EJBObject

{

/** Answers the name of this Activity. */
public String getName() throws RemoteException;

/** Answers the description of this Activity. */
public String getDescription() throws

eption;

/** hnswers the state data for this Activity. */
public String getStateData() throws Remo

ion;

ActivityHome.java

ActivityHome,java is the home interface for the Activity entity bean. It defines the
methods for finding and creating Activity entity beans.

package com.wiley.compBooks.EJwithUML. TimeCardDomain;

import java.util.*;
import java.rmi.¥;
import javax.ejb.*;

/xx

* The Activity bean holds simple descriptive information on a
* common activity that is performed by development teams. This
* activity may be used to create a ChargeCode.

* ActivityHome is the remote interface through which clients

* find and create the underlying entity beans.
*

4
public interface ActivityHome extends EJBHome

{
/** Bnswers an Enumeration containing references to each
* Activity bean.*/
public Enumeration £indAll() throws FinderException

RemoteException;

/** Bnswers an Enumeration containing references to all

* Activity beans that match the name. Should only return
o S

public Enumeration f£indByName (String name) throws

FinderException, RemoteException;

/** Answers a reference to the Activity bean, if it exists.*/
public Activity findByPrimaryKey(String activityId) throws

306 Enterprise Java with UML

FinderException, RemoteException;

/** Answers a reference to the newly created Activity bean.*/
public Activity create(String name, String description)
throws CreateException,RemoteException;

ActivityBean.java

ActivityBean.javais the implementation class for the Activity entity bean. It contains
thesedtpibdata and logic for the bean. Thereis not much to it, just anID, aname, and a

package com.wiley.compBooks.EJwithUML.TimeCardDomain;

import com.wiley.compBooks.EJwithUML.EjbULil. *;
import java.util.*;

import java.rmi.*;

import javax.ejb.*;

import javax.naming.*;

Ja
* The Activity bean holds simple descriptive information on a
* common activity
* that is performed by development teams. This activity may be
* used to create a ChargeCode.
N
* ActivityBean is the actual entity bean implementation.
"
v
public class ActivityBean extends BasicEntityBean
{
public String id;
public String name;
public String description;

public ActivityBean()
{
}

/** Creates an ActivityBean with the specified parameters.
* This is never called directly. */
public String ejbCreate(String name, String description:
throws RemoteException, CreateException

this.id = "Activity" + IdGenerator.getId()
this.name = name;
this.description = description;

Design for the TimecardDomain and TimecardWorkflow 307

checkForDuplicates () ;

return null;

/** Actions performed after creation. This is mever called
* directly. */

public void ejbPostCreate(String name, String description)
{

)

/** Bnswers the name of this ActivityBean. */
public String getName ()

{

return this.name;

/** Answers the description of this ActivityBean. */
public String getDescription()

{

return this.description;

/** Answers the state data for this Activity. */
public String getStateData()

String data = "\nId = "sthis.id+ "\nName +this.name+

"\nDescription = " +this.description;

return data;

/** Checks for duplicates. Overrides method from.
* BasicEntityBean. */
protected void doCheckForDuplicates() throws CreateException,

Fi ion,] ion, ion

{
Context initialContext = getInitialContext();
ActivityHome home =
(ActivityHome) initialContext.lookup ("ActivityBean") ;

Enumeration enum = home.findByName (name) ;
if (enum.hasMoreElements())

{

throw new CreateException('"Duplicate Activity: " +name);

/** Overrides method from BasicEntityBean. */
protected void doLoad() throws RemoteException,
NamingException, FinderException

308 Enterprise Java with UML

ChargeCode Entity Bean

The ChargeCode entity bean is a simple data repository with no behavior beyond a
simple check for uniqueness. A charge codeis a billable unit of work.

ChargeCode./ava

ChargeCode javaisthe remoteinterface for the ChargeCode entity bean. It definesall
of the remotely accessible methods for the ChargeCode entity bean.

package com.wiley.compBooks . EJwithUML. TimeCardDomain;

import java.rmi.*;
import javax.ejb.*;

e
* The ChargeCode bean holds descriptive information about a

* billable charge code.

Since each ChargeCode is part of a larger project, the parent
project can be accessed from the charge code.

* ChargeCode is the remote interface through which clients
access the underlying entity bean.

4
public interface ChargeCode extends EJBObject

{

/** Answers the name of this ChargeCode. */
public String getName() throws RemoteException;

/** Rnswers the description of this ChargeCode. */
public String getDescription() throws RemoteException;

/** Answers the parent Project of this ChargeCode. */
public Project getProject() throws RemoteException;

ChargeCodeHome

ChargeCodeHomejava is the Home interface for the ChargeCode entity bean.
defines the methods for finding and creating ChargeCode entity beans.

package com.wiley.compBooks . EJwithUML. TineCardDomain;

import java.util.*;

Design for the TimecardDomain and _Ti

import java.,rmi.*;
import javax.ejb.*;

Jxx

* The ChargeCode bean holds simple descriptive information on
* a common Activity that is performed for a client.

*

* ChargeCodeHome is the remote interface through which clients

* find and create the underlying entity beans.
*

]
public interface ChargeCodeHome extends EJBHome

{

/** Answers an ion ining references to each
* ChargeCode bean that has the specified project as its
* parent.*/
public Enumeration findByProject (String projectId) throws
FinderException, RemoteException;

/** Bnswers an ion containing referen to each
* ChargeCode bean. Should be unique. */
public Enumeration findChargeCode(String projectid,
String name)
throws FinderException,RemoteException;

/** Answers reference to the ChargeCode bean,if it exists.*/
public ChargeCode findByPrimaryKey (String chargeCodeId
throws Fi ion ion;

/** Answers reference to the newly created ChargeCode bean.*/
public ChargeCode create(String projectId, String name
String description) throws RemoteException,
CreateException;

ChargeCodeBean .java

ChargeCodeBean.java is the implementation class for the ChargeCode entity bean. It
provides the data and logic for the bean. Again, thereis not much to it. Each Charge-
Code entity bean holds an ID, a name, a description, and the ID of the project entity
bean to which it belongs.

package com.wiley.compBooks . EJwithUML. TimeCardDomain;

import com.wiley.compBooks.EJwithUML.EJbUEil.*;
import java.util.*;

import java.rmi.*;

import javax.ejb.*;

import javax.naming.*;

310 Enterprise Java with UML

The ChargeCode bean holds descriptive information about a
* billable charge code.
since each ChargeCode is part of a larger Project, the

* parent Project can be accessed from the charge code.

L
public class ChargeCodeBean extends BasicEntityBean

{

ChargeCodeBean is the actual entity bean implementation.

public String id;

public String name;
public String description;
public String projectId;

private Project project;

public ChargeCodeBean ()
{
}

/#** Creates an ChargeCodeBean with the specified parameters
* This is never called directly. */
public String ejbCreate(String projectId, String name, String
description) throws RemoteException,
CreateException

this.id = "ChargeCode" + IdGenerator.getId();
this.projectId = projectId;

this.name = name;

this.description = description;

this.checkForDuplicates () ;
return null;

/** Actions performed after creation. This is never called
* directly. */
public void ejbPostCreate(String projectId, String name,
String description) throws RemoteException

/** Rnswers the name of this ChargeCode. */
public String getName ()

return this.name;

Design for the TimecardDomain and TimecardWorkflow 311

/** Answers the description of this ChargeCode. */
public String getDescription()

return this.description;

}

/+* Answers the parent Project of this ChargeCode. */
public Project getProject ()

{
try
{
if (this.project == null
Context initialContext = getInitialContext();
ProjectHome phome =
(ProjectHome) initialContext.lookup ("ProjectBean") ;
this.project = phome.findByPrimaryKey (this.projectId);
}
}
catch (NamingException e)
{
throw new EJBException(e.toString());
}
catch (FinderException e)
throw new EJBException(e.toString());
}
return this.project;
)

/** Checks for duplicates. Overrides method from
* BasicEntityBean.*/
public void doCheckForDuplicates() throws CreateException
FinderException, NamingException, RemoteException

Context initialContext = getInitialContext();
ChargeCodeHome home =
(ChargeCodeHome) initialContext . lookup ("ChargeCodeBean") ;

Enumeration enum = home.findChargeCode (this.projectId,
this.name) ;

if (enum.hasMoreElements())

throw new CreateException({"Duplicate ChargeCode: ") ;

}
}

protected void doLoad() throws RemoteException,
i ion, Fi ion

312 Enterprise Javawith UML

Client Entity Bean

The Client entity bean is a simple data repository with no behavior beyond a smple
check for uniqueness. A client represents an organization that hires the company to
perform some task or tasks.

Client.java

Client.javais the remote interface for the Client entity bean. It defines al of the
ible methods for the Client entity bean.

package com.wiley.compBaoks .EJwithUML.TineCardDonain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

s
* The Client bean holds descriptive information about a
* client.
¥
* Client is the remote interface through which clients access
* the underlying entity bean.
¥

public interface Client extends EJBObject

{

/** Answers the name of this Client. */
public String getName() throws RemoteException;

/** Bnswers the description of this Client. */
public String getDescription() throws RemoteException;

ClientHome.java

ClientHomejavaisthehomeinterfacefor the Client entity bean. It definesthe methods
for finding and creating Client entity beans.

package com.wiley.compBooks . EJwithUML. TimeCardbomain;

import java.util.*;
import java.rmi.*;

Design for the TimecardDomain and Tif

313

import javax.ejb.*;

Jre
The Client bean holds descriptive information about a
* client.

ClientHome is the remote interface through which clients

* find and create the underlying entity beans.

*
xf
public interface ClientHome extends EJBHome

{

/** Answers an Enumeration that holds references to all of
* the Client beans. */

public Enumeration findAll() throws FinderException,

RemoteException;

/** Answers an Enumeration that holds references to all of
* the Client beans that match the name parameter. */
public Enumeration findByName(String name) throws
FinderException, RemoteException;

/** Answers a reference to the Client bean, if it exists. */
public Client findByPrimaryKey(String clientId) throws
FinderException, RemoteException;

/** Bnswers a reference to the newly created Client bean. */

public Client create(String name, String description) throws
CreateException, RemoteException;

ClientBean./ava

ClientBeanjava is the implementation class for the Client entity bean. It contains the
data and logic for the bean.

package com.wiley.compBooks.EJwithUML. TimeCardDomain;
import com.wiley.compBooks.EJwithUML.EJbUtil.*;

import java.util.
import java.rmi.*;

import javax.ejb.*;

import javax.naming.*;

Jan

* The Client bean holds descriptive information about a
* glient.

* ClientBean is the actual entity bean implementation

314 Enterprise Javawith UML

*
&/

public class ClientBean extends BasicEntityBean

public String id;
public String name;
public String description;

public ClientBean()
{
}

/** Creates an ClientBean with the specified parameters. This
* is never called directly. */
public String ejbCreate(String name, String description!
throws RemoteException, CreateException

this.id = "Client" +IdGenerator.getId();
this.name = name;
this.description = description;

checkForDuplicates () ;

return null;
/** Actions performed after creation. This is never called
+ divectly. */

public void ejbPostCreate (String name, String description)
throws RemoteException

/** Bnswers the name of this Client. */
public String getName(

return this.name;
/** Bnswers the description of this Client. */
public String getDescription(
return this.description;
/** Checks for duplicates. Overrides method from
* BasicEntityBean,*/

public void doCheckForDuplicates() throws ion
FinderException, NamingException, RemoteException

Desiqn for the TimecardDomain and TimecardWorkflow

lw

15

Context initialContext = getInitialContext();
ClientHome home =
(ClientHome) initialContext.lookup ("ClientBean") ;

Enumeration enum = home.findByName (name) ;
if (enum.hasMoreElements())
{
throw new CreateException("Duplicate Client: ");
}
}

protected void doLoad() throws RemoteException,
NamingException, FinderException
{
7
}

Project Entity Bean

The Project entity bean is asimple data repository with no behavior beyond a simple
check for uniqueness. A project represents a large-scale task or deliverable that may
contain many charge codesfor aclient.

Project.java

Project.javais the remote interface for the Project entity bean. It defines the remotely
accessible methods for the Project entity bean.

package com.wiley.compBooks .EJwithUML. TineCardbomain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

Jee
* The Project bean holds descriptive information about a
* project.

* Project is the remote interface through which clients access
* the underlying entity bean
&7
public interface Project extends EJBObject
{
/** Bnswers the name of this Project. */
public String getName() throws RemoteException;

/** Bnswers the description of this Project. */
public String getDescription() throws RemoteException;

316 Enterprise Java with UML

/** BAnswers the parent Client of this Project. */
public Client getClient() throws n

ProjectHome java

ProjectHome javais the home interface for the Project entity bean. It defines the meth-
ods for finding and creating Project entity beans.

package com.wiley.compBooks . EJwithUML. TimeCardDomain;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

e
* The Project bean holds descriptive information about a

* project.

* ProjectHome is the remote interface through which clients

* find and create the underlying entity beans

7

public interface ProjectHome extends EJBHome

{

/** Answers an Enumeration that contains references to all
* Project beans that have the specified client id. */
public Enumeration findByClientId(String clientId) throws
FinderException, RemoteException;

/** Bnswers an Enumeration that contains references to
* Project beans that have the specified name. Should be
* unique. */
public Enumeration findPraject(String clientId, String name)
throws FinderException,RemoteException;

/** Bnswers a reference to the Project if it exists. */
public Project findByPrimaryKey(String projectId) throws
FinderException, RemoteException;

/** Answers a reference to the newly created Project. */
public Project create(String clientId, String name, String
description) throws CreateException,RemoteException;

Design for the TimecardDomain and TimecardWorkflow 317

ProjectBean./ava

ProjectBean.java is the implementation class for the Project entity bean. It holds the
data and logic for the bean.

package com.wiley.compBooks.EJwithUML. TimeCardDomain;

import com.wiley.compBooks.EJwithUML . EJbUELl. *;
import java.util.*;
import java.rmi.*;

import javax.ejb.*;
import javax.naming.

s

* The Project bean holds descriptive information about a
* Project.

* ProjectBean is the actual entity bean implementation.
o
public class ProjectBean extends BasicEntityBean

public String id;

public String clientld;
public String name;
public String description;

private Client client;

public ProjectBean()

/** Creates an ProjectBean with the specified parameters. This

* is never called directly. */

public String ejbCreate (String clientId, String name, String
description) throws RemoteException, CreateException

this.id = "Project" +IdGenerator.getId();
this.name = name;

this.description = description;
this.clientId = clientId;

return null;

/** Actions performed after creation. This is never called
+ directly. */

public void ejbPostCreate(String clientId, String name,

318 Enterprise Java with UML

String iption) throws ion, Creat

/** Answers the name of this Project. */
public String getName ()

return this.name;

/** Bnswers the description of this Project. */
public String getDescription()

{

return this.description;

/** Answers the parent Client of this Project. */
public Client getClient ()

try

{

if (this.client == null)

Context initialContext = getInitialContext();
ClientHome chome =
(ClientHome) initialContext .lookup ("ClientBean") ;
this.client = chome.findByPrimaryKey(this.clientId);
}
}

catch (NamingException e)

throw new EJBException(e.toString());

}

catch (FinderException e)

throw new EJBException(e.toString());

}

return this.client;

public void ejbStore() throws RemoteException
{
i

/** Checks for duplicates. Overrides method from

* BasicEntityBean.*/

public void doCheckForDuplicates() throws CreateException,
Fin eption, Nami ion, RemoteException

Design for the TimccardDomain and TimecardWorkflow 319

Context initialContext = getInitialContext();
ProjectHome phome =
(ProjectHome) initialContext.lookup ("ProjectBean”) ;

// projects must be unique for all clients

Enumeration enum = phome.findProject (this.clientld,
this.name) ;

if (enum.hasMoreElements ())

{

throw new CreateException("Duplicate Project: ");
}
)

protected void doLoad() throws RemoteExceptiom,
NamingException, PinderException

ChargeCodeWrapper.java

ChargeCodeWrapperjava encapsulates the details of a specific charge code insde a
simple data container. This allows methods of Enterprise JavaBeans to return asmall
serializable chunk of data, rather than aless efficient remote reference. Of course, the
wrapper islessflexible than theremote reference.

package com.wiley.compBooks . EJwithUML. TimeCardWorkElow;
import java.io.*;
public class ChargeCodeWrapper implements Serializable
private String clientName;
private String projectName;

private String chargeCodeName;

public ChargeCodeWrapper (String clientName, String
projectName, String chargeCodeNar

this.clientName = clientName;
this.projectName = projectName;
this.chargecodeName = chargeCodeName;

public String getClientName ()

{

return this.clientName;

public String getProjectName ()

return this.projectName;

¥
public String getChargeCodeName ()

return this.chargeCodeName ;

Node. java

A Node holds child nodes and may be a child of another Node object.

composition of arbitrary tree structures.
package com.wiley.compBooks.EJwithUML.TimeCardWorkflow;
import java.util.*;
import java.io.*;
public class Node implements Serializable

private String name;
private String description;
private Vector children = new Vector();

public Node(String name, String description)

this.name = name;

this.description = description;

public void addChild(Node child)

this.children.addElement (child) ;

public Node[] getChildren()

int size = this.children.size();
Node[] nodes = new Nodel[sizel;
for (int ctr=0; ctr < size; ctr++)
{
nodes[ctr] = (Node) this.children.elementAt (ctr);

)

return nodes;

. It alows the

Design for the TimecardDomain and _TimecardWorkflow 321

public String getName ()
{
return this.name;

)

public String getDescription()
{
return this.description;

y
¥

The Next Step

The design and implementation for the TimecardDomain and TimecardWorkflow
packages are now complete. Now we move on to the next design effort: the HTML Pro-
duction class library.

Design for HTML Production

Much of our system's functionality will be obtained via Web browsers, so we will be
producing ahuge volume of moderately complex HTML. This can be adaunting task,
asHTML andits surrounding technologies are often a capricious and unforgiving lot.
There are details to learn for each browser, and a frighteningly large number of poten-
tial solutions for any problem. HTML documents can be both disturbingly large and
incomprehensibly dense. Many large-scale Web-based systems are composed of hun-
dreds of different screens, each sharing some common elements, and many with
unique aspects.

One effective approach to these issuesis to develop aclass library that is dedicated
to the production of HTML. Servlet developers will use thisframework asthey build
the user interface dasses Idedlly, the serviet developers should not even need to
directly produceany HTML. Instead, they will depend on HTML production classes to
handle this tedious task.

Designing a class library is quite different from designing a package based on use
cases; therefore, wewill deviateabit from thenormal design steps. First, wewill estab-
lish goals for the design. Next, we will attempt to design to one or more goals. It may
help to consider existing design patterns or existing products as guides in this effort.
Then we will measure the resulting design against the goals. Finally, we will flesh out
our design to support our particular user interface needs.

LOJI Remember, design is an iterative process; doing refactoring or even
completely changing your mind is a natural part of the process.

324 Enterprise Java with UML

Design Goals

Before we can design adever solution to our problem, it is essentid to formally deter-
mine the design goals for the HTML production framework. After al, how canwe hit
an undefined target? Think of the goas for asubsystem or framework as atechnically
oriented internal requirements document. The goals detail how other parts of the sys-
temwill interact with the framework, and what these parts can expect fromiit.

Y ou must establish concrete examples and very specific criteriafor your godsbefore
you begin to design. Clear and quantifiable goas can drive a design and provide a
valuable measure of success. Vaguely defined goals do not provide direction for the
design, and tend to frustrate developers more than they help. For example, it is far
more useful to require the framework to support new versions of Internet Explorer
than to require the framework to be extensible in some generic sense.

Let'stake alook at the design goals for theHTML production classlibrary.

Goal 1: Support Modular Construction
of Views

It can be useful to nest one HTML component inside another HTML component to
form amore complex page. A page might contain atable, aninput form, and sometext.
One ed! in the table might contain an image while another cell contains another
complete table. Component nesting allows a patient developer to assemble arbitrarily
complex pages from asmall number of relatively simple building blocks. We want our
underlying HTML production classes to allow a presentation developer to easily nest
and combine structures.

Consider a page that contains a table, which in turn contains an image and some
text. This moderately complex view is built by combining these three simple elements.
The pseudocode for this table might look like the following:

Get anew table from theframework.

Get anew image from the framework, and set its source.
Add the image to the table.

Add text to the table.

Get anew page from theframework.

Add thetableto the page.

Graphical interface programmers use this sort of bottom-up composition to stay
sane while they create elaborate screens. Even the most complex screen is composed
from a relatively small number of components, which are creatively combined. Our
framework must provide the same capability.

o s wN P

Goal 2: Keep HTML Production Simple

We want the majority of our developers to remain focused on the intricacies of the
business and to ignore the painful details that can be involved in generating the actual

Design for HTML Production 325

HTML. Presentation developers must be able to add data to views without knowing
about differencesbetween browsers or which arcane option on aparticular HTML tag
does what.

In short, wewant to keep HTML production simple. To do this, there are three spe-

cificcriteria

Hide the actual tags and options. Outside of the framework team, developers
should not need morethan acasual familiarity with HTML syntax.

Hide all browser-specific behavior. Application and presentation logic that uses
the HTML production framework must be able to completely ignore browser-
specificbehavior. Developerstrust theunderlying framework totail or thegener-
ated HTML for the user's browser.

Enable natural development of user interface. Adding content or data should be
natural from the perspective of the view developer. It should not necessarily be
dictated by the structure of the resulting HTML.

An example of how aview might use the classlibrary might be helpful. Let's con-
sider aview that extracts some data from the domain and displaysit in a table. The
pseudocode might look like the following:

Retrieve raw data from the domain.

Format the datainto atwo-dimensional array of strings.
Retrievethe user's context, including browser type, from the request.
Get anew page from theframework.

Set therifle of the page.

Add someinstructional text to the page.

Get anew table from theframework.

Set the column headings for the table.

Set the formatted datafrom step 2 asthetable'sdata.
Add the table to the page.

Ask thepagefor itsHTML.

Notice that the view does not know how the HTML is produced. It just wires the
datainto the elementsthat are provided by theframework.

By encapsulating the dirty details of HTML production, we allow staff specializa-
tion. Presentation devel opers can keep their datamani pul ati onlogic separatefromthe
complexities of the actual HTML. This helps keep the code base smaller and easier to
understand.

Thisisavery valuable form of reuse. It may not be as stunning or politically im-
pressive asa cross-corporate domain infrastructure, but itisreally nicewhen everyone
can add data to a table and have it produce the same HTML. Without such a frame-
work, developers must create their own unique and often incompatible solutions.
When alowed to compound over time, this trend leads to chaos and terminal code
bloat.

EBow~wouosrwner

326 _ Enterprise Java with UML

Goal 3: Support Preferences

Preferences allow thelook and feel of a system to be modified to meet the user's wants
or needs. For example, the user might want to change the color scheme, or draw solid
lines around each cell of a table. This can involve changing a configuration file and
restarting the system, but it should never require a change to the source code. Many
users expect to change preferences while the system is running.

Since there are many types of screen elements, we must alow for many preference
options. A page might allow customization of the background color and text color,
while atable might allow customization of its colors, aswell as thewidth of the border
and various alignments. A system could use preferences to alow customization of tens
or even hundreds of screen characteristics.

Preferences have one more interesting wrinkle. Different systems offer customiza-
tion at different levels. A system with many anonymous customers would probably
haveasinglelook and feel that could be customized by the Web master. A complicated
corporate intranet might allow each user to override these default choices with his or
her own preferences. Some systems have a complicated preference scheme in which
user choices override department choices that override the system defaults.

For simplicity and to enable reuse, our underlying HTML production framework
must be obliviousto how the preferences are created, edited, and selected for auser. The
framework will alow view objects to set the preferences for an element. It isup to the
view tobuild theright preferencesfor agiven circumstance. If no preferenceis set for an
element, the preferencefor the enclosing element will be used. The framework will:

« Only apply preferences; it will not determine the correct preference for a sit-
uation.

« Allow preferences to be set at any level.

« Make it easy to extend preferences and to support entirely new types of pre-
ferences.

The framework will support preferences without losing its independence and reuse
potential.

Goal 4: Extensibility and Encapsulation

Class library developers must be able to extend the framework eesily and without
impacting existing views. The presentation logic will not change to accommodate each
new version of Internet Explorer or Netscape Navigator. These changes must be iso-
lated totheframework.

Framework devel opers must be free to change the framework to take advantage of
new browser features, to fix rendering anomalies, and to make changes to the look and
feel of the system. These changes must not break the interface on which the presenta-
tion developers depend. The framework must accommodate the following changes
without impacting existing client code or existing framework code:

* New browsers
« Changesto the HTML specification for an element
« Changes to the preferred look of an HTML element

Design for HTML Production 327

The presentation layer is protected from changes in the HTML production classes,
so the HTML production classes must be protected from changes in the application or
presentation layers. To ensure this, the HTML production classes should depend only
on primitives and standard Java classes. For instance, the framework must not know
anything about timecards or employees. The user interface developer would need to
extract data from any domain-specific classes before using it to configure any HTML
productionclasses.

Meeting these specific design goalswill alow theframework devel opersto keep the
presentation developers happy over time. The encgpsulation aso will make it eeser
for other projects to reuse the entire framework.

Design to Goals

Once we have developed specific goals, the next step isto develop high-level designs
that meet them. Itisdifficult to design for al of the goals simultaneoudly. Instead, we
will design for one goal at atime and periodically check for contradictions.

Design for Goal 1: Support Modular
Construction of Views

Supporting modular construction of views captures the flavor of the HTML produc-
fimmalasses. Theclass|ibrary exists bsicapbeit | ets devel opersbuil d el aborat petnoitiviess

The Composite Design Pattern
Goal 1isalso especialy meaningful becauseitisaperfect fitfor an existing design pat-
tern. Gamma and his co-authors describe the Composite pattern's intent as follows:
""Compose objects into tree structures to represent part-whole hierarchies. Composite
letsclientstreat individual objectsand compositionsof objectsuniformly" [Gamma, et
d.1995],

A tree structure that represents a part-whol e hierarchy sounds applicable. We can
represent our page asthe following tree:

« Page
+ Table
+ Image
+ Text

The next part of the intent, "Composite lets clients treat individual objects and com-
positions of objects uniformly," is a bit more interesting. It implies that Composite
objects implement the same interface as their children. So, the client does not care if it
holds a reference to a Composite or an individual object. Similarly, a Composite does
not care if achild isa Composite or anindividual object.

Gamma and his colleagues demonstrate the pattern with graphical primitives,
such as lines, rectangles, text, and pictures. These primitives can be combined to form

328 Enterprise lava with UML

elaborate pictures. As the intent states, the payoff comeswhen we draw the picture by
asking the topmost container to draw itself. It in turn asks each of its children to draw
itself. If itisaleaf, the child drawsitself and is done. If it is a container, it drawsitself
then asks each of its children to draw itself. What a nice generic and recursive solution
to avery common problem.

Applying Composite

Consider thepotential for using the Composite patternfor the HTML production class
library. The Composite pattern can be used to construct very complex HTML pages by
combining relatively smple HTML producers.

For example, a table contains text, images, forms, and other tables. A page might
contain a table, a form, images, and some miscellaneous text. A form might contain
input fields, descriptive text, and one or more Submit buttons. Notice that some ele-
ments, such as forms and tables, can contain other elements. Other elements, such as
text, cannot contain any other elements.

To access the elements, we need a common interface that the Composites and indi-
vidual objectscan implement. Sincethisisan HTML production framework, let'scall
the interface IHtmlProducer. Each Composite will have methods that add any IHtml-
Producer. To keep names consistent, we'll name each class that implements IHtml-
Producer with its type and the suffix Producer. For the example, we invent
PageProducer, TextProducer, ImageProducer, and TableProducer. Each class formats
its own HTML,; and except for TextProducer, all can contain any other IHtmlProducer.
S0, we create the HTML page by creating a PageProducer object then adding a
TableProducer to it. Next, well add an ImageProducer and a TextProducer to the
TableProducer. Figure 121 shows how a composite page can be built from simple
pieces. Note that each Composite can accept any |HtmlProducer.

Each type of producer has a different way to add a producer. The PageProducer
adds one producer after another. The TableProducer alows control over the relative
positioning of producers, by allowing us to add each producer to a separate cell in the
table.

While each type of element needs different methods for adding data, all of them
should support asimple way to retrieve the formatted HTML. Once the page has been
constructed, getting the HTML issimple: The page asks each child for its HTML; then
each child asksits children for their HTML- Notice in Figure 12.2 that each parent does
not need to know much about itschildren. Itjust expectsnicely formatted HTML when
it asks for it. Figure 12.3 shows the producer classes and the common IHtmlProducer
interface. Noticethat the TableProducer and PageProducer may have many IHtrnlPro-
ducers, but are completely unconcerned as to the type of any particular producer.

Design Evaluation

Let's express our design in terms of the Composite design pattern and evaluate our
effectiveness. PageProducer and TableProducer are Composites since they implement
the IHtmlIProducer interface and contain objects that implement IHtmlProducer. This
alows usto easily build complex HTML pages by combining IHtmlProducers. Also,

Design for HTML Production 329

P e e

|
i

1. setText(text) |

2

‘ ol

|
3. setProducerForCell(row, col, producer)
T T
I
I

|
4. setProducerForCell(row, coll producer)
|

5. addHtmlIRrod ey

Add Image

> Add Table

|
|
|
I
|
I
I
-
'D Add Text
T
1
1
|
i
I
|
I
I
|
|
|

|

|

|

1

1

ll

T |
| I
| I
| I
| I

1
I
1
I
I

Figure 12.1 Building an IHTML page with the Composite pattern.

someview ‘ ’ : PageProducer H : TableProducer {l : TextProducer
i

‘ ImageProducer

1. getHtml() ! } :
Tlgethtml() | } 1
i

! I

1

1.1.1. gethitml()

1.1.2. getHtml()
|

I
|
I
|
|
|
1
|
|
|
I
I

I
|
1
I
1
1
I

Figure 12.2 Retrieving HTML from a Composite.

330 Enterprise lava with UML

[PageProducer]
I

+ addHtmIProducer(producer : IHtmiProducer)
+ getHtml(: String

<<Interface>> TextProducer
ImageProduicer IHtmiProducer
ik NS R s o + setText(text : String)
+ setSource(source : String) + gethtmlQ) ¥ it < Sting
q ¥
/
¢
\
\
\
TableProducer

+ setProducerForCell(row : int, col : int, producer : IHtmIProducer)
+getHtml() : String

Figure 12.3 Participating classes for simple Composite.

when we add anew HTML producer, existing HTML producers are not affected. We
used the Composite pattern to build avery modular dasslibrary.

Design for Goal 2: Keep HTML

Production Simple

Thefirst goal for the HTML production framework is to protect the view developers
from HTML details and browser-specific behavior. So far, the design seemsto provide
alevel of abstraction above HTML. The view developer can build atable and add it to
apage without knowing any HTML.

Browser-Specific HTML

Although the design supports modular composition, it does not make any provision
for browser-specific HTML production. Itwould befairly smple, if tedious, to develop
aseparate class for each browser-specific version of each element. This might beworth
the effort, since you can inherit common behavior and thus reuse it and still encapsu-
late any pesky and subtle differences.

Creating a separate class for each browser for HTML tables we end up with a hier-
archy similar to that shownin Figure 124. Snce HTML tables are fairly standardized
in recent browsers, the generic TableProducer might do most of the work. Any

Design for HTML Production 351

browser-specific behavior can be overridden in the subclasses. This may seem like
overkill foraTableProducer, but consider thedifferencesbetweenan|nternet Explorer
and a Netscape implementation of a TabbedPaneProducer. Noticethat aview can pop-
ulate and configure any TableProducer by using the public methods in the base class.
Browser-specific implementations have different behavior behind the scenes, but
never changethepublicinterface.

The browser-specific behavior isencapsul ated withi n the implementation classes.
Onceaview hasthe correctimplementation, it can interact with it through the generic
base class. We are making progress. Unfortunately, each view still needs to know
which implementations are available and which is best for a particular situation. This
means that to add support for a new browser requires changes in each view. Thisis
clearly not acceptable.

The Abstract Factory Design Pattern

TheAbstract Factory design pattern lets us hide the varying implementations behind a
common interface. Itsintent: "Provide an interface for creating families of related or

<<Interface>>
IHtmIProducer

+ getHtml()

TableProducer

+ setProducerForCell(row : int, col : int, producer : IHtmlIProducer)
+ getHtml() : String

TableProducerlE40 TableProducerNS40

Figure 12.4 Browser-specific HTML producers.

332 Enterprise Java with UML

dependent objects without specifying their concrete classes’ is perfect [Gamma, et d.
1995], Let's examine some participants as defined in the pattern and see how they
apply totheexample.

First, an AbstractProduct is an interface that is common to al implementations of
aparticular type of product. In this example, TableProducer is an AbstractProduct.
A ConcreteFactory creates actual implementations of AbstractProducts for a particu-
lar family of products. For example, there might be separate ConcreteFactory classes
for Netscape 4.0 and Internet Explorer 4.0. Each actual implementation, such as
TableProducerl E40, isknownasaConcreteProduct.

Figure 125 shows the Abstract Factory pattern applied to some of the products in
our application. TheNetscapedOFactory overridesAbstractFactory'sinterfaceby creat-
ing Netscape-specific objectsthat extend either TableProducer or PageProducer. When
a client requests a product, the AbstractFactory identifies the right ConcreteFactory
and asks it to create a ConcreteProduct. It is important to remember that the client
never sees the ConcreteFactory or the ConcreteProduct. The presentation code has
areference to some arbitrary implementation of AbstractFactory. When the presenta-
tion code asksfor aparticular type of producer, the ConcreteFactory buildsavery spe-
cific producer, but returns a reference to the producer's abstract base class, such as
PageProducer or TableProducer.

Design Evaluation

Thereisone drawback to using the Abstract Factory pattern. Wemust have adifferent
ConcreteProduct for each combination of family and product. In our example, where
some HTML constructs are quite standard across browsers and completely standard
within one company's offerings, thisis excessive. For instance, it is possible to produce
a generic PageProducer since the HTML for the page header is pretty standard.

Producer Factory

Let'srevisethe design so that there isa single ProducerFactory that is responsible for
finding the best-fit implementation for agiven browser and type of producer. Thisis
moreefficient, sncemany of the combinations of vendor, version, and producer would
have been redundant.

Now for thetricky part: How will the ProducerFactciry determine the best concrete
producer for a combination? Figure 12.6 shows that the ProducerFactory has alist of
concrete producers. It would need to ask each concrete producer a series of questions:
"Are you of type X?" Then, "Do you support browser vendor Y?" If so, "How close are
you to version 72" Based on the answers, it could ask the best one to copy itself. This
practice of creating new objects by copying an existing one is documented as the Pro-
totype pattern.

Notice that the ProducerFactory does not depend on the concrete implementations.
Instead, it has a list of objects whose classes implement the | ConcreteHtrnl Producer
interface.

Let'sreconsider the earlier example in which we added a table to a page. Thistune,
let'sassumethat the HTML isintended for an Internet Explorer 4.0 browser. Theview

Design for HTML Production 333

PageProducer

+ addHtmlProducer()
+ getHtml()

PageProducerNS40

PageProducerlE40
T e

|
|
|
I
I
I
|
|
I
i
I

Netscape4OFactory AbstractFactory
+ getTableProducer() *‘> + getTableProducer()
+ getPageProducer() + getPageProducer()

TableProducer

+ setProducerForCell()
+ getHtml()

TableProduceriE40

TableProducerNS40
| PRAE S r e |
e T e T

Figure 125 Abstract Factory for browser-specific HTML producers.

object uses the ProducerFactory to obtain a TextProducer, an ImageProducer, a

TableProducer, and a PageProducer. The text and image producers are added to the

table, and the table to the page, as before. The view object does not need to construct

the producers directly. Instead, it delegates this chore to the ProducerFactory. The
diagramin Figure 127 shows this scenario.

All of the logic for determining the correct concrete producer and returning a new
instance of that concrete producer is left to the ProducerFactory. When the view asks
the factory for a TextProducer, the ProducerFactory uses the browser information to
find amatch. Since there is only one TextProducer, this decision is smple. Notice that,

334 Enterprise Java with UML

<<Interface>>
ProducerFactory IHtmIProducer

+ getHtml()

<<lInterface>>
IConcreteHtmIProducer

+ supportsBrowser(name : String, version : float)
+ distanceFromVersion(name;String, version : float) : float

£ N
< 1 \
7= | A
- N
¥ | B
4 | \
1 N
PageProduc
erGeneric TableProducerlE40 ‘ TableProducerNS40
[!
[]
PageProducer TableProducer
+ addHtmlIProducer() + setProducerForCell()
+ getHtml() + getHtml()

Figure 126 Criteria-based Factory.

from the view's perspective, thereturned object isa TextProducer, not a TextProducer-
Generic. Views do not need to know the specific implementation. Next, the view asks
for aTableProd ucer. The ProducerFactory knowsit hastwo candidates, soit asksthem
if they support the browser name, which in this case would be "IE" for Internet
Explorer. Since only one candidate answers appropriately, it creates a copy and returns
it. Theview uses the PageProducer and TableProducer interfaces to populate the view.
Figure 12.8 shows this sequence.

Reevaluation

Have we met the first design goa? View developers can create HTML page;
knowing HTML; and the logic for finding the most suitable concrete produc

Design for HTML Production 335

Tl LJL_‘IL_JL___I[_

|
|
|

|
2. setText(text) } ? |
| \ | V
L—j—ﬁrxﬂww‘r-ﬁ\
4. setsourck(source) > | ! D
| I 4 I
I L l I
1 .
o set o, col,broducen) ‘ : Q
T 5y 8 'D Add Text | |
| | | |
7. setProducerForcell(row, col,producen) | 1
i i Add Image I |
| [‘ Im . | |
I | | 1
1
I
|
1
|
I
{

I
1t) ¢
Add Table
1
3
|
|

| | |
3 i)
I | |
| | |
| | |
{ { |

Figure 12.7 Using the ProducerFactory class.

hidden in the ProducerFactory. The current design achieves the first god of keeping
HTML productionsmple.

Beforewe forge ahead, weneed to make surethat our design changes have not com-
promised our previously realized goals. It seems that, from the view developer's per-
spective, we have simply replaced the direct instantiation of producers with requests
to the ProducerFactory. The flow for retrieving HTML is unchanged. Goal 2 was met
without losing any ground.

Design for Goal 3: Support Preferences

To meet the third godl, support user preferences, we need to look at how preferences
arecaptured and how they are applied to different lements.

Preferences Alternatives

There are two major alternatives for capturing preferences. First, we could design a
separate class for each type of preference. Table preferenceswould be encapsulated in
aTablePreferenceclass, with specific methodsfor setting colors, cell borders, and spac-
ing. Every element would have acorresponding preference class, and every preference
would have acorresponding access method. For example, the framework might deter-
mine thebackground color of the page with the following code:

9¢g

: ProducerFactory.

pa:
TableProducerlE4Q

L l.g version)

]

Figure 12.8 Finding the best producer.

»l
>

1.1. getType()

|
|
|
|
'
I
|
I
|
I
I
|
|

Design for HTML Production 337

String colorName = pageProperties.getBackgroundColor () ;

The other design alternativeis to include asimplelist of name and value pairsin a
javauutil.Properties object. For example, page.backgroundColor = LightGray sets the
background color to gray. In order to retrieve the preference, the framework code
would access the properties object with this code:

String colorerae = theProperti es. get Property(" page. backgroundcl or");

Trade-offs

The first approach uses tht? compiler to protect against typing errors. For instance, the
compiler will catch an error such as pageProperties. getBsckgroundCol or. In the second
design, the equivalent error of:

String colorName = theProperties.getProperty ("page.bsckgroundColor");

compilesand runsfine. Unfortunately, it returnsanull Stringinstead of "LightGray."

Onthe other hand, thefirst designis rather cumbersome, with potentially hundreds
of incredibly simple preference access methods. Loading or editing the preference
objectswill be complicated since each preference hasits own method- Using the stan-
dard Properties class allows usto easily load preferences from files.

Also, in order to add a new preference type or even a new preference to an existing
type in the first design requires changes to the preference class, the code that loads the
preferenceclass, and theframework codethat readsthe preference. A similar changein
the second design will require only a change in the preference data and in the frame-
work code that uses the preference.

After considering both possibilities, | prefer the second method. Though it does
introduce some potential for errors, | like the simplicity and its use of a standard Java
idiom. We can add a method in the IHtmIProducer, as shown in Figure 129, that uses
a Properties object to hold preferences. Itis up to each concrete implementation of the
interface to use the preferences appropriately. Composite objects must propagate the
Properties object to their child IHtmlProducer objects.

IETETE Keeping the preferences in a properties file works well for simple or
moderately complex preferences. However, if you have very complex
preferences, with different values for the same preference for different types of

<<Interface>>
IHtmIProducer

+ getHtml() : String

+ setPreferences(properties : Prop

Figure 12.9 HtmlProducer interface

338 Enterprise Java with UML

producers, the properties become very difficult to read. One solution is to use
an XML file to hold the preferences. This lets you edit the preferences in your
favorite XML editor, which is a major advantage.

Design for Goal 4: Extensibility and
Encapsulation

In addition to the first three goals, we must ensure that the design can survive the tests
of time. Requirementsinevitably evolve over time, and aresilient system must accom-
modate them.

Encapsulation

Changeswithin the framework, excluding the public interfaces, must not be allowed to
propagate to the presentation layer that depends on it. The view package depends on
the generic HtmlProduction package with its generic HTML producers, but not on any
actual implementations.

To be really encapsulated, the generic HTML producers also should not depend on
their concrete implementations. This alows us to add new concrete implementations
or change existing concrete implementations without fear of cascading changes.
Remember, the ProducerFactory in the HtmlProduction package must pick the correct
concrete implementation for a given user and element. Does this mean that the Html-
Production package depends on the concrete implementations? Not necessarily, since
each concrete implementation implements the IConcreteProducer interface and the
ProducerFactory can use those methods to determine the best fit. All we need is a
way to register concrete producers with the factory. To do so, we add a method to the
ProducerFactory, as shown in Figure 1210. Notice that the addConcreteProducer
method does not introduce any dependency on the concrete implementations. The
only dependency is on the | ConcreteProducer interface.

Let's use table production to look at the dependencies between classes. Notice
that the SomeServlet class depends only on the ProducerFactory and the abstract pro-
ducer classes in the HtmlProduction package. Neither of these classes has any depen-
dencies on the concrete producer classes. Notice that each concrete producer
implements the IConcreteProducer interface and recall from Figure 126 that each
concrete producer extends an abstract producer dass Figure 1211 shows these
relationships.

Evaluation of Package Dependencies

The class dependencies can be consolidated into package dependencies. The concrete
implementation packages for Internet Explorer and Netscape Navigator depend on
the HtmlProduction package, since they implement interfaces from that package.
The HtmlProduction package does not depend on the concrete implementations, since
they register using the IConcreteProducer interface; and each extends one of the
generic producers. This demonstrates how changes can ripple from one package
to another. Notice that changes to the generic classes and interfaces will require

Design for HTML Production 339
<<Interface>>
IHtmIProducer
+ getHtml() : String
+ setPreferences(properties : Properties)

A

TableProducerlE4Q

TableProducerNS40

<<lnterface>>
IConcreteHtmlIProducer

+ supportsBrowser(name : String, version : float)

+ distanceFromVersion(name;String, version : float) : float
+ createCopy() : Object

+ getType() : String

==~~~ [TextProducerGeneric

ImageProducerGeneric |

| ProducerFactory f

+ getPageProducer(name : String, version : float) : PageProducer

+ getTableProducer(name : String, version : float) : TableProducer
+ getTextProducer(name : String, version : float) : TextProducer

+ getlmageProducer(name : String, version : float) : ImageProducer
+ addC pe : 1C; tmiProducer)

Figure 12.10 ProducerFactory with producer registration.

the concrete implementations to evolve to meet the changes. The converseis not true!
Concrete implementations may be created, destroyed, and modified without impact-
ing the HtmlProducrion classes and interfaces. The last god, extensibility and encap-
sulation, has been met. Figure 1212 shows the package dependencies for HTML
production.

Filling in the Details
Now that we have ahigh-level design that meets our high-level goals, we need to flesh

out the details. Our godl for this section is to develop detailed sequence diagrams and
class diagrams for several screens in the user interface prototype.

340 _ Enterprise Java with UML

PageProducer
(from HtmiProduction)

+ addHtmiProducer)
+ gethtml()
+seflitle()

ImageProducer
(from HtmIProduction)

+ setSource()

TableProducer
(from HtmlProduction)
T T

+ setProducerForCell()
+ getHtml()

(e}

TextProducer
(from HtmlProduction)

+ setText()
+ getHtml()

I
|
1
I
I
I
|
|
|

v

ProducerFactory
(from HtmlProduction)

+ getPageProducer()

+ getTableProducer()

+ getTextProducer()

+ getimageProducer()
+addConcreteProducer()

+ getTabularinputFormProducer()

TextProducerGeneric
(from GenericProducers)

ImageProducerGeneric

(from GenericProducers)

gl

TableProducerNS40

(from NS40Producers)

<<Interface>> X
IConcreteHtmiProducer
(from HtmIProduction)

(from IE40Producers)

+ supportsBrowser(

Figure 12.11 Class relationships.

+ distanceFromVersion()
+ createCopy()
+ getType()

Design for HTML Production 341

IE40Producers

GenericProducers

NS40Producers
\
\ /
\ /
\ /
%
\ 7
8 b
2 /
\
A, /
3 v 7
SomeUl HtmiProduction

Figure 1212 Package dependencies

Perfect initial designs are as common as perfect people. Itis
important to remember that you will always discover some flaws in your
design, and identify some areas that you simply had not considered. Additional
classes will be discovered. Interfaces will be modified. It is far more efficient to
discover the inevitable issues in a modeling tool. Code has inertia, too; once
code is written, it tends to stay written.

Login Screen

From the login screen, it is dear that wewill need aquick way to produce very smple
text input forms. The form consists of input boxes and a Submit button. Bach input box
needsalabel, aname, and aninitial default value. The Submit button requiresalabel-
Figure 1213 shows an input form and anew generic producer class.

The sequence diagram in Figure 12.14 shows how a LogiriServlet object builds this
HTML. The LoginServlet object obtains a TabularlnputFormProducer object from the
ProducerFactory. It then configures it with the correct submission target and the cor-
rect submission label. Next, it adds fields for the username and the password. A simi-
lar process is used to build and configure a page. The TabularlnputFormProducer is
added to the PageProducer, and the preferences are set on the PageProducer.

It isimportant to note how little the view needs to know. There is no knowledge of
HTML or browser versions or any nasty details in the servlet. All inall, it looks likea
nice payoff for our hard work in high-level design.

Nevertheless, there are still questions to answer: How does an actual concrete Tabu-
larlnputFormProducer do its job? Should it independently produce the HTML, or
should it use internal FormProducer and TableProducer objects? Figure 1215 shows

342 Enterprise Java with UML

+ setSubmitTarget(target : String)
+ setSubmitLabel(label : String)
+ addField(label : String, name : String, initialValue : String)

Figure 12.13 Login form and TabularinputFormProducer.

‘ loginForm : H : PageProducer H
TabularinputFormProducer

hi % version)

2. setSubmitTarget(target) !
3. setSubmitLabel(label)

4. addField(label, name, initialValue)

5. addField(label, name, initialValue) :IJJ

6. getPag: version)

%

8. addt)

9. setPreferences(propertles)

i
I

9.1, getPreferences(properties)
i
I
i
I
i
|

y

J :

1
|
I
I
1

Figure 12.14 Building HTML for a Login form.

Design for HTML Production 343

R : S .
LoginSendet r—— [i T
| ol vt |
I

L

| 1. getTabularinputformProducer(name, version) |

1.1. getType() |

| 12 supportsBrowser(nameversion) T

| 1.3, createCopy) |

1.3.1. getFormProducer(name,version)

FORM PRODUCER
e SORBRRODUCER. ., >

1.3.2. getTableProducer(nameversion)

T NI GR -y !
133, addHtmIProducer(producer)

Add the table fo the form |
|

|
1
I
|
!
|
|
|
| 1

1
I
I
!
1
1
1
|

2
T
|
I
|

Figure 12.15 Building a TabularinputForm.

how the TabularlnputFormProducer is constructed. For this example, assume that the
concreteproducer isaTabularl nputFormProducerGeneric. Thefactory createsacopy of
aPrototype object. (See Prototype pattern in [Gamma, et a. 1995].) In the construction
of the copy, a table producer is added to a form producer. The TabularlnputFormPro-
ducerGeneric contains aFormProducer and adds a Tabl eProducer to the FormProducer.
Notice that the Tabular TnputFormProducerGeneric gets concrete producers the same
way everything else does, through the ProducerFactory.

Many messages from the view to the TabularlnputFormProducer are passed along
to other objects. When the view adds a field, the TabularTnputFormProducer adds a
corresponding text label and a text field to the TableProducer. Also, notice in Figure
12.16 how the setPreferences and getHtml messages cascade down from the Tabular-
InputFormProducer to the FormProducer and on to the TableProducer, because
TableProducer is a child of the FormProducer. Then, the messages cascade from the
TableProducer to the TextProducer and TextFi eldProducer since they are children of
the TableProducer. This cascading effect istypical of the Composite pattern.

As sequence diagrams become complex, we use notes to annotate them. For exam-
ple, one method may be called for two very different reasons. Notes alow ustotie the
low-level method calls together. In many cases, the notes may resemble pseudocode
that describes the intent behind a series of methods calls.

Figure 1217 shows how each TabularlnputFormProducer object is associated with
a single FormProducer object and a single TableProducer object. It aso highlights
the way the TabularlnputFormProducer depends on the other producers, while not
bothering to keep track of them. It is clear that many objects, including the views and
any TabularlnputFormProducer objects, will need a reference to a ProducerFactory
object. It is dso clear that a single factory will be sufficient. We can implement this by

344 Enterprise Java with UML

33, getTextFeldProducer(name, versior)

e ‘ TabularnputformProducer H ihomProducer | [TableProducer TeaFieldProducer i TesProducer || Broducerfactory
| | |
| | 1
. seSubmitTrgetarget) I i i
i
| < i
2 setsubmitabel(abe) 1 i
| T
5 addrild(abel, name, niaelue) 1 31 getfentroducer(ame,vrsion)
st usemame | 32 sevenety
i

e

54, setvame(name)

Esa X
;
35 seProduceriorCelltom o, producen) b
TR,
37 seProductarcellion o producen L) " |
.
4 ol rame o
e e R T
U 1
T |
B s, |
"o
o
e)
i “H
1 i
L | i
u i i i
U I I 1 I
1 1 I I 1
T 6. gethtmig 1 i i 1 1
Loasd sign | e i i
SR o s11 getmi() | 1
|
61,12 getitmi()
|
U

i

T
1
|

Figure 12.16 Adding to a TabularinputForm.

using the Singleton pattern. Specifically, we add a static getFactorySingleton method to the
ProducerFactory class.

Evaluation

It seems logical to have the TabularlnputFormProducer use the TableProducer. However,
there is one drawback: Normal tables may look very different from the simple input forms.
For instance, a simple input form blends in with the screen. Wewould not want borders or a
different background color to draw attention to the table. Data tables, on the other hand, need

ProducerFactory

+ getPageProducer()

+ getTableProducer()

+ getTextProducer()

+ getimageProducer()

+ getFormProducer()

+ addConcreteProducer()

+ getTabularlnputFormProducer()
+ getTextFieldProducer()
<<class>> + getFactorySingleton()

B
|
|
[
1

TabularinputFormProducer

+ setSubmitTarget()

Design for HTML Production 345

TableProducer

+ setProducerForCell()

+ setSubmitLabel ()
. tHtml
+ addField() Hestinl)
/
/ \
/ \
Y \
\
| N FormProducer
TextFieldProducer TextProducer |
+ bmitTarget()
+ setSubmitLabel
i Setiamen) siseiedl) iy addHlmIProduc(:r()
+ setinitialValue() + getHtmi()

Figure 12.17 Classes for the TabularinputFormProducer

to clearly distinguish rows and columns. Since we are merely using the table to get the
layout right, we may need different preferences for the internal TableProducer. So, the
preferences must be altered by the TabularlnputFormProducer before they are passed

down to the TableProducer.

Time Entry

Our next chalenge isthe Timecard formitself. Asyou can seein Figure 1218, thisform
consists of text and text entry fields in a table. We dready have producers for the
enclosing table and the text. It is a fairly simple exercise to add TextProducers and
TextFieldProducers to a TableProducer. Because there is no new behavior within the

346 Enterprise Java with UML

Haene Fred

Date Range: March 6, 2000 to Barch 12, 2000

I Monday | Tuesdey [Wednesday| Thursday | Fridsy | Sarwday | Swday
| Charge Code i
i s 7 8 10 n 12
K Fﬁ—_ Fe o [
] K] ;o.o foo -0 e X
fone sfps s b |oo % oo)
> o 0 oo -0
oo o)
pe_dee ko e
K] o [Fe o

Figure 12.18 Timecard form.

framework, and because the use of the framework for this scenario is shown in Chap-
ter 13 "Design for the TimecardU| Package” | omit here the sequence diagram and

class diagram.

Implementation

The following section shows sample implementations for each class in the design.
Based on our design goals, we created a design to meet these goal's while supporting
the use cases. This design provides a foundation for the implementation by specifying
the responsibilities for each class and the relationships between classes. Whilethere are
till many decisions left for implementation, the design provides a coherent structure

during implementation.

IHtmIProducer.java

Thereis no difference between the design interface and itsimplementation, asyou a
see from the following code. If only &l implementations were this straightforward.

package com.wiley.compBooks.EJwithUML.HtmlProduction;

import java.util.*;

Jrx

Design tor HTML Production 347

The IHtmlProducer interface defines the methods provided by
all classes that produce HTML in the framework. This framework
uses the Composite pattern, and

IHtmlProducer is the common interface that allows you to treat
Composite and

leaf objects the same.
i
public interface IHtmlProducer

{

/** Bnswers the formatted HTML for this producer. */
public String getHtml();

A% B % W W %

/** Sets the preferences for this producer. */
public void setPreferences (Properties preferences)

Combo BoxProducer.java

The ComboBoxProducer is an abstract class that provides some concrete and final
behavior. It has public final methods that alow a client to set the producer's prefer-
ences, set the name of the combo box, aiid add values for the combo box. The access
methods for thisdataare al protected and final. This means that any client can use the
set and add methods to configure the producer. Since the methods are final and the
underlying instance variables are private, subclasses of ComboBoxProducer cannot
change the underlying dataor theway it isheld. Subclasses only override the getHtm!
method. Any other changes, such as adding a new method, will not be visible through
the base ComboBoxProducer class, and therefore would be useless within the frame-
work.

It is considered good practice to narrowly define the responsibilities of the sub-
classes and enforce these decisions through the use of final methods and private data.

package com.wiley.compBooks .EJwithUML. HtmlProduction;

import java.util.*;

*
* The ComboBoxProducer abstract class is a configurable HTML

* producer

* for HTML combo boxes. It captures the data that is needed for
* combo boxes in general, but does not build them. This is left
* to the concrete implementations.

public abstract class ComboBoxProducer implements IHtmlProducer
{

private Properties preferences;

private Collection values = new ArrayList();

private String name;

548 Enterprise Java with UML

/** Bnswers the HTML for this producer. */
public abstract String getHtml();

/** Sets the preferences of this producer. */
public final void setPreferences (Properties preferences)

{

this.preferences = preferences;

}

/** Bnswers the preferences of this producer..*/
protected final Properties getPreferences ()

return this.preferences;

)

/** Sets the name of the combo box. */
public final void setName (String name)

1

this.name = name;

}

/** hnswers the name of the combo box. */
protected final String getName ()

return this.name;

)

/** Adds a value to the combo box. */
public final void addValue(String value)

{

this.values.add(value) ;

)

/** Answers the values for the combo box. */
protected final Iterator getvalues()

return this.values.iterator();

)

Form Producer.Java

Like ComboBoxProducer, FormProducer is an abstract class that provides some con-
crete and final behavior. Its final methods and private data encapsulate the configura-
tion of a combo box. Subclasses must override getHtml to provide browser-specific
behavior.

Client objects can add any object that implements IHtmlProducer to the Form-
Producer's running list of producers through the addHtmlProducer method. This is
what makes the FormProducer a Composite.

Design for HTML Production 349

Notice that aprivate ArrayList is used to keep the HTML producers in order.
package com.wiley.compBooks.EJwithUML.HtmlProduction;
import java.util.*;

Jen
* The FormProducer abstract class is a configurable Composite
* HTML producer for HTML forms. It captures the data that is
* needed for forms in general, but does not build them. This is
* left to the concrete implementations.
*
public abstract class FormProducer implements IHtmlProducer
{
private String submitTarget;
private Collection producers = new ArrayList();
private Properties preferences;
private String method = "POST";

/** Anewers the HTML for this producer. */
public abstract String getHtml();

/** Sets the submit target for the form. Must be a valid url.*/
public final void setSubmitTarget (String target)

{

this.submitTarget = submitTarget;

/** Sets submission method to GET or POST. A value of true
* indicates POST.*/
public final void setPostMethod (boolean post

{

this.method = (post) ? "POST":"GET";

/** Adds a HTML producer to this Composite. */
public final void addHtmlProducer (IHtmlProducer producer)

{
}

producers.add (producer) ;

/** Sets the preferences. */
public final void setPreferences(Properties preferences

{
}

this.preferences = preferences;

/** Bnswers the submission target. */
protected final String getSubmitTarget ()

350 _ Enterprise Java with UML

return this.submitTarget;

)

/#** Bnswers the IHtmlProducers that have been added to this
+ Composite.*/
protected final Iterator getProducers ()

{

return this.producers.iterator();

)

/** Answers the preferences.*/
protected final Properties getPreferences()

{

return this.preferences;

}

/** Answers the submission method. */
protected final String getMethod()

return this.method;

PageProducer.java

Subclasses are limited to overriding getHtml. Like FormProducer, PageProducer is a
Composite with producers added through the addHtmlProducer method.

Thereisno limit to the number of producers, and they are kept in the order in which
they are added.

package com.wiley.compBooks . EJwithUML.HtmlProduction;
import java.util.*;

s
* The PageProducer class is a Composite HTML producer for pages.
“f

public abstract class PageProducer implements IHtmlProducer

private Collection producers = new ArrayList();
private String title;
private Properties preferences = new Properties();

/** Bnswers the HIML for this producer. */
public abstract String getHtml();

/** Sets the title of this page. */
public final void setTitle(String title)

Design for HTML Production 351

this.title = title;

}

/** Adds an IHtmlProducer to this Composite producer. */
public final void addHtmlProducer (IHtmlProducer producer)

{

producers . add (producer) ;

}

/** Sets the preferences for this page and its children. */
public final void setPreferences (Properties preferences)

this.preferences = preferences;

i

/** Bnswers the HTML producers for this page. */
protected final Iterator getProducers ()
{

return this.producers.iterator();

}

/** Answers the title for the page. */
protected final String getTitle()

return this.title;

}

/** Answers the preferences for this page. */
protected final Properties getPreferences ()

return this.preferences;
}
}

SubmitButton Producer

As always, subclasses are limited to overriding the getHtml method. SubmitButton-
Producer provides the methods and attributes for storing the label and preferencesfor
the actual concrete producer. Notice that the attributes are private, so the subclasses
must access them through the public methods.

SubmitButtonProducer isnot aComposite.

package com.wiley.compBooks.EJwithUML.HtmlProduction;
import java.util.*;
Jn

*

* The SubmitButtonProducer class is a configurable HTML producer
* that produces a form submission button.

352 Enterprise Java with UML

7§
public abstract class SubmitButtonProducer implements IHtmlProducer
{

private String label;

private Properties preferences;

/** Bnswers the HTML for this producer. */
public abstract String getHtml();

/** Sets the label for the submit button. */
public final void setSubmittLabel(String label

this.label = label;

}

/** Sets the preferences for this producer.*/
public final void setPreferences(Properties preferences

this.preferences = preferences;

)

/** Answers the label of the submit button. */
protected final String getLabel()
{

return this.label;

)

/** BAnswers the preferences of this producer. */
protected final Properties getPreferences()

return this.preferences;
}
}

TableProducer.java

TableProducer restricts subclassesto overriding the getHtml method. TableProducer is
a Composite HTML producer. HTML producers are added to the TableProducer
through the setHtml ProducerForCell method, which specifiesaposition and an IHtml-
Producer. Producers are kept in SortedMaps, with one SortedMap per row. This keeps
the producersin order by column index. Each SortedMap for arow iskept in another
SortedMap, so that the rows stay in order by row index.

Subclasses retrieve producers by row and column index. This simple interface has
one shortcoming. Notice that the subclass is free to request a producer for a cell that
doesnot exist. Therefore, it must be prepared to receive null asaresponse.

It isimportant that this fairly complex logic be kept in the base class. This encapsu-
lates complexity and ensures that all subclassesbehave in the same way.

package com.wiley.compBooks.EJwithUML,HtmlProduction;

Design for HTML Production 353

import java.util.*;

s
* The TableProducer abstract class is a configurable Composite
* HTML producer for HTML tables. It captures the data that is
* needed for tables in general, but does mot build them. This is
* left to the concrete implementations.
#§
public abstract class TableProducer implements IHtmlProducer
{
private SortedMap rows = new TreeMap();
private Properties preferences;
private int maxRow = 0;
private int maxColumn = 0;

/** Answers the HTML for this producer. */
public abstract String getHtml();

/** Sets the producer for the specified cell. */
public final void setHtmlProducerForCell (int row, int column,
IHtmlProducer producer)

Integer rowKey = new Integer(row);
Integer columnKey = new Integer(column);

this.maxRow = Math.max (row, this.maxRow);
this.maxColumn = Math.max(column, this.maxColumn);

if (!rows.containsKey (rowKey))

{

rows.put (rowKey, new TreeMap());

SortedMap currentRow = (SortedMap) rows.get (rowKey);
currentRow.put (columiKey, producer) ;

/** Sets the preferences for this producer. */
public final void setPreferences(Properties preferences)
{

this.preferences

preferences;

/** Bnswers the producer for the specified cell. */
protected final IHtmlProducer getHtmlProducer(int row,
int column)

IHtmlProducer producer = null;

354 Enterprise Java with UML

Integer rowKey = new Integer(row);
Integer columnKey = new Integer(column);

if (rows.containsKey(rowKey))
{
SortedMap currentRow = (SortedMap) rows.get (rowKey);
if (currentRow.containsKey (columnKey))
{
producer = (IHtmlProducer) currentRow.get (columnKey);
}
}

return producer;

/** Bnswers the greatest row index. */
protected final int getMaxRowIndex ()

return this.maxRow;

}

/** BAnswers the greatest column index. */
protected final int getMaxColumnIndex ()
{

return this.maxColumn;

}
}

TabularlnputFormproducer.java

TabulailnputFormProducer is quite different from the other producers. It is a Com-
posite, but it mostly constructs itself. Its constructor obtains a FormProducer, a
TableProducer, and SubmitButtonProducer from the ProducerFactory. These arewired
together to form the TabularlnputFormProducer. Unlike the other producer dasses, its
getHtml method is not abstract. Subclasses do not override the getHtml method.
Instead, the getHtml method in TabularlnputFormProducer produces formatted
HTML, in part by calling the getHtml method on its FormProducer.

package com.wiley.compBooks.EJwithUML.HtmlProduction;
import java.util.;
S

* TabularinputFormProducer is a self-constructing Composite. It
* obtains s from the Pr ory, just like any

* other cbject.

Design for HTML Production 355
e
public abstract class TabularInputFormProducer implements IHtmlProducer
{

private ProducerFactory factory =
ProducerFactory.getFactorySingleton() ;

private FormProducer formProducer;

private TableProducer tableProducer;

private SubmitButtonProducer submitButtonProducer;

private Properties preferences;
private int rowIndex = 0;

public TabularInputFormProducer ()
{
String browserName = this.getBrowserName () ;
float br rVersion = this.getBr

rVersion() ;

this.formproducer = factory.getFormProducer (browserName,
browserVersion) ;
this.tableProducer =

factory.getTableProducer (br
this.submitButtonProducer =

factory.getSubmi tButtonPr

ducer (br

this. formProducer.addHtmlProducer (this.tableProducer) ;
this. formProducer.addHtmlProducer (this. submitButtonProducer) ;
}

/** Answers the HTML for this producer. */
public final String getHtml ()
{

StringBuffer buffer =

= new StringBuffer();
buffer.append (“\n<!--" +this+ "-->\n");

buffer.append (this. formProducer.getHtml ()) ;

return buffer.toString();

/** Adds a labeled input field.*/

public final void addField(String label, String name,
String initialvalue)

{

string br

- this.getBr j#
float browserVersion = this.getBrowserVersion() ;

TextProducer textProducer
factory.

roducer (br
textProducer.setText (label) ;

+ br rVersion) ;

TextFieldProducer fieldProducer =

356 Enterprise Java with UML

fieldProducer.setName (name) ;
fieldProducer.setInitialvValue (initialvalue);

this.tableProducer.setHtmlProducerForCell (this.rowIndex, 0,
textProducer) ;
this.tableProducer.setHtmlProducerForCell (this.rowIndex, 1,
fieldProducer) ;
this.rowIndex++;

/** Sets the submit label for this TabularInputFormProducer. */
public final void setSubmitLabel (String label

{

this.submitButtonProducer.setSubmittLabel (label) ;

/** Sets the submit target for this TabularInputFormProducer. */
public final void setSubmitTarget (String target
{

this. formProducer . setSubmitTarget (target) ;

)

/** Sets the preferences for this producer. */
public final void setPreferences(Properties preferences
{
this.preferences = (Properties) preferences.clone();
this.customizePreferences (preferences) ;

this.formProducer.setPreferences (preferences);

}

/** Bnswers the name of the browser for which the producer is
tailored. */
protected abstract String getBrowserName () ;

/** Answers the version of the browser for which the producer
is tailored. */
protected abstract float getBrowserVersion();

/** Customizes the properties so that the Composite producers
look right. */
protected abstract void customizePreferences(Properties
properties) ;

TextFieldProducer.java

As always, subclasses are limited to overriding the getHtml method. TextFieldPro-
ducer contains the attributes and methods needed to set the name and initial value of
the text field, as well as the preferences. Since these attributes are private, the sub-
classes must access the attributes through the public methods.

Design for HTML Production 357

TextFieldProducer is not a Composite.
package com.wiley.compBooks . EJwithUML. HtmlProduction;

import java.util.*;
Jee
*
* The TextFieldProducer class is a configurable HTML producer
* that produces a text field.
il
public abstract class TextFieldProducer implements IHtmlProducer
{
private Properties preferences;
private String name;
private String initialValue

/** Answers the HTML for this producer. */
public abstract String getHtml();

/** Sets the preferences for this producer. */
public final void setPreferences (Properties preferences

{

this.preferences = preferences;

/** Sets the name of the TextField*/

public final void setName(String name
this.name = name;

/** Sets the initial value of the text field*/

public final void setInitialValue(String initialvalue)

{

this.initialValue = initialValue;

/** Answers the properties of this producer. */
protected final Properties getPreferences(

return this.preferences;
/** Answers the name of the text field. */
protected final String getName ()

return this.name;

/** Answers the initial value for the text field.*/
protected final String getInitialValue()

358 Enterprise lava with UML

{
return this.initialvalue;
}
}

Text Prod ucer.java

As aways, subclasses are limited to overriding the getHtml method- TextProducer
contains the attributes and methods needed to set the text of the text, as well as the
preferences. Since these attributes are private, the subclasses must access the attributes
through the public methods.

TextProducer is not a Composite.

package com.wiley.compBooks . EJwithUML. HtmlProduction;
import java.util.*;

Jex
* The TextProducer class is a configurable HTML producer that
* produces arbitrary HIML.

b

public abstract class TextProducer implements IHtmlProducer
{

private String text;

private Properties preferences;

/** Bnswers the HTML for this producer. */
public abstract String getHtml();

/** Sets the text for this TextProducer. */
public final void setText (String text)
{

this.text = text;

)

/#* Sets the properties for this producer. */
public final void setPreferences (Properties preferences)

this.preferences = preferences;

)

/** Bnswers the properties for this producert/
protected final Properties getPreferences ()

return this.preferences;

}

Design for HTML Production 359

/** Answers the text for this producer. */
protected final String getText()

return this.text;
}
1

IConcreteProducer.java

|ConcreteProducer is asimpleinterface that allows the ProducerFactory to treat all reg-
istered concrete producers the same. It allows a concrete producer to reveal how suit-
ableit isfor acertain browser. It aso contains constants that i dentify different types of
producers.

package com.wiley.compBooks.EJwithUML. HtmlProduction;

Jee
* The IConcreteProducer interface defines the methods needed to
* determine if a concrete producer is appropriate to produce
* HTML for a particular browser
Lk

public interface IConcreteProducer

/** Bnswers true if this concrete supports the browser.*/
public boolean supportsBrowser (String browserName
float version);

/** BAnswers how much older the input browser is compared to
* the producer.
* The formula is: (producer's version - input version). *
* So, newer input browsers may yield negative numbers. */
public float distanceFromVersion(String browserName
float version);

/** Answers the type of the producer, for example
* PAGE_PRODUCER. */
public String getProducerType();

/** Answers a copy of this producer. */
public Object createCopy();:

// Constants for producer types
public final static String PAGE_PRODUCER = "PAGE PRODUCER";
public final
public final static String TEXT_PRODUCER = "TEXT_PRODUCER";
public final static String FORM_PRODUCER = "FORM_PRODUCER";
public final static String SUBMIT_BUTTON_PRODUCER =
"SUBMIT_BUTTON PRODUCER" ;
public f£inal static String TEXTFIELD PRODUCER =

360 _Enterprise Java with UML

"TEXTFIELD_PRODUCER";

public final static String TABULAR_INPUT_FORM PRODUCER =
"TABULAR_INPUT_FORM_PRODUCER";

public final static String SELECTABLE_ TABLE DATA PRODUCER =
"SELECTABLE TABLE_DATA_PRODUCER";

public final static String RADIO_BUTTON_PRODUCER =
"RADIO_BUTTON_PRODUCER" ;

public final static String MENU_BUTTON_PRODUCER =
"MENU_BUTTON_PRODUCER" ;

public final static String COMBO_BOX_ PRODUCER =
"COMBO_BOX_PRODUCER" ;

ProducerFactory.java

ProducerFactory allows client objects to obtain the best concrete producer for a given
browser. For efficiency and convenience, it is a Singleton that is exposed through asta-
tic retrievd method. The static getFactorySingleton method makes sure that an
instance of ProducerFactory exists and returns a reference to the caller. Notice that the
constructor is private, so the Singleton pattern cannot be subverted.

Concrete producers are registered with the factory through the addConcrete-
Producer method. Any object that implements the | ConcreteProducer interface may be
registered. Since concrete producers are frequently configured, they cannot be shared
by different clients. When aclient requests a particular kind of producer, the Producer-
Factory determinesthebest match, then asksit to copy itself. The copy isthen returned
totheclient.

Thebest match for aparticular browser is determined by asking each registered con-
crete producer a series of questions. First, the concrete producer must be of the same
type, and support the browser. So, the ProducerFactory asks the concrete producer if it
supports the browser. Once the list is narrowed down to compatible producers, the
ProducerFactory determines which concrete producer is the best fit by asking each
producer how far it is from the specified version.

The same matching logic is used for all types of producers. The specific get method
simply casts the resulting producer to the specified type, and returnsiit.

package com.wiley.compBooks . EJwithUML.Heml Production;
import java.util.*;

Jxx
* The ProducerFactory finds the best HTML producer for a given

* browser.

ProducerFactory is a Singleton.
Producers are registered with the factory.
/

public £inal class ProducerFactory

{

Design for HTML Production 361

private Vector concreteProducers = new Vector () ;
private static ProducerFactory factory;

/** Answers a reference to a unique ProducerFactory object. See
* Gamma, et al. for Singleton pattern. */

public static ProducerFactory getFactorySingleton()

{

if (ProducerFactory.factory == null}

ProducerFactory. factory = new ProducerFactory() ;

)

return ProducerFactory.factory;

/** Private constructor to protect singleton status. */
private ProducerFactory ()

{

/** Registers a concrete producer with this factory. */
public void addConcreteProducer (IConcreteProducer producer)
{

this.concreteProducers.addElement (producer) ;

}

/** Enswers the best TableProducer for the browser, version.*/
public TableProducer getTableProducer (String browser,
float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer.TABLE_PRODUCER, browser
version) ;
return (TableProducer) match;

/** Bnswers the best TabularInputFormProducer for the browser
version.*/
public TabularInputFormProducer
getTabularInputFormProducer (String browser, float version

IconcreteProducer match =
findBestProducer (IConcreteProducer . TABULAR INPUT_FORM_PRODUCER,
browser, version);
return (TabularInputFormProducer) match;

/** Bnswers the best TextProducer for the browser, version.*/
public TextProducer getTextProducer (String browser

362 Enterprise Java with UML

float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer . TEXT PRODUCER, browser,
version) ;
return (TextProducer) match;

/** Bnswers the best TextFieldProducer for the browser, version. */
public TextFieldProducer getTextFieldProducer(String browser,
float version)

IConcreteProducer match =

findBestProducer (IConcreteProducer . TEXTFIELD_PRODUCER,
browser, version);

return (TextFieldProducer) matcl

/** Bnswers the best SubmitButtonProducer for the browser, version. */
public SubmitButtonProducer getSubmitButtonProducer (
String browser, float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer . SUBMIT_BUTTON_PRODUCER,
browser, version);
return (SubmitButtonProducer) match;

/** Bnswers the best SelectableTableDataProducer for the browser,
* version. */
public SelectableTableDataProducer
getSelectableTableDataProducer (String browser,
float version)

IConcreteProducer match =

findBestProducer (IConcreteProducer . SELECTABLE_TABLE_DATA_PRODUCE,
browser, version);

return (SelectableTableDataProducer) match;

/** Rnswers the best RadioButtonProducer for browser, version.*/
public RadioButt. getRadioButt: (string browser,
float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer.RADIO_BUTTON_PRODUCER,
browser, version);
return (RadioButtonProducer) match;

/** Mnswers the best MenuButtonProducer for browser, version.*/

Design tor HTML Production 363

public roducer (String browser,
float versionm)

IConcreteProducer match =
findBestProducer (IConcreteProducer .MENU_BUTTON_PRODUCER,
browser, version);
return (MenuButtonProducer) match;

/** Answers the best ComboBoxProducer for browser, version. */
public ComboBoxProducer getComboBoxProducer (String browser,
float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer . COMBO_BOX_PRODUCER,
browser, version);
return (ComboBoxProducer) match;

/** Answers the best PageProducer for the browser, version. */
public PageProducer getPageProducer (String browser, float version)

IConcreteProducer match =
findBestProducer (IConcreteProducer . PAGE_PRODUCER, browser,
version) ;
return (PageProducer) match;

/** Rnswers the best FormProducer for the browser, version. */
public FormProducer getFormProducer (String browser, float version) {
IConcreteProducer match =
findBestProducer (IConcreteProducer .FORM_PRODUCER, browser,
version) ;
return (FormProducer) match;

private IConcreteProducer findBestProducer(String type,
String browser, float version)

IConcreteProducer match = nul

Enumeration producers = this.concreteProducers.elements();
while (producers.hasMoreElements())
{
IConcreteProducer concreteProducer = (IConcreteProducer)
producers . nextElement () ;
if (concreteProducer.getProducerType () .equals (type))
{
if (concreteProducer.supportsBrowser (browser, version))
{

if (match null)

364 Enterprise Java with UMI

{

match = concreteProducer;

}

else

float newDistance =
concreteProducer.distanceFromVersion (browser, version) ;

float oldDistance =
match.distanceFromVersion (browser, version);

if {newDistance == 0.0)
match = concreteProducer;
}
else if (newDistance < 0.0 && oldDistance < 0.0 &k
newDistance > oldDistance)

match = concreteProducer;

else if (newDistance > 0.0 && oldDistance < 0.0 &&
newDistance < oldDistance

{
match = concreteProducer;
}
else if (newDistance < 0.0 && oldDistance > 0.0)
i
match = concreteProducer;
1
}
}
1
:
if (match != null)

return (IConcreteProducer) match.createCopy();

}

else

{

return null;

}

FormProducerGenericjava

FormProducerGeneric produces HTML forms that are not tuned to any particular
browser. It produces a lowest common denominator that works in any modern

browser.

Design for HTML Production 365

As expected, FormProducerGeneric overrides getHtml and al of the methods from
IConcreteProducer. In getHtml, FormProducerGeneric uses protected methods to
access the configurable propertiesthat are common to all FormProducers. These prop-
ertiesare used to build the actual HTML.

package com.wiley.compBooks.EJwithUML. HtmlProduction.GenericProducers;

import com.wiley.compBooks.EJwithUML. HtmlProduction. *;
import java.util.+;

s

The FormPr ic is a implementation of
FormProducer that produces HTML for all modern browsers.

It implements IConcreteProducer so that it can be registered
with the ProducerFactory.

/

public class eric extends For r implements
IConcreteProducer

{

public String getHtml ()

{

StringBuffer buffer = new StringBuffer();

buffer.append("\n<!--" +this+ "-->\n");
buffer.append ("<form method=" +this.getMethod()+
" action=\""+ this.getSubmitTarget()+ "\" >\n");

Iterator producerlterator = this.getProducers();
while (producerIterator.hasNext())
{
IHtmlProducer producer =
(IHtmlProducer) producerIlterator.next();
buffer.append ("" +producer.getHtml ()+ "\n\n")

}

buffer.append ("</form>"} ;

return buffer.tosString() ;
public String getProducerType ()

return IConcreteProducer.FORM PRODUCER;

}
public Object createCopy ()

FormProducerGeneric copy = new FormProducerGeneric();

366 Enterprise Java with UML

return copy;

}

public float distanceFromVersion(String browserName
float version

{

return Float.MIN_VALUE;

i

public boolean supportsBrowser (String browserName,
float version)

{

return true;
}
}

PageProducerGeneric.java

PageProducerGeneric is very similar to FormProducerGeneric. It too overrides
getHtml to produce lowest-common-denominator HTML. In addition to the config-
urable properties that are held in the superclass, PageProducer, PageProducerGeneric
also uses the preference data.

Looking at the short, but rather gross, code required to build HTML highlights the
wisdom in our decision to encapsulate HTML production to a few dedicated classes.
Picture a system with customized HTML production code and domain access for each
view. Now consider the differences between each developer's code and the effects of
time and changing requirements. Now aren't you glad we took some time for design?

package cora.wiley.compBooks.EJwithUML.HtmlProduction.GenericProducerg;

import java.util.*;
import com.wiley.compBooks.EJwithUML.HtmlProduction. *;

s

The PageProducerGeneric is a concrete implementation of
PageProducer that produces HTML for all modern browsers

* It implements IConcreteProducer so that it can be registered
* with the ProducerFactory.
b
public class PagePr ic extends Pag implements
IConcreteProducer

public String getHtml({)

StringBuffer buffer = new StringBuffer();

Design lor HTML Production 367

buffer.append ("\n<!--" +this+ "-->\n");

buffer.append ("<html><head><title>"+this.getTitle()+"</title></head>\n")

String backgroundColor =
if (this.getPreferences () .containsKey ("page.backgroundColor"))

{

backgroundColor = " bgcolor=" +

this.getPreferences () .get ("page.backgroundColor”) ;

}

buffer.append ("<body" +backgroundColor+ "s");
Iterator produceriterator = this.getProducers();
while (producerIterator.hasNext ()]
{
IHtmlProducer producer = (IHtmlProducer)
producerIterator.next () ;
buffer.append("\n<!-- Producers: -->\n");
buffer.append("" +producer.getHtml()+ "\n\n");

}

buffer.append ("</body></html>
return buffer.toString();

public boolean supportsBrowser (String browserName,
float version)

return true;

public float distanceFromversion(String browserName,
float version)

return Float.MIN_VALUE;

)

public String getProducerType ()

{

return IConcreteProducer.PAGE_PRODUCER;

1
public Object createCopy ()

PageProducerGeneric copy = new PageProducerGeneric() ;
return copy;
H
}

368 Enterprise Java with UML

TableProducerGeneric.java

Aswith the PageProducer, getHtml containstheinteresting code. It traverses each row
of the table, by caling the getHtmlProducer method defined in the superclass
TableProducer. Each producer is retrieved for a particular row index and column

index. As before, the TableProducer encapsulates a narrowly defined piece of fairly
complex logic.

package com.wiley.compBooks . EJwithUML.HtmlProduction.GenericProducers;

import java.util.*;
import com.wiley.compBooks.EJwithUML.HtmlProduction. *

s

*

* The TableProducerGeneric is a concrete implementation of

* TableProducer that produces HTML for all modern browsers.

* It implements IConcreteProducer so that it can be registered

* with the ProducerFactory.

3/
public class TableProducerGeneric extends TableProducer implements
IConcreteProducer

public String getHeml ()
{

StringBuffer buffer = new StringBuffer();

buffer.append ("\n<!--" +this+ "-->\n");
buffer.append("<table>\n") ;
for (int rowCtr=0; rowCtr <= this.getMaxRowIndex(); rowCtr++

{
buffer.append (" <tr>\n");
for (int columnCtr=0; columnCtr <=this.getMaxColumnIndex();
columnCtr++)

buffer.append (" <td>")
IHtmlProducer cellProducer = this.getHtmlProducer (rowCtr,

columnCtr) ;
if (cellProducer != null
{
buffer.append (cellProducer.getHtml ()) ;
)
buffer.append (" </td>\n")
)
buffer.append (" </tr>\n");

}

buffer.append ("</table>") ;

Design for HTML Production 369

return buffer.toString();

}

public boolean suppor x (String br 3
float version)
{
return true;
}
public float distanceFromVersion(String browserName,
float version)
{
return Float.MIN_VALUE;

}
public String getProducerType ()

return IConcreteProducer.TABLE_PRODUCER;

.
public Object createCopy()

TableProducerGeneric copy = new TableProducerGeneric () ;
return copy;

}
}

TabularinputFormProducerGeneric.java

TabularlnputFormProducerGeneric is interesting because it does not override
getHtml. Remember, TabularlnputFormProducer is a self-constructing Composite. It
builds itself from other producers, each of which has a concrete implementation of
getHtml. TabularlnputFormProducer's getHtml simply retrieves the HTML from its
internal FormProducer. There is nothing to override.

Notice that it does override the getBrowserName and get Browser Version methods
that were defined as abstract in the superclass.

package com.wiley.compBooks .EJwithUML. HtmlProduction.GenericProducers;

import com.wiley.compBooks.EJwithUML.HtmlProduction. *;
import java.util.*;

Jrx
* The TabularInputFormProducerGeneric is a concrete

* implementation of TabularInputFormProducer that produces HTML
* for all modern browsers.

* TabularInputFormProducerGeneric is a self-constructing

370 _ Enterprise Java with UML

* Composite. It obtains producers from the ProducerFactory, just
* like any other object.

* It implements IConcreteProducer so that it can be registered
* with the ProducerFactory.

]

public class TabularInputFormProducerGeneric extends
TabularInputFormProducer implements IConcreteProducer

public boolean supportsBrowser(String browserName,
float version)

return true;

public float distanceFromVersion(String browserName,
float version)

return Float.MIN_VALUE;

}

public String getProducerType ()
{

return IConcreteProducer.TABULAR INPUT_FORM PRODUCER;

}
public Object createCopy()

TabularInputFormProducerGeneric copy = new
TabularInputFormProducerGeneric () ;
return copy;

/** Bnswers the name of the browser for which the producer is
* tailored. %/

protected final String getBrowserName ()

{

return "GENERIC";

/** Bnswers the version of the browser for which the producer
* is tailored. */
protected final float getBrowserVersion()

{

return 1.0f;

/** Customizes the properties so that the Composite producers

Design for HTML Production 371

* look right. */
protected void customizePreferences (Properties properties)

{

}
}

The Next Step

In this chapter we defined godls for the design of our HTML production dass library,
designed to those goals, and finally implemented our design in Java. This design and
implementation is used as a foundation for Chapter 13 "Design for the TimecardU!
Package," which follows the same design and implementation process for the Time-
card system's servlet-based user interface.

Design: for the
TimecardUl Package

The TimecardUI package contains the serviets that provide a Web front end to the
Login and Record Time use cases of the Timecard application. These serviets obtain
and update system data by using the session beans in the TimecardWorkflow package,
and use the HTML production framework from theHtmlProduction package to format
the resultsinto HTML. The Sun Microsystems servlet class library is used to interpret
the HTTP request and to build the HTTP response.

Asinearlier designefforts, we must identify goalsand priorities, review prior steps,
design to goals, and apply design to use cases

Establish Design Goals

To develop a solid design, we need clear goals. Establishing clear gods before you
begin to design helps designers avoid hasty decisions. After all, design forces adevel-
oper to compromise or pick between competing goals. Establishing clear goasup front
makes this easier and less arbitrary.

Extensibility

User interfaces always evolve over time, as the users' needs mature. To keep the
code base small, each new feature should reuse existing components or introduce new

374 _ Enterprise lava with UML

modular components that can be used on other features. At times, users dso may
desire different appearances for particular screens or for the system as a whole. In
some cases, the customer might want to update the look of the entire site to emphasize
abrand or to produce afresh look.

Because of these two factors, the servletsin our system should never produce their
own HTML. Instead, this tedious activity is always delegated to the classes of
the HtmlProdaction framework. If a new feature cannot be created by combining
existing HTML, producers, then a new HTML producer must be added to the frame-
work. Once in the framework, the new producer becomes available for use in other
servlets. A new look for the entire site should be accomplished by changing the prefer-
ences and a few key producers, without altering the servlets themselves. Preventing
the servlets from producing their own HTML, and forcing them to depend on the
HTML production framework, keepsthe system smaller and easier to understand and
toextend.

Testability

The serviets tie together much of the system to provide direct benefit to the customer,
sothey arealogical place to start for system and integration testing. Whilefinal testing
involves Web browsers going against the Web server and the application server, it is
useful to test the servletsinside an integrated development environment. This allows
quick edit and rebuild cycles, and the use of a debugger. The alternative, whereby
devel opers recompile classes and restart or notify the servlet engine after each change,
is demoralizing and time-consuming. If the servlets are testable outside of the serviet
engine, developers can perform independent and isolated load testing, which is useful
to determine scalability and to locate performance bottlenecks.

Review Prior Steps

Before proceeding, we must review the architectural constraintsaswell astheanalysi
model.

Review Architectural Constraints

At the end of Chapter 9, "Software Architecture,” we determined that the TimecardU!
dependsdirectly onthe HtmlProductkm package and on the TimecardWorkfl ow pack-
age. It must not directly depend on any other package in the system. Rather than
depend on the specifics of the HtmlProducers, it should depend upon the Producer-
Factory and the abstract producer classes. Also, TimecardUI must never directly access
any entity beans. In addition, no other package depends on the TimecardUI package.
Together, these restrictions help make the system more extensible and easier to under-
stand and to maintain. For example, even radical changesin the way datais stored or
inthebusinesslogic for vaidating timecardswill not affect the serviets, aslong asthey

Design lor the TimecardUl Package 375

GenericProducers

IE40Producers

(from HtmlProduction) (from HtmiProduction)
T
TimecardUl | P
X
! =
I
e T I
> N |
= | ~ \ NS40Producers
S 1 ~ (from HtmlProduction)
senvlethtip L Sy b
|
1 HtmIProduction
1
I
!
v
TimecardWorkflow
<<lInterface>>
b IillingSysteminterface
ok ~ ~ — J (from BillingSysteminterface)
BB Session |z — T
Beans } + openExportFile()
| + addCandidateEntry()
| + closeExportFile()
|
v Iy
- I
TimecardDomain |
) BillingSysteminterface
BB Entty &
Beans

Figure 13.1 Architectural constraints.

do not affect the public interface of the TimecardWorkflow session beans. Figure 131

shows the architecture asit affects the TimecardUI package.

Each use case dynamically builds several HTML pages and processes that areinput
from one or more HTML forms. Since page production and form processing aretightly
intertwined, it seems logical to encapsulate those tasks for each use case in a single
servlet. This resultsin two servlets: LoginServlet and RecordTimeServiet.

Review Analysis Model

In this step, we review the analysis model for the Login and Record Time use cases.

376 Enterprise Java with UML

Review Analysis Model for Login Use Case

The Login use case allows users to validate themselves to the system as a precursor to
any use of the system. The login use case hasone normal flow and two alternate flows.
The aternate flows show different ways that the user'sinformation can beinvalid.

Normal Flow (Analysis)

The sequence begins when the employee asks the Employ eeloginUI to display the
login form. The employee then uses the form to submit his or her username and pass-
word. The EmployeeloginU| asks the LoginWorkflow to validate the login informa-
tion. Since the LoginWorkflow does not have the information needed to perform the
validation, it usesthe UserLocator to find the User object, and theresulting User object
tofinally validate the logininformation. Figure 132 shows the sequence diagram from
the analysis model.

Alternate Flow for Invalid Password (Analysis)
Thesequencefor the alternateflow for aninvalid password beginswhen theemployee
asksthe EmployeeloginUI to display thelogin form. Theemployeethen usestheform

e
<<boundary>> <<control>> <<entity>> <<lifecycle>>
: Employeel ogin! : LoginWorkflow : User : Userlocatg
T T

I
I
1
1
1
]
|
I
1
|
1
|

| i
! 1
| i
! 1
I 1
| i

i i i

1 displayLoginForm() ! i

| L
i

| submitNameAndPassword() i ¢

—_——

i

|

validateLoginQ
1

findByName()
e _USEROBJECT _ _ _ __
validateLogin()
VALID

i 1
I

|
:> displayWelcomet

= |

N
|
[}
I;
|
|
|
|
1

Figure 13.2 Sequence diagram for normal flow of Login (analysis).

Design for the TimecardUl Package 377

to submit his or her username and password. The EmployeeloginUl asks the Login-
Workflow to validate the login information. Since the LoginWorkflow does not have
the information needed to perform the validation, it uses the UserLocator to find the
User object, and the resulting User object to finally validate the login information. In
this case, the User object responds that the user's information is invalid; the Employ-
eeloginU! displays an error message, and the sequence is complete. Figure 133 shows
the sequence diagram from the analysis model.

Alternate Flow for Unknown User (Analysis)

When the user is unknown, the sequence for the alternate flow begins when the
employee asks the EmployeeloginUI to display the login form. The employee then
uses the form to submit his or her username and password. The EmployeeloginUI
asks the LoginWorkflow to validate the login information. Since the LoginWorkflow
does not have the information needed to perform the validation, it uses the User-
Locator to find the User object. In this flow of events, no matching User object can be
found, so the LoginWorkflow responds that the user's information is invaid. The
Employeel ogintJl displays an error message, and the sequence is complete. Thereturn
value of invalid does not seem to convey the reason why the login information is

0

] <<boundary>> <<control>> <<enmy>> <<lifecycle>> |
; EmployeeloginUl : UserLocator
T T T
i i i i
1 1 1 1
1 1 i 1
| | i i
i i i i
EmployeeActor | | i
i i
displayloginForm() i
submitNameAndPassword() i
i
validateLogin() H
i
IindByName()]
»
|
! N QS_E'LOBJECJ ______ i
! validateLogin() : !
| e e | i
INVALID 1
S T i
INVALID. 1
SR i
i
i
> displayErrorMessage() !
| H
i i
i
i
|
i

|
1
I 1
1 | I
I I |
0 I 1 1
i | 1 1
I | i |

Figure 133 Sequence diagram for invalid password for Login use case (analysis).

378 Enterprise Java with UML

invalid to the EmployeeloginUl. Figure 134 shows the sequence diagram from the

anaysis model.

Participating Classes for the Login Use Case

(Analysis)

Theuser interface objects use L oginWorkflow objects. The resulting relationship needs
tobe an association, so that the user interface objects can reuse the same L oginWorkflow
object for login retries. The LoginWorkflow object uses a User object, but does not need
to remember it for future use; therefore, the resulting relationship is a dependency. The
LoginWorkflow object uses a UserLocator object and keeps it for future use, so the
resulting relationship is an association. These relationships are shown in Figure 135.

Review Analysis Model for Record Time Use Case

In the Record Time use case, an employee views his or her current hours, edits existing
hours, adds new hours, and optionally submits the timecard. The normal flow is the
only significant flow of eventsfrom auser interfacebased on user interface complexity

and processing.

<<boundary>>
: EmployeeLoginUl

<<control>>

oginWorkflow

J

<<entity>>
_User

<<lifecycle>>
: UserLocator

: EmployeeActor
displayLoginForm()

submitNameAndPassword()

validateLoginQ)

findByNameQ

> displayErrorMessage()

NulL
-

Figure 13.4 Sequence diagram for unknown user for Login use case (analysis).

Design for the TimecardUl Package 379

<<boundary>> <<boundary>>
inistrativeLoginUl EmployeeLoginUl
+displayLoginForm() +displayLoginForm()
+displayWelcome() +displayWelcome()
ord(

<<control>>
LoginWorkflow

+validateLogin()

’
”
s
’

<<entity>> <<entity>>
User UserLocator
~pas§word ' +findByName(
+validateLogin()|

Figure 13,5 Participating ¢

Normal Flow for Record Time Use Case (Analysis)

The sequence for the normal flow of events begins when the employee actor asks the
RecordTimeUI object to display hisor her current timecard. The RecordTimeU| object
passes the request aong to the RecordTimeWorkflow object, which finds the user's
current timecard and extracts the current timecard data. The RecordTimeU! uses this
raw data to build adisplay. The employee actor uses the display to update theentries.
TheRecordTimeUl sendsthe updated entriesback to the RecordTimeWorkflow, which
applies them to the current timecard. Figure 136 shows this sequence.

Design to Goals

Our design is fairly constrained, since we know that we will use serviets and the
HTML production classes. However, we must still consider our two gods: extensibil-
ity and testability.

Extensibility can be achieved by keeping each servlet well focused and by always
depending on the HTML production classes. If the desired functionality does not exist
within the HTML production class library, we must either create a new HTML pro-
ducer that can live within the library or wait for aHTML production developer to do

380 Enterprise Java with UML

<<entity>>
: Timecard

<<buundary>> <<control>> <<entity>>
RecordTlmeUl _: RecordTimeWorkflow _: User.

|
|
|
I
|
!
1
1
I
1
|

displayEntries()

getEntries()
e

T
1
1
1
i
)
I
I
i
i
i
I
i
)
1 i
| getCurrentTimecard() |
il o,

1
|
1
I
I
!
|
1
1
|
|
1
|
!

‘ getEnmes()

\
I
|
I
1
J
1
I 1
1 1
! 1
1 |
i |
1 |
) !
1 |
| |
1 |
|
|
I
|
J
1
|
|
I

1

updateEntries() | |
—— |
| i

|

| updateEntries()

1
\ .5
I |
i | |
‘ ; :

i : y
;> displayEntries() ! /
1 1
I |
| |
1 |
I |
I } I
! i !

{ %

. ; setEntries()]
l 1 1 1
i l} 1 1
i 1 1 1
I I I 1
I i i i
] f f i
I I I 1

Figure 13.6 Sequence diagram for normal flow for Record Time use case (analysis).

0. Cresting our own custom HTML production code that lives within a serviet is not
acceptable, asit gradually leads away from standardization and reusable HTML pro-
duction code.

Stressing testability determineshow we write each serviet. First of all, we want the
doGet method to be as small as possible. It should simply retrieve any parameters and
sesson data before calling private methods to perform any interesting logic. This
alows us to test the bulk of the servlet's functionality from a static main entry point,
perhaps even from the debugger of our choice. The code, compile, deploy, and test
cycleissignificantly moredifficult for most servlet enginesthan for an applicationin
an integrated development environment (IDE). It paysto minimize the amount of time
spent testing deployed servlet code.

Design for the TimecardUl Package 381

Design for Each Use Case

We need to create a design for both the Login and the Record Time use cases.

Create Design for the Login Use Case

Our design for the Login use case considers three major flows: building the empty
form, processing valid login data, and processing invaid login data.

Build the Login Form

Thefirst step isto build an empty loginformin HTML. Whileitiscertainly possibleto
usea static HTML page for this purpose, producing dynamic HTML for static pages
helps ensure the same look for all of the pages.

The LoginServlet knows to produce the empty form because the username parame-
ter isnot set in the HttpRequest object. Note that the servlet calls an internal method,
buildForm, to produce the form. Separating the actual form production logic makesit
eadier to test the use case inside of a debugger or within a performance test harness.

Next, a TabularlnputFormProducer is obtained from the ProducerFactory. Note
from the earlier HTML production design that TabularlnputFormProducer is an
abstract class. The actual object reference is aninstantiation of a class that extends Tab-
ularlnputFormProducer. Only the ProducerFactory knows which concrete implemen-
tation of TabularlnputFormProducer is used. We are protected from such details.

The submit target is set to the URL for the LoginServiet. Fields for the name and
password are added to the TabularlnputFormProducer before the TabularlnputForm-
Producer is added to the PageProducer. Next, the preferences Properties object is
retrieved from the PreferenceManager and set in the PageProducer. Findlly, formatted
HTML is extracted from the PageProducer and written to the HttpResponse's output
stream. Figure 137 shows the sequence of messages that produces an empty login
form.

Process Valid Login Data

In the sequence for processing vaid login data, the usemame and password parame-
tersexist in the HttpRequest. The LoginServlet asksthe Login Workflow to validate the
usemame and password combination. When the true response is received, the Login-
Servlet stores the username in the HttpSession.

Next, the LoginServlet builds a page with links to the user's options. For now, there
is onJy one option, record time, hi any case, the link is built by obtaining a Link-
Producer from the ProducerFactory. Since there is no existing LinkProducer in the
HTML production framework, we must design one. Aswe might expect, the target for
the LinkProducer is set to the URL of the RecordTimeServlet. Notice that the contents
of the link are encapsulated inside of a TextProducer. Allowing client codeto add any
sort of f Html Producer provides limitless flexibility. For instance, adding an Image-

382

Enterprise java with UML

me,vrsof)

|
1. buildForm().
,—H——P—H 11

}

!

1.4, addrield(abel

1.5, addrield(abel,

}

O—————— o —

16, gdPageProducer(name, version)

L7, setTitltie} !
1.8, addHtmiproducer(producer)

19,

1. sePrferences(properig

1,10, getHtmi
1.10.1. getéftmi(

b B O M

4
L I
| |
| |
I I

el 3.7 Sequence to build Login form.

Producer would produce a clickable image. While this requires us to wrap the text for
thelink inside of a TextProducer, the extraflexibility is well worth the inconvenience.

The LoginServlet adds the LinkProducer to the PageProducer, sets the preferences
in the PageProducer, and extracts the formatted HTML from the PageProducer. This
sequence is shown in Figure 138,

Process Invalid Login Data

As in the sequence for valid data, the usemame and password parameters exist in
the HttpRequest. However, in this scenario, the validateUser method in the Login-
Workflow returnsfalse, so the LoginServiet builds a page with a TabularlnputForm-
Producer, asin the build empty form, and adds a TextProducer with some explanatory
error text. Figure 139 shows this sequence.

Participating Classes for the Login Use Case

LoginServlet sitsin the middle of the action, like a frantic Hollywood agent, knowing
dl of the players but unable to accomplish anything on its own. This is avery common

Design for the TimecardUl Package 383

X

S e e il || o
Emplovee. |
| | | I | | I !
Doaidsevsgol | ; i ; ; i i
e i ebiad I I 1
ﬂ“’_“‘“@q passwprd | | | |
el stopinerepembond; . || | | | |
T T | I |
e —— e i 0 I 1 I
14, getsession) | | | | | I
"Q | | | | |
1.5.setAtbute(keyalu I | I | 1
i i il i i
5 16, ge 1 1 1
I [[ES— !] U
| 1.8. addHthniProducer(produder) | |
T T T LH Add welcome fext to I
| 19, setprefbrences properie] PR I
T T 1.1, setPrefdrences(properties) |
| | | |
I | | |
| Mi0gettmig I Ul.m.v.gnﬁlmi()‘ |
| | | |
| | | !
I			
I	I		
I	I		

1]
:
|
|
|
I

i
|
I

b
|
|
I

Figure 138 Sequence for a valid user.

and powerful concept: One thin class combines the talents of many other classes to
formanew and interesting whole. Luckily, classes and objects are truly egoless, so the
HtmlProcSucers do not mind the servlets timein the limelight while they perform the
tedious HTML formatting.

Notice the complete lack of association relationships in the class diagram. Remem-
ber, each sequence begins when the servlet engine calls the doPost method of the
LoginServlet and the same L oginServlet object is used to validate any number of users.
Everything that the L oginServlet needsto producethe HTML is passed into the doPost
method inside of the HttpRequest object. Figure 1310 shows the classes for the Login
use case.

Create Design for the Record Time
Use Case

Based on our recently refreshed memory of the analysis model for the Record Time use
case and our knowledge of the Servlet class library and the HTML production classes,
we can develop a design for the Record Time user interface. There are two main
sequences: building the Record Time form and updating the timecard based on a sub-

3

84 Enterprise Java with UML

!
I

A - f‘““"”“““““‘ st Srewes vt e

_+Employee.

!

valdateUser() l o | |

|
|
I
I

1.3, validateLogin(ungme, password)

!
|
1.2 getParameter(iey) retrieve the. um.['-e and password “
|
|
|
|

I

| e
| |
1 1.5, setText(exd) !
t
i
T

T T
I I I
1.7, adebtmiproducer(producer) | | |
! T u Add eror muJ page

!
|
|
|
|
I
|
|
|
I
|
t t

g el Y
T
I

18 seql’rdemnms(pmpemes)

|
I
| | 19,1 setPreferences(propertes)
w f—’ﬁ
|
I
t

|
|
C‘.s getimi() U‘ 10,1, gethtmi() t[
I
|
|
|
|
I

m—————————— e e

|
|
| I
| |
| i
| |
| |
1 |

Figure 139 Sequence for Invalid login data.

Build the Record Time Form

The sequence begins when the employee actor asks the RecordTimeServlet to build the
time entry form. The RecordTimeServlet extracts the usemame from the HttpSession,
and uses it to create a Record Time Workflow object. The RecordTimeServiet asks the
RecordTimeWorkflow for the charge codes, dates, and hours for the current timecard.
With the raw data in hand, the RecordTimeServlet obtains a FormProducer and a
TableProducer from the ProducerFactory. The TableProducer will hold the data and the
input text fields, so it must be added to the FormProducer, Each TextProducer to hold
the charge codes and the dates must be obtained from the ProducerFactory, configured
with the correct text, and added to the correct cell in the TableProducer. A similar
process populates the table with TextfieldProducers for the hours. Finally, the Form-
Producer is configured with the appropriate submit target and is added to the Page-
Producer. Figure 1311 shows this sequence.

Design for the TimecardUl Package 385

<<Interface>>
HitpServletRequest
(from servlethttp)

o i k]
+ getParameter()
+ getSession()

TabularinputformProducer
(from HtmiProduction)
e e
+ setSubmitTarget()

+ setSubmitLabel()
+ addField()

<<intefface>>
HttpSession
(from senvlethttp)

<<servlet>>
Loginenvlet
(from TimecardU)

+ getAttributeNames()
+ getAttribute()
+ sethAttribute()

ProducerFactory
(from HtrlProduction)
o i SR

<<SessionRemote>>

+ getPageProducer() Pa
geProducer y

+ getTableProducer() ; LoginWorkflow

+ getTextProducer() (from FitmiProdiiction) (from TimecardWorkfiow)

+ getimageProducer()
+ getFormProducer()

+ addConcreteProducer()

+ gefTabularinputFormProducer()
+ gefTextFieldProducer()
<<class>> + getFactorySingleton()

+ addHtmIProducer()
+ getHtml()
+ setlitle()

+ validateLogin()

Figure 15.10 Participating classes for the Login use case.

Update the Timecard

The sequence for updating the timecard begins when the employee updates his or her
time entries and submits the form to the servlet. The RecordTimeServlet extracts the
HttpSession from the HttpServietRequest. The RecordTimeServiet pulls the username
out of the session and usesit to get a remote reference to the appropriate RecordTime-
Workflow. Next, the RecordTimeServlet pulls parameters out of the request for the
hours, charge codes, and dates. The hours are then used to update the RecordTime-
Workflow. Figure 1312 shows this sequence.

Participating Classes for the Record Time Use Case

Many classes help realize the Record Time use case, but most are independent of the
others. Asin the Login use case, the servlet ties the disparate objects together. Again, it

i
3
3
o fecoriTmesenier ipsesion || Pasaproducer RecordTmeWiordion Fomproducer TableProducer Texederoducer TexProducer Produceracort
mploves
| i I I I I 1
I

. diplyticsd
LU L UL ! ‘ ‘ ‘
m i

I I I !

1.1, getatmibute(key) i] | | I |
—.ﬁ veve usemame] i | g]
12 gexchargecodes] I ! i 1
—‘——ré“_r"’u | I
| 13.gematesy | I I I
e 1 1 1

I i I

1 |

|

14, getrous)

B
i i I |

! 1.6, getTableProducer(name, version) ! |

J

. 1 I I
17, st rodue

> |
i ! | |

1 18.getTextroducer(name, version)

i sickitons | | i i

| <ol producer) i |
T

R S

112 settiamename) 5 I

| 113, setinalValue volue) |

|
T T T
1
T
1

1,14, setroducerforcelirow, col,producer)

I
] i PL] waaos st
i i 1
115 sersubmiargetCarget) | ! t
/*—%‘ﬂ———’u 1
116 sesubmitabesbe) I > | |

] | 07 gepapeoduce(name, veion)] |

|

v———~—4—4—ﬂ:»——~—~4—-———clk——4/r:r——

: > i

115, gttt

I I
| |
| i
1 1
| I
1 1
| 1
| 1
1 1
i |
1 1
I |

I
I
| 1
8] | 1
1 | 1 1
| 1 I 1
1 | 1 |
1 | I 1

Figure 13.11 Sequence diagram for building the Record Time form.

Design for the TimecardUl Package 387

% = : HttpSession
: Employee

| 1. updateEntries() | | I
1.1 getSession() |

E

I
1.1.1. getAttribute(key)!

1.2, getParameter(key)
Repeat as needed

1 1.3. setHours(hours)

RN PN, Oy~ L ORISR - 3

|
|
|
1
I
I
|
|
|
|
|
|

I
|
|
|
|
|
|
§

|

| |

I I

I |

| |
Figure 13.12 Sequence diagram for updating the timecard.

is worth noting that the RecordTimeServlet does not do any read work: It does not
retrieve any datafrom the database, it doesnot format any HTML, and it certainly does
not hold any business logic. It just knows where to go to ask.

At first glance, it seems odd that the RecordTimeServtet class depends on many
classes, yet does not have any lasting relationship with any classes. For instance, where
isthe one-to-one or one-to-many association between the RecordTimeServlet classand
theRecordTi meWorkflow class?Remember that dl of thework doneby aservietisini-
tiated when the serviet engine calls either the servlet's doPost or doGet method. Also
recall that many users may share a serviet. So, the HttpRequest containsall of theinfor-
mation that the RecordTimeServlet needs, including form data and the RecordTime-
Workflow that isembedded within the HttpSession. Figure 1313 shows this sequence.

Now that we have a solid design for the servlets for the Login and Record Time use
cases, we can implement them in Java.

Implementation

The following sections show the implerr station for the LoginServiet, the Record-
TimeServiet, and aBasicServlet classthat s jrves as a useful base class for both.

LoginServlet.java

The LoginServiet does not directly format any HTML. Insteed, it extractsinformation
from the LoginWorkflow class and uses the Html Poduction package to format al of
theHTML.

388 Enterprise Java with UML

<<Interface>>
HttpSession HegySsodot
(from et hrtg)
TextProducer
+ getAttributeNames() M.
+ getAttribute()
+ setAttribute() + setText()
+ getHtml()
v\
N
N\
i N
7
<<SessionRemote>> W, P Textﬁe(l't.;i:'(‘oéucer
Recordﬁ(woe"\‘Norkﬂow T,
RecordTjmeServiet + setName()
+ getChargeCodes() Timecardu) + setinitialValue()
-SRI S
jEeenates) + displayEntries ()
+ getHours() s o
+ addChargeCode() : :fb;:()" 0, R
+ setHours() “~[Tableproducer
+ submit() / \ (from
+ setProducerForCell()
+ getHtmlI()
PageProducer
(from (from
+ addHtmlIProducer() + setSubmitTarget()
+ getHtml() + setSubmitLabel()
+ setTitle() + addHtmlProducer()

Figure 13.13 Participating classes for Record Time use case.

If the username parameter is not set, then the LoginServiet knows that the usei
needsto enter hisor her information inan HTML form. The static main entry point if
used to test the serviet's functionality.

package com.wiley.compBooks .EJwithUML. TimeCardServiets;

import
import

import
import
import
import

import

import

javax.servlet.http.*;
javax.servliet.*;

javax.naming. *;
javax.ejb.*;

Java.rmi.*;
javax.rmi.PortableRemoteObject;

java.io.*;

com.wiley.compBooks . EJwithUML. HEmlProduction. *;

Design for the TimecardUl Package 389

import com.wiley. .EJwithUML. Tim low.*;

Jxx
*
* The LoginServlet class uses the TimecardWorkflow and

+ HtmlProduction packages to create the formatted HTML

* for the Login form, and to validate the user.

*
74
public class LoginServlet extends BasicServlet

/** Overrides method from HttpServlet - doPost allows the
* code to interact with the system. */
public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

PageProducer pageProducer = null;
String browser = this.getBrowserName (request);
float version = this.getBrowserVersion(request);

try

{
// extract user name and password
String username = request.getParameter ('username");
string = request.getP (g

£ (username

i = null)
{
pageProducer = buildLoginPage (browser,version) ;

else
{

if (this.isLoginValid(username, password))

HttpSession session = request.getSession(true);
session.putValue ("username", username);

pageProducer=buildWelcomePage (browser,
version,username) ;

}

else

{

pageProducer =
buildloginInvalidPage (browser, version) ;

}

}

catch (NamingException e)

390 Enterprise Java with UML

pageProducer =
this.getRemoteErrorPage ("Error During Login\n", e);
¥
catch (CreateException e)
{
pageProducer =
this.getRemoteErrorPage ("Error During Login\n", e);

pageProducer. setPreferences (this.getPreferences()) ;
response.getWriter() .println(pageProducer.getHtml () ;
response .getWriter () .flush();

response.getWriter () .close () ;

/** Builds page for display on succesful login.*/
PageProducer buildWelcomePage (String browserName,
float browserVersion, String username)

PageProducer pageProducer =
this.producerFactory.getPageProducer (browserName,

browserVersion) ;
pageProducer.setTitle ("Welcome "+ username) ;
LinkProducer linkProducer =
this.pr ory.getLink! (bro .
browserVersion) ;

TextProducer linkText =
this.producerFactory.getTextProducer (browserName,
browserVersion) ;

linkText.setText ("Enter Hours");
linkProducer.setTarget ("./RecordTimeServiet") ;
linkProducer.addHtmlProducer (linkText) ;
pageProducer. addHtmlProducer (linkProducer) ;

return pageProducer;

/#** Builds page for user input */
PageProducer buildLoginPage (String browserName,
float browserVersion)

String host = this.getHost();

TabularInputFormProducer formProducer =
this.producerFactory.getTabularInputFormProducer (browserName,
browserVersion) ;

formProducer. setSubmitTarget ("./servlets/login") ;

Design for the TimecardUl Package 391

formProducer . setSubmitLabel ("Login") ;
formProducer.addField("User Name", "username",
formProducer.addField("Password",

password",

PageProducer pageProducer =
this.producerFactory.getPageProducer (browserName,
browserVersion) ;
pageProducer.setTitle ("Login") ;
pageProducer . additml Producer (formProducer) ;

return pageProducer;

/** Builds page with error message when login trades. */
PageProducer buildLoginInvalidPage (String browserName
float browserVersion:

PageProducer pageProducer =
buildLoginPage (browserName, browserVersion);
pageProducer.setTitle ("Login Failed. Try Again.");

TextProducer textProducer =
this.producerFactory.getTextProducer (browserName
browserVersion) ;
textProducer.setText ("<p>Invalid username or
password. <p>Remember, case matters."

pageProducer.addHtmlProducer (textProducer) ;

return pageProducer;

/** Bnswers true if the login data matches the database.*/
boolean isLoginValid(String username, String password) throws
Nami ion, ion, CreateException

{

Context initial = new InitialContext();
Object lwobjref = initial.lookup ("LoginWorkflow")
LoginWorkflowHome loginWorkflowHome =
(LoginWork£lowHome) PortableRemoteObject . narrow (Lwobjref
LoginWorkflowHome . class) ;
LoginWorkflow loginWorkflow = loginWorkflowHome.create () ;

return loginWorkflow.isUserValid(username, password);

public static void main(String(] args)

{
try

{

LoginServlet 1s = new LoginServlet();

392 Enterprise Java with UML

PageProducer pageProducer = 1ls.buildLoginPage ("Netscape",
4.0£) ;

FileOutputStream fos = new FileOutputStream("LoginForm.html");

BufferedOutputStream bos = new BufferedOutputStream(fos);

PrintStream ps = new PrintStream(bos);

ps.printin{pageProducer.getHtml () ;

ps.flush();

ps.close() ;

pageProducer = ls.buildWelcomePage ("Netscape", 4.0f, "Joe");
fos = new FileOutputStream("Welcome.html");

bos = new BufferedOutputStream(fos);

ps = new PrintStream(bos) ;

ps.println(pageProducer.getHtml ()) ;

ps.flush() ;

ps.close() ;

pageProducer = ls.buildLoginInvalidPage ("Netscape", 4.0f);
fos = new FileOutputStream("Invalid.html");

bos = new BufferedOutputStream(fos) ;

ps = new PrintStream(bos);
ps.println(pageProducer.getHtml () ;

ps.£lush() ;

ps.close();

}

catch (IOException e}

System.out.println("e: " +e);
}
}

RecordTimeServlet.java

RecordTimeServletjava does not directly format any HTML. Instead, it extractsinfor-
mation from the Record Time Workflow class and uses the HtmlFoduction package to
format al of the HTML. If the hours are not s&t, it knows that it needsto build aform
for display. The form shows the current data and alows the user to update it. If the
hours are present in the request data, then the RecordTimeServiet extracts the data
from the form and passes it to the RecordTimeWorkflow for processing. Then it builds
the Time Entry form so the users can see their changes and make further updates.

package com.wiley.compBooks.EJwithUML.TimeCardServiets;

import javax.servlet.http.*;
import javax.servlet.*;

import
import
import
import

import
import.

import
import.

Jxx
* The
* Hem:
* for
=7

public

{

/%

publ.

Pa

Design for the TimecardUl Package 393

Jjavax.naming. *;
Javax.ejb.*;
Java.rmi.*;
javax.rmi.PortableRemoteObject;

java.io.

java.util.*;

com.wiley.compBooks . EJwithUML. HtmlProduction.*;
com.wiley.compBooks . EJwithUML. TimeCardWorkflow. *;

RecordTimeServlet uses the TimecardWorkflow and
1Production packages to create the formatted HTML
the time entry form and to capture the entered hours

class RecordTimeServlet extends BasicServlet

Overrides method from HttpServlet.

doPost is called by the servlet engime. */

ic void doPost (HttpServletRequest request
HttpServlietResponse response)
throws ServletException, IOException

geProducer pageProducer = null;

try

{

// extract username from session
HttpSession session = request.getSession(false);
String username = (String) session.getValue("username");

// obtain remote reference to RecordTimeWorkflow session

// bean

Context initial = new InitialContext();
Object rtwobjref = initial.lookup("RecordTimeWorkflow");
RecordTimeWorkflowHome home =

(RecordTi 1lowHome) PortableRemoteObject . narrow (

rtwobjref,RecordTimeWorkflowHome . class) i
RecordTimeWorkflow rtw = home.create (username) ;

// if hours are set in request, extract and set in
// workflow

String hour = request.getParameter ("hoursi®);

if (hour != null)

£loat hours[] = extractHours (request)
rtw.setHours (hours) ;

// retrieve values from workflow

394 Enterprise Java with UMI.

ChargeCodelirapper [] codes = rtw.getChargeCodes () ;
Datel] dates = rtw.getDates ()
float[] hours = rtw.getHours();

// build the time entry page producer
pageProducer =
this.buildRecordTimeForm("",4.0f, codes,dates, hours);
}
catch (NamingException e)
{
pageProducer =
this.getRemoteErrorPage ("Error During Login\n", e);
b

catch (CreateException e)

pageProducer =
this.getRemoteErrorPage ("Error During Login\n", e);

pageProducer.setPreferences (this.getPreferences()) ;
response.getWriter () .println(pageProducer.getHtml () ;
response.getWriter().flush();

response.getWriter () .close(};

/** Builds the time entry page producer*/

PageProducer buildRecordTimeForm(String browserName, float
browserVersion, ChargeCodeWrapper[] codes, Date[] dates, float[] hours)
throws RemoteException, CreateException, NamingException

{

ProducerFactory factory =
ProducerFactory.getFactorySi eton();

PageProducer pageProducer =

factory.getPageProducer (browserName, browserVersion);
FormProducer formProducer =

factory.getFormProducer (browserName, browserversion);
TableProducer tableProducer =

factory.getTableProducer (browserName, browserVersion);

// populate table producer with charge codes down side
TextProducer text =
factory.getTextProducer (browserName, browservVersion);

text.setText ("Charge Codes");
tableProducer.setHtmlProducerForCell (0, 0, text);
for (int ctr = 0; ctr < codes.length; ctr++)
{

ChargeCodeWrapper ccw = codes [ctr] ;

String name = ccw.getChargeCodeName () ;

text =

Design for the TimecardUl Package 395

factory.getTextProducer (browserName, browserVersion);

text.setText (name) ;
tableProducer. setHtmlProducerForCell (ctr+l, 0, text);

// populate table producer with dates across top
For (int etr = 0; ctr < dates.length; ctr++)

{
Date d = dates[ctr];
String dateString = d.tostring();
text =
factory.getTextProducer (browserName, browserVersion);
text.setText (dateString) ;
tableProducer . setHtmlProducerForCell (0, l+ctr, text);
}

// populate table producer with hours in middle
for (int cc_ctr = 0; cc_ctr < codes.length; cc_ctr++)

{

for (int date_ctr=0; date_ctr < dates.length; date_ctr++)

int index = cc_ctr*dates.length +date_ctr;
String initValue = "" + hours[index];

TextFieldProducer tfp =
factory.getTextFieldProducer (browserName, browserVersion);

tfp.setInitialValue(initValue);

tfp.setMaxLength (5) ;

tfp.setSize(5);

tfp.setName ("hours"+index) ;

tableProducer . setHtmlProducerForCell (cc_ctr+l,
date_ctz+l, tfp);

formpProducer . addHtmlProducer (tableProducer) ;
formProducer. setSubmitTarget ("./RecordTimeservlet") ;

SubmitButtonProducer submitButtonProducer
browserVersion) ;

factory. i (bx i
submitButtonProducer.setSubmittLabel ("OK") ;
formproducer . addHtml Producer (submitButtonProducer) ;
pageProducer. addHtmlProducer (formProducer) ;
return pageProducer;

/** Extracts hours from the request. */
float[] extractHours (HttpServletRequest request)

396 Enterprise Java with UML

Vector v = new Vector();

int ctr=0;
string hour = request.getParameter("hours" +ctr);
while (hour null)

(

v.addElement (new Float (hour));

ctres;

hour = request.getParameter ("hours" +ctr);
}
float hours[] = new float(v.size()];

Enumeration enum = v.elements();
int index = 0;
while (enum.hasMoreElements())

Float f = (Float) enum.nextElement () ;
hours [index] = f.floatValue();

return hours;

public static void main(String[] args)

{
try

{

RecordTimeServlet rts = new RecordTimeServlet ();

ChargeCodeWrapper [] codes = new ChargeCodeWrapper (4] ;

for (int ctr = 0; ctr < 4; ctrs+)
codes [ctr] =
new ChargeCodeWrapper ("ford", "mustang”, "code" +Ctr);

Date[] dates = new Date([7];

Calendar calendar = Calendar.getInstance();
calendar.setLenient (true);

calendar.set (Calendar.YEAR, 2000);

int startDayOfYear = calendar.get (Calendar.DAY_OF_YEAR) ;

for (int delta = 0; delta < 7; delta++)
calendar.set (Calendar.DAY_OF_YEAR,

startDayOfYear+delta) ;
dates{deltal = calendar.getTime();

Design for the TimecardUl Package 397

float[] hours = new float[28];
for (int ctr=0; ctr< 28; ctr++
{

hours[ctr] = (float) (ctr % 10);

PageProducer pageProducer =
rts.buildRecordTimeForm("Netscape", 4.0f, codes, dates,
hours) ;
FileOutputStream fos =
new FileOutputStream("RecordTimeForm.html");
BufferedOutputStream bos = new BufferedOutputStream(fos);
PrintStream ps = new PrintStream(bos);
ps.println(pageProducer.getHtml ());
ps.flush();
ps.close() ;
}

catch (Exception e

{
System.out.println("e

}

BasicServlet.java

The BasicServlet.java holds functionality that can be used by every servlet in the sys-
@meg he functionality inehdies populating the Roochaterigactory, initializing prebes:

package com.wiley.compBooks.EJwithUML. TimeCardServiets;

import javax.servlet.http.*;
import java.util.*;
import java.io.*;

import com.wiley.compBooks .EJwithUML. HtmlProduction. *;
import com.wiley.compBooks .EJwithUML . HtmlProduction.GenericProducers. *;

Jon
* The BasicServlet provides a consistent mechanism for
* handling preferences, populating producers, and producing
* error messages.
“
class BasicServlet extends HttpServlet
{
private static Properties preferences = null;
private static boolean populatedProducers = false;

398 Enterprise Java with UML

protected ProducerFactory producerFactory;
BasicServlet ()

if (1BasicServlet.populatedProducers)
{
BasicServlet.populatedProducers = true;
producerFactory = ProducerFactory.getFactorySingleton();

IConcreteProducer cp = new FormPr ie();
producerFactory.addConcreteproducer (cp) ;

cp = new PageProducerGeneric () ;
ry.addc: (cp) s

cp = new SubmitButtonProducerGeneric();
iz v addc x (ep) i

cp = new TableProducerGeneric () ;
producerFactory.addConcreteProducer (cp) i

cp = new TabularInputFormProducerGeneric () ;
producerFactory.addConcreteProducer (cp) ;

cp = new TextFieldProducerGeneric();
producerFactory.addConcreteProducer (cp) ;

cp = new TextProducerGeneric();
producerFactory.addConcreteProducer (cp) ;

cp = new LinkProducerGeneric();
producerFactory . addConcreteProducer (cp) ;

protected String getHost ()

£

return *localhost";

protected Properties getPreferences/()
// in an actual impementation, this should be a resource bundle.
this.preferences = new Properties();

this.preferences.setProperty ("page.backgroundColor",
#lightGrey");

return preferences;

Design for the TimecardUl Package 399

protected String getBrowserName (HttpServletRequest request

// Just a test stub. This should parse the browser out
// of the request
return "Netscape";

}
protected float getBrowserVersion (HttpServletRequest request

// Just a test stub. This should parse the browser version
// out of the request
return 4.0f;

}

protected PageProducer getRemoteErrorPage (String message
Exception e)
{
TextProducer textProducer =
this.producerFactory.getTextProducer ("GENERIC", 1f);
textProducer. setText ("Request failed due to failure of
remote service.\n" +message+ "\n"+e);

PageProducer pageProducer =
this.producerFactory.getPageProducer ("GENERIC", 1f);

pageProducer.setTitle ("ERROR") ;

pageProducer . addHtml Producer (textProducer) ;

pag .setPreferences (this.getPreferences());

return pageProducer

The Next Step

In this chapter, we used session beans, as designed in Chapter 11, and the HTML pro-
duction classes, as designed in Chapter 12, to produce the dynamically generated
HTML for the Timecard system. At this point, we have completed the core functional -
ity for theTimecard system. Thelast stepistheinterfacewiththe BillingSystem, which
we cover in Chapter 14.

Design for
BillingSystemlnterface!

The design for the BillingSysteminterface subsystem builds heavily on the andysis
model, architecture, and technology selection, and the design for the TimecardWork-
flow packages, as developed in Chapter 5, "Analysis Model for the Timecard Applica
tion," Chapter 8, "Evaluating Candidate Technologies for Control and Entity Classes”
Chapter 9, "Software Architecture,” and Chapter 11, "Design for the TimecardDomain
and TimecardWorkflow." The analysis model developed in Chapter 5 will help to
determine the behavior of the BillingSysteminterface subsystem, while the content in
Chapters 8,9, and 11 will help to determine the technologies and existing packages that
itwill use.

Asin the preceding design chapters, the goal hereisto develop adesign that is quite
close to code and that is also constrained by the functional, architectural, and techno-
logical decisions madein those chapters. In this chapter, we will establish design goals,
review theanalysismodel to recall therequired functionality, then review the architec-
ture to remind us of the architectural constraints. Based on this foundation, we will
build adesign that fits the use case.

Identify Goals

The design for the BillingSysteminterface should support the goals established for the
entire system in Chapter 10, "Introduction to Design." Clarity, performance and relia-

401

402 Enterprise Java with UML

bility, extensibility, and reuse potential areall considered goals for the BillingSystem-
Interface.

Clarity

Clarity is always an important goal, and the BillingSysteminterface is no exception.
Both the design and the code must be understood by a wide variety of developers,
ftendaedewers to maintenanée developers. Adhererecy to design guidelinenapdrtade

Performance and Reliability

Performance and reliability are lessimportant for theBillingSystemInterfacethan for
the system in general. TheBillingSystemInterfaceis intended for occasiona use, and
can belimited to off-peak hoursif necessary.

Extensibility

Extensibility isfairly important for the BillingSysteminterface, sincetheBilling System
itself is outside of our control and subject to change. The BillingSysteminterface must
be able to evolve to meet different requirements for the format or content of the inter-
change data. Also, the BillingSysteminterface must be flexible in the criteria used to
include or exclude time entries.

At the very least, these two areas must be kept well encapsulated, so that any
changes are confined to afew closely related classes.

Reuse Potential

Reuse potential is relatively unimportant. No other part of the Timecard system needs
any of this logic, and the BillingSysteminterface is not solving a generally applicable
problem that might be shared by other systems.

Review of Analysis Model

Thereisonly one use casethat usesthe BillingSysteminterface subsystem, Export Time
Entries. The sequence beginswhen the administrative user asksthe ExportEntriesUl to
display the criteria that can be used to filter time entries. Once the administrative user
selectsthecriteria, thecontrol object, ExportTimeEntriesWorkflow, delegatestheactual
work to the locator objects and the entity objects. Figure 14.1 shows this sequence.

Review of Architecture

In the architecture developed in Chapters 8 and 9, the BillingSysteminterface uses
XML to package the data for transfer to the actual billing system. The BillingSystem-

Design for BillingSystem Interface 403

] [T | e P
oo o | 2o || i | s
;
|
i
_AdmiisiativeUser |
!
dsplaiteing |
[dipmpserangesion)
nati
cuenT osiEcTs

> dsployienso

seectClents)
findalg
USER DBIECTS
> displayEmployees)
R i
H
[dsmiesdaod
‘submitRequest()
ponrocitia)
ndrorciteia0
getChargeCode()
getDay)
B(lHems‘
et

EXPORT OK

[dsoyucess0

Figure 14.1 Sequence diagram for normal flow for Export Time Entries.

Interfaceis used by aclass or classes in the Timecard Work flow package, shown in Fig-
ure 14.2.

Design

The architecture and analysis diagrams indicate that the BillingSysteminterface
subsystem is accessed from a GUI and uses XML. In designing the subsystem, we

404 _ Enterprise Java with UML

TimecardUi
- : e
-
P 1 N
I % ; Red
1
HTMLProduction 1 e
I
I
|
I
v
TimecardWorkflow <<Interface>>
-~} —=| Bilingsysteminterface

T
| Iy
I |
| |

EJB Session | |

Beans |
| <<subsystem>>
: BillingSysteminterface
I
v
=
TimecardDomain
S
e
~
EJB Entity
Beans

Figure 14.2 Package dependencies for Timecard architecture.

reconsider the first assumption. Thereisno need for afancy user interface for a data
export utility. Also, it may be useful to run the export as a scheduled task, soit canrun
at off peak hours without inconveniencing anyone. This approach suggests a com-
mand-line application that extracts all of theinformation that it needs from aconfigu-
ration file. A fancy graphical user interface would be unnecessary and perhaps an
obstecle.

The BillingSysteminterface could easily use the existing beans from the Timecard-
Workflow and TimecardDomain packages to gather the raw data that it needs. This
change, as shown in Figure 143, keeps the rest of the system independent of the

HemlProduction

EIB Session
Beans

EJB Entity
Beans

Figure 143 Revised architecture.

TimecardWorkflow

TimecardDomain

Design for BillingSysteminterface 405

Billingsysteminterface

BillingSysteminterface package. Classes in the BillingSysteminterface depend on
classes in the TimecardWorkflow and TimecardDomain packages, but nothing depends

on the BillingSystemlinterface package.

Changes of this magnitude cannot be made lightly, and must be
reviewed by the developers who are responsible for the architecture. However,
in many cases, the developers who create the detailed design for a package or
subsystem gain a more thorough understanding of the problem and of the
solution. They must be allowed to apply this deeper understanding as they
create the solution. Judicious changes to the architecture are an inevitable and

healthy part of the design process.

Recall from Chapter 11 that individual time entries are not stored separately.
Instead, each Timecard entity bean encapsulates al of the hours for an employee dur-
ing a particular pay period. The TimecardHome interface lets a client object find all

406 _ Enterprise Java with UML

timecards for a given user. o, if the users are specified in the criteria, the timecards
for those users can be retrieved and the data extracted for comparison with the other
criteria. If the criteria include all users, then the UserHome interface can be used to
obtain alist of al users. The rest of the process is the same.

We will develop two sequence diagrams, one for each variation.

Sequence Diagram for Export
Specific Users

The sequence to export specific users begins when the Administrative Actor starts the
ExportTimeEntriesApplication. Theinput arguments to the application specify acrite-
riafileand aresultsfile for the formatted output. The applicationimmediately usesthe
criteriafilenameto build an ExportCriteria object. Thisobject isresponsiblefor reading
the file and encapsulating the criteria data. Next the application uses the output file-
name to build an ExportFile object that is responsible for formatting the output and
writing it to the specified file.

A listof usersisobtai ned from the ExportCriteriaobject. The ExportTimeEntriesAp-
plication then uses an existing class, TimecardHome, to obtain remote references to all
of the Timecard entity beans for each user. Each Timecard exposes a list of charge
codes, a list of dates, and a list of hours. The charge codes and dates are checked
against the ExportCriteria object by calling its containsClient and containsDate meth-
ods. The entries that match the criteria are added to the ExportFile, which is solely
responsible for formatting and writing them to the output file. Figure 14.4 shows the
sequence to export specific users.

Sequence Diagram for Export All Users

As in the sequence for Export Specific Users, the sequence to export al users begins
when the AdministrativeUser starts the ExportTimeEntriesApplication. The Export-
TimeEntriesApplication object creates the ExportCriteriaand Exportfile objects. How-
ever, in this sequence, ExportCriteriaanswersthe getUsersmethod with al users. This
leads the ExportTimeEntriesApplication to ask the UserHome for alist of all users. The
remainder of the sequence is the same as before, with the ExportTimeEnrriesApplica-
tion object using the ExportCriteria object to determine if each entry meets the criteria,
and adding the matching entries to the ExportFile object. Figure 145 shows the
sequence diagram for Find All Export Time Entries.

Participating Classes

Each ExportTimeEntriesApplication object keeps exactly one ExportFile object and
exactly one ExportCriteria object. No other objects use these two objects. Each Export-
TimeEntriesApplication object uses many remote references to User and Timecard
entity beans. Figure 14.6 shows the participating classes for Export Time Entries.

Design for _BillingSysteminterlaie 407

o | £] S, B .
1. ExportTimeEntriesApplication(expotCriteriaFile, outputFile) 1

11, Eponceraiensme) |

1.2. Exportileflename)
I m

|
I
I
1
I
|
| | |
|
|
|
|
|

13 getUsersO) |
ﬁ 11,4, findbyuser(user)

1.5/ getchargecodeso

|
16, getDates)
t

1.7, getHours)
T

1.8, containsClientcient) _ |

1.9, conainsDate(date)

1.10. addEntry(user, L;ggzcnde, hours)

|

/))

U T |
T I |
I | I
| I I

|
|
|
|
t
I
|
|
|
|

|
! I
| |
| |
| |
I I
Figure 14.4 Sequence diagram for Export Specific Users.

Implementation

The implementation of these classes is fairly straightforward. We begin with the
ExportCriteria and ExportFile, then proceed to the ExportTimeEntriesApplication
class that uses them.

ExportCriteria.Java

ExportCriteria’s entire purpose is to completely encapsulate the criteria file. The pri-
vate method loadCriterialoads the criteriafrom thefile. Itloads theincluded users and
clientsinto separate hashtables for fast and convenient lookup. It also loads begin and
end dates for the included date range.

The loadCriteria method is called from each criteria-checking method, although it
only does the actual load on the first occurrence. Since loadCriteria can throw excep-
tions, it is better to accept this slightly clumsy approach than to call it once from the
constructor.

408 Enterprise Java with UML

X

e e e e |

1. bxporTimeEntriesApplication (exportGiteriafie, outputFle) |

Y
|
|

1 1 1

| | I

| I I

12, i | | |
isgmneng | ? ! !
¢ 1 1 |

T T T 0

] . | I

il 1 "0 I

f t 1 I

|17, getatesy_| Repeatfor each user | | |

T T { 1

|18 getours0 | | I

| | I I

1.5, continsCintcient) | |
1.10containsDate(date } }
1.11. addentry(user, chabgeCode, hours) ; }
| I

I I

| |

I |

1 I

S

Figure 14.5 Sequence diagram for Find All Export Time Entries.

There are several methods for checking criteria None of them alows the calling
code to change the criteria or to discover how criteria are determined. Our goal of
encapsulation iswell served by this discipline.

The dass itself has default visibility, which is visibility to the other classes in the
package and no other classes. This reflects the architectural decision that no other
classesin the system use any classesin the BillingSysteminterface package.

package com.wiley.compBooks.EJwithUML. ExportEntries;

import java.util.*;
import java.io.*;
import java.text.;

s
* The ExportCriteria class loads criteria from a file and
* determines if they are met.

22

class ExportCriteria

private Hashtable clients = new Hashtable();

Design_for_Billi face 409

ExportCriteria

ExportFile o

+ ExportFilefilename : String) e
: adentry(user : String, chargeCode : String, hours :float) :c‘g:::i'::;:f:(‘éz"'e“‘ ';'E’)'"x) 2
Lo - contairisth String) : boolean

; + ExportCriteria(filename;String)
+ getlsers() : String]]

1

<<application>>
ExportTimeEntriesApplication
(from TimecardUl)

+ exportEntries()
+ loadCriteria()

+findEntries()
5 i iesAppli fiteriafile : String, outputFile : String)
7 - ‘[N
N\
& Z I X
VA Vv N
<<EntityHome>> <<Enti <<Entity
UserHome by i TimecardHome
o o = (from
+ findByUsername(name : String) + getChargeCodes() + create()
+findAll() : Enumeration + getDates() + findByPrimaryKey()
+ getHours() +findByUser()
+ addChargeCode()
+ setHours()

Figure 146 Participating classes for Export Time Entries.

private Hashtable users = new Hashtable() ;
private Date beginDate;
private Date endDate;

private String filename;
private boolean loaded = false;

/** Creates a ExportCriteria using the raw criteria found
in the file */

ExportCriteria(String filename)

{

this.filename = filename;

/** Answers true if the criteria include the client. */

410 _ Enterprise Java with UML

boolean containsClient (String client) throws IOException,
ParseException

loadCriteria() ;
return (clients.containsKey(client) ||
clients.containsKey("all"));

/** Bnswers true if the criteria include the user. */
boolean containsUser (String user) throws IOException,

ParseException
{
loadCriteria() ;
return (users.containsKey (user) ||
users.containsKey("all"));
}

/** Bnswers true if the criteria include the date. */
boolean containsDate(Date date) throws IOException,
ParseException

loadCriteria();
date.setHours (12) ;

return (date.after (this.beginDate) &&
date.before (this.endDate)) ;

/** Bnswers an Enumeration of the included users. */
Enumeration getUsers()

return this.users.keys();

/** Loads the criteria, if needed. */
private void loadCriteria() throws IOException
ParseException

if (loaded)
{

return;

FileInputStream fis = new FileInputStream(this.filename);
BufferedI) bis = new Bufferedl (£is);

Properties rawProperties = new Properties();
rawproperties.load(bis) ;

Design for BillingSysteininterface 411

String rawUsers = rawProperties.getProperty ("users”,"");
String rawClients= rawProperties.getProperty("clients","");
String rawBegin = rawProperties.getProperty ("beginDate");
String rawknd = rawProperties.getProperty (“endDate");

Calendar calendar = Calendar.getInstance();
calendar.setLenient (true) ;

SimpleDateFormat sdf = new SimpleDateFormat ("dd MMM yyyy");
this.beginDate = sdf.parse (rawBegin) ;

this.endDate = sdf.parse (rawEnd) ;

this.beginDate.setHours (1) ;
this.endDate. setHours (20) ;

this.users = buildHash(rawUsers);
this.clients = buildHash(rawClients);

bis.close();

this.loaded = true;

private Hashtable buildHash(String raw)

Hashtable hash = new Hashtable();
StringTokenizer st = new StringTokenizer (raw,

while (st.hasMoreTokens ())

{
String token = st.nextToken() ;
hash. put (token, token) ;

return hash;

/** Test harness. */
public static void main(String(] args)
{

try

ExportCriteria ec =
new ExportCriteria("./criteria.properties");

boolean b = ec.containsUser("fred");

b = ec.containsClient ("IBM");

Date d = Calendar.getInstance().getTime();

b = ec.containsDate(d);

int a
}
catch (IOException e)
{

e.printStackTrace () ;

412 Enterprise Java with UML

}
catch (ParseException e)
{

e.printStackTrace() ;

)

ExportFile.java

The ExportFile class holds al logic for formatting time entries into XML. As with
ExportCriteria, ExportFile's constructor just capturesthefilename. The more complex
code that may lead to an exception is not called until someone cals addEntry. In
addEntry, open is called if it hasnot been called before, then the new time entry isfor-
matted and added to thefile.

package com.wiley.compBooks.EJwithUML.ExportEntries;

import java.io.*;
import java.util.s;
import com.wiley.compBooks.EJwithUML. TimeCardWorkflow.*;

Jax
* The ExportFile class encapsulates the formatting logic
* for producing XML for time entries
e

class ExportFile

private PrintWriter writer;
private String filename;
private boolean open = false;

/** Creates a new ExportFile that writes to the specified
£ilename.*/
ExportFile (String filename)

this.filename = filename;

/** Closes this ExportFile. */
void close() throws IOException
{
if (writer != null && this.open)
{
writer.flush();
writer.close();
this.open = false;

3

Design for Billi Interface

413

/** Adds an entry to the output file. */
void addEntry(String user, ChargeCodeWrapper chargeCode,
float hours, Date date) throws TOException

if (Ithis.open)

{

open();

this.writer.println("<TimeEntry>");

this.writer.println(" <User>");
this.writer.println (" " +buildNode ("Name", user));
this.writer.println(" </Users");

this.writer.println(" <ChargeCode>");

this.writer.println(" "+buildNode ("Client",
chargeCode.getClientName())) ;
this.writer.println(" "+buildNode ("Project™,
chargeCode .getProjectName())) ;
this.writer.println(" "+buildNode ("Name",
chargeCode .getChargeCodeName ())) ;
this.writer.println(" </ChargeCode>");

this.writer.println " +buildNode ("Hours",
this.writer.println(" " +buildNode("Date", "

this.writer.println("</TimeEntry>") ;

private void open() throws IOException

FileWriter fw = new FileWriter(this.filename);
this.writer = new PrintWriter (fw);

this.open = true;

}
private String buildNode(String eName, String contents)

return "<" +eName+ ">" +contents+ "</" +eName+ ">";

/** Tests harness*/
public static void main(String[] args)
{

try

{

414 _ Enterprise Java with UML

ExportFile ef = new ExportFile("./export.xml");

ChargeCodeWrapper cc =
new ChargeCodeWrapper ("IBM", "AS400", "Assembly")
ef.addEntry(*fred”, cc, 9.5f, new Date());

ef.close() ;

}

catch (IOException e)

e.printStackTrace () ;

ExportTimeEntriesApplication.java

ExportTimeEntriesApplication retrieves the User and Timecard entity beans. Included
users are determined by retrieving the included users from the ExportCriteria object.
Eachincluded user is used to get potential Timecards. Each entry within each Timecard
is compared to the included clients and included date range. Entries that match are
sent to the ExportFile for formatting.

Again, the constructor does not have to do much. All of the interesting pre
which can throw exceptions, isleft to the exportEntries method.

package com.wiley.compBooks.EJwithUML. ExportEntries;

import javax.naming.*;
import javax.ejb.*;
import java.rmi.*;
import javax.rmi.PortableRemoteObject;

import java.io.*;
import java.text.*;
import java.util.*;

import com.wiley.compBooks. EJwithUML. TimeCardWorkflow. *;
import com.wiley.compBooks.EJwithUML.TimeCardDomain. *;

Vs
* The ExportTimeEntriesApplication class allows time entry
* exports to be run from the command line. The criteria for
the export are read from a properties file, and the
formatted XML is written to a flat file

This combination lets us run the exports as batch jobs.

.

.

* @see ExportCriteria
@see ExportFile

.

it
class ExportTimeEntriesApplication

{

Design for BiilingSysteminterface 415

private String criteriaFile;
private String exportFile;
private ExportCriteria criteria;
private ExportFile file;

/** Creates a ExportTimeEntriesApplication object with the
specified files. */
ExportTimeEntriesApplication (String criteriaFile,
String exportFile)

this.criteriaFile = criteriaFile;
this.exportFile = exportFile;

}

/** Initiates the export, */
void exportEntries() throws IOException, NamingException,
ion, Fi ion, Pa: ion

// load the export criteria and prepare the output file
this.criteria = new ExportCriteria(this.criteriaFile);
this.file = new ExportFile(this.exportFile);

/! get references to the Home interfaces
Context initial = new InitialContext();
Object objref = initial.lookup ("EmployeeHome") ;
EmployeeHome ehome =
(EmployeeHome) PortableRemoteObject .narrow(objref,
EmployeeHome.class) ;

objref = initial.lookup ("TimecardHome") ;
TimecardHome thome =
(TimecardHome) PortableRemoteObject .narrow (objref,
TimecardHome.class) ;

// retreive a list of included users
Enumeration users = this.criteria.getUsers();
while (users.hasMoreElements ())

{

String username = (String) users.nextElement () ;

// £ind the Employee beans that match the current name
Enumeration employees = null;

if (username.equalsIgnoreCase ("ALL USERS"))

{

employees = ehome.findAll();

else

{
employees = ehome.findByUserName (username) ;

}

416 _ Enterprise Java with UML

// extract the Timecard beans for each Employee bean

while

{
Employee employee =
String employeeId = (String)

Enumeration timecards =

(Employee)

(employees.hasMoreElements ())

employees.nextElement () ;
employee.getPrimaryKey () ;

thome . £ indAl1ForEmployee (employeeId) ;

while
{

Timecard timecard =

(Timecard)

(timecards.hasMoreElements ())

timecards.nextElement () ;

addTimecard (timecard, username);

/* Rdds the matching entries from the timecard. */
private void addTimecard(Timecard timecard, String username
throws RemoteException, IOException

ParseException
{
float[] hours = timecard.getHours ()
Date[] dates = timecard.getDates();
ChargeCode [] codes =

// loop through the dates
for (int date ctr =

{

timecard.getChargeCodes () ;

0; date ctr < dates.length; date_ctr++

Date currentDate - dates[date_ctr];

// if the current date is not included, continue loop

if

{

continue;

// loop through charge codes

(!this.criteria.containsDate (currentDate))

for (int cc_ctr=0; cc_ctr < codes.length; cc_ctrss

{
// find project
ChargeCode code =
Project project =
Client client =

and client for code
codes [cc_ctr] ;

code.getProject () ;
project.getClient () ;

// retrieve names and build wrapper

String codeName =
String projectName =
String clientName =

code.getName () ;
project .getName () ;
client.getName () ;

Design for BilingSy stem Interface

417

ChargeCodeWrapper wrapper =
new ChargeCodeWrapper (clientName, projectName,
codeName) ;

// if final criteria met, add entry

if (this.criteria.containsClient (clientName))

{
int index = cc_ctr * dates.length + date_ctr;
float currentHour = hours[index];
this.file.addEntry (username, wrapper, currentHour,
currentDate) ;

i
}
)

public static void main(String[] args)

try
{

if (args.length < 2)

{

System.out.println("Usage:java
ExportTimeEntriesApplication criteriafile
outputfile®);

System.exit(-1);

)

ExportTimeEntriesApplication application =
new ExportTimeEntriesapplication(args[0], args[il);
application.exportEntries();

catch (Exception e
{
e.printstackTrace () ;
}
}
}

Conclusion

This chapter completed the implementation of the Timecard application. Throughout
the development process, UML helped us describe the problem and the solution in a
clear and comprehensible form. In areal project, this allows a community of develop-
ers and stakeholders to evolve a consensus on what the system should do and how it
should do it. Less time is lost in communicating ideas. This time is more profitably
spent debating the merits of the ideas.

Visual Glossary

The following glossary shows how several important object-oriented concepts are
showninthe UML and how they can beimplemented in Java. Each section describesa
concept, provides a sample UML diagram that uses the concept, implementsthe UML
inJava, and offers some guidance on the proper use of the concept.

Generalization

One or more subclasses may share the attributes and behavior that are defined for the
base class. There are two ways to describe this relationship in proper object-oriented
terminology. First, aclassinheritsall of the attributes and behaviors from a superclass
or base class. From the opposite perspective, the superclass is a generalization of the
attributesand behaviorsthat arecommonto all of its subclasses. INUML, therelation-
shipis described as a generalization and is denoted by a solid linewith ahollow arrow
pointing to the base class.

UML Example

Consider abrief example of generalization. Vehicleisageneralization of both Car and
Truck. The two subclasses, Truck and Car, inherit dl of the attributes and behavior

419

420

Appendix A

from the base class. Figure A.| shows the two subclasses, with generalization arrows
pointing to the base class. In this case, there is no default go behavior for vehicles, so
the base class must be abstract. Each concrete subclass of Vehicle must provide an
implementation of the go method. Each concrete subclass may accept the default
behavior for startEngine, stopEngine, andisEngineOn. If thedef aultimplementationis
inappropriate, the subclass may override the default implementation by providing its

In UML, rendering the abstract class name in italics indicates that the class is
abstract. Showing amethod in both the base classand in the subclassindicates that the
subclass overrides that method.

Java Example
Thefollowing Javafiles show how the UML model in Figure A.I can beimplemented

Vehide.java

Vehiclejavaisthe abstract base dassin FigureA. . Thisisreflected in the source code,
asthe classand the go method are both abstract. The other methods haveimplementa-
tions, but are not final, so they may be overridden by subclasses.

Jax
* The Vehicle class contains the data and behavior that
* is common to all Vehicles.

*f

Vehicle

+go() : String

+ startEngine() : void

+ stopEngine() : void

+ isEngineOn() : boolean

P

Car Truck

+go() : String +g0(): String

Figure A.1 Generalization example.

Appendix A

421

public abstract class Vehicle
private boolean enginestarted;

/** Answers the noise made when the Vehicle goes.
Must be overridden by all concrete implementations
of Vehicle. */

public abstract String go();

/** Starts engine. */
public void startEngine ()

this.engineStarted = true;

)

/** Stops engine. */
public void stopEngine ()
{

this.engineStarted = false

)

/** Answers true if engine is started. */
public boolean isEngineOn ()
{
return this.engineStarted;
}
}

Car.java

Carjava is a subclass of Vehicle, which in Java is indicated by the reserved word
"extends." Car overrides the go method and uses the base class implementation of the
isEngineOn method.

Jxe
+ The Car class inherits from Vehicle and overrides the go method.
* It encapsulates all data and behavior that is specific to Cars.
i

public class Car extends Vehicle

{

/** Bnswers the noise made by the Car when it goes. */
public String go()

{
if (this.isEngineon())
{
return "Vroom";
}
else

{

Appendix A

return "...";
}
}
}

Truckjava

Truck.java is a subclass of Vehicle, which in Java is indicated by the reserved word
"extends." Truck overrides the go method and uses the base class implementation of
theisEngineOnmethod. Truck isalmost identical to Car, with adifferent implementa-
tion of the go method.

* The Truck class inherits from Vehicle and overrides the go method.

* It encapsulates all data and behavior that is specific to Trucks.

*/

public class Truck extends Vehicle

{

/** Bnswers the noise made by the Truck when it goes. */
public String go()

{

if (this.isEngineOn())

{

return "Rumble";

else
¢
rebuch fu,

}

Guidelines

It isextremely important for the generalization relationship to be an accurate descrip-
tion of the underlying reality that you are modeling. Each subclass must redlly bea
refinement of the superclass. Do not subclass a class just to get useful behavior or
attributes. Doing so makes the system significantly moredifficul ttounderstand, and
may result in strange errors as the system evolves.

Realization

A classrealizes an interface by implementing each method that isdefined in theinter-
face. By realizing the interface, the class is promising to make the interface real, hi
UML, the realization relationship is denoted by a dashed line, with a hollow arrow
pointingtotheinterface.

Appendix A__ 423

UML Example

Continuing the earlier example, some Vehicles can carry cargo, some cannot. Also,
some classes that are not "normal” vehicles may aso carry cargo. So, rather than intro-
ducing a separate subclass for dl cargo-carrying vehicles, we introduce an interface,
ICargoTransport. Our design allows any class to realize the |CargoTransport by pro-
vidinganimplementation for theloadCargo method. FigureA.2 showsTruck realizing
the |CargoTransport interface, while Car does not.

Java Example

The following Javafiles show how the UML model in Figure A.2 can be implemented
inJava. Only thefil esthat have changed from the generalization example are shown.

Truck.java

Truck.java is a subclass of Vehicle, which in Java s indicated by the reserved word
"extends." Truck overrides the go method and uses the base class implementation of
the isEngineOn method. Truck also realizes the ICargoTransport interface, asindicated
by the "implements" reserved word in the class definition.

Jxx
* The Truck class inherits from Vehicle, and overrides the go methot
* It encapsulates all data and behavior that is specific to Trucks.
iy

Vehicle
<<Interface>>
+go() : String ICargoTransport
+ startEngine() : void
+ stopEngine() : void +loadCargo() : void
+ isEngineOn() : boolean

Car Truck
+go() : String +go() : String
+loadCargo() : void

Figure A.2 Realization example.

424 Appendix A

public class Truck extends Vehicle implements ICargoTransport
{
/** Answers the noise made by the Truck when it goes. */
public String go()
{
if (this.isEngineon())
{
return "Rumble";
)
else
{
return *,..";
}
b

/** Adds cargo to this Truck.+*/
public void loadCargo()

{

}

ICargoTransport.java

ICargoTransport.java simply defines the name and signature for the loadCargo
method. Asaninterface, itisprecluded from providing animplementation.

Jex
* The ICargoTransport interface defines the methods
* that must be implemented by all classes that
* transport cargo.

i

public interface ICargoTransport

{

/** Loads cargo for tramsport. */
public void loadCargo();

}

Guidelines
All of themethodsin aninterface must combineto describe acoherent responsibility.

Association

An association is along-term relationship between objects, hi an association, an object
keepsareference to another object, and can call the object'smethods asit needs them.
Real lifeis replete with association relationships. Consider a person with his or her
own automobile. Aslong asheor she rememberswhereitisparked, the car will letthe

Appendix A

425

person in to drive to his or her destination. In the UML, a solid line between the two
classes represents an association.

In some cases, an object may instantiate another object and keep areferenceto it for
future use. An object may aso receive an object as a parameter to a configuration
method and keep a reference to the object.

UML Example

Consider an association relationship in which each Person object knows about zero or
more Vehicle objects. Figure A.3 shows this relationship in a class diagram. The rela-
tionship is read as "every Person object is associated with zero or more Vehicle
objects," and "every Vehicle object is associated with one or more Person objects.” It
may help to think of this as a "knows-about-a" relationship, as in "each Person object
knows about some Vehicle objects.”

Java Example

Person.java shows how the association relationship shown in Figure A.3 between Per-
son and Vehicle can be implemented in Java. Each referenceto a Vehicle object is kept
inaVector.

Person.java
The Person class simply holds the vehicles for a person.
import java.util.#;

/e
* The Person class contains all data and logic for a person
* in the system.

*/

public class Person
public Vector vehicles = new Vector();

/** Adds a vehicle to this person. */
public void addvehicle(Vehicle v)
{
this.vehicles.addElement (v) ;
}
}

Guidelines

Association isthedefault long-term rel ationshi p between objects. If you arein doubt a
towhich long-term relationship to use, use association.

:14 4

Person

1

Vehicle

+go() : String

+ addVehicle(v : Vehicle) : void)

Figure A.3 Association example.

+ startEngine() : void
+ stopEngine() : void
+ isEngineOn() : boolean

Car Truck

+go() : String
+loadCargo() : void

+go() : String

<<Interface>>
ICargoTransport
B 5 T oy

+loadCargo() : void

AppendnA

427

Aggregation

Aggregation indicates a long-term relationship, with the additional restriction that
some of the objects are part of another object. It is this whole-part nature of the rela-
tionship that distinguishes aggregation from association.

UML Example

To continue the example, each Vehicle object may contain zero or one Engine objects.
Thereis aclear whole-part relationship, as theengine ispart of the car or truck. Figure
A.4 shows amodified association from Vehicle to Engine, with the hollow diamond at
the Vehicle indicating aggregation. The hollow diamond is always drawn next to the
enclosing whole.

Java Example

The following Java files show how the UML model in Figure A.4 can beimplemented
in Java Only the files that have changed from the previous running example are
shown.

Vehicle.java

Vehicle nolonger determineswhether it isrunning or not. Instead, thisbehavior is del-
egated to an Engine object.

Jxx
* The Vehicle class contains the data and behavior that
* is common to all Vehicles
*/

public abstract class Vehicle
{

private Engine engine;

/** Sets the engine */
public void setEngine (Engine e)
{

this.engine = &;

1

/** Bnswers the noise made when the Vehicle goes.
Must be overridden by all concrete implementations
of Vehicle. */

public abstract String gol();

/** Starts engine. */
public void startEngine ()
{

:144

Person

Vehicle

+go() : String

+ addvehicle(v : Vehicle) : void

.

Figure A.4 Aggregation example.

+ startEngine() : void
+ stopEngine() : void

+ isEngineOn() : boolean

Car Truck
+go() : String +go() : String
+loadCargo() : void

Engine

+ start() : void
+stop() : void
+isOn(): boolean

<<Interface>>
ICargoTransport

+loadCargo() : void

Appendix A 429

if (this.engine null)

1
this.engine.start();

/** Stops engine. */
public void stopEngine ()

{
if (this.engine != null
{
this.engine.stop();
)
¥

/** Bnswers true if engine is started. */
public boolean isEngineOn(}

{

if (this.engine != null)

{

return this.engine.isOn();

}

return false;
}
}

Engine.java
Enginejava provides very simple behavior for starting, stopping, and checking the
current value.

Jxx
* The Engine class contains the data and behavior for all engines
* for use with Vehicles.

)
public class Engine

{

private boolean on;

/** Starts this engine. */
public void start()
{

this.on = true;

}

/** Stops this engine. */
public void stop()

{

430

Appendix A

this.on = false;

}

/*+ Bnswers true if the engine is running. */
public boolean isOn()

{
return this.on;
}

Guidelines

Adggregation requires a clear whole-part relationship. Any uncertainty about the need
for aggregation or ambiguity over which object is the whole and which is the part
should lead you to use association instead.

Composition

Composition is an even stronger relationship, with one object essentially owning the
other object or objects. The subordinate objects are created when the whole is created,
and are destroyed when the wholeis destroyed. Also, an object cannot play the role of
a subordinate part in two composition relationships.

UML Example

Every engine contains many wheels, cogs, and gears that are integral and indivisible
parts of the greater whole. Figure A.5 shows that each Engine object contains zero or
many Cog objects. The filled-in diamond next to the enclosing class indicates the com-
position relationship.

Java Example

Thefollowing Javafiles show how the UML model in Figure A.5 can beimplementedin
Java. Only the files that have changed from the previous running example are shown.

Engine.java

The Cog objects are created when the Engine is created, and become €ligible for
garbage collection along with their enclosing Engine.

import java.util.*;

[k
* The Engine class contains the data and behavior for all engines
* for use with Vehicles.

]

(84

PEel B e
Person

+ addVehicle(v : Vehicle) : void

Engine

+start() :
+stop() : void
+isOn(): boolean

Cog

Figure A.5 Composition example.

>

s stopEngine() : void

+go() : String

Vehicle

+go() : String
+ startEngine() : void

+ isEngineOn() : boolean

+go() : String

+loadCargo() : void

<<Interface>>

ICargoTransport

+loadCargo() : void

432 Appendix A

public class Engine

private boolean on;
private Vector cogs = new Vector();

public Engine()

this.cogs.addElement (new Cog()) ;
this.cogs.addElement (new Cog()) ;

}

/** Starts this engine. */
public void start ()
{

this.on = true;

}

/** Stops this engine. */
public void stop()

{

this.on = false;

}

/** Answers true if the engine is runming. */
public boolean isOn()

{

return this.on;
}
}

Guidelines

As with aggregation, when in doubt, do not use composition.

Dependency

Objects often need to use another object. An object may receive areference asapara-
meter to a method, or it may create the object, use it, and lose it before the end of the
current method. The key idea is that the dependent object acquires, uses, and forgets
the object within a single method.

UML Example

Continuing the example, people use gas pumps to get gas, but most people do not keep
track of every pump that they have used. The Person object receives a reference to a
GasPump object as a parameter to the purchaseGas method. The reference is used
within the method; it isnot kept. The resulting dependency relationship can be seen as
the dashed line from Person to GasPump in Figure A.6.

£EV

Person

+ addVehicle(v : Vehicle) : void
+ purchasegas(pump : GasPump) : void

Engine
jrros et ran]

R e s o

+stop() : void
+ is0n(): boolean

Figure A.6 Dependency example.

+go() : String

+ stopEngine() : void
+ isEngineOn() : boolean

Vehicle

<<Interface>>
i ICargoTransport
: +go() : String
+ startEngine() : void
1.% a e +loadCargo() : void

Truck
+go() : String
+loadCargo() : void

434

Appendix A

Java Example

Person.java shows how the dependency relationship between Person and GasPump
can beimplementedinJava.

Person.java

Now, the Person class has a puichaseGas method that accepts a reference to a
GasPump object asaparameter.

import java.util.*;

Jax
* The Person class contains all data and logic for a person
* in the system.
«

public class Person

public Vector vehicles = new Vector();

/** Rdds a vehicle to this person. */
public void addVehicle (Vehicle v)
{

this.vehicles.addElement (v) ;

}

public void purchaseGas (GasPump pump!
i
// use pump
// forget about pump
}
}

Guidelines
Dependency should be used whenever an object is used and forgotten within asingle
method.

Additional Resaurces

This appendix describes additional resources for several categories.

Object-Oriented Analysis and Design

Booch, Grady. Object-Oriented Analysis and Design with Applications. Reading, MA:
Addison-Wesley-Longman, Inc., 1994,
This is till the classic text for OO analysis and design. It has a unique combina-
tion of academic precision and clear explanations.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley-Longman, Inc., 1999,
Excellent reference for the UML and its application.

Coad, Peter, and Mark Mayfield. Java Design. Upper Saddle River, NJ: Prentice-Hall
PTR, 1997.
A very concise and readable book that stresses design by composition.

Fowler, Martin, with K endall Scott. UML Distilled: Applyingthe Standard Object Mod-
elingLanguage. Reading, MA: Addison-Wesley-L ongman, Inc., 1997.
A very concise guide to the UML.

436 Appendix B

Patterns

Buschmann, Frank, Regine Meunier, Harts Rohnert, Peter Sommerlad, and Michael
Std. Pattern-Oriented Software Architecture: A System of Patterns. West Sussex, Eng-
land: John Wiley & Sons, Ltd., 1996.

Introduces several important architectural patterns, including MV C and layers.

Fowler, Martin. Analysis Patterns: Reusable Object Models. Reading, MA: Addison-
Wesley-Longman, Inc., 1997.
Very interesting book on analysis and domain modeling. Contains a lot of exam-
ples and clear explanations of the author's thought process as he creates his
designs.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wedey-
Longman, Inc., 1995,

The book for design patterns. Invaluable resource.

Software Development Process

Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software Develop-
ment Process. Reading, MA: Addison-Wesley-Longman, Inc., 1999.

Excellent reference for the proprietary process and for OO software engineering
ingeneral.

Kruchten, Philippe. The Rational Unified Process: An Introduction. Reading, MA:
Addison-Wesley-Longman, Inc., 1999.

Concise guide to the RUP.

McConnell, Steve. Rapid Development. Redmond, WA: Microsoft Press, 1996.
Incredibly easy-to-read coverage of some difficult and important topics. This is
not an OO book, rather the definitive software engineering book for the practi-
tioner.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft Press,
1998,

Contains alot of the same material as Rapid Development, above, but in a conve-
nient easy-to-gift-wrap size. Makes a great gift for your favorite unenlightened
manager or customer.

Webster, Bruce F. Pitfalls of Object-Oriented Development. New York: M&T Books,
1995,

A clearly organized and easy-to-read guide to the dangers inherent in OO soft-
ware development. It contains excellent advice for both managers and develop-
ers as they adopt OO technology.

Appendix B 437

XML

Megginson, David. Structuring XML Documents. Upper Saddle River, NJ: Prentice-
Hall, Inc., 1998.
Goes way beyond the basics for a complete discussion of XML DTDs and how to
construct them.

. Laurent, Simon. XML: APrimer. Foster City, CA: MISPress, 1998.
Concise guide to creating XML DTDs and documents.

Java

Asbury, Stephen, and Scott R. Weiner. Developing Java Enterprise Applications. New
York: John Wiley & Sons, Inc., 1990
An excellent introduction to Sun's Enterprise Java class libraries.

Chan, Patrick, Rosanna Lee, and Douglas Kramer. TheJava Class Libraries Second Edi-
tion, Volumes 1, 2, and Supplemental edition for the Java 2 Platform. Reading, MA:
Addison-Wesley-Lortgman, Inc., 1998.

An amazing series of books, with the best low-level explanations of the packages
and classes that make up the core class libraries for Java.

Eckstein, Robert, Marc Loy, and Dave Wood. Java Swing. Sebastopol, CA: O'Reilly &
Associates, Inc., 1998,

Very readable explanations of a complex topic. Exhaustive and evenly written
coverage of ahuge amount of material.

Flanagan, David. Java in a Nutshell. Sebastopol, CA: O'Reilly & Associates, Inc., 1996.
Excellent guide and reference for the language, tools, and basic classes.

Hamilton, Graham, Rick Cattell, and Maydene Fisher. JDBC Database Access with
Java: A Tutorial and Annotated Reference. Reading, MA: Addison-Wesley-Longman,
Inc., 1997.

Thorough coverage of JDBC, but alittle heavy on the reprinted JavaDocs for my
taste.

Hunter, Jason, with William Crawford. Java Serutet Programming. Sebastopol, CA:
O'Reilly & Associates, Inc., 1998.

Solid coverage of servlets, from fundamental sto advanced topics.

Oaks, Scott, and Henry Wong. Java Threads. Sebastopol, CA: O'Reilly & Associates,
Inc., 1997.

Excellent coverage of multi-threaded programming in Java, with a good balance
of theory and details.

Reese, George. Database Programming with JDBC and JAVA. Sebastopol, CA: O'Reilly
& Associates, Inc., 1997.

438 Appendix B

Excellent coverage of JDBC, and a thought-provoking introduction to the design
of object-to-relational frameworks.

Roman, Ed. Mastering Enterprise javaBeans and the Java 2 Platform, Enterprise Edition.
New Y ork: John Wiley & Sons, Inc., 1999.
Excellent coverage of awide range of enterprise technologies.

The CD-ROM

The CD ROM contains aread-only HTML version of the UML design model for the

.ion, aswell asthe Java source code and deployment instructionsthat
can beu%dto deploy the application. If the model failstoload inyour browser, please
try the Netscape version. Also, your browser must be configured to support Java
appletsin order to view the model. Themodel filewas created by using Rational Rose
"Web Publisher" feature to produce a read-only HTML version of the model. Thisisa
great way to distribute your designs to a larger audience, such as customers who do
not have acopy of Rose.

The model is intended to provide a coherent picture of the design that was devel-
oped over many chapters in the book. Some figures that are in the book arenot in the
model, and vice versa.

fn order to view the contents of the model, simply use the tree control on the left. If
you are in the frames version, the main view frame on the right will display the
selected diagram. Otherwise, the selected diagram will appear in a second browser
window. For example, click onthe plussignto the left of the Logical view folder. Dou-
ble-click onthe"main" diagram symbol.

The Java source code and deployment instructions allow the reader to see one pos-
sibleimplementation of the design and to experiment with various aternatives. These
instructions guide you asyou install the required software and deploy the Timecard
gpplication. Theinstructions arebrokeninto several sections, with each section shown
in its own table. The leftmost column of the table shows the major steps required for

439

440

Appendix C

the section. The middle column describes the details for each step. Finally, the right-
most column describes any expected results.

If your interest and patience are high, you may wish to deploy the Enterprise Jav-
aBeansfrom, scratch. An additional page of custom installation instructions guidesyou
through thistedious process. Y ou can also view the deployment instructions or the cus-
tom ingtallation instructions as Word documents.

Hardware Requirements

To use this CD-ROM, your system must meet the following requirements:
Platform/processor/operating system: Windows NT or 2000
RAM:128MB
Hard drive space: 120 MB
Processor: 300 Mhz Pentium or equivalent

Installing the Software

Toinstall the software, follow these steps:

Start Windows on your computer.

Place the CD-ROM inyour CD-ROM drive.

3. You can browse the modd from the CD-ROM by opening
X:\Models\Design\index.htm in Internet Explorer or X:\Models\Design\con-
tents.html in Netscape Navigator.

If you want to deploy the application, open X:\INDEX.HTM file on the CD-
ROM for detailed instructions (where X is the correct letter of your CD-ROM
drive).

NP

b

User Assistance and Information

The software accompanying this book is being provided as is without warranty or
support of any kind. Should you require basic installation assistance, or if your media
is defective, please cdl our product support number at (212) 850-6194 weekdays
between 9AM and 4PM Eastern Standard Time. Or, we can be reached via e-mall at:
techhelp@wiley.com.

To place additional orders or to request information about other Wiley products,
pleasecall (800) 8794539,

Abstract Factory design pattern, 331-332
Abstraction, 4-5
AbstractProduct, 332
Accessible requirements, developing, 21-23
Activity java,
ActivityBeanjava, 306-307
Activity diagram, 14, 24, 25-27,50,52,
53,55,57
for Change Password use case, 67
for Create Charge Code usecase, 69
for Create Employee use case, 71
for Export Time Entries use case, 74
for Login use case, 65
for Record Time use cese, 73
Activity entity bean, 304, 305,306
ActivityHornejava, 305-306
Actor generalization, 31 -34
Actors
describing, 23
locating, 21-22,44-45
messages from, 9394
refining, 45

Actor-to-use-case relationships, determining,
47-48

AdmirdstrativeloginUl, 145

Administrative User actor, 47-48,64
Aggregation relationships, 9,10,427-430
Alternativeflows, 25
Analysis, 15. K also Analysis model; Object-
oriented analysis
group,134-136
Andysisdasses 145
finding groups of, 144
Analysis model, 80,247
for Login use case, 376-378
for Record Time use case, 378-379
review of, 251-257, 375-379,402
for timecard application, 103-131
Architects. See also Software architect
EB, 206
for Java serviets, 173
JDBC, 198
for Remote Method Invocation (RMI),
192

rule in servlet development, 234

for Swing-based user interfaces, 166
Architectural constraints, 375

reviewing, 257,374-375
Architecture, 15-16. See also Software archi-

BillingSysteminterface, 402-403
premature, 40

442

Index

Association relationships, 89100, 424-426
Authoring tools, 176

B
Bandwidth, descriptive categoriesfor, 148
Bandwidth availability, 141,148
Java serviet, 175
for Swing, 168
for the Timecard system, 181
Banking system, use casesfor, 23
Baselineflows, 25
BasicEntityBean.]ava, 302-304
BasicServiet, 388
BasicServletjava, 397-399
BasicSessionBean java, 301-302
Beandeveloper, 206
Bean-managed persistence, 201,258, 260-262,
268,269
Behavior, of objects, 6
Bidirectional navigability, 10
Billing system interface, 181-182,228
BillingSysteminterface, 128,144, 233,234,248
design for, 40H17
implementation of, 407-417
Boundary dasses, 134136136
evaluating candidate technologies for,
153182
Boundary objects, 86-87
discovering, 116117
Browser-specific behavior, hiding, 325
Browser-specific HTML, 330331
BusinessObjects package, 217, 218,219

(o}
Call center systems, 140
Candidateactors, finding, 44
Candidate objects
discovering, 81-90,112-118
for Export Time Entries use case, 115
for Login use case, 115116
for Record Time use case, 113114
Candidate technologies
for control and entity classes, 183-209
evauating for boundary classes, 153182
Candidate use cases, evaluating, 61-62
Car java, 421-422
Case modeling, perseverancein, 35
Change Password use case, 61,62
activitydiagramfor, 67
documentation for, 65-66
evauation of, 109
ChargeCode.java, 308
ChargeCodeBean, 309311
ChargeCode entity beans, 286, 308,309
ChargeCodeHome java, 308-309

Charge codes, 268
ChargeCodeWrapper.java, 319-320
Clarity, design and, 244
Class diagram, 14,80
Classdiagrams, 124-126,126,239, 245
Classes, 6-7. Seealso Control classes; Object
classes
approaches to grouping, 215
collaboration among, 215216
describing, 126131
EJB,202
for entity beans, 203
group analysis, 134136
grouping, 224,226-229
interface and, 11
participating, 406
purposeof, 82
in Remote Method Invocation (RMJ), 185
supporting, 301-308

Swing, 156
Class groups, characteristics of, 136-144
Class library

designing, 323

JDBC, 198
Class names, 8283
Client.Java, 312
ClientBean java, 313315
Client entity bean, 312, 312313
ClientHome. java, 312-313
ClientLocator, 128,129

13
Client/server network, dedicated, 141
ClientStub, 185
ClientVIew objects, 185
Clustering, 207
ode, database-dependent, 196
ohesion, 222
ollaborating classes, 215216
ollaboration diagrams, 14,90
omboBoxModel, 155,157,160
omboBoxProducer-java, 347-348
Comment Time Entry use case, 46, 47
Common Object Request Broker Architecture
(CORBA), 142,199,206
Composite design pattern, 158-159,160,
applying, 328
Composition relationships, 9-10,430-432
ConcretefFactory, 332
Concurrent access 172,201
Concurrent updates, 143-144,151
Confidence, developer, 36
Connection interface, 194195
Connectionless protocol, 168

Index

445

Connections, JDBC, 193-1%

Container, EJB, 201

Container-managed persistence, 201,204,

258, 260-262, 268,269, 280

Container vendors, 202

Control classes, 228
candidate technologies for, 183-209
discovering,

Control objects, 87-88,136,203

Cookies, 169,170

for user interfaces, 138139146147,
180181

Deployment descriptor, EJB, 200
Deseriaization, 186
Design, 16,239-248
for BillingSysteminterface, 401-117
establishing goalsfor, 244
evaluating 271 27f, ;>7-330,332
for ExportT\meEntnsuseo@, 271-273
for goals, 258-
for HTML producnon 323371

Coupling, 222. Seealso L« ing; Tight

10of, 277-321

coupling
between software packages, 229-232
Create Charge Code use case, 46,47,63
activity diagram for, 69
documentation for, 50-51,66-68
evaluation of, 108109
Create Employee use case, 46,47,62
activity diagramfor, 71
documentationfor, 51-53,68-70
evaluationof, 111-112
Customer confidence, 36
Customer-developer dialog, 42-4345-46,
58-61,62
Customer feedback, 41
Customer perspective, 1314
understanding, 58
Customizeble views, 138174175

D
Data
dynamic view of, 138
static view of, 137-138
Database-dependent code, 196
Data retrieval methods, 196
Data transfer
interfaces for, 142
in XML, 179
Decisionmaking, 18. Seealso Design deci-

Decisions, architectural, 261
Dedicated client/server network, 141
Dedicated users, 140
Dedicated workstations, 139
DefaultComboBoxModel, 155-156,157
DefaultTreeModel, 155
Delegation, in design, 241
Dependency relationships, 8,100, 432-434
Deployer, EJB, 206-20:
Deployment, in Remote Method Invocation
(RMI), 187
Deployment constraints, 24,49, 54,135
descriptive categoriesfor, 147
Java servlet, 174175

for Login use case, 262-266
need for, 240-241

planning for, 243-245
premature, 40
preparingfor, 240

for Record Time use case, 266-271

stepsin, 247

for the Timecard application, 247-248

TimecardDomain and TimecardWorkflow,
249-321

for the TimecardU| package, 373-39
Design decisions, 258
Design flaws, 341
Design gods

establishing, 373-374

for HTML production, 324-327
Design guidelines, 245-246
Designmodel, 262
Design patterns, 241-243

common languagein, 242

composite, 327-328
Design team, 243
Details, guidelines for describing, 4857
Developers

for Java serviets, 173

JDBC, 198

perspectiveof, 14
Remole Method Invocation (RMI), 192-193

Devdopment Seealso Iterative development
in Remote Method Invocation (RMI), 187
requirements gathering and, 20

Developmental process, belief in, 36-37

Development teams, 38, 39,106-107

Developmentworkflow, EJB, 204

DHTML, 174

Dial-up Internet connection, 141

displayErrorMessage, 121

displayWelcome, 122

444

Index

Distributed Common Object Model (DCOM),

142-143
Documentation, use case, 6375
Document author, 179
Document Object Model (DOM), 177-178

Document tvpe definition'(DTD), 176
DOM. See Document Object Model (DOM)
Domainexperts, 19, 20

Domain-specificterminology, 85
DriverManager, 193,194,195

Drivers, JDBC, 193-1%

DTD authors, 178-179

Dynamic views of data, 138,167,174
Dynamic Web pages, producing, 180181

E
EJB. See Enterprise Java Beans (EJB)
EJBHomeinterface, 202
EJBObject interface, 202
EJB system, primary stepsin, 204
Electronic Data Interchange (EDI), 142,175
Elements, of XML documents, 175
EmployeeloginUl, 120,121,123,127,128,
145,251,376,377
Employees, asactors, 45
Encapsulation, 5155
as a design goal, 326-327,338-339
End users, 1920
Enginejava, 429-432
EnterpriseJava Beans (EJB), 1,165,199-207,
257,258,279 Seeal soEJB entries
cost of adopting, 206-207,208
detailsof, 202-204
number and type of users of, 208
performance and scalability in, 207, 208
strengths and weaknesses of, 204-206
suitability of, 207

technologies compatible with, 206
Entity Bean interface, 200
Entity beans, 199. Seealso Timecard entity
bean; User entity bean
interfacesand classesfor, 203
Entity dasses 226
candidate technologies for, 183-209
Entity objects, S485113116136

consolidating, 116

direct aocess to, 188

hiding, 183
Evauation

rla<cps. 153-182

of candidate use cases, 61-62
of Change Password use case, 109
of Create Charge Code use case, 108-109
of Create Employee use case, 111-112
design, 328-330,332
of Export Time Entries use case, 107-108
of Login use case, 109110
of package dependencies, 338-339
of Record Time use case, 110111
of software architecture, 224-225, 234-236
of use cases, 4617
Even flows, 54
Even model, 156158
Even notification, direct accesswith,
88191
Exception flows, 25
Export All Users, sequencediagramfor, 406
ExportCriteriafava, 407-412
ExportCriteria object, 406,414
ExportEntri~n. 129,145, 256,257
ExportEntriesWorkflow, 128
ExportFilejava, 412-414
Export Speific Users, sequence diagram for,
406

Export TimeEntries. Seeal soExport Time
Entries use case

finding relationships for, 128129

participating classes for, 230

usecase documentation for, 56-57
ExportTimeEntriesApplication,406
ExportTimeEntriesApplication.java, 414-417
ExportTimeEntriesServiet, 273
Export Time Entries use case, 46,47

activity diagramfor, 74

candidate objectsfor, 115

control dassfor, 118

data accessfor, 150

design for, 271-273

documentation for, 72-75

evaluationof, 107108

event flow in, 255256

participating classes for, 260,275

sequence diagrams for, 259, 273
ExportTimeEntriesWorkflow, 118,273
ExportTimeEntryServlet, 276
Extend relationships, 27,29-31
Extensibility, 225

of the Bi IIingEyseml nterface, 402

in design, 244-245

as adesign goal, 326-327, 333-339, 379-350

polymorphism and, 11

of software architecture, 213, 234-235

of a subsystem, 221

for the Timecard system, 250-251

of the TirnecardU| package, 373-374

Index

445

extensible markup language (XML), 175-180,
403

cost of adopting, 178-179
details of, 176-178

resourcesfor, 437

strengths and weaki of, 178
technologies compatible with, 178

E
Fast Internet connections, 141
File Transfer Protocol (FTP), 142
Firstiteration, use casesfur, 112
Flexibility

interfacesand, 11,160

Flowcharts, 27
Flow of events, 24-25, 37
developing, 49
Flows, typesof, 25
Focus, on use cases, 22
Follow-up meeting, sample notes from, 58-60
Form data, 169
retrieving, 170
FormProducer, 341-343 384
FormProducerCeneric.java, 364-366
FormProducer.java, 348-350

G
Generalization relationships, 419-422
getFactorySingleton method, 360
getHtmlProducer method, 368
Gods
in design, 244,247, 275
designing to, 258-262, 'C7--TV2, 379-380
identifying, 4QI-W3
for producingan HTML classlibrary,
324-327
setting, 223-224
Graphics, interactive, 138,174
Group analysis classes, 134136
Groups of classes, characteristics of, 136144

H
Handheld devices, 139
Happy flow, 49
High-level usecasediagram, 43, 104
High-level use case model, 35
Hiring, usecasesrelated to, 32-34
Homeinterface, EJB, 200
HTML, browser-specific, 330-331
HTML dasslibrary, 323
goal-lor producing, 324-327
Html Producers, 383
HTML production, 170-172
designfor, 323-371

designgoalsfor, 324-327
details of, 339-346
implementationof, 346-371
simplicity in, 324-325330-335
HtmlProduction framework, 248
HtmlProduction package, 333, 373,392
HTML syntax, 325
HTTP request, 168-169. Seealso HyperText
Transfer Protocol (HTTP)
HttpRequest, 381,387
HTTP response, 169
FITTPserviet, 169
HtrpServletRequest object, 170
HTTP sessions, 200
HyperText Transfer Protocol (HTTP), 142,
168. Seeabo HTTPentries

ICargoTransport.java, 424
IConcreteProducer, 365
IConcreteProducer.java, 359-360
IHtmlIProducer, 328
IHtmlProducer.java, 346-347

EJB,200
Implememal\un independent analysis

Include reiatlunshlps. 27,2931

Independent design efforts, 246

Indirect mutual dependencies, 218

Initial meeting, sample notes from, 42-43

Input, soliciting, 1920

Integrated development environment (IDE),
380

Interaction diagram, 80

Interactive graphics, 138,174
Interchange format, 176

Interface classes, separation from entity

for emlty beans, 203
realization by dasses, 422-
|nRemmeMelhudlnvoca|0n(RMl) 18
Internet browsers, 139
Internet connections, 141
Invalid login data, processing, 382
Invalid password, alternate flow for, 121
Isolated updates, 143
Iterative development, 78

3
Java. Seealso Java DataBase Connectivity
ODBC)
modeling with UML, 1-16

Index

Java, (cont.)
resources for, 437-438
UML model implementation in, 420-434
Java2EnterpriseEdition, 1
Java 3D, 165167
Javadasslibraries, 245
Java DataBase Connectivity (JDBC), 165,

193199
cost of adopting, 197-198,208-209
detailsof, 198196
number and type of users of, 208
performance and scalability of, 198-199,
208

strengths and weaknesses of, 196

suitability of, 198-19

technologies compatible with, 196197
Javadevelopers, opportuni\iesfor 1
Java Development Kit (JDK), 183
JavaNameand Directory Interface (fNDI),

Ja/aScripl, 174
JavaServer Pages (JSP), 34
Java sarviets, 34,168-175
bandwidith availability for, 175
cost of adopting, 172-173
designer, architect, and developer for, 173
detailsof, 170-172
number and type of users of, 175
strengths and weaknesses of, 172
suitability of, 173175
technologies compatible with, 172
userinterfacecomplexity of, 174
Java Virtual Machine (WM), 154
javax,swing.border package, 215
JComboBox, 156,157,160
JComboBox objects, 155,160-165
JPanels, 158160

L

Layering, strict and relaxed, 188,192

Layout managers, 160,161

Licensing costs, 208

Lifecycle classes, 8390
discovering, 118

Lifecycle objects, 136

LinkProducer, 381-382

Load balancing, 207

loadCriteriamethod, 407

Locator classes, 229

Logging subsystem, 219-221

adding tentative behavior for, 119
finding relationships for, 127-128
normal flow for, 120

participating classesfor, 229

sequence diagrams for, 119122
validating sequences for, 122-123

381-382
Login Form, building, 38L
Login screen, 341-345
LoginServlet, 263, 381,382-383,388
LoginServietjava, 383392
LoginServiet object, 341
Login use case, 61, 62,146
activity diagram for, 65
boundary objects for, 117
candidate objects for, 115116
control class for, 118
dataaccessfor, 149
design creation for, 381-383
design for, 262-266
documentation for, 64-65
evauationof, 100110
flows in, 251-253
participating classes for, 266,379,382-383
reviewing analysis model for, 376-378
sequence diagrams for, 263-266
LoginWorkfbw, 118,119,120,122,263, 376,
37

LoginWorkflow java, 292-293

LoginWorkflowBean-java, 294-296

LoginWorkflowHomejava, 293-294

LoginWorkflow objects, 251, 252,253, 378

Login Workflow sesson bean, 263, 292,293,
294

LoginWorkflow stateless session bean,
292-296
Loosecoupling, 222,224,226, 244,246

M
Maintainability, 225

of software architecture, 213-214,234-235
Managers, asactors, 45

follow-up, 58-60

initia, 42-43

scheduling, 58
Method, defined, 6
Micromanagement, 38
Microsoft Project, 138
Mini-system development, 78
Model dasses, 15

process of, 1416
Modeling software, 2
Morale, in design, 240-241
Multiplicity, 1011
Mutually dependent packages, 217-219

Into 447

N

Naming conventions, in design, 245-246
Navigability, 10

Network browsers, 139

Nodejava, 320-321

Normal (baseline) flows, 25,122-123

[e]

Object behavior
checkpoints for describing, 91-92
consolidating, 98
describing, 90-95
guidelines for finding, 90-92
process for describing, 92-95
refactoring, 98-99

Object caching, 201,207

Object classes. See also Object lifecycle

coherent, 97
describing, 95-101
finding relationships between, 99101
guidelines for describing, 95-97
limiting responsibilities of, 82
process for describing, 97-101
Object class methods
cohesion between, 91
naming, 91
Object interactions, describing, 118126
Object lifecycle classes, 8390
Object lifecycle management, 204-205
Object Management Group (OMG), 4
Object orientation, basics of, 412
Object-oriented (OO) theory, 243
Object-oriented analysis
defined, 8081
readinessfor, 7879
stepsin, 81
with UML, 77-101
Object-oriented analysis and design,
resourcesfor, 435
Object-oriented design, 239. Seeal soDesign
Object-oriented systems, 6, 7
Objects, 56. See also Boundary objects; Can-
didate objects; Entity objects
adding to a sequence diagram, 92-93
checklist for naming, 83
discovery of, 81-90
encapsulated, 5
guidelines for discovering, 81-83
process for discovering, 8390
relationships between, 7-8
Observer design pattern, 156-158,160, 165,
190

Operations managers, as actors, 45

P
Package dependencies, 217-219
evaluating, 338-339
Package dependency diagrams, 217, 219,232,
236,276
Packagediagram, 14
Packages, 214-216
designing, 246-247
grouping classesinto, 224
mutually dependent, 217-219
aswork units, 216
PageProducer, 328,381,382
PageProducer java, 350-351
PageProducerGeneric.java, 366-367
Parameter passing, 186187
Parsers, 176,177-178
Patterns, resources for, 436
People, soliciting input from, 19-20
Performance
of the BillingSysteminterface, 402
design and, 244
EJB,207
JDBC, 19819
for the Tirnecard system, 250
Performance comparison, 208
Performance requirements, 143-144,148-151
Performance risk, 108,109,110, 111
Perseverance, in use case modeling, 35
Persistence, 201
bean-managed, 260-262
container-managed, 204,260-262
ERB, 205
Person.java, 425
Planning, for design, 243

Portability, EJB, 205

Postconditions, 24

Preconditions, 24

Preferences, support for, 326,335-333
Preferencesalternatives, 335337
Presentation developers, 325
Primary use cases, finding, 45-46
Primitives, 186

Problem description, in design, 242
Problems, focuson, 34
ProducerFactory, 332-334, 338,339, 397
PrnducerFactory java, 360-364
Productivity, in design, 240-241
Project java, 315316

B :

317-319
Project entity bean, 315316317
Project failure, 36-37
ProjectHornejava, 316
Project management, 37
Projectplandevelopment, 37

48

Index

Properties file, 337-338
Propertiesobject, 337

Protocol, services through, 179-180
Protocol-based interfaces, 142
Purchase Book use case, 27, 28,30

R
Ranking system, for use cases, 104-107
Rational Unified Process, 77
Read-only systems, 143
Record Time. SeealsoRecord Timeusecase
finding relationships for, 129-131
use case documentation for, 5356
RecordTimeAdministrativeUl, 145
Record Time Form, building, 384
RecordTimeServlet, 269, 269,384,385, 387,

RecordTimeServiet.java, 392-39%6
RecordTimeUl, 129,145,254, 255
RecordTimeU! objects, 267, 379
Record Time use case, 46,47,147

activity diagramfor, 73

boundary objectsfor, 117

candidate objectsfor, 113114

control dassfor, 118

data access for, 151

description of, 70-72

design creation for, 383387

design for, 266-27]

evaluation of, 110111

event flows in, 253255

participating classes for, 272,385-387

reviewing analysis model for, 378-379

sequence diagrams for, 269-271
RecordTimeWorkflow, 118,129,254
RecordTimeWorkflow.java, 297-298
RecordTimeWorkflowBean.java, 298-301
RecordTimeWorkflowHome,java, 298
RecordTimeWorkflow object, 267,379

RecordTimeWorkflow session bean, 267,269,

297, 298
RecordTimeWorkflow stateful sessionbean,
296-301

refreshRow method, 196
Relationships

classesand, 231

for Export Time Entries, 128-129

include and extend, 2931

for Login, 127-128

for Record Time, 129131
Relaxed layering, 188,192
Relizbility, 225

of the BillingSysteminterface, 402

design and, 244

of software architecture, 214,235-236

RemoteException, 277,278
Remote interface
EJB,200
for User entity bean, 2
Remote Method Irwocallon (RMI), 143,165,
183198

cost of adopting, 192-198, 208-209
detailsof, 185187
number and type of users of, 208
performance and scalability of, 208
strengthsand weaknesses of, 191-192
suitability of, 198199
technologies compatible with, 192
Remote object registration, 185186
Remote Procedure Calls (RPCs), 142
Remote references, 187
Requirements, SeealsoRequirementsgather-
ing; Temnology requirements
accessible, 21-23
detailed a\d complete, 24-27
detecting poor, 37-
good, 1834
incomplete, 38,40
for object-oriented andysis, 78
performance and scalability, 143144,
148151
Requirements gathering, 15
additional, 5861
guidelines for, 34-37
for a timecard application, 41-75
sepsin, 1819
with UML, 1740
Result sets, 197
JDBC, 1%51%

Reuse
of the BillingSystemlinterface, 402
design and, 245

for !’heTimeca'd system, 250
Review, rolein design, 247
Risk
role in ordering use cases, 79,105,107,108,
109110111
RMI. SeeRemoteMethod Invocation (RMI)
rmic tool, 185191
S

from follow-up meeting, 58-60

Index 449

SAX. See Simple API for XML (SAX)
Scalability, 225
ERB,207

of software architecture, 214235236
Scal ability comparison, 208
Scalability requirements, 143-144,148-151
Schedule pressure, excessive, 33-39
Scheduling, 40
indesign, 241
"Scope creep,” 15
Security, EJB, 206
Self-describing documents, 176-177
Sequence diagrams, 14,90,98,118-119,
124-126, 264-265, 270,274
adding objects to, 92-93
for Export All Users, 406
for Export Specific Users, 406
for Export Time Entries use case, 273
for Login, 119122
for Login use case, 263-266
messages in, 9597
for Record Time use case, 269-271
Sequence validation, 94-95
Seridlizable objects, 186187
Seridization, 186
Services, through a protocol, 179180
Servlet developers, 323
Servlet development, architect'srolein, 234
Servlet engines, 169,170
Serviets, developing, 172
SessonBeen interface, 200
Session beans, 200
LoginWorkflow stateless 292-296
RecordTimeWorkflow stateful, 296-301
stateful or stateless, 202-203,260, 267,273
Sessions, servlet, 170
SimpleAPI for XML (SAX), 177
Simpledatainput user interface, 137
Singleton design pattern, 219,360
Skeletonobject, 184
Software architect, 222-223
Software architecture, 211-237
creating, 222-225
evauating, 224-225, 234-236
godls for, 213-214
guidelines for, 221-222
readinessfor, 212-213
Timecard system sample of, 225-236
Unified Modeling Language (UML) and,
24221

Softwarebase, 36
Software development, resources for, 436
Softwaremodels, 4

Software packages, coupling between,
229-232

Software systems, modeling with UML,
1314
Software technologies, understanding, 212
SortedMaps, 32
Sponsors, identifying, 18
193

S

Stakehol ders, 19
listening to, 20-21,42-43
mode! validation with, 35
progresstracking by, 37

State, of objects, 6
Statechart, 14
Stateful sesson beans. See Session beans
Stateless sesson beans. See Session beans
Statements, JDBC, 193-1%
Static classdiagrams, 95
Static view of data, 137-138
Statistics, use of, 35
Strict layering, 188,192
Stub object, 183184
SubmitButtonProducer, 351-362
Submit Timecard event flow, 254-255
Submit Timecard flow, 269-271
Subsystems, 219221

designing, 246-247

extracting, 224,234
Suitability

EJB, 207

of Java servlets, 173175

of RMI and JDBC, 19819

of the Swing framework, 167-168

of usecases 106-107,108,108,109,110,

m, 112

XML, 179180

Summarizing, of technology requirements,
1=

Supporting classes, 301-308
Supporting use cases, finding, 46
Swing applets, 167,168,181
Swing framework, 154-168
bandwidth availability for, 168
cost of adopting, 166-163
designer, architect, and developer in, 166
detailsof, 155165
number and type of users of, 167-168
strengths and weaknesses of, 165
technol ogies compatiblewith, 165
user interface componentsin, 158
Swing user interface, deployment constraints
for, 167
System-actor relationships, finding new,
61-62

450

Index

System interface classes, 136
System interfaces, 136,142-143
with billing system, 181-182
types of, 148
System modeling, 3
System performance, unacceptable, 105
System requirements, documenting, 1314
Systems
customer perspective on, 58
describing for technology selection,
13312

varying perspectives on, 3

vision of, 18
System services, direct access to, 142-143,180
System sponsor, 39

T

Table preferences, 335

TebleProducer, 328, 331,334,344-345.384

TableProducer.java, 352-354

TableProducerGeneric.java, 368-369

TableProducer objects, 341-343

TabularlnputFormProducer, 341-345,381

TabularlnputFormProducer. Java, 354-356

TabularinputFormProducerGeneric.java,
369371

Team building, 79

Team competency, 79

Technology. Seealso Candi ologies;

Timecard java, 283-284
Tirnecard application. Seealso Timecard sys-

analysis model for, 108131

architectural constraintsin, 257

design efforts for, 247-248

gathering requirements for, 41-75

technology requirementsfor, 144151
TimecardBean java, 286-292
TimecardDomain, 247,248

establishing godls for, 250-251
TimecardDomain design, 249-321
TimecardDomain package, 250, 257,271
Timecard entity bean, 269, 283,283-292,286
Tirnecard form, 345-346
TrmecardHtime.java, 284-286
TimecardHomeinterface, 405-406
Timecard system, 21

bandwidith availability for, 181

goalsfor, 250-251

sample software architecture for, 225-236

technology selectionsfor, 180181
TimecardUl, 374
TimecardU! package, 227,248, 257,271

designfor, 373399

design godls for, 373-374

designing for use casesin, 381-387

designing to goals for, 379-380

i ion of, 399

Software technologies; Technology
requirements
adaptation to, 106
showing, 224,232-233
understanding, 212
Technol ogy requirements, 208-209. Seealso
Regquirements
for Timecard application, 144-151
Technology selection, 15,207-209
deferring, 80
describing the system for, 133-152
chnology template, 153154
* entative behavior, for Login, 119
* erminology, domain-specific, 85
stability
as adesign god, 380
of theTimecardU| package, 374
s cases, 37
xt description, 14
xtEntryFrame.java, 163165
xtK eldProducer java, 356-358
xtProducer, 328,333-334,345,382,384
TextProducer.java, 358-359
Thread safety, 187
Tight coupling, 222, 246

Timecard Workflow, 247,248
establishing goalsfor, 250-251
TimecardWorkflow design, 249-321

TimecardWorkflow package, 250
TimecardWorkflow sessonbean, 375
TimeEntry entitv bean, 267-268
TimeEntry objects, 267
Transaction boundaries, 202
Transaction management, 201

, 205
Traversal methods, 196
Truck.java, 422,423-424

u
UML activity diagrams, 24. SeealsoActivity

UML diagrams, 81

UML messages, 93

UML notation, 17

UML specification, 10

Unified Modeling Language (UML), 412,

241, See also UML entries

examples of, 41934
gathering requirements with, 17-40
malleability of, 241
modeling Java with, 1-16

Index

451

modeling software systems with, 1314
object-oriented analysiswith, 77-101
parkas" dependency and, 182
software architecture and, 214-221
Unknown user, alternateflow for, 121
UpdatedChuo& er.jdva, 161-163
Updates
concurrent, 143-144
isolated, 143
UpdateTimecardControl, 188
Use case description, 24
sample, 70-72
Uw case diagrams, 13, 21,23. See also
Detals
building, 44-48
revising, 61-63
Use case documentation, 50-57
revising, 6375
sample, 64-71), 72-75
Use casegeneralization, 31
Use case model, 48
refactoring, 27-34
revising, 61-75
versus analysis model, 8081
Use cases
applicationof designto, 247
defined, 13
describing, 23
designing for, 262-273,381-387
S\ilu,iting, 46-47
finding, 22-2345"7
finding new, 61
for the first iteration, 112
naming, 46,49
objects and, 91
prioritizing, 78-79,103-112
risk associated with, 106
significance of, 106106
splitting up, 28
suitability of, 1U6-1U7
Use case template, 49-50
Use comparisons, 208
Lser.jaw, 277-278
UserlSean.java, 280-283
User entity bean, 277-283, 285
User groups, 135
UserHome.java, 278-280
UserHome interface, 406
User interface, 134136
unacceptable, 106

User interface (Ul) designer, 166,173
User interface classes, 135180-181,226
Swing, 138
User interface complexity, 135-136,137-138,
144-146,180
of serviets, 174
Swing framework, 167
User interface design, avoiding, 58
Userfnterfacepackage, 217, 218,219
User interfaces
deployment constraintsfor, 138-139,
146-147,174-175,180-181
naming, 86
User interface technology, 135137
selecting, 146
UserLocator, 122,123,127,128,129,256, 377
UserLocator object, 253
Usars

EJB,207
JDBC, 198
number and type of, 140-141,147,181,208

v

\ ahdatel-ogin method, 127

\ahd U>gm datd, pr<iu* S3ns, 381-382
Vehicle-Java, 420-421,427-429

Vendor neutrality, 205

Views, modular construction of, 324, 327-330
Virtual machine(VM), 184

Vision, clarity in, 39

Vision document, 18

w

Web browsers, 139,323

‘Web pages, dynamic, 180181

Withdraw Funds use case, 3%
class relationships in, 99-101
sequence diagram for, 96

Workstations, dedicated, 139

‘World Wide Web Consortium (W3C), 175

XS(P—S
XML. &ea(tens blemarkuplanguage

xm!4j parser, 178

z
ZipFile, 216

