WICKED COOL

WICKED COOL JAVA

WICKED COOL
JAVA

Code Bita, Open-Source
Librariea, and Project Ideaa

by Brian D. Eubanks

[

B

NO STARCH
PRESS

San Francisco

WICKED COOL JAVA. Copyright ® 2005 by Brian D. Eubanks.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

E o4
by Printed on recycled paper in the United States of America
1235456789 10-08 070605

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbaol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Managing Editors: Susan Berge, Elizabeth Campbell
Cover and Interior Design: Octopod Studios
Copyeditor: Linda Recktenwald

Compositor: Riley Hoffman

Proofreader: Stephanie Provines

Indexer: Ted Laux

For information on hook distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950: info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Daia

Eubanks, Brian D.
Wicked cool Java : code bits, open-source libraries, and project ideas / Brian D. Eubanks.-- 1st ed.
.oam.
Incluses index.
ISBN 1-59327-061-5
1. Java (Computer program language) 2. Object-oriented programming (Computer science) I. Title.
0A76.73.738E92 2005
005.13"3--dc22
2005024341

This book is dedicated to my son Kai—his inquisitive mind
continually inspires me and reminds me that there is wonder in
everyday things.

BRIEF CONTENTS

Acknowledgements

Introduction ..

Chapter 1: Java Language and Core APl ..o 1

Chapter 2: String Utilities

Chapter 3: Processing XML and HTML

Chapter 4: Crawling the Semantic Web ..., 79
Chapter 5: Scientific and Mathematical Applications........... 101
Chapter é: Graphics and Data Visualization133
Chapter 7: Multimedia and Synchronization.cocoiiiiiii i 153
Chapter 8: Fun, Integration, and Project Ideas..... 271
Glossary ... 191

CONTENTS IN DETAIL

ACKNOWLEDGEMENTS xiii

INTRODUCTION xv

Organization of This Book
The Website

1
JAVA LANGUAGE AND CORE API 1

There Is No for In Java: Using the for Loop Enhancements
Let Me Count the Ways: Using the enum
Practice Safe Putting: Using Typesafe Maps

Generally Generic: Writing Methods with Generic Parameters
Arguments and More Arguments: Writing Vararg Methods
Being Assertive: Using Java Assertions

Living on Nano Time: Using System.nanoTime ...

Resources
Taking a Very Short Nap: Sub-Millisecond Sleep for Threads
You Shall Remain Nameless: Creating an Anonymous Class

Equals Rights: == I= .equals ...
Resources
Chapter Summary
2
STRING UTILITIES 21

Staying Regular: Using Regular Expressions to Search Text
Resources

Splitsville: Using the String.split Method ..

Smartly Subbing: Finding Substring cherns Wllhln a Smng
Resources

Getting Captured: Using Regex quiurlng Groups

A String of Substitutes: Substituting with Regular Expressions ..

Partially Parseable: Parsing with the Scanner Class

Scan-Do Attitude: Parsing Complex Syntax with the Scanner Class .

Resources
Making It All Up: Generating Rundom Texl .
Array of Hope: Displaying Arrays in Java 1.5 ...
No Bits Allowed: Encoding and Decoding Binary qu

A Message for Matt: Formatting Strings with MessageFormat ..

The Reincarnation of printf: Formatting Strings with Formatter
Resources
Chapter Summary

3
PROCESSING XML AND HTML 43

Quick XML Refresher ...
Stop and XML the Rowsets: Using WebRowSet to Create XML ...
Stacks of SAX: Remembering Tag Relationships in SAX
Playing the SAX: Directly Feeding a ContentHandler
Mustard on a SAX-wich: Filter-Feeding a ContentHandler ...
Easy Reading: Using DOM4] to Read XML Documents
Eck’s Path: Using XPath for Easy Data Extraction
Invisible Tags: Filtering Documents Before Loading into DOM4)
Sin Taxes: Generating Parsers for Anything with JavaCC

Resources
To XML and Beyond: Converting Other Grammars into XML

Rewriting the Rules ...
Scraping the Sun: Screen Scruplng HTML Puges for Data
What's Lou Seen? Searching with Lucene
Chapter SUMMAIY ... ittt s

4
CRAWLING THE SEMANTIC WEB 79

This Somethings That: A Short Introduction to N3 and Jena
Triple the Fun: Creating an RDF Yocabulary for Your Organization
Who's @ What? Using RDF Hierarchies in Jena
Getting Attached: Attaching Dublin Core to HTML Documents ..
What's the Reason? Making Queries with Jena RDQL

Simply Logical: Lojban, RDF, and the Jorne Project
Guess What? Publishing RSS Newsfeeds with Informa ..
What's Up2 Aggregating RSS Newsfeeds
Heading to the Polls: Polling RSS Feeds with Informa
All the News Fit to Print: Filtering RSS Feeds with Informa ...
Chapter Summary

5
SCIENTIFIC AND MATHEMATICAL APPLICATIONS 101

Fun-Tors: Creating and Applying Functors

Funkier Functors: Using Composite Functors .
High-Caliber Bits: Using Colt's BitVector
The Truth Is in There: Creating Truth Tables from a B\IMurnx
Two Terafurlongs per Fortnight: Using JScience Quantities ..

Fractious Fractions: Arbitrary-Precision Arithmetic

X Contents in Detail

Proudly Polynomial: Using Algebraic Functions in JScience
Connecting the Nots: Connecting Truth Tables Using Ports
The Knee Bone's Connected to the . . . : Connecting with JGraphT
Tied Up in Meta-Nots: Connecting Generic Processing Units ...

Joone Bugs: Building Neural Networks in Joone ..
It's Alive! Using JGAP for Genetic Algorithms .
IA ls Al: Building Intelligent Agents Using Jade ...
Word Up: Navigating English with JWordNet ...
Chapter Summary

6
GRAPHICS AND DATA VISUALIZATION

Gooey XML: Defining Java GUls in XML .. .
To the Vector Goes the Spoils: Visualizing Dmu wwh SVG
Resources
See SVG: Viewing SVG Content with Batik
Body Art: Converting JGraphT into a JGraph View .
Attri-Beauty: Using JGraph Attribute Maps
Charting New Territory: Creating Charts with JFreeChart .
Reporting for Duty: Creating Reports in Java
Periodic Patterns: Simple 2D Data Visualization
A Fine Transform: Using Affine Transformations in Java 2D
Room to Zoom: Building Zoomable GUls with Piccolo ..
Chapter SUMMAIY ...ttt e

7
MULTIMEDIA AND SYNCHRONIZATION 153

Fugue Fun: Making Music with JFugue ...
Fugue in Mid-D: Using JFugue with Java Sound MIDI

All MIDl-ed Out: Sending Events to a MIDI Output Device 56
Beeps and Bleeps: Synthesizing Sounds with JMusic 57
Hiss, Buzz, Hum: Using Noise and Complex Synthesis in JMusic . 60

Getting an Outside Line: Working with Low-level Java Sound
Yes, Dear, I'm Listening: Reading Audio from an Input Line
Talk to Me! Using Java Speech to Make Programs Talk
Reduce, Reuse, Recycle: GC and the Javolution Real-Time APIs ...
Hurry Up and Wait: Synchronizing Threads Using CyclicBarrier ...
Chapter Summary

8
FUN, INTEGRATION, AND PROJECT IDEAS 171

Think Outside the Blocks: Using Java to Confrol a LEGO Robot ...
Aye, Robot: Controlling the Mouse with the AWT Robot Class
Click and Pick: Picking Dates Using JCalendar

Contents in Detail

xi

Post Haste: Using HitpClient to Post Forms to HTTP Servers ...

She Sells C Cells: Simulating a Cell Matrix in Java ...
Nature’s May Tricks: Evolving Cell Matrices
A Real Worker Ant: Running Applications with Apache Ant
Playing a Shell Game: Using BeanShell
Testing, Testing, Testing: Creating JUnit Tests
Peering into the Future: Using JXTA for Peerto-Peer Applications ..
Grid Is Good: Using the Globus Toolkit and Grid Computing
Jabberwocky: Adding Chat o Your Application with Jabber
Some Assembly Required: Writing JVM Assembly Language .
Bytecode Critters: Combining Genetic Programming with BCEL .
Coffee Substitutes: Compiling Other Languages to Bytecode ..
LojViz: Grammar Visualizer for Lojban
Pitch Patch: Synthesizer Patch Editor
Words with Wires: WordNet Explorer
News on Tap: Automated Newsfeed Generator ...
Robot School: Neural Net Robotics
Annotation Innovation: Java 5.0 Annotation Management Tool .
The Winds of Change: Using CVS and Source Code Control
Forging Ahead: Using SourceForge for Your Projects
Chapter Summary

GLOSSARY 191

INDEX 213

xn Contents in Detail

ACKNOWLEDGEMENTS

A thousand thanks to my family for understanding when I was invisible and
unresponsive for long periods of time. I also appreciate the many friends
who kept things positive with their constant encouragement and support. I
am grateful to the QA team for their help: Curtis Eubanks, Mat Keller, and
Vinnie Luther. Thanks to the many colleagues who suggested projects,
looked at drafts, analyzed code, and pointed out when I was on target as well
as when I'was “full of it.” Charles E. Brown deserves a special mention for
introducing me to the world of publishing, and for connecting me with a
great agent. Jawahara Saidullah helped with the “nuts and bolts” of contracts,
and my agent Margot Hutchison did a great job of keeping things running
smoothly. Finally, an enormous thanks to all the great folks at No Starch.

INTRODUCTION

This book is about the Java programming
language created by Sun Microsystems.
The book is targeted toward Java developers
at any level of expertise who are looking for
interesting and useful APIs or for project ideas.
Java has come a long way since it was first released.

When I discovered Java in 1996, the version was 1.0
and only a small group of people even knew what it was. Java had no
experienced developers, very few code libraries, and no enterprise servers—
it was just an immature language with big dreams. But looks were deceiving;
the power of the JVM’s platform independence was the key to Java's growth.
Today, Java is an ubiquitous, mature technology over 10 years old. The core
API itself contains over 3,000 classes in a number of subject areas. Fortune 500
companies now build their entire corporate computing strategies around
Java, and millions of websites are running servlets or clientside applets.

I'm amazed at how often developers will look at the core API and think
that it’s all you can do with the language. Besides what is in the core, there is
a great wealth of free, open-source libraries for Java. It is because of these
libraries that Wicked Cool Java was born; I wanted to give you a taste of some

xvi

of the interesting and useful things that Java can do. What I didn’t want was
to write another “how-to-program-in-Java” book—there are plenty of good
books for getting people started in writing Java code. Instead, what I wanted
was a book just for the joy of discovering interesting things to do in Java
without reinventing the wheel. This book is intended for the programmer
who has knowledge of Java from a basic to an intermediate level and is
looking for ways to enhance his or her code.

The book has a lot of sample code and “Hello World” programs for
various APIs. Some are introductory-level examples, and others are more
advanced. Occasionally there are code tips, and sometimes there are ideas
for new projects that could become successful open-source projects if
someone would only write them! If you implement any of these project ideas,
I'strongly encourage you to go to the book’s website and work with other
readers to avoid duplicating efforts. One of the greatest things we can do
as developers is to work together and to share the fruits of our efforts with
others.

Organization of This Book

Intraduction

This book is organized into eight chapters, each covering a particular area of

Java. The following gives a short outline of each chapter:

Chapter 1
In the first chapter, we discuss some of the core API features—some that
are older but less well known and some that are new to Java 5. We discuss
the new for loop, enums, generics, anonymous classes, and assertions.

Chapter 2
Next we discuss String processing techniques. We start with regular
expressions, and we also discuss random text, arrays, binary strings, and
message formatting. Regex is a very powerful tool for searching, split-
ting, and substituting text. It has been around since Java 1.4, and many
new Java programmers are still not familiar with it. Regular expressions
are a good starting point for parsing more complex documents.

Chapter 3
In this chapter, we process XML and HTML documents and other types
of structured text. We introduce a parser generator and show some sam-
ple code for working with it.

Chapter 4
Chapter 4 explores the Semantic Web, a next-generation web where the
links are between concepts rather than documents containing text. We
introduce some APIs for working with RDF and RSS.

Chapter 5
This chapter explores scientific and mathematical applications in Java.
We link to a number of open-source projects for working with different
aspects of science and mathematics.

Chapter 6
Here we talk about APIs for making it easier to develop graphical appli-
cations or to add new features.

Chapter 7
This chapter deals with sound and music APIs, with a section on
advanced thread synchronization.

Chapter 8
The final chapter of this hook looks at miscellaneous open-source
projects and discusses ideas for creating your own projects and integrat-
ing code from earlier sections.

The Website

Java can be a lot of fun, and we certainly look at some cool projects in this
book, but the book also introduces you to some useful tools and techniques
that you can use with your own projects. To get the most out of Java, you will
need to work with open-source projects at some point. This book has a
companion website at http:/ /wickedcooljava.com that has links to projects
mentioned in the text, errata, and code samples. The website has a forum for
discussing the book with other readers and for organizing new projects. I
hope that this will encourage you to look at more than just the Java core APIs
and to continue the learning process.

Intreduction xvii

JAVA LANGUAGE AND CORE API

This book assumes that you've had some
exposure to Java and are familiar with the
basics of the Java language and its core
Application Programming Interface (API). With the
release of Java 5 (also known as Java 1.5, or Tiger),

there were some major new features added to the
language and core APL In this chapter, we will give examples of some of
the new features, as well as some other useful classes and methods that are
often unknown to Java developers. The Java APl is huge, and with over
3,000 classes it can be tough keeping track of everything. There are classes
available in the core packages that even experienced Java developers might
overlook, simply because they have never seen them before or needed to
work with them.

Many programmers think of Java as just another language and syntax to
learn. But the most effective Java programmers must think in terms of object
hierarchies, behaviors, and relationships, rather than function calls and
procedures as in procedural languages. In introductory seminars, I always
emphasize the three-part harmony of Java.

2

The Object-Oriented Language
Working effectively in Java means understanding object-oriented program-
ming (QOP), not just the syntax of Java. If your past experience has been
in procedural languages such as C or Pascal, it's important to acclimate
yourself to OOP before writing Java code. For this book I make the
assumption that you have already worked with Java to some extent.
If you are unfamiliar with OOP, a good introduction can be found
at http://java.sun.com/docs/books/tutorial /java/concepts. In this
chapter, we'll talk about some recent changes to the syntax that are
useful to know.

The Java Virtual Machine (JVM)
The Java Virtual Machine was the most groundbreaking aspect of Java
when it was released. Instead of recompiling or modifying source code
for each target platform, as in other languages, you need to compile the
source code only once. The executable code, or bytecodes, can then run
on any target system that has the JVM installed. Bytecodes work like a
cross-platform machine language. Languages other than Java can also
be compiled into JVM bytecodes, and we will look at that possibility in a
later chapter.

The Core APIs
The sheer size of the Java core libraries is sometimes overwhelming for
developers. The core libraries include packages for networking, graph-
ics, sound, multithreading, /0, security, cryptography, databases, XML,
and many others. In later chapters, we’'ll explore advanced features of
some of the core APIs. We'll also look at open-source Java projects that
provide useful functionality beyond what is available in the core. For this
chapter, we'll work with just a few core classes and some new syntax from
Java b.

There Is No for In Java: Using the for Loop Enhancements

Chapter

In some programming languages, it’s very easy to iterate through a list or an
array, automatically repeating through a loop “for each” item in the list and
assigning the item to a local variable. I once started to tell a colleague how 1
thought the for loop in Java was broken, because it didn’t have a for-each.
‘What actually came out of my mouth was “There is no for in Java.” My friend
was also an experienced Java developer, and he responded with “Are you
crazy? Of course there’s a for in Javal” For a long time after that he continued
to tease me, periodically reminding me that there was a for in Java (just in
case I had forgotten). But I have some good news for him and for all Java
developers: there is now a real for in Java!

Consider the case where you would like to find the sum of all of the
values in a collection (such as java.util.Arraylist) of Integer objects. You've
probably written code like the following:

Arraylist thelist = new Arraylist();
thelist.add(new Integer(2));
thelist.add(new Integer(3));

thelist.add(new Integer(s));

thelist.add(new Integer(7));

int sum = 0;

// The old way to iterate

for (Iterator iter = theList.iterator(); iter.hasMNext();) {
Integer x = (Integer) iter.next();
sum = sum + x.intValue();

}

System.out.println("The sum is

"

+ sum);

This is a bit awkward. Shouldn’t the compiler already know that you are
iterating? You arein a for loop, after alll In Java 5, the enhanced for loop now
supports Collection objects. You no longer need to get an Iterator. In the
following revamped code, a for loop iterates through the list and prints out
each value:

Arraylist<Integer> thelist = new ArraylList<Integer>();
thelist.add(2);
thelist.add(3);
thelist.add(5);
thelist.add(7);
int sum = 0;
// new Java 5 iteration syntax
for (Integer item : thelist) {
sum = sum + item;
}

System.out.println("The sum is

"

+ sum);

The for loop defines a local variable, called item, which gets assigned the
next value in the list during each iteration. Besides the beautiful for loop
syntax, there are two other ways in which this code is different than the old
Java code:

Generics
The syntax above, with the funny angle brackets, is new to Java 5. Generics
let you define classes that work with some specific type of object, but the
type is not known until you create an instance of the class. The compiler
will enforce the type restriction. In our example, the Arraylist is a special
one that accepts only integers for the add method (and returns only inte-
gers from the next method of its Iterator). This means that no casting is
required when objects are retrieved from the list: they can immediately
be treated as Integer instances. Without using generics, you could still
use the new for loop syntax, but you would need to cast from Object to
Integer. Generics will be treated in more detail in the section “Generally
Generic: Writing Methods with Generic Parameters.”

Integer/int equivalence
In Java b, an Integer object can be treated as an int. The compiler will
automatically perform the conversion from int to Integer objects (and

Jova language and Core 4P 3

4

vice versa). This process is called auloboxing. When we retrieve the item
out of the loop as an Integer, we can add it to an int value without doing
an explicit conversion.

The new for syntax also works with arrays:

int[] thelist = new int[] {2,3,5,7};
int sum = 0;
for (int x : thelList) {
sum = sum + X;
}

System.out.println("The sum is

+ sum);

This new syntax certainly makes the code a lot more readable and com-
pact. Unfortunately, you can’t completely throw away your iterators yet, at
least for a while, because there are still many developers who have not
upgraded their JDK to version 5.

Let Me Count the Ways: Using the enum

Chaptar

Most applications need to keep track of a finite set of values—constants that
represent a set of choices or states in the application. One common Java
programming practice is to use static int variables to represent these values.
Programs then make decisions by comparing the values of other variables
against them. Although the core Java API itself uses this practice, it can lead
to serious problems! The following example class returns information about
fruits for an imaginary menu-planning system. It shows some of the problems
in using int variables to represent enumerated data:

public class FruitConstants {

/1 this is not such a good practice
public static final int APPLE = 1;
public static final int ORANGE = 2;
public static final int GRAPEFRUIT = 3;
public static final int BANANA = 4;
public static final int DURIAN = 5;
public static final int CITRUS = 6;
public static final int SWEET = 7;
public static final int SMELLY = 8;
public static final int UNKNOWN = 9;

public static int getCategory(int fruit) {
switch(fruit) {
case APPLE: case BANANA:
return SWEET;
case ORANGE: case GRAPEFRUIT:
return CITRUS;
case DURIAN:

return SMELLY;

}
return UNKNOWN;

}

The durian fruit, which comes from Southeast Asia, is both smelly and
sweet, but we will assume in our system that fruits can be only of a single type,
that is, all values are assumed to be single values rather than composite ones.
The main problem here is that any int value can be passed to the getCategory
method, whether it is a valid fruit or not. This can lead to subtle bugs, since
the compiler will not care if you call getCategory(SWEET) or even getCategory(42).
And if the values of the integer constants ever change, the meaning of
getCategory(3) may no longer be obvious or correct!

A different problem is that there is no distinction between the use of int
values for fruits and for categories—they are all just plain-old int values. You
could partially solve the fruit/category separation problem by simply placing
the category constants into a separate class, but they are still just int values
and are not typesafe. Nothing restricts the parameter of getCategory to a fixed
set of values.

In Java 5, there is an elegant solution: you can create enumerated types,
just like in C. This is a new feature, which creates a class that contains a list of
all its allowed instances. Other than what is defined within the enum, no other
instances are allowed. Take a close look at some enum examples:

enum Fruit {APPLE, ORANGE, GRAPEFRUIT, BANANA, DURIAN}
enum FruitCategory {SWEET, CITRUS, SMELLY, UNKNOWN}
enum Dessert {PIE, CAKE, ICECREAM, BROWNIE}

Each of these examples defines a separate group of enumerated elements
(choices). The beauty of this is that the Fruit values cannot be mixed with or
confused with another type. Each enum is treated as if it were a different class.
You cannot pass a FruitCategory as a parameter to a method that expects a
Dessert. Nor can you pass an int value. Let’s expand the Fruit enum to include
the functionality of our original FruitConstants class:

public enum Fruit {
APPLE, ORANGE, GRAPEFRUIT, BANANA, DURIAN;

public static FruitCategory getCategory(Fruit fruit) {
switch(fruit) {

case APPLE: case BANANA:
return FruitCategory.SWEET;

case ORANGE: case GRAPEFRUIT:
return FruitCategory.CITRUS;

case DURIAN:
return FruitCategory.SMELLY;

Jova language and Core AP 5

6

Chapter

}

return FruitCategory.UNKNOWN;

Notice that an enum can define methods, just like a class. The getCategory
method now takes a Fruit as a parameter, and the only allowed values are the
ones defined in the enun. This next code snippet would cause compile errors
rather than unexpected runtime results that would have occurred in calling
the original unprotected getCategory method:

Fruit.getCategory(Dessert.PIE); // compile error
Fruit.getCategory(10); // compile error

It would be better if each fruit managed its own category, so to complete
the Fruit class, we’ll now remove the fruit parameter of getCategory and make
the method return a different value for each enum state. We can do this by
creating an abstract getCategory method that applies to all the values and
override it differently for each enum. It’s very similar to writing a different
subclass for each enumerated value and having each of those classes override
the abstract method.

public enum Fruit {

APPLE

{ FruitCategory getCategory() {return FruitCategory.SWEET;} },
ORANGE

{ FruitCategory getCategory() {return FruitCategory.CITRUS;} },
GRAPEFRUIT

{ FruitCategory getCategory() {return FruitCategory.CITRUS;} },
BANANA

{ FruitCategory getCategory() {return FruitCategory.SWEET;} },
DURIAN

{ FruitCategory getCategory() {return FruitCategory.SMELLY;} };

abstract FruitCategory getCategory();

}

Once you create an enum like this, you can treat an APPLE value like you
would any other object (using the static Fruit.APPLE reference), and you can
call its getCategory method to get the associated category. We can now add a
main method to the above class to show how to use the new Fruit enum:

public static void main(String[] args) {
Fruit a = Fruit.APPLE;
// toString() returns "APPLE"
System.out.println ("The toString() for a:
// getCategory() returns "SWEET"
System.out.println ("a.getCategory() is:

"

+a);

"

+ a.getCategory());

Practice

for (Fruit f : Fruit.values()) {
System.out.println ("Fruit is: " + f);

As this code illustrates, you can use the values method to iterate through
all the values within the enun. The toString method of an enum will return a
String with the same name as the value. Using an enum to represent state,
instead of an int, can make your code much more readable as well as more
error-resistant. It clearly defines all the values for a particular enumerated
state and prevents someone from using inappropriate values.

Safe Putting: Using Typesafe Maps

We saw earlier, during the for loop discussion, how using generics can help
to make your code simpler and less error-prone. The for loop was able to
assume that the ArraylList contained only Integer objects, because we defined
the Arraylist as consisting strictly of Integer objects. We could then avoid the cast
from Object to Integer as we retrieved items from the list.

Java b made many changes to the core API that take advantage of generics.
Looking at the documentation, you will see that many of the classes are now
redefined so that generics can be used. If you wish, you can still construct
and use any of these classes the old way, for example, new ArrayList(). This
might be done for compatibility reasons, so that your code would still work
under older versions of the compiler. Of course, you would then lose the
convenience and safety of the type-checking process provided by generics.

One class that has been nicely revamped is java.util.Map (and HashMap).
You may recall that maps work like lookup tables, with each value stored
under a unique key. In earlier versions of Java, when you place items in the
map, they go in as Object entries. As you retrieve an item from the map, it is
treated as a standard Object reference, which you must cast to the appropriate
subclass in order for it to be recognized as its true type. The same dangers
apply here as in a List. The object may not be what you assume, and a Class-
CastException is the unfortunate result. How many times have we seen those?

Imagine that we have an Employee class for maintaining employee data.
Here is some typical code for working with a HashMap:

Employee brian = new Employee();
brian.setName("Brian", "Eubanks");
brian.setSalary(100000.00);
brian.setTitle("Boss");

HashMap employees = new HashMap();
employees.put("Brian", brian);

Employee newHire = (Employee) employees.get("Brian");
newHire.setHireDate(new Date());

Jova language and Core AP T

8

The biggest danger is during the cast, when the item is retrieved. With
Java b, you can do without a cast, as long as the Map was instantiated with the
correct type. You can add a constraint on the types of both the keys and the
values. In the example below, only String keys and Employee values are allowed:

Employee brian = new Employee();
brian.setName("Brian", "Eubanks");
brian.setSalary(100000.00);
brian.setTitle("Boss");

HashMap<String,Employee> employees = new HashMap<String,Employee>();
employees.put("Brian", brian);

// no cast is necessary here
Employee newHire = employees.get("Brian");
newHire,setHireDate(new Date());

By using typesafe maps, you can avoid ClassCastException problems when
retrieving items from a map. This makes your code much more stable and
less sensitive to the contents of the map. Unfortunately, if your code has to
run on earlier versions of Java, you're out of luck and you'll need to keep on
casting for a while. In the next section, we create our own generic class.

Generally Generic: Writing Methods with Generic Parameters

Chapter

We saw in earlier sections how generics can simplify Java code and make it
resistant to ClassCastException problems. In addition to using generics that
are part of the JDK, you can write your own. This is useful when you are
working with objects that are all of the same type, but you don’t know which
type it will be until you instantiate your class. This is ideal for classes that have
an associated collection of items or involve a lookup.

Let’s write a method that uses generic parameters. Recall how we used
the Arraylist class earlier—only when we constructed the Arraylist did we
specify which object types it used. We don’t know the type when we are
defining the class, and we can’t use java.lang.0Object as the type, because we
would end up with the same casting problem as before. When you define a
generic, you must use a special syntax to stand in for the type. This is done
when you declare the class name. In the following example, <T> represents a
type that will be used by our class:

public class RandomSelection<T> { }

The type indicator brackets look strangely like HTML syntax but actually
have nothing to do with HTML, nor do they indicate less than or greater than!
The angle brackets are used in cases where a generic’s class name is combined
with a type, as in the Arraylist<Integer> that we used earlier. Although the
real type will not be known until the constructor is called, we can use the

substitute type in our method definitions. We are really defining “a class called
RandomSelection that works with another class of some type, which we will call
T for now.” The name of the class is still RandomSelection, however. By the
way, you can do this for more than one type at a time, as the definition of
java.util.Map does. In these cases, use a comma-separated list of identifiers
after the class name:

public class MyGeneric<T,U,v> { }

The MyGeneric class defined above works with three classes and we are
calling them T, U, and V. Let’s expand the RandomSelection class by writing a
method that adds an item to an internally managed Arraylist of the generic
type T:

public class RandomSelection<T> {
private ArraylList<T» list;

public RandomSelection() {
list = new Arraylist<T>();

public void add(T element) {
list.add(element);

Remember that we are not actually dealing with a class called T. Instead,
T is a stand-in for whichever class is used when someone creates an instance
of RandomSelection. The Java specification allows you to use any identifier that
you want, but the standard convention is to use a single uppercase letter to
distinguish it from a normal class name. Now that we have defined the add
method as taking a type T parameter, it can be called only with the same type
used in the construction of the RandomSelection instance. The following code
is illegal and generates a compile error:

RandomSelection<String> rs = new RandomSelection<String>();
rs.add(new Date()); // illegal for a RandomSelection<String>

If you want to return a generic type from a method, you can use it as the
return type of the method’s signature, as this definition does:

import java.util.Random;

public class RandomSelection<T»> {
private java.util.Random random = new Random();
// earlier methods omitted

public T getRandomElement() {
int index = random.nextInt(list.size());

Jova language and Core 4P 9

return list.get(index);

The getRandomElement method returns a type T, the same type marker that
was defined in the class declaration. We can now use the RandomSelection class
that we have just defined, by constructing a typed instance:

RandomSelection<Integer> selector = new RandomSelection<Integer:();
selector.add(2);

selector.add(3);

selector.add(s);

selector.add(7);

selector.add(11);

Integer choice = selector.getRandomElement();
System.out.println(choice);

The assignment to an Integer variable (choice) is safe; we will always get
an Integer from the getRandomElement method of selector. This is true only
because we constructed our selector instance using an Integer for the generic
type. The definitions for the add and getRandomElement methods have the
same type as the constructor’s definition, and the compiler will enforce this
constraint. Let’s try using the RandomSelection class with a different type in the
constructor, this time using the Fruit enum class that we defined earlier:

RandomSelection<Fruit> fruitSelector = new RandomSelection<Fruit»(};
fruitSelector.add(Fruit.APPLE);

fruitSelector.add(Fruit.ORANGE);
fruitSelector.add(Fruit.GRAPEFRUIT);
fruitSelector.add(Fruit.BANANA);

fruitSelector.add(Fruit.DURIAN);

Fruit fruitChoice = fruitSelector.getRandomElement();
System.out.println(fruitChoice);

Notice that we were able to directly use the Fruit return value from the
getRandomElement method, just as we had done earlier with the Integer. This is
because we constructed RandomSelection using the Fruit type. You can define
your own generics in cases where you want a class to work with objects of
some type (that you don’t know until you construct the class) and where you
want the compiler to strictly enforce the type restriction. The main advantages
in doing this are safety and convenience. See the Generics Tutorial at http://
java.sun.com/j2se/1.5.0/docs/guide/language/generics.html and the Java 5
documentation for more information on generics.

Arguments and More Arguments: Writing Vararg Methods

Java programmers often need to write methods that accept a parameter
containing multiple values. This might take the form of a List or an array,
for example.

public int add(int[] list) {
int sum = 0;
for (int i=0; i < list.length; i++) {
sum += list[i];

}

return sum;

The same code could also have been written as several overloaded
methods, each with a signature that takes a different number of int
parameters. This sometimes makes the method easier to use, since the
calling code does not need to create an array first.

public int add(int a, int b) {
return a + b;

public int add(int a, int b, int c) {
return a + b + c;

public int add(int a, int b, int ¢, int d) {
return a + b + ¢ + d;

This is easier for the calling code, if there are only a few values, since now
we can use add(12,14,16) instead of add(new int[] {12,14,16}). However, there
are problems with writing methods like this. Of course, we would need to write
different versions of the method for each possible combination of parameters.
But what if we wanted to allow the most flexibility in how the method is used?
Without making a huge class with thousands of methods, there is a rather small
limit to the number of parameters that this overloaded method will accept.

In Java 5, you can write a method so that it allows a variable number of
parameters and let the compiler do the work of packaging the list into an
array. We're still dealing with an array internally, but the details are now
hidden by the compiler. The following code rewrites the add method using
variable arguments (varargs).

public int add(int... list) {
int sum = 0;
for (int item : 1ist) {
sum += item;
}

return sum;

Javo Langunge and Core AP1 11

12

Yes, those strange dots are the real syntax for varargs! Since this change
requires Java 5, we might as well use the Java 5 enhanced for loop syntax too.
Once you write the method this way, you can call it with as many parameters
as you want! You can also pass an array (but not a List or Collection object) as
the parameter:

add(1,3,5,7,9,11,13,15,17,19,21,23,25);
add(new int[] {12,14,16});

It’s worth noting that you can use this shortcut only once when defining
a parameter list, and it has to be the last item. The following would not work,
because the variable parameter is not the last item:
public void badMethod(int... data, String comment) { } // wrong!

Instead, you must write it as:
public void goodMethod(String comment, int... data) { }

In some cases, using varargs in a method definition can make the method
much more usable. This is especially true in cases where a parameter list con-

tains literal (hard-coded) values, such as the int values shown in the example
above.

Being Assertive: Using Java Assertions

JAVA

Chapter 1

The programmer is always right—it’s the compiler and interpreter that get it
wrong! I'm sure you can identify with that thought process. As programmers,
we often make assumptions about the values of variables and write code that
relies on these assumptions. As much as we hate to admit that we might be
wrong in our design or implementation, variables and parameters sometimes
don’t have the values that we expect.

Code will work properly only as long as the original assumptions that we
made when designing and writing it still hold true. If these assumptions are
not explicitly stated somewhere, then anyone reading the code (including
you!) will not know what they are. Future changes may violate those assump-
tions and introduce bugs that are difficult to locate. Many people document
their assumptions in comments, so that anyone modifying the code later will
avoid making such changes.

Using comments to document assumptions is a good start. But when
something violates an assumption, the program keeps on running as if nothing
is wrong. In some cases, the result is immediately obvious and the developer
can fix the problem. Other times, there is a silent bug that might have a neg-
ative impact in another part of the application or, with distributed systems, in
another application altogether! Tracing such problems is extremely difficult.

Java 1.4 added the assertion feature to the language to simplify testing
and debugging, strengthen documentation, and improve the maintainability
of Java-based systems. You make an assertion by using a Boolean expression

to test something that you are assuming about the current state of the system.
If the assertion fails, the runtime will throw an AssertionError. Here is a very
simple assertion:

String name = "Brian";
assert name != null;

We can say with some certainty that after we assign the value “Brian” to
the name variable its value will be non-null. If this is not true, then something
is seriously wrong! This assertion is a statement of an assumption that we
are making about the value of the variable at that point in the program. It
would be silly, and wasteful, to do this for such a trivial case. However, con-
sider the situation where multiple methods are affecting the state of an object.
We would like to be able to assume that the object is still usable afterwards,
according to some requirements of the application. In this following example,
we make the assertion that before we can assign any tasks to a new employee,
a supervisor has already been assigned.

Employee worker =

new Employee("John", "Smith", 100000, "Developer");
assignOffice(worker);
setUpVoiceMail(worker);
moreAdministrivia(worker);
assert worker.getSupervisor() != null : "Supervisor cannot be null";
assignTasks(worker);

You will want to make assertions about an object before performing a
critical operation on it. This helps you to make your code more error-resistant,
and if something goes wrong in the program, you will have an easier time
debugging it. This is a lot better than finding out through a side effect where
the program fails somewhere else. The cause of the error is much easier to
trace when you know that it failed because the program violated an assump-
tion you made. In this example code, we used the assert option that returns a
more useful message. Without it, we get no identifying information about the
assertion, other than the line number.

On some versions of the compiler, you will need to use a command
option to set the compiler’s source compatibility mode when you compile
your source code (1.4 or 1.5, depending on your compiler version):

javac -source 1.5 MyClass.java

Now let’s force an assertion to fail and see what happens:
public class AssertBad {

public static void main(String[] args) {

int total = 20;
int itemCount = 0;

Javo Language and Core AP 13

14

WARNING

assert itemCount > 0;
int average = total / itemCount;

By default, the runtime environment does not enable assertions, and
you must start the JRE using the ea (enable assertions) command option.
This code would cause the following result:

C:\projects\wcj1> java -ea AssertBad
Exception in thread "main" java.lang.AssertionError
at AssertBad.main(AssertBad.java:12)

Remember that assertions are for true “sanity checks” for conditions you
believe should never happen. You should not use them in place of your
normal error checking.

Do not allow assertion statements to change state/values in your code. When you even-
tually turn off assertions, your code will act differently than it did when you had
assertions enabled. For example, do not do the following:

assert (++i > 10); // BAD: i changes only with assertions enabled!

You will want to leave assertions enabled throughout the development
phase. Once you thoroughly test the system and move it into a production
environment, you will probably want to disable assertions. There will be a
slight performance gain in doing so. Don’t change the code to do this, and
don’t remove the assertions. You want the assertions to remain in the code
for documentation purposes anyway. That way, when changes are made at a
later date, the programmers will be reminded to keep all of the assumptions
valid, and this will also be testable.

Living on Nano Time: Using System.nanoTime

Chapter 1

Moore’s law is the name of a well-known observation that the number of
transistors in a computer and its processing speed increase exponentially
over time. Gordon Moore, as director of research and development at
Fairchild Semiconductor, made the observation way back in 1965. So far,
it still holds true.

With much faster computers now than we had when Java first arrived,
millisecond timing is no longer good enough for many applications. Perhaps
you have used the java.lang.System class to obtain timing information fora
method call or a section of code, using the currentTimeMillis method. We'd
often use this to measure how long it takes to perform certain operations.
However, the operation might take far less than a millisecond on faster
computers, and we'd end up doing the operation hundreds or thousands

of times in a for loop and dividing by the loop count to calculate the unit
time. Consider the following:

long startTime = System.currentTimeMillis();
for (int i=0; i<1000; i++) {
performOperation(); /7 something we want to measure
}
long endTime = System.currentTimeMillis();
long totalTimeInMillis = endTime - startTime;
// because the count was 1000, it's easy to get the unit time
long unitTimeInMicros = totalTimeInMillis;

This was an easy calculation, since I used a for loop count of 1000. But
what about sub-microsecond measurements?

for(int i=0; 1<1000000; i++) { performOperation(); }

If I were to project human feelings onto the code, that poor for loop
would get awfully tired from the million-count busy loop! Besides, the for
loop method of timing is useful only in cases where there are no side effects
from repeating the operation. If the operation were a call to the java.util
.Collections.sort method, it would be much more difficult to figure out how
long the sorting process took. In Java 5, the System class has a new method,
nanoTime, that returns a nanosecond-resolution counter. You can’t use it for
measuring absolute time, but it works great for measuring time differences.

List myList = initializelist(); // initialize the List somehow
long startTime = System.nanoTime();
Collections.sort(myList); // measuring the sort time

long endTime = System.nanoTime();
long differenceInNanoseconds = endTime - startTime;

Unfortunately, we have no guarantee that we will actually get nano-
second measurements when we run this code. But with a faster machine
and a good JRE implementation, it's a useful measurement for testing
purposes. You can find more information on this method in the JDK 5
documentation. Because of operating system characteristics, machine
processing speed, and system load, you may get a wide variation in the
values returned by the nanoTime method. This issue should improve over
time; Moore’s law almost guarantees it.

Resources

For Moore’s original paper, see Gordon E. Moore, “Cramming More
Components onto Integrated Circuits,” Electronics, Vol. 38, No. 8 (April 19,
1965). This article is also available online. See this book’s website at http://
wickedcooljava.com for the URL.

Javo Language and Core AP 15§

Taking a Very Short Nap: Sub-Mi

JAVAL.1+

isecond Sleep for Threads

As we discussed in the previous section, Java 5 added a nanoTime method to the
System class to ensure that time measurements can keep up with faster systems.
Even in earlier versions of Java, threads can have sleep times of less than a
millisecond. You might recall that Java’s threading mechanism has a sleep
method that takes an int parameter representing the sleep time in milli-
seconds. There is also a sleep methad that accepts the millisecond parameter,
plus an additional time in nanoseconds. If you set the millisecond time to 0,
then the thread will sleep for the specified number of nanoseconds (ns).

public class MyThread extends Thread {
public void run() {
try {
sleep(10); // sleep for 10 milliseconds
sleep(0, 10000); /4 sleep for 0.01 milliseconds (10000 ns)
} catch (InterruptedException e) {
e.printStackTrace();
¥
}

The same thing applies here as in the nanoTime method described earlier.
Because of operating system characteristics, machine processing speed, and
system load, the actual sleep period could be different than you would expect.

You Shall Remain Nameless: Creating an Anonymous Class

JAVAL.1+

Chopter 1

When you are doing Java development, you sometimes need to implement
an interface that only has one or two methods, with only one or two lines of
code for each method. This happens quite often in AWT and Swing develop-
ment, when a display component needs an event callback method (such as a
button’s ActionListener). If you use normal classes for this, you'll end up with
many small classes that are used in only a single location. Many developers
may not be aware that Java allows you to define inner classes or that inner
classes don’t have to be used within a GUI framework.

An inner classis a class that is defined within another class. You can
define inner classes as members of a class, as in the following example:

public class Linker {
public class LinkedNode {
LinkedNode prev, next;

Object contents;

}

public Linker() {
LinkedNode first = new LinkedNode();
LinkedNode second = new LinkedNode();
first.next = second;

first.contents = "This is the first item";
second.prev = first;
second.contents = "This is the second item";

This is a simple implementation of a linked list in Java. The LinkedNode
class is an inner class of our Linker class. Although it is contained within the
Linker class, it can still be accessed from other classes because we defined it
as public. From other classes, you can create an instance of it by using: new
Linker.LinkedNode(). One such class from the core API is the Map.Entry class,
used by the java.util.Map class when you retrieve the set of key/value entries
ina map.

You can also define an inner class that is local to a method. This type of
class is visible only within the method where it is defined. You may want to do
this if you are implementing an interface and you want to use the local class
more than once within the method, as this tongue-in-cheek example shows:

public class Happiness {
interface Smiler { public void smile(); }

public static void main(String[] args)
{
class Happy implements Smiler {
private String more = "
public void smile() {
System.out.println(":-)" + more);
}
public void happier() {
more += ")";

Happy h1 = new Happy();
hi.smile();

Happy h2 = new Happy();
h2.happier();
h2.smile();

We gave this local inner class (I'like to think of it as an inner-er class) the
name Happy. This class cannot be accessed from any other classes or methods.
We used a local class only because we wanted to implement the Smiler inter-
face (which was defined within the Happiness class). For many situations, it's
not even necessary to give a local inner class a name—it can remain anonymous.
Anonymous classes are very useful for implementing interfaces that have
only one or two methods, especially if we need to create an instance that is

Javo Language and Core AP 17

18

used only once. Normally you cannot directly instantiate an interface. For
example, you could not call the constructor of the Runnable interface (the
interface used by a Thread). It would be illegal to use:

Runnable runner = new Runnable(); // not allowed!

But Java does allow you to create an instance of an anonymous local class
that implements the interface. There is a special syntax for creating an
instance of an interface:

Runnable runner = new Runnable() {
public void run() {
for (int i=0; i<10000000; i++) {
countSheep();

This creates a local anonymous class, instantiates it, and assigns the
new instance to the runner variable. You’ll need to make sure that your class
definition (the code between the outer curly braces) implements all the
methods of the interface. You can also create subclasses this way. The code
below instantiates an anonymous subclass of Object and assigns it to a variable:

Object timePrinter = new Object() {
public String toString() {
return String.valueOf(System.currentTimeMillis());

1

System.out.println(timePrinter);

Anonymous classes are a useful tool in the Java developer’s bag of tricks.
Consider using them whenever you need to implement an interface (or a
subclass) on a one-time basis. They are best used with smaller interfaces that
have only one or two methods.

Equals Rights: == I= .equals

Chapter 1

Here's an issue that crops up in Java programs quite often. It's 3 A.M., after
your fourth cup of coffee, and you're trying to find the right logic to solve
some complex programming problem. By now, you're almost incapable of
thinking about String and Object references, because the pillow is calling.
And then the worst happens. . .. No, it’s not a “Java” spill, but this:

String name = getName();
if (name == "Sleepy") // oops!

{

doSomething();

—

You quickly compile and test the code, and it seems to work. Finally!
Time to go home and celebrate by snoring! Unfortunately, some time later,
application testing uncovers an intermittent bug and traces it to exactly this
section of code.

“What?” you say indignantly. “I tried a String comparison like this the
other day and it worked just fine!” Possibly. But first, let’s revisit Java object
reference concepts. An object variable is a reference (pointer) to the real
object, which is stored in the heap memory. When you assign one variable
to another, you are really assigning the reference, not the actual object
(Figure 1-1):

String a, b, ¢, d;

= "123";

= a3

= new String("123");
= "WCI";

o

an o

123"

"y3"

"W

IRV

Figure 1-1: Object references

Java uses the == operator to compare two references to see if they point
to the same memory object. For String instances, the runtime does its best to
make sure that any two String literals with the same character data point to
the same internal object. This is called inferning, but it will not help with
every String comparison. One reason is that an interned value could possibly
be removed by the garbage collector thread. Another reason is that the place
where the String was generated may have created a new instance using one of
the String constructors. If so, the == comparison will always return false.

Javo Language and Core AP 19

20

NOTE

Chapter

Chapter 1

The equals method is designed to compare the stateof two objects, or what
is inside each object. For your own classes, you must override this method for
it to work properly. But String instances will always compare properly if you
use the equals method. This next code segment illustrates the problem with
assuming that all String values are interned:

String namel, name2, name3;
name1l = "123";

name2 = namei;
if (name1 == name2) {} /1 true
if (namel.equals(name2)) {} // true

name2 = "123";
if (name1 == name2) {} // usually true
if (nameil.equals(name2)) {} // true

name3 = new String("123");
if (name1 == name3) {} // false
if (nameil.equals(name3)) {} // true

Rule of thumb: Always use .equals to compare lwo String values, even though using
the == operator may seem o work. For most applications, even if it works, the == code
is simply a “wrong” that only equals would “right!” So tell all your developer friends to

support equals rights for Strings! (Yes, that’s probably the worst pun in this book.)

Resources

Vladimir Roubtsov, “Does an Object Exist If You Can’t Test Its Identity?”

Javaworld (December 12, 2003). See www javaworld.com.

Summary

In this chapter, we've discussed some of the new features that are available
in Java b and some useful older API classes that are often overlooked by
developers. In the next chapter, we’ll focus exclusively on String processing.
We’ll look at some text-related classes in the Java core as well as some useful
String-processing classes from open-source APIs.

STRING UTILITIES

Strings are a very important part of most
Java programs. They are used for text
display, data representation, lookup keys,
and many other purposes. In this chapter we
describe some useful utilities and techniques for String

processing. We’ll be using regular expression patterns
to compare Strings, split delimited Strings, find substrings, and perform
substitutions. We will also consider utilities for String randomization,
formatting, and conversion.

Staying Regular: Using Regular Expressions to Search Text

JAVAL.4+

Unix administrators like to keep themselves “regular,” at least according to

an old programming joke. Don’t worry; this section is not about dietary fiber
but about a type of pattern matching known as regular expressions, or regex. For
along time, Unix power users have worked with commands or programs that
are based on regular expressions, such as grep, perl, sed, and awk. Because this
is such a powerful way of searching and manipulating Strings, Java 1.4 added

the java.util.regex package to the core APL Of course, Java is platform-
independent, and these regular expressions will work on any system, not just
Unix. The regex package has been in the JDK for a while, but I still find that
many Java programmers have never used it. Regex patterns are a valuable
starting point for many types of text processing: matching, searching,
extracting, substituting, and parsing of structured content.

In Java, you can easily determine whether a String matches a pattern,
using the appropriately named Pattern class. Patterns can be as simple as
matching a specific String value. Or they can be much more complex, with
grouping and character classes such as whitespace, numbers, letters, or
control characters. Because they are Java Strings and are based on Unicode,
regular expressions will also work with internationalized applications.

The simplest pattern exactly matches a given String; in other words,
the pattern is the same as the text that we want to compare. The static
Pattern.matches method is a convenient way to compare whether a String
matches a given pattern. The following will check to see if the value of the
variable data matches the word Java:

String data = getStringData(); /7 populate the String somehow
boolean result = Pattern.matches("Java", data); // is it "Java"?

For directly matching a String against a pattern this simple, you probably
wouldn’t use a regular expression, since this is really just a less-efficient version
of "Java".equals(data). The real power of regex comes from using more-
complex patterns involving character classes and quantifiers (*, +, and ?).
There are already many excellent books on regular expression patterns, so
we'll look at only a few of the basic features of patterns and focus on Java’s
regex classes and methods instead. To give you a quick start, here are some
of the special characters that you can use in regular expressions. Each of
these represents a category of characters, which in regex terminology is
called a character class:

\d Digits

\D Non-digits

\w Word characters (0-9, A-Z, a—z, _)

\W Non-word characters

\s Whitespace (space, line feed, carriage return, tab)
\S Non-whitespace

[1 Custom character classes, created by a list of characters within
brackets

Match any single character (except newlines)
Most characters match themselves in a pattern expression, but some

have special meanings. The backslash (“escape”) character used above is one
example. The following characters control how many times a subpattern is

22 Chapter 2

applied to the matching process. These are special characters that are treated
differently than others:

? Repeat the preceding subpattern zero or one times
* Repeat the preceding subpattern zero or more times

+ Repeat the preceding subpattern one or more times

The following regular expression matches the title of any ancestor, such
as “father,” “great-great-grandmother,” or “great-great-great-grandfather.” As
you can see from this example, it’s possible to make more-complex regular
expressions by using parenthetical subexpressions:

((great\s)*grand)? (mother|father)

This next pattern expression will match anything beginning with a digit
plus zero or more non-whitespace characters (for example, “3,” “bx,” and
“hbabcd9” would match, but not “8 5” or “hello™):

\d\S*

Be careful with the regex backslash character, since it is also the String
literal escape character in Java. If you are using a String literal to hold the
regular expression, you will need to escape the backslash character itself by
using a double backslash. Yes, that’s right, you're escaping the escape:

String digitNonSpacePattern = "\\d\\$*";
String data = getStringData();
boolean isMatch = Pattern.matches(digitNonSpacePattern, data);

Pattern matching is also built into the String class itself. There is a new
convenience method within the String class: matches. You could rewrite the
above code as:

boolean isMatch = getStringData().matches("\\d\\S*");

The Pattern.matches method and the matches method of String are fine for
one-time use, but for repeated use they are less efficient. You can get a more
efficient “compiled” version of the pattern for performing multiple matches
by creating a Pattern instance using the static Pattern.compile method. The
Pattern object works together with the java.util.regex.Matcher class. To do
anything complex, you’ll need to create a Matcher. The Matcher ties a pattern
expression to a specific String, for performing more-advanced matching opera-
tions. The following code snippet compiles a pattern for matching text made
of “word” characters only:

String data = getStringData();
Pattern namePattern = Pattern.compile("\\w+");

String Urilitiss 23

24

// get a Matcher to apply the pattern to the data
Matcher nameMatcher = namePattern.matcher(data);
boolean isMatch = nameMatcher.matches();

Remember that the matches method will match the entire input String
against the pattern. If you want to check whether the String only begins with
the pattern, use the lookingAt method instead:

boolean startsWith = nameMatcher.lookingAt();
We’ll discuss some other matching techniques in the next few sections,

including finding substrings that match a pattern and performing text
substitutions.

Resources

Jeftrey E. F. Friedl, Mastering Regular Expressions, 2nd ed. O’Reilly, 2002.

Splitsville: Using the String.split Method

JAVA 1.4+

Chapter 2

Developers sometimes need to split a String into substrings using a delimiter
such as a comma, tab, or whitespace. As we discussed in the previous section,

Java 1.4 added the Pattern class for performing text comparisons with regular

expressions. In addition to pattern matching, a Pattern object can splita
String into an array of substrings, using the regular expression as the delimiter.
For example, a one-line comma-delimited list can be split into an array of
Strings, using a comma as the pattern:

String data = "Australia,Fiji,New Zealand,Papua New Guinea";
Pattern comma = Pattern.compile(",");
String[] countries = comma.split(data);

Splitting Strings is even more convenient than that—there is a split
method in the String class. Let’s rewrite the above code using this method.
This time, we’ll also change the separator to include any whitespace before
and after the comma so that it doesn’t become part of the substring values:

String data = "Australia, Fiji, New Zealand , Papua New Guinea";
String[] countries = data.split("\\s*,\\s*");

The same regular expression syntax applies here as in the Pattern object
described earlier, so the split method can be used for much more than
commas and spaces. For help in processing complete comma-separated value
(CSV) files, see the book’s website, http:/ /wickedcooljava.com.

Smartly Subbing: Finding Substring Patterns Within a String

JAVAL.4+

The section “Staying Regular: Using Regular Expressions to Search Text”

at the beginning of this chapter describes how to use a regex pattern to
compare whether a String matches (or partially matches) a given pattern,
starting from the beginning of the input String. In this section, we’ll be
using regex patterns to find multiple matching values within a String. As an
example, we’ll search within a document to find any URLs embedded in the
text. First, we’ll need a pattern String that matches URLs. Here is one pattern
that will match most URLs in common usage:

String urlString = "(http|https|ftp) ://[/A WAV AN-ANEN2EE; 1 8]+

This pattern is not completely sufficient to describe a URL, because it
also matches some Strings with invalid URL syntax, such as http:///////11/.
It will also grab extra characters in some cases, such as a comma or semicolon
that might follow a URL embedded in text. These are characters that some-
times will appear in a URL, but they are also things that you might net want
to capture as part of the URL if it appears in text! However, the pattern is
relatively short and will work well enough to demonstrate searching for URLs
embedded in a text document. The parts of this pattern expression are as
follows:

http or https or ftp
./
* One or more of the following: / 0-9 A-Z a-z2 _ . - +?% =8 ; : , #

Remember that a Matcher applies a pattern to a particular input String.
To find multiple substring matches using the urlString pattern defined earlier,
we must call the find method of a Matcher. To find each occurrence of the
pattern within the input String, we repeatedly call the find method to locate
the next match. The find method returns false when there are no more
matches. To retrieve the current match, we can use the start and end methods
to get the index to matching data within the input text. The following code
will print all the URLSs found within the data:

String urlString = "(http|https|ftp) /7 [/AWANVANANENE=G; 0 #]+";
Pattern urlPattern = Pattern.compile(urlString};
// get the data (somehow)
String data = getStringData();
// get a matcher for the data
Matcher urlMatcher = urlPattern.matcher(data);
// iterate through the matches
while (urlMatcher.find()) {
int startIndex = urlMatcher.start(); // index of start
int endIndex = urlMatcher.end(); /7 index of end + 1

String Utilitiss 28

26

/! retrieve the matching substring
String currentMatch = data.substring(startIndex, endIndex);
System.out.println(currentMatch);

This code will not match relative URLs (such as /images/picture.jpg) that
are often found in an HTML document or incomplete URLs that are missing
the leading http:// (such as wickedcooljava.com). To know when something is
supposed to be treated as a relative URL, your program would need to have
an understanding of the structure of an HTML file. (It’s still possible to do
this with a regex but more difficult.) You would need to know the context of
each match, and for that you must parse the document with an understand-
ing of its grammar. See Chapter 3 for more information.

Resources

For references on URI/URLs, HTTP, and HTML see this book’s
companion website at http:/ /wickedcooljava.com.

Getting Captured: Using Regex Capturing Groups

JAVA 1.4+

Chapter 2

In the previous section, we saw how to use a regular expression to search
within a document to retrieve all the URLs inside it. We were able to retrieve
the matching URL Strings using the find, start, and end methods of the Matcher
class. Sometimes it’s necessary to further process the results of a matching
substring, perhaps looking for an additional subpattern. For example, you
might decide not to process URLs from particular domains. The brute force
approach is to use another Pattern and Matcher object for this purpose, by
writing code something like this:

// assume urlMatcher instance as in the previous example
while (urlMatcher.find()) {
int startIndex = urlMatcher.start();
int endIndex = urlMatcher.end();
String currentMatch = data.substring(startIndex, endIndex);
// the brute force approach, using a new pattern!
Pattern restricted = Pattern.compile(".*(abc|cbs|nbc)\\.com.*");
Matcher restrictMatcher = restricted.matcher(currentMatch);
if (lrestrictMatcher.matches()) {
System.out.println(currentMatch);

It’s not a very efficient way to match domain names within the captured
URL. We have already done the hard work of extracting the URL, with the
find method. We shouldn’t have to write another regex just to get a subsec-
tion of the result. And we don’t have to, either. Regular expressions give us

the power to break the pattern into subsequences of data. By placing parentheses
around portions of the pattern that we want to remember later, we can read
these values separately from the rest. Let’s rewrite the URL pattern to make
the domain name available separately from the other parts of the URL:

String urlPattern =
"(http|https|ftp)://([a-zA-Z0-9-\\. J+) [AW AN NN T8 2, #]*";

When you have parenthetical groups in the pattern, you can retrieve the
value that matches each group separately from the rest of the matching
String. The group corresponding to each opening parenthesis is numbered,
starting from 1 for the leftmost group. In the above pattern, group 1 is the
protocol (for example, http) and group 2 is the domain name. To get the
groups out of the matching String, use the Matcher’s group method. This
sample code retrieves the domain name from each URL and prints out the
value:

String data = getStringData(); // load the document

String urlString =
"(http|https|ftp)://([a-zA-Z0-9-\\. J+) [AW AN NN T8 2, #)%

Pattern urlPattern = Pattern.compile(urlString};

Matcher urlMatcher = urlPattern.matcher(data);

// print out the domain from each URL

while (urlMatcher.find()) {
String domain = urlMatcher.group(2); // 2nd group is the domain
System.out.println(domain};

Every matching group is saved so that the pattern can make a reference
to it later. Referencing an earlier matching group within a pattern is called
a backreference. To use a backreference to the third group, include \3 in the
pattern. This will match only an exact repeat of the data that matched the
earlier group. To illustrate this, let’s consider a common mistake in text
documenis—accidentally repeating a common word such as the or of within
a sentence.

" The the water molecules are made of of hydrogen and oxygen."

Let’s write a pattern to find these problems in a document. We can
capture the first word, followed by some whitespace, followed by a repeat
of whatever matched the first word:

String wordPattern = "\\s(of|or|the|to)\\s+\\a[\s\\., ;51"
The pattern matches the following: a whitespace character, one of a

specific list of words, more whitespace, the same word repeated again (using
the \1 backreference), and whitespace or punctuation. This match should be

String Urilitiss 27

28

done in case-insensitive made so that we'll catch “The the” and similar variants.
The following code fragment finds occurrences of the pattern in a String,
using a case-insensitive match:

String data = getStringData();
String patternStr = "\\s(of|or|the|to)\\s+\\1[\\s\\.,;]";
Pattern wordPattern =
Pattern.compile(patternStr, Pattern.CASE_INSENSITIVE);
Matcher wordMatcher = wordPattern.matcher(data);
while (wordMatcher.find()) {
int start = wordMatcher.start();
String word = wordMatcher.group(1);
/1 print the index location of the repeated word
System.out.println("Repeated " + word + " starting at

+ start);

For a convenient and powerful way to match text in a document that
allows you to use more than one regular expression to process the docu-
ment, see the section “Partially Parseable: Parsing with the Scanner Class™
later in this chapter. For an even more sophisticated textsearching solution
with built-in indexing, see the Chapter 3 section titled, “What’s Lou Seen?
Searching with Lucene.”

A String of Substitutes: Substituting with Regular Expressions

JAVA 1.4+

Chapter 2

In the previous section, we created regular expressions for matching patterns
in a String and for retrieving data from a subpattern group. With a regex, we
can also substitute new values for the matching patterns. One way to do this
is with the replaceAll method of the Matcher class. It returns a String where all
matching substrings are replaced with a given String parameter. To illustrate,
let’s find all occurrences of the word repetition within a document and replace
them with the word duplication:

String data = getStringData();

Pattern repPattern = Pattern.compile("(\\s)(xepetition)([\\s;\\.,1)");
Matcher repMatcher = repPattern.matcher(data);

String newData = repMatcher.replaceAll("$1duplication$3");

To find the word, we need to capture the whitespace (or punctuation)
betore and after it. Note that the code as shown above does not match the
word if it occurs at the very beginning of the data String, because we are
assuming that some whitespace exists. We want everything in the replacement
text, except for the word repetition, 1o be the same as the original. This includes
the surrounding whitespace characters. The dollar signs ($) here obviously
don’t represent money! They are references to captured groups 1 and 3 from
the regex pattern, containing the whitespace or punctuation of the original
match. The corresponding values will be inserted into the replacement text.

The String class (in JDK 1.4 and higher) has a replaceAll method that
works like the one in the Matcher. This makes it very easy to replace substrings
that match a pattern:

String data = getStringData();
String result =
data.replaceAll("(\\s)(repetition)([\\s;\\.,])", "$1duplication$3”);

The replaceAll method returns a new String with all the matching patterns
replaced with the new value. However, there are still many advantages to
using the Matcher, since it has much more flexibility than a String does.

You can use a Matcher’s find loop to substitute values individually for each
match within the loop. This gives you more control over the substitution
process. You can apply logic during each match and even substitute different
values each time. A StringBuffer holds the updated text, and the Matcher
appends to this buffer whenever you call the appendReplacement method. After
processing each match and performing the substitutions, you'll still need to
place the last portion of the input String (the tail end without any matches)
into your output buffer by using the appendTail method. Figure 2-1 shows the
relationship between substring matches and these two methods.

appendReplacement appendReplacement appendTail

/ /

Matching Matching
Text Text

Figure 2-1: The Matcher append methods

A Matcher has an append cursorassociated with it. The cursor starts at zero
initially and moves forward with each call to appendReplacement. This is designed
to be used within a find loop. For each match, you call the appendReplacement
method, and the Matcher incorporates the unchanged text, between the last
position of the cursor and just before the current match, into the String-
Buffer. Then the Matcher substitutes the replacement value for the matching
text and places this new value into the StringBuffer. Next, the Matcher moves
the append cursor to the first character after the end of the current match,
and the process repeats until there are no more matches. There will probably
be one last unmatching part of the input text after all the matches are found.
To add this portion of text to the output StringBuffer, use the appendTail
method.

String Urilitiss 29

30

Now we’ll rewrite the earlier substitution example as a loop using these
methods. But this time, for every match we’ll replace the word repetition with
a random choice of suitable synonyms (repetition, duplicalion, copying, reiteration,
recurvence, or redundancy):

StringBuffer result = new StringBuffer();
String[] wordChoices = new String[]
{"repetition"”, "duplication", "copying",
“reiteration", "recurrence", "redundancy"};
Random rand = new Random();
String data = getStringData();
Pattern repPattern = Pattern.compile("(\\s)(xepetition)([\\s;\\.,1)");
Matcher repMatcher = repPattern.matcher(data);
while (repMatcher.find()) {
// pick a word at random
int wordIndex = rand.nextInt(wordChoices.length);
String replacement = "$1" + wordChoices[wordIndex] + "$3";
repMatcher.appendReplacement(result, replacement);
}
repMatcher.appendTail(result);
System.out.println(result);

You can replace the logic within the find loop with any processing that
you wish to perform for every match. You also have access to the methods
of the Matcher that we discussed earlier: group, start, and end. You can use a
combination of these techniques to selectively modify or remove each section
of matching text within a document.

Partially Parseable: Parsing with the Scanner Class

Chapter 2

Java b added the java.util.Scanner class, a new utility for scanning input text.

It’s something of a cross between the older StringTokenizer and the Matcher
class. In previous sections we used a Matcher to search within a String to find
data that matched a given pattern. This was useful, but we were limited to
matching only a single pattern. Any data had to be retrieved by capturing
groups within the same pattern or by using an index to retrieve portions of
the text. We used a combination of regular expressions and methods that
retrieve items of specific types from an input stream. In addition to regexes,
the Scanner class can arbitrarily parse Strings and primitive types (such as int
and double). With the Scanner, you can write custom parsers for any text
content that you would like to process.

Let’s use the Scanner class to read from an input source and program-
matically select items from the text. As an example, we will read data from
a file format used by the U.S. Census Bureau (see this book’s website to
obtain the data). This data summarizes the statistical distribution of the top
90 percent of first and last names (separately, so that individuals cannot be
identified) from the 1990 census. The Census Bureau provided the list to

the public for use by genealogists and statisticians. The data contains three
separate files: surnames (dist.all.last), female given names (dist.female. first),

and male given names (dist.male.first). Each file has lines of text with the
following data separated by whitespace:

* Name

* Frequency in percent

» Cumulative frequency in percent
+ Rank

Here are the first two lines of text in the surname file:

SMITH 1.006 1.006 1
JOHNSON 0.810 1.816 2

This shows that Smith was the last name of 1.006 percent of the popula-
tion, and Johnson of .81 percent. This is a simple file structure. We could
read each line of this data using a Matcher and the following regex with
capturing groups:

(AS+)As+(VS+)Ns+(VS+) \s+(\S+)
Or by using String’s split method:

// for each line of text, assume it's in a variable called line
String[] dataArray = line.split("\\s+");

String name = dataArray[o];

String frequency = dataArray[1];

String cumulativeFrequency = dataArray[2];

String rank = dataArray[3];

We could then convert the String for each data item into float and int
types if necessary. If each line has the same structure, we can process every
line using the same regex, and it’s easy to use a Matcher or the String split
method to read the data (see later sections in this chapter for more detail).
But there is a disadvantage in using the split method of a String for this
surname example, because it creates an unnecessary array of Strings as we
process each line. Using a Matcher on the entire input text would be more
efficient, but to do this we would first need to buffer the entire input stream
into a String. With the Scanner class, we can accomplish several things at once:
read the data from a live input stream, parse each line of text efficiently,
scan with more than one regular expression, and retrieve the data elements
directly into variables of the desired primitive type. The following code reads
the surname data file using the Scanner class (and since the first name files
also use the same structure, we can read these files in the same way).

String Urilities 31

32

Chapter 2

import java.io.FileReader;
import java.util.Scanner;

public class SurnameReader {
public Arraylist<String> getNames() throws IOException {
Arraylist<String> surnames = new Arraylist<String>();
FileReader fileReader =
new FileReader("/census/dist.all.last");
/! create a scanner from the data file
Scanner scanner = new Scanner(fileReader);
/7 repeat while there is a next item to be scanned
while (scanner.hasNext()) {
// retrieve each data element
String name = scanner.next();
float frequency = scanner.nextFloat();
float cumulativeFrequency = scanner.nextFloat();
int rank = scanner.nextInt();
surnames . add(name) ;
}
scanner.close(); // also closes the FileReader
return surnames;

public SurnameReader() {
for (String s : getNames()) {
System.out.println(s);

The Scanner uses whitespace as a default delimiter, although you can
easily change the delimiter pattern. The default delimiter is convenient for
our purposes. The hasNext method in this while loop checks to see if the input
has another foken 1o be processed. Besides whitespace, there are only four
items in each line. We are consuming each of them, and therefore we can
assume that the next method will also move the input to the next line as it
retrieves each name. Be careful here, because if the file doesn’t match what
the code expects (for example, data is missing or of the wrong type), then the
Scanner will throw an exception.

In the above example, we populated the ArrayList with a new name each
time we passed through the loop. This surname data, plus the male and female
first names, is very useful in populating test databases with realistic data. (You
can find a link to the data on this book’s website.) Once you have the data in
an Arraylist, you can randomly select names from the list. For information
on how to randomly select data from a list, see the section “Making It All Up:
Generating Random Text.”

Scan-Do Attitude: Parsing Complex Syntax with the
Scanner Class

In the previous section, we read a data file using the Scanner class in Java b.
It was simple enough, because each line had the same structure. What if we
wanted to read a data file that has a structure that is different for each line
of text? A Matcher wouldn’t work, because it can use only a single regex. The
Scanner can be used for these kinds of tasks, because you can use regular
expressions on the input text to look ahead for patterns in the upcoming
text. Because you can read the input on a token-by-token basis, you can write
custom parsers for any kind of text. Let’s illustrate by inventing an imaginary
file format for a log of building security events. Each line of this log file has
the following structure:

eventType year month day time type-dependent-data

The structure of the last part of each line is dependent on the event type.
For structures like this, you would need logic to read the appropriate tokens
depending on the event type. Let’s create a simple file with the following
event types: building entry, building exit, and alarms. Here’s a sample file:

entry 2005 04 02 1043 meeting Smith, John
exit 2005 04 02 1204 Smith, John

entry 2005 04 02 1300 work Eubanks, Brian
exit 2005 04 02 2120 Eubanks, Brian

alarm 2005 06 02 2301 fire This was a drill

Each type of event requires reading a different structure. In the first line
of this file, John Smith entered the building at 10:43 A.M. to attend a meeting.
He exited the building at 12:04 P.M. Brian Eubanks then entered the building
at 1:00 P.M. to do some work and left at 9:20 P.M. A fire alarm later occurred at
11:01 P.M. and was noted along with the comment, “This was a drill.” We can
read this file using a Scanner, with the following code:

Scanner scanner = new Scanner(new FileReader("logfile.txt"));
while (scanner.hasNext()) {
String type = scanner.next();
int year = scanner.nextInt();
int month = scanner.nextInt();
int day = scanner.nextInt();
int time = scanner.nextInt();
if (type.equals("entry")) {
String purpose = scanner.next(); // purpose of visit
/1 get the rest of the line and move to start of next line
String restOfLine = scanner.nextLine();
} else if (type.equals("exit")) {

String Utilities 33

34

String exitName = scanner.nextlLine(); // rest of the line
} else if (type.equals("alarm")) {

String alarmType = scanner.next();

String comment = scanner.nextLine(); // rest of the line

}

scanner.close();

Another trick you can use with the Scanner class is the findInLine method.
It can be used to look ahead to find a pattern within the current line. A similar
method, findWithinHorizon, can look for patterns farther ahead in the stream
beyond the current line. This type of parsing requires us to know the gramman,
or the syntax and structure, of the document in order to process it. In the code
that we just wrote, there is an implicit knowledge of the grammar built into
the system—we are essentially writing a parser for this “logging” language. For
more complex grammars, such as one you would use in processing a scripting
language, writing your own parser from scratch is very likely to result in
logical errors. For larger and more complex grammars, it's far better to
describe the grammar itself in a grammar description language such as the
one in JavaCC (see the Chapter 3 section titled “Sin Taxes: Generating
Parsers for Anything with JavaCC”). A parser generator uses a grammar
metalanguage to generate parser classes that can process the grammar.

Resources

A detailed treatment of parsing and compiler theory is beyond the scope of
this discussion. See the classic compiler book by Alfred V. Aho, Ravi Sethi,
and Jeftrey D. Ullman, Compnlers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

Making It All Up: Generating Random Text

Chopter 2

‘When you're testing Java programs, you may need to randomly generate
String data to place into a database or use as test parameters for a method.
One way to do this is by generating random int values and using them to
index into an array to create each character, as in the following code:

public String getRandomString(int length) {
StringBuffer result = new StringBuffer();
Random rand = new Random();
char[] letters = "abcdefghijklmnopgrstuvwxyz".toCharArray();
for (int i=0; i<length; i++) {
result.append(letters[rand.nextInt(26)]);
}

return result.toString();

The open-source Jakarta Commons Lang project contains utilities for
working with classes in the java.lang package, such as String. There is a class
in this project, org.apache. commons.lang.RandomStringUtils, that has a number
of static utility methods for generating random text. The randomAlphanumeric
method creates random alphanumeric text of a specified length. The most
generic random method of this class can create text using your own source
of randomness and an array of characters from which to select. The
following code generates a random alphanumeric String and a random
semi-pronounceable password (cvevev).

import org.apache.commons.lang.RandomStringUtils;

// create a 100-character alphanumeric string

String tenAlphaNums = RandomStringUtils.randomAlphanumeric(100);
// create a semi-pronounceable password

String consonants = "bedfghjklmnpgrstvwxz";

String vowels = "aeiouy";

String password =

RandomStringUtils.random(1, consonants) +
RandomStringUtils.random(1, vowels) +
RandomStringUtils.random(1, consonants) +
RandomStringUtils.random(1, vowels) +
RandomStringUtils.random(1, consonants) +
RandomStringUtils.random(1, vowels);

I ran this code several times to produce the following values: pafesu,
bydiro, nomyme, wosaha, and hofojy. (Any resemblance to real words or
phrases in any language is purely accidental!)

Sometimes random text must contain values taken from a specific list.
You can add the items to an Arraylist and select a random item from the
list by using the following code:

import java.util.*;

Arraylist<Strings list = new ArraylList<String>();
list.add("Jim");

list.add("Bob");

list.add("Mary");

list.add("Tom");

Random rand = new Random();

String randomName = 1ist.get(rand.nextInt(list.size()));

For applications that require unique values in some random ordering,
you can easily do this with the shuffle method of java.util.Collections.
Populate a List with String values, shuffle it, and use the items in their new
order:

Arraylist<String> words = new Arraylist<String>();
words .add("shuffling");

String Utilitiss 35

36

words .add("randomness");
words.add("collection");
words.add("string");
Collections.shuffle(words);
System.out.println(words);

The shuffle method affects the original list, so if that’s a problem,
work with a copy instead! If you need to select from a list of common
English words, given names, or surnames, see this book’s website. You can
obtain files containing these words and load them into an ArrayList from
which you can select random entries. See the section “Partially Parseable:
Parsing with the Scanner Class” for one way to read name distribution data
from the 1990 U.S. Census into an ArrayList. You can then select names
randomly from the list. Also see the Colt API discussed in Chapter 5 for
classes that provide various types of random distributions.

Array of Hope: Displaying Arrays in Java 1.5

Chapter 2

For quite some time, Java programmers have been writing their own utility
methods to print the contents of an array. This is because the JDK didn’t
provide a convenient way to convert an array into a String value. To make
matters worse, an array of Strings has always returned the following infor-
mation from its teString method:

[Ljava.lang.String;@360be0

This information has not been very useful to any Java developer that I
know of! The [character means that it’s an array, Ljava.lang.String; is the
internal name for the String class (the element type of the array), and @360beo
is the hashcode. None of this gives us any indication of the array’s actual
contents. A java.util.Collection has a much nicer toString value: a comma-
separated list of its elements. In Java 1.2 or higher, you can display the contents
of an array by invoking asList (using java.util.Arrays) before calling the
toString method:

String[] stringArray = new String[] {"A", "String", "Array"};
String stringValue = Arrays.aslist(stringArray).toString();

That code works, but it’s wasteful to create a List object just for the String
conversion. In Java 5, there are new methods in the Arrays class for getting a
comma-separated list of an array’s elements. There is one method that returns
a shallow String representation, printing the toString of each element, which
gives a result equivalent to calling Arrays.asList(stringArray).toString().
Another Arrays method does a deep toString conversion and prints the
contents of any arrays contained within the array to any level of depth.
The deep representation is designed for displaying multidimensional arrays.

The following code illustrates the conversion of an array into a String value
and shows the difference between deep and shallow String representations of
an array:

Object[] multiDimensional = new Object[] {

"mercury", new Object[] {},

"venus", new Object[] {},

"earth", new Object[] { "moon" },

"mars", new Object[] { "phobos", "deimos" }
b
System.out.println(multiDimensional);
System.out.println(Arrays.toString(multiDimensional));
System.out.println(Arrays.deepToString(multiDimensional));

The program produces the following output:
[Ljava.lang.0Object ;@18d107f

[mercury, [Ljava.lang.Object;@1372a1a, venus, [Ljava.lang.Object;@ad3bas,
earth, [Ljava.lang.Object;@126b249, mars, [Ljava.lang.Object;@182f0db]

[mercury, [], venus, [], earth, [moon], mars, [phobos, deimos]]

In the first println, the array’s standard toString prints only the array type
(which is [Ljava.lang.0Object) and its hashcode. The shallow representation in
the second line prints the toString of each element in the array, delimited by
commas as if we had used Arrays.asList(multiDimensional).toString(). The
third line, the deep representation, prints the toString of each element and
of the elements inside any nested arrays. This new enhanced ability to display
arrays is a very useful feature of Java 5. I've been waiting for this addition for
a while!

No Bits Allowed: Encoding and Decoding Binary Data

If you are processing or generating binary data, you may need to place this
data into a String at some time. Most in-memory binary data is stored within
byte arrays but is often converted into hexadecimal (base 16) or binary
(base 2) Strings for display, storage, or transmission. For example, you may
want to include some binary data within a text-based document such as an
XML file, send it within an email, or use it in other places where non-text
characters would cause problems. A decimal (base 10) representation is less
desirable than a hexadecimal, because a decimal number does not reflect
the original binary structure until it is converted back into a base thatis a
power of 2. All of the following are equivalent:

binary: 10010000 00000000 00000000 10101010

hexadecimal: 900000AA
decimal: 2415919274

String Utilities 37

38

Chopter 2

The problem with hex and binary display formats is that they are verbose.
The binary encoding is the worst, requiring eight times the length of the
original data. Hex Strings are a good compromise, using only twice the space,
while still giving some idea of the pattern of bits within the data. It’s a shame
that hexadecimal characters are not displayed in a font that shows the binary
structure of each digit! This would be very useful in analyzing some types of
binary data.

o (00 4 (D 8 QD c &0

T 5 (08 o B D o

2 (D ¢ (M0 A D 3)

3 (0 7 (0 B 4 - s

9 00 00 0 A A
0 0D O QXD (X0 COD 600 6080

Figure 2-2: A hexadecimal font

There is another commonly used String representation for binary encod-
ing. Base64 is a text representation that uses 4 bytes of text to represent every
3 bytes of the original binary data. It converts the data into a sequence com-
posed of the following 64 printable characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvixyz0123456789+/

The A character represents 000000 in binary, and the / character is
111111. Base64 is part of the Multipurpose Internet Mail Extensions (MIME)
standard, and you may have seen mail messages that use this format to attach
binary content such as images. Each character in the encoded version repre-

sents 6 bits of the original data, and there will be four characters for every 3
bytes of the original. If the length of the data is not a multiple of 3, there will
be some padding characters required on the encoded String (the Base64 stan-
dard uses = for padding). The hexadecimal sequence 900000AA is encoded as
KAAAAKo= in Base64. This is a more compact representation than hexadeci-
mal, but because of the padding in this example, the difference will be more
noticeable with longer data blocks.

Converting bits into a String is useful, especially if the data is going
somewhere that doesn’t allow “strange characters” (not the ones in your
office—I mean the ones in your datal). But how do you go from byte[] to

KAAAAKo= and 900000AA? You may think of simply using the default byte[]-
to-String conversion as described earlier. Java 5 and higher can display items
in an array by using the static Arrays.toString method:

byte[] data = readDataFromSomewhere();
System.out.println(Arrays.toString(data)); // in Java §

But this will not help us much. It prints each byte of the data using the
default toString for a byte, which is the two’s complement decimal interpre-
tation. Each byte is displayed as a number from -128 to 127. The code above
prints the following result for the 900000AA data:

[-112, 0, 0, 0, -86]

Java treats each byte as a signed decimal number. Java does provide
methods for converting values into hex and binary, but the data must first be
converted into a single numeric type that contains all the bytes (such as a
long or BigInteger). The open-source Jakarta Commons-Codec project from
Apache provides classes that can convert between binary data and hexadecimal
or Base64. To create a hexadecimal or Base64 String from byte array data,
you can use the Hex and Base64 classes, in the org.apache.commons. codec.binary
package.

import org.apache.commons.codec.binary.Hex;
import org.apache.commons.codec.binary.Baseb4;
import org.apache.commons.codec.DecoderException;

try {
// the Hex class uses char arrays for String data
// convert hex String to byte[] data
byte[] dataArray = Hex.decodeHex("900000AA" .toCharArray());
// convert byte[] data to hex String
char[] hexChars = Hex.encodeHex(dataArray);
// the Baseb4 class uses byte arrays for both directions
// convert base 64 String to byte[] data
byte[] dataArray2 = Baseb4.decodeBase64("kAAMAKo=".getBytes());
// convert byte[] data into base 64 String
byte[] base6aBytes = Baseb4.encodeBase64(dataArray2);
String base64Str = new String(base64Bytes);
} catch (DecoderException e) {
e.printStackTrace();

}

To encode data to and from binary Strings, there is also a BinaryCodec in
the same package, but it encodes the bits in the reverse order from the other
codecs (BinaryCodec starts from the last byte, or in little-endian order). This can
cause some confusion, so I recommend using the JDK's java.math.BigInteger

String Urilitiss 39

40

class instead of the BinaryCodec class (unless BinaryCodec later switches to big-
endian ordering). Converting raw data into a String of 1s and 0Os is easy enough
with the BigInteger class:

byte[] dataArray = readDataFromSomewhere();

// create a BigInteger with a positive (1) sign, using these bytes
BigInteger numeric = new BigInteger(1, dataArray);
System.out.println(numeric.toString(2)); // print as base 2 string

The BigInteger class also allows printing in other bases, such as hexa-
decimal. The maximum base that BigInteger allows is 36, so it’s not possible
to create Base64 Strings this way (and the characters in Base64 would not
follow the same mappings anyway). There is a serious downside to using the
BigInteger class to convert in the other direction, from a base 2 (or other
base) String into a byte[]. A BigInteger includes a sign bit, and the conversion
will sometimes introduce an extra byte of zero data at the beginning:

byte[] data = new byte[] {-112, 0, 0, 0, -86};

// create a BigInteger from the raw data (1 = positive sign)
BigInteger bigIntData = new BigInteger(1, data);
System.out.println(bigIntData.toString(2));

// BEWARE!!!!

// converting the data back into an array gives different data
byte[] converted = bigIntData.toByteArray();

// this example will print [0, -112, 0, 0, 0, -86]
System.out.println(Arrays.teString(converted));

Notice the extra zero byte created by the conversion process in this
example! The highest bit of a two’s complement number is used as the sign
bit. Our example data had a 1 in that position, and the BigInteger added a
zero byte internally to maintain the positive sign. If the highest bit of the first
byte in the original data had been zero, the byte[] representation would have
remained the same as the original. Most applications will not need to read
binary data from a String of 1s and 0s, but it sometimes helps to be able to
display data as a binary String. Just be careful to use BigInteger only as a way
of displaying the raw data, not creating it. Better yet, use the Hex and Base64
classes. See the online resources for more information on the Base64 standard
and the Apache Commons-Codec project. We’ll be working with binary struc-
tures again in Chapter b, using a scientific API called Colt (see its BitVector
class for more information).

A Message for Matt: Formatting Strings with MessageFormat

JAVAL.1+

Chapter 2

The toString method of an object converts the internal state of the object
into a String representation. When we create the toString method for a class,
this usually involves converting some of the class variables to String values
and performing some data conversion. There are also many other times when

programmers need to format text. Java developers may write their own
methods for this or use the java.text.Format subclasses (which have been
around since JDK 1.1):

ChoiceFormat
Attaches a format to a range of numbers and is often used to pluralize
Strings.

DateFormat
Formats and parses date and time values.

DecimalFormat
Formats decimal numbers.

MessageFormat
Concatenates messages using the values of objects to be inserted into the
text, as specified by a format String.

The MessageFormat class uses the other Format classes internally to produce
its results, depending on the format String, so it's usually not necessary to
directly use one of the others. The format String uses curly braces, { and },
as special characters to select items from the parameter list and apply format-
ting to them. You can call the static format method as shown in this example:

import java.text.MessageFormat;

Object[] dataArray = new Object[] {
"Petunia",
new java.util.Date(),
new Double(13.685)
b
String result = MessageFormat.format(
"{0} weighed {2,number, ##.4#} kg on {1,date}",
dataArray);
System.out.println(result);

This code produces the following output:
Petunia weighed 13.7 kg on Dec 5, 2004

Our format String retrieves the first element of the array, the third
element (after applying a numeric format), and the second element (after
applying a default date format). These values are concatenated with the
rest of the format String. See the MessageFormat class documentation for a
complete description of the syntax and conversion options. You can also
use the MessageFormat class for parsing text into variables; this is explained
in the JavaDoc.

A completely different format String is used in the formatting class men-
tioned in the next section. It uses a different (and harder-to-read) syntax
than the MessageFormat class does.

String Urilities 41

42

The Reincarnation of printf: Formatting Strings with Formatter

If you spent some time in a previous life as a C or C++ programmer, did you
miss the printf function when you switched to Javar I did. Eventually I moved
on, and I learned to love Java’s MessageFormat, which I described in the
previous section. (If you have no idea what printf is or does, then please skip
this section hefore you get pulled into its disturbing world.) The functionality
that the MessageFormat class provides is essentially the same thing but in an
easier-to-read format than Formatter. Make sure not to confuse the two classes.

In Java b5, printf rises again from the ashes of C, and now there is yet
another way to format text. For the “C captains” (arrrgh, bad pun!) among
you, the new java.util.Formatter class provides the same functionality (and
syntax) as printf. The String and java.io.PrintStream classes also have con-
venience methods that use a Formatter to produce output. These new methods
use a format String and an argument list to produce a formatted String as
output. Here is a short example that prints to System.out using a format that
extracts the hour and minute from a Date object:

Date now = new Date();
System.out.format("The time is #tI:¥%tM", now, now);

The %tI prints the hour (12-hour clock) and the %tM prints the minute.
The format String is very similar to printf’s, and the Formatter documentation
defines its syntax in great detail. The format String is not exactly the same as
C’s, but it is similar and can sometimes be useful in migrating C applications
that have extensive printf code. And if you fell in love with printf and could
never quite let go of C, you know you won’t be able to r The syntax of this
format String is obscure for many Java programmers, so use it with caution.

Resources

The Java 5 documentation has examples showing the syntax of the
Formatter’s format String.

Chapter Summary

Chapter 2

In this chapter, we've looked at some of the String processing capabilities in

Java. Besides what we’ve discussed here, there are many open-source projects

with helpful utilities for working with Strings. On the book’s website, you'll
find links to some of these projects.

In the next chapter, we’ll take String processing one step further. We will
explore HTML, XML, and other structured text. We'll also look at some APIs
that are part of the Java core, as well as some open-source text-processing
tools that are written in Java.

PROCESSING XML AND HTML

In the previous chapter, we worked with
utilities to create, read, and manipulate
strings. Using regular expressions and the

Scanner class described in Chapter 2, we can now
write custom parsing programs to extract data from
structured text. This works well for simpler content,
but using those techniques for very complex structures
would involve a significant amount of coding. In this chapter, we will be
working with a very common type of structured text—the Extensible Markup
Language (XML). We will look at specific techniques for processing XML,
generate a parser for a non-XML grammar, and convert an arbitrary grammar
into an XML document. This chapter assumes a passing familiarity with

XML, and we will not spend much time covering the basics of XML itself.
We’ll start with a very high-level XML refresher.

Quick XML Refresher

XML is a general-purpose markup language for describing structured, hier-
archical data. The designers of XML intended for it to be readable by both
computers and humans, rather than a binary format requiring special tools
to process. XML is only a few years old, but it’s already important for commu-
nicating between applications and in many other aspects of computing. Web
development, semantic representations, configuration files, and business-
to-business web services are just a few examples where XML is being used
extensively. Here are some basic facts about XML:

* You can create and process XML documents from any programming
language or computer platform, not just in Java.

» XML documents are highly structured, and all the data in an XML doc-
ument must be placed in hierarchies under a single root element. If a
document follows this rule and a few other syntax-related rules, it is called
well-formed.

* Elements or tags contain the data, and the structure and names of these
tags are application-specific. XML documents are machine-readable as
long as the document is well-formed. The XML specification describes a
generic syntax for separating a document into tokens, and each document
type builds on this using its own tag names and hierarchical structure.

» Simple API for XML (SAX) is an API that reads XML documents at a low
level. A SAX parser creates events that represent individual parts of the
document (for example, start elements, character data, and end ele-
ments). Your program “listens” to these events through an event handler.
SAX does not maintain a memory of previous events—that job belongs
to your event handler.

e Document Object Model (DOM) is an API that reads a complete document
into memory and stores it as a hierarchy of objects representing the data
as a tree. Your program actively extracts or modifies data within the doc-
ument tree by calling DOM methods, whereas SAX is a more passive
process (your program waits to receive the data).

A sample XML document might look like the following text. The tag
names and text content would be interpreted by an application in some way
that makes sense to the application. In this case, the application is an imagi-
nary pun-management system:

<?2xml version="1.0" ?»
<programminglLanguages>
<language name="Java">
<pun>an island</pun><pun>a drink</pun>
</language>
<language name="C">
<pun>to visualize</pun><pun>the ocean</pun>
<pun>a note</pun><punsyes</pun>

44 cChapter 3

</language>
</programminglanguages>

The example may be silly, but it does illustrate that you can make up
your own tag names. However, you can share your data with other applica-
tions most effectively if you can describe it using a well-known XML-based
standard. You can find links to some of the more common XML standards
on this book’s website, http://wickedcooljava.com. Much of the XML
processing code in this chapter will also work with HTML—if the document
is well-formed it can be processed as XML. For example, you may want to
write a program that extracts data from a web page, or a spider that follows
links in a document. Whether extracting data from an HTML document
produces any usable data is another matter (as we’ll see later in this chapter).

In this chapter, we will also discuss how to process complex structures
that are not in XML or HTML format. We will write a parser for the simple
log file format described in Chapter 2 and use this as a base to convert the
file format into XML. You can apply these same concepts to convert other
non-XML grammars into XML. Once your data is in an XML document,
you can process the data using any of the tools and APIs available for XML.

Stop and XML the Rowsets: Using WebRowSet to Create XML

In Java b and higher, there is a very convenient way to get data out of a
database and into an XML document. This new addition to the /DBC family
is called WebRowSet. It’s an interface in the javax.sql.rowset package, and the
core API has an implementation called WebRowSetImpl. With this class, you can
easily convert a database query’s ResultSet into an XML representation. From
a JDBC result set, you can populate a WebRowSet by using the following:

import com.sun.rowset.WebRowSetImpl;

ResultSet rs = statement.executeQuery("select * from MyTable");
WebRowSetImpl data = new WebRowSetImpl();

data.populate(rs);

data.writeXml(System.out);

This example sends the XML-encoded data to the console, but you can
send it to any Writer or OutputStream. Once you populate a WebRowSet, the data
is disconnected from the original ResultSet and you can close the result set,
statement, and database connection. I am assuming here that you already
have connected to a database and created a Statement object. (If you are not
sure how to do this, see one of the many websites and books that explain how
to access a database with JDBC.) Once you have the data in XML, you can
parse it using any of the XML processing techniques described in this chapter,
share it with other applications, or style it into some other format using XSL-T.
See the JDBC section of the Java 5 documentation for more details on the
WebRowSet class and its XML format.

Frocessing XML and HTmL 45

46

Stacks of SAX: Remembering Tag Relationships in SAX

JAVAL.4+

Chapter 3

If you wanted to be masochistic, you could write your own XML parser, read-
ing each character and extracting the elements, text, and attributes from the
input stream. Your program would have to know every detail about the syntax
of XML. You would have to take into account things such as escaping charac-
ters, parsing elements and attributes, and making entity substitutions. But
you don’t need to do any of this, because there are many free (and good)
XML parsers available for Java.

SAX is one type of XML parsing. With a SAX-based parser, you write
an event listener class that receives data from the XML document via event
callback methods that represent the tokens in the document. It’s a relatively
low-level interface, although not quite as low-level as reading on a character-
by-character basis. The hardest part of writing SAX programs is keeping track
of the hierarchy within the document. This is because the SAX parser does
not remember tags and text that came earlier. Your program is like a horse
wearing blinders, and it sees only a small part of the picture at a time. But
SAX is useful because it can process very large documents that would not be
possible using a tree-based approach such as DOM. To process more complex
documents, you would probably want to use a tree approach because it is an
easier and higher-level interface than SAX. But if you’re working with a huge
document, you have little choice. And if the program is reading the document
over a network, it won’t know ahead of time that the document is too large to
fit in memory!

JDK 1.4 added a SAX parser to the Java core, so a parser is now available
to all Java programs without installing anything extra. Let’s take a peek at
how SAX works, by writing a very basic SAX application. We’ll just be looking
at three methods that belong to the ContentHandler interface. This is the inter-
face that programs implement if they want to be notified of events coming
from the parser. There are other methods related to the more esoteric parts
of a document’s structure, but a large number of applications can get by with
implementing just three ContentHandler methods. Here is a SAX event handler
for processing XML content:

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXException;
import org.xml.sax.Attributes;

,')K
DefaultHandler is a base implementation of ContentHandler,
and by extending this class we don't need to implement all of
the methods in the ContentHandler interface.

*/

public class SimplestContentHandler extends DefaultHandler {
public void startElement(String uri, String localName,

String gName, Attributes attributes)
throws SAXException {
System.out.println("Opening tag "

+ localName + "");

public void characters(char[] ch, int start, int length)
throws SAXException {
String text = new String(ch, start, length);
System.out.print(text);

public void endElement(String uri, String localName,
String gName)
throws SAXException {
System.out.println("Closing tag "

+ localName);

As you can probably guess, these three methods correspond to starting
an element (opening tag), character data, and ending an element (closing
tag). I like to call this the “SAX-wich,” because you could think of the opening
and closing tags as being the bread that holds the meat (the text) in place.
You will have to watch out for the cheese and mustard in this sandwich,
however, because the characters method may be called more than once to
represent a block of text! In other words, your event handler will need to
collect the data from multiple characters method calls and place itinto a
String or StringBuffer somewhere. Here is where things can get a little tricky,
because you'll need to know where you are in the document before you can
assign the text to a particular tag. When the characters method is called,
there is no contextual information carried with the character data. Many
applications use boolean flags to represent the container element of the
current text. We will be showing an example that uses a java.util.Stack to
keep track of the most recent enclosing tags.

Be careful not to just grab everything inside that char array, because it
may even contain the buffer for the whole document! You must use the
start and length parameters to know how much of the data belongs to the
current text. The easiest way to do this is with the String constructor that
copies only a portion of a character buffer, as shown in our last bit of code.
The StringBuffer class has an append method with similar parameters.

You won’t normally run the ContentHandler by itself. You will need a driver
program to create a parser instance, plug your handler into it, and stream a
document through the parser. Here is some code that creates a parser, plugs
in our handler, and reads a document from a URL:

import org.xml.sax.ContentHandler;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

public class SimplestSAXDriver {
public static void main(String[] args) throws Exception {
XMLReader parser = XMLReaderFactory.createXMLReader();
ContentHandler handler = new SimplestContentHandler();

Frocessing XML and HTrL 47

48

Chapter 3

parser.setContentHandler (handler);

String url = "http://docs.oasis-open.org/ubl/cd-UBL-1.0/" +
"xml/office/UBL-Order-1,0-0ffice-Example.xml";

parser.parse(url);

Let’s write a SAX-based program to process a document. As an example,
we will extract some data from a Universal Business Language (UBL) document.
UBL is a new XML-based standard for encoding business documents such as
purchase orders, shipping notices, and invoices. (You can find a link to it on
this book’s website.) We will use one of the example files (the URL that we
just used) from the UBL specification: a purchase order for office supplies
from a vendor. Our example focuses on the line items of the purchase order,
so I will leave out some details to avoid listing pages and pages of XML. Here
are the general contents of the file:

<Order>
¢!-- Buyer ID, issue date, and total amount go here -->
¢!-- Buyer party's name and address go here -->
<!-- Seller party's name and address go here --»
¢!-- Delivery date and address go here --»
¢!-- Delivery temms go here -->
<OrderLine>
<LineItem>
<BuyersID>1</BuyersID> <!-- line item number --»
<Quantity quantityUnitCode="PKG">5</Quantity>
<LineExtensionAmount>12.50</LineExtensionAmount>
<Item>
<Description>Pencils, box #2 red</Description>
<SellersItemIdentification>
<ID»32145-12</1ID>
</SellersItemIdentification>

<BasePrice»
<PriceAmount>2.50¢</PriceAmount>
</BasePrice>
«/Item>
</LineItem>
</OrderlLine>
<OrderLine> </OrderlLine>
<OrderLine> </OrderLine>

</Order>

Imagine that you work for a company that has a policy requiring special
approval for any extended line-item totals over $30 (I am assuming dollars in
this example). We can write a program that prepares a report of items requir-
ing a supervisor’s approval by using SAX to read through the document and
find any LineExtensionAmount values over 30. This would be simple enough,
because we can look for the LineExtensionAmount tag and set a boolean flag

when we encounter the open tag, resetting it to false when the tag closes.
We then retrieve character data (in the characters method) only when the
flag is true. This gives us the data for the dollar amount. However, if we want
to capture other identifying information such as the item description, we
need a better way to remember our current context within the document
and to keep track of related data earlier in the document. For remembering
tag hierarchies, we can push element names onto a Stack in the startElement
method and pop them off in the endElement method. One simple way of
capturing the text is to place it into a map with the tag name as a key. This
won’t work if the tag names are not unique within the document, however,
and we haven’t done anything with the attribute values either, but these prob-
lems are easily overcome. (Also note that the stack- and map-based approach
is not safe for use by multiple threads.) Here’s our new handler class:

public class LineItemReportHandler extends DefaultHandler {
private java.util.Stack path = new java.util.Stack();
private java.util.HashMap values = new java.util.HashMap();

public void startElement(String uri, String localName,
String gName, Attributes attributes)
throws SAXException {
// push the element name on the stack
path.push(localName);
// values is the map that will collect our XML text
// clear the text for this element when we open the tag
values.put(localName, "");

public void characters(char[] ch, int start, int length)
throws SAXException {
String text = new String(ch, start, length);
// what is the most recent tag?
String currentTag = (String) path.peek();
// what is the value of the text within it so far?
String currentValue = (String) values.get(currentTag);
// append the current text and add it back into the map
currentValue = currentValue + text;
values.put(currentTag, currentValue);

public void endElement(String uri, String localName, String gName)
throws SAXException {
path.pop();
if (localName.equals("LineItem")) {
String amount = (String) values.get("LineExtensionAmount");
if (Double.parseDouble(amount) >= 30.0) {
System.out.print("Quantity ");
System.out.print(values.get("Quantity"));
System.out.print(" of \"");

Frocessing XML and HTmL 49

50

System.out.print(values.get("Description"));
System.out.print("\" costs $");
System.out.printIn(amount);

This SAX handler produced the following results after processing the
example UBL file:

Quantity 10 of "Photocopy Paper- case" costs $300.00
Quantity 10 of "Pens, box, blue finepoint" costs $50.00
Quantity 3 of "Tape, 1in case"” costs $37.50

The above XML file was a simplification of UBL and did not include
namespace or schema processing. For links to UBL and information on
namespaces and schemas, see this book’s online resources website.

Playing the SAX: Directly Feeding a ContentHandler

JAVAL.4+

Chopter 3

We showed in the previous section that parsers generate SAX events based
on input from an XML document. We also explored some of the methods
that belong to the ContentHandler interface. In the example, we wrote a simple
event handler to process XML content, using stacks and maps to collect the
data. Sometimes you'll need to work in the other direction—firing your own
SAX events Lo a ContentHandler. This is not the easiest way to create a document,
but it may be your only choice for creating an extremely large document.

It’s possible to feed a ContentHandlexr by creating an instance of it and
calling its methods directly. Here’s an example based on the simple handler
we used earlier that creates a portion of the purchase order document by
triggering SAX events:

ContentHandler handler = new SimplestContentHandler();
handler.startDocument(};
// ... part of document omitted here
handler.startElement("", "Item", "Item", new AttributesImpl());
handler.startElement("", "Description”, "Description",

new AttributesImpl());
String text = "Pencils, box #2 red";
handler.characters (text.toCharArray(), 0, text.length());
// Don't forget to end the elements, and in the reverse order!
handler.endElement("", "Description", "Description");
handler.endElement("", "Item", "Item");
// ... part of document omitted here
handler.endDocument();

We begin the document processing by calling the startDocument method
and then calling the startElement and endElement methods for the opening and
closing tags. When we open a tag, we also need to pass an Attributes collection,
which we can create by using the AttributesImpl class (Attributes is an interface
and cannot be directly instantiated). Even if you are not adding any attributes,
you still need to pass an empty Attributes object because the ContentHandler
interface requires it. The empty String passed to the start and end elements is
the XML namespace, which we are not using in this example, but the interface
still requires an empty String for the value. The second copy of the tag name is
the qualified name, or a tag name with a namespace prefix (which we aren’t
using). Real UBL uses namespaces and schemas, and you should familiarize
yourself with them if you plan to use UBL in production. See the online
resources wehsite for more detail.

If you are generating a lot of SAX events, it can be helpful to write some
convenience methods to make the code more readable, as in this example
that creates a UBL document canceling an order. It may be a bit unconven-
tional, but slightly indenting the code for each level of nested tags helps
readability (and reminds you to close the tags!):

handler.startDocument();
open("OrderCancellation"); // open the OrderCancellation tag
tagText("ID", "20031654-X"); // ID tag with embedded text
tagText("IssueDateTime", "2003-03-09T09:30:47");
tagText("CancellationNote", "order replaced");
open("OrderReference");
tagText("BuyersID", "20031654-1");
tagText("IssueDate", "2003-03-07");
close("OrderReference");
open("BuyerParty");
open("Party");
open("PartyName");
tagText("Name", "Bills Microdevices");
close("PartyName");
close("Party");
close("BuyerParty");
open("SellerParty");
open("Party");
open("PartyName");
tagText("Name", "Joes Office Supply");
close("PartyName");
close("Party");
open("OrderContact");
tagText("Name", "Betty Jo Beoloski");
close("OrderContact");
close("SellerParty");
close("OrderCancellation"); // close the OrderCancellation tag
handler.endDocument();

Frocessing kML and HTml 51

52

Mustard

Chapter 3

For completeness, here is my definition of the open, close, and tagText
methods:

public class OurSAXGenerator {
private ContentHandler handler; // initialized earlier

private void open(String tag)
throws SAXException {
handler.startElement("", tag, tag, new AttributesImpl());

private void close(String tag)
throws SAXException {
handler.endElement("", tag, tag);

private void tagText(String tag, String value)

throws SAXException {
open(tag);
handler.characters(value.toCharArray(), 0, value.length());
close(tag);

You can create more sophisticated methods that make sense for your
own application. In this example, we did not use any namespace prefixes or
attributes, so using our own convenience methods removed some clutter from
the code. Remember that there are easier ways to generate XML content than
feeding your own SAX events to a ContentHandler, but for performance reasons
or because of memory constraints with large documents, it’s sometimes
necessary. This works only where the XML does not cross boundaries from
one system to another, since your generator code will need to have access to
the handler instance. In the next section, we will discuss some other tech-
niques for working with SAX events.

on a SAX-wich: Filter-Feeding a ContentHandler

Now that you can feed a hungry ContentHandler, as we did in the last section,
you can let another part of the program call the SAX-wich methods, and
then you can just add the mustard to it (or remove the mayonnaise). I'm not
totally being facetious here, because there really is a kind of preprocessing
that you can do to the XML data as it is being passed to a ContentHandler. In
the previous section, you fired SAX events into a ContentHandler class directly,
without using a parser. That may be useful in some applications, but a more
common scenario involves reading data from an XML document and filtering
or adding content before the document is processed.

The org.xml.sax.XMLFilter interface is a combination of ContentHandler
and XMLReader—a parser and an event handler rolled into one. You can use
this interface to implement a middle layer between the input events coming
from an XMLReader and the output events going to a ContentHandler. To the
XMLReader it looks like a ContentHandler, and to the ContentHandler it looks like
an XMLReader. Figure 3-1 shows how the filter process works.

XML
Reader
Parent
KMLFilter
Internal
Filtering
ContentHandler
- \ /
Content
Handler
1. Create the XMLFilter instance

2. Call the filter's setParent method
3. Call the filter's setContentHandler method
4. Call the filter's parse method

Figure 3-1: XMlFilter flow

Since there are many methods in this interface, you’ll probably want to
extend the default implementation instead of writing everything from scratch;
for this purpose, we have the XMLFilterImpl class in the org.xml.sax.helpers
package. The default implementation sends any SAX methods directly to the
attached event handler. This results in a document that is exactly the same as
the input. To create a filter, extend the class by overriding the ContentHandler
methods. When the overridden SAX methods in the filter are called by
the parent XMLReader, the events are passed on to the destination handler
only if you call the corresponding method in the superclass (for example,
super.characters). In the same manner, you can create new content or modify
existing content by calling the super.starttlement and super.endElement

Frocessing XML and HTRL 53

54

Chopter 3

methods with the data that you want to pass to the destination handler. In
the following code, I've implemented a filter that ignores tags and text within
an “ignore” tag:

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.XMLFilterImpl;

public class IgnoringFilter extends XMLFilterImpl

{
/7 Note that this filter will not work with nested ignore tags!
boolean ignoring = false;

public void startElement(String url, String localName,
String qName, Attributes att) throws SAXException {
if (localName.equals("ignore")) {
ignoring = true;
}
if (lignoring) {
super.startElement(url, localName, gName, att);

}

public void characters(char[] data, int start, int length)
throws SAXException {
if (lignoring) {
super.characters(data, start, length);

¥

public void endElement(String url, String localName, String gqName)
throws SAXException {
if (localName.equals("ignore")) {
ignoring = false;
} else if (!ignoring) {
super.endElement(url, localName, gName);

}

To plug in the filter, use the following:

XMLReader parser = XMLReaderFactory.createXMLReader();
ContentHandler handler = new SimplestContentHandler();
IgnoringFilter filter = new IgnoringFilter();
filter.setContentHandler(handler);
filter.setParent(parser);
filter.parse("C:/projects/wcj3/test.xml");

Note that since we implemented only those three SAX methods in the
filter, there may be situations where the filter does not catch all of the events,
such as with namespace prefix mapping and whitespace characters. For a
complete filter that works in all cases, you may need to also implement other
methods in the SAX interface. See the ContentHandler and XMLFilter documen-
tation in the JDK for more details.

You can also chain filters together. Now we’ll add in another filter that
adds a signedBy attribute inside every element in the document. Here's the
filter class:

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.AttributesImpl;
import org.xml.sax.helpers.XMLFilterImpl;

public class SignatureFilter
extends XMLFilterImpl
{
public void startElement(String url, String localName,
String gName, Attributes att)
throws SAXException {
// start with the existing attributes, if any
AttributesImpl moreAtt = new AttributesImpl(att);
// add a new attribute:
// type is CDATA, name is signedBy, value is SignatureFilter
moreAtt.addAttribute("", "signedBy", "signedBy", "CDATA",
"SignatureFilter");
// pass this on to the listener
super.startElement(url, localName, gName, moreAtt);

‘We chain this filter with the one that we created earlier, by using the
following code:

XMLReader parser = XMLReaderFactory.createXMLReader();
IgnoringFilter filter = new IgnoringFilter();
SignatureFilter signer = new SignaturefFilter();
signer.setContentHandler(new SimplestContentHandler());
filter.setContentHandler(signer);
filter.setParent(parser);
filter.parse("C:/projects/wcj3/test.xml");

This creates a two-stage filter, fed by the XMLReader (the parser), through
the IgnoringFilter, into the SignatureFilter, and out to the destination content
handler SimplestContentHandler. With process flows like this, you can build up
complex XML content in multiple stages using SAX events. If you feed the

Frocessing XML and HTmL 55

56

filtered SAX events into a document tree, you can load selected portions of a
very large XML document that would not otherwise fit in memory. We'll be

exploring this option in a later section.

Easy Reading: Using DOM4J to Read XML Documents

Chopter 3

DOM-based programs often turn out to be clumsy and hard to read. Some
of the DOM methods for reading and manipulating XML are not the most
desirable. The open-source DOM4] project provides a cleaner API that makes
XML processing much smoother. It's not part of Java's core, so you'll need to
download the DOM4] library and add it to your classpath. There are DOM4]
objects that are analogous to each the DOM objects, but they have a different
API and use different methods and classes. Unfortunately, they have the
same names as some of the DOM classes. Be careful that you don’t get the DOM
classes and packages in the Java core confused with the classes in DOM4]! You'll find
that the biggest difference between the two is in reading XML documents.
To illustrate the difference, let’s write some code to read data from a UBL
purchase order (as discussed in earlier examples) using DOM and then show
the corresponding DOM4] code. First, here’s the DOM code to load the docu-
ment and retrieve the BuyersID, IssueDate, and LineExtensionTotalAmount values:

// This is DOM code. Imports have been omitted for brevity
DocumentBuilderFactory fact = DocumentBuilderfFactory.newInstance();
DocumentBuilder parser = fact.newDocumentBuilder();

String url = "C:/projects/wcj3/purchaseOrder.xml";

Document doc = parser.parse(url);

// get the root element

Element root = doc.getDocumentElement();

NodelList list = root.getElementsByTagName("BuyersID");
Element idElem = (Element) list.item(0);

String buyersID = idElem.getTextContent();
System.out.println("Buyers ID is " + buyersID);

list = root.getElementsByTagName("IssueDate");

Element issueElem = (Element) list.item(0);

String issueDate = issueElem.getTextContent();
System.out.println("Issue date is " + issueDate);

list = root.getElementsByTagName("LineExtensionTotalAmount");
Element totalElem = (Element) list.item(0);

String total = totalElem.getTextContent();
System.out.println("Total amount is " + total);

The first four statements load the parser and parse the XML document
into a DOM Document object. We then get the root element. The code in
boldface is the more complex part of DOM. For each of the three values, we
need to first get the child element by its name and get its child text. For this,

DOM has a method that returns a node list, and we capture the first element
in the list and get the text underneath it by calling the getTextContent
method. The corresponding DOM4] code is much cleaner:

// This is DOM4] code.

String url = "C:/projects/wcj3/purchaseOrder.xml";
org.dom4j.io.SAXReader reader = new org.dom4j.io.SAXReader();
org.dom4j.Document doc = reader.read(url);
org.dom4j.Element root = doc.getRootElement();

String buyersID = root.elementText("BuyersID");
System.out.println("Buyers ID is " + buyersID);

String issueDate = root.elementText("IssueDate");
System.out.println("Issue date is " + issueDate);

String total = root.elementText("LineExtensionTotalAmount");
System.out.println("Total amount is " + total);

Note that the org.dom4j.Document and org.domaj. Element classes used here are
the ones from DOM4] and not the ones from DOM! The lines in boldface are
equivalent to the boldface code from the DOM example. DOM4] has a very
convenient way to retrieve the text from a child element, as you can see.

DOM4J has other methods that make it easy to process XML data. Here
is an example that prints the buyer and seller information from the purchase
order. Assuming the same DOM4] doc instance as before (org.domaj.Document),
we find the buyer’s name, company, and address by traversing the tree:

// This is DOM4] code

Element root = doc.getRootElement();

// get the element for root->BuyerParty->Party

Element party = root.element("BuyerParty").element("Party");
// get the company name from Party->PartyName->Name

String company = party.element("PartyName").elementText("Name");
// Party->Address

Element address = party.element("Address");

// Address -» StreetName, BuildingNumber, etc

String street = address.elementText("StreetName");

String building = address.elementText("BuildingNumber");
String city = address.elementText("CityName");

String zip = address.elementText("PostalZone");

String state = address.elementText("CountrySubentityCode");

// Party->Contact->Name

String contact = party.element("Contact").elementText("Name");

If you have a choice in which API to use for processing XML, using
DOM4] will make your code cleaner and more maintainable. DOM4] can
also interface with DOM and SAX parsers, so you can easily plug your DOM4]J-
based program into existing code, and it has many other nice features. One
of these features is described in the next section.

Frocessing XML and HTmL 57

58

Eck’s Path: Using XPath for Easy Data Extraction

Chopter 3

In the last section, we showed how to use DOM4] to read data from an XML
document. We used the element and elementText methods to extract data from
items in the tree. There is another way of traversing a DOM4] tree, using an
expression language called XPath. With XPath, we can follow a path from the
root of the document to any point in the tree by using a shorthand expression
that looks something like a Unix directory path. Let’s use the purchase order
XML as an example. We can find the terms of delivery by following the Order
(root) element to its DeliveryTerms child element and to the SpecialTerms child
element and its text. You can express this as the following XPath expression:

/0rder/DeliveryTerms/SpecialTerms

In DOM4], you can very easily get the value of this expression as a String,
which returns the text underneath the SpecialTerms tag:

String terms = doc.valueOf("/Order/DeliveryTerms/SpecialTerms");

This method works on any type of DOM4] Node, such as Element or Document,
and can even be a relative expression that finds a value relative to the current
node. You can get the value of an XPath expression as a Node that holds text
and possibly other child elements. There is a version that returns a single
node and one that returns a java.util.List of nodes (for handling multiple
matching results). To illustrate this process, we’ll now read the line items
within the purchase order document:

List items = doc.selectNodes("/Order/OrderLine");

Iterator iter = items.iterator();

while (iter.hasNext()) {
Element orderLine = (Element) iter.next()};
String qty = orderline.valueOf("LineItem/Quantity");
String desc = orderLine.valueOf("LineItem/Item/Description");
String price =

orderLine.value0f("LineItem/Item/BasePrice/PriceAmount”);

System.out.println(qty + " " + desc + " at " + price);

The first line of code reads the purchase order items into a List of nodes.
We iterate through the list, using relative XPath expressions to extract the
text for each item. Using XPath, we were able to read much of the document
in just a few lines of code.

Creating XML (and HTML) within DOM4] is just as simple. For this next
demonstration, we’ll use DOM4] to create an XHTML page displaying the
items that we just collected. XHTML is HTML content that is also proper XML
(for example, tags are properly closed and attributes are quoted). When the
program runs, it will create an HTML output file that looks like Figure 3-2.

[Purchase Order #20031234-1 - Mazilla =10Ix|

Fie Edt Wew Go Bookmarks Teols Window Heb

&
o
Back

= .3 @ e = = .
[& fiesticsfproctspmenjordertim (=] gt Search| =B

Forward Reload Stop

o]
Purchase Order #20031234-1

Quantity Description | Price| Subtatal

5 Pencils, box #2 red | 230 1250

10 Photocopy Paper- case 3000 300 00

10 Pens, box, blue finepoint| 5.00 50.00

3 Tape, 1m case 12350 3750
10 Staples, wire, box W 10,00
5 Pens, boxred filttip | 500 2250
12 Mousepad, blue ? 6.00
Total 438.50
G &S 2 E8 oF | Done e

Figure 3-2: DOM4J HTML result

We first create a new document by using the DocumentHelper’s createDocument
method. Then we can call the addElement and addText methods wherever
necessary to create the HTML content. In this example, we are working with
two DOM4] documents—one for reading the input XML and one for generat-
ing the HTML output file. Before we list the main program code, here are
the imports that we are using:

import
import
import
import
import
import
import
import
import
import
import

java.io.FileWriter;
java.io.IOException;
java.util.Iterator;
java.util.Llist;
org.dom4j.Document;
org.dom4j.DocumentException;
org.dom4j.DocumentHelper;
org.dom4j.Element;
org.dom4j.io.HTMLWriter;
org.dom4j.io.OutputFormat;
org.dom4j.io.SAXReader;

Leaving out exception handling, here is the code:

// Read the input XML document (purchase order)

String

url = "C:/projects/wcj3/purchaseOrder.xml";

SAXReader reader = new SAXReader();

Processing XML and HTML

59

60

Chopter 3

Document po = reader.read(url);
// Create the output HTML document object
Document htmlDoc = DocumentHelper.createDocument();
// Add a title with the extracted Buyer ID
String buyerID = po.valueOf("/Order/BuyersID");
String title = "Purchase Order #" + buyerID;
/I Create the root HTML element and document title
Element html = htmlDoc.addElement("html");
html.addElement ("head").addElement("title").setText(title);
// Create a body tag and H1 heading for a title
Element body = html.addElement("body");
body.addElement("h1").addText(title);
// Create the HTML table, with border
Element table = body.addElement("table")
.addAttribute("bordex", "1");
// Create a header row
Element header = table.addElement("tr");
header.addElement("th").addText("Quantity");
header.addElement("th").addText("Description");
header.addElement("th").addText("Price");
header.addElement("th"}.addText("Subtotal"};
/1 Get the list of line items in the document
List items = po.selectMNodes("/Order/OrderLine"};
Iterator iter = items.iterator();
while (iter.hasNext())
{
Element item = (Element) iter.next();
// Add a table row
Element row = table.addElement("tr");
// Add a cell containing the quantity
row.addELlement ("td")
.addText(item.valueOf("LineItem/Quantity"))
.addAttribute("align","right");
// Add a cell containing the description
row.addELlement ("td")
.addText(item.valueOf("LineItem/Item/Description"));
// Add a cell containing the unit price
String priceAmount =
item.valueOf("LineItem/Item/BasePrice/PriceAmount"};
row.addElement ("td")
.addText (priceAmount)
.addAttribute("align","right");
// Add a cell containing the subtotal
row.addElement ("td")
.addText (item.valueOf("LineItem/LineExtensionAmount"))
.addAttribute("align","right");
}
/1 Produce the total row
Element totalRow = table.addElement("tr");
totalRow.addElement("th")

.addAttribute("colspan”, "3")
.addText("Total");

String total = po.valueOf("/Order/LineExtensionTotalAmount");
totalRow.addElement("th").addText(total);
/1 Stream the output HTML document to disk
// We use "pretty printing" to produce easy-to-read HTML
// Without this, tags have no indentation or whitespace
OutputFormat format = QutputFormat.createPrettyPrint();
FileWriter file = new FileWriter("order.html");
HTMLWriter writer = new HTMLWriter(file, format);
writer.write(htmlDoc);
writer.close();

This code illustrates the unusual way in which DOM4] programs often
chain their method calls when they create child elements. This chaining is
possible because the addElement method returns the newly created element,
and the addText and addAttribute methods return the original element (the
one to which you added the text). If you haven’t done HTML work before,
you may need to look at an HTML reference (see this book’s website) to
understand the table tags and the attributes that affect a table’s layout.
To avoid confusion between Elements used in reading data and those used
in creating output, I have extracted the data almost entirely by using XPath
expressions (by calling the valueof method on the po object). The only
Element that represents input data is the item variable within the while
loop, and it contains the current line item being processed. All of the
other Element references are used in creating the output document. The
HTML creation work that we just did could also have been done by an
XSL stylesheet, without involving any Java code. On this book’s website,
you'll find links to information on how to use XSL for creating HTML
from an XML file.

Invisible Tags: Filtering Documents Before Loading into

DOMA4J

When you load an XML document into DOM4], the document needs to be
small enough to completely fit into memory. However, for very large docu-
ments, it’s possible to filter the document before reading it into memory. We
did something like this in the section “Mustard on a SAX-wich: Filter-Feeding
a ContentHandler,” when we filtered out SAX events with a SAXFilter. But we
didn’t build a tree; instead, our program directly processed the SAX events.
Most document object trees are initially built using SAX events. By placing an
XMLFilter between the SAX events and the handler that creates the tree, you
can make part of the content “invisible” to the building process.

We can demonstrate tree filtering with the purchase order example.
We will load only the seller’s information into a DOM4] tree, representing
a small subset of the document. If you recall from the last few sections, a UBL
purchase order contains buyer and seller information, delivery instructions,

Frocessing XML and HTmL 61

62

Chapter 3

and order lines (line items). Here is an abbreviated version of the XML
we've been using in this chapter, showing the high-level structure of the
document:

<Order>

<BuyersID>20031234-1</BuyersID>
<IssueDate>2003-01-23</IssueDate>
<LineExtensionTotalAmount>438.50</LineExtensionTotalAmount>
<BuyerParty>

<!-- buyer name, address, contact information --»
</BuyerParty>
<SellerParty>

<!-- seller name, address, contact information --»>
</SellerParty>
<Delivery>

¢!-- delivery date, time, and address --»
</Delivery>
<DeliveryTerms>

<SpecialTerms>Signature Required</SpecialTerms>
</DeliveryTerms>
<OrderLine>

<LineItem>

<!-- line item details -->

</LineItem»
</OrderLine>
<OrderLine>

<LineItem>

<!-- line item details --»

</LineItem>
</OrderLine>
¢!-- more line items.... -->

</Order>

Although it probably wouldn’t happen in real life, imagine that we have
an extremely large purchase order document, many gigabytes in size. (We're
in the far future, and it’s an order for replacement parts on a starship’s warp
drive.) Our boss wants to display only the seller information from this
document and expects us to use a tree-based approach. We certainly can’t

just load the whole document into the tree (as of this writing, not on my

machine, anyway). Besides possibly running out of memory, it’s a waste of

space to load the whole document when you need only part of it. Similarly to
what we did earlier, we can create a filter that ignores everything except the
seller information. We can do that by writing a subclass of XMLFilterImpl that
sends output to the SAX handler only after it encounters a SellerParty start tag
and until it encounters the matching end tag. Here is a simplistic version of it:

public class SellerFilter
extends XMLFilterImpl {

private boolean ignoring = true;

public void startElement(String url, String localName, String gname,
Attributes att)
throws SAXException {
if (localName.equals("SellerParty")) {
ignoring = false;
}
if (lignoring) {
super.startElement(url, localName, gname, att);

}

public void characters(char[] argo, int argl, int arg2)
throws SAXException {
if (lignoring) {
super.characters(argo, argl, arg2);

}

public void endElement(String url, String localName, String gname)
throws SAXException {
if (lignoring) {
super.endElement(url, localName, gname);
}
if (localName.equals("SellerParty")) {
ignoring = true;

}

This filter works by turning on a “faucet” when it encounters the right
opening tag (SellerParty) and turning off the flow of data again when it
sees the closing tag. To integrate this filter into the DOM4] builder, we
need to place it between the SAX parser that reads the input stream and
the builder that creates the tree. The SAXReader class in DOM4] has a
wonderful setXMLFilter method to do this:

org.dom4j.io.SAXReader parser = new org.dom4j.io.SAXReader();
SellerFilter filter = new SellerFilter();
parser.setXMLFilter(filter);

org.dom4j.Document doc = parser.read("C:/projects/wcj3/test.xml");

DOM4J also has its own tree-pruning mechanism that is a little different
than the SAX filtering process. The DOM4] documentation describes the
other approach and provides some example code. In this section’s example,
we used the same filtering process that SAX uses, because it is a more general
approach and the resulting filter could also be applied as part of a chain of
SAX filters.

Frocessing XML and HTmL 63

64

Sin Taxes: Generating Parsers for Anything with JavaCC

Chapter 3

Sometimes you will be lucky enough to work with data that uses a well-known
syntax, such as XML or HTML, as we have done so far in this chapter. In those
cases, you can use an existing parser. For other structures, you may need to
write your own parser. This is essentially what we did in Chapter 2, in the
section “Scan-Do Attitude: Parsing Complex Syntax with the Scanner Class.”
We encoded the knowledge of our grammar, the relationship between all the
parts of the data, into the program itself. If there are no errors in converting
the grammar into program logic, this may work fine. But for complex gram-
mars, the chances of logic errors are much higher, and the program is much
harder to develop and maintain. This explains why just about everyone uses
an existing parser for XML or HTML, rather than writing their own! If you
want to process a grammar for something else, such as a custom language,
it’s better to first encode the rules of the grammar in a specification language.
You can then build a parsing program around the grammar, after you've
tested the grammar rules themselves. You will sleep much better at night,
knowing that the grammar is correct before you've even started writing the
logic of your program.

To process structured text, you first need to separate the text into tokens,
or objects representing indivisible units of data. The process of creating
tokens from input text is called scanning (also called lexical analysis or lexing).
For example, in scanning a mathematical expression, each number, variable
name, function name, parenthesis, and operator become separate tokens.
We did a simple lexical analysis earlier when we retrieved the domain name
from a URL by using a regular expression with capturing groups. You can
think of each capturing group as creating a token.

Once an application tokenizes an input stream, it has a list of objects that
represent the tokens in the order in which they occur in the text. The next
step is to build a data structure, called an abstract syniax tree (AST), that repre-
sents the relationship of each token to the others. A mathematical expression
is one common type of syntax tree. An XML document is another. A parser
processes an input stream to create an AST, based on a grammar that describes
the allowed tokens and the rules for their use within the tree. Parsers are usu-
ally generated from a grammar specification rather than coded manually. A
parser generator converts the grammar into a program that recognizes the gram-
mar. Let’s look at a simple grammar, the logging file described previously:

eventType year month day time type-dependent-data

We will use an open-source parser generator, JavaCC, that generates a
Java-based parser from a grammar specification. Every grammar consists of a
set of production rules that explain how to build the syntax tree out of tokens.
The JavaCC compiler reads a . jj file describing the grammar rules and
generates the Java source code for a parser. The input file also contains Java
code for additional logic to include in the parser class. The first part of a
.jj file defines the core of the parser class.

PARSER_BEGIN(LogParser)
public class LogParser {
public static void main(String[] args) {
try {
LogParser parser = new LogParser(System.in);
parser.alllines();
} catch (ParseException e) {
System.out.printIn("Error: This is not a valid file.");

}

}
PARSER_END(LogParser)

As you can see, this is not a normal Java source file but is instead a
metalanguage that tells the code generator what to put in the generated
parser class. The code that is generated by JavaCC will have a constructor
that takes an input stream as a parameter. Our class has a main method that
simply passes the standard input (System.in) to the constructor. The rest of
the file contains the token definitions and production rules for the grammar.
We will define the allLines method later; it represents the highest-level pro-
duction rule and starts the parsing process. There is something of a science
as well as an art to writing production rules, and the JavaCC documentation
gives many examples of grammar specifications. You will want to read the
book on compiler theory given under “Resources”™ at the end of this section for
a more complete treatment of the parsing process.

Let’s write the grammar by creating some production rules. The parser
processes text recursively, by trying to match regular expressions for tokens
in such a way that a complete tree can be built using the higher-level rules.
‘We first define the lowest-level items, or lerminals, and then we can build
higher-level rules based on these. The TOKEN section of the file defines the
tokens used within the grammar and gives each one’s name and regular
expression. They need names so that we can refer to them in other rules.
Our main tokens for this grammar are the log’s event names and the time
and date numbers. Here is the TOKEN section:

TOKEN:
{ /* these < and > brackets have nothing to do with XML! */
< ENTRY: "entry" >
| < EXIT: "exit" »
| < ALARM: "alarm" >
| < NUM: ["0"-"9"]+ >
| < CRLF: ["\1","\n"]+ >
| < WORD: ["a"-"z", "A"-"Z", "0"-"9", ",", "-"]+ >
| < SPC: ([" ", "\t"])+ >

The regular expressions are defined just a bit differently here than the
ones we did in Chapter 2, and there are some additional special characters

Frocessing XML and HTRL 65

66

Chapter 3

such as the angle bracket (not to be confused with XML tag delimiters).
You must place the matching characters within double quotes, and since this
is not a Java String literal expression, you don’t need to escape backslash
characters in each regex.

Now for the production rules. At the topmost level, we read lines of text,
and to do this we need to look for a carriage return and/or line feed, or an
end-of-file marker, as a terminator for each line. (To repeat: These angle
brackets are not XML fags but instead delineate the token names.) We add
the following production rules to read the lines of text:

void alllines():
i}
{

(anyline())*

void anyline():
{1
{
line0fText() (<CRLF> | <EOF>)

void lineOfText():
{1
{

entryline() | exitLine() | alarmLine()

These production rules get turned into methods in the generated class.
Each production has three sections: a rule name (method name); a Java sec-
tion with code that runs when the rule is triggered; and a production that is a
combination of tokens, other productions, and regular expressions. Remem-
ber that this is a recursive process. The alllines production is the topmost
one. It has zero or more lines of text, where a line of text is defined as the
anylLine production. The anyLine production looks for line terminators or an
EOF (end-of-file) marker. The 1ine0fText represents one of the three log types:
entry, exit, and alarm. The three specific types of lines in the log file are
defined next:

void entryLine():
i}
{
<ENTRY> <SPC> dateTime() <SPC> <WORD> <SPC> restOfLine()

void exitline():

O

<EXIT> <SPC> dateTime() <SPC> restOfLine()

void alarmLine():
i}
{
<ALARM> <SPC> dateTime() <SPC> <WORD> <SPC> restOfLine()

Notice how the tokens that we defined in the TOKEN section are being
used here within the production rules and how the rules recursively define
the grammar. There is just a little bit more to this grammar. Next we define the
dateTime and restOfLine productions:

void dateTime():
{}

{
<NUM> <SPC> <NUM> <SPC> <NUM> <SPC> <NUM>»

void restOflLine():
{

{
(<WORD> | <SPC>)*

}

Our grammar is now complete. We can use JavaCC to generate a parser
for it. The javacc program (not to be confused with javac) processes the .jj
grammar file and turns it into Java source code for the parser. Run it as
shown here:

C:\projects\wcj3> javacc logfile.jj

Java Compiler Compiler Version 3.2 (Parser Generator)
(type "javacc" with no arguments for help)

Reading from file logfile.jj . . .

Parser generated successfully.

If there are no syntax errors in the grammar, you will now have some
generated Java source code for your parser. Compile the source code using
the JDK:

C:\projects\wcj3> javac LogParser.java
You can now run the parser. It will take its input from System. in, and you

can either enter some log file data from the keyboard or redirect a file as
the input. If the input does not follow the grammar, the parser will throw a

Frocessing XML and HTmL 6F

68

ParseException, which we catch in the main method. From the keyboard, enter
the following:

C:\projects\wcj3> java LogParser

alarm 2005 06 02 2301 fire This was a drill
entry 2005 01 XYZ 1200 meeting This is a comment
Error: This is not a valid file.

To end the file when testing from the keyboard, you may need to use
the CTRL-Z character in Windows systems (CTRL-D in Unix or Linux systems).
In this test run, the program reported a problem with the file because XYZ is
not a number. The exception’s stack trace contains more information on
where and why the input failed. With file redirection, we can run example
files through the program to test our grammar:

C:\projects\wcj3> java LogParser < logl.txt

C:\projects\wcj3> java LogParser < badlogi.txt
Error: This is not a valid file.

Once you are confident that a grammar specification is correct, you can
then expand the Java part of the grammar specification to further process the
data. In the next section, we will build on this parser program to convert
the log files into XML documents.

Resources

A detailed treatment of parsing and compiler theory is beyond the scope of
this discussion. See the classic compiler book by Alfred V. Aho, Ravi Sethi,
and Jettrey D. Ullman: Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

See this book’s website at http:/ /wickedcooljava.com for links to the

JavaCC page and example grammar specifications.

To XML and Beyond: Converting Other Grammars into XML

Chapter 3

To process structured text that has an unusual format, we must write a parser
for its grammar. This is what we did in the previous section, when we wrote a
grammar specification in JavaCC for an arbitrary file format. Working with a
non-XML grammar is much more difficult than processing XML, and being
able to convert the data to an XML format is usetul because the data can
then be processed by one of the many XML parsers available. Once you've
tested a grammar that you’ve written, you can expand the parser to extract
and process your data. You could then have the parser create XML as an out-
put. You wouldn’t want to modity the Java source code that was generated by

JavaCC, because that would make it harder to modify the grammar later.

Instead, you would add the logic for creating XML into the .jj file and then
regenerate the parser.

Every JavaCC production rule has a Java code block. This is the first
section of curly braces, and it is where you add logic to execute when the
production rule triggers during parsing. Recall the dateTime production rule
from the previous example:

void dateTime():

i}
{ <NUM> <SPC> <NUM> <SPC> <NUM> <SPC> <NUM> } /% NOT XMLI!! */

So far, we do not have any Java code in our productions. Let's add some
Java logic to the dateTime production. The second part of the production, also
in curly braces, is the production block. It contains the rules for building a
syntax tree based on the grammar. In this part of the grammar, the parser is
looking for four numbers separated by spaces. As the parser grabs each token
from the input text, you can also include Java logic to retrieve and process
values from the tokens captured from the input:

void dateTime():

{
/* This is the Java block. This code executes whenever the
production rule is triggered. We need placeholders
for any data that we wish to later retrieve from tokens.
*/
Token year=null, month=null, day=null, time=null;
System.out.println("Processing the date and time:");
}
{
/* This is the production rule block.
Retrieve the year, month, day, and time into Token variables
and print them to System.out
(Remember that these angle brackets describe tokens, not XML)
*/
year=<NUM> <SPC>
{ System.out.printIn(" The year is " + year); }
month=<NUM> <SPC>
{ System.out.println(" The month is " + month); }
day=<NUM> <SPC>
{ System.out.println(" The day is " + day); }
time=<NUM>
{ System.out.println(" The time is " + time); }
}

Notice that inside the production block we can run Java code after
each token is captured. It’s not terribly difficult to modify this program to
generate an XML document, instead of simply printing out the values
retrieved from the tokens. Let’s expand our parser to convert the data from
the log file into an XML format. We can use the DOM4] API, as described

Frocessing XML and HTrL 69

70

Chopter 3

earlier in this chapter, to make the process of creating XML as simple as
possible. We'll put the data into an XML file with the following structure:

<log>
<entry>
<year>2005¢/year><month>01</month><day>01</day><time>1000</time>
<purpose>meeting</purpose>
<comment>Jones, John Paul</comment>
</entry>
cexit>
<year>2005¢</year><month>01</month><day>01</day><time>1105¢</time>
<comment>Jones, John Paul</comment>
</exit>
<alarm>
<year>2005¢</year><month>01</month><day>01</day><time>1105¢</time>
<type>firec/type>
<comment>This was a drill</comment>
</alarm>
</log>

Rewriting the Rules

Let’s modify the .jj file to generate an XML file from the input text. The

JavaCC compiler creates static methods for each of the production rules;

therefore, any class variables that we use within the productions need to
be defined as static. First we create a static DOM4] Document variable and
an Element variable for the root element (as a convenience). We will use
another Element variable, called current, as a reference to the current
element and change this reference as we move through the production
rules. First we define the LogParser class and its main method:

PARSER_BEGIN(LogParser)

import org.dom4j.DocumentHelper;
import org.dom4j.Document;
import org.dom4j.Element;

import java.io.FileWriter;
import java.io.IOException;

public class LogParser {
// create a new XML document with <log> as the root element
static Document doc = DocumentHelper.createDocument();
static Element root = doc.addElement("log");
static Element current = root;

public static void main(String[] args) {
try {
// parse the input file
LogParser parser = new LogParser(System.in);
// and construct the XML output document as we parse

parser.alllines();
// write the XML document to a file
FileWriter file = new FileWriter("log.xml");
doc.write(file);
file.close();
} catch (ParseException pe) {
System.err.println("Syntax error in log file input");
} catch (IOException ioe) {
System.err.println("Unable to write the XML file");
}
}

}
PARSER_END(LogParser)

The rest of the .jj file contains the tokens and production rules of the
grammar. In each production, we now add some code that populates the XML
document. TOKEN, alllines, anylLine, and lineOfText all remain the same as
before, but remember not to get confused between XML tags and the < and »
used with token names. They are different animals!

TOKEN:
{
< ENTRY: "entry" >
| < EXIT: "exit" »
| < ALARM: "alarm" >
| < NUM: (["0"-"9"])+ »
| ¢ CRLF: (["\x","\n"])+ >
| < WORD: (["a"-"z", "A"-"Z", ",", "0"-"9", "-"])+ »
[< SPC: ([" ", "\t"])+ >
}

void alllines():

{}
{ (anyLine())* }

void anyline():
i}
{ lineOfText() (<CRLF> | <EOF») }

void lineOfText():
{

{ entryLine() | exitlLine() | alarmLine() }

In the entryline production, we create a new “entry” element and hang it
onto the root. We set the current element to be the one that we just created,
because we will need to add subelements to it in other production rules. The
dateTime production runs first, which will add subelements (relative to the new
current element) for the year, month, day, and time. We’ll take a look at that
in a moment. The purpose token is a single word that represents the purpose

Frocessing XML and HTmaL 71

72

Chapter 3

from the entry line in the input file. There is a small block of Java code that
adds a “purpose” subelement and adds the token’s String value as the ele-
ment’s text. Everything on the input line after the purpose is considered a

comment and is handled by the restofLine production:

void entryLine():
{
Token purpose = null;
current = root.addElement("entry");
}
{ /* ENTRY, WORD, and SPC are token names, not XML tags! */
<ENTRY> <SPC> dateTime() <SPC>
purpose=<WORD>
{ current.addElement("purpose").setText (purpose.toString()); }
<SPC> restOfLine()

The exitLine and alarmLine productions work very similarly to entryLine.
The main difference between them is the use of different element names:

void exitline():

{
current = root.addElement("exit");

}

{ /% EXIT and SPC are token names, not XML tags! */
<EXIT> <SPC> dateTime() <SPC> restOfLine()

}

void alarmLine():
{
Token alarmType = null;
current = root.addElement("alarm");
}
{ /% ALARM, SPC and WORD are token names, not XML tags! */
<ALARM> <SPC> dateTime() <SPC>
alarmType=<WORD>
{ current.addtlement("type").setText(alarmType.toString()); }
<SPC> restOfLine()

The only two productions left to write are dateTime and restOfLine. The
dateTime production works by adding year, month, day, and time tags to the
parent element stored in the current variable. If we are currently parsing
an alarm line, for example, the current element was previously set to the
new alarm element created within the higherlevel alarmLine production.
The values for the text in these tags come from the corresponding input
tokens. In the rest0fLine production, we capture each token left in this line
of text, which will be either a word or spaces, and append that token’s text
to a new comment element.

void dateTime():
{ Token year=null, month=null, day=null, time=null; }
{ /* NUM and SPC are token names, not XML tags! */
year=<NUM> <SPC> month=<NUM> <SPC> day=<NUM> <SPC> time=<NUM>

{

current.addElement("year").setText(year.toString());
current.addElement("month").setText{month.toString());
current.addElement("day").setText(day.toString());
current.addElement("time").setText(time.toString());

void restOfLine():
{
Token word = null;
current = current.addElement("comment");
}
{
(/* WORD and SPC are token names, not XML tags! */
word=<WORD> { current.addText(word.toString()); }
| word=<SPC> { current.addText(word.toString()); }
)*
}

If you use a process like this to generate XML, you'll need to be careful
that the variables you are using to create your XML are assigned and used
within the correct production rules and in the right order within the hierarchy
of the grammar.

Once we have something in XML, we can parse the data and move or
transform it into other XML documents (or HTML) much more easily than
we could with the original non-XML grammar. The tag names and even the
hierarchy can be changed through XSL transformations. The process that we
used in this section is helpful for converting legacy data into XML for further
processing.

Scraping the Sun: Screen Scraping HTML Pages for Data

[avas.]

Although you won't see any fingernail marks on my computer monitor, I have
been doing some screen scraping. This is a colloquial name for extracting data
from HTML pages, named for the fact that HTML is designed for displaying
on browser screens rather than processing by other programs. Ideally, all the
data on the Web would also be available in XML, with excellent documen-
tation, and published as a web service with complete metadata. Of course,
that’s not going to happen very soon, so our programs may occasionally have
to read data directly from an HTML document. This is not as trivial as it may
sound, for several reasons.

* Websites often change the layout of their pages (the HTML structure).

* Websites often change the location or URL of the data.

Frocessing XML and HTmL 13

74

Chapter 3

» The HTML may not be in a sensible structure or even well-formed.

* The data may be in a format, such as an image, that the program can-
not use.

If I haven’t convinced you to give up this quixotic pursuit, let’s begin by
reading the contents of an HTML document into memory and extracting
some data from it.

Because we have no guarantee that the HTML will be well-formed
(browsers are more tolerant than XML parsers), it doesn’t even make sense
to try to read the document as a tree. Please tell all your friends to use XHTML
for their web pages! It is still possible to do some parsing of illformed HTML
documents using SAX. You could write a simple parser that looks for certain
text keywords or tag combinations to look for the data. One problem with
using SAX in this way is that the characters method may be called more than
once, and your ContentHandler would need to take this into account when
matching text.

Because HTML documents are structured for presentation, rather than
as a data hierarchy, most extraction processes are probably better done via
String regex. Before I get out my scraper code, I'll often strip any tags out of
a document and replace them with whitespace. You can do this with a SAX
ContentHandler, as we discussed earlier in this chapter. There can be some
difficulty in getting this to work for reading HTML files, due to extended
ASCII characters in the document that are invalid in the default Unicode
character encoding of UTF-8. You can preprocess the stream and ignore
any unusual characters (like the author!) before the parser gets them.

As we discussed in Chapter 2, Java has regular expressions that are an
extremely useful way of extracting text from a String. We did some of this
when we extracted URLs from a text document and when we used the Scanner
class to find data within some text. We’ll use the Scanner class here too, as a
simple illustration of how you might extract data from a document. Take the
following web page (Figure 3-3) as an example.

Wikipedia is a free online encyclopedia where the entries are created by
a community process. The entry for the Sun (that’s our star, the one that
Earth revolves around, not Sun, the creator of Java) has some useful data that
an application may want to extract. Unfortunately, it's embedded in the text
and in HTML tables, and the document also has some characters that violate
the normal Unicode character encoding. After stripping out all the tags and
normalizing the whitespace into single spaces, we would end up with a portion
of the document that looks something like this:

Sun Observation data Mean distance from Earth 149.6 x10 6 km
(92.95x10 6 mi) Visual brightness (V) ?26.8 m Absolute magnitude
4.8 m Orbital characteristics Mean distance from Milky Way centre
~2.5x10 17 km (26,000 light-years) Galactic period ~2.26x10 8 a
Velocity ~217 km/ s Physical characteristics Diameter 1.392 x10 6
km (109 Earths) Oblateness ~9x10 -6 Surface area 6.09 x 10 12

km? (11,900 Earths) Volume 1.41 x 10 18 km*® (1,300,000 Earths)

Mass 1.9891 x 10 30 kg (332,950 Earths) Density 1.408 g/cm® Surface
gravity 273.95 ms -2 (27.9 g) Escape velocity from the surface

617.54 km/s Surface temperature 5780 K Temperature of corona 5 M K
Approximate core temperature 13.6x10 6 K

This data was originally within a table, but we are in luck here, because the
names are right next to the corresponding values. With the java.util.Scanner,
you can write your own custom parsing process to extract the data, such as
this code that displays the surface temperature of the Sun:

XMLReader reader = XMLReaderFactory.createXMLReader();

// the TagStripper ContentHandler removes any tags from the input
// and places it into a buffer

// TagStripper code is on http://wickedcooljava.com

TagStripper strip = new TagStripper();
reader.setContentHandler(strip);

// read the URL into a string, through a utility method

// 1 am doing this to avoid character encoding issues in the HTML
String all = readFully("http://en.wikipedia.org/wiki/Sun");
StringReader strRdr = new StringReader(all);

InputSource src = new InputSource(stiRdr);

reader.parse(src);

// scan the contents of the buffer

Scanner scanner = new Scanner(strip.getBuffer());

/4 find the first match of "Surface temperature"

scanner. findWithinHorizon("Surface temperature”, 0);

String surfTemp = scanner.next();

String units = scanner.next();
System.out.println(surfTemp +

o

+ units);

E oz im0

ok
5un

1 eiciaadia, 1ha fram ensyelcadia

cumon | [eiitespage | bose

WIk'IP'FI‘)E by Fur i i, st S s st
b P Eigeie | The Sum (=3 caled Solt i 113 elar e ehick aur e eviten

e, P i el ey asarkes
a0 5 et e s 4 ALEE tac il e
elere e she e o i 4 e

Meml disance Hom

Hoan distance fiom
ilky Wy cone

Galactic perivd
" lvelacty

Figure 3-3: The Sun

Frocessing XML and HTmL 15

76

As of the time of this writing, the program prints the value 5780 K. We are
assuming a lot about the ordering, placement, and patterns in the text. This
is a messy process, and the document can change at any time. Not that the
Sun is going to suddenly gain a lot of additional mass or temperature, but the
document structure could certainly change at any time, and screen scraper
programs need to be flexible in how they extract data. It may be worthwhile
to manually check the automated results. See this book’s companion website
for links to screen scraping utilities. In the nextsection, we discuss Lucene, a
powerful open-source tool for indexing and searching text within many types
of documents.

What’s Lou Seen? Searching with Lucene

Chapter 3

Most large websites have a search capability of some kind. You can add
sophisticated search functions to your own applications, using a powerful
API called Lucene. This is an open-source API from Apache’s Jakarta project
that can automatically index documents and process search queries. Besides
keyword searches, Lucene can do fuzzy searches based on word similarity. It
also handles logical connectives such as OR and AND within searches and is
capable of handling many types of documents besides HTML. To index
documents, you can use the Indexiriter class in the org.apache.lucene.index
package. This example indexes the contents of a single file and program-
matically creates another document for indexing. Lucene uses the documents
to create an index directory:

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.io.Reader;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene. index.Indexhriter;

StandardAnalyzer analyzer = new StandardAnalyzer();
IndexWriter writer = new IndexWriter("index", analyzer, true);

// create a Lucene document

Document doc = new Document();

// read a file into the document object

FileInputStream is = new FileInputStream("c:/wcj/sample.txt");
Reader reader = new BufferedReader(new InputStreamReader(is));
doc.add(Field.Text("contents", reader));
doc.add(Field.Text("name", "sample.txt file"));
writer.addDocument (doc);

// create a document programmatically
Document doc2 = new Document();
doc2.add(Field.Text("contents", "This is some more data to index"));

Chapter

doc2.add(Field.Text("name", "some data"));
writer.addDocument (doc2);
writer.optimize();

writer.close();

Here we go again: yet another type of Document object! This time, it’s a
Lucene document, representing some content to be indexed. Lucene uses
the StandardAnalyzer class to look at the document and decide what to include
in the index. The IndexWriter creates the actual index entries. Because we
told it to use the name “index,” the Indexhriter will create a directory called
index in which to store its files. You can place any type of data into the index,
as we did with the second document in the previous example.

Let’s look at the searching side of Lucene. Here’s some code that searches
through the index for either of two keywords:

Searcher searcher = new IndexSearcher("index");

Analyzer analyzer = new StandardAnalyzer();

String searchText = "word or data";

Query query = QueryParser.parse(searchText, "contents", analyzer);

Hits hits = searcher.search(query);

for (int i = 0; 1 ¢ hits.length(); i++) {
Document doc = hits.doc(i);
System.out.println(doc.get("name"));

}

searcher.close();

In this case, we searched through the contents field of the index for
word or data. If you would like to search through multiple fields, there is a
QueryParser subclass that can do this, called MultiFieldQueryParser. The
Lucene distribution comes with a sample web application that demonstrates
more of what Lucene can do. There is much more to Lucene, and its
indexing and searching capabilities can work with more than documents.
You can populate the index with data from any source and create multiple
searchable fields similar to what we did above with the contents and name
fields. For more information on Lucene’s advanced features and a link to
download the required library files, see this book’s website.

Summary

In this chapter, we've looked at ways of processing XML, HTML, and other
structured text. It’s particularly important to be able to work with XML,
because it is used by so many different kinds of applications and APIs. Many
of the projects explored in the rest of this book use XML for configuration
files and data exchange formats. Knowing how to extract data and manipulate
XML documents is an essential part of working with these APIs. In the next
chapter, we will discuss the development of next-generation web applications
built on semantic relationships between logical entities: a web of concepts.

Frocessing XML and HTmL 17

CRAWLING THE SEMANTIC WEB

In this chapter, we examine techniques for
extracting and processing data in the World
Wide Web and the Semantic Web. The World

Wide Web completely changed the way that
people access information. Before the Web existed,

finding obscure pieces of information meant taking a
trip to the library, along with hours or perhaps days of research. In extreme
cases, it meant calling or writing a letter to an expert and waiting for a reply.
Today not only are there websites on every imaginable topic, but there are
search engines, encyclopedias, dictionaries, maps, news, electronic books,
and an incredible array of other data available online. Using search engines,
we can find information on any topic within a few seconds. The Google search
engine has even become so well known that it is now often used as a verb:
“I Googled a solution.” Online information is growing exponentially, and
because of it we have a completely new problem on our hands that is not
solved by simply using keyword searches to find our data. The problem is
infoglut. Keyword searches return too many documents, and most of those

documents don’t have the information that we want.

80

Chapter 4

Suppose that we wanted to search for a Java class library that converts
data from one format to another. With all the open-source projects out
there, someone may have already solved the problem for us, and we'd rather

not reinvent the wheel. In theory, we should be able to search for matching
projects that meet our needs. But running a query on related keywords may
give us many results that are not related to what we really want. In an ideal
world, we should be able to ask the computer a question: “Is there an open-
source Java API that converts between FORMATI and FORMATZ2?” The
computer should then search the Web and give us the name of a suitable API
if it exists, along with a short description of the standard and links to more
detailed information. For this to happen, information about a hypothetical
“J-convert-1-2” API would need to be encoded in such a way that the computer
can find it easily without performing a keyword search and extracting data
from the text results.

Information on the World Wide Web is mostly free-form text contained
in HTML pages and is mostly not organized into categories and structures
that search programs can easily query. At the very least, all web content ought
to have subject indicators similar to the Library of Congress and Dewey
Decimal codes for books. This is not yet the case, although it will most likely
happen soon. Several new standards are rapidly leading us in that direction.
So far, all of these standards rely on web content developers adding special
tags to their data, and few developers know about these standards at the pres-
ent time. In short, it’s a mess out there, and we're trudging through this messy
data looking for nuggets of gold.

The Semantic Web is the next-generation web of concepts linked to other
concepts, rather than a collection of hypertext documents linked by keywords.
If you think about it, an HTML anchor tag (link) is a keyword reference to
another document. It supplies a word or phrase that links to another docu-
ment, usually displayed as underlined text on a browser. But the link doesn’t
exactly say how the two documents are related to each other. HTML hyperlinks
don’t give any real indication about relationships between files, and the text
in the link may be extremely vague. A new standard, the Resource Description
Framework (RDF), makes it possible to be much more specific about how
things are related to each other. In fact, RDF describes much more than
documenis—any entities or concepts can be linked together. This is the basic
idea behind the Semantic Web—that concepts, rather than documents, can
be linked together.

As Java developers, how can we participate in building the Semantic Web?
First, you'll need to know something about official standards such as RDF.
You will then need to tag your documents appropriately. Many sites are already
starting to do some of this by creating RDF Site Summary (RSS) feeds. An RSS
feed syndicates the content from a website so that it can be combined with
information from other sites and delivered to the users as aggregated content.
RSS makes a small portion of a site available as a summary, similar to what
you see in an article or news abstract. However, RSS enabling is only the first
step in moving toward a Semantic Web. In this chapter we’ll discuss enough
to get you started working with RDF, and we’ll introduce some APIs that help
in producing or consuming content.

This Somethings That: A Short Introduction to N3 and Jena

The theory behind the RDF standard is actually quite simple. Everything has
a Uniform Resource Identifier (URI), and by this I mean everything: not only
documents but also generic concepts and relationships between them. Even
though you are nota document (or are you?), there could be a URI assigned
to represent you as an entity. This URI can then be used to make connec-
tions to other things. For the “you” URI, these connections might represent
related organizations, addresses, and phone numbers. URIs do not have to
return an actual document! This is what sometimes confuses developers when
they see a URI referenced somewhere and find that there is nothing at the
location. These addresses are often used as markers or unique identifiers to
represent concepts. We make links between URIs to represent relationships
between things. This functions much like a simple sentence in English:

Programmers enjoy Java.

To begin with, let’s use a shorthand notation, called N3, to encode this
as an RDF graph. N3 is an easy way to learn RDF because the syntax is only
slightly more complex than the sentence above! In essence, N3 is merely a set
of triples, or “subject predicate object” relationships. Here is the N3 version of
the sentence:

@Pprefix wcj: <http://example.org/wcjava/uri/>
wcj:programmers wcj:enjoy wcj:java .

We first define a prefix to make the N3 code less verbose. The prefix is
used as the beginning part of a URI wherever it is found in the document, so
that wej:java then becomes http://example.org/wcjava/uri/java (the value is
also placed within < and > markers—these have nothing to do with XML).
The three items together are called a triple, and the verb is usually called a
predicate. RDF makes a link by stating that a subject URI is related by a predicate
URI to an object URL The predicate represents some relationship between
the subject and object—it tells how things link together. This is very different
than an anchor in HTML, because here a relationship type is clearly defined.
Remember that URIs in RDF could be anything: concepts, documents, or even
(in some cases) String literals. In theoretical terms, we are creating a labeled
directed graph of the relationship. A graph representation of the above might
look like Figure 4-1.

Subject Predicate Object

Figure 4-1: RDF subject, predicate, and object

Crawling the Semantic web 81

82

Chapter 4

As you might expect, there is a Java API for creating and managing
RDF and N3 documents. Jenais an open-source API for working with RDF
graphs. Here is one way to create the graph in Jena and serialize it to an N3
document:

import com.hp.hpl.jena.rdf.model.*;
import java.io.FileOutputStream;

Model model = ModelFactory.createDefaultModel();

Resource programmers =
model.createResource("http://example.org/wcjava/uri/programmers”);

Property enjoy =
model.createProperty(“http://example.org/wcjava/uri/enjoy");

Resource java =
model.createResource("http://example.org/wcjava/uri/java");

model.add(programmers, enjoy, java);

FileOutputStream outStream = new FileOutputStream(“out.n3");

model.write(outStream, "N3");

outStream.close();

Here, Jena is using the term property to refer to the predicate and resource
to refer to something used as a subject or object. The model’s write method
also has options to write out the document in other formats besides N3.
With the Jena API, you can connect many entities together into very large
semantic networks. Let’s make some additional relationships using the entities
and relationships that we just created. We will produce the graph shown in
Figure 4-2.

programmers enjoy = java

asn
Joadiy

@ understand -—-—

Figure 4-2: An RDF graph with multiple subjects

Here is the additional code to produce the network in Figure 4-2:

Property typeOf =
model.createProperty(“http://example.org/wcjava/type0f");

Property use =
model.createProperty(“http://example.org/wcjava/use");

Property understand =
model.createProperty(“http://example.org/wcjava/understand");

Resource computers =
model.createResource("http://example.org/wcjava/computers™);

Resource proglang =
model.createResource("http://example.org/wcjava/proglang");

model.add(java, typeOf, proglang);

model .add(programmers, use, computers);

model .add(computers, understand, proglang);

model.write(new java.io.FileOutputStream("out2.n3"), "N3");

The N3 output of this code is the following:

<http://example.org/wcjava/uri/java>
<http://example.org/wcjava/type0f>
<http://example.org/wcjava/proglang> .

<http://example.org/wcjava/computers>
<http://example.org/wcjava/understand>
<http://example.org/wcjava/proglang> .

<http://example.org/wcjava/uri/programmers>
<http://example.org/wcjava/uri/enjoy>
<http://example.org/wcjava/uri/javas> ;
<http://example.org/wcjava/uses
¢http://example.org/wcjava/computers> .

The semicolon in the N3 document is a shortcut that indicates we are
going to attach another property to the same subject (“programmers enjoy
java, and programmers use computers”). The meanings of elements within
a document are often defined in terms of a predefined set of resources and
properties called a vocabulary. Your RDF data can be combined with other data
in existing vocabularies to allow semantic searches and analysis of complex
RDF graphs. In the next section, we illustrate how to build upon existing RDF
vocabularies to build your own vocabulary.

Triple the Fun: Creating an RDF Vocabulary for Your
Organization

An RDF graph creates a web of concepts. It makes assertions about logical
relationships between entities. RDF was meant to fit into a dynamic knowledge
representation system rather than a static database structure. Once you have
information in RDF, it can be linked with graphs made elsewhere, and soft-
ware can use this to make inferences. If you define how your own items are
related in terms of higher-level concepts, your data can fit into a much larger
web of concepts. This is the basis of the Semantic Web.

Every organization has relationships between information that is held
in a data store such as a database or flat file (or human memory!). If your
data is in a relational database, your data items probably have relationships
between them that are hidden or implied within the database structure itself.

84

Chapter 4

Your data may not be completely accessible, because there are relationships
that an application cannot query. As an example, suppose that we have a
relational database containing employees and departments within a com-
pany. A common approach is to create an Employee table, with columns for
employee information such as ID number, date of birth, name, hire date,
supervisor name, and department. There are many relationships hidden
within the table and column names, and it is up to an application to know
these relationships and take advantage of them. Column names alone would
not give you the following information:

*» Aand B are employees.

* An employee is a person.

» A supervisor is an employee who directs another employee.
+ Cisacompany.

* A company is an organization.

+ Aand B work for C.

Column and table names in a database are simply local identifiers and
don’t automatically map to any concepts that might be defined elsewhere.
But this is domain knowledge that could be used more effectively by the appli-
cation if it were defined in an extensible and machine-readable way. Having
such information available would give our applications more flexibility, and
this knowledge could also be reused elsewhere. How can we encode this infor-
mation so that applications can make use of these relationships? And how
can our application relate this to other information that we might find on
the Semantic Web?

It may not make sense to put this metadata in your database, but you
can create an RDF mapping outside the database schema that describes each
item relative to the Semantic Web as a whole. We can represent some of these
concepts using existing vocabularies. The rest of them we can define in our
own terms. If you don’t know where to connect a concept to an existing
vocabulary, you can always define a URI for that concept now and make the
connection to other systems later. At least you can use it to share data within
your own organization if your vocabulary is well documented and the meaning
of each item is clear. There are many basic vocabularies that RDF applications
can use, and new ones are constantly being created (like yours!). The online
resources page for this section has an updated listing of some existing vocabu-
laries that you can use in defining your data.

The first step is to define a URI for each concept that is even remotely
related to your application. This is much like the object-oriented development
process, but these entities may also be things that are not directly used by the
application. By defining your terms within a larger context, you can later map
these entities to existing concepts on the Web. Let’s try it with our employee
example, by first listing some related concepts and their meanings (in English
text). Here is a simplistic attempt to define some terms:

* htp://example.org/wcjava/employee = an employee

» http://example.org/wcjava/person = a person

» htp://example.org/wcjava/organization = an organization

* hup://example.org/wcjava/employer = an organization that employs
an employee

The important point is to make sure that each concept has a unique
identifier. Make sure that the URIs will still be around a few years from now;
you are building a complete concept space around these identifiers! If you
have control over your domain name, it might be wise to have a policy that
forbids anyone placing actual content under URIs beginning with some
prefix (such as http://yourdomain/uri). We are using these names as
globally unique identifiers, not as URLs for retrieving documents. There is
nothing wrong with a document being there, but it could lead to confusion
between the concept and the document. In this example, we are using the
example.org domain, which is reserved solely for illustrative purposes within
documentation. If you want to define a permanent URI, there are sites that
will Iet you define your own permanent URI independent of future domain
name ownership changes. (For more information on this, see this book’s
companion website.) The best known of these is http://purl.org.

After you have identified some concept URIs, it’s time to define relation-
ships between them. In the previous section, we showed how to do this in Jena
using our own relationships. Now let’s use some predefined relationships
created by others and apply them to our entities. Adding another entity that
was defined elsewhere is easy: just add its URI to the graph we are building.
But if we want to do anything useful with these entities, we will also need to
import the statements that define its related properties and resources. In our
example, we will use the subClassof property defined in the RDF schema, which
works similarly to a subclass relationship in object-oriented programming.
The graph in Figure 4-3 shows the relationships between our resources.

organization

employee = hires employer

O $0SSeTIANS 1S4pPI ﬁ
G $055€T2ANS 54T

Figure 4-3: Using the subClassof property from RDF schema

At first, you should do this mapping with pen and paper (archaic, but
always accessible) or using an RDF visualization tool. This book’s website has
a list of some free tools that can be used for this purpose. When you have
finished, you will have a graph of the relationships between entities in your
stem. Once you've created a hierarchy and vocabulary, you can create

sy

Crawling the Semantic web 85

N3 or RDF/XML files that you can use as metadata. Most RDF visualization
tools will do this for you automatically. You'll want to familiarize yourself with
some of the existing RDF vocabularies on which you can base your own hier-
archy. Our resources page has links to some of these and examples of using
them. Once you have designed a hierarchy, you can create and manipulate it
from Jena. The next section shows how to do this.

Who's a What? Using RDF Hierarchies in Jena

Chapter 4

Earlier we created a hierarchy of terms to use for our metadata. We used the
word vocabulary to refer to this collection of terms, but it is often called an
onlology if it defines relationships between the terms. According to the Wiki-
pedia definition, an ontology (in the computer science sense) is a “data
structure containing all the relevant entities and their relationships and rules
(theorems, regulations) within a domain.”

In Jena, there are built-in helper classes for working with commonly used
ontologies. The RDF schema is one of these. Jena has a helper class called
RDFS, which has a static variable for the subClassOf property. You can create
the graph in the previous section by using this code:

Model model = ModelFactory.createDefaultModel();
model.setNsPrefix("wcj", "http://example.org/wcjava/");
Resource employee = model.createResource("wcj:employee");
Resource person = model.createResource("wcj:person”);
Resource employer = model.createResource("wcj:employer");
Resource organization = model.createResource("wcj:organization");
Property hires = model.createProperty("wcj:hires");
model.add(employer, hires, employee);

model .add(employer, RDFS.subClassOf, organization);

model .add(employee, RDFS.subClassOf, person);
model.write(new FileWriter("ourEntities.rdf"), "RDF/XML");

The second line sets a namespace prefix for our graph, which makes the
code easier to read because we can describe the URIs in a simpler way. There
is nothing special about the choice of “wcj” as our prefix. It could have been
any String of letters, but whichever value is used becomes the prefix that is
sent to the output file. The RDF /XML output type is the XML representation
of our RDF graph. Most applications will exchange RDF graphs using the
XML format rather than N3. As you can see, Jena’s RDF model can work with
either type.

Once you have an RDF vocabulary defined for your data, you will want
to put it onto a website so that applications can use it. You can use your new
vocabulary to semantically tag any components within applications. For the
database example above, you might create a new table to hold metadata
linking each column and table name to their RDF types. It could be as simple
as an entry for each table/column name and the corresponding URI from

N3 or RDF/XML files that you can use as metadata. Most RDF visualization
tools will do this for you automatically. You'll want to familiarize yourself with
some of the existing RDF vocabularies on which you can base your own hier-
archy. Our resources page has links to some of these and examples of using
them. Once you have designed a hierarchy, you can create and manipulate it
from Jena. The next section shows how to do this.

Who's a What? Using RDF Hierarchies in Jena

Chapter 4

Earlier we created a hierarchy of terms to use for our metadata. We used the
word vocabulary to refer to this collection of terms, but it is often called an
onlology if it defines relationships between the terms. According to the Wiki-
pedia definition, an ontology (in the computer science sense) is a “data
structure containing all the relevant entities and their relationships and rules
(theorems, regulations) within a domain.”

In Jena, there are built-in helper classes for working with commonly used
ontologies. The RDF schema is one of these. Jena has a helper class called
RDFS, which has a static variable for the subClassOf property. You can create
the graph in the previous section by using this code:

Model model = ModelFactory.createDefaultModel();
model.setNsPrefix("wcj", "http://example.org/wcjava/");
Resource employee = model.createResource("wcj:employee");
Resource person = model.createResource("wcj:person”);
Resource employer = model.createResource("wcj:employer");
Resource organization = model.createResource("wcj:organization");
Property hires = model.createProperty("wcj:hires");
model.add(employer, hires, employee);

model .add(employer, RDFS.subClassOf, organization);

model .add(employee, RDFS.subClassOf, person);
model.write(new FileWriter("ourEntities.rdf"), "RDF/XML");

The second line sets a namespace prefix for our graph, which makes the
code easier to read because we can describe the URIs in a simpler way. There
is nothing special about the choice of “wcj” as our prefix. It could have been
any String of letters, but whichever value is used becomes the prefix that is
sent to the output file. The RDF /XML output type is the XML representation
of our RDF graph. Most applications will exchange RDF graphs using the
XML format rather than N3. As you can see, Jena’s RDF model can work with
either type.

Once you have an RDF vocabulary defined for your data, you will want
to put it onto a website so that applications can use it. You can use your new
vocabulary to semantically tag any components within applications. For the
database example above, you might create a new table to hold metadata
linking each column and table name to their RDF types. It could be as simple
as an entry for each table/column name and the corresponding URI from

Getting Attached: Attaching Dublin Core to HTML Documents

One of our original reasons for exploring RDF (besides it being cool!) was
because of the limited linking capability of HTML. We’d like web browsers to
still be able to display our HTML and web content, yet also have metadata
available for processing by search engines and automated knowledge discovery
systems. Given that most websites are probably still going to be using HTML
for many more years, has RDF solved our link metadata problem yet? In some
ways it has. There are several ways of marking up HTML documents with
Dublin Core or other RDF metadata. The method I'll be using here is the
method suggested by the Dublin Core, and it also embeds the metadata with-
out affecting the browser’s view of the data and without breaking the XHTML
validation.

The browser may or may not know how to do anything with our RDF
data, but we are assuming that other programs may be able to process it.
We will need to embed the metadata so that it doesn’t interfere with the
browser’s understanding or rendering of the HTML. We can do this by using
link and meta tags in our HTML. Any programs that read this data should
have a way to discover which technique we are using. Rather than let programs
make assumptions (which could be wrong), we place a marker as an attribute
of the head tag of the HTML, telling any programs how to retrieve this
metadata:

<head profile="http://dublincore.org/documents/dcq-html/">

The profile URI means that there is metadata in the HTML document
and that it should be interpreted in the manner associated with the given
profile. Any software processing this document will also need to know the
schemas for RDF prefixes used in the metadata. We do this by placing link
tags in the head section:

<link rel="schema.DC" href="http://purl.org/dc/elements/1.2/" />
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />

You can now add the actual Dublin Core properties to meta tags in the
head section. It’s the same as using RDF triples, but the implicit subject of
each triple is the current HTML document. Here is an example showing
how to attach title and subject metadata to a document:

<meta name="DC.title" xml:lang="en"
content="The World is Full of RDF" />
<meta name="DC.subject" content="earth" />

See this book’s website for more information on HTML metadata and
the Dublin Core.

What's the Reason? Making Queries with Jena RDQL

You've built the perfect ontology for your organization’s knowledge
base. You've encoded it in RDF based on standard vocabularies, so you
can exchange data with other applications. And now you have a large
amount of data encoded using this vocabulary. “But what can I do with
all this data?” you think to yourself. “It’s not like I can just use a query
language like SQL!” Well, actually, you can—not specifically with the
SQL language but with a similar structured language designed for
querying knowledge bases. In this section, we’ll use an RDF query
language to retrieve information from an existing knowledge base.
Because RDF data is not organized into tables, columns, and rows like a
relational database, SQL won’t work for querying RDF graphs. Instead, we
need to search within a graph to find subgraphs that match some pattern
of RDF nodes (subject, predicate, and object). For instance, you might ask a
knowledge base whether a particular employee is a supervisor. In this case,
you know the subject, predicate, and object that you are looking for. You can
directly ask whether the given structure exists in the RDF. However, most
often you won’t know every part of the target structure, such as when you want
a list of supervisors having a salary less than $100,000. Because we don’t know
the URI of each item, we will have to use variables to represent the unknown
items in the query. In this type of query, we are asking: “Show me all X where
X is a supervisor, and X has salary Y, and Y < 100000.” The response will list
all the possible values for X that would match the desired properties. Jena’s
built-in query language is called RDF Data Query Language (RDQL). An RDQL
query has several parts:

* What values the query should return
* The RDF sources to query
* The query predicates

* Optional namespace prefixes

RDQL will let us declare the RDF source (where the data is coming
from) directly within the query String, but that is very inefficient for multiple
queries against the same source. It's usually better to run the query from an
RDF model already in memory. Let’s run a query on the Suggested Upper
Merged Ontology (SUMQOY), a very high-level ontology created by the IEEE.
SUMO has standard names for high-level abstractions such as Process,
Organization, and GeopoliticalArea. These are not Java classes; they are
classes in the mathematical sense: a set whose members share one or more
properties in common. We'll look at Organization and find all of its direct
subclasses, using the RDQL query:

SELECT ?x
WHERE (?x <rdfs:subClassOf> <sumo:Organization>)
USING rdfs FOR <http://www.w3.org/2000/01/xdf-schemait>
sumo FOR <http://reliant.teknowledge.com/DAML/SUMO.owl#>

Crawling the Semantic web 89

90

Chapter 4

The ?x in this query is a variable representing something that we want
the query to locate. The query engine will try to substitute a value for ?x
wherever it finds a subclass of Organism. Remember that all entities in RDF
are URIs. The rdfs and sumo prefixes make the URIs in the query much shorter
and less awkward. To run the query in Jena, we first load the SUMO ontology
into memory. Then we run the query using the static exec method of Jena’s
Query class and process the results. The following code performs this query:

Model sumo = ModelFactory.createOntologyModel();

String sumoURL = "http://reliant.teknowledge.com/DAML/SUMO.owl" ;

sumo. read(sumoURL) ;

sumo. setNsPrefix("sumo"”, sumoURL + "#");

String rdq = "SELECT ?x " +
"WHERE (?x <rdfs:subClassOf> <sumo:Organization>) " +
"USING rdfs FOR <http://www.w3.0rg/2000/01/rdf-schemaft> " +

"sumo FOR <" + sumoURL + "#>";

QueryResults results = Query.exec(rdg, sumo);

RDFvisitor aVisitor = new SysoutVisitor();

while (results.hasNext())

{
ResultBindingImpl binding = (ResultBindingImpl) results.next();
RDFNode node = (RDFNode) binding.get("x");
node.visitWith(avisitor);

}

This matches the known subclasses of the Organization entity in SUMO.
To visit each node and display its URL, you’ll need to write a visitor, using

Jena’s RDFVisitor interface. My SysoutVisitor class prints out the URI of each

node that it visits. You can do more interesting things with a visitor besides

just printing a node’s value, such as visiting nodes connected to it by a par-

ticular property. Here is the code for SysoutVisitor:

public class SysoutVisitor implements RDFVisitor {
public Object visitBlank(Resource r, AnonId id) {
System.out.println("anon: " + id);
return null;

public Object visitURI(Resource r, String uri) {
System.out.println("uri: " + uri);
return null;

public Object visitliteral(Literal 1) {
System.out.println(l);
return null;

There is a feature of the Visitor pattern that lets a visitor return a value,
but we are not using that feature here. To make the program do something
else instead of print each node’s value, all you need to do is plug in a different
visitor. The previous query matches the following nodes:

http://reliant.teknowledge.com/DAML/SUMO. owl#Corporation
http://reliant.teknowledge.com/DAML/SUMO. owl#PoliticalOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#EducationalOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#JudicialOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#iReligiousOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#GovernmentOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#Oxganization
http://reliant.teknowledge.com/DAML/SUMO. owl#MercantileOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#Manufacturer
http://reliant.teknowledge.com/DAML/SUMO. owl#Government
http://reliant.teknowledge.com/DAML/SUMO. owl#PoliceOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#MilitaryOrganization
http://reliant.teknowledge.com/DAML/SUMO. owl#MilitaryForce
http://reliant.teknowledge.com/DAML/SUMO. owl#ParamilitaryOrganization

Jena can also make rule-based inferences. You can create a knowledge
base, combine it with SUMO facts, and query the model while applying
matching rules. See the documentation and tutorial links on the resource
page for more details. The W3C recently created its own query language
called SPARQL, which works very similarly to Jena’s. See this book’s wehsite
for updated information on this and other query languages.

Simply Logical: Lojban, RDF, and the Jorne Project

Lojban (www.lojban.org) is an artificial spoken and written language based
on the concepts of predicate logic. While it was designed to be used by
human beings, it has a parseable grammar and structured semantics that
make it ideal for processing by computers. Lojban defines words based on
predefined predicate root words called gismu. Each root word has a specific
structure associated with it, containing one to five slots that can be filled with
nouns (Lojban calls these items sumti). For example, the Lojban predicate
“bevri” means the act or process of carrying something, and it functions
much like a verb. Within its structure are also contained five other related
concepts: carrier, cargo, delivery-destination, delivery-source, and delivery-
path. While in English and most other languages these may be separate
words, in Lojban they are references to positions within the bevri structure.

There are over 1,300 root gismu in the Lojban vocabulary, and these
structures form a very interesting ontology of their own. Each of them has
between one and five slots. Most of the gismu don’t have five slots like bevri
does. In fact, there are only a few gismu with five parameters. Table 4-1 shows
the number of gismu of each arity, or parameter count, and the total number
of slots as of this writing.

Crawling the Semontic web 91

92

Chapter 4

Table 4-1: Gismu Count, by Arity

Gismu Gismu Total
Arity Count Slots
1 73 73

2 555 1110
3 535 1605
4 171 684
5 18 20
Total 3562

The slots in the root predicates give us 3,500+ base concepts. These can
be combined in many different ways by using compound words and logical
connectives, but for our purposes here we are looking at the root words only
as base concepts. Perhaps you are now wondering, “So what does all this have
to do with the Semantic Web?” In an earlier section, we discussed some
existing ontologies with built-in relationships that we might use to describe
our own entities. Lojban has a convenient set of base concepts that could be
used in creating an ontology.

Laojban fits in very well with RDF, which also maps verbs as predicates,
although RDF uses graphs of “subject verb object” predicates, and Lojban
uses a slot-based approach. There is some mapping required in order to
integrate the two, and although it can be done, no standard RDF ontology
exists for Lojban—yet. In January 2005, I created an open-source project
called Jorne to define standards for combining Lojban with the Semantic
Web. Once these standards are complete, the project will release Java soft-
ware to convert Lojban text to and from RDF triples. One of the goals of this
project is for a human to be able to write Lojban text and have the computer
automatically convert it into RDF statements for running queries against
knowledge bases.

Published ontologies such as SUMO are great for mapping terms from
one vocabulary to another, such as in creating dictionaries. The Jorne
project is working to map Lojban terms onto well-known vocabularies, so
that Lojban documents can share a common semantic space with RDF
documents. When the Jorne project completes its first standards, the Jorne
project page (www.jorne.org) will hold the latest RDF files along with some
sample documents. For creating terms in your own vocabularies, you may
want to build upon the SUMO vocabulary, since it is already linked to many
others. In Chapter 5, we will discuss a dictionary standard based on English
word senses, called WordNet, and a Java API for working with it. WordNet has
also been mapped to RDF and SUMO. See this book’s wehsite for more
information on these and other ontologies.

Guess What? Publishing R5S Newsfeeds with Informa

RDF Site Summary (RSS) is a standard for summarizing content on a web server.
An RSS feed is stored in an XML file, and it might include items such as
recent news, changes to a website, or new blog entries. A client program
called an aggregator collects RSS feeds from multiple web servers and displays
them in summary form, sorted by category. The user then chooses to view
the full content of any summaries that are of interest. The summary has
metadata, such as its subject, encoded along with a text summary. Over time
I expect that document metadata will have much more than the Dublin Core
and other terms that RSS currently uses. In theory, you could plug into other
ontologies such as SUMO, and the meaning of an entire article could be
encoded using RDF. This is possible only if you are using an ontology that
is expressive enough. This is certainly a lot of effort, but the long-term advan-
tage is that machines would have access to the fully encoded semantics of the
text. This probably won’t happen for a while, but adding metadata such as
RSS descriptions is a good start in that direction and has an immediate benefit
of giving us more accurate categorization of content.

There are several standards named RSS, all of them XML-based and
used for similar purposes. Unfortunately the different standards not only
have different XML structures but even use different definitions for the RSS
acronym. Most aggregators are able to understand all RSS flavors, though.
The version we discuss here, RDF Site Summary 1.0, uses RDF and is most
closely related to the semantic work we’ve done so far in this chapter. How-
ever, it’s still better to use something rather than encoding no metadata at all.
There are ways to map between the semantics of each standard, although all
of them are not equally expressive. One common practice is to use XSL-T
stylesheets to transform between the different forms of RSS.

Because RSS 1.0 is built on RDF and XML, there are several ways of
creating feeds: a DOM parser, an RDF API, or an RSS-specific API. DOM is
more low-level than is necessary for creating RDF. Jena has RSS support
through its RSS class, which has static objects that represent RSS properties
you can use in building an RSS-compatible RDF graph. But if you're going
to be working a lot with RSS, you’ll want to use an RSS-specific API that can
understand the different RSS versions that are commonly used.

Informais an open-source API for reading and writing RSS in Java. One
of its most powerful features is the ability to persist the feed metadata in a
database. Informa can also read data from external feeds (as described in
a later section), perform text-filtering tasks, and update RSS content on a
periodic schedule. Let’s use it to create a feed using the basic in-memory
builder—the ChannelBuilder class from the de.nava.informa.impl.basic package.
In RSS terminology, a channel is another name for metadata about some
content (such as a website) and is the main entity in a newsfeed. Each RSS
file defines a channel and items belonging to the channel. Rather than
work with the XML directly, which can be somewhat tedious, we’ll use a
ChannelBuilder to create the RSS file.

Crawling the Semontic web 93

94

Chapter 4

ChannelBuilder builder = new ChannelBuilder();

ChannelIF myChannel = builder.createChannel("Latest Bug Fixes");
// This is the URL for which we are describing the metadata

URL channelURL = new URL("http://example.org/wcj/bugs.rss");
myChannel. setLocation(channelURL);
myChannel.setDescription("The latest news on our bug fixes");

// We create a first item

String title = "Annoying Bug #25443 Now Fixed";

String desc = "A major bug in OurGreatApplication is fixed. " +
"Bug #25443, which has been annoying users ever since 3.0, " +
"was due to a rogue null pointer.”;

URL url = new URL("http://example.org/wcj/bugfix25443 .html");

ItemIF anItem =
builder.createItem(myChannel, title, desc, url);

anltem.setCreator("Ecks Amples");

// We create a second item

title = "Bug #12121 not Fixed in 7.1";

desc = "Bug #12121 will not be fixed in OurGreatApplication " +
"release 7.1, so that developers can focus on adding " +
“the WickedCool feature.";

url = new URL("http://example.org/wcj/bugfix12121.html");

anltem = builder.createltem(myChannel, title, desc, url);

anItem.setCreator("Dee Veloper");

// export the document to disk, in RSS 1.0 format
ChannelExporterIF exporter = new RSS_1 0 Exporter("bugs.rss");
exporter.write(myChannel);

You can place the XML-encoded RSS feed anywhere on your site. The
main page of your site should include a link to the feed. For automated
discovery by RSS crawlers such as Syndic8, you can do this with a link tag in
the page’s head section:

<link rel="alternate" type="application/rss+xml"
title="Bugs" href="http://your-site/bugs.rss" />

You'll also want a hypertext link for human visitors, so they can add
your site to their aggregator. If you are going to be creating large feeds
that change often or working with many feeds simultaneously, use the
Hibernate-based version of the builder, which will persist the RSS metadata
in a database. Hibernate is an API for mapping Java objects to relational
database structures and automatically translating data between them. See
the Informa documentation, and this section’s resource page, for more
information. In the next section, we’ll see how to read newsfeeds with
Informa.

What's

Up? Aggregating RSS Newsfeeds

In the previous section, we used the Informa library to create RSS content, so
that visitors with content aggregators can be automatically informed about
updates to your site. Another great use of RSS within your site is displaying
recent news related to your industry. You can get these newsfeeds from many
sources, such as news sites, websites in your industry, and aggregator sites like
Syndic8. Make sure to check whether the sites you are syndicating will allow

you to incorporate items from their feeds into your site. Usually this is the

case, but not always.

Let’s start by reading items from a newsfeed and displaying them as text.
Using Informa, reading an RSS feed is easy. You can populate the same
ChannelBuilder object that we used in the previous section with data from an
existing RSS feed. The FeedParser class has a parse method that returns a
ChannelIF instance containing the channel data from the RSS feed. The RSS
standards may be in a state of confusion, but the Informa API reads all of
them and gives us a common object model for working with them.

import de.nava.informa.impl.basic.Channel;
import de.nava.informa.impl.basic.ChannelBuilder;
import de.nava.informa.impl.basic.Item;

import de.nava.informa.parsers.FeedParser;

ChannelBuilder builder = new ChannelBuilder();

String url = "http://wickedcooljava.com/updates.rss”;

Channel channel = (Channel) FeedParser.parse(builder, url);
System.out.println("Description: " + channel.getDescription());
System.out.println("Title: " + channel.getTitle());
System.out.println("== == = "5

// using Java 5 syntax in this for leoop

for (Object x : channel.getItems())

{
Item anItem = (Item) x;
System.out.print(anltem.getTitle() + " - ");
System.out.println(anItem.getDescription()};
}

This will print some basic information about the channel and its items.
If you want to include these in a web page, it's now just a matter of wrapping
HTML tags around the text. If you are including RSS files that are outside
your control, you may want to filter data from the channels before displaying
them. We’'ll discuss this in a later section.

Heading to the Polls: Polling RSS Feeds with Informa

We just showed how Informa can retrieve data from an RSS channel, using
the ChannelBuilder class. Ideally, updating your copy of the feed should be an
automated process, and Informa can also do this. The Poller class (located

ng the Semantic ¥

96

Chapter 4

in the de.nava.informa.utils.poller package) can periodically poll a Channel
object’s RSS feed and trigger some action whenever there are changes.
By default, this polling occurs every 60 minutes but can be configured to use
longer or shorter periods. The Poller class works by notifying an observer
object whenever something changes in the feed. To use this process, you
must first create a class implementing the PollerobserverIF interface. This
interface has methods for poll tracking, error handling, and feed change
notification.

Let’s look at an example of a PollerObserverIF that uses the newItem
method, which the Poller calls whenever the feed has a new item. However,
the new item will not be added to the copy in your Channel object unless the
observer explicitly adds it. Here is a PollexObserverIF implementation that
does not add feed changes to the Channel object but instead prints a notifica-
tion message to the console:

public class AnObserver
implements de.nava.informa.utils.poller.PollerObserverIF

{
public void itemFound(ItemIF item, ChannelIF channel) {
System.out.println("New item found");
channel.addItem(item);
}
public void pollStarted(ChannelIF channel) {
System.out.println(
"Started poll with " + channel.getItems().size() +
" items in channel");
}
public void pollFinished(ChannelIF channel) {
System.out.println(
"Finished poll with " + channel.getItems().size() +
" items in channel");
¥
public void channelChanged(ChannelIF channel) {}
public void channelErrored(ChannellF channel, Exception e) {}
}

This observer will print information about the beginning and end of
each polling event, list any new items in the feed, and add new items to
the object model. Warning: An observer does not add new items to the
Channel object unless you explicitly call the addItem method. If you have
more than one observer attached, one of them should be assigned the
task of adding the new item to the Channel. With real RSS feeds, you’ll want
to set a polling frequency that doesn’t clog the network or the site with
unnecessary traffic. A polling period of 60 minutes (the default) or longer
should be frequent enough for most sites. The following code fragment
uses the observer that we just defined and polls the RSS feed for a previously
loaded Channel object every 60 minutes.

Poller poller = new Poller();
poller.addObserver(new AnObserver());
poller.registerChannel(channel);

To use a three-hour interval instead of the default, you can call:
poller.registerChannel(channel, 3 * 60 * 60 * 1000);

Make sure to remember that the polling interval is specified in milli-
seconds! If you are going to filter items from the feed, the observers should
not be doing the filtering. There is a separate component that can approve
polled changes prior to observer notification. This keeps the observers focused
on their task of propagating changes rather than filtering data. The process
is more scalable that way, as you may want many observers to receive approved
changes. This filtering and approval process is described in the next section.

All the News Fit to Print: Filtering RSS Feeds with Informa

In the previous section, we polled an RSS feed and wrote some code that
automatically updates our copy of the Channel object whenever the feed
changes. Our PollerObserverIfF implementation added the item to a Channel
object. You may think that the observer would be a good candidate for doing
some filtering of the feed content, such as deciding whether to add new
items to our copy. This could work, but since there can be more than one
observer connected to a Poller, it's better to have a separate object do the
filtering. By doing this, we won't need to duplicate any filtering functions,
and all the observers can benefit equally from the filtering process.

Informa implements filters through an approval process. You can add
one or more approvers to a Poller. The observers will see a new item only if
all of the approvers accept it. The approval must be a unanimous vote or the
change will remain invisible to the observers (that is, the observers’ newItem
method is not called). To add an approver, implement the PollerApproverIF
interface and pass it to the Poller’s addApprover method. By making fine-grained
approvers, you can use them in a plug-and-play manner. For example, you
could have a NoBadWordsApprover that checks for the existence of words that
you don’t want to appear on your website or to be added to the Channel. In a
similar way, a RelevancyApprover class could check for keywords that are rele-
vant to your intended usage of the feed.

Approvers check properties within each item, such as the category
list and subject, to determine whether an item should be approved. Poller-
ApproverIF has only a single method, as indicated in this example that
checks the title and the description of each item using regular expressions
(as discussed in Chapter 2). Here is the approver class:

public class RelevancyApprover
implements PollerApproverIF {

Crawling the Semantic web 97

98

Chapter 4

public boolean canAddItem(ItemIF item, ChannelIF channel) {
String title = item.getTitle();
String description = item.getSubject();
if (title.matches(".*Java.*") || description.matches(".*Java.*"))

{

return true;
} else {
return false;
}
}

As you might guess, this approver accepts only items that have “Java” some-
where in the title or description. The next code fragment adds this approver
to a Poller. The approver should be added before the observer, and the
observer added before registering the channel:

Poller poller = new Poller();
poller.addApprover(new RelevancyApprover());
poller.addObserver (new AnObserver());
poller.registerChannel(channel);

There is another class similar to the Poller, the Cleaner, that can per-
iodically remove unwanted items in a channel. It uses a similar process:
CleanerObserverIF observers are added to a Cleaner, and CleanerMatcherIF
instances decide what should be removed. Perhaps these interfaces should
be called “JuryMember” and “Executioner,” because that is a very good meta-
phor for what they do! You might use the Cleaner to remove items that are
older than a few days or meet some other criteria for removal. For both the
PollerApproverIF and CleanerMatchexrIF decision making, you might want to
integrate Lucene text matching, as described in Chapter 3. This would give
much more sophisticated text-matching abilities, such as similarity (“fuzzy”)
matches.

Chapter Summary

The techniques of semantic tagging that we've described in this chapter are
quickly becoming popular in large published data sets, and in the next few
years the Semantic Web will see an exponential growth. The latest news and
website updates, along with what your colleagues are blogging, are already
being gathered automatically by RSS aggregators and organized by category.
In business-to-business transactions, common high-level ontologies are
beginning to connect domains with completely different terminology in ways
that were impossible before. For example, within highly specific scientific
disciplines, new discoveries often use domain-specific terms to describe their
findings. This information could lead to breakthroughs in other disciplines,
if it were only translated into the appropriate terminology.

Structured newsfeeds are already bringing current news and other infor-
mation to anyone with an aggregator and a network connection. Using more
detailed semantic markup (with SUMO or other high-level ontologies), infor-
mation could be made even more accessible to everyone—even if the original
document uses obscure terminology or a foreign language. We will soon see
new types of aggregators and intelligent agents that make logical inferences
based on the news and perhaps act on our behalf. Organizations that are
properly prepared for this will be able to use the Semantic Web much more
effectively. One way to start preparing now is by identifying each type of data
with a URI, adding a machine-readable RDF type description (for example,
that the item is a person, hardware, software, or some other entity), and
using standard ontologies where possible. Jena, Informa, and the ontologies
discussed in this chapter are some tools that can help you with this process.
In the next chapter, we discuss intelligent software agents and explore some
of the scientific and mathematical APIs for Java.

Crawling the Semantic web 99

SCIENTIFIC AND MATHEMATICAL

APPLICATIONS

Amazingly, in some scientific communities,
the Fortran programming language still

rules supreme (I know, it makes me cringe
too). The reason is not because Fortran is nec-
essarily a fantastic programming language. Rather, it is

the large set of built-in mathematical operations that
come with the Fortran core libraries and the large base of existing programs
using these APIs. Java has been around for a decade, runs on many more
platforms, has some core APIs that Fortran doesn’t, and does some things
that are not even possible in standard Fortran. So why isn’t Java more popular
for writing math and science applications? There is a perception that there
are no good Java mathematical libraries. The java.lang.Math class is very
limited in its scope, but since it is in the core, some developers of scientific
software may not want to be bothered with searching for additional libraries.
Perhaps many developers think “what you see is what you get.” The picture
is slowly changing, as new APIs come onto the scene and more high-profile
projects use Java. But Java is more than its core APIs, and there are many
open-source projects that do some incredible things. In this chapter, we

102

discuss some of the scientific and mathematical libraries that are available for
Java. Among the topics we'll be exploring in this chapter are functors, truth
tables, graph theory, physical quantities, neural networks, genetic algorithms,
and intelligent agents.

Fun-Tors: Creating and Applying Functors

Chapter 5

According to the Merriam-Webster Online Dictionary, a functoris “something
that performs a function or an operation.” From a programming point of
view, a functor is a function that can be passed as a parameter and manipu-
lated like other values. Many languages, such as C, have function pointers that
hold the actual memory address of a function. In these languages, you can
pass a function to another function and then apply it to different arguments.
You can use this to apply a function to each member of a collection or create
pluggable composite functions. Languages such as Scheme, Lisp, and Haskell
use a purely functional programming style, which is very powerful for some
types of applications (particularly in artificial intelligence). Java doesn’t have
either Lisp-style or C-style functions, but we can implement the same behavior
using interfaces and base classes. There are several implementations of func-
tor APIs for Java, and you can find references to some of these on this book’s
website.

Generic Algorithms for Java is a flexible open-source implementation of func-
tion objects. There are classes for zero-, one-, and two-argument functors:

Generator A zero-argument functor
UnaryFunctor A one-argument functor
BinaryFunctor A two-argument functor

These functors are designed to work closely with the generics in Java 5
(as discussed in Chapter 1). Generator is actually defined as Generator<R>. It has
a method called gen that takes no arguments and returns an object of a type R
that is defined when you construct the Generator. To create a zero-arity functor
that returns Double objects, you can do the following:

import net.sf.jga.fn.Generator;
public class CubeGenerator extends Generator<Double> {
double current = 0;
public Double gen() {
current = current + 1;
return current * current * current;

Now you can see why it’s called a Generator. This one generates cubes of
the positive integers. Besides letting you create your own generators, JGA has
some built-in generators for creating random, constant, or constructed values.
The values returned by a Generator do not have to be numeric.

The single-arity functor class is UnaryFunctor<T,R>. It has an fn method
with a parameter of type T and that returns an R. We can create a predicate by
creating a functor that returns a Boolean. Let’s make a UnaryFunctor<Number,
Boolean> that returns true for all even numbers:

public class EvenNumber extends UnaryFunctor<Number,Boolean> {
public Boolean fn(Number x) {
return (x.longValue() % 2) == 0;

So far it may seem to be a lot of extra work for no reason. But the
advantage is that we can now write methods that take arbitrary functors as
parameters. The following code shows how this can be done:

public void removeMatches(List<Number> alist,
UnaryFunctor<Number ,Boolean> functor) {
for (Number num : alist) {
if (functor.fn(num)) {
alist.remove(num);

The method removes any items in the list for which a Number-to-Boolean
functor returns true. Consider two alternative ways of writing code to remove
the even numbers from a list:

List<Number> numbers = // populate the list somehow
// the first way
for (Number aNumber : numbers) {
if (aNumber.longValue() % 2 == 0) {
numbers.remove (aNumber) ;

}
// the second way
removeMatches(numbers, new EvenNumber());

Having a removeMatches method is a very useful part of a general-purpose
library. This allows us to successively apply different UnaryFunctor<Number,

Boolean> operations to the list:

removeMatches(numbers, lessThan30000);
removeMatches(numbers, greaterThan10000000);

Seientific and Mathematical Applications 103

104

You can do the equivalent of this through the Iterables utility class that
works with the Java 5 for loop. On the JGA site there is a more detailed tutorial
on filtered iteration. Here is a short example using a for loop that iterates
through only the even numbers in a List:

UnaryFunctor<Number,Boolean> even = new EvenNumber();

List<Number> numbers =; // populate the list somehow

for (Number aNumber : Iterables.filter(numbers, even)) {
System.out.println(aNumber);

The Algorithms class has implementations of some common algorithms
that use functors. The next example uses two of these methods: transform
applies a unary functor to each element in a list, and removeAll removes all
elements that match a predicate:

import net.sf.jga.util.Algorithms;
List<String> alist =; // populate me
// remove all nulls
UnaryFunctor<Object,Boolean> isNull =
new UnaryFunctor<Object,Boolean>() {
public Boolean fn(Object o) { return o == null; }

b
Algorithms.removeAll(alist, isNull);
// trim Strings
UnaryFunctor<String,String> trimmer =
new UnaryFunctor<String,String>() {
public String fn(String s) {
return s.trim();

IH

Algorithms.transform(alist, trimmer);

If you don’t want to modify the list itself, you can create an iterator that
iterates over the original values and returns the transformed value for each
item or ignores nulls. Functional programming techniques are a very useful
tool in the Java programmer’s bag of tricks. In the next section we’ll use some
more advanced features of the APL

Funkier Functors: Using Composite Functors

Chapter 5

In the previous section, we used functors to filter the input to a for loop,
thereby removing any need for filtering code in our processing loop. JGA
has utilities for creating composite functors, and they are automatically built
into every unary and binary functor. A UnaryFunctor has a compose method that
returns a new functor that is a composition of an inner functor. When you

see the compose method, think about the word of: f.compose(g) is like saying
“f of g.” In other words, you can create a functor h from two existing functors
f and g, such that h=f(g(x)), with the following code:

UnaryFunctor<Object,Object> f,g;
UnaryFunctor<Object,Object> h = f.compose(g); // h =+ of g

‘When you call the fn method of h, it will use the composite function on
its parameter. A BinaryFunctor has similar compose methods for combining it
with other unary and binary functors. You can create a chain of processors in
this way, as many as you would like. You can also send the output of a Generator
through a composed function by using the Generate class. Now let’s use this
process to create a complex Generator. This one will generate a series of loga-
rithms of the square of every 30th integer starting at 99. We can start with a
Generator for every 30th integer and build our other functionality on top of it:

Generator<Number> every30thFrom99 = new Generator<Number>() {
long count = 99;
public Number gen() {
long result = count;
count += 30;
return result;
¥
s
UnaryFunctor<Number,Number> log =
new UnaryFunctor<Number ,Number>() {
public Number fn(Number in) {
double val = in.doublevalue();
return Math.log(val);

s
UnaryFunctor<Numbex,Number> square =
new UnaryFunctor<Number ,Number>() {
public Number fn(Number in) {
double val = in.doubleValue() ;
return val * val;
¥
s
Generate<Number ,Number> logOfSquareOfEvery3othFrom9g =
new Generate(log.compose(square), every3othFrom99);

Function chaining is not limited to numeric processes. Composite
functions can work with objects of any type (for example, String, Employee,
Automobile, WebRowSet). You can see now why it is important to create low-level
functors, so that you can combine and reuse them within other contexts.
Before you build a new functor, see if there is a way to accomplish the same
thing by combining existing ones. At the current time (late 2005), the API
is still in a beta development status and may be subject to change. See the
documentation for more information (links are on this book’s website).

Seientific and Mathematical Applications 105

106

High-Caliber Bits: Using Colt’s BitVector

Chapter 5

‘What do math, pistols, horses, and alcohol have to do with one another?
Colt! In addition to a gun manufacturer, a malt liquor, and a young male
horse, Colt is also the name of a scientific and mathematical APL. It was
created by the same place where the Web started—the CERN particle-physics
laboratory in Switzerland. CERN'’s website describes Colt as “efficient and
usable data structures and algorithms for Off-line and On-line Data Analysis,
Linear Algebra, Multi-dimensional arrays, Statistics, Histogramming, Monte
Carlo Simulation, Parallel & Concurrent Programming.”

In this section, we’ll take a look at one of the Colt utility classes, BitVector.
We'll model a digital logic function by creating a functor (as discussed earlier)
that works with BitVector values. This is different than the boolean predi-
cates that we discussed before, because we will be modeling a function with
multiple input and output bits. A logic function takes an ordered set of bits
as the input and produces another ordered set of bits as the output. The Java
core provides a BitSet class for working with collections of bits. While it can
be useful to some applications, it has disadvantages when used to model logic
functions. First, it does not have a fixed size associated with it. For example,
modeling a function with 5 bits of input and 3 bits of output requires separate
values to keep track of the input and output vector sizes. Second, a BitSet
does not have methods for mapping subsets of its bits to and from integer
values. The BitVector class from the Colt API is more flexible and well suited
to modeling truth functions. Let’s start with a basic BitVector example to
show some of its capability:

BitVector vec1000 = new BitVector(1000); // size = 1000 bits

// initially the bits are all set to 0 (false)

vec1000.set(378); // set bit 378 to 1 (true)
System.out.println(vec1000.get(378)); /1 prints "true"

vec1000. replaceFromToWith(1, 40, true); // sets bits 1-40 to true
// get the bits from 38 to 50 (inclusive)

BitVector portion = vec1000.partFromTo(38, 50);

// get the long value of bits 3 to 10 of the portion BitVector
long longValue = portion.getLongFromTo(3, 10);

‘We can use these methods to simulate hardware logic gates, which are the
basic components that make up a computer. Some low-level examples of
these are the AND, OR, and NOT gates. We can model a generic logic gate by using
BitVector instances as the input and output of a functor. Although Colt has its
own general-purpose functors, I'll use the APIfrom the previous sections to
avoid confusion. A BitVector functor for an AND gate might look like this:

public class UnaryBitVectorAndFunction
extends UnaryFunctor<BitVector,BitVector> {
public BitVector fn(BitVector in) {

int oneBits = in.cardinality(); // how many bits are 1
int size = in.size(); // the vector size
BitVector outVec = new BitVector(1); // a one-bit output

outVec.put(o, size == oneBits); // AND = all ones

return outVec;

Using this process in combination with a functor APT allows you to create
any type of Boolean function. Let’s do another example, this time with more
than one output bit. A 1-of-4 decoder (demultiplexer) is a logic component
with three inputs and four outputs. It sends an input data signal (D) to one
of four outputs (Q0, Q1, Q2, Q3), based on a 2-bit selector code (S0, S1).
Table 5-1 shows the output bits resulting from each combination of inputs
to the decoder. This type of table is called a truth table.

Table 5-1: Two-Bit Demultiplexer Truth Table

o

51 S0 Q0 a1

2]
)
[}
w

0
1
0

O O O O

1 1

- - —-— -0 ocoo
- —_— -
oo o —

o O —- O O O O O
o - O O O O O O
— o oo oooo

0
1
0
1

The first three columns represent the inputs, and the others are the out-
put values. The selector bits 80 and S1 decide which output gets the current
value of D, and all other outputs receive the default value of 0. Let’s create a
model of this circuit. In the model discussed here, we reference the inputs by
their index within the input BitVector. For the inputs, I am assuming that bit
01is D, bit 1 is 80, and bit 2 is S1. The UnaryFunctor below creates a 4-bit BitVector
containing the output values:

public class QuadDemuxer
extends UnaryFunctor<BitVector,BitVectorr {
public BitVector fn(BitVector in) {
// a 4-bit output vector, defaults to all 0
BitVector outVec = new BitVector(4);
/7 get the input data
boolean data = in.get(0);
if (data) {
// get the selector bits as an int
int selector = (int) in.getLongFromTo(1,2);
outVec.set(selector);
}

return outVec;

Scientific and Mathematical Applications 107

108

In the next section, we'll extend this process to create a generic truth
table implementation of a logic function.

The Truth Is in There: Creating Truth Tables from a BitMatrix

Chapter 5

In the previous section, we created a demultiplexer, a specific type of Boolean
function that has several input and output bits. To explain how it works, we
used a truth table to show the corresponding output for every possible combi-
nation of input bits. A truth table works like a lookup table for binary inputs.
You may have noticed that it looks a lot like a matrix of bits. We can use this
observation to write a generic truth-table model. In this section we’ll create a
generic truth table using the Colt APT’s BitMatrix, a 2D cousin of the BitVector.

The input combinations are listed in binary ascending order: 000,001,010,
011....Because the ordering of input bits in a truth matrix always follows the
same pattern regardless of the input size, this part of the table is redundant.
We can work with just the output part of the matrix. The number of rows and
columns is directly related to the number of input and output bits of the func-
tion. In the example from the last section, a three-input/four-output function,
there were four columns and eight rows. The number of columns is the
same as the number of output bits. The number of rows for n input bits is 27,
because we need to account for every possible combination of inputs. Obvi-
ously, a single truth table will not work for a large number of input bits. But
complex systems can be created by wiring together many simpler components,
so this is not a real limitation.

As long as you remember how you've ordered the input bits, you can con-
vert them into an integer value and use that as an index to the row containing
the output bits. We can demonstrate by making a BitMatrix for the truth table
shown in Table 5-1:

int inputSize = 3;
int rows = 1L << inputSize; // 2**n rows, for n bits in the input
int outputSize = 4;

int columns = outputSize;

// this is the truth table matrix: all bits default to 0

BitMatrix matrix = new BitMatrix(columns, rows);

// set output mappings for the demultiplexer example

matrix.put(0, 4, true); // column 0, row 4 = true (1)
matrix.put(1, 5, true);

matrix.put(2, 6, true);

matrix.put(3, 7, true)

3

// get the output bits for an input value of 101 (5)
boolean 00 = matrix.get(0, 5); // column 0, row §
boolean 01 = matrix.get(1, 5); // column 1, row 5
boolean 02 = matrix.get(2, 5); // column 2, row §
boolean 03 = matrix.get(3, 5); // column 3, row 5

To look up an input/output mapping in the uuth table, convert the input
bits into an integer value and use it as an index to the row that contains the
output bits. You can read each output bit individually as a boolean or convert
itinto an int or long to use all the bits at once. This truth table was easy to
create because it had only a few 1 bits. You will probably want to have a utility
method that sets an input/output mapping in a single method call. The
following methods implement generic storage and retrieval for a truth table

mapping:

public void store(int inputval, long out) {
int start = inputVal * outSize;
int end = start + outSize - 1; // inclusive
matrix.toBitVector().putLongFromTo(out, start, end);

public long retrieve(int inputval) {
int start = inputVal * outSize;
int end = start + outSize - 1; // inclusive
long out = matrix.toBitVector().getLongFromTo(start, end);
return out;

We could also write BitVector versions of these methods, using what
we did in the last section. The above code works by accessing the internal
backing bits (a BitVector) of the BitMatrix. (I've done this because the
BitMatrix class does not have a convenient accessor for a complete row
of bits.) Remember that the number of input bits should be kept small,
because the size of the truth table grows exponentially. There is no check
on the input value, and an invalid input value will cause an exception.
Unused bits in the output value are ignored because of the way that the
BitVector transfers bit values from a long. Keep in mind that the input and
output values are processed with the least significant bit counted as the
zeroth. We'll explore truth tables again later, when we create a connected
network of processing components, each with its own truth table.

Two Terafurlongs per Fortnight: Using JScience Quantities

JScience is an open-source API for scientific and mathematical processing.
One of its goals, and an extremely lofty one, is to create a common API for
Java programming within all the sciences. One of its coolest features is a units
framework for physical quantities (for example, mass, velocity, temperature,
distance). In JScience, you can work with values of physical constants, such as
the speed of light and Planck’s constant, and not care about which units are
used internally. Conversion between different units is extremely easy, and
you can even define your own custom units. In this section, we show how to
access the built-in constants, create your own units, and work with quantity
classes.

Seientific and Mathematical Applications 109

110

Chapter 5

In the United States, outside of scientific usage, most people are still
using non-metric (non-SI) units such as Fahrenheit, feet, and pounds. This
frequently causes a lot of confusion and even caused the loss of an unmanned

spacecraft! Maybe we can’t completely solve the problem of mismatched
units, but at least in a Java program we can define quantities in such a way
that we don’t care about the units. In JScience, the basic physical quantities
have their own classes and are all subclasses of the Quantity class. Here are
some of these classes, along with their SI unit of measurement:

* Length, in meters
* Duration, in seconds
* Mass, in kilograms

* Temperature, in degrees Kelvin

The Quantity classes are in the org.jscience.physics.quantities package.

A quantity says something about the property that you are measuring and is
much more specific (with less potential for error) than just using a double to
represent the numeric value. In any type of application that tracks a common
physical quantity such as length, you can use one of the built-in JScience quan-
tities. Each Quantity class has a system unit associated with it and can perform
automatic type conversion. If you are writing an application to track com-
puters, you might write a class that represents a particular configuration:

public class ComputerConfig {
double length, width, height;
double mass;
int ram, rom, network;

In this ComputerConfig class, the units are not part of the variable defini-
tions, and the quantities themselves are not typesafe. Nothing in its definition
prevents us from trying to do the following:

length = mass;

There has been a lot of work done on unified theories of physics, but I
don’t think we're quite that far along! We can rewrite ComputerConfig so that it
uses classes that represent real physical quantities:

import org.jscience.physics.quantities.*;
public class ComputerConfig {

Length length, width, height;

Mass mass;

DataAmount ram, rom;

DataRate network;

Now the program knows that there are three length values, one mass, two
data amounts, and one data rate. This has another advantage, too, because

we can set and get the value with any units of a Quantity and still have the
value stored internally as an SI unit. Let’s use mass as an example, by setting
a Mass variable as 20 pounds and then displaying it in kilograms:

Mass mass = (Mass) Quantity.valueOf(20, NonSI.POUND);
System.out.println(mass.toText(SI.KILOGRAM));

As you might expect, if you try to use a unit that is incompatible with the
quantity, the toText method will throw an exception. You’ll find the SI-based
units in the SI class and many of the non-SI units in the NonSI class. For units
that are not already part of JScience, you can create your own derived unit
based on existing ones.

One of the more obscure English units is called a furlong, and it is equal
to an eighth of a mile, or 220 yards. This is not one of the built-in units of

JScience, but you can easily create a derived unit for it. This code creates the

unit, along with a systemwide alias so that it can be used elsewhere in the
application:

Unit furlong = NonSI.MILE.multiply(0.125);
furlong.alias("furlong");

furlong.label(" furlong");

Quantity fiveFurlong = Quantity.valueOf("s furlong");

Setting the alias for a unit allows us to use it for parsing quantities. The
label is used when you display a quantity. Quantities and units can be multi-
plied and divided to create combined quantities such as acceleration (m#s?),
In this next example, we derive a new velocity unit and use it to display the
speed of light (c):

Velocity c¢ = Constants.c;

// A fortnight is an old English unit of 14 days
Unit fortnight = NonSI.DAY.multiply(14);
fortnight.alias("fortnight");
fortnight.label("fortnight");

Unit furlongperfortnight = furlong.divide(fortnight);
System.out.println(c.toText(furlongperfortnight));

The new unit is a velocity unit, because it is defined as a length/
duration. Running this program shows that the speed of light in a vacuum
is 1,802,617,499,785.253 furlong /fortnight, or a little less than 2 Terafurlongs,
fortnight.

Fractious Fractions: Arbitrary-Precision Arithmetic

Two times two is 3.9999999998, if you believe the results of some calculations
using double values. Most Java developers have worked with the double and
float data types. Perhaps you have also used some of the methods in the
java.lang.Math class. This class is part of the Java core and includes methods

Seientific and Mathematical Applications 111

12

Chapter 5

for operations such as logarithms, exponents, and trigonometric functions.
The precision of a double is sufficient for most needs, but for scientific and
theoretical applications its 11-bit exponent and 52-bit mantissa (based on
IEEE 754 double-precision floating point) can cause subtle errors that quickly
grow into larger problems. This is particularly true when performing iterative
calculations, where the output of one calculation is used as the input to
the next.

To solve the problem of rounding errors in mathematical applications,

Java includes two classes for arbitrary-precision math: BigDecimal and Big-

Integer. The BigInteger class is great for working with extremely large numbers.
(Yes, I do realize that the name gives a hint of that!) The size of these num-
bers is limited only by available memory and processing speed. An integer
such as 97 is too large to represent in a double or long variable but fits very
comfortably within a BigInteger. Similarly, the BigDecimal class can exactly
represent numbers such as 0.012345678987654321234567890123456 that
a b2-bit mantissa can’t handle. The following short code sample uses the
BigInteger and BigDecimal classes to represent these quantities:
BigInteger nine = new BigInteger("9");
BigInteger nineToSevenHundredth = nine.pow(700);
BigDecimal exactNumber =

new BigDecimal("0.012345678987654321234567890123456");

The BigDecimal class can exactly represent any number that has a finite
decimal expansion. This works for fractional numbers with multiples of 2
and 5 in the denominator, such as 1/2, 15/4, or 127/20, but not for numbers
such as 1/3 (0.333333 .. .) or 5/7. This can cause cumulative rounding errors
in more complex calculations. In fact, all of the Bigbecimal methods for divi-
sion require a scale parameter, describing the number of digits to the right
of the decimal to keep in the result. Consider the following example, which
calculates 1/3 to 15 decimal places (and rounding as necessary):

BigDecimal one = new BigDecimal("1");
BigDecimal three = new BigDecimal("3");
BigDecimal third = one.divide(three, 15, BigDecimal.ROUND HALF_UP);

When performing arbitrary-precision division, it’s best to maintain the
numerator and denominator as separate values. Since there are no objects in
the Java core for arbitrary-precision fractions, you may have thought about
writing your own class. Many people have built something like the following:

public class HugeFraction
{

private BigInteger numerator, denominator;

// methods for operating on fractions

public HugeFraction divide(HugeFraction other) {
// calculate result
return result;

In the JScience API, there are several classes for doing arbitrary-precision
calculations. The first is a LargeInteger class that is similar to the BigInteger
class in the Java core. LargeInteger is optimized for speed and real-time per-
formance and implements an Operable interface for use in number theory
and matrix operations. It also has an XML format associated with it. A Rational
class builds upon this to allow infinite-precision representations of a/ b, where
mmutable, and all its
methods return the result rather than affect the original. It works as you
would expect it to:

aand bare non-zero integers. The Rational class i

Rational oneThird = Rational.valueOf("1/3");

Rational nine87654321 = Rational.valueOf("987654321/1");
Rational msixteen = Rational.valueOf("-16/1");

Rational msixteenOver987654321 = msixteen.divide(nine87654321);
Rational aNumber = oneThird.multiply(msixteenOver987654321);

There won’t be any rounding errors as long as you stay within the Rational
domain (addition, subtraction, multiplication, division, and integer exponen-
tiation). Another class that you'll want to know about is Real. (Yes, that’s
its real name.) It represents an arbitrary-precision real number that has a
guaranteed uncertainty. The API also has a Complex class, but it’s not arbitrary-
precision because it uses double values for the real and imaginary parts. In the
next section, we take a look at algebraic and polynomial functions.

Proudly Polynomial: Using Algebraic Functions in JScience

Earlier in this chapter we showed the benefit of being able to manipulate
functions as objects and pass them as parameters to a method. In this sec-
tion, we look at functions from a mathematical point of view. JScience, Colt,
and JGA (discussed earlier) all have their own functor implementations, and
each of them has certain advantages. The JGA implementation is great for
general-purpose functional programming because of its simplicity and gen-
erality. Colt includes more built-in mathematical functors (see the Functions
class) but doesn’t provide arbitrary-precision calculations. In this section, we
discuss JScience because it has a general algebraic and polynomial framework
that can be used with anything that implements the Operable interface (such

as Real and Rational or your own ring or number classes).

An Operable is anything that has multiplicative and additive operations
and an inverse for each operation. The Polynomial class is “a mathematical
expression involving a sum of powers in one or more variables multiplied by
coefficients” (from the JScience documentation). You can create polynomials

Scientific and Mathematical Applications 113

114

that work with any Operable. For this section’s examples, we'll define a poly-
nomial of Rational variables. We’'ll start with a constant polynomial. The
org.jscience.mathematics.functions.Constant class is a subclass of Polynomial
that represents a polynomial of degree 0. Create one using the valueOf method:

Constant sixty = Constant.valueOf(Rational.valueOf("60/1"));

Let’s use this to create a polynomial of (7/15) X+ 9xy + 60. We need to
first create each term and then multiply by the coefficient. Then we can add
the terms together to create the final polynomial. This code creates a poly-
nomial, assigns values to xand y, and prints the result:

Function.Variable x = Function.Variable.X;
Function.Variable y = Function.Variable.¥;

Polynomial xpoly = Polynomial.valueOf(Rational.ONE, x);
Polynomial ypoly = Polynomial.valueOf(Rational.ONE, y);
Rational nine = Rational.value0Of("9/1");

Rational sixty = Rational.valueOf("60/1");

Rational seveni5ths = Rational.valueOf("7/15");

Polynomial seven15Xs =
Polynomial.valueOf(seveni5ths, Polynomial.Term.valueOf(x, 5));
Polynomial nineXY = (Polynomial)
Constant.valueOf(nine).times(xpoly).times(ypoly);
Polynomial poly = (Polynomial)
seven15X5.plus(nineXY).plus(Constant.valueOf(sixty));
Function.Variable.X.setValue(Rational.valueOf("5/7"));
Function.Variable.Y.setValue(Rational.ONE);
System.out.println(poly);
System.out.println(poly.evaluate());

The code prints the following result for (x=5/7, y=1):

[7/15]x5 + [9/1]xy + [60/1]
479110/7203

You can also take derivatives or integrals of a polynomial. JScience has
many other powerful features. You can find links to JScience documentation
at this book’s companion website.

Connecting the Nots: Connecting Truth Tables Using Ports

Chapter 5

In the early twentieth century, the philosopher Ludwig Wittgenstein wrote
the book Tractatus Logico-Philosophicus, in which he outlined the concept of a
truth function, a higher-level abstraction of a logical proposition. His truth
functions work like our truth tables, but they connect statements consisting
of other functions and have only a single Boolean output value. In our truth
table implementation from the section “The Truth Is in There,” we had a

number of inputs and a number of outputs, and we didn’t connect them to
other functions. If you were building a digital logic simulator, you would want
to connect many components together into a complex system. To build
logical components and connect them together, we need to write code that
connects each output to an input.

We can connect arbitrary objects into a graph by joining them with edges
that work much like wires in a digital circuit. But we wouldn’t want to connect
each component with an edge leading directly to another component. Instead,
we need to associate an output on one component with a specific input on
another, which we can accomplish by connecting the graph’s edges to ports
on the components. You can think of the ports as being input or output
pins on an IC chip. Connecting ports makes it easier to know which of a
component’s inputs and outputs are being connected to where. Let’s use
portedge connections to build a Component class that can be combined into
more complex systems. Figure 5-1 shows a block diagram of this component.

Input Ports Qutput Ports

A function of m inputs, praducing n outputs
(in this case, m=3 and n=2)

Figure 5-1: Generic processing component

Our Component class is a generalization of the “function with ports” idea
that could be applied to any function with a set of inputs and outputs. We’ll
use this to write an expansion of the truth table store and retrieve methods
we created earlier. We will add some input/output ports and accessor methods
to the class. Since an input port can connect only to an output port, we first
create a separate interface for each (and an implementation that can serve as
either one):

public interface Port {
public TruthComponent getParent();

}

public interface InputPort extends Port {
public void setValue(Object value);

}

public interface OutputPort extends Port {
public Object getValue();

}

public class PortImpl implements InputPort, OutputPort {
private Component parent;

Scientific and Mathematical Applications 115

116

Chapter 5

private Object value;
public PortImpl(Component parent) {
this.parent = parent;

¥

public Component getParent() { return parent; }

public Object getValue() { return value; }

public void setValue(Object value) { this.value = value; }

InputPort and OutputPort are the interfaces that are used externally to
a component. Sending data to an input port requires a method to set the
value, and reading from an output port needs a method to get the value.
A component has an input and output size and a Object[] -> Object[] function
to calculate the output values from the inputs. Component is designed as an
interface, to make it flexible enough for any application:

public interface Component {
/1 get the number of input ports
public int getInputSize();
// get the number of output ports
public int getOutputSize();
// get an input port by its index
public InputPort getInputPort(int index);
// get an output port by its index
public OutputPort getOutputPort(int index);
// perform the component's function: outputs = f(inputs)
public void process()};

At this point, we have a very generic framework for connected compo-
nents that have input and output ports. I've assumed that the component’s
unary function will process an Object[] and return an Object[]. If you wish,
you can also make the process method flexible enough to send any single
Object value to the first output port and null to the rest. On the book’s website
you'll find an implementation of the Component class that is enhanced to
support Java generics. An external process controls the components and
manages the connectivity between them, and we’ll implement this later by
using a graph APL But before we do that, we need to turn this into a bit-
processing unit that uses a truth table.

‘We can write a UnaryFunctor that processes an array of objects as bits, by
applying some basic conversion rules. The function should be flexible enough
to interpret each Object in the array as a bit in some consistent way (Boolean,
nonzero, or non-null). (We'll assume for this example that an arrayToBits
method converts an array into bits.) The converted bits are sent through a
truth-table function to produce the output bits. The output bits are returned
as a Boolean[] so the component can send the results to its output ports.
(Assume that a bitsToArray method does this.) The following is a simplified
example of a “oruth” function that might be used with our Component class.

public class UnaryTruthTableFunction
implements UnaryFunctor<Boolean[],Boolean[]> {
public Boolean[] fn(Boolean[] in) {

// convert the objects into bits -- somehow
int convertedInput = arrayToBits(in);
// lookup the output from the truth table
// see the section "The Truth Is In There"
long result = retrieve(convertedInput);
// convert the output bits into a Boolean[] -- somehow
return bitsToArray(result);

A more complete implementation is available on this book’s com-
panion website. In the current component design, results must be
evaluated in a feed-forward manner (that is, only from inputs to outputs).
If components are wired together in any type of cycle, you would need a
synchronization framework. In the following sections, we introduce a
graph API and then use it to connect ports between components and
run a simulation.

The Knee Bone’s Connected to the . .. : Connecting with

JGraphT

In Chapter 4, we explored the Semantic Web and linked concepts together
to form semantic networks. The RDF standard that we discussed in Chapter 4
models these networks as labeled directed graphs. Note that we are not talking
about “graphing” or “charting” here but using the mathematical sense of
a graph as a network of nodes or vertices. In graph theory, a labeled directed
graph means that each link, or edge, has a label and a direction. The Jena
and RDF graphs that we used before are a special-purpose implementation
of directed graphs, but some applications may want to model other types of
graphs and be able to perform mathematical operations on them. For this
purpose you can use JGraphT, an easy-to-use API for working with many differ-
ent types of graphs. It focuses on the graph model itself, its connectivity, and
performing operations on the graph rather than displaying or visualizing it.
In Chapter 6, we’ll discuss another API that focuses on the visualization of
graph models. But for now, we will be building the graph model itself.

The nodes within a JGraphT graph can be any Java objects. The graph
model describes how objects are interconnected. By using this type of model,
you can treat the relationships between the objects independently from the
objects themselves. This is very similar to the Model-View-Controller (MVC)
pattern used in Swing and many other Java frameworks. This process can be
used for modeling all sorts of real-world situations. Graph theory is useful in
simulating and analyzing many types of complex systems, such as computer
networks, digital circuits, highway waffic, and data flow.

Scientific and Mathematical Applications 117

118

Chapter 5

Creating a graph in JGraphT is easy. First you create an instance of the
desired type of graph. Then you call the graph’s addvertex method to add each
Java object as a vertex. Once an object is in the graph, you can call methods
to connect it with other vertices. Here is an example that models the inter-
connectivity of some organs and systems in the human body. Figure 5-2 shows
the relationships of items within the graph.

CIRCULATORY -a———— HEART

RESPIRATORY NERVOUS

/N

LUNG SPINAL CORD BRAIN

DIGESTIVE

/\

LIVER STOMACH

Figure 5-2: Organs and body systems

We will use a Java b enum (see Chapter 1) to represent each organ and
system that will be in the graph. We can create an undirected graph to hold

the relationships between these parts:

import org._3pq.jgrapht.graph.SimpleGraph;

enum Organs {HEART, LUNG, LIVER, STOMACH, BRAIN, SPINAL CORD};
enun Systems {CIRCULATORY, DIGESTIVE, NERVOUS, RESPIRATORY};

SimpleGraph graph = new SimpleGraph();
graph.addvertex(Organs .HEART);
graph.addVertex(Organs .LUNG);
graph.addvertex(Organs.BRAIN);
graph.addVertex(Organs .STOMACH) ;
graph.addVertex(Organs.LIVER);
graph.addvertex(Organs.SPINAL_CORD);
graph.addVertex(Systems.CIRCULATORY);
graph.addvertex(Systems.NERVOUS) ;
graph.addVertex(Systems.DIGESTIVE);
graph.addVertex(Systems.RESPIRATORY);

graph.addEdge(0xgans .HEART, Systems.CIRCULATORY);
graph.addEdge(Organs.LUNG, Systems.RESPIRATORY);
graph.addEdge(0xgans.BRAIN, Systems.NERVOUS);
graph.addEdge(Organs.SPINAL_CORD, Systems.NERVOUS);
graph.addEdge(0xgans.STOMACH, Systems.DIGESTIVE);
graph.addEdge(Organs.LIVER, Systems.DIGESTIVE);

You'll need to be careful that each item has been added as a vertex before
you add it as an edge, or an Exception will occur. This code does not display
anything; in fact, it does nothing except create an internal graph of relation-
ships between the objects. Essentially, it creates a list of “neighbors” (edges)
for each object. In this particular example, all the edges are treated equally.
You can use labeled edges to differentiate between types of neighbors.

You can find the neighbors of a given object by calling methods on the
graph. Let’s find the edges for a vertex in the body systems example and print
what is on the other side of each edge. We can find the nodes that are directly
connected to the DIGESTIVE node by the following:

import org._3pq.jgrapht.Edge;

List digestivelinks = graph.edgesOf(Systems.DIGESTIVE);

for (Object item : digestivelinks) {
Edge anEdge = (Edge) item;
Object opposite = anEdge.oppositeVertex(Systems.DIGESTIVE);
System.out.println(opposite);

The technique we used here is to obtain the list of edges, and for each
edge find the vertex that is not the DIGESTIVE node (that is, find the “opposite”
vertex). Edge is the interface that all edges implement, and it associates a target
vertex with a source vertex. You can use one of the default implementations
that come with JGraphT or write an Edge class to meet specific needs.

JGraphT has implementations of other operations that you can perform
on graphs. You can find more information on these in the JGraphT docu-
mentation. We'll be working more with JGraphT in the next section. In
Chapter 6, we will use a different API to visualize graphs.

Tied Up in Meta-Nots: Connecting Generic Processing Units

In the section “Connecting the Nots,” we created a generic processing unit
with input and output ports, and in the section “The Knee Bone’s Connected
to the . . .: Connecting with JGraphT,” you saw how to connect arbitrary Java
objects together into a graph structure. In this section, we’ll connect com-
ponent input and output ports using JGraphT. Using this design, we can
maintain the port connections (the wiring) separately from the component
implementations. In fact, we don’t really care what the components are
doing, or even whether they are processing boolean values. Each component
has a process method that grabs the data from its input ports, processes the

Seientific and Mathematical Applications 119

data, and moves the results to the output ports. We can run each component’s
process method, which performs the component’s function and sends the
result to the output ports. If we have used a directed graph to connect the
ports, we can propagate each output to the next stage by iterating through
all the edges. For each edge, we call getvalue on the source vertex (an Output-
Port) and setValue on the destination vertex (an InputPort). Now we can write
a class that manages components using a graph API:

public class MetaComponentSimple {
private ListenableDirectedGraph graph;

public MetaComponentSimple() {
graph = new ListenableDirectedGraph();
1

public void connect(OutputPort out, InputPort in) {

Component source = out.getParent();

Component target = in.getParent();

/7 add parent components to graph

if (lgraph.containsVertex(source)) {
graph.addVertex(source);

}

if (!graph.containsVertex(target)) {
graph.addVertex(target);

}

// add ports to graph

if (!graph.containsVertex(in)) {
graph.addVertex(in);

}

if (lgraph.containsVertex(out)) {
graph.addVertex(out);

}

/7 add an edge from out parent to output port

graph.addEdge(source, out);

/7 add an edge from output port to input port

graph.addEdge(out, in);

/7 add an edge from input port to target component

graph.addEdge(in, target);

}

public void process() {
processSubComponents();
propagateSignals();

¥

private void propagateSignals() {
for (Object item : graph.edgeSet()) {
Edge edge = (Edge) item;
Object source = edge.getSource();

120 choprer s

Object target = edge.getTarget();

if (source instanceof OQutputPort) {
OutputPort out = (OutputPort) source;
InputPort in = (InputPort) target;
in.setValue(out.getValue());

private void processSubComponents() {
for (Object item : graph.vertexSet()) {

if (item instanceof Component) {

((Component) item).process();

}

To use this class, you would make connections between ports by calling
the connect method. The method adds each port’s parent component to the
graph, so that the component can later call the process method of its sub-
components. The manager itself has its own process method, which first
processes all the components and then propagates each output value to
the next input stage. It's no accident that I chose the same name for the
process method in the manager class. If you would also implement the other
methods of the Component interface, you could use this class to build a more
complex component from other components. The book’s website has a
more complete example of this. Here is some code that uses our new class
to implement the function y=and(or(a,b),or(c,d)):

MetaComponentSimple manager = new MetaComponentSimple();

// Assume that we have created an AND gate Component,

// using techniques discussed earlier. This one has 2 inputs.
Component and = createAndGateComponent(2);

OutputPort y = and.getOutputPort(o);

// We'll use a couple of OR gates, each with 2 inputs
Component orl = createOrGateComponent(2);

InputPort a = ori.getInputPort(o);

InputPort b = ori.getInputPort(1);

Component or2 = createOrGateComponent(2);

InputPort c = or2.getInputPort(0);

InputPort d = or2.getInputPort(1);

manager . connect (or1.getOutputPort(0), and.getInputPort(0));
manager . connect (or2.getOutputPort(0), and.getInputPort(1));
// set the input values

a.setValue(true);

b.setValue(false);

c.setValue(false);

d.setValue(false);

Seientific and Mathematical Applications 121

122

manager . process();

// we need to process twice, because there are two component stages
manager . process();

System.out.println(y); // this prints false

Note that a signal may take more than one processing cycle to reach
the other “end” of the circuit. This is also true in real circuits, because every
component has a processing delay, but it is usually so short that we don’t
notice it. We'll discuss time-dependent processes in Chapter 7. In the next
section we work with another network, a brain-like system called a neural
network.

Joone Bugs: Building Neural Networks in Joone

Chapter 5

Did you ever feel like building a brain? Well, you can do it in Java without
feeling too much like Dr. Frankenstein. In computer science jargon, an
artificial neural network is a group of simple processing cells that are highly
connected and work together to form a larger computing system. Some
people use the term newral network to refer to any type of connectionist system.
In this section, however, we are discussing systems that have an architecture
roughly similar to the brain’s neurons. These systems are often used in tasks
such as speech recognition, computer vision, and machine learning.

In a neural net, an individual node is called a newron. Despite the name,
these neurons are only superficially similar to human or animal neurons.
A neuron works by receiving inputs from neighboring neurons, with each of
these connections having a weight associated with it. The connections in a
neural network are called synapses. The weight of each synapse is combined
with the input value to determine the weighted input value that is sent to the
target neuron. Neural nets are very useful because they can be trained to rec-
ognize patterns within data. You actually “teach” the network how to do its job.

Joone is an easy-to-use API for working with neural networks in Java. It
has a GUI editor for creating and training neural networks. There is also a
core engine for embedding networks within applications. While it is possible
to create and train a network entirely from the engine, using the editor is
the easiest way. Once you have used the GUI to create and train a network,
you can embed the trained network and the core engine within your own
application. Figure 5-3 shows the GUI editor in operation, editing one of

Joone’s sample networks.

Within the editor, you can create, train, and run neural networks. By
exporting a trained neural network to a serialized file (using the menu File
» Export NeuralNet), you can then use the network within your own appli-
cations. The Joone editor creates a serialized file containing the network,

which you can read into the engine and run by using the following code:

import org.joone.net.NeuralNetLoader;
import org.joone.net.NeuralNet;
import org.joone.engine.Monitor;
import org.joone.io.FileOutputSynapse;

NeuralNetloader netlLoader =
new NeuralNetlLoader("/projects/nn/mynetwork.snet");
NeuralNet myNet = netloader.getNeuralNet();
// get the output layer of the network
Layer output = xorNNet.getOutputlayer();
// add output synapse (connection) to the output layer
FileOutputSynapse myOutput = new FileOutputSynapse();
// set the output file as mynetwork.out
FileOutput.setFileName("/projects/nn/mynetwork.out");
output.addOutputSynapse(myOutput);
Monitor monitor = myNet.getMonitor();
// execute for one cycle
monitor.setTotCicles = 1;
// not in learning mode
monitor.setLearning(false);
// start the neural net's layers
myNet.start();
// start the monitor
monitor.Go();

kid300nEdit - Joone Neural Net Editor - gjects’joone’samplesieditorirecurrent’ Jordan.ser
File n Attributes Tools Window Help

R An EIEE
| ol 55 e o]l] o2 o o [

1ol x|

D B S T o e o] [051

Linear Sigmoid I@ Teacher
; i a2y]
i i -

]

Context

‘ISe\emmn Tool

Figure 5-3: Joone GUI

The above example loads the serialized network into a NeuralNet instance,
using the NeuralNetloader utility class. We then create a FileOutputSynapse that
will capture the output generated by the network. The inputs and outputs of
a network are arrays of double values. The Monitor class manages the neural
network, allowing you to stop and start it and set parameters that control its
behavior. I've left out the exception-handling code to keep this short and

Scientific and Mathematical Applications 123

simple and to focus on the operation of the neural network itself. If all you
want to do is run a neural network and capture its output to a file, you don’t
need to write an application to do this. There is a NeuralNetRunner class with
a command-line interface, or you can execute the network from within the
Joone editor.

Follow the links from this book’s website to the Joone documentation
for a discussion of its more advanced features. The documentation has
many samples to experiment with: image recognition, time-series analysis,
charting, stock forecasting, and much more. Because networks can be
serialized, there is also a framework for creating distributed neural net-
works. This framework is suitable for creating global brains that would
have made Dr. Frankenstein very happy! Neural networks are a powerful
technique to use in many types of pattern-recognition tasks, and Joone
makes it easy to create and embed them in your own applications.

It's Alive! Using JGAP for Genetic Algorithms

[1GAP | For some tasks, it’s not always easy finding the correct algorithm or sequence
of steps to perform the work. This is especially true for processes that require

frequent changes to an algorithm to match changing circumstances in the
program’s environment. In situations like these, you may be able to write a
program that evolves a solution. This is called a genetic algorithm (GA). This
type of programming works by trying many possible solutions and selecting
the ones that perform the best. In each round of trials, the best-performing
members of the population (according to some fitness function) are chosen
to “breed” and create the next generation of programs. When a new genera-
tion is created, the best-performing programs are randomly mutated and
combined with other programs, making many slightly different versions.
Then the process repeats for many generations.

Sometimes this process creates finely tuned algorithms after only a few
generations. It may be very difficult for a human being to understand how a
particular individual performs its task. The steps taken may not be the ones
that you would select if you were coding it by hand. Since the fitness function
chooses based not on readability but on performance, it will select individuals
that match those characteristics the most.

There are several Java APIs for genetic algorithms. You can find links to
some of these on the resources page. In this section, we'll look at one API
called the Java Genetic Algorithms Package (JGAP). Lets start with a few basic
terms related to GAs. These terms are borrowed from genetics, although the
entities in a GA can be any type of structure rather than DNA. The chromosome
(or genome) represents the set of possible approaches to solving a problem,
and a gene represents a unit within the chromosome (an allele is a particular
expression of a gene, much like a class-instance relationship). A gene can be
a String, number, tree, program, or any other type of structure. To use JGAP,
you first need to select a genome that adequately represents your problem
space. Then you define an appropriate fitness function for testing individuals

124 cChoprer s

within the population (also called a genotype). Finally, create a configuration
object to describe characteristics of the process, and then let the critters start
procreating.

We'll use an example from our truth-table code in the “High-Caliber
Bits” section, where we made a 1-of-4 demultiplexer. In that section we built
the truth table for a demultiplexer with two address inputs, one data input,
and four outputs. This requires exactly 32 bits of truth table. You might think
of trying a single fixed-length gene of 32 bits in our genetic simulation. As it
turns out, this doesn’t work very well for our application because the search
space is the entire range of int values. We could design this better by using a
4-bit gene representing a group of output bits, and a chromosome length of 8.
Because the 4 output bits work as a unit anyway, this turns out to be a much
better choice for a gene. In numerous test runs with 100,000 generations
each (and a population of 200), the 32-bit gene did not produce a single fit
individual. But with a 4-bit gene, a winner evolved consistently in fewer than
20 generations.

The JGAP API has a Gene subclass called the IntegerGene. This is easy to
convert into a Java Integer, so it will integrate well with our truth-table code.
A JGAP fitness function has an evaluate method with a Chromosome parameter
that returns a double value for the fitness quotient. A higher value means that
an individual performs the task better. Here is our fitness function:

public class DemuxFitness extends org.jgap.FitnessFunction {
private TruthTable tt;

public DemuxFitness() {
/7 this is our target, what we want to evolve to
tt = new TruthTable(3,4);

tt.store(4, 1); // 100->0001
tt.store(5, 2); // 101->0010
tt.store(6, 4); // 110->0100
tt.store(7, 8); // 111->1000

public int correctBits(int data) {
BitVector vecValue = new BitVector(new long[] {data}, 32);
BitVector target = tt.getTruthMatrix().toBitVector();
// we can find the number of correct bits using:
/1 count{not(xor(target,vecValue)))
vecValue. xor (target);
vecValue.not();
return vecValue.cardinality();

public double evaluate(Chromosome chrom) {
int valueTotal = 0;
for (int i = 7; i»=0; i--) {
IntegerGene gene = (IntegerGene) chrom.getGene(i);
Integer value = (Integer) gene.getAllele();

Seientific and Mathematical Applications 125

126

Chapter 5

valueTotal += value;
valueTotal <<= 4;

}

int correct = correctBits(valueTotal);

/1 we return the square, to reward exact answers
return correct * correct;

We could just return the number of correct bits in an individual’s chromo-
some. This is fine until the fitness value is near optimal, when there is not
as much incentive for individuals to do better. Returning the square of the
number of correct bits gives a greater reward to individuals that make small
increases in fitness. Let’s create a configuration object and then run the
genetic algorithm:

Configuration config = new DefaultConfiguration();
// eight genes
Gene[] genes = new Gene[8];
for (int 1 = 0; 1 < 8; i++) {
// each one a 4-bit integer (0-15 inclusive)
genes[i] = new IntegerGene(0, 15);
}
Chromosome sample = new Chromosome(genes);
config.setSampleChromosome(sample);
DemuxFitness fitTest = new DemuxFitness();
config.setFitnessFunction(fitTest);
config.setPopulationSize(200);
Genotype population = Genotype.randomInitialGenotype(config);
for (int i=0; i<1000; i++) {
population.evolve();
}

Chromosome fittest = population.getFittestChromosome();

The code creates a chromosome of eight genes, each of which can have
a value from 0 to 15. It then puts this sample chromosome into the configura-
tion object. We set the fitness function and the population size, create an
initial random population, and run the simulation. At the end, we select the
fittest chromosome. In this case, we already know the outcome, but if you
needed the value of the winning allele, you could get it from the chromosome.
If you want to use something besides a String, Integer, or bits for your genes,
you can create your own Gene subclass.

Genetic algorithms are another great tool for the Java developer to
know, especially for solving problems where solutions are testable and in
dynamic environments where there may not be a single best solution that
always applies. For an example that evolves neural networks, combining

Joone (as in the previous section) and JGAP, see this book’s companion

website.

IA Is Al: Building Intelligent Agents Using Jade

An intelligent agenl is an autonomous software process, or one that is able to
make decisions and take action without the involvement of a human being.
This is something of a loose definition, but developers mostly use the term to
specifically refer to agents that run within an agent framework. An intelligent
agent is most useful when it is part of a cooperative mulli-agent system. With
these types of systems, you can break down a problem into much simpler parts
and assign agents to each part of the task. Agents sometimes can move from
one machine to another within a framework and are able to communicate
with one another. Other types of agents stay on a single system. As web services
become more ubiquitous and provide a greater diversity of data, you will see
more agents using them as data sources and as communication channels. In
many agent frameworks, the agents themselves act as miniature web services.
‘With a virtual machine capable of running on many different architec-
tures, and a powerful security model, Java is a perfect fit for agent develop-
ment. Think of this as the equivalent of many small non-graphical applets
working on a distributed solution to a problem. There are many different

Java APIs for agent development, and there is even a consortium called the

Foundation for Intelligent Physical Agents (FIPA) that has created a set of
standards for agent frameworks to follow. We'll be working with an API
called Jade that is one of the more popular FIPA-compliant APIs. There are
several completely unrelated Java projects called Jade, so make sure that you
download the one that is the FIPA-based agent framework. (See the book’s
resources links online.)

In this section, we'll introduce Jade through a stock market example.
Intelligent agents would work great for doing program trading in a stock
market. Program lrading involves automatic buying and selling based on events
such as price movement, volume changes, or news reports. This lends itself
well to a multi-agent system. Let’s illustrate this idea by writing a simple agent
that buys 100 shares of a stock when a specific set of events takes place. We’ll
use pseudocode that contacts a hypothetical web service to do this, and we’ll
ignore any privacy and security aspects for this example. (See the Jade docu-
mentation for examples of secure agents.) Here is the simplest agent possible:

public class WorthlessAgent extends jade.core.Agent {
protected void setup() {

}

Jade calls the setup method when an agent is first loaded. (It works much
like the init method of an applet or the main method of a console application.)
This is where you put initialization code for the agent and set up the agent’s
behaviors. Behaviors are things that the agent does in the course of its lifetime.
You can think of these as being very similar to functors. In our case, we might
want a behavior that periodically polls a quote server to get the latest price of
the symbol. Another agent, a value-checking agent, might send a message

Seientific and Mathematical Applications 127

128

Chapter 5

to a purchasing agent when the price reaches some value. There are several
Behaviour (the class name uses the British spelling) subclasses we can use. We
will start a TickerBehaviour to check the value of the latest price quote. This
type of behavior repeats at a specific interval. The name here has nothing to
do with a stock ticker—it represents a clock, but the name is a nice coinci-
dence! Here is the behavior that checks the price every 300 seconds:

public class CheckQuoteBehaviour extends TickerBehaviour {
public CheckQuoteBehaviour(Agent a) {
super(a, 300%1000}; // repeat interval in milliseconds

1

protected void onTick() {
/7 get the current price from somewhere
if (getCurPrice() < 5.0) {
// send a buy message -- defined later

}

public boolean done() {
// stop after 1000 ticks
if (getTickCount() > 1000} {
return true;

}

A behavior stops when its done method returns true. As we have defined it
above, the quote checker will stop after 1,000 ticks. We now plug this behavior
into the quote server agent:

public class QuoteAgent extends jade.core.Agent {
protected void setup() {
addBehaviour (new CheckQuoteBehaviour(this));

1

We’ve now completed the agent. You can load it into the agent server
either through Jade’s GUI or by writing code to do it. Next we’ll send a buy
message to the purchasing agent, replacing the onTick method that we defined
earlier. When an agent is loaded into the system, it gets a unique name called
an Agent Identifier (AID). AIDs can be local identifiers or globally unique iden-
tifiers. We will assume here that we have a PurchasingAgent instance with a
local AID of “buyer.” (The Jade documentation explains how to assign AIDs
to agents.) Here is the redefined onTick method:

// inside the QuoteAgent...
protected void onTick() {
// get the current price from somewhere

if (getCurPrice() < 5.0) {
// send a message to the buyer
jade.core.AID buyingAgent =
new jade.core.AID("buyer", AID.ISLOCALNAME);
// we are requesting that another agent do something
ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);
// send a String message
msg.setContent("buy 100 WHATEVER");
msg.addReceiver (buyingAgent);
send(msg) ;

Here is the code for the Purchasingagent to read and respond to the
messages:

import jade.lang.acl.ACLMessage;
public class Purchasinghgent extends jade.core.Agent {
protected void setup() {
addBehaviour(
new jade.core.behaviours.CyclicBehaviour (this) {
public void action()
{
ACLMessage msg =
if (msg!=null) {
String data = msg.getContent();
/7 call some method to do the agent's work
Object result = tryToBuy(data);
// there is a special shortcut for responding
ACLMessage reply = msg.createReply();
reply.setPerformative (ACLMessage. INFORM);
reply.setContent(result);
send(reply);

receive();

}
block();

);

The CyclicBehaviour repeats an action indefinitely, or until the behavior’s
done method returns true. The block method will cause the behavior instance
to block until a new message arrives. The performativeis the type of message
that is being sent to the recipient. There are other types of behaviors in Jade.
The SequentialBehaviour class manages a group of child behaviors (this does
not include thumb-sucking!) in a sequence. The ParallelBehaviour performs a
group of behaviors in parallel. A more complex behavior is the FSMBehaviour,

Scientific and Mathematical Applications 129

130

which works as a finite state machine. With this class, you define behaviors that
represent different states of the system, and transitions between the different
states are determined by the type of event that ended the previous behavior.

Jade has many other features that help to build distributed multi-agent
systems. Agents can run inside J2EE servers, applets, and smaller devices such
as cell phones and PDAs. Jade even has an ontology framework for agent
semantics, so that agents can communicate about their tasks and share a
common understanding. You'll want to take a look at the examples that are
supplied with Jade to see some of its more advanced usage. Agent technologies
will most likely play a big part in the future of the Semantic Web, and being
able to work with existing agent frameworks will help Java developers to pre-
pare for this.

Word Up: Navigating English with JWordNet

Chapter 5

For many researchers, computational linguisticsis a window into the operations
of the human mind. By understanding what human beings mean when they
use words in a particular sense, scientists may be able to learn more about
how people think on a deeper level. But let’s face it, people don’t always make
much sense, and understanding human language can be difficult even for
other people. For aliens from Alpha Centauri (which some readers will swear
is the author’s true home!) or for computers, it's much more ditficult. In the
best of circumstances, it’s possible for a computer program to get an idea of
the syntax and structure of a sentence. Of course, getting the intended meaning
is much harder. We would eventually like computers to take some kind of
action based on what we say, and this requires a shared context as well as a
model for cause and effect.

Never mind that we don’t really have a way to measure true understand-
ing. If we can at least get the computer to know which word senses the speaker
or writer intended and their relations to other concepts within a knowledge
base, we can build better natural language—understanding systems. It would
be very helpful to have a tool we could use to look up meanings and word
relations. At Princeton University’s Cognitive Science Laboratory, researchers
have created a lexical reference system for the English language. The system
is called WordNet and has thousands of words organized into synonym sets.
Each word sense is treated individually and is linked with other related words.
Besides synonyms and antonyms, word relations come in a few other forms
with exotic names such as meronym, holonym, hypernym, and hyponym. Despite
having names that sound like diseases, these relations simply describe whole /
part relationships and supertype /subtype classifications. These are very sim-
ilar to aggregation (has-a) and inheritance (is-a) relationships in object-
oriented programming. Table 5-2 describes the word relationship terms
used in WordNet.

Table 5-2: Terms Defining Word Relations

Term Definition

Meronym A word that names a part of something larger. Wheel is a meronym of
bicycle.

Holonym A word that names a larger whole of which something is a part. Bicycle is
a holonym of wheel.

Hypernym A word that names a more general class of something. Vehicle is a
hypernym of bicycle.

Hyponym A word that names a more specific example of a word. Bicycle is a
hyponym of vehicle.

There is an open-source Java interface to WordNet, called [WordNet,
that you can integrate with Java applications. This API is useful in advanced
text-processing applications. A program might be processing some text and
encounter the word wing. This word could have several meanings. If the text
had earlier included the word feather, you would use JWordNet to find the
holonyms of feather and wing. The program would find that they are both
parts of birds and that a bird is a type of animal. You could use this context to
discover the most likely meaning of wing and perform further processing of
the text using that knowledge.

Here is a “Hello Word” example of JWordNet code that looks up the word
wing to find holonyms for each sense of the word:

configureJWordNet(); // see book's web site for configuration
Dictionary dictionary = Dictionary.getInstance();
IndexWord word = dictienary.lookupIndexhWord(POS.NOUN, "wing");
System.out.println("Senses of the word 'wing':");
Synset[] senses = word.getSenses();
for (int i=0; i<senses.length; i++) {
Synset sense = senses[i];
System.out.println({(i+1) + ". " + sense.getGloss());
Pointer[] holo = sense.getPointers(PointerType.PART_HOLONYM);
for (int j=0; j<holo.length; j++) {
Synset synset = (Synset) (holo[j].getTarget());
Word synsetWord = synset.getWord(0);
// lemma belongs to a word, as synsets have multiple words
System.out.print(" -part-of-> " + synsetWord.getlemma());
// gloss belongs to the synset (it works like a definition)
System.out.println(" = " + synset.getGloss());

Scientific and Mathematical Applications 131

132

The code first looks up the word in the WordNet database, searching
for nouns that match the word wing. This returns a Word object, from which
you can obtain an array of Synset objects. A Synset (synonym set) represents
a particular word sense and all of its synonyms. The program finds the
related holonyms for each of the word senses of wing. It prints the gloss
of each holonym. A gloss is a description that clarifies the word’s meaning.
The lemma is a heading or label for the gloss, for a particular word. The
example code returned the following results:

Senses of the word 'wing':
1. a movable organ for flying (one of a pair)
-part-of-> bird = warm-blooded egg-laying vertebrates...
-part-of-> bat = nocturnal mouselike mammal...
-part-of-»> insect = small air-breathing arthropod
-part-of-> angel = spiritual being attendant upon God
2. one of the horizontal airfoils... of an airplane
-part-of-> airplane = an aircraft that has fixed a wing...
3. a stage area out of sight of the audience
4. a unit of military aircraft
5. the side of military or naval formation...
6. the wing of a fowl; "he preferred the drumsticks to the wings"
-part-of-»> bird = the flesh of a bird or fowl... used as food
7. surrounds the wheels of a vehicle...
-part-of-»> car = 4-wheeled motor vehicle...
8. an addition that extends a main building
-part-of-»> building = a structure that has a roof and walls...

I've used ellipsis markers to shorten some of the longer lines of the
text. The JWordNet distribution that I used while writing this section did
not yet support Java 5, but I hope that will be fixed by the time you read this!

JWordNet supports file, memory, and database dictionaries. There is an RDF

mapping of the WordNet terms, as mentioned in Chapter 4. JWordNet is a
powerful tool when used with text-matching techniques from Chapter 2 and
semantic analysis from Chapter 4. You can find a link to the RDF mapping
and other information about WordNet and JWordNet on this book’s website.

Chapter Summary

Chapter 5

In this chapter, we’ve taken a look at a number of APIs for mathematical and
scientific applications. In my opinion, this is one of the most powerful uses of

Java, and I hope that open-source developers will continue to create exciting

projects such as the ones explored here. In later chapters, we'll work with
other libraries that can be used in scientific applications, as we work with
graphics, multimedia, and project integration ideas.

GRAPHICS AND DATA

VISUALIZATION

People have come to expect sophisticated

graphics from their applications. Most users
will look at a program’s user interface first
and, regardless of its capabilities, will not use a
program that lacks an advanced graphical inter-

face. We want to see our data. For analyzing data, we
expect charting and graphing functionality, and for analyzing systems with

complex relationships, we expect to see a graphical layout. In Java, we have
the Swing and AWT classes, which are used to create windows, panels, buttons,
fonts, and other graphical widgets. While it is possible to display data using
only these classes, the application may seem dull. There are many libraries
that can help you in your graphics programming, such as the charting and
reporting APIs discussed here. This chapter also discusses other APIs for
visualizing data and creating graphical applications in Java.

Gooey XML: Defining Java GUIs in XML

Many applications have complex graphical user interfaces (GUIs) that involve
many different components. The interface for these applications is usually
defined in Java classes built upon AWT or Swing components. For example, a

134

Chapter &

program may have a number of JPanel subclasses that define display widgets.
One of the problems with this “subclassing” approach is that any changes to
the layout or display properties require recompiling the code. Even some-
thing as simple as a color change requires rebuilding the application.
There is another reason why subclassing lots of panels and other GUI
widgets may not be such a good idea. Some applications, such as applets or

Java Web Start applications, must be first loaded across the network before

the program can run. Of course, having many classes means a longer down-
load time. Having many graphical panels also means additional classes will
need to be loaded into memory, and this can lead to code bloat. One solution
is to describe the GUI layout in an external file and interpret the definition
file from a Java class. A few years ago, before any of the XML-defined user
interfaces became popular, I was working on a Java project that involved many
different complex graphical interface panels. The developers were coding the
logic of the system, and because we were short on development time, I wrote
a simple XML-based processor for defining the interfaces. The business
analysts worked with the customer to finalize the layout, defining each panel
in XML and testing its appearance before handing it over to the developers.
Defining the GUI in XML helped because it was quick and easy to change,
and it gave a good starting point for an interface that was close to what the
customer wanted.

Defining Java user interfaces in XML is a lot easier now, because there
are frameworks that are more complete than a simple home-brewed language.
SwiXML (pronounced “swicks em el”) is an open-source XML-based Swing
layout engine. There are also other frameworks (such as Jelly and XUL), but
SwiXML is the easiest to get started with. Let’s define an interface in SwiXML
and embed it within a Java program. Figure 6-1 shows a GUI with text fields
for displaying information about a book.

L A simple Frame

Book Details

Title |
Auther
Subject
Publisher]

Press this I

Figure 6-1: A GUl to display book information

Let’s define the XML for this layout:

<frame Size="400,400" Title="A Simple Frame" id="theFrame">
¢panel Border="EtchedBorder">
<panel Constraints="BorderLayout.NORTH">
<label Font="Times-BOLD-24" AlignmentX="0.5">Book Detailsc¢/label>
</panel>
<hbox Constraints="BorderLayout.CENTER">
<vbox Constraints="BorderLayout.WEST">
<label Font="Times-BOLD-14" Foreground="black">Titlec¢/label>
<label Font="Times-BOLD-14" Foreground="black">Author</label>
<label Font="Times-BOLD-14" Foreground="black">Subject</label>
<label Font="Times-BOLD-14" Foreground="black">Publisher</label>
</vbox>
<vbox Constraints="BorderLayout.EAST">
¢textfield id="title" Columns="30"/>
<textfield id="author" Columns="30"/>
ctextfield id="subject" Columns="30"/>
<textfield id="publisher" Columns="30"/>
</vbox>
</hbox>
<panel Constraints="Borderlayout.SOUTH">
<button id="btn1" Text="Press this" /»
</panel>
</panel>
</frame>

This SwiXML code defines a 400x400 JFrame, with the title “A Simple
Frame.” The id attribute is used to assign generated Swing components to
variables within the application. Each one will automatically be mapped to
a public variable of the same name (if it exists). The example shows a
nesting of several Swing containers. The hbox and vbox tags represent the
horizontal and vertical layout containers from javax.swing.Box. The equiva-
lent Swing code for this example can be found on the book’s website at
http://wickedcooljava.com.

The SwingEngine class from SwiXML reads the XML and generates the
corresponding Swing components. To allow the engine to store references
to these components in your application, you need to pass it a reference to a
class that contains public variables of the appropriate name and type. Let’s
write the Java code to load the frame:

import javax.swing.*;
import org.swixml.SwingEngine;

public class SwixMLTest {
// these get populated by the SwiXML engine
public JFrame theFrame;
public JTextField title, author, subject, publisher;
public JButton btni;

Graphics and Data Visualization 135

136

public SwixMLTest() {
try {
SwingEngine engine = new SwingEngine(this);
// bookGUI.xml is the file we created earlier

swen.render ("bookGUI.xml");
theFrame. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
theFrame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();

}

After the render method returns, the JFrame and other component variables
(as defined in id attributes of the XML) are assigned their values. We can
then use these objects as we would in an ordinary Swing application. Using
XML documents to define the graphical elements of your application allows
you to change many aspects of the presentation without having to recompile.
Fonts, colors, borders, and other cosmetic changes are no longer tied to the

Java source code. This has the benefit of increased maintainability and smaller

compiled code. It also has potential uses in dynamically generated user
interfaces.

To the Vector Goes the Spoils: Visualizing Data with SVG

Chapter &

Scalable Vector Graphies (SVG) is an XML-based two-dimensional vector graphics
standard, created by the W3C. Unlike raster (bitmap) image standards such as
BMP, JPEG, or GIF that work by defining the individual pixels of the image,
vector graphies defines an image by drawing its constituent parts, such as lines,
text, ellipses, and rectangles. Figure 6-2 shows a vector graphics image made
from some drawing primitives.

£ Batik Graphics =1oix]

An SVG document created with Batik

O

Figure 6-2: Vector graphics image

If you've done any work with Java 2D or AWT drawing, this should look
familiar to you. You can use a java.awt.Graphics2D object to draw lines, ellipses,
rectangles, and other shapes. This is usually done from the paint method of a
display component. We could draw the same image with the following code:

// assume that we have a Graphics2D instance
// already defined somewhere (such as in a paint method)
Graphics2D graphics = ...
graphics.setColor(Color.BLACK);
graphics.drawRect(190,190,60,60);
graphics.setFont(Font.decode("Courier-beld-20"));
graphics.drawString("An SVG document created with Batik", 40, 100);
graphics.setColor(Color.BLUE);
CubicCurve2D curve =

new CubicCurve2D.Double(150, 150, 175, 125, 300, 175, 300, 300);
graphics.draw(curve);
graphics.drawOval (200, 200,40,40);
graphics.setColor(Color.RED);
graphics.drawOval(100,180,60,80);

We could also do the equivalent of this in SVG. Because SVG is an XML
format, we can easily create and process it in Java. The structure of SVG is
not extremely difficult to work with, as you can see from the SVG file below
(some style attributes have been removed to keep the listing short—see this
book’s website for the full listing):

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.0"
contentStyleType="text/css" width="500" height="500">
g>
<g>
<rect x="190" y="190" width="60" height="60" />
<text x="40" y="100" style="font-size:20; font-weight:bold;">
An SVG document created with Batik
</text>
/g
<g style="fill:blue; font-size:20; font-weight:bold;">
<path d="M150 150 C175 125 300 175 300 300" />
<circle r="20" style="fill:none;" cx="220" cy="220" />
<ellipse style="strokeired;" rx="30" cx="130" ry="40" cy="220" />
/g
/gy
</svg>

The most awkward part of this document is the path tag, which creates an
arbitrary shape using special character codes to describe movement and draw-
ing commands (for example, M moves to an absolute location, and C creates
a cubic Bezier curve). One way to work with this format is to create the XML
source in a DOM tree. To do this, you'd need to learn the SVG tags. For

Graphics and Data Visualization 137

138

Chapter &

anyone who plans to directly manipulate SVG documents, I would suggest
looking at the official documentation to become familiar with the standard.
You might also consider creating SVG documents using an XSL-T stylesheet.

For most developers, it would be better to use a high-level API instead.
Batik is an open-source SVG API from the Apache Group. Its SVGGraphics2D
class is an implementation of Graphics2D (java.awt) that can write out the
drawing canvas as an SVG file. You can use the AWT drawing methods shown
earlier to create an image, by drawing onto an SVGGraphics2D instance. Once
you have drawn the image, you can call methods to write out the SVG XML.
The following code shows how to do this:

import org.w3c.dom.svg.SVGDocument;

import org.apache.batik.dom.svg.SVGDOMImplementation;
import org.apache.batik.svggen.SVGGraphics2D;

import org.w3c.dom.DOMImplementation;

DOMImplementation domImpl =
SVGDOMImplementation.getDOMImplementation();
String namespace = SVGDOMImplementation.SVG_NAMESPACE_URI;
// create a document with the appropriate namespace
SVGDocument document =
(SVGDocument) domImpl.createDocument(namespace, "swg", null);
// create an SVG Graphics2D instance using the document
SVGGraphics2D graphics = new SVGGraphics2D(document);
// now we insert the drawing code from above
graphics.setColoxr(Color.BLACK);
graphics.drawRect(190,190,60,60);

// create a writer that goes to an output file in UTF-8 format
FileOutputStream fileStream = new FileOutputStream("test.svg");
Writer out = new OutputStreamWriter(fileStream, "UTF-8");

// write the XML, using CSS style properties (true)
graphics.stream(out, true);

out.flush();

out.close();

You can see that we didn’t need to know any of the SVG tags in order
to create the file; we used only the Java 2D drawing primitives. Batik can also
script SVG content using a JavaScript (ECMAScript) interpreter, convert
SVG files to bitmap formats, convert fonts, and view SVG files. SVG images
can be embedded in XSL-FO documents. The Apache FOP project is a Java
API for working with XSL-FO documents and can create Adobe PDF docu-
ments from them. You'll find links to this project on the book’s website. In
the next section, we show how to display an SVG document using Batik.

Resources

» Eisenberg,]J. David. SVG Essentials. O’Reilly, 2002,

* Batik API documentation (see http:/ /wickedcooljava.com)

See SVG: Viewing SVG Content with Batik

In the previous section, we created SVG content by using 2D drawing primi-
tives on a Batik Graphics2D instance. We then sent the generated SVG output
to a Writer. You can also use Batik as an SVG viewer for embedding in your
Swing applications. The JSVGCanvas class is a Swing component that reads an
SVG file and displays its contents. You can set the document with either a URI
reference or a DOM Document. The following code displays an SVG image
from a URI:

import org.apache.batik.swing.JSVGCanvas;
JSVGCanvas canvas = new JSVGCanvas();

String svgURI = "file:/projects/wcj6/test.svg";
canvas.setURI(svgURI);

canvas.setSize(500,500);

JFrame frame = new JFrame("Batik Graphics");
frame.add(canvas);

frame.pack();

frame.setVisible(true);

The URI could also be an HTTP URI, but in this case I've used a file.
The Batik display classes support SVG documents with embedded ECMAscript
scripting, interactive zoom, and many other features. The distribution comes
with example SVG files and a sample application.

Body Art: Converting JGraphT into a JGraph View

In Chapter 5, we created a graph model of some organs and systems in the
human body. To make the model, we used the JGraphT API, which is a
model-only API and doesn’t include any view capability. But it does have the
advantage of a simple interface. Another API, [Graph, offers a complete
Model-View-Controller graph framework for Swing. Unfortunately, its model
API is more complex than JGraphT’s. You can create your graph models
much easier with the JGraphT API and use the JGraphModelAdapter class to
convert them into JGraph models. Once you have a JGraph model, you can
create a JGraph view for it. The following example creates a view from the

JGraphT maodel that we created in Chapter 5:

import org._3pq.jgrapht.graph.ListenableDirectedGraph;

import org._3pq.jgrapht.ext.]GraphModelAdapter;

import org.jgraph.JGraph;

import org.jgraph.layout.CircleGraphLayout;

// use a JGraphT listenable graph

ListenableDirectedGraph graph = new ListenableDirectedGraph();
// create the view, then add data to the model
JGraphModelAdapter adapter = new JGraphModelAdapter(graph, null, null);
JGraph jgraph = new JGraph(adapter);

JScrollPane scroller = new JScrollPane(jgraph);

JFrame frame = new JFrame("The Body");

Graphics and Data Visualization 139

140

Choptar &

frame.setSize(600,600);

frame.add(scroller);

frame.setVisible(true);

// now add the data (the HumanOrgansGraph example from chapter 5)
HumanOrgansGraph hog = new HumanOrgansGraph(graph);
CircleGraphLayout layout = new CircleGraphlayout();
layout.run(jgraph, jgraph.getRoots(), new Object[]{});
// the layout cache maps the model cells to views

// we use this to reload the view after any model changes
jgraph.getGraphlLayoutCache().reload();

jgraph.repaint();

In graph theory, the layout of the vertices is not considered to be impor-
tant. In other words, two graphs are considered equivalent if they have the
same edge connectivity. In order to display the items in JGraph, we’ll need to
physically arrange the vertices and edges in some way. The default conversion
creates a layout with all the vertices in the same location—not very useful!
The code above uses an add-ons API from JGraph to do a circular layout of
the graph vertices. The result is shown in Figure 6-3.

s B

Figure 6-3: Circle layout of body graph

The edges also have their own view. By default, edges use the names of
the source and target vertices as labels. This can be annoying, but JGraph
does give you control over a graph’s appearance. To remove labels from all
the edges, run this code:

import org.jgraph.graph.GraphLayoutCache;
import org.jgraph.graph.CellView;
GraphLayoutCache cache = jgraph.getGraphLayoutCache();
Cellview[] cells = cache.getCellViews();
for (Cellview cell : cells) {
if (cell instanceof EdgeView) {
EdgeView ev = (EdgeView) cell;
DefaultEdge eval = (DefaultEdge) ev.getCell();
eval.setUserObject(""); // no label on the edge

}
cache.reload();
jgraph.repaint();

We use the layout cache to obtain access to the view for our graph. An
edge’s view describes how to display the edge using properties such as line
style and label. Each edge has a user object associated with it, which can be
any Java object. The view uses the toString value of this object as a label.
The above code removed the label by changing the user object to empty text.
In the next section, we’ll fix other problems with JGraph default views, by
adding attribute maps.

Attri-Beauty: Using JGraph Attribute Maps

Graph connectivity represents only the interconnection of vertices, not the
placement or arrangement of them in a graphical sense. We saw this in the
previous section when we used JGraph’s add-ons API to create a circular lay-
out. We needed something besides the graph model to set the location of
each vertex. In JGraph, every vertex has an attribute map associated with it.
This map contains attributes for location, color, and other properties of the
view. The CircleGraphLayout class from the previous section works by setting
the location attribute inside each vertex’s map.

You can work with the attributes of a vertex by obtaining its view object,
which is an instance of the Cellview class. The layout cache that we saw
in the previous section, which maps the model cells to views, provides the
access to this view object. First you retrieve the graph’s layout cache using
the getGraphLayoutCache method and use it to look up the view with the vertex
as a key. You can then set values in the CellView's attribute map. There is a
shortcut method for working with the vertex position and size. You can call
the getBounds method to obtain the bounds of the view and set it directly. This
example sets all the vertex locations to a random value:

GraphLayoutCache cache = jgraph.getGraphLayoutCache();
int width = 600;

Graphics and Data Visualization 141

142

int height = 600;
java.util.Random random = new java.util.Random();
// get the vertices, which are called roots
for (Object item : jgraph.getRoots()) {
/1 each vertex is a GraphCell instance
GraphCell cell = (GraphCell) item;
/1 look up the corresponding CellView
Cellview view = cache.getMapping(cell, true);
/! getBounds is a shortcut to the vertex location and size
Rectangle2D bounds = view.getBounds();
double x = random.nextDouble() * width;
double y = random.nextDouble() * height;
bounds.setRect(x, y, bounds.getWidth(), bounds.getHeight());
}
cache.reload();
jgraph.repaint();

Other atributes of the view include arrow and line styles, icons, colors,
fonts, resizeability, and text position. To work with these attributes, you will
need to use the attribute map for the view. There is a GraphConstants class that
contains the keys for these attributes. In this example, we change the back-
ground of each vertex to green:

GraphLayoutCache cache = jgraph.getGraphLayoutCache();
for (Object item : jgraph.getRoots()) {
GraphCell cell = (GraphCell) item;
CellView view = cache.getMapping(cell, true);
AttributeMap map = view.getAttributes();
map.applyValue(GraphConstants.BACKGROUND, java.awt.Color.GREEN);
}
cache.reload();
jgraph.repaint();

Using the attributes available in JGraph, you can completely customize
the appearance of a graph. The API documentation contains many examples
that show how to use these attributes.

Charting New Territory: Creating Charts with JFreeChart

Chapter &

Creating charts is one of the most commeon types of data visualization. We
showed in the section “To the Vector Goes the Spoils” that we can make
vector images using the Batik API or by directly styling XML data into SVG.
This requires a lot of work to create even a basic chart, because you'll have to
draw each shape separately. The JFreeChart APIis a solution to this problem.
It uses Batik behind the scenes but has higher-level objects designed to make
charting much easier. JFreeChart can produce pie, bar, line, area, scatter,
time series, open/high/low/close, and other types of charts. The main chart
class is JFreeChart (no surprise there), and the best way to get started with it is
by using static factory methods of the ChartFactory class. You'll need a data set

for the chart, and there are several types of these. For a pie chart, you can use
DefaultKeyedValuesDataset (which is similar to a HashMap). This code snippet
creates a pie chart and displays it in a ChartFrame (a JFrame subclass for display-
ing charts):

import org.jfree.data.general.DefaultKeyedValuesDataset;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;

DefaultKeyedValuesDataset dataset = new DefaultKeyedValuesDataset();
dataset.setValue("raining", 60);
dataset.setValue("snowing", 5);
dataset.setValue("sunny", 200);
dataset.setValue("cloudy", 100);
// Create a chart entitled "Weather", using the above dataset
JFreeChart pie =

ChartFactory.createPieChart("Weather", dataset, true, true, false);
ChartFrame frame = new ChartFrame("My weather", pie);
frame.setSize(500,500);
frame.setVisible(true);

The createPieChart method has three boolean parameters. These control,
respectively, whether to create a legend, tooltips, or URLs for the chart. The
pie chart created by this code is shown in Figure 6-4. The ChartfFrame has mouse-
click handlers that let the user zoom into or out of the chart, change display
characteristics, or save the chart as an image.

£ My weather

Zigix

Weather

cloudy = 100 }———.

snowing = 5

‘.ralmn Msnowing sunny cloudy

Figure 6-4: Weather pie

Graphics and Data Visualization 143

144

You can save any chart as an image, using the ChartUtilities class. For the
pie chart, we could do the following to create a PNG image of the chart:

FileOutputStream fileOut = new FileOutputStream("pie.png");
ChartUtilities.writeChartAsPNG(fileOut, pie, 500, 500);

There are other types of datasets corresponding to different types of
charts. You can also populate a dataset from a database connection rather
than setting values programmatically as we did earlier. See the JFreeChart
documentation for more information on the dataset implementations.

You can also use these methods to generate dynamic charts from a web-
based application. One way to do this is with a servlet that calls the methods
to create a chart and write its image to the servlet’s output stream. But there
is an even easier way to create dynamic charts. CEWolf is an open-source Java
Server Page (JSP) tag library based on JFreeChart. If you are building a web-
based application, you can use this tag library to generate charts very quickly.
If you have a servlet engine such as Apache Tomecat installed, you can get
started quickly by deploying the CEWolf example web application archive
(WAR) file. It includes all the necessary libraries (JFreeChart classes and the
tag library classes). As of this writing, the charts must currently get the data
from a Java class external to the JSP. In the future, the CEWolf tags will be
expanded to allow you to get data values from within the JSP. For links to
CEWolf, see this book’s website. JFreeChart and CEWolf are currently still
in beta version, but they are already powerful tools for adding charts to your
applications.

Reporting for Duty: Creating Reports in Java

Chapter &

Most large applications have some type of reporting requirements. Of course,
you could always create reports by dynamically drawing each part of the
report based on some data values. This might be done with XML (such as
in XSL-FO or SVG), AWT drawing primitives, or a report-generation utility.
Commercial reporting packages make the task easier, but these are usually
expensive. One of my principles in writing this book is to support open-source

efforts where possible. By now you are probably wondering if there is an
open-source tool that can help in creating reports. The answer is yes, and
there are in fact several to choose from. In the previous section we created
charts in Java. This same open-source group also created JFreeReport, a
report-generation APL Itis a powerful package, but currently you can only
create the reports using its Java API or an XML description. A graphical
report designer for this report engine, JFreeDesigner, is still under develop-
ment and was not ready at the time of writing.

Because a graphical report designer is such a powerful tool for quickly
and easily creating reports, in this section we are working with JasperReports.

JasperReports is an open-source reporting tool for Java that has a visual

report builder called iReport. It can use an XML or JDBC data source to
populate the report. As a demonstration, we’ll create the report shown in
Figure 6-5 using a database connection.

»
f p
: .
£ Reporting For Duty: The Planets
£
E
= fPlanet Diameter (km) 1o Sun (km)
g Mercury 4,879 40 57,909,176 00
3 Vems 12,103.70 108,208.926.00
U% Earth 12.756.28 149,597 887.00
Mars 6,804.90 227.936,637.00
g Jupiter 142,984 00 778,412,027 00
k1 Saturn 120,536.00 1.426,725,413.00
Uranus 51,118.00 2.870,972,220.00
i Neptune 49.528 00 4,498 252 .900.00
o Phuro 2,390.00 5.906,376,272.00
] ezexileon <] 3
[i4 4 Tofl pRlIG O 14 [

Figure 6-5: A simple report

The iReport application has a report wizard that can generate reports
from a template, and it comes with some basic report templates (or you can
create your own). The report wizard is started from the File menu, and it
initially asks you to enter a SQL query. After selecting columns from the
query result, you can then customize the report and run it using live data.
The above report took less than two minutes to create using iReport!

Once you create a report, the layout is stored in a JasperReports XML
file. You can run the report in iReport using a JDBC data source and save the
output as a PDF, HTML, XLS, or CSV file. You can also integrate the report
into your applications using the JasperReports APL The report engine can run
from within a web and J2EE application or can use a Swing viewer for creating
thick client applications. The JasperFillManager class is one of the first places
to look in JasperReports. Much of the functionality of the APT is exposed
through static methods of this class. The following code shows how to load
the report XML created earlier, fill it with data, and display it from a Swing
application:

try {
Connection conn = // get a JDBC connection somehow
/! compile the report to a serialized report template object
JasperReport report =
JasperCompileManager .compileReport ("report.jrxml");
// populate the report with data from the database
/1 the query will use field names from the report
// there is an optional map (null here) for report parameters
JasperPrint print =
JasperFillManager.fillReport(report, null, conn);

Graphics and Data Visualization 145

146

Periodic

JAVAL.4+

Chapter &

/! create a viewer frame and display it
JasperViewer viewer = new JasperViewer(print);
viewer.setSize(400,400);
viewer.setDefaultCloseOperation(JFrame. EXIT _ON_CLOSE);
viewer,setVisible(true);

} catch (Exception e) { // several exceptions to catch
e.printStackTrace();

The iReport and JasperReports combination is a powerful one.
Although this is not yet at version 1.0 and there are still bugs, don’t let
the version number fool you. You'll also want to keep an eye on the other
report engines, since there is a lot of active development work happening
there too. For links to these and other open-source reporting options, see
the book’s companion website.

Patterns: Simple 2D Data Visualization

Data visualization is about displaying patterns. It uses the human brain, our
own amazing neural network, to discover patterns and to understand relation-
ships within the data. We can use computer graphics as a tool that makes
patterns stand out more clearly. Looking at a long list of numbers will probably
not reveal much about the data, but patterns in an image are more easily rec-
ognizable. In previous sections, we used charting and reporting to represent
data spatially. To make a chart, we needed to know ahead of time how the data
points were related. However, in some cases you may not know what to do
with the data. Imagine that you've found some data on a disk and want

to figure out what it is. After checking for common file types and running a
statistical analysis of the data, you might decide to look for spatial relation-
ships. One simple type of data visualization is to display data points on a two-
dimensional grid, converting the data into pixels and arranging them in some
order. Figure 6-6 shows some mostly random data in a rectangular grid.

In Java, you can use a BufferedImage (java.awt.image) to create an image
from data in a byte[] buffer. For our purposes of data visualization, the most
useful types of buffered images are the binary and grayscale (see the JDK
documentation for the BufferedInage class). The size of the buffer array will
depend on the width and height of the image. The following class is a Swing
JPanel subclass that displays an image of binary data (packed as 8 pixels per
byte, or 1 bit per pixel).

public class BinaryPlotPanel extends JPanel {
BufferedImage buffIm;
private byte[] buffer;

public BinaryPlotPanel(int x, int y) {
// to make this a grayscale image (8 bits per pixel),
// use TYPE_BINARY_GRAY instead
buffIm = new BufferedImage(x, y, BufferedImage.TYPE_BYTE BINARY);
WritableRaster rasta = buffIm.getRaster();

DataBufferByte buf = (DataBufferByte) rasta.getDataBuffer();
buffer = buf.getData();

public byte[] getBuffer() {
return buffer;

}
public Graphics2D getBufferGraphics() {

return buffIm.createGraphics();
}
public int getImageHeight() { return buffIm.getHeight(); }
public int getImageWidth() { return buffIm.getWidth(); }
public void paint(Craphics g) {

Graphics2D g = (Graphics2D) argo;

g.drawImage(buffIm, 0, 0, this);
}

Random 701400

Figure 6-6: Pseudorandom dala in a rectangular grid

The panel’s constructor creates a buffered image, and the paint method
displays the image whenever the component needs repainting. In the follow-
ing code we create an instance of the BinaryPlotPanel class that we just created,
add the panel to a JFrame, grab the data buffer, and populate it with some
random bytes (plus some non-random data):

int x = 600;
int y = 400;

Graphics and Data Visualization 147

148

Chapter &

BinaryPlotPanel bpp = new BinaryPlotPanel(x, y);
byte[] data = bpp.getBuffer();

Random r = new Random()};

// fill the buffer with random data
r.nextBytes(data);

Graphics2D graphics = bpp.getBufferGraphics();
graphics.setFont(Font.decode("Courier-48"));
graphics.setColor(Color.BLACK);

// draw on top of the existing data
graphics.drawString("Wicked Cool Java", 80, 200);
JFrame frame = new JFrame("Random " + x + "x" + y);
frame.setSize(x + 10, y + 30);

frame.add(jp);

frame.setVisible(true);

The data created is the same as that shown earlier in Figure 6-6, but it is
shown below in Figure 6-7 using the correct width and height. Notice that data
that should have been directly underneath was skewed by having the incorrect
row size. The black region under the first image is an artitact of changing
the row length without compensating by a shorter height.

Random 600x400

Figure 6-7: Hidden data revealed

This type of data visualization can be useful in some applications. As you
saw with the hidden text, even if spatial patterns exist within the data, they
may not be noticeable under the wrong X and Y dimensions, so you may need
to try many sizes to find the correct one. In the next section, we look at 2D
transformations of images.

A Fine Transform: Using Affine Transformations in Java 2D

Java’'s Abstract Window Toolkit (AWT) provides a Graphics class with methods
for drawing lines, ovals, rectangles, text, polygons, and other shapes. A Panel,
Frame, or other AWT component draws itself using the Graphics instance passed
to its paint method. The GUI environment automatically calls this method
whenever the component needs redrawing. Sun added the Java 2D framework
on top of the original AWT Graphics class, adding many new features to the
Java core APL. One important Java2D feature is known as the affine transfor-
mation. It works by transforming the coordinate system before any drawing is
done on the Graphics object. To illustrate this, we’ll skew the coordinates with
a shearing transformation and draw some text and graphics to see how it looks
with and without the transformation. First, let’s draw some text, using the
default coordinates, as shown in Figure 6-8. We'll do this in the paint method
of a JFrame:

import java.awt.Font;
import java.awt.Craphics;
import java.awt.Craphics2D;
import javax.swing.JFrame;

public class MyTransform extends JFrame {

public MyTransform(String title) {
super(title);

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.setFont(Font.decode("arial-bold-36"));
g2d.drawString("Affinity", 100, 100);
g2d.drawOval(100, 150, 35, 50);
g2d.drawOval(135, 150, 35, 50);

public static void main(String[] args) {
MyTransform aft = new MyTransform("Affinity");
aft.setSize(300,300);
aft.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
aft.setVisible(true);

In all affine transformations, the change affects the entire coordinate
system and not just individual objects. We call the methods to apply the trans-
forms before calling the drawing methods. Let’s display the above text with a
shearing transform, as shown in Figure 6-9. This is a transform where lines

Graphics and Data Visvalization 149

150

Chapter &

are shifted in a new direction but parallel lines still remain parallel. The call
to the shear method happens before the drawing occurs. Here is code to per-
form the transform:

public void paint(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.shear(0.5,0.5);
g2d.setFont(Font.decode("arial-bold-36"));
g2d.drawString("Affinity", 100, 100);
g2d.drawOval (100, 150, 35, 50);
g2d.drawOval(135, 150, 35, 50);

£ Affinity =10l x|

Affinity

0

Figure 6-8: Text and graphics with no transform

‘\\\\\\\
L

A
S

Figure 6-9: Text and graphics with shear transform

You can apply multiple affine transforms before performing drawing
operations—for example, a shear combined with rotation, scaling, and
translation. The order in which these operations are applied has a large
effect on the combined result. The rotation and translation (moving the
coordinate’s origin) operations might be useful in a geographical display or

in an image-editing program. The scaling (resizing) transform can be used
to make your application zoomable, but this will require extra work to manage
the zooming process. In the next section, we look at an API that makes build-
ing zoomable applications much easier.

Room to Zoom: Building Zoomable GUIs with Piccolo

Piccolo is an open-source API for building 2D structured graphics. One of its
most exciting features is the ability to create GUI widgets with interactive zoom-
ing capability. Dragging with the left mouse button pans the contents of the
display widget. Dragging with the right mouse button zooms the display in and
out. Other features include bounds management, object picking/selection,
and animation.

Figure 6-10 shows some graphics drawn in a PFrame (a Piccolo frame class).
The frame shows a closed line path made with randomly generated points.
By default, the frame is zoomed out to display the entire contents.

Room To Zoom P =]

Figure 6-10: Piccolo application at default zoom

The PFrame class is the starting point for creating a Piccolo application.
Create your own class that extends PFrame. The initialize method of the
PFrame is where you put the code to create the display elements. The following
code example illustrates this:

import java.awt.Color;

import java.util.Random;

import edu.umd.cs.piccolo.nodes.PPath;
import edu.umd.cs.piccolox.PFrame;

public class PiccoloExample extends PFrame {

public void initialize() {

Graphics and Data Visualization 151

152

setTitle("Room To Zoom");

Random random = new Random();

PPath path = new PPath();

path.moveTo(50, 50);

for (int i = 0; i< 20; i++) {
path.lineTo(random.nextInt(200), random.nextInt(200));

}

path.closePath();

path.setPaint(Color.blue);

getCanvas().getlayer().addChild(path);

public static void main(String[] args) {
new PiccoloExample();

Figure 6-11 shows a zoomed Piccolo application. The user can select
the zoom amount dynamically, or it can be set in your code using Piccolo
method calls. Because of the zooming feature, Piccolo is very useful for
applications working with structured graphics content that is very large.
Piccolo is not threadsafe, and you will need to use additional mechanisms
for multithreaded applications.

om To Zoom

Figure 6-11: Zoomed Piccolo application

Chapter Summary

In this chapter, we have looked at a few APIs and techniques that allow us
to display our data in interesting ways. Using graphics effectively can make
a big difference in the usability of your application and lead to greater user
satisfaction. In the next chapter, we will explore multimedia and thread
synchronization.

Chapter &

MULTIMEDIA AND
SYNCHRONIZATION

Many applications work with audio, video,
and other time-dependent processes. The
difficulty in writing high-performance multi-
media applications is that the response time must

remain consistent during the program’s execution.
Audio and video processing are the most obvious of these, but the same
characteristics can be found in many other types of applications. In a space-
craft system, for example, missing telemetry data can cause a catastrophic
failure. In a video or audio system, the lack of predictable timing can lead to
problems such as jitter, noise, frame loss, or other undesirable side effects.
In this chapter, we will discuss some APIs related to sound and music, speech,
and thread synchronization.

154

Fugue Fun: Making Music with JFugue

Choptar 7

Adding music to your games, presentations, and business applications can
make them much more interesting to the user. Some applications use Musical
Instrument Digital Interface (MIDI) files for this purpose. MIDI is a standard for
sharing music files in a way that preserves the music so that it can later be
played on any MIDI-capable electronic musical instrument. This is different
from music in MP3 and other audio file formats. Those formats preserve only
the audio that was recorded using the original instruments. In a MIDI file, the
music is stored as note-playing commands. Because all of the information is
preserved, you can play the music back on different instruments or even mod-
ify the notes themselves. The MIDI standard also allows electronic musical
instruments and computers to communicate with each other during a live
performance. One common way of using MIDI is to have a computer program
send sequences of notes to a bank of music synthesizers. A performer or
composer can then have the resources of a complete orchestra on demand.

Java 1.3 introduced Java Sound to the core API, which added MIDI and
sampled audio capability. However, its interface is awkward, because creating
music requires knowing the correct MIDI commands to use. We can use a
higher-level interface to make it easier to work with Java Sound. JFugue is
an easy-to-use open-source API that uses String values to describe musical
expressions that are then converted into MIDI commands and processed
through the Java Sound interface. JFugue can play the music itself or save
it as a MIDI file to be played later using another MIDI-capable program.
To show how easy it is to play music with this API, let’s see some code to play
a simple song. If you've learned to play a musical instrument before, perhaps
one of the first tunes that you learned was “Mary Had a Little Lamb.” Here is
some code that plays this song:

import org.jfugue.Pattern;
import org.jfugue.Player;

Pattern lamb = new Pattern();
lamb.add("eq dq cq dq eq eq eh");
lamb.add("dq dq dh eq gq gh");
lamb.add("eq dq cq dq eq eq eq eq");
lamb.add("dq dq eq dg cw");

Player jukebox = new Player();
jukebox.play(lamb);

The JFugue Pattern class represents a collection of MIDI commands—
in this case, musical notes. The first part of each entry in the pattern is the
note name (E or D, for example). The notes by default are in the fifth octave
(the one with middle C), but you can use notes in other octaves by adding
the octave number after the note name. The value "c7" would play a C two
octaves above middle C. The second part of each note is the duration, where
w is a whole note, his a half note, and q is a quarter note. (The API documen-
tation describes additional values for these duration codes.) An F in the sixth

octave, with a half-note duration, would be "f6h". Another nice feature of the
music String is its ability to create chords. For example, you can easily create
a chord progression using the following:

Pattern progression = new Pattern();
progression.add("cSmajw gSmajw asminw fSmajw gSmajw cSmajw");

To make a chord, you use the name for the root note (for example, 5
and g5), followed by the chord name and the note length. The above code
would play the chords C major, G major, A minor, F major, and C major as
whole notes. See the documentation for a complete list of chord names rec-
ognized by the pattern parser. Once you have a Pattern object, you can also
save the song as a MIDI file by giving the name of the new file:

jukebox.save(lamb, "/music/lamb.mid");

The JFugue API has a very small memory footprint and is useful for
applications that need a quick and easy way to play music or to generate
MIDI files. See this book’s companion website, or go to www.jfugue.org for
documentation and to obtain the libraries. In the next section, we’ll discuss
using JFugue as a simpler interface to the built-in MIDI APT that is part of
the Java core.

Fugue in Mid-D: Using JFugue with Java Sound MIDI

In the previous section, we used the JFugue API to create and play music and
to save it as a MIDI file. The open-source JFugue library is built on top of Java
Sound, which is part of the core API in Java 1.3 and above. In the previous
section, JFugue converted a Pattern into a series of low-level MIDI commands,
usually consisting of a sequence of note-on and note-off events. The under-
lying Java Sound classes process these low-level events and send them to
the sound card. You can access this sequence of low-level MIDI event data.
The sound API can then perform advanced functions such as sending the
data to a MIDI output device (for example, with an external music synthe-
sizer connected). This music data is held in the Sequence class (from the
javax.sound.midi package). After the JFugue parser is finished processing a
Pattern, it creates a Sequence instance. You can access this data by using JFugue’s
Renderer class. The Renderer class is designed to be subclassed, so that you can
process each MIDI event as it occurs and perform some action. In this case,
we are using the Renderer only to create a MIDI sequence from the musical
pattern.

import javax.sound.midi.Sequencer;
import javax.sound.midi.Sequence;

Player jukebox = new Player();
Pattern song = new Pattern('cqs dsq e5q f5q g5q asq bsq c6w");

Multimedin and Synchranization 155

156

jukebox.play(song);
Renderer renderer = new Renderer();
Sequence sequence = renderer.render(pattern);

Within a sequence, there are one or more tracks containing MIDI events
(the MIDI command plus a timestamp). In the next bit of code, we get the
first track and retrieve each MIDI event within it:

Track[] tracks = sequence.getTracks();
// sequence from the previous example
for (Track aTrack : tracks) {
for (int i=0; i<aTrack.size(); i++) {
MidiEvent event = aTrack.get(i);
/7 now you could send the event to a device

Without using the JFugue pattern String to load the MIDI commands,
you’d have to learn the low-level MIDI protocol commands and explicitly add
each event’s bytes to the track. Populating a String with "cq5 d5q e5q f5q g5q
asq bsq céw" is much easier than that! If you just want to access the data in an
existing MIDI file, you can do this in a much easier way, using the following
to obtain a Sequence object:

Sequence sequence = MidiSystem.getSequence(midiFile);

The MIDI source (the midiFile variable above) can be a File, InputStream,
or URL instance, and you will need to catch InvalidMidiDatakxception and
I0Exception. Once you have the Sequence object, you can use it to obtain the
individual MIDI events as before or send it to a Sequencer to be played. You
may be wondering what to do with the MidiEvent objects that we have now.
In the next section, we'll see how to use the Java Sound API to send events to
a MIDI device.

All MIDI-ed Out: Sending Events to a MIDI Output Device

JAVAL.3+

Chapter 7

Musicians often use MIDI to send musical commands from one device to
another. A common scenario involves connecting a keyboard (the musical
kind!) to a bank of synthesizers. The keyboard converts the player’s key
into MIDI events. A MIDI keyboard may not even be capable of
producing sound; instead, it may only send note commands to the MIDI
output port. A MIDI cable connects the output port to a synthesizer’s MIDI
input port, and the synthesizer then generates the sound.

Computers are often used as MIDI sequencers, to record and play back
music. The musician plays a sequence on the keyboard, which is recorded via

press

the computer’s MIDI input port. Sequencer software can individually record
many different tracks and later send them out simultaneously to the MIDI

output port (to be played by a MIDI device such as a synthesizer). In Java, we
can get the list of MIDI devices on the computer by calling the following code:

import javax.sound.midi.MidiSystem;
import javax.sound.midi.MidiDevice;

MidiDevice.Info[] devices = MidiSystem.getMidiDeviceInfo();
for (MidiDevice.Info deviceInfo : devices) {
System.out.println(deviceInfo.getDescription());

Unfortunately, there is no way to get a handle on a particular device
programmatically without searching through the MIDI devices using the
descriptions. This is because each manufacturer’s devices have different
characteristics. The most common way of selecting a device is by letting the
user select from a list that displays each one’s description. When you find
the Info instance (a public inner class of MidiDevice) for the device that you
want to receive the events, you can obtain a handle on it by calling the static
MidiSystem.getMidiDevice method. The MIDI events that we saw in the previous
section each contain a MidiMessage, along with a timestamp that tells when to
send the message. It is these messages that contain the note-on and note-off
commands. This next code snippet shows how to send MIDI messages to a
device:

// deviceInfo is a MidiDevice.Info instance obtained earlier
MidiDevice device = MidiSystem.getMidiDevice(deviceInfo);
device.open();

Receiver receiver = device.getReceiver();

MidiMessage msg; // from a MidiEvent (see previous section)
long timeStamp; // from a MidiEvent (see previous section)
receiver.send(msg, timeStamp);

receiver.close();

device.close();

‘We start with a MidiDevice.Info instance (deviceInfo) obtained from the
earlier example where we looped through all the installed devices. We must
first open the device to allow it to be used by the system, and then we can get
a Receiver object. The Receiver accepts the MIDI messages and might repre-
sent either a synthesizer (such as on a sound card) or a MIDI output port.
Once your program has finished using the device, you will need to close the
Receiver and the MidiDevice.

Beeps and Bleeps: Synthesizing Sounds with JMusic

When I was in high school, my family purchased an electronic music synthe-
sizer kit. After making a mess with the soldering iron, and burning some skin
in the process, we had a (mostly) working synthesizer. It was an analog sy
thesizer, and we could use patch cables to connect oscillators, filters, mixers,

Multimedia and Synchranization 157

158

Choptar 7

and other audio components together to create sounds. The original idea
was to use it to create music, but at the time I mostly just enjoyed using it to
make unusual sounds—and, of course, to annoy my parents and siblings!
Today, most music synthesizers are digital, and the commonly used ones have
only a fixed set of sounds rather than allowing you to create new instruments
by wiring components together. There are high-end units that still allow you
to create new instruments, but it’s also possible to create your own instrument
patches without even spending any money on a music synthesizer. We can
create our patches in software, using digital signal processing.

JMusic is an open-source API that is useful in generating music, synthe-
sizing sounds, and analyzing musical data. One of its most powerful features
is its sound synthesis capability. With JMusic, you can create your own instru-
ments by chaining together audio synthesis components. You can then play
music on the new instrument.

To create an instrument in JMusic, you connect sound processing units
together. These units are instances of the AudioObject class in JMusic. Examples
of AudioObject types include oscillators (to generate waveforms), filters, and
mixers. You can easily create an instrument by subclassing the Instrument class.
Your class must have a createChain method, which is automatically called when
the instrument is first used. We will use this process to create a sawtooth wave,
which would look like Figure 7-1 if seen through an oscilloscope. It shows the
strength (amplitude) of the signal measured over time.

a. Sawtooth

b. Square

c. Sine
Figure 7-1: Sawtooth, square, and sine waveforms

Let’s create an Instrument class now. We'll start with an oscillator, a device
that creates a steady tone. The Oscillator class can create tones using one
of several different waveforms, such as sine wave, square wave, or sawtooth.
We override our Instrument’s createChain method to create the chain of audio

modules that produce the sound. Inside this method, we wire the sound mod-
ules together. For our first example, we’ll create an oscillator and feed its
output to a low-pass filter:

import jm.audio.Instrument;
import jm.audio.synth.Oscillator;
import jm.audio.synth.Filter;

public class FilteredSaw extends Instrument {
public void createChain() {
Oscillator saw = new Oscillator(this, Oscillator.SAWTOOTH_WAVE,
44100, 2);
Filter filter = new Filter(saw, 500.0, Filter.LOW_PASS);

Our oscillator creates a sawtooth wave at 44,100 samples per second and
with 2 channels (stereo). By default, the frequency will be determined by
whichever note the instrument plays. The output of the oscillator is fed to
a low-pass filter with a cutoff frequency of 500 Hertz.

Now we will need to send some music to our new instrument. In JMusic,
a Score instance holds the musical data and contains Part instances that each
represent a single instrumental part. A Part can contain one or more Phrases.
Here is how you would play a short musical phrase using the instrument that
we just created:

import jm.music.data.Note;
import jm.music.data.Part;
import jm.music.data.Score;
import jm.util.Play;
import jm.IMC;

// FilteredSaw is the instrument we created
Instrument inst = new FilteredSaw();

Score score = new Score();

Part part = new Part();

part.setTempo(180);

Phrase phrase = new Phrase();

phrase.addNote(new Note(JMC.C4, IMC.QUARTER_NOTE));
phrase.addNote(new Note(JMC.G4, IMC.QUARTER_NOTE));
phrase.addNote(new Note(JMC.E4, IMC.QUARTER NOTE));
phrase.addNote(new Note(JMC.F4, JMC.QUARTER_NOTE));
phrase.addNote(new Note(JMC.G4, JMC.WHOLE_NOTE));
part.addPhrase(phrase);

score.add(part);

Play.audio(score, inst);

Multimedia and Synchranization 159

160

We create a Score and add a Part to it, set the tempo to 180 beats per
minute, and add a short Phrase containing the desired notes. IMC is a class that
contains many useful constants. Here we are using it for the note names and
durations. There is much more that you can do with this API. See the JMusic
documentation for more examples. In the next section, we will create a more
complex instrument.

Hiss, Buzz, Hum: Using Noise and Complex Synthesis in JMusic

Choptar 7

In the previous section, we created a musical instrument by connecting a
sawtooth wave oscillator to a low-pass filter. We then used it to play a short
musical phrase. To make richer, more interesting sounds, we will need to use
a number of different audio components and combine the sounds from them.
A very common way of combining sound elements is to simply add the results
as if the sounds were being played simultaneously. In this first example, we
create a square wave oscillator and add it to the sawtooth from the previous
section. This will give our instrument a richer sounding timbre (the combined
characteristics of a sound that make it unique). To add the sounds together,
we use the Add class, which takes an array of AudioObjects in its constructor:

import jm.audio.synth.Add;

public final class SquareFilteredSaw extends Instrument {
public void createChain() {

Oscillator saw = new Oscillator(this,
Oscillator.SAWTOOTH_WAVE, 44100, 2);

Filter filter1 = new Filter(saw, 500, Filter.LOW_PASS);

Oscillator square = new Oscillator(this,
Oscillator.SQUARE_WAVE, 44100, 2);

Filter filterz = new Filter(square, 4000, Filter.HIGH PASS);

Add adder = new Add(new AudioObject[] {filter1i, filterz});

This instrument uses two filtered oscillators and combines the sound
from them. The sawtooth oscillator is filtered with a low-pass filter, which
emphasizes the lower frequencies. This makes a difference in the sound
because the sawtooth wave has many harmonics, or higher-frequency parts
of the signal. We are filtering the square wave through a high-pass filter and
emphasizing the higher harmonics of that signal. You can hear the sounds
created by this and other instruments by going to the book’s website at
http://wickedcooljava.com.

Some sounds have noise associated with them. For example, a flute sounds
a lot like a sine wave with a small amount of added noise for the breath sound.
One common type of noise is called white noise, and it sounds like a hiss, as if
you had tuned a radio or television between stations. In this next example,
we will use two sine oscillators and a noise source to create a more complex
sound. The first oscillator is tuned to the fundamental frequency of each

note, to be determined when the note is played. This means that for the note
A4, with a frequency of 440 Hz, the first oscillator will be at 440 Hz. The second
oscillator is tuned to a multiple of five, which for A4 creates an overtone of
2200 Hz. Next, we send both of these tones through an Envelope, a wave-
shaping object. You can use Envelope instances to change how the amplitude
(volume) of a sound changes over time. Figure 7-2 shows how an envelope
with volume levels of 0.2, 0.5, 0.7, 1.0, and 0.2 might look. Volume levels range
from 0.0 (no sound) to 1.0 (full volume).

1
03

us \ 3

ﬁ{p (

5

=

=

s Ey
S——

=TT
_—
i";f
—

08
10

Figure 7-2: An envelope modifying a sine wave

Now let’s put the audio chain together. We process the two oscillators
and the noise generator using three separate envelopes, to give the sound
some depth. We then combine the sounds using an Add object. The addition
of the noise gives it a somewhat “breathy” quality. Here is the code:

import jm.audio.synth.Envelope;
import jm.audio.synth.Noise;

public class NoisySine extends Instrument {
public void createChain() throws AOException {
// this oscillator defaults to the fundamental frequency
Oscillator sine = new Oscillator(this, Oscillator.SINE_WAVE);
Envelope sineEnvl = new Envelope(sine,
new double[] {0.3, 0.5, 0.7, 0.9, 0.7, 0.5, 0.3});
// this oscillator is at the 5th harmonic
Oscillator sineHigh = new Oscillator(this, Oscillator.SINE_WAVE);
sineHigh.setFrqRatio(s);
Envelope sineEnv2 = new Envelope(sineHigh,
new double[] {0.1, 0.2, 0.3, 1.0, 0.3, 0.2, 0.1});

Multimedia and Synchranization 161

// create a white noise component
Noise noise = new Noise(this);
Envelope env = new Envelope(noise,
new double[] {0.01, 0.05, 0.1, 0.05, 0.01});
// add the three sound components together
Add adder = new Add(new AudicObject[] {sineEnvi, sineEnv2, env});

Be careful that you have only one output stage of your sound chain,
or you will get a runtime error. An example of this would be having two
oscillators that do not join into a single line using a mixer. JMusic has many
other signal-processing capabilities, such as stereo panning, creating delays,
and modulating sounds. The JMusic documentation, to which you can find
links on the book’s website, has many more examples of music and sound
synthesis.

Getting an Outside Line: Working with Low-Level Java Sound

Choptar 7

For those of you who want to work with low-level signal processing (and indi-
vidual sound samples), the Java Sound API provides the ability to do this.
You can read and write data streams to and from audio ports, convert audio
files between types, and process audio data in real time. In this section we will
see how to obtain an audio line and use it to send or receive raw audio data.
The details of real-time signal processing are beyond the scope of this book,
and here we will be working only with the basics of getting an audio channel.

Java Sound’s AudioSystem class provides access to sampled audio resources,
including mixers, input/output ports, microphones, speakers, audio streams,
and audio files. The first thing to remember about the audio lines is their
naming convention, which is a bit counterintuitive. An input line such as
a microphone is a TargetDataline, and an output line such as a speakeris a
SourceDataline. These are named for the fact that an output line acts as
a source to its mixer (the mixer takes it as input).

‘We will first work with a SourceDataline, using the default mixer and
output line, which is usually the speaker port. There are several types of
formats for audio data samples, and we must first select one to use for the
output. The most common is called Pulse Code Modulation (PCM), which uses
values for each sample that are in a linear proportion to the amplitude of the
signal at that moment. We also must choose the sampling rate, or how fast the
samples are taken, along with how many bits are in each sample and whether
the samples are signed or unsigned values. We create an AudioFormat instance
to represent the desired sampling characteristics and use that to get a line from
the AudioSystem with those characteristics. In this example, we obtain an output
line with 44,100 samples per second, 16 bits per sample, 2 channels (stereo),
signed, and in litde-endian byte order:

import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioSystem;

import javax.sound.sampled.LineUnavailableException;

import javax.sound.sampled.SourceDataline;

try {
AudioFormat format = new AudioFormat(44100, 16, 2, true, false);
SourceDataline line = AudioSystem.getSourceDatalLine(format);
line.open();
line.start();

// now you may write data to the line

/! insert code here to generate audio data
line.drain(); // send out any data still in the buffer

// when you are done, drain and close the line

line.close(); // close the line
} catch (LineUnavailableException e) {
e.printStackTrace();

Using the getSourceDataline method in this fashion returns the default
output line of the default mixer, and with the audio data in the specified
format. You must open the line before it can be used, which assigns any
required system resources to it. You also need to start the line, so that the
line will begin sending sample data to the output device. Now we have a line
that is ready for use. To send data to it, you fill the line’s buffer with data in
the proper format (see the documentation for data format details). To com-
plete this example, let’s write some random data to the line. This will generate
white noise, as discussed in the previous section. Here is the code to fill the
buffer with random data:

// now you may write data to the line

int size = line.getBufferSize();
byte[] data = new byte[size];
java.util.Random random = new java.util.Random();
for (int 1=0;i<10;i++) {
random.nextBytes(data);
line.write(data, 0, size);
}
line.drain(); // send out any data still in the buffer

// when you are done, drain and close the line

As you may have guessed, this is the same middle section of code from
the previous example. We first get the size of the line’s internal buffer and
create a byte array of that size. On my test run, the buffer size was 88,400
bytes, representing a half-second of data for 2 stereo channels at 16 bits.
You can use your own buffer size, as long as it is an integral number of
samples. The code above runs for 10 complete buffer lengths, which is 5
seconds of wonderful noise. Each time through the loop, we refill the buffer

Multimedin and Synchranization 163

164

with data from a Random object. The write method takes a byte array, starting
location, and size. This method blocks until the buffer is ready to accept the
incoming data. To make more interesting sounds, you will need to fill the
buffer with more appropriate sample data. That is where things get much
more complicated, and you will need a good understanding of digital signal—
processing theory. On the book’s website, there are links to Java Sound
documentation and other digital audio and signal-processing resources to
get you started. In the next section, we continue the low-level discussion of

Java Sound, this time processing audio data from an input line.

Yes, Dear, I'm Listening: Reading Audio from an Input Line

Choptar 7

In the previous section we worked with an audio output, creating a Souxrce-
DataLine and sending some random data through it to the speaker. The Java
Sound API also allows you to capture audio data from an inputline such as a
microphone. In this section, we will record audio into a data buffer, where it
can be processed or saved to a file. There may be many input ports on the
computer depending on the hardware configuration. To be sure we are
using the correct device, we can let the user select from a list of installed
mixers and select the appropriate line from the mixer (similar to what we
did in the MIDI section earlier in this chapter). See the book’s website for
links to example code for doing this. However, for many applications we can
get away with using the default audio input device. This will usually be the
microphone or line in.

The process of obtaining an input line is very similar to working with
output lines as we did in the previous section. You can select the default
TargetDataLine from the AudioSystem, based on the desired format. Here we
are using 22.1 kHz, at 8 bits per sample, and 2 channels (stereo). The internal
buffer is not guaranteed to be a particular size, and it may be better to use
your own value to maintain loop timing under different platforms and JVM
versions. This code reads five full buffers worth of data from the default
audio input device (2.5 seconds on my test run):

AudioFormat format = new AudioFormat(22100, 8, 2, true, false);
TargetDataline input = AudioSystem.getTargetDataline(format);
input.open();
int size = input.getBufferSize();
byte[] data = new byte[size];
input.start();
// loop through 5 buffer lengths
for (int i=0;i<5;i++) {
input.read(data, 0, size);
// process the input data buffer
// (save it, transform and replay it, analyze it)
}
input.drain();
input.close();

You can perform all sorts of interesting operations on the audio data.
The simplest is to store the data in a file for later processing or playback.
Other interesting operations might include reverb effects, distortion, filtering,
and analysis. Once you have the data in memory, you will need to know
something about how the raw data translates to individual sound samples.
This will depend on the number of channels, the encoding, and other aspects
of the AudioFormat being used. See the Java core documentation for more
information on the data formats.

Talk to Me! Using Java Speech to Make Programs Talk

Adding speech capabilities to your applications can not only make them more
interesting but can also make them more accessible to the vision-impaired.
The Java Speech API (JSAPI) is a standard extension to Java, with features for
speech synthesis as well as speech recognition. As with most other standard
extensions to Java, you can plug in different implementations, and a number
of speech engines are available. We will be using FreeTTS, an open-source
speech engine. To use FreeTTS, you must first set up the JSAPI environment
according to the documentation. This involves agreeing to Sun’s JSAPI
license terms, making sure the libraries are in the classpath, and placing a
speech.properties file in your home directory. Once you've done this, it is very
easy to make your Java applications talk. Here is an example that speaks a
short text message:

import java.util.locale;

import javax.speech.AudioException;

import javax.speech.Central;

import javax.speech.EngineException;

import javax.speech.EngineStateError;

import javax.speech.synthesis.JSMLException;
import javax.speech.synthesis.Synthesizer;

import javax.speech.synthesis.SynthesizerModeDesc;

try {
/! create a synthesizer for US English,
// using the general-purpose configuration ("general").
// See the JSAPI documentation for more information
// on the mode descriptions.
SynthesizerModeDesc modeDesc =
new SynthesizerModeDesc(null, "general", Locale.US, null, null));
Synthesizer talker = Central.createSynthesizer(modeDesc);
// Allocate resources and start the synthesizer
talker.allocate();
talker.resume();
talker.speak("Java is Wicked Cool, tell all your friends!", null);
// Wait until speaking is finished
talker.waitEngineState(Synthesizer.QUEUE_EMPTY);
// Clean up synthesizer resources
talker.deallocate();

Multimedia and Synchranization 165

Reduce,

166

Chapter 7

—

catch (IllegalArgumentException e) {
e.printStackTrace();

catch (EngineException e) {
e.printStackTrace();

catch (AudioException e) {
e.printStackTrace();

catch (EngineStateError e) {
e.printStackTrace();

catch (InterruptedException e) {
e.printStackTrace();

catch (JSMLException e) {
e.printStackTrace();

= T

There are other advanced features of the API, but it's not that difficult
to get your application talking. The current FreeTTS voices sound robotic,
as you might expect from previous experiences with speech synthesis. This
is improving, and some of the other implementations have more realistic-
sounding voices. FreeTTS does not yet support speech recognition, but some
of the other speech engines do. The others are not free or open source as of
this writing. For links to FreeTTS and other speech engines, and Sun’s JSAPI
documentation, see this book’s companion website.

Reuse, Recycle: GC and the Javolution Real-Time APIs

Object creation and garbage collection are a very costly part of most Java
programs. The idea behind real-time systems is to have a deterministic
(predictable) execution time for certain operations. For example, in video
or audio applications you would not want any unexpected delays to interfere
with playback and recording. In Java, this is made more difficult because of
the garbage-collection thread, which might run at any time. There are some
third-party Java virtual machines that do provide real-time guarantees. How-
ever, that isn’t much consolation for the developers who are not using one
of them! An open-source API called Javolution can help to make your Java
programs run more predictably, without replacing the virtual machine. Its
main feature is providing classes (the equivalents of String and some other
basic classes) that perform deterministically. These classes reuse their own
contents without being recycled by the garbage-collector thread. In the
standard Java Collection classes there are sometimes unpredictable delays
because of array reallocations and rehashing. The Javolution equivalents
have delays that are predictable within a very small variation.

‘Why might we not want to use Java’s built-in String or Collection classes
in a real-time program? The first answer is related to the performance of
Java’s own text-manipulation routines. The insert, delete, and concatenate
operations of java.lang.StringBuffer and String have an Ofn) performance,
whereas the Javolution Text and TextBuilder classes have O(Log n). The Text
class stores the text in a binary tree. This makes a big difference in applications

with a large amount of text manipulation and that also have real-time require-
ments. Another reason to consider using Javolution is its object pool imple-
mentation. You can often avoid garbage-collection delays by using a pool of
objects, reusing each instance after you have finished with it. The Javolution
classes are designed to work well as pooled objects. A third reason is because
the classes have XML serialization features built into them. You can even
make your own real-time—compliant classes, by extending the RealtimeObject
class. The Javolution documentation shows how to do this.

Let’s look at a short example of some Javolution code. The PoolContext
class associates an object pool with the current thread, and objects are retrieved
from the thread’s stack memory instead of being constructed in the heap.
If you avoid constructing objects using the new operator and do not reference
factory-created objects outside of the context, then the objects will never be
garbage-collected. In the following example, we create a PoolContext and
enter the context by calling its static enter method. Until you exit the context,
any instances of RealtimeObject that you obtain from a factory will belong to
the context’s pool (for recycling) and will not be garbage-collected. The code
is placed in a try/finally block to ensure that the exit method will always run
(this is a try/finally without a catch clause, which some of you may not have
seen hefore):

import javolution.realtime.PoolContext;

PoolContext.enter();
try {
/! perform operations on RealTimeObject instances
// we are using our own subclass of RealTimeObject: RTData
// the RTData class will be created later
RTData[] telemetry = new RTData[200];
for (int i=0; i<200; i++) {
// assume that readData is some method that collects data
RTData data = RTData.valueOf(System.currentTimeMillis(),
readData(), 0.07);
telemetry[i] = data;
¥
} finally {
PoolContext.exit();

Our hypothetical RTData class stores telemetry data, along with an acqui-
sition time and an uncertainty value. The class is real-time compliant and
compatible with the PoolContext because it is a subclass of RealTimeObject.
Notice that it has no public constructor. All instances of the class must
come from a Factory. The Factory class is an inner class of RealTimeObject and
knows how to use recycled objects where possible. If the instances are not
preallocated, you will incur an initial overhead because of construction.
However, subsequent requests for an object instance will be much faster

Multimedin and Synchranization 167

and within a narrow range of time. The Javolution documentation has
timing information that shows how this works in practice. Here is the
definition of our RTData class:

import javolution.realtime.RealtimeObject.Factory;

public class RTData extends RealtimeObject {
private long acquireDate;
private double telemetry;
private double uncertaincy;

private static final Factory<RTData> FACTORY =
new Factory<RTDatas() {
protected RTData create() {
return new RTData();

// this constructor is private, and cannot be accessed
// outside this class, forcing the use of the factory
private RTData() {}

public static RTData valueOf(long acgDate,
double tele, double uncert) {
RTData data = FACTORY.object();
data.acquireDate = acqDate;
data.telemetry = tele;
data.uncertaincy = uncert;
return data;

public long getAcquireDate() {
return acquireDate;

public double getTelemetry() {
return telemetry;

public double getUncertaincy() {
return uncertaincy;

Notice how we used its valueOf method in the earlier example, which uses
the class’s factory to get the instance. If we simply called new each time, the
garbage collector would eventually run once the object goes out of scope.
The PoolContext manages this process of recycling objects without running
the garbage collector. Make sure that you don’t reference any of the objects

168 choprer 7

outside of the pool context, unless you first call the object’s export method.
For more information on creating real-time—compliant objects (such as the
RTData class in this example) that you can use within a pool context, see the
Javolution documentation.

Hurry Up and Wait: Synchronizing Threads Using CyclicBarrier

Remember in primary school at the end of each day, when you waited along
with the other students for the school bell to ring? Some classrooms may
have finished their day’s work earlier than others, but everyone still had to
wait for the bell before they could leave. The schools did this to make sure
that the students left simultaneously at the proper time (and not a moment
earlier!). There are similar situations in an application, where you have a
number of threads that depend on each other’s results and must all reach
some milestone before continuing. In this section, we’ll show you a technique
(new to Java b) for synchronizing such groups of threads.

Java b added a number of new concurrency utilities to the core API. One
of these new classes is the CyclicBarrier, in the java.util.concurrent package.
This class works as an invisible barrier that each member of some group of
threads must reach before any of them can continue. Imagine that we are
back in school again and that this time the bell doesn’t ring at 3:00 P.M.
but instead rings after every classroom has submitted its day’s work to the
principal’s office. No one can leave until then. Using a CyclicBarrier, the
room threads would each call the barrier’s await method. The method blocks
until a specific number of other threads call the method. Let’s first create a
Room class to simulate the students submitting work to the principal:

import java.util.concurrent.CyclicBarrier;
public class Room extends Thread {
CyclicBarrier barrier;
public Room(CyclicBarrier cb) {
barrier = cb;
¥
public void run() {
try {
submitiWork(); // pretend we do something useful first
barrier.await();
} catch (Interruptedexception e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();

This Thread subclass uses a barrier passed in at construction time. In the
run method, we perform our required work and then call the barrier’s await
method, which blocks until the others have called await also. We must catch

Multimedin and Synchranization 169

170

two exceptions that might be thrown here. The JavaDoc for CyclicBarrier
explains these exceptions in more detail.

Applications using the CyclicBarrier will most likely need to run some code
immediately after the last thread enters the barrier. There is a constructor for
this purpose that accepts a Runnable to be executed by the last thread that
calls await. We can create a barrier for 100 threads by using the following:

Runnable finishAction = new Runnable() {
public void run() {
System.out.println("Ringgggg! School is dismissed!");

I8

CyclicBarrier barrier = new CyclicBarrier(100, finishAction);

After the barrier is crossed, you can reset it by calling the reset method,
and it is ready for another round of await calls. A barrier is most applicable
when each thread contributes something to a final result and the threads
must then use the composite value. One example of such usage in the
context of the school scenario is for each classroom to submit votes for the
student council, and then each classroom prepares a report using the elected
students” names before leaving for the day. This obviously cannot happen
until the other rooms have cast their ballots. A more real-world example where
the barrier might help is in a simulation with many interrelated compo-
nents. In Chapter b, we worked with one such system when we built a
digital component with input and output values. We were able to avoid
complex synchronization issues there because the wires performed the task
of moving output values of a previous stage to the inputs of the next stage.
But the CyclicBarrier could also have been used in that scenario, and we
could then have assigned each component to its own thread. In the next
chapter we’ll discuss a distributed hardware and software system called the
Cell Matrix. This system is made of many coordinated digital components
and would be a good candidate for synchronization using the CyclicBarrier.

Chapter Summary

Choptar 7

In this chapter, we looked at several techniques for working with time-
dependent processes. Managing garbage collection and thread synchroniza-
tion is important in real-time systems, and Java b added many new features
such as the CyclicBarrier to the threading system. We also explored speech,
music, and sound APIs. Using sound effectively can make your applications
much more engaging and can also be useful in providing accessibility to
the visually impaired. In the next chapter, we will discuss miscellaneous
open-source projects and provide ideas for integrating code from the rest

of the book.

FUN, INTEGRATION, AND

PROJECT IDEAS

In this chapter, we take a look at miscellane-
ous open-source projects and discuss ideas
for creating your own projects and integrating
code from earlier sections. Some are just for fun,
and others are more useful but don't really fit anywhere
else. A few of them are long-term projects that I think
would be nice to have as open source. On the book’s website at http://
wickedcooljava.com, there is a public forum for discussing these and other
project ideas, where readers can collaborate on creating open-source
projects. I hope that if you start on a project described here, you will make it

open source so we can all benefit from it! Check the website forum for more
ideas and to keep track of the latest developments.

Think Outside the Blocks: Using Java to Control a LEGO Robot

LEGO bricks are well-known items among parents and children in many
millions of homes around the world. Children have loved using these
building blocks ever since 1934 when they were first created in Denmark.

172

Chapter 8

The LEGO Group, which now produces many other toys besides the classic
bricks, makes a rohotics construction set called Mindstorms. The Mindstorms
kit has bricks of various shapes and sizes, but this is not the reason for the
product’s popularity. The main attraction is a small handheld computer,
called the RCX. This computer has three motor controller ports and three
sensor ports, and the kit provides a small collection of sensors and motors
to use with it.

The RCX computer includes a Windows application to help you write
robot-control programs graphically. The interface for this programming
environment is fine for teaching kids to write simple robot-control programs
but is not sophisticated enough for real development work. The RCX firm-
ware provided by LEGO works specifically with the graphical programming
environment. However, you can download open-source replacement firmware
called LEJOS that runs a small subset of Java. This allows you to write robotics
programs in Java. The TinyVM in LEJOS isn’t technically Java because it is
not a complete implementation of the core classes. However, it does run a
subset of Java executable bytecodes, and you write the source code in Java.
You compile the source code using the LEJOS compiler and then download
the classes to the RCX.

The Motor class provides access to the motor controllers, using three static
variables (A, B, and C) to represent the three motor connectors on the RCX.
The following bit of code moves the A motor forward, moves the B motor
forward and then reverses the A motor:

import josx.platform.rcx.Motor;
// set the motor power levels
Motor.A.setPowex(5);
Motor.B.setPower(5);

// move motor A forward
Motor.A. forward();

// sleep for 500 ms
Thread.sleep(500);

// move the motors

Motor.B. forward();
Motor.A.backward();

// sleep for 500 ms
Thread.sleep(500);

// stop the motors
Motor.A.stop();
Motor.B.stop();

Of course, the behavior of this program will depend on what the motors
are driving. They could each be connected to a different wheel, track, hand,
arm, or other mechanical device. This means that every robot design will have
a different program customized for it.

You can also work with the three sensor connectors on the RCX. The
sensors are accessed using the Sensor class and its static variables §1, 52, and
53. The sensors could be light, sound, touch, temperature, or some other
type. For each combination of physical layout of the robot and locations

and types of sensor, the program will perform a different function. The Sensor
documentation describes how to create and register a SensorListener that will
be informed of any changes in the sensor values as they occur.

Once you finish writing a program, you must compile it using the LEJOS
compiler. You then download the class files to the RCX using the infrared
communications tower that comes with the Mindstorms set. Turn on the
RCX (with robot attached, of course), and your robot is ready to roam.

Aye, Robot: Controlling the Mouse with the AWT Robot Class

The Java core (1.3 and above) includes a class called java.awt.Robot. This class
does not represent a physical robot as in the previous section. Instead, it lets
you control the mouse and keyboard as if the user had directly operated them.
In fact, the mouse actions can even interact with external programs and the
user environment (desktop, menus, and so on). You might use this to run
an automated testing process, for example, or to simulate user actions in a
demonstration or help program. The methods work using absolute screen
coordinates rather than window coordinates. Let’s assume that you want to
move to a specific position on the screen, click the mouse button, and then
type some text. Using the Robot class, you could write a Java program to interact
with another application such as a text editor. To illustrate this, you can open
up a text editor so thatitis in the top-left corner of the screen and run the
following code (you may need to adjust the coordinates for your system and
your text editor of choice):

java.awt.Robot robot = new java.awt.Robot();
robot.mouseMove (20,90) ;
robot.mousePress(InputEvent ,BUTTONL_MASK);
robot.mouseRelease(InputEvent .BUTTON1_MASK);
robot.keyPress(KeyEvent.VK_B);
robot.keyRelease(KeyEvent.VK _B);
robot.keyPress(KeyEvent.VK_0);
robot.keyRelease(KeyEvent.VK_0);
robot.keyPress(KeyEvent.VK_T);
robot.keyRelease(KeyEvent.VK_T);

If the text entry region of a text editor is onscreen at (20, 90}, then this
robot will click the text region, select it, and press the keys to spell the word
bot. For this to work, the console window or development environment from
which you run the Java program must not be on top of the other application.
On some platforms, you will need additional security privileges to be able to
control the mouse and keyboard devices.

Click and Pick: Picking Dates Using JCalendar

Many applications have data entry screens with date fields in which the
user must enter a month, day, and year. Although it may be less work for
the programmer to just let users manually enter these dates as text, it's not as

Fun, Integration, and Projact Ideas 173

174

friendly to the user as having a pop-up window with a date-picking calendar.
Also, by using a date picker, the values will never be entered incorrectly and
data validation is much easier. JCalendar is an open-source component for
picking dates from a calendar. Adding the JCalendar class to any Swing con-
tainer displays the calendar and allows the user to move backward and forward
in time (figuratively speaking!) to select a date. For most applications, how-
ever, you will want to use the JDateChooser class. This class has an editable field
with year, month, and day values and a calendar image that pops up a JCalendar
for choosing the date. This is closer to the functionality that most applications
will need. It is very simple to use, as the following code illustrates:

import com.toedter.calendar.J]DateChooser;

import java.util.Date;

// add the chooser to a panel or frame

JDateChooser chooser = new JDateChooser();
myFrame.add(chooser);

// some time later....

// when you are ready to read the data, call the getDate method
Date dateValue = chooser.getDate();

The date field initially looks like a normal text field. When you click
the small calendar icon to the right of the text, a calendar pops up that
lets you select the date to place in the field. You can use the JCalendar and
JDateChooser classes anywhere that you need to enter dates in your Swing
applications, instead of simply using a text field.

Post Haste: Using HitpClient to Post Forms to HTTP Servers

Chapter 8

Java developers commonly write applications that connect to a website to

retrieve a resource from a URL. The data might be HTML, XML (as in Chap-
ter 3), a standard text file, an image, or any other type of content. Perhaps
the data will be incorporated into a Swing GUI or placed into a dynamically
generated web page. In other cases the program further processes the data
in some other way. Long ago, the core Java API provided a convenient way
to make simple web requests and read the data as a stream. The java.net.URL
class can make a request and read data from the HTTP response, as if the
URL had been entered into the address window of a web browser (this is called
an HTTP GET method). However, the core API doesn’t include convenient
support for POST methods, automatic cookie handling, or adding form fields
to the request.

The Jakarta Commons project comes to the rescue with a class called
HttpClient, in the org.apache.commons.httpclient package. To send a GET
request to a web server and read the document and any cookies returned
along with it, use the following code:

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpException;

import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.GetMethod;

HttpClient client = new HttpClient();
// an example only... replace this with your site
GetMethod method = new GetMethod("http://wickedcooljava.com");
try {
// get the response code, hopefully "successful" (SC_OK, or 200)
int response = client.executeMethod(method);
if (response == HttpStatus.SC_0K) {
String result = method.getResponseBodyAsString();
// this is the document returned by the response
System.out.println(result);
Cookie[] cookies = client.getState().getCookies();
System.out.println({Arrays.toString(cookies));
} else {
System.err.println("Response code: " + method.getStatusLine());
1
} catch (I0Exception e) {
e.printStackTrace();
} finally {
method.releaseConnection();

}

The cookie handling is automatic and is accessed through the HttpState
object. The cookies will be held in the state and handled in the same way as a
browser would. To send data using a POST method with form data, you would
use the following:

import org.apache.commons.httpclient.methods.PostMethod;
String results = "";
HttpClient client = new HttpClient();
PostMethod method =
new PostMethod("http://search.dmoz.org/cgi-bin/search");
method. addParameter("search", "coffee");
try {
int respcode = client.executeMethod(method);
if (respcode == HttpStatus.SC_0K) {
results = method.getResponseBodyAsString();
} else {
System.err.println("Failure: " + method.getStatuslLine());
}
} catch (HttpException e) {
e.printStackTrace();
} catch (I0Exception e) {
e.printStackTrace();
} finally {
method.releaseConnection();

Fun, Integration, and Project Ideas 175

176

System.out.println("--- Results obtained ---");
System.out.println(results);

The HttpClient class could be used to write your own custom browser or
for testing web applications. It is especially useful for retrieving data from web-
sites using a POST-based form interface. You can also use it for connecting to
web services.

She Sells C Cells: Simulating a Cell Matrix in Java

Chapter 8

Perhaps you've heard the old programmer’s joke: “How many programmers
does it take to change a light bulb?” Of course, by now everyone should know
that it’s a hardware problem and not to bother the programmers with it!
Joking aside, as programmers we typically think of the hardware as being
separate from the software. This is especially true with Java, where our pro-
grams are cross-platform and can run in a wide variety of systems. We don’t
normally write anything differently for a Unix system than for a Windows
system, or for a Pentium versus a PowerPC. But there are also advantages to
writing code tailored to a particular type of hardware—higher performance
and access to special features of the hardware. It would be nice to have a blend
of software and hardware—the high performance of custom hardware but
with the flexibility and mutability of software.

There is a type of computer hardware called the Cell Matrix that works very
differently than most computer systems do. The Cell Matrix belongs in a cate-
gory somewhere between software and hardware. It consists of interconnected
digital components, each with a truth table (as discussed in Chapter 5) that
controls the output function of the cell. This is useful because the cells can
perform any Boolean function depending on how the table is configured.
However, these cells are also capable of programming their neighbors’ truth
tables—this is what makes it somewhat like software. A cell looks like Figure 8-1
and has C and D inputs and outputs on each side. The D (data) signals work
as in a normal digital component, except that the function of the cell is deter-
mined by the internal truth table of the cell. The normal operation of a cell is
in D mode, where the circuit operates using the function defined by the truth
table. Cells can also operate in C (code) mode, where the cell’s truth table is
programmed by one of its neighbors. A cell goes into C mode when one of its
neighbors has an active C signal output. Once this happens, the bits in the
cell’s truth table are set to values coming from the neighbor’s D output.
Once the truth table is loaded, and the neighbor’s C output returns to the
inactive state (0), the cell begins operating according to the new truth table.
Figure 8-1 shows a Cell Matrix operating in C and D modes.

Cell Matrices are a new way of thinking about computer systems and
about programming. Not only can you easily change the way a circuit operates
by changing its truth tables, but you can also create matrices that dynamically
repair or reconfigure themselves (using C mode). Systems with this type
of design have many potential applications in intelligent adaptive systems.

Because the exact configuration of each cell determines how the system
behaves as a whole, it’s very important to experiment with different models
to understand how they work. This is especially true when the circuit is self-
modifying via C mode operation. We can simulate a Cell Matrix in Java, using
the metacomponent system from Chapter b as a baseline (and a functor that
simulates a single cell in a Cell Matrix). To complete the simulator, we can use
JGraph for the display, showing the state of the system and how it changes

over time.
o] 0
DN Cr\ DN Cl\ DN CN D\l Cr\
— D, D, » D f—
0 —c. c,] S c b—w
)
@
. | — -] 0. & D, {—o
-], c 0 C. Cla—0
D; G Ds G D, C, D, C.
0 o
Cell is in D mode, Cell is in C mode,
because all C inputs = 0 because at least one C input = 1

Figure 8-1: A Cell Matrix in C and D modes

The book’s website has a complete implementation of a Java-based Cell
Matrix simulator and examples of matrix configurations for performing some
larger-scale logic functions. Once you have designed and tested your circuits
in a simulator, you can try them on a real hardware implementation. Hard-
ware is available for purchase from the Cell Matrix Corporation, the company
that holds the patent on the Cell Matrix. For more information on the Cell
Marrix, see the official website at www.cellmatrix.com.

Nature’s May Tricks: Evolving Cell Matrices

Spring is usually seen as a period of growth and rebirth, but in reality it is also
testing time. In the natural world, it is during spring when the next generation
is conceived and born. The creatures that are successful in this process will
continue to propagate their genetic material for yet another generation. In
the previous section we discussed the Cell Matrix, a type of system that has
characteristics of both hardware and software. The configuration of a matrix
is the set of all its truth tables and the current state of each C and D wire in
the system. Creating configurations for self-modifying systems such as these
involves a painstaking design and testing process. We still don’t have much
experience in creating these types of systems, and our efforts to date are far
from ideal. However, nature seems to create these types of systems quite well.

Fun, Integration, and Project Ideas 177

178

It does this through an iterative design process. It tries all types of new things,
a countless number of variations on some theme, and then puts them through
the rigorous testing process of life and death. The ones that survive the testing
are used in creating new design variations. You may refer to this process by its
better-known name: evolution.

Most likely, the successful self-modifying systems of the future will not be
explicitly designed in a laboratory by humans but through an evolutionary
process. The JGAP API, discussed in the section “It’s Alive! Using JGAP for
Genetic Algorithms” in Chapter 5, can be used to create evolved systems
of any type (including a Cell Matrix). One useful application would be an
environment where the user can manage the evolution of Cell Matrix
configurations. This type of application would allow the user to start with
existing matrix designs, create scenarios for fitness tests, start new tests, and
manage the testing process. To make the application even more useful, the
evolutionary process could be distributed across many machines for greater
performance. Once a newly evolved design is ready, the user could then
export the configuration for use in a software simulator or in real hardware.

A Real Worker Ant: Running Applications with Apache Ant

Chapter 8

Usually we don’t like bugs anywhere near our Java code, but Ant is one bug
that you will like. Apache Ant is an open-source Java build tool. Developers
often use it for managing multiple build, test, and deployment operations
when working on large projects. Ant uses an XML file to describe the available
targets that you can run. A target consists of one or more tasks. There are
tasks available that can do many different things: compile or execute Java
code, create JAR files, run external programs, work with change-control sys-
tems (such as CVS and SourceSafe), copy files, and much more. In some ways
itis similar to the make tool available on some systems. Like make, Ant can also
manage dependencies between targets.

If you are distributing an application that requires a complex process to
run, such as a complex classpath, you can set up an Ant target to run it. First
you will need to install the Ant classes in your system and make sure that the
ant command is in your system path so that the operating system can find it.
Once this is done, you must create the XML file (build.xml) to describe the
target. Here is a sample Ant file with a target that runs a Java program:

<project name="sample" default="run" basedir="."»
ctarget name="run" description="Run the program" >
<java classname="org.example.MainProgram">
<classpath>
<pathelement location="1ib/someapi.jar" />
<pathelement path="classes" />
</classpath>
</javar
</target>
</project>

The java task executes the class provided in the classname attribute
(substitute the name of your own class for org.example.MainProgram). The
classpath for the program will include all the path elements described in the
pathelement tags. These can be either JAR files or locations of directories con-
taining class files. Once you have created the Ant project file, you can easily
run the Java program by typing the following in the same directory as the
XML file:

ant

The Ant program will look for an XML file called build.xml and execute
the default target in the file (run, in our example).

Playing a Shell Game: Using BeanShell

As Java developers, we often need to experiment with new ideas before inte-
grating them into an application. Now, I'm usually all in favor of the strongly
typed nature of Java, but there are times when I want to be just a bit lazy
so that I can test something! What I really need at those times is a scripted
environment that is pure Java, yet where I can work with loosely typed variables
and not have to write and compile classes. For this purpose, the BeanShell
environment, an embeddable interpreter and scripting environment for

Java, works quite well.

BeanShell works in two ways that can be helpful. First of all, you can use
it as a shell scripting language—either directly from a command prompt in
interactive mode or by loading a script from a file. Interactive mode is partic-
ularly great for experimenting with GUI components. In the following simple
example, BeanShell starts from a command prompt. All you need is to
have the BeanShell JAR file in the classpath, and then you can start the
bsh.Interpreter class. You can interactively enter Java code from the inter-
preter and see the effects immediately. This code will display a JFrame with
a button:

C:\projects\beanshell> java bsh.Interpreter
bsh% frame = new JFrame("From Bean Shell");
bsh¥% pane = frame.getContentPane();

bsh% panel = new JPanel();

bsh¥% panel.add(new JButton("Don't push me"));
bsh% pane.add(panel);

bsh% frame.setSize(200, 200);

bsh% frame.setVisible(true);

If you want to read the script from a file, you can pass the filename as a
parameter to the interpreter:

C:\projects\beanshell> java bsh.Interpreter coolbeans.txt

Fun, Integration, and Project Ideas 179

180

Chapter 8

For those of you who would prefer to use a simple editor for writing your
BeanShell scripts, use the bsh.Console class instead of bsh.Interpreter. This
puts you in a desktop that is vaguely reminiscent of the early Unix windowing

environments and starts you in an open shell. There is a basic text editor,
accessible from a right-click on the console, which has an option where you
can also run the script.

Interactive mode is great for debugging. Let’s say that you have some
code that doesn’t work and you’re not quite sure what’s wrong. You can
enter the code into BeanShell (or paste it in), print the value of variables,
and even change their values before using them in a method. This can save
a lot of time in debugging, and it sure beats sprinkling your code with lots of
System.out.println statements.

The second way to use BeanShell is to embed it within an application.
You can use this feature to add scripting capabilities to an application. In this
next example, the class starts an Interpreter instance and uses the eval method
to evaluate a BeanShell script containing Java code. It then loads a script from
a file, using the source method. Notice that you can share variables between
the application and the script by using the set and get methods of the
interpreter.

import bsh.Interpreter;
import java.util.Date;

public class InterpreterTest
{
public static void main(String[] args)
{
Interpreter shell = new Interpreter();
shell.set("varName", "my data");
shell.eval("date = new java.util.Date();");
shell.eval("System.out.println(date);");
shell.eval("System.out.println(varName);");
shell.source("test.bsh");
Date myCopy = (Date) shell.get("date");

Some things about BeanShell make it slightly different (easier and more
suitable for scripting) than typical Java code. You do not need to declare a vari-
able before you use it, and the types are dynamically assigned. The example
above clearly shows this, in the use of the date variable. And here is the fea-
ture that gives BeanShell its name: if you want to work with properties of a
JavaBean, simply use the name of the property. This works for both setting
and getting properties. These automatically get translated into the appro-
priate method calls for property accessors and mutators, as in the following
BeanShell code:

frame.visible = true;
System.out.println(frame.visible);

By now, I'll bet you already think BeanShell is wicked cool, and you don’t
even need to “shell” out any cash—it’s free! We could have used BeanShell
for most of the examples in this book without writing a Java class or compil-
ing the code.

Testing, Testing, Testing: Creating JUnit Tests

Thorough testing is one of the most important things that you can do as a
developer. In a well-organized development project, there are several types
of testing. There is the obvious functional testing that tests how well the
application does the tasks that it is supposed to perform (based on system
requirements, of course). Performance testing is another common type
of testing, where we measure the application’s response time and ability to
handle higher user loads. Unit testing is yet another type of testing, one that
is often underutilized. This involves writing tests for individual classes and
methods, to ensure that each part of the system works on its own. Once you
know that each part works by itself, you can try to integrate them into a
complete system. Integration testing will then be able to show whether the
components work properly when combined. Integration testing should focus
on the combined whole, and we can be sure about this only if we already
know that each part works properly on its own.

JUnit is a unit-testing framework for Java. It can be used for running
individual tests or automated test suites against the classes in your application.
The ideal is to have a matching test class for every class in the application. To
write a test class, start by subclassing TestCase. One useful naming convention
is to use the name of the class being tested, followed by the word Test. For
example, if we are testing a class called Component, the test class would be called
ComponentTest. Next, create methods in the test class that check the function-
ality of the application’s classes. The names of these methods should begin
with test, and the name should describe the functionality that is being tested.

import junit.framework.TestCase;
public class ComponentTest extends TestCase {
public void testProcess() {
// initialize the objects used in the test
/7 use the objects, and obtain the result
String result =
String expected = "abcdef";
// check if the result is the correct output value
Assert.assertTrue(result.equals(expected));
1

/! you can create other methods to test other functionality

/1 create a test suite
public static Test suite() {

Fun, Integration, and Project Ideas 181

The testProcess method initializes the objects we are testing, runs the
desired code, and then compares the expected output against the actual
output. The assertTrue method signals to the testmanagement system that
the boolean expression parameter must evaluate to true or the test is marked
as a failure. JUnit comes with a GUI class called TestRunner, which graphically
shows the results of running a suite of tests and displays each one as passing
or failing. To create a suite, add the following method to the ComponentTest
class:

public static Test suite() {
return new TestSuite(ComponentTest.class);

JUnit uses reflection to find the names of the unit tests. Any methods in
your test class that start with test will be included in the results. To see the
results, run the following:

java junit.swingui.TestRunner
Enter the name of your test class when the GUI starts, and then press the

Run button. The results of all the tests will display in the GUI once they are
completed.

Peering into the Future: Using JXTA for Peer-to-Peer
Applications

An increasing number of applications are being built using peer-to-peer
frameworks. Peer applications are different from client/server systems,
because in peer systems each network node is both a client and a server.
Peer-to-peer systems became well known a few years ago because of the
controversy over public music file-sharing systems. But there is much more
that you can do with a peer-to-peer environment besides sharing files.
JXTA (which is shorthand for juxtapose) is a standard language- and network-
independent network protocol as well as an APL A peer provides a service
that is advertised to other peers. Peers can discover the services of other
peers, communicate with them, and collaborate on tasks. Peers come in
all shapes and sizes: everything from micro-connected devices such as Java
phones to desktop computers and mainframes. There are many types of
applications that would benefit from JXTA: gaming, distributed collabora-
tion, file sharing, information sharing, and web services, to name a few.
The best place to get more information on JXTA is at the official website:
www.jxta.org. There are example applications, tutorials, demos, and docu-
mentation at the JXTA site.

Grid Is Good: Using the Globus Toolkit and Grid Computing

Chopter 8

A gridis a type of distributed system where resources such as memory or proc-
essing power are shared among a large number of computers and appear
to be a single system. Grids can combine the resources from thousands of

machines into a single virtual supercomputer. The SETI@home project is
one example of grid computing. This project was launched in 1999 to help
researchers analyze radio signals from space, in search of evidence of extra-

terrestrial life. SETI@home takes advantage of underutilized processing
power on many thousands of machines to process large amounts of data in
a distributed manner. Many other grids are in operation around the world,
with applications in physics, bioinformatics, weather, and numerous other
areas. You can create your own grid applications in Java, using the open-
source Globus toolkit APL It has facilities for data and resource manage-
ment, security, communications, and resource discovery. Using the Globus
toolkit, you can create large-scale applications that pool resources from
many different machines into a single service. The toolkit is being used in
commercial grids by IBM, Oracle, Sun, and other companies; it is also heavily
utilized in scientific and research applications at universities and government

agencies in the United States and the European Union. For more information
on Globus and grid computing, you can visit www.globus.org or this book’s
website.

Jabberwocky: Adding Chat to Your Application with Jabber

Many types of applications are collaborative, and the users of such applica-
tions would benefit from the addition of an instant messaging (IM) capability.
A new protocol called Extensible Messaging and Presence Protocol (XMPP) allows
applications to stream XML elements across a network, and it was created
especially for working with instant-messaging applications. Jabber is a set of
protocols based on XMPP, as well as an API for working with them. You can
use the Jabber API to add messaging functionality to your programs. There
are several ways to use Jabber for instant messaging. The easiest is to use

Jabber directly “out of the box"—you can use the Jabber client program to

connect with multiple chat servers. You can run your own Jabber servers or
use a public one. Jabber can also connect to other IM systems such as Yahoo,
MSN, or AOL. The most interesting feature of the Jabber API is the ability to
embed IM client and server functions into your own application. For instance,
you might build a collaborative editing application and include a chat feature
so that the users could discuss work issues (or to gossip and make lunch
plans!). The Jabber API has many other advanced features, such as con-
necting through a firewall, encrypting messages, and interfacing with email
systems. Visit the official Jabber website at www.jabber.org.

Some Assembly Required: Writing JVM Assembly Language

The Java Virtual Machine (JVM) is one of the most amazing things about Java,
and it took the software industry by storm when it was released back in 1995.
The JVM is important because it allows developers to write code once and
run it on multiple target platforms without recompiling. In other languages,
source code is compiled into an executable for a single platform. This is
still true with Java, but the target platform is the JVM. The ability to run on
different platforms comes from the many implementations of the JVM for

Fun, Integration, and Projact Ideas 183

184

Chapter 8

different machines and operating systems. You have probably heard of
bytecode and are aware that it is the machine language for Java. However,
most people are not aware that there is also an assembly language for the JVM.
You can see the assembly code for a class by running the javap program that
comes with the compiler, using the -c option, as shown by this sample run
using the Date class:

C:\projects> javap -c java.util.Date

Compiled from "Date.java"
public class java.util.Date extends java.lang.Object implements
java.io.Serializable,java.lang.Cloneable, java.lang.Comparable{
public java.util.Date();
Code:
0: aload 0
1: invokestatic #393; //Method java/lang/System.currentTimeMillis: ()]
4: invokespecial #399; //Method “"<init>":(J)V
7: return

public java.util.Date(long);
Code:
0: aload_o0
1: invokespecial #383; //Method java/lang/Object."<init>":()V
aload_o
1load 1
putfield #372; //Field fastTime:]
return

o o B

The -c option shows the disassembled code from the class file. Of course,
to most Java developers this code doesn’t make much sense! The commands
shown above, such as aload_o0 and putfield, are known as opeodes. You will need
to learn the Java assembly language to be able to understand what this code
does or to write classes using assembly code. For some applications, you may
want to tightly optimize a section of code for speed, and you may have con-
sidered writing some code in C/C++ and using the Java Native Interface (JNI)
to hook it into your Java application. This will probably give you a speed
boost, at the cost of platform independence and maintainability. Instead,
you can try writing the class in Java assembly code and hand-optimizing that
section. For some operations, this will give you a large increase in performance
without sacrificing the platform independence of the JVM. The Java compiler
usually does a great job of compiling source code into machine language,
but an experienced assembly programmer would probably still win the
competition for code optimization.

If you choose to write a class in assembly code, there are a couple of
options. Jasmin is an assembler that converts assembly language source files
into machine language for the JVM (class files). The Byte Code Engineering
Library (BCEL) is another open-source project that allows you to program-
matically read and write class files and Jasmin assembly code. You can use it

to write compilers, optimizers, transformers, and interpreters for Java and
other languages. It can even modify existing class file structures. Both of
these tools have an extensive learning curve and will require you to learn the

Jasmin assembly language and the internals of the JVM. You will find links to
these projects on the book’s website.

Writing JVM assembly language code should be a last resort. Most of the
time, only a few small sections of code are the performance bottlenecks slow-
ing down an application the most. A profiling tool can help to locate these
problem areas. On the book’s website you will find links to profiling tools
that can help you in this process. Optimization is certainly not a bad idea,
but keep in mind that according to Donald Knuth, a renowned computer
scientist at Stanford University, “premature optimization is the root of all
evil.” You should wait until you are sure that the area in question really is a
bottleneck before doing any optimization.

Bytecode Critters: Combining Genetic Programming with BCEL

In the previous section, we discussed the use of alternative tools to generate
bytecodes, rather than compiling Java source code to make class files. One of
these tools is BCEL, an API for manipulating the structure of class files. With
BCEL you can create classes dynamically by calling methods to add each line
of JVM assembly code to the class. The hardest part of creating a class in this
manner is knowing which opcodes to use to perform the desired task. You may
be able to use a genetic algorithm API such as JGAP (discussed in Chapter 5)
to dynamically create classes for some types of applications. The most useful
cases are when you have a class with existing methods, and you need a slight
variation from these methods but don’t know what it is ahead of time. If it is
something easily testable (perhaps with a JUnit test), then you could write a
fitness function for it and create classes with random variations using slightly
different bytecodes. You might even consider writing a graphical environment
for managing the evolution process, as mentioned in “Nature’s May Tricks:
Evolving Cell Matrices.”

Coffee Substitutes: Compiling Other Languages to Bytecode

In the previous two sections, we discussed alternative ways to create bytecode
besides simply writing Java source. In the most extreme cases, we can write
programs at a very low level by working directly in JVM assembly language
(Jasmin). We can also write programs to generate bytecode using BCEL, as
mentioned in the previous section. A third option is to compile into bytecodes
from a high-level language other than Java. There are now many alternative
compilers that can convert other languages into bytecode. Examples of
languages that can be compiled into bytecode include Basic, Scheme, Lisp,
Logo, Prolog, Ada, COBOL, and many others (the book’s website has links to
many of these compilers). This can be useful for working with special-purpose
languages or for reusing legacy code written in another language within a JVM.

Fun, Integration, and Projact Ideas 185

186

If you don’t see an existing compiler for your desired language and are look-
ing for an ambitious project to work on, you could write your own! This would
require a combination of JavaCC, parsing techniques from Chapter 3, and
BCEL. You'll also need an extensive knowledge of your language’s grammar
and the details of JVM machine code.

LojViz: Grammar Visualizer for Lojban

Chapter 8

In Chapter 4, in the section “Simply Logical: Lojban, RDF, and the Jorne
Project,” we discussed the constructed spoken and written language called
Lojban. Here we are speaking of a human language, not a programming
language! Because the language is syntactically unambiguous, and because
of its logical nature, sentences in Lojban can be easily diagrammed and
represented graphically. An application that parses Lojban text might display
it as a graphical view, something like that shown in Figure 8-2.

le prenu cu tavla le skami

Figure 8-2: A diagrammed lojban sentence

This type of display would be useful for text in other languages, too,
but you’d need to disambiguate the words and sentences for most natural
languages. The user might select the intended meaning from a list of
possible meanings for a word, or the system would use some type of
heuristics to determine the intended meaning of each word based on
context. A sophisticated version of this might determine word context
using a rule-based intelligent agent or a neural network and have the
user select from a list when the process does not lead to a clear selection
for the most likely meaning.

Pitch Patch: Synthesizer Patch Editor

In Chapter 7, in the section “Beeps and Bleeps: Synthesizing Sounds with
JMusic,” we created musical instruments by wiring together sound-processing
components with the JMusic APL. To create and use our custom digital instru-
ments, we needed to write Java code that connected the output of each unit
to the input of another. This is quite tedious for more complex sounds, and it
would be nice to be able to wire these components together using a graphical
interface. Such an application would allow the user to drag audio components
onto the work area and connect them together into a working musical
instrument. The application would generate the appropriate Java source
code and allow you to save the new instrument, compile it, and then play
music using it.

Words with Wires: WordNet Explorer

In the Chapter b section “Word Up: Navigating English with JWordNet,” we
looked at a lexical reference system for English and worked with an API that
can obtain the related words for any word sense. Words may be related by
inheritance or by encapsulation; in linguistic terms, these are hypernym/
hyponym and meronym/holonym relationships. WordNet contains many
thousands of these relationships, and [WordNet allows you to follow the links
between words. You could use this API to create an application for graphically
exploring semantic relationships. The user could type in a word and select
the desired word sense from a list. A graphical display of related words would
then appear, with different-colored links to indicate the type of relationship.
Clicking a word expands the relationships for that word. This type of applica-
tion would be helptul for learning English or could be used like a thesaurus.
You could combine it with SUMO and the other Semantic Web ontologies
described in Chapter 4 to add semantic concept exploration as well.

News on Tap: Automated Newsfeed Generator

In the Chapter 4 section "Guess What? Publishing RSS Newsfeeds with
Informa,” we discussed an API called Informa. Informa allows you to create
RSS feeds, by adding individual news items to a feed, and to generate an
XML file of the desired RSS flavor. The hard part about creating a feed
programmatically is writing the text summary. A completely automated
newsfeed generator would be extremely useful, especially if the text summary
was also written by the automated process. Currently, most of this work is
done manually.

There are two difficult tasks here. The first problem is in correctly identify-
ing the subject of the text in a document. You could use some combination
of heuristics, such as keywords in the title and text, along with a weighted list
of topics usually covered in the site. Since words often have multiple meanings,
the program would use context to find the right word senses (and perhaps
use J[WordNet to find related words). It would also need to decide which of
the keywords were most important in determining the subject matter and

Fun, Integration, and Projact Ideas 187

188

generating a sensible and appropriate name for it. The second problem,
creating summary text, is much more difficult. Summarizing the document
means understanding its content at a deeper level and generating meaningful
text that clearly describes the main ideas. Here are some technologies and
projects described in earlier chapters that might help in this endeavor:

» Neural networks

* Intelligent agents

» WordNet, SUMO, and other ontologies
* Jenaand RDQL

» Regular expressions

* Grammar specifications

If you are feeling very ambitious and would like to attempt this project,
prepare to be working on it for quite some time.

Robot School: Neural Net Robotics

In an earlier section, “Think outside the Blocks: Using Java to Control a Lego
Robot,” we used a Java API (LEJOS) to control a Lego Mindstorms robot.
If you are building a robot to perform complex tasks based on some combina-
tion of sensor inputs, you might want to use a neural network in your robot
design. We saw the Joone API in Chapter 5, and with some modifications this
could be applied to a LEJOS-based program running on an RCX controller.
As an example, suppose that your robot must look for some pattern of light
fluctuations before it can move. If you take this approach, the most important
step is in training the neural network to recognize the pattern. This will be
tricky, since the training will be offline (that is, not running within the robot’s
brain). The sensors used by the robot will not be available during the training
process. You will need to collect the pattern of numeric values expected from
the sensors ahead of time. The training program in Joone will need this
information. Once the neural network is ready, you can embed it into your
robot’s programming. Be aware that if anything about the robot hardware
changes, such as using different sensors, your network’s training might no
longer be valid.

Annotation Innovation: Java 5.0 Annotation Management Tool

Chopter 8

Java has the ability to describe classes using metadata within your source

code. This metadata, known as an annotation, is defined in the class along
with your source code but is mostly ignored by the compiler and usually
processed with some other tool. The compiler will include this data in the
compiled class files but in an area outside the generated code. If you have
written JavaDoc with a @eprecated tag (to mark a method as being deprecated
for documentation purposes) or have seen JavaDoc generated using it, then
you have used annotations. Another annotation from Javadoc is @Author.

These are examples of standard annotations from the Java core. In Java b,
you can create your own annotation types using @interface (instead of inter-
face) and use them within your classes to mark up the code with metadata.
You can write your own tools to process this custom metadata using the
new annotation-related methods of java.lang.Class in Java 5. See the docu-
mentation for details on how to create custom annotation classes and read
annotations from your code using reflection.

One interesting project would be to create an annotation-management
tool. This type of application would read metadata from classes and allow the
user to manage the metadata and display it in unusual ways. This could even
be integrated into a source code editor to allow the developer to work with
annotations in application-specific ways. A more advanced version of this
could use annotations related to concepts in standard Semantic Weh
ontologies such as SUMO (discussed in the Chapter 4, in the section “Who’s
a What? Using RDF Hierarchies in Jena”). Using a development tool based
on semantic annotations, the developer would tag sections of code to relate
them to real-world entities. If other projects used the same semantic annota-
tions, then developers could share code for domain-specific applications much
easier. Next-generation search engines would be able to quickly locate code
that performs specific tasks.

The Winds of Change: Using CVS and Source Code Control

Whoosh! That sounds like the winds of change, or perhaps it is the sound
of developers fighting over some code changes. Some of the more popular
open-source projects have many developers working on the same sections of
code. How do they keep chaos from taking over? There is a very high likeli-
hood that developers will be stepping over each other’s code unless there is
some system in place to keep track of the changes. All of the open-source
communities use some form of source control to manage changes to their
files. The configuration management (CM) tools of choice in most open-source
projects are CVS and Subversion. These work in similar ways: the programmer
checks out copies of source code from a server, makes some changes on a
development machine, and commits the changes back to the server. All of
the changes are kept in archives, and it is possible to revert to an earlier
version if something goes wrong.

CM tools are not just for use with open-source projects. Whether you are
working on an open project or a commercial package, source code control is
extremely important. Even with only a single developer on the team, the ability
to revert to an earlier version is very powerful. As developers, we know that
we can easily introduce new bugs into an application. Many of the source code
control systems have a “diff” function, where you can see the differences
between two versions of a file. When a new version of your application is
broken after some changes, you can locate the lines of code that are different
and take corrective action (such as reverting). Many different packages are
available, and it’s much better to use some type of CM than none at all.

Fun, Integration, and Projact Ideas 189

190

Forging Ahead: Using SourceForge for Your Projects

Chapter

Chapter 8

If you are starting an open-source project, you will need several things in place
to ensure its success. First, you’ll want a place to host the project’s website,
documentation, and source code repository. Second, it helps to have a forum
to discuss issues with other developers on the team. Finally, you'll need a bug-
tracking system to manage software defects. You can find all these free of
charge at a site called SourceForge. SourceForge hosts many of the popular
open-source projects, including some of the ones we've seen in earlier
chapters. The added visibility of being listed in the open-source directory will
bring a few extra visitors to your site, and the directory is also a great place to
locate developers who are interested in helping with the project. It has a sec-
tion called the Java Foundry, where you can host Java projects. Regardless of
which programming language you use, this site is a valuable place to start
in creating a new open-source project. You can find more information at
http://sourceforge.net.

Summary

Wicked Cool Javais designed to share information about interesting Java APIs
and tools that are available via open source. This chapter discussed some
interesting open-source projects and presented ideas for other projects that
have not yet been created. The purpose of this chapter is to encourage
readers and other Java developers to work together in creating exciting new
open-source projects. On the book’s website, http://wickedcooljava.com,
you can join a forum for discussing the ideas in this book with other readers,
and you can obtain updated information and links to any projects discussed
in the book.

GLOSSARY

A

abstract class
A class that cannot be direc
overrides abstract methods

instantiated, except via a subclass that

abstract method
An unimplemented method of an abstract class

abstract syntax tree (AST)
A hierarchical representation of parsed text, showing the relationships
between tokens

abstract window toolkit (AWT)
The graphical user interface provided by the Java core API; see also
Swing

affine transformation
A transformation of the coordinates in a two-dimensional coordinate
system

Agent Identifier (AID)
A unique identifier for an intelligent agent, used for sending messages
between agents

aggregated content
Data that is managed by an aggregator, consisting of changed content
from various sources

aggregator
An application that collects data from multiple newsfeeds and presents
them to the user

allele
A particular instance or expression of a gene

alphanumeric
Consisting of letters and/or numbers

amplitude
The level of strength (volume) of an electrical or audio signal

annotation
Metadata held within a Java class

anonymous class
A class that has no name, often used for event handler implementations

Application Programming Interface (API)
A library of methods and classes

arity
The number of parameters of a method, procedure, function, or
predicate

Arraylist
A class that represents a resizable array

assertion
A check that the state of the application is as expected at some point in
the code, used to enforce the assumptions of a programmer

AssertionError
An error that occurs when an assertion fails

attribute map
In JGraph, a mapping of the edges and vertices in the graph to the corre-
sponding display characteristics

attributes
Text variables attached to an XML element as name /value pairs

autoboxing
In Java 5, the automatic conversion between an intrinsic type (such as
int) and its wrapper class (such as Integer)

192 Clossary

backreference
A reference to a previously occurring subpattern in a regular expression;
see also grouf

Base64
A compact way of encoding binary data, using 8 bits of text to represent
6 bits of data, and using a base of 64 characters; defined as part of the
MIME standard

big-endian
An ordering of bytes within an integer’s internal representation where
the most significant bits occur first; see also [ittle-endian

BigInteger
A class in the Java core that represents an integer of arbitrary precision

BinaryCodec
A class that performs binary-to-text conversion, from the Apache
Commons project

BitMatrix
A class that represents a two-dimensional matrix of bits, from the
Colt API

BitVector
A class that represents a one-dimensional matrix of bits, from the
Colt API

blog
A web log; a type of interactive public journal or log that is viewable
online. Also, the act of maintaining such a journal.

Boolean function
A function that operates only on Boolean values

Byte Code Engineering Library (BCEL)
An open-source library for directly manipulating bytecode

bytecode
The low-level platform-independent machine code of the JVM

C

capturing group
See group

casting
Converting from one type to another compatible type; for object refer-
ences, there must be an inheritance relationship

Glossary 193

190 Clossary

Cell Matrix
A parallel computer architecture in which computing elements (cells)
are programmed by their neighbors

channel
RSS metadata about some content that is periodically updated, usually a
website; the main entity in a newsfeed

character class
A category or class of characters used in a regular expression, such as
whitespace or alphanwmeric

chromosome
The set of all possible genes; also called the genome; in GAs, the chro-
mosome is the set of all possible approaches to solving a problem; see
also gene

ClassCastException
An exception that occurs when an object reference is cast to an incom-
patible type

closure
See function pointer

codec
Coder/decoder, a function that converts from one format to another,
usually from binary data to a text representation

Collection
An interface representing a bag or collection of objects, which any class
can implement to act as a collection

comma-separated values (CSV)
A file format for storing tabular data, where data items in a column are
delimited by commas, and each row is on a separate line

compiler
A program that converts source code into executable code

compose
To combine functions by sending the result of one as input to the other

composite function
A function created by composing two or more functions

computational linguistics
The study of language from the perspective of computing

configuration management (CM)
The process of managing changes to documents (or code)

connectionist system
A parallel computer system where the computing elements are highly
interconnected

ContentHandler
In SAX, the event handler interface that processes an XML
document’s data

crawler
A program that collects data by following links from websites; sometimes
called a spider

cryptography
The science of encrypting and decrypting data

cubic Bezier curve
In two-dimensional graphics, a type of parametric curve described by a
cubic Bezier function

CyclicBarrier
In Java 5, a synchronization class that works as an invisible barrier that
each member of some group of threads must reach before any of them
can continue

D

decimal
A base-10 representation of a number, and the system used by most peo-
ple for describing numbers

deep
A type of tree traversal that processes nodes at a deeper level; a deep
String representation of an array includes the contents of any embedded
arrays

delimiter
A separator character in a list of items; often a comma, semicolon,
period, tab, or space

demultiplexer
A Boolean function that sends a single data bit to one of » outputs,
depending on a set of address bits; also called a decoder

deterministic

Able to be predicted, as in a program that has a small variance in its time
performance

digital signal processing (DSP)
The processing of a signal using digital means

directed graph
A graph where each edge has a direction associated with it (a source and
a destination vertex)

Document Object Model (DOM)
An API for processing XML data as a tree representation

Glossary 195

196 Clossary

DOM4]
An easy-to-use Java API for processing XML, with functionality similar
to DOM

Dublin Core (DC)
A standard set of RDF metadata elements to use for describing content

durian
A sweet fruit native to Southeast Asia, covered with sharp spikes, that has
a strong and distinctive smell that some consider unpleasant and others
consider fragrant

edge
A connection between two vertices in a graph

element
A node in an XML document

encapsulation
The characteristic of OOP that refers to the hiding of implementation
details in a class

end tag
The closing tag of an XML element

enun
An enumerated type in Java b

enumerated type
A type that allows the use of only a specific set of values or instances

envelope
The shaping of an audio or electrical waveform; commonly consists of
attack, decay, sustain, and release periods

escaping
Using special-purpose characters within text that are not interpreted as
part of the text itself; for example, the \ character within a Java String

extended ASCII
An 8-bit character set consisting of the standard ASCII characters plus
some additional non-Latin characters

Extensible Messaging and Presence Protocol (XMPP)
A standard XML-based protocol for sending instant messaging data

finite state machine (FSM)
A type of behavior model for computer systems, using actions to model
transitions from one state to another

fitness function
In genetic algorithms, a function used to determine the programs that
will “breed” to create the next generation of programs

format String
A string that describes an output format pattern for use in printing, used
by Java’s MessageFormat and Formatter classes; note that there are two dif-
ferent types of output format in Java b

fortnight
An old English time unit of 14 days

function pointer
A reference to a function that can be passed as a value and invoked else-
where; also called a dosure or a functor

functional programming
A programming style based on the use of function pointers

functor
See function pointer

furlong
An old English length unit of one-eighth of a mile, or 220 yards

fuzzy search
A type of search that uses similarity rather than exact comparison

G

garbage collector
In Java, a thread that finds objects with no more references to them and
makes their memory space available for new objects

gene
A unit within a chromosome; in genetic algorithms, a gene can be any
type of value (e.g., class, integer, or character)

generic
A type restriction where the type is not known until object construction;
generics are new to Java 5

genetic algorithm (GA)
An algorithm where solutions are chosen by trying many different
approaches and selecting variations on the ones that perform the best
according to some criteria

genotype
An individual’s genetic makeup; in a GA, the program code that repre-
sents a particular solution to the problem

GET
A command for retrieving content from an HTTP server, with no data
sent in the body of the request; see also POST

Glossary 197

gismu
A predicate root word in Lojban

gloss
A description that clarifies a word’s meaning

grammar
The syntax, or structure, of a document

grammar description language
Alanguage that describes a grammar, often used to create parsers

graph
An abstraction showing relationships between things, where related ver-
tices (nodes) are connected by edges (links)

graph theory
The study of graphs and graph algorithms

graphical user interface (GUI)
A user interface based on windows, buttons, icons, and other graphical
components

grid computing
A parallel distributed system that allows computing resources to be
shared seamlessly

group
In a regular expression, subexpressions within parentheses that can be
captured separately from the rest of the matching text

harmonics
Higher-frequency components of a signal

HashMap
A lookup object in the Java core that maps keys to values

heap memory
An area of unused memory from which new objects are allocated

hexadecimal
A base-16 representation of a number, where the digits are 0-9 and A-F

Hibernate
An open-source project for mapping objects to relational databases that
also provides persistence and query services

holonym
A word that names a larger whole of which something is a part; for exam-
ple, bicycleis a holonym of wheel

198 Clossary

hypernym
A word that names a more general class of something; for example,
vehicle is a hypernym of bicyele

HyperText Markup Language (HTML)
The markup language used in creating web pages

HyperText Transfer Protocol (HTTP)
The protocol used in web requests, for transferring any
(HTML, images, audio, and other content)

pe of content

hyponym
A word that names a more specific example of something; for example,
Dieycle is a hyponym of vehicle

identity transform
An XSL-T wansform where the output is the same as the input (no
change)

inference
Logically obtaining conclusions based on facts that are known to be true

Informa
An open-source API for reading and writing RSS files

inheritance
The characteristic of OOP that allows classes to inherit behavior from a
parent class

inner class
A class contained within another class that has access to the member vari-
ables of its enclosing class

intelligent agent
An autonomous software process able to make decisions and take action
without the involvement of a human being

interning
The process where all Strings with a particular value are internalized
within a pool

Iterables
An interface in Java 5 that allows classes to be used with the enhanced
for loop

Iterator
An interface that allows any Collection class to be iterated

Jasmin
An assembly language for the JVM

Glossary 199

Java 2 Enterprise Edition (J2ZEE)
A set of enterprise server APIs, usually implemented within a vendor’s
enterprise server

Java Database Connectivity (JDBC)
An API, part of the Java core libraries, for working with relational
databases

Java Development Kit (JDK)
The Java compiler, core libraries, and related development tools

Java Native Interface (JNI)
An interface for calling native code (such as C/C++ or native assembly
language) from Java

Java Runtime Environment (JRE)
The environment in which Java programs run

Java Server Page (JSP)
A technology for creating servlets by using a simplified syntax consisting
of HTML mixed with Java code sections; [SPs run within a servlet engine
and are translated into servlets before execution

Java Sound
An APl in the Java core, for working with MIDI and sampled sound

Java Speech API (JSAPI)
An extension API for working with speech synthesis and recognition
in Java

Java Virtual Machine (JVM)
The virtual machine that runs Java’s cross-platform machine code,
known as bytecode; see Java Runtime Environment (JRE)

JavaCC
A Java-based compiler for generating parsers for arbitrary grammars,
using a grammar description language

JavaDoc
A documentation-generation tool for Java, part of the JDK, that uses spe-
cially formatted comments to create HTML documentation

JavaScript
Alightweight interpreted scripting language, used mostly with client-side
HTML, with a syntax similar to Java (however, JavaScript is not Java!)

Jena
An open-source API for working with RDF graphs

L

layout cache
In JGraph, a lookup object that maps the model’s cells to their views

200 Glossary

lemma
A heading or label for the gloss of a word

lexical analysis
The separation of text into individual tokens; see also foken

lexing
See lexical analysis

linked list
A list structure where each data item is contained in a node that has a
link to the next node; a linked list is traversed by following links

List
An interface implemented by ordered collections in Java

little-endian
An ordering of bytes within an integer’s internal representation, where
the most significant bits occur last; see also big-endian

logical connective
Connects one logical statement with another according to a Boolean
function; examples include AND and OR

Lojban
A constructed human language (spoken and written) based on predi-
cate logic that has a non-ambiguous syntax and a machine-parseable
grammar

Matcher
A Java class that performs regular expression pattern matching

meronym
A word that names a part of something larger; for example, wheelis a
meronym of bicycle

MessageFormat
A Java class that formats text for display or input; see also formal String

meta tag
A tag placed in the head section of an HTML document, used to attach
metadata

metadata
Data used to describe other data

metalanguage
A language for describing other languages

microsecond
A time unit representing one-millionth of a second

Glossary 201

202 Glossary

millisecond
A time unit representing one-thousandth of a second

Moore’s Law
A well-known observation, made by Gordon Moore in 1965, that the
number of transistors in a computer and its processing speed increase
exponentially over time

multi-agent system
A system of cooperating intelligent agents

Multipurpose Internet Mail Extensions (MIME)
A standard for including binary content within a text-only medium such
as email; also commonly used to indicate the type of data being sent
across a connection (such as text/html or image /jpeg)

Musical Instrument Digital Interface (MIDI)
A standard protocol for transferring musical data from one device to
another; also, a format for storing musical commands within a file for
later playback

N
N3
Notation 3, a shorthand format for representing RDF triples
namespace
A way of avoiding name conflicts by qualifying elements and attributes
(using a URI and a prefix) within an XML document
nanosecond
A time unit representing one-billionth of a second
nanoTime

In Java 5, a method of the System class that returns a nanosecond-
resolution timer

neural network
A group of simple processing cells that are highly connected and work
together to form a larger computing system, having connectivity mod-
eled after the brain’s neurons and synapses

neuron
An individual processing unit within a neural network

newsfeed
Information about recent changes in web content and periodically
retrieved by an automatic process; used by aggregators to create custom
news channels

node
A part within a larger connected structure; examples of nodes include
graph vertices, list items, and XML elements

noise
A disturbance within an audio or electronic signal, exhibiting various lev-
els of randomness; noise sounds like a hiss to the human ear

notation 3
See N3

0

object-oriented programming (OOP)
A programming practice that makes use of inheritance, polymorphism,
and encapsulation

object pool

A pool of instances from which objects can be obtained, to avoid garbage
collection and object construction delays

object URI
A URI that refers to the “object” of an RDF triple

ontology
A collection of terms and the hierarchy of relationships between them

opcode

A command in an assembly language program
origin

The center of a two-dimensional coordinate system

oscillator
An audio component that generates a tone

overloaded methods
Methods with the same name that have different parameters; see also
sighature

override
To redefine a method inherited from a parent class

OWL Web Ontology Language
A language for defining RDF ontologies; see also onlology

P

parser
A program that recognizes a grammar

parser generator
A program that generates a parser from a grammar description language
(such as JavaCC)

parsing
The process of recognizing a grammar and extracting or processing the
content

Glossary 203

patch
A configuration created by wiring audio components together to gener-
ate a specific sound

pattern
Text that describes which Strings will match a regular expression

peer-to-peer system
A type of network architecture where each node is both a server and a
client

performative
A message sent to an intelligent agent that describes a desired outcome
expected from the agent’s action

platform independence
The ability of a program to run on multiple platforms without
modification

polymorphism
The characteristic of OOP that refers to a class behaving differently
depending on how its methods are overridden in a subclass

polynomial
A mathematical expression made up of sums of variable terms contain-
ing different exponents; examples include 5x” + 8 and 12x* + 10x + 1

port
Alocation in a graph where edges can be attached

Portable Document Format (PDF)
A document format from Adobe, commonly used for printable docu-
ments on the Web

POST
A command for retrieving content from an HTTP server, with data
submitted in the body of the request, usually used with web forms;
see also GET

predicate
A function that returns a true or false value; a statement of truth or
falsehood

prefix
In XML, a value placed before a name to associate it with a namespace;
see also namespace

printf
A method of the Formatter class that does output formatting using a for-
mat string, based on a similar function in the C language; see also format
String

208 Glossary

procedural language
A language based on procedure calls, without OOP capabilities; exam-
ples include C, Fortran, and Pascal

production rules
Rules in a grammar description language that describe how to build a
syntax tree out of tokens

program trading
Automatic buying and selling of securities based on events such as price
movement, volume changes, or news reports

property

In Jena, another name for the predicate (verb) of an RDF triple
property (of an object)

See stale
Pulse Code Modulation (PCM)

A way of digitally encoding an analog sound, based on periodic sampling
of the signal

qualified name
An XML name that includes a namespace prefix

raster graphics
A type of graphics where images are drawn using individual pixels

RDF Data Query Language (RDQL)
Alanguage for querying RDF documents; see also Resource Description
Framework (RDF)

RDF Site Summary (RSS)
A standard for creating summaries of website changes for use in aggre-
gated content; see also aggregated conlent and syndication

real-time system
A system that requires deterministic time performance, often to avoid
video and audio distortions

recursive
Functions or methods that call themselves directly or indirectly

reference
A handle on an object that provides access to it; usually held in a refer-
ence variable

reflection
The ability to get metadata about the methods and fields of a class in Java
and invoke methods dynamically

Glossary 205

206 Glossary

regular expression
A type of pattern used for determining whether a string matches

relative expression
An XPath expression that is evaluated relative to a particular node

relative URL
A partial URL, interpreted as being relative to the document in which it
occurs

resource
In Jena, something that can be used as either a subject or object in an
RDF triple

Resource Description Framework (RDF)
A way of representing information on the World Wide Web as a semantic
network; the basic foundation of the Semantic Web

ring
In algebra and number theory, a type of structure that behaves similarly
to integers

rotation
In two-dimensional graphics, rotating the axes of the origin by a number
of degrees

Runnable
An interface used in multithreaded programming; anything that imple-
ments the interface can be used as a Thread’s action

S

sampling rate
The rate at which sound is recorded; a higher rate indicates better-
quality sound

sawtooth wave
A waveform that looks similar to a ramp or a saw blade; the signal slowly
rises on each cycle and then drops suddenly; a sawtooth wave has many
harmonics

scalable vector graphics (SVG)
An XMIL-based format for creating vector graphics

scaling
A transformation of the two-dimensional coordinate system where the
coordinate values are multiplied by a constant factor

Scanner

A Java class that performs text scanning
scanning

See lexical analysis

schema
A description of the requirements for an XML document’s grammar
beyond well-formedness; used to check whether a document has valid
content (specific tags, attributes and data types); see also well-formed

screen scraping
Reading an HTML document to extract data from it

semantic network
A graph where the vertices and edges represent concepts

Semantic Web
A next-generation web, based on semantic networks; see also N3and
Resource Deseription Framework (RDF)

shallow
A type of tree traversal that processes nodes at only a single level; a shal-
low String representation of an array does not include the contents of
any embedded arrays

signature
The combination of a method’s name and parameter types that deter-
mines the uniqueness of a method

Simple API for XML (SAX)
A low-level XML API that reads data using an event handler; see also
ContentHandler

sine wave
A waveform based on the sine function; a sine wave contains only a single
frequency and has no harmonics
spider
See crawler
split
To separate text into a list using a delimiter; see also delimiter
square wave

A waveform where the signal rises and falls very sharply and has many
harmonics

start tag
The opening tag of an XML or HTML element

state

The properties or fields of an object
static

Belonging to a class rather than to an instance of the class
StringBuffer

A text object that can be modified; often used instead of a String (which
is immutable)

Glossary 207

subject URI
A URI that refers to the “subject” of an RDF triple

subpattern
See group

subsequence
See group

Suggested Upper Merged Ontology (SUMO)
An RDF ontology of high-level concepts, created by the IEEE; see also
onlology and Resource Description Framework (RDF)

sumiti
A slot within a Lojban gismu; similar to a noun or a predicate’s
parameter

Swing
The more advanced graphical user interface provided by the Java core
that builds upon AWT

SwiXML
An XML format for dynamically creating Swing GUIs

synapse
An input to a neuron; see also neuwron

synchronization

Techniques for safely allowing threads to cooperate; see also Thread
syndication

Subscribing to an RSS feed; see also aggregator and RDF Site Summary (RSS)

synonym set (Synset)
In WordNet, a particular sense of a word

syntax
The structure of a language; see also grammar, parser, and parsing

synthesizer

A sound generator

T

tag
An XML or HTML element in serialized form, consisting of a start tag
and an end tag

terminal
A production rule that is not dependent on other rules; equivalent to a
token

Thread
A Java class that represents a lightweight process

208 Glossary

Tiger
Sun’s code name for Java 1.5, also known as Java 5

timbre
The quality of a sound that makes it unique, and composed primarily of
the different harmonics of the signal

token
An indivisible component of a grammar

translation
In two-dimensional graphics, moving the origin to a different location
than the center (0,0)

tree
A graph without cycles, usually with one node marked as a root (top
level)

triple
A tuple with three elements; in RDF, the triple contains subject, verb,
and object URIs

truth table
A mapping of inputs to outputs used to completely describe a Boolean
function

tuple
An ordered set of values (numeric or other types)

Type Vocabulary
Part of the Dublin Core that refers to the type of content; example types
include dataset, interactive resource, and software

Unicode
The 16-bit character set used in Java and XML and that contains charac-
ters to handle text from all the world’s writing systems

Uniform Resource Identifier (URI)
A unique sequence of characters that identifies a resource; URLs (as
used in web addresses) are a subset of the more general term URI

unit testing
Software testing of parts of the system in isolation to ensure that each
component works properly on its own

Universal Business Language (UBL)
An XML-based format for business documents such as invoices and pur-
chase orders

Glossary 209

N0 Glossary

UTF-8
Unicode Transformation Format, a character encoding for Unicode that
uses a variable-length representation; for documents using only Latin
characters, UTF-8 is the same as ASCII; other characters require 2 to 4
bytes of storage

v

values method
In Java 5, a method of an enum that returns all of its instances

vararg
Variable arguments; in Java 5, a technique that allows methods to accept
a variable number of parameters

vector graphics
Graphics produced using a description of the constituent drawing com-
ponents; for example, lines, circles, text, and curves

vertex
A node in a graph; see also edge and graph

Visitor pattern
A design pattern for letting visiting objects tour an object with many sub-
components

vocabulary
A collection of terms that can be used in an RDF document; see also
onlology and Resource Description Framework (RDF)

w

W3C
The World Wide Web Consortium, a standards body focused on develop-
ing standards for the World Wide Web; W3C standards include HTML,
HTTP, XML, and XML Schema

Web Application Archive (WAR)
An archive file (a JAR/Zip file with a .war extension) that contains an
entire web application; a standard WAR file can be deployed on any J2EE
application server

WebRowSet
A JDBC RowSet that is able to convert its data into an XML format

web service
Application-to-application service that uses HTTP for its transport and
XML for its data representation

weight
In neural networks, a multiplier value assigned to a particular synapse

well-formed
Following the rules of XML syntax; an XML document is said to be well-
formed if it has correct syntax

white noise
A type of noise that is mostly random and contains frequencies ranging
across the entire sound spectrum

whitespace
Characters such as carriage return, line feed, tab, and space

Wikipedia
An online encyclopedia edited according to a collaborative process,
where anyone can make changes

WordNet
An English dictionary in a database format, with each word sense linked
to other related words; see also holonym, hypernym, hyponym, and meronym

X

XHTML
HTML that is also well formed according to the XML standard

XLS (Excel)
The file format of the Microsoft Excel spreadsheet application

XML
The Extensible Markup Language, a markup language for creating doc-
uments with hierarchical data structures of any type

XMLFilter
An interface that is a combination of ContentHandler and XMLReader and
that works as both a parser and an event handler; used in making SAX
filters

XMLReader
A SAX parser, used to read XML data

XPath
An expression language used by XSL-T to access or refer to parts of an
XML document (W3C definition)
XSL
Extensible Stylesheet Language, a family of recommendations for defin-
ing XML document transformation and presentation (W3C definition)
XSL-FO
XSL Formatting Objects, an XML vocabulary for specifying formatting
semantics (W3C definition)
XSL-T

XSL Transformations, a language for transforming XML (W3C
definition)

Glossary 2N

INDEX

A

abstract syntax trees (ASTs), 64
Abstract Window Toolkit (AWT),
149
Add class, 160
add method
in RandomSelection, 9—10
with variable arguments, 11
addApprover method, 97
addElement method, 59
addItem method, 96
addText method, 59
addvertex method, 118
affine transformations, 149-151
Agent Identifiers (AlIDs), 128
aggregating RSS newsfeeds, 80,
93-95
AlDs (Agent Identifiers), 128
alarmLine production rule, 72
algebraic functions, 113-114
Algorithms class, 104
alleles, 124
alllines production rule, 66, 71
aload_ command, 184
amplitude, sound, 161
AND gates, 106-107
angle brackets (<>)
for generic parameters, 8
in parsing, 66
annotation management, 1838-189
anonymous classes, 16-18
Ant tool, 178-179
anylLine production rule, 66, 71
Apache Ant tool, 178-179
Apache FOP project, 138

APIs (Application Programming
Interfaces), 1
append cursors, 29
appendReplacement method, 29
appendTail method, 29
Application Programming
Interfaces (APIs), 1
arithmetic precision, 111-113
arity of gismu, 91-92
Arraylist class, 3, 7-8
arrays, displaying, 36-37, 39
Arrays class, 36
artificial neural networks, 122-124
assembly language, 183-185
AssertBad class, 15-14
AssertionError class, 13
assertions, 12-14
assertTrue method, 182
ASTs (abstract syntax trees), 64
attribute maps, 141-142
Attributes interface, 51
AttributesImpl class, 51
audio
low-level, 162-164
MIDI, 154-157
music synthesis, 157-162
reading from input lines,
164-165
speech synthesis, 165-166
AudioFormat class, 162, 164-165
AudioObject class, 158, 160
AudioSystem class, 162
@Author tag, 1838-189
autoboxing process, 4
automated newsfeed generators,
187-188

214

INDE®

await method, 169-170
AWT (Abstract Window Toolkit),
149

backreferences, 27

backslashes (V) in regular
expressions, 22-23

base concepts in Lojban, 92

Baseb4 encoding, 38-39

Batik APL, 138-139

BCEL (Byte Code Engineering
Library), 184-185

BeanShell environment, 179-181

behaviors in intelligent agents, 127

BigDecimal class, 112

BigInteger class, 30—40, 112

binary data, encoding and
decoding, 37-40

BinaryCodec class, 39-40

BinaryFunctor functor, 102, 105

BinaryPlotPanel class, 146-147

BitMatrix class, 108-109

BitSet class, 106

BitVector class, 40, 106-108

block method, 129

blog entries, 93

brains, artificial neural networks,
122-124

BufferedImage class, 146

build tools, 178-179

build.xml file, 178, 179

Byte Code Engineering Library
(BCEL), 184-185

bytecodes
compiling other languages to,
185-186
for JVM, 2
C

canAddItem method, 98
case-insensitive matches, 28
casting, 7-8

Cell Matrix, simulating, 176-178
CellView class, 141

CEWolf library, 144

chaining
audio components, 158
in DOMA4], 61
function, 105
ChannelBuilder class, 93-94
channels in RSS, 93-94
characters in regular expressions,
22-23
characters method
in IgnoringFilter, 54
in LineItemReportHandler, 49
in SAXException, 47
in SellerFilter, 63
ChartFactory class, 142
ChartFrame class, 143
charts, 142-144
ChartUtilities class, 144
chat applications, 183
CheckQuoteBehavior class, 128
ChoiceFormat class, 41
chords in MIDI, 155
chromosomes, 124-126
CircleGraphLayout class, 141
ClassCastException class, 8
classes, anonymous, 16-18
Cleaner class, 98
close method, 52
CM (configuration management)
tools, 189
codecs, 39
Collection class
delays in, 166
for loops for, 2—4
Colt API, 106-108
comma-separated value (CSV) files,
24
comments for assertions, 12
comparisons, 18-20
compiling languages to bytecode,
185-186
Complex class, 113
Component interface, 115-116, 121
ComponentTest class, 181-182
compose method, 104-105
composite functors, 104-105
computational linguistics, 130-132
ComputerConfig class, 110

concepts
Semantic Web, 80
URI, 84-85
configuration management (CM)
tools, 189
connect method, 120-121
connectionist systems, 122
connections
generic processing units,
119-122
graph, 117-119
Console class, 180
Constant class, 114
constants, enum for, 4-7
ContentHandler interface, 46, 50-56
context in search matches, 26
conversions
grammars into XML, 68-73
JGraphT views into JGraph,
139-141
scientific units, 110-111
String, 36-37
cookies, 174-175
core API, 1-2
assertions, 12-14
enum, 4-7
equality, 18-20
for loop enhancements, 2—4
generic parameters, 8-10
nano time measurements, 14-15
sleep method, 16
typesafe maps, 7-8
vararg methods, 10-12
createChain method, 158, 160-162
createDocument method, 59
createPieChart method, 143
CSV (comma-separated value) files,
24
CubeGenerator class, 102
currentTimeMillis method, 14-15
CVS to0l, 189
CyclicBarrier class, 169-170

data
encoding and decoding, 37-40
extraction, 58-61

Date class, 42

DateFormat class, 41

dates, entering, 175-174

dateTime production rule, 67, 69,
72-73

DC class, 87
DC (Dublin Core) standard, 87-88
enable assertions (ea) command
option, 14
de.nava.informa.impl.basic package,
93
de.nava.informa.utils.poller
package, 96
debugging in BeanShell, 180
DecimalFormat class, 41
decoding binary data, 3740
deep toString conversions, 36
DefaultKeyedValuesDataset class, 143
delimiters, 24
demultiplexers, 107
DemuxFitness class, 125-126
@Deprecated tag, 188
digits in regular expressions, 22
divide method, 113
Document Object Model (DOM)
API, 44
dollar signs ($) in regular
expressions, 28
DOM (Document Object Model)
API, 44
DOM Document with Batik, 139
DOM4J project
for data extraction, H8-61
filtering documents for, 61-63
for XML documents, 56-57
done method, 128
double values, 111-113
Dublin Core (DC) standard, 87-88

ea (enable assertions) command
option, 14
Edge interface, 119
edges, graph, 117-119, 141
elements
invisible, 61-63
SAX, 46-50
XML, 44

iMpex - 215

216

INDE®

encoding binary data, 37-40
encyclopedia, Wikipedia, 74-76
end method, 30
endElement method, 51
in IgnoringFilter, b4
in LineItemReportHandler, 49-50
in SAXException, 47
in SellerFilter, 63
Entry class, 17
enum structures, 4-7
Envelope class, 161
equality, 18-20
equals method, 20
escape characters in regular
expressions, 22-23
evaluate method, 125
EvenNumber class, 103
events
for MIDI devices, 156-157
SAX, 44
evolution in Cell Martrix, 177-178
exitLine production rule, 72
expressions, regular
for capturing groups, 26-28
substituting with, 28-30
for text searches, 21-24
extended ASCII characters in
HTML, 74
Extensible Markup Language. See
XML
Extensible Messaging and Presence
Protocol (XMPP), 183
extraction, data, 58-61

Factory class, 167
feeding
ContentHandlers, 50-56
newsfeeds. See RSS newsfeeds
FeedParser class, 95
filter-feeding, 52-56
filtering
documents for DOM4], 61-63
RSS newsfeeds, 97-98
find method, 25
finding
substrings, 25-26

text, 21-24
website items, 76-77
findInLine method, 34
findWithinHorizen method, 34
finite state machines, 130
FIPA (Foundation for Intelligent
Physical Agents), 127
fitness function, 124
fn method, 103, 105
for loop enhancements, 2—4
Format classes, 41
format method, 41
format Strings, 41
Formatter class, 42
formatting Strings, 40-42
forms, posting to HTTP servers,
174-176
Fortran programming language,
101
Foundation for Intelligent Physical
Agents (FIPA), 127
FreeTTS speech engine, 165-166
Fruit enum, 57, 10
FruitConstants class, 4-7
FSMBehaviour, 129
function pointers, 102
functors
composite, 104-105
creating and applying, 102-105

G

garbage collection, 166-169
GAs (genetic algorithms), 124-126
Gene class, 125
Generate class, 105
Generator functor, 102
generic algorithms, 102
generic parameters, 3, 8-10
generic processing units,
connecting, 119-122

genes and genetics

with BCEL, 185

in Cell Matrix, 177-178

JGAP for, 124-126
genetic algorithms (GAs), 124-126
genomes, 124
genotypes, 125

GET method
HTTP, 174
interpreter, 180
getAcquireDate method, 168
getBounds method, 141
getCategory method, 4-6
getGraphlayoutCache method, 141
getMidiDevice method, 157
getRandomElement method, 10
getRandomString method, 34
getSourceDataline method, 163
getStringData method, 22-23, 27
getTelemetry method, 168
getTextContent method, 57
getUncertaincy method, 168
getvalue method, 120
gismu root words, 91-92
Globus API, 183
grammars
converting into XML, 68-73
Lojban, 186
in parsing, 34, 64-67
in search matches, 26
graph connections, 117-119
graph theory, 117, 140
GraphConstants class, 142
graphical user interfaces. See GUIs
graphics and data visualization, 133
2D data visualization, 146-148
affine wransformations, 149-151
with Batik, 139
GUIs, 133-136
JFreeChart charts, 142-144
JGraph attribute maps, 141-142
JGraphT conversions into
JGraph, 139-141
reports, 144-146
Scalable Vector Graphics,
136-139
zoomable GUIs, 151-152
Graphics class, 149
Graphics2D class, 137-139
grid computing, 182-183
group method, 27, 30
GUIs (graphical user interfaces)
in XML, 135-136
zoomable, 151-152

H

Happiness class, 17
harmonics, 160
HashMap class, 7
hasNext method, 32
head tag, 88
heap memory, 19
hexadecimal data, 37-39
Hibernate API, 94
hierarchies in Jena, 86-87
holonyms, 131
HTML pages. See also XML
(Extensible Markup
Language)
attaching Dublin Core to, 88
screen scraping, 73-76
searching, 76-77
HTTP servers, posting forms to,
174-176
HttpClient class, 174-176
HttpState class, 175
HugeFraction class, 112-113
hypernyms, 131
hyponyms, 131

IgnoringFilter class, b4
IM (instant messaging) capability,
183
indexes, 76-77
IndexWriter class, 76-77
inferences, RDF, 83
Informa API for RSS newsfeeds
filtering, 97-98
polling, 95-97
publishing, 93-94
init method, 127
initialize method, 151-152
inner classes, 16-18
input lines, reading audio from,
164-165
instant messaging (IM) capability,
183
Instrument class, 158
instruments, musical, 158
Integer and int equivalence, 3—4

iNpex 217

218

INDE®

IntegerGene class, 125

intelligent agents, 127-130
@interface tag, 189

interning, 19

Interpreter class, 179
interpreters, BeanShell, 179-181
InterpreterTest class, 180
InvalidMidiDataException class, 156
invisible tags, 61-63

I0Exception class, 156

iReport report builder, 144-146
Iterables class, 104

J

Jabber API, 183
Jade, intelligent agents using,

127-150

Jakarta Commons Lang project, 35
Jasmin assembly code, 184-185

JasperFillManager class, 145

JasperReports, 144-146
Java Genetic Algorithms Package

(JGAP), 124-126

Java Native Interface (JNI), 184
Java Sound API, 154-156, 162-164
Java Speech API (JSAPI), 165

java.util.concurrent package, 169
java.util.regex package, 22

Java Virtual Machine (JVM)

assembly language for, 183-185
bytecode for, 2

JavaCC parser, 64-68

javap program, 184
javax.sql.rowset package, 45

Javolution API, 166-169

JCalendar class, 173-174
JDateChooser class, 174

JDBC family, 45
Jena API

RDF graphs in, 82
RDF hierarchies in, 86-87
RDQL queries in, 89-91

JFreeChart API, 142-144
JFreeReport API, 144

JFugue API, 154-156

JGAP (Java Genetic Algorithms

Package), 124-126

JGAP API, 178
JGraph API

attribute maps, 141-142
converting to, 139-141
JGraphModelAdapter class, 139

JGraphT API

converting from, 139-141
generic processing unit connec-
tions, 119-122
node connections with, 117-119
INMC class, 160

JMusic API, 157-162

JNI (Java Native Interface), 184
Joone API, 122-124

Jorne project, 92

JPanel classes, 134

JSAPI (Java Speech API), 165
JScience API

algebraic functions in, 113-114
quantities in, 109-111
JSVGCanvas class, 139
JUnit class, 181-182

JVM (Java Virtual Machine)

assembly language for, 183-185
bytecode for, 2

JWordNet interface, 130-132, 187
JXTA protocol, 182

K

keywords in Semantic Web, 80
Knuth, Donald, 185

L

labeled directed graphs, 117

LargeInteger class, 113

LEGO robot, 171-173
Mindstorms kit, 172

lexical analysis in parsing, 64

LineItemReportHandler class, 49-50

line0fText production rule, 66, 71

linguistics, computational, 130-132

link tags, 88, 94

linked lists, 17

LinkedNode class, 16-17

Linker class, 16-17

logical languages, 91-92

LogParser class, 65, 70-71

Lojban language
visualizer for, 186
words in, 91-92

lookingAt method, 24

low-level sound, 162-164

Lucene API, 76-77

Map class, 7,9, 17
maps, typesafe, 7-8
Matcher class, 23
matches method, 25-24
math. See science and mathematics
Math class, 101, 111
meronyms, 131
MessageFormat class, 40—41
meta tag, 88
MetaComponentSimple class, 120
metalanguages, 34, 65
methods
with generic parameters, 8-10
vararg, 10-12
MIDI (Musical Instrument Digital
Interface), 154-155
events for, 156-157
with Java Sound interface,
155-156
MidiDevice class, 157
MidiEvent class, 156
MIME (Multipurpose Internet Mail
Extensions) standard, 38
Mindstorms kit (LEGO), 172
Model-View-Controller (MVC)
patterns, 117
Monitor class, 123
Moore’s law, 14
Motor class, 172
mouse, controlling, 173
multi-agent systems, 127
MultiFieldQueryParser class, 77
multimedia, sound, 153
low-level, 162-164
MIDI, 154-157
music synthesis, 157-162
reading from input lines,
164-165
speech synthesis, 165-166

Multipurpose Internet Mail
Extensions (MIME)
standard, 38

Musical Instrument Digital
Interface. See MIDI

MVC (Model-View-Controller)
patterns, 117

MyGeneric class, 9

MyThread class, 16

MyTransform class, 149

N3 notation, 81-83
nano time measurements, 14-15
nanoTime method, 15
neural networks
in Joone, 122-124
for robotics, 188
NeuralNetLoader class, 123
neurons, 122
newItem method, 97
newsfeeds
aggregating, 80, 93-95
automated generators for,
187-188
filtering, 97-98
polling, 95-97
publishing, 93-94
next method, 3, 32
nodes, graph, 117-119, 140
noise in sound synthesis, 160-162
NoisySine class, 161-162
NonSI class, 111
notes, musical, 154-156

0

object-oriented programming
(O0P), 2

object URIs, 81

object variables, 19

onTick method, 128

ontologies, 86, 89-92

QOP (object-oriented
programming), 2

opcodes, 184

open method, 52

iMpex 219

220

INDE®

Operable interface, 113-114

optimization, 185

org.apache.commons .httpclient
package, 174

org.jscience.physics.quantities
package, 110

Oscillator class, 158

OurSAXGenerator class, b2

OWL Web Ontology Language, 87

P

paint method, 137

in BinaryPlotPanel, 147

in JFrame, 149-150
ParallelBehaviour class, 129
parameters, generic, 8-10
parse method, 95
ParseException class, 68
parser generators, 64
parsers

JavaCC, 64-68

XML, 46
parsing text, 30-34
Part class, 159
patches

creating, 158

for synthesizers, 187
Pattern class

JFugue, 154-155

regex, 22
patterns in regular expressions,

21-24
PCM (Pulse Code Modulation), 162
peer-to-peer applications, 182
performance of text manipulation,
166-167

performatives, 129
PFrame class, 151-152
Phrase class, 159
Piccolo API, 151-152
pointers

function, 102

object, 19
Poller class, 9597
PollerObserverIF interface, 96
polling RSS newsfeeds, 95-97
Polynomial class, 113-114

PoolContext class, 167-168

Port interface, 115-117

ports, truth tables using, 114-117

POST method, 174-175

posting forms to HTTP servers,
174-176

precision, arithmetic, 111-113

predicate logic, 91-92

predicate URIs, 81

printf method, 42

PrintStream classes, 42

process method, 119-121

production rules in parsing, 64-66,
70-73

program trading, 127-130

properties, Jena, 82

publishing newsfeeds, 93-94

Pulse Code Modulation (PCM), 162

PurchasingAgent class, 129

Q

QuadDemuxer class, 107

qualified names, XML, 51
Quantity class, 110-111

queries with Jena RDQL, 89-91
QueryParser class, 77

Random class, 9-10, 164
random method, 35
random text generation, 34-36
randomAlphanumeric method, 35
RandomSelection class, 8-10
Rational class, 113
RCX computer, 172
RDF (Resource Description
Framework), 80
hierarchies in Jena, 86-87
N3 and Jena with, 81-83
newsfeeds. See RSS newsfeeds
vocabularies, 83-86
RDF Data Query Language
(RDQL), 89-91
RDF Site Summary. See RSS
newsfeeds
RDF standard. See RDF (Resource
Description Framework)

RDFS class, 86
RDQL (RDF Data Query
Language), 89-91
reading audio from input lines,
164-165
Real class, 113
real-time APIs, 166-169
RealtimeObject class, 167
Receiver class, 157
references, comparing, 19
reflection, 182
regular expressions
for capturing groups, 26-28
substituting with, 28-30
for text searches, 21-24
relationships
RDF, 84-85
tag, 46-50
relative expressions, 58
relative URLs, 26
RelevancyApprover class, 97-98
removeAll method, 104
removeMatches method, 103
render method, 136
Renderer class, 155
replaceAll method, 28-29
reports, 144-146
reset method, 170
resizing transforms, 151
Resource Description Framework.
See RDF
restOfline production rule, 67,
72-73
ResultSets, 45
retrieve method, 109, 115
Robot class, 173
robots
LEGO, 171-173
neural nets for, 188
Room class, 169
rotation operations, 150
rounding errors, 112-113
RSS class, 93
RSS newsfeeds
aggregating, 80, 93-95
automated generators for,
187-188

filtering, 97-98

polling, 95-97

publishing, 93-94
RTData class, 167-169
rules in parsing, 64-66, 70-73
Runnable interface, 18

H

sampling rate for sound, 162
SAX (Simple API for XML), 44
for ContentHandler, 50-56
tag relationships in, 46-50
SAXFilter class, 61
SAXReader class, 63
Scalable Vector Graphics (SVG),
136-139
scaling transforms, 151
Scanner class, 30-34, 74
scanning in parsing, 64
science and mathematics, 101-102
algebraic functions, 113-114
artificial neural networks,
122-124
BitVector class, 106-108
computational linguistics,
130-132
functors, 102-105
generic processing unit connec-
tions, 119-122
genetic algorithms, 124-126
graph connections, 117-119
intelligent agents, 127-130
JScience quantities, 109-111
precision, 111-113
truth tables
from BitMatrix, 108-109
using ports, 114-117
Score class, 159
screen scraping HTML pages,
73-76
scripting environments, BeanShell,
179-181
searching
for substrings, 25-26
for text, 21-24
in websites, 76-77
SellerFilter class, 62-63

Mpex 221

222

INDEX®

Semantic Web, 79-80
attaching Dublin Core to HTML
documents, 88
Jena RDQL queries, 89-91
logical languages, 91-92
RDF
hierarchies, 86-87
N3 and Jena with, 81-83
vocabularies, 83-86
RSS newsfeeds
aggregating, 80, 93-95
filtering, 97-98
polling, 95-97
publishing, 93-94
sending events to MIDI devices,
156-157
Sensor class, 172-173
SensorListener class, 173
Sequence class, 155-156
SequentialBehaviour class, 129
set method, 180
SETI@home project, 183
setup method, 127
setValue method, 120
setXMLFilter method, 63
shallow String representation, 36
shear method, 150
shuffle method, 35-36
SIclass, 111
sign bits, 40
SignatureFilter class, 55
Simple API for XML (SAX), 44
for ContentHandler, 50-56
tag relationships in, 46-50
SimplestSAXDriver class, 47-48
simulating Cell Marix, 176-178
single-arity functor class, 103
sleep method, 16
Smiler interface, 17
sort method, 15
sound
low-level, 162-164
MIDI, 154-157
music synthesis, 157-162
reading from input lines,
164-165
speech synthesis, 165-166
source code control, 189

source method, 180
SourceDataline class, 162, 164
SourceForge site, 190
special characters in regular
expressions, 23
speech synthesis, 1656-166
spiders, 45
split method, 24, 31
splitting Strings, 24
SquareFilteredSaw class, 160
Stack class, 47
StandardAnalyzer class, 76-77
start method, 30
startDocument method, 51
startElement method, 51
in IgnoringFilter, 54
in LineItemReportHandler, 49
in SAXException, 46-47
in SellerFilter, 63
states, comparing, 20
store method, 109, 115
String class, 23
StringBuffer class, 29
Strings and String utilities, 21
arrays, 36-37
comparisons, 19
encoding and decoding binary
data, 37-40
formatting, 40-42
parsing, 30-34
performance with, 166-167
random text, 34-36
regular expressions
for capturing groups, 26-28
substituting with, 28-30
for text searches, 21-24
splitting, 24
substrings, finding, 25-26
StringTokenizer class, 30
subClassof property, 85, 87
subject URIs, 81
subsequences of data in searches,
27
substituting with regular
expressions, 28-30
substrings
finding, 25-26
splitting Strings into, 24

Subversion tool, 189
Suggested Upper Merged Ontology
(SUMO), 89-92
sumd items, 91
Sun, Wikipedia entry for, 74-76
SurnameReader class, 32
SVG (Scalable Vector Graphics),
136-139

SVGGraphicsaD class, 138
SwingEngine class, 135
SwiXML language, 134-135
SwixMLTest class, 135136
synapses, 122
synchronization, thread, 169-170
Synset class, 132
synthesizing

JMusic for, 157-162

patch editor for, 187

speech, 165-166
SysoutVisitor class, 90-91
System class, 14
System.out, 42

T

tags
invisible, 61-63
SAX, 46-50
XML, 44
tagText method, 52
TargetDataline class, 162, 164
terminals in parsing, 65
TestCase class, 181
testProcess method, 182
TestRunner class, 182
tests, unit, 181-182
text. See also Strings and String
utilities
random, 34-36
searching for, 21-24
Text class, 166
Thread class, 169
threads
sleep method for, 16
synchronizing, 169-170
TickerBehaviour, 128
Tiger release, 1
tmbre, 160

time, nano time measurements,
14-15
TinyVM, 172
TOKEN production rule, 71
tokens, 32, 64
toString method
for arrays, 36-37, 39
for enums, 7
for objects, 40
toText method, 111
transform method, 104
transformations, affine, 149-151
translation operations, 150
triples in URIs, 81
truth tables
from BitMatrix, 108-109
for Cell Matrix, 176-178
for demultiplexers, 107
using ports, 114-117
2D data visualization, 146-148
Type Vocabulary, 87
typesafe maps, 7-8

u

UBL (Universal Business
Language) documents, 48

UnaryBitVectorAndFunction class,
106-107

UnaryFunctor functor, 102-103

UnaryTruthTableFunction class, 117

Unicode character encoding in
HTML, 74

Uniform Resource Identifiers
(URIs), 81, 84-85

unit testing, 181-182

Universal Business Language
(UBL) documents, 48

URIs (Uniform Resource
Identifiers), 81, 84-85

URL class, 174

URL syntax checking, 25-26

v

value0f method
for polynomials, 114
in RTData, 168-169
for XPath, 61

IMpEX 223

values method, 7 XMPP (Extensible Messaging and

vararg methods, 10-12 Presence Protocol), 183
variables in BeanShell, 179-180 XPath, 58-61
vector graphics, 136-138 XSL-FO documents, 138
vertices, graph, 117-119, 140
visualization. See graphics and data i
visualization

- _1RS
visualizer for Lojban, 186 zoomable GUIs, 151-152

vocabularies, RDF, 83-86

W

WAR (web application archive)
files, 144

waveforms, sound, 158

web application archive (WAR)
files, 144

web services, 127

WebRowSet class, 45

WebRowSetImpl class, 45

weight in neural networks, 122

well-formed XML documents, 44

white noise, 160

whitespace in regular expressions,
22

Wikipedia encyclopedia, 74-76

Wittgenstein, Ludwig, 114

WordNet, 130-132, 187

write method, 164

X

XML (Extensible Markup
Language), 43
basics, 44-45
converting grammars into,
68-73
DOM4] for, 56-57
GUIs in, 133-136
invisible tags in, 61-63
parsers for, 46, 64-68
SAX, 44
for ContentHandler, 50-56
tag relationships in, 46-50
WebRowSet for, 45
XPath for data extraction, 58-61
XMLFilter interface, 53
XMLFilterImpl class, 53, 62
XMLReader class, b3-55

224 noEx

Electronic Frontier Foundation
Defending Freedom in the Digital World

Free Speech. Privacy. Innovation. Fair Use. Reverse Engineering. If you care about these rights in the
digital world, then you should join the Electronic Frontier Foundation (EFF). EFF was founded in 1990 to
protect the rights of users and developers of technology. EFF is the first to identify threats to basic rights
online and to advocate on behalf of free expression in the digital age.

The Electronic Frontier Foundation Defends Your Rights!
Become a Member Today!
hitp://www.eff.org/support/

Current EFF projects include:

FPratecting your fundamental right fo vote. Widely
publicized security flaws in computerized voting
machines show that, though filled with potential, this
technolagy is far from perfect. EFF is defending the
open discussion of e-voting problems and is coordinat-
ing a national litigation strategy addressing issues
arising from use of paorly developed and tested
computerized voting machines.

Ensuring that you are not traceable through your
things. Libraries, schools, the government and private
sector businesses are adopting radio frequency
identification tags, or RFIDs - a technology capable of
pinpainting the physical location of whatever item the
tags are embedded in. While this may seem like a
convenient way to track items, it's also a convenient
way to do something less benign: track people and their
activities through their belongings. EFF is working to
ensure that emhrace of this technology does not erode
your right o privacy.

Stopping the FBI from ereating surveillance backdoors
on the Internet. EFF is part of a coalition opposing the
FBI's expansion of the Communications Assistance for
Law Enforcement Act (CALEA), which would require that
the wiretap capahilities built into the phone system he
extended 1o the Internet, forcing 1SPs 1o build hackdoors
for law enforcement.

Praviding you with a means by which you can contact
Key decision-makers on cyber-liberties issues. EFF
maintains an action center that provides alerts on
technology, civil liberties issues and pending legislation
to more than 50,000 subscribers. EFF also generates a
weekly online newsletter, EFFector, and a blag that
provides up-to-the minute information and commentary.

Defending your right to listen ta and copy digital music
and mavies. The entertainment industry has been
overzealous in trying to protect its copyrights, often
decimating fair use rights in the process. EFFis
standing up to the movie and music industries on
several fronts.

Check out all of the things we're working on at http://www.eff.org and join today
or make a donation to support the fight to defend freedom online.

ELECTRONIC FRONTIER FOUNDATION - 454 SHOTWELL STREET - SAN FRANCISCO, CA 94110 - 415.436.9333

NO STARCH PRESS

Muore No-Nonsense Books from

HACKING
The Art of Exploitation
b):w](').\l ERICKSON

A comprehensive introduction to the techniques of exploitation and creative
problem-solving methods commonly referred to as “hacking,” Hacking: The Art
of Exploitation is for both technical and non-technical people who are interested
in computer security. It shows how hackers exploit programs and write exploits,
instead of just how to run other people’s exploits. Unlike many so-called hack-
ing books, this book explains the technical aspects of hacking, including
stack based overtlows, heap based overflows, string exploits, return-into-libc,
shellcode, and cryptographic attacks on 802.11b.

NOVEMBER 2003, 264 pp., $39.95 ($59.95 CcAN)
ISBN 1-59327-007-0

HOW LINUX WORKS
What Every Superuser Should Know

by BRIAN WARD

How Linux Works describes the inside of the Linux system for systems admini-
strators, whether you maintain an extensive network in the office or one Linux
box at home. After a guided tour of filesystems, the boot sequence, system
management basics, and networking, author Brian Ward delves into topics
such as development tools, custom kernels, and buying hardware. With a
mixture of background theory and real-world examples, this book shows
both how to administer Linux, and why each particular technique works, so
that you will know how to make Linux work for you.

MAY 2004, 368 pr., $37.95 ($55.95 CAN)
ISBN 1-59327-035-6

SILENCE ON THE WIRE
AField Guide to Passive Reconnaissance and Indirect Attacks

f))-‘ MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity, and creativity, and this
book is truly unlike anything else out there. In Silence on the Wire, Zalewski
shares his expertise and experience to explain how computers and networks
work, how information is processed and delivered, and what security threats
lurk in the shadows. No humdrum technical white paper or how-to manual
for protecting one’s network, this book is a fascinating narrative that explores
a variety of unique, uncommon, and often quite elegant security challenges
that defy classification and eschew the traditional attacker-victim model.

APRIL 2005, 312 pp., $39.95 ($53.95 CAN)
ISBN 1-59327-046-1

THE LINUX COOKBOOK, 2ND EDITION

Tips and Techniques for Everyday Use
:rl_’}‘ MICHAEL STUTZ

Linux is cool, but it’s not always well documented. There are tons of incon-
sistent HOWTO files, out of date FAQs, and programs scattered everywhere.
Whenever you want to do anything with Linux, you usually have to read every
piece of documentation out there and basically reverse-engineer a solution.
Many Linux books for non-geeks are organized by major system, with a chapter
on installation, one for video, one for sound, one for networking, and so on.
But what if you want to write a book? Or record an album? If you can’t dig
around on the Web to find someone else doing the same thing, you are out
of luck. Unless, that is, you have The Linux Cookbook.

AUGUST 2004, 824 pp., $39.95 ($55.95 CAN)
ISBN 1-59327-031-3

THE DEBIAN SYSTEM

Concepts and Techniques

b_’}‘ MARTIN F. KRAFFT

The Debian System introduces the concepts and techniques of the Debian oper-
ating system, explaining their usage and pitfalls and illustrating the thinking
behind each of the approaches. The book’s goal is to give you enough insight
into the workings of the Debian project and operating system that you will
understand the solutions that have evolved as part of the Debian system
over the past decade. While targeted at the wellversed UNIX/Linux adminis-
trator, the book can also serve as an excellent resource alongside a standard
Linux reference to quickly orient you to Debian’s unique philosophy and
structure. Co-published with Open S8ource Press, an independent publisher
based in Munich that specializes in the field of free and open source software.

SEPTEMBER 2005, 608 PP. W,/DVD, $44.95 ($60.95 CAN)
ISBN 1-59327-069-0

PHONE:
800.420.7240 OrR
415.863.9900
MONDAY THROUGH FRIDAY, WEB:
9 AM. TO 5 P.M. (PST)

EMAIL:
@NOSTARCH.COM

HTTE: / / WWW.NOSTARCH.COM

FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 HOURS A DAY, 555 DE HARO ST, SUITE 250

7 DAYS A WEEK SAN FRANCISCO, CA 94107
USA

)
LINUX
COOKBOOK

2ND EDITION

)
DEBIAN
SYSTEM

COLOPHON

Wicked Cool Java was laid out in Adobe FrameMaker. The font families used are
New Baskerville for bady text, Futura for headings and tables, and Dogma for titles.
The book was printed and bound at Malloy Incorporated in Ann Arbor,

Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
50 percent recycled materials, including 30 percent postconsumer content.
The book uses a RepKover binding, which allows it to lay flat when open.

UPDATES

Visit http:/ /www.nostarch.com /wcj.htm for updates, errata, and other
information.

