

Thinking in Java,
3rd Edition, Beta

 Bruce Eckel, President,
MindView, Inc.

Planet PDF brings you the Portable Document
Format (PDF) version of Thinking in Java. Planet
PDF is the premier PDF-related site on the web.
There is news, software, white papers, interviews,
product reviews, code samples, a forum, and
regular articles by many of the most prominent and
respected PDF experts in the world. Visit our sites
for more detail:

http://www.planetpdf.com/
http://www.pdfstore.com/
http://www.binarything.com/

Click here to buy the paper version

Note: This document requires the installation of the fonts Georgia,
Verdana and Andale Mono (code font) for proper viewing. These can be
found at:
http://sourceforge.net/project/showfiles.php?group_id=34153&release_id=105355

Modifications in Revision 3.0 (unreleased)

• Reorganized chapters into their final form and numbering. Split
chapter 1 by moving “Analysis and design” to Chapter 16.

• Modified the description of the chapters in the introduction. (This
needs to be revisited again.

• Finished threading chapter. Dining philosophers problem added
to threading chapter.

• Edited/rewrote chapters 1 - 11, 14 and Appendix A, B & D, which
went to production.

• Added Applet Signing and Java Web Start sections to “Creating
Windows and Applets.”

• Added examples showing threading in “Creating Windows and
Applets.”

• Added improved access control to most classes (more private
fields, in particular).

• Made general improvements throughout the code base.

• Changed cleanup() to dispose()

• Changed “friendly” to “package access”

• Changed “function” to “method” most places

• Added Preferences API section

• Removed Microsoft EULA (no longer needed for CD)

• Rewrote c14:ShowAddListeners.java to use regular expressions;
refactored

• Renamed “death condition” to “termination condition”

Modifications in Revision 2.0 (9/13/2002)

• Completed part of the rewrite of the threading chapter. This
simplifies the introduction to threading and removes all the GUI
examples, so that the threading chapter may be moved to appear
earlier in the book.

• Reorganized material into reasonably final form, and assigned
chapter numbers. Chapters may still migrate.

• Finished com.bruceeckel.simpletest framework and
integrated all test-instrumented examples back into the main
book. Added prose for testing system in Chapter 15. Also updated
most examples in book to reflect improvements in testing system.
Note: we are still refactoring this code to make it simpler. Stay
tuned.

• Added sections on JDK 1.4 assertions, including design-by-
contract, to chapter 15.

• Added JUnit introduction and example to chapter 15.

• Changed “static inner class” to “nested class.”

• Modified c04:Garbage.java so it wouldn’t fail on fast machines,
added description.

• Moved BangBean2.java into the GUI chapter, since the non-
GUI threading chapter will now appear before the GUI chapter.

Modifications in Revision 1.0 (7/12/2002):

• Changed to email-based BackTalk system, which is much simpler
to use and may be used while reading the document offline.

• Added “Testing and Debugging” chapter, currently numbered 15.
This includes a simple testing system and an introduction to
JUnit, as well as a thorough introduction to Logging and an
introduction to using debuggers and profilers.

• Added test framework to examples in the book. Not all examples
are fully tested yet, but most are at least executed. Comment flags

on examples indicate the testing status of each. Significant change:
program output is displayed and tested directly in the source, so
readers can see what the output will actually be.

• Change to Ant as the build tool, added package statements to
disambiguate duplicate names so Ant won’t complain. Running
Ant on the book not only compiles but also runs the
aforementioned tests.

• HTML is now generated by a new tool called LogicTran
(http://www.Logictran.com). Still learning to use this one, so early
versions will be a bit rough.

• Replaced Thread Group section in multithreading chapter.

• Removed JNI appendix (available in the electronic 2nd edition on
the CD or via download from www.MindView.net)

• Removed Jini section (available in the electronic 2nd edition on the
CD or via download from www.MindView.net)

• Removed Corba section (available in the electronic 2nd edition on
the CD or via download from www.MindView.net) after talking to
Dave Bartlett (Corba & XML expert), who observed that Corba has
gone quiet and everyone has gone up a level to the use of XML for
system integration instead of Corba.

• Made a number of technical corrections suggested over the last 2
years. Most suggestions have been archived but not made yet.

Todo:

• Add “cloud of teachers, mentors, consultants” re: Larry’s
suggestion

• Check for double spaces in text, replace () with (), correct em-
dashes – with —

• Preface

• Index

Thinking
in

Java
Third Edition

Bruce Eckel
President, MindView, Inc.

Comments from readers:
Much better than any other Java book I’ve seen. Make that “by an order of
magnitude”... very complete, with excellent right-to-the-point examples
and intelligent, not dumbed-down, explanations ... In contrast to many
other Java books I found it to be unusually mature, consistent,
intellectually honest, well-written and precise. IMHO, an ideal book for
studying Java. Anatoly Vorobey, Technion University, Haifa,
Israel

One of the absolutely best programming tutorials I’ve seen for any
language. Joakim Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin
Pillay, Registrar, King Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a
non-C programmer), but your book has brought me up to speed as fast as
I could read it. It’s really cool to be able to understand the underlying
principles and concepts from the start, rather than having to try to build
that conceptual model through trial and error. Hopefully I will be able to
attend your seminar in the not-too-distant future. Randall R. Hawley,
Automation Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I’ve read about a programming language…
The best book ever written on Java. Ravindra Pai, Oracle
Corporation, SUNOS product line

This is the best book on Java that I have ever found! You have done a
great job. Your depth is amazing. I will be purchasing the book when it is
published. I have been learning Java since October 96. I have read a few
books, and consider yours a “MUST READ.” These past few months we
have been focused on a product written entirely in Java. Your book has
helped solidify topics I was shaky on and has expanded my knowledge
base. I have even used some of your explanations as information in
interviewing contractors to help our team. I have found how much Java
knowledge they have by asking them about things I have learned from
reading your book (e.g., the difference between arrays and Vectors). Your

book is great! Steve Wilkinson, Senior Staff Specialist, MCI
Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair,
Software Engineer, Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond mere
language description to a thoughtful, penetrating analytic tutorial that
doesn’t kowtow to The Manufacturers. I’ve read almost all the others—
only yours and Patrick Winston’s have found a place in my heart. I’m
already recommending it to customers. Thanks again. Richard Brooks,
Java Consultant, Sun Professional Services, Dallas

Bruce, your book is wonderful! Your explanations are clear and direct.
Through your fantastic book I have gained a tremendous amount of Java
knowledge. The exercises are also FANTASTIC and do an excellent job
reinforcing the ideas explained throughout the chapters. I look forward to
reading more books written by you. Thank you for the tremendous service
that you are providing by writing such great books. My code will be much
better after reading Thinking in Java. I thank you and I'm sure any
programmers who will have to maintain my code are also grateful to you.
Yvonne Watkins, Java Artisan, Discover Technologies, Inc.

Other books cover the WHAT of Java (describing the syntax and the
libraries) or the HOW of Java (practical programming examples).
Thinking in Java is the only book I know that explains the WHY of Java;
why it was designed the way it was, why it works the way it does, why it
sometimes doesn’t work, why it’s better than C++, why it’s not. Although
it also does a good job of teaching the what and how of the language,
Thinking in Java is definitely the thinking person’s choice in a Java book.
Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like it. My
students like it, too. Chuck Iverson

I just want to commend you for your work on Thinking in Java. It is
people like you that dignify the future of the Internet and I just want to
thank you for your effort. It is very much appreciated. Patrick Barrell,
Network Officer Mamco, QAF Mfg. Inc.

Most of the Java books out there are fine for a start, and most just have
beginning stuff and a lot of the same examples. Yours is by far the best
advanced thinking book I’ve seen. Please publish it soon! ... I also bought
Thinking in C++ just because I was so impressed with Thinking in Java.
George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your
Thinking in C++ (a book that stands prominently on my shelf here at
work). And today I’ve been able to delve into Java with your e-book in my
virtual hand, and I must say (in my best Chevy Chase from Modern
Problems) “I like it!” Very informative and explanatory, without reading
like a dry textbook. You cover the most important yet the least covered
concepts of Java development: the whys. Sean Brady

I develop in both Java and C++, and both of your books have been
lifesavers for me. If I am stumped about a particular concept, I know that
I can count on your books to a) explain the thought to me clearly and b)
have solid examples that pertain to what I am trying to accomplish. I have
yet to find another author that I continually whole-heartedly recommend
to anyone who is willing to listen. Josh Asbury, A^3 Software
Consulting, Cincinnati, OH

Your examples are clear and easy to understand. You took care of many
important details of Java that can’t be found easily in the weak Java
documentation. And you don’t waste the reader’s time with the basic facts
a programmer already knows. Kai Engert, Innovative Software,
Germany

I’m a great fan of your Thinking in C++ and have recommended it to
associates. As I go through the electronic version of your Java book, I’m
finding that you’ve retained the same high level of writing. Thank you!
Peter R. Neuwald

VERY well-written Java book...I think you’ve done a GREAT job on it. As
the leader of a Chicago-area Java special interest group, I’ve favorably
mentioned your book and Web site several times at our recent meetings. I
would like to use Thinking in Java as the basis for a part of each monthly
SIG meeting, in which we review and discuss each chapter in succession.
Mark Ertes

By the way, printed TIJ2 in Russian is still selling great, and remains
bestseller. Learning Java became synonym of reading TIJ2, isn't that
nice? Ivan Porty, translator and publisher of Thinking In Java
2nd Edition in Russian

I really appreciate your work and your book is good. I recommend it here
to our users and Ph.D. students. Hugues Leroy // Irisa-Inria Rennes
France, Head of Scientific Computing and Industrial Tranfert

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve already
found it to be the most clearly written and presented programming book
I’ve come across...and I’m a writer, myself, so I am probably a little
critical. I have Thinking in C++ on order and can’t wait to crack it—I’m
fairly new to programming and am hitting learning curves head-on
everywhere. So this is just a quick note to say thanks for your excellent
work. I had begun to burn a little low on enthusiasm from slogging
through the mucky, murky prose of most computer books—even ones that
came with glowing recommendations. I feel a whole lot better now.
Glenn Becker, Educational Theatre Association

Thank you for making your wonderful book available. I have found it
immensely useful in finally understanding what I experienced as
confusing in Java and C++. Reading your book has been very satisfying.
Felix Bizaoui, Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at
Thinking in Java based on my experience with Thinking in C++, and I
was not disappointed. Jaco van der Merwe, Software Specialist,
DataFusion Systems Ltd, Stellenbosch, South Africa

This has to be one of the best Java books I’ve seen. E.F. Pritchard,
Senior Software Engineer, Cambridge Animation Systems Ltd.,
United Kingdom

Your book makes all the other Java books I’ve read or flipped through
seem doubly useless and insulting. Brett g Porter, Senior
Programmer, Art & Logic

I have been reading your book for a week or two and compared to the
books I have read earlier on Java, your book seems to have given me a
great start. I have recommended this book to a lot of my friends and they

have rated it excellent. Please accept my congratulations for coming out
with an excellent book. Rama Krishna Bhupathi, Software
Engineer, TCSI Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I’ve been
using it as a major reference for in-house Java work. I find that the table
of contents is just right for quickly locating the section that is required.
It’s also nice to see a book that is not just a rehash of the API nor treats
the programmer like a dummy. Grant Sayer, Java Components
Group Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and
admittedly a couple of good) Java books out there, but from what I’ve
seen yours is definitely one of the best. John Root, Web Developer,
Department of Social Security, London

I’ve just started Thinking in Java. I expect it to be very good because I
really liked Thinking in C++ (which I read as an experienced C++
programmer, trying to stay ahead of the curve). I’m somewhat less
experienced in Java, but expect to be very satisfied. You are a wonderful
author. Kevin K. Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book.
Thank you for making it available for free over the Internet. If you
wouldn’t have I’d know nothing about Java at all. But the best thing is
that your book isn’t a commercial brochure for Java. It also shows the bad
sides of Java. YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when
I wanted to start with C++, it was C++ Inside & Out which took me
around the fascinating world of C++. It helped me in getting better
opportunities in life. Now, in pursuit of more knowledge and when I
wanted to learn Java, I bumped into Thinking in Java—no doubts in my
mind as to whether I need some other book. Just fantastic. It is more like
rediscovering myself as I get along with the book. It is just a month since I
started with Java, and heartfelt thanks to you, I am understanding it
better now. Anand Kumar S., Software Engineer,
Computervision, India

Your book stands out as an excellent general introduction. Peter
Robinson, University of Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I
just want you to know how lucky I feel to have found it. THANKS! Chuck
Peterson, Product Leader, Internet Product Line, IVIS
International

The book is great. It’s the third book on Java I’ve started and I’m about
two-thirds of the way through it now. I plan to finish this one. I found out
about it because it is used in some internal classes at Lucent Technologies
and a friend told me the book was on the Net. Good work. Jerry Nowlin,
MTS, Lucent Technologies

Of the six or so Java books I’ve accumulated to date, your Thinking in
Java is by far the best and clearest. Michael Van Waas, Ph.D.,
President, TMR Associates

I just want to say thanks for Thinking in Java. What a wonderful book
you’ve made here! Not to mention downloadable for free! As a student I
find your books invaluable (I have a copy of C++ Inside Out, another great
book about C++), because they not only teach me the how-to, but also the
whys, which are of course very important in building a strong foundation
in languages such as C++ or Java. I have quite a lot of friends here who
love programming just as I do, and I’ve told them about your books. They
think it’s great! Thanks again! By the way, I’m Indonesian and I live in
Java. Ray Frederick Djajadinata, Student at Trisakti University,
Jakarta

The mere fact that you have made this work free over the Net puts me into
shock. I thought I’d let you know how much I appreciate and respect what
you’re doing. Shane LeBouthillier, Computer Engineering
student, University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly
column. As a newbie to the world of object oriented programming, I
appreciate the time and thoughtfulness that you give to even the most
elementary topic. I have downloaded your book, but you can bet that I will
purchase the hard copy when it is published. Thanks for all of your help.
Dan Cashmer, B. C. Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon
the PDF version of Thinking in Java. Even before I finished reading it, I
ran to the store and found Thinking in C++. Now, I have been in the

computer business for over eight years, as a consultant, software
engineer, teacher/trainer, and recently as self-employed, so I’d like to
think that I have seen enough (not “have seen it all,” mind you, but
enough). However, these books cause my girlfriend to call me a ”geek.”
Not that I have anything against the concept—it is just that I thought this
phase was well beyond me. But I find myself truly enjoying both books,
like no other computer book I have touched or bought so far. Excellent
writing style, very nice introduction of every new topic, and lots of
wisdom in the books. Well done. Simon Goland,
simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of
documentation I was looking for. Especially the sections about good and
poor software design using Java. Dirk Duehr, Lexikon Verlag,
Bertelsmann AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in
Java). You have helped me immensely in my progression to object
oriented programming. Donald Lawson, DCL Enterprises

Thank you for taking the time to write a really helpful book on Java. If
teaching makes you understand something, by now you must be pretty
pleased with yourself. Dominic Turner, GEAC Support

It’s the best Java book I have ever read—and I read some. Jean-Yves
MENGANT, Chief Software Architect NAT-SYSTEM, Paris,
France

Thinking in Java gives the best coverage and explanation. Very easy to
read, and I mean the code fragments as well. Ron Chan, Ph.D., Expert
Choice, Inc., Pittsburgh PA

Your book is great. I have read lots of programming books and your book
still adds insights to programming in my mind. Ningjian Wang,
Information System Engineer, The Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all
my students. Dr. Paul Gorman, Department of Computer Science,
University of Otago, Dunedin, New Zealand

With your book, I have now understood what object oriented
programming means. ... I believe that Java is much more straightforward
and often even easier than Perl. Torsten Römer, Orange Denmark

You make it possible for the proverbial free lunch to exist, not just a soup
kitchen type of lunch but a gourmet delight for those who appreciate good
software and books about it. Jose Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece!
IT IS THE BEST book on the subject that I’ve read or browsed. Jeff
Lapchinsky, Programmer, Net Results Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java
Research & Development Team, KL Group Inc.

It truly is the best book I’ve read on Java! Daniel Eng

The best book I have seen on Java! Rich Hoffarth, Senior Architect,
West Group

Thank you for a wonderful book. I’m having a lot of fun going through the
chapters. Fred Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the
details. You make learning VERY easy and satisfying. Thank you for a
truly wonderful tutorial. Rajesh Rau, Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President,
Idocs Inc. Feedback

About Thinking in C++:

Best Book! Winner of the
1995 Software Development Magazine Jolt Award!

“This book is a tremendous achievement. You owe it to yourself to
have a copy on your shelf. The chapter on iostreams is the most
comprehensive and understandable treatment of that subject I’ve seen
to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink
program construction for object orientation. That the book is also an
excellent tutorial on the ins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking
in C++ is his best collection of ideas yet. If you want clear answers to
difficult questions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of
when and how to use inlines, references, operator overloading,
inheritance, and dynamic objects, as well as advanced topics such as
the proper use of templates, exceptions and multiple inheritance. The
entire effort is woven in a fabric that includes Eckel’s own philosophy
of object and program design. A must for every C++ developer’s
bookshelf, Thinking in C++ is the one C++ book you must have if
you’re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
in

Java
Third Edition

Bruce Eckel
President, MindView, Inc.

Prentice Hall
Upper Saddle River, New Jersey 07458
www.phptr.com

Library of Congress Cataloging-in-Publication Data
Eckel, Bruce.
 Thinking in Java / Bruce Eckel.--3rd ed.
 p. cm.
 ISBN 0-13-100287-2
 1. Java (Computer program language) I. Title.
 QA76.73.J38E25 2003
 005.13'3--dc21 00-037522
 CIP

Acquisitions Editor: Paul Petralia
Editorial/Production Supervision: Nicholas Radhuber
Manufacturing Manager: Maura Zaldivar
Marketing Manager: Bryan Gambrel
Cover Design: Daniel Will-Harris
Interior Design: Daniel Will-Harris, www.will-harris.com

©2003 by Bruce Eckel, President, MindView, Inc.
Published by Pearson Education, Inc.
Publishing as Prentice Hall PTR
Upper Saddle River, NJ 07458

The information in this book is distributed on an “as is” basis, without warranty. While every precaution
has been taken in the preparation of this book, neither the author nor the publisher shall have any liability
to any person or entitle with respect to any liability, loss or damage caused or alleged to be caused directly
or indirectly by instructions contained in this book or by the computer software or hardware products
described herein.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Prentice Hall books are widely used by corporations and government agencies for training, marketing, and
resale. The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact the Corporate Sales Department at 800-382-3419, fax: 201-236-7141, email:
corpsales@prenhall.com or write: Corporate Sales Department, Prentice Hall PTR, One Lake Street,
Upper Saddle River, New Jersey 07458.

Java is a registered trademark of Sun Microsystems, Inc. Windows 95, Windows NT, Windows 2000 and
Windows XP are trademarks of Microsoft Corporation. All other product names and company names
mentioned herein are the property of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-027363-5

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education-Japan
Pearson Education Malaysia, Pte. Ltd

Check www.BruceEckel.com
for in-depth details
and the date and location
of the next
Hands-On Java Seminar

• Based on this book
• Taught by the best MindView team members
• Personal attention during the seminar
• Includes in-class programming exercises
• Intermediate/Advanced seminars also offered
• Hundreds have already enjoyed this seminar—

see the Web site for their testimonials

Bruce Eckel’s Hands-On Java Seminar
Multimedia CD: 3rd edition follows this book
It’s like coming to the seminar!
Available at www.BruceEckel.com
 The Hands-On Java Seminar captured on a Multimedia CD!

 Overhead slides and synchronized audio voice narration for all
the lectures. Just play it to see and hear the lectures!

 Created and narrated by Bruce Eckel.

 Based on the material in this book.

 Demo lecture available at www.BruceEckel.com

Dedication
To the person who, even now,

is creating the next great computer language

Overview
Preface 1

Introduction 11

1: Introduction to Objects 35

2: Everything is an Object 85

3: Controlling Program Flow 117

4: Initialization & Cleanup 177

5: Hiding the Implementation 231

6: Reusing Classes 257

7: Polymorphism 297

8: Interfaces & Inner Classes 335

9: Error Handling with Exceptions 395

10: Detecting types 449

11: Collections of Objects 481

12: The Java I/O System 615

13: Concurrency 709

14: Creating Windows & Applets 779

15: Discovering problems 929

16: Analysis and design 1023

A: Passing & Returning Objects 1049

B: Java Programming Guidelines 1101

C: Supplements 1117

D: Resources 1121

Index 1129

What’s Inside
Preface 1

Preface to the 3rd edition.....4
Preface to the 2nd editionError! Bookmark not defined.

Java 2 ... 6
The CD ROM8

Introduction 11
Prerequisites...................... 12
Learning Java 12
Goals 13
JDK HTML documentation15
Chapters............................. 15
Exercises22
Multimedia CD ROM23
Source code........................23

Coding standards 25
Java versions26
Seminars and mentoring ..26
Errors................................. 27
Note on the cover design... 27
Acknowledgements28

1: Introduction to Objects 35
The progress of abstraction36
An object has an interface.39
An object provides services41
The hidden implementation43
Reusing the implementation45
Inheritance: reusing the
interface.............................46

Is-a vs. is-like-a relationships...... 50
Interchangeable objects
with polymorphism...........52

Abstract base classes and interfaces56

Object creation, use &
lifetimes 57

Collections and iterators58
The singly rooted hierarchy......... 60
Downcasting vs. templates/generics62
Ensuring proper cleanup..............63

Exception handling: dealing
with errors65
Concurrency66
Persistence.........................67
Java and the Internet68

What is the Web?..........................68
Client-side programming70
Server-side programming78
Applications..................................79

Why Java succeeds............79
Systems are easier to express and

understand................................... 80
Maximal leverage with libraries.. 80
Error handling 80
Programming in the large 81

Java vs. C++?..................... 81
Summary83

2: Everything is an Object 85
You manipulate objects with
references85
You must create all the
objects................................87

Where storage lives87
Special case: primitive types89
Arrays in Java 91

You never need to destroy
an object 91

Scoping... 92
Scope of objects............................ 93

Creating new data types:
class....................................94

Fields and methods...................... 94
Methods, arguments, and
return values......................96

The argument list 98
Building a Java program...99

Name visibility 99
Using other components............ 100
The static keyword..................... 101

Your first Java program .. 103
Compiling and running...............105

Comments and embedded
documentation 106

Comment documentation...........107
Syntax... 108
Embedded HTML 109
Some example tags...................... 110
Documentation example............. 112

Coding style113
Summary114
Exercises114

3: Controlling Program Flow
 117

Using Java operators........117
Precedence 118
Assignment 118
Mathematical operators..............122
Auto increment and decrement..126
Relational operators127
Logical operators129
Bitwise operators132
Shift operators134
Ternary if-else operator138
The comma operator...................139

String operator + 139
Common pitfalls when using

operators..................................... 140
Casting operators141
Java has no “sizeof” 144
Precedence revisited................... 145
A compendium of operators....... 145

Execution control 156
true and false 156
if-else .. 157
return .. 158
Iteration...................................... 159
do-while 160
for.. 160
break and continue..................... 163
switch.. 170

Summary 174
Exercises 175

4: Initialization & Cleanup
 177

Guaranteed initialization
with the constructor177
Method overloading180

Distinguishing overloaded methods183
Overloading with primitives....... 184
Overloading on return values..... 190
Default constructors................... 190
The this keyword191

Cleanup: finalization and
garbage collection............ 196

What is finalize() for? 197
You must perform cleanup......... 198
The termination condition 199
How a garbage collector works ..201

Member initialization......205
Specifying initialization............. 206
Constructor initialization 208

Array initialization 216
Multidimensional arrays............ 222

Summary225
Exercises226

5: Hiding the
Implementation 231

package: the library unit .232
Creating unique package names 235
A custom tool library 239
Using imports to change behavior240
Package caveat241

Java access specifiers 241
Package access241
public: interface access 242
private: you can’t touch that!... 244
protected: inheritance access.. 246

Interface and
implementation...............248
Class access......................250
Summary253
Exercises255

6: Reusing Classes 257
Composition syntax......... 257
Inheritance syntax........... 261

Initializing the base class 264
Combining composition and
inheritance.......................267

Guaranteeing proper cleanup.... 269
Name hiding............................... 273

Choosing composition vs.
inheritance.......................274
protected..........................276
Incremental development278
Upcasting.........................279

Why “upcasting”?.......................280
The final keyword 281

Final data281

Final methods.............................286
Final classes................................289
Final caution.............................. 290

Initialization and class
loading 291

Initialization with inheritance.... 291
Summary293
Exercises294

7: Polymorphism 297
Upcasting revisited..........297

Forgetting the object type 300
The twist 301

Method-call binding 302
Producing the right behavior303
Extensibility............................... 306
Pitfall: “overriding” private

methods 310
Abstract classes and
methods311
Constructors and
polymorphism 315

Order of constructor calls........... 316
Inheritance and cleanup............. 318
Behavior of polymorphic methods

inside constructors322
Designing with inheritance325

Pure inheritance vs. extension ...326
Downcasting and run time type

identification329
Summary 331
Exercises 331

8: Interfaces & Inner Classes
 335

Interfaces335
“Multiple inheritance” in Java .. 340
Extending an interface with

inheritance..................................344

Grouping constants.................... 345
Initializing fields in interfaces ... 348
Nesting interfaces 349

Inner classes352
Inner classes and upcasting....... 354
Inner classes in methods and

scopes ... 356
Anonymous inner classes 359
The link to the outer class.......... 363
Nested classes 366
Referring to the outer class object368
Reaching outward from a multiply-

nested class 370
Inheriting from inner classes......371
Can inner classes be overridden?371
Local inner classes 374
Inner class identifiers 376

Why inner classes?376
Closures & Callbacks.................. 379
Inner classes & control frameworks382

Summary390
Exercises390

9: Error Handling with
Exceptions 395

Basic exceptions396
Exception arguments 397

Catching an exception.....398
The try block.............................. 399
Exception handlers 399

Creating your own
exceptions........................ 401
The exception specification405
Catching any exception ...407

Rethrowing an exception409
Exception chaining413

Standard Java exceptions 417

The special case of

RuntimeException................. 417
Performing cleanup with
finally 420

What’s finally for?..................... 421
Pitfall: the lost exception............424

Exception restrictions426
Constructors429
Exception matching433
Alternative approaches ...435

History ..436
Perspectives438
Passing exceptions to the console441
Converting checked to unchecked

exceptions442
Exception guidelines445
Summary445
Exercises446

10: Detecting types 449
The need for RTTI449

The Class object452
Checking before a cast................456

RTTI syntax 468
Reflection: run time class
information...................... 471

A class method extractor473
Summary 477
Exercises478

11: Collections of Objects
 481

Arrays............................... 481
Arrays are first-class objects483
Returning an array487
The Arrays class....................... 489
Filling an array497
Copying an array499
Comparing arrays 500

Array element comparisons........501
Sorting an array 505
Searching a sorted array 507
Array summary 509

Introduction to containers509
Printing containers 511
Filling containers513

Container disadvantage:
unknown type..................520

Sometimes it works anyway....... 523
Making a type-conscious

ArrayList.................................. 525
Iterators526
Container taxonomy........ 531
Collection functionality 535
List functionality539

Making a stack from a LinkedList543
Making a queue from a LinkedList544

Set functionality545
SortedSet 548

Map functionality550
SortedMap............................... 556
LinkedHashMap 558
Hashing and hash codes 559
Overriding hashCode() 570

Holding references 575
The WeakHashMap 578

Iterators revisited........... 580
Choosing an implementation581

Choosing between Lists 582
Choosing between Sets.............. 585
Choosing between Maps 588

Sorting and searching Lists592
Utilities593

Making a Collection or Map

unmodifiable 596
Synchronizing a Collection or

Map ... 597

Unsupported operations .599
Java 1.0/1.1 containers... 602

Vector & Enumeration 602
Hashtable................................... 603
Stack .. 604
BitSet ..605

Summary607
Exercises 608

12: The Java I/O System 615
The File class 616

A directory lister 616
Checking for and creating

directories.................................. 620
Input and output623

Types of InputStream623
Types of OutputStream625

Adding attributes and useful
interfaces627

Reading from an InputStream

with FilterInputStream628
Writing to an OutputStream with

FilterOutputStream 630
Readers & Writers....... 631

Sources and sinks of data632
Modifying stream behavior633
Unchanged Classes.....................635

Off by itself:
RandomAccessFile635
Typical uses of I/O streams636

Input streams639
Output streams........................... 641
Piped streams643

Standard I/O643
Reading from standard input.....646
Changing System.out to a

PrintWriter..............................647
Redirecting standard I/O647

Compression....................649

Simple compression with GZIP . 652
Multifile storage with Zip 654
Java ARchives (JARs) 656

Object serialization659
Finding the class 663
Controlling serialization 665
Using persistence 675

Regular expressions682
Creating regular expressions 685
Quantifiers 687
Pattern and Matcher 689
split() ... 698
Replace operations..................... 699
reset() .. 702
Capturing Groups 692
Regular expressions and Java I/O703
Is StringTokenizer needed? 704

Summary705
Exercises706

13: Concurrency 709
Motivation 710
Basic threads711

Yeilding714
Sleeping.......................................716
Priority ..718
Daemon threads..........................721
Joining a thread 724
Coding variations 726
Creating responsive user interfaces732

Sharing limited resources734
Improperly accessing resources 734
Colliding over resources 739
Resolving shared resource

contention 742
Critical sections.......................... 750

Thread states 756
Becoming blocked...................... 756

Cooperation between
threads 757

Wait and notify 757
Using Pipes for IO between threads762
More sophisticated cooperation.764

Deadlock764
The proper way to stop....770
Interrupting a blocked
thread................................771
Thread groups 773
Summary 773
Exercises 775

14: Creating Windows &
Applets 779

The basic applet...............782
Applet restrictions782
Applet advantages783
Application frameworks784
Running applets inside a Web

browser786
Using Appletviewer....................788
Testing applets............................789

Running applets from the
command line..................790

A display framework...................792
Making a button794
Capturing an event 795
Text areas.........................798
Controlling layout 800

BorderLayout..............................801
FlowLayout 802
GridLayout................................. 803
GridBagLayout 803
Absolute positioning.................. 804
BoxLayout.................................. 804
The best approach?.................... 808

The Swing event model .. 809

Event and listener types............. 810
Tracking multiple events817

A catalog of Swing
components 820

Buttons ..821
Icons ... 824
Tool tips...................................... 826
Text fields................................... 826
Borders....................................... 829
JScrollPanes...............................830
A mini-editor.............................. 832
Check boxes................................ 833
Radio buttons............................. 835
Combo boxes (drop-down lists). 836
List boxes838
Tabbed panes840
Message boxes............................ 841
Menus... 843
Pop-up menus850
Drawing...................................... 852
Dialog Boxes............................... 855
File dialogs860
HTML on Swing components 862
Sliders and progress bars........... 863
Trees... 864
Tables ... 867
Selecting Look & Feel................. 869
The clipboard 872

Packaging an applet into a
JAR file875
Signing applets876
JNLP and Java Web Start881
Programming techniques887

Binding events dynamically.......888
Separating business logic from UI

logic ..890
A canonical form 893

Concurrency & Swing......893

Runnable revisited.................. 894
Managing concurrency...............897

Visual programming and
Beans901

What is a Bean? 902
Extracting BeanInfo with the

Introspector905
A more sophisticated Bean..........911
JavaBean and synchronization .. 915
Packaging a Bean....................... 920
More complex Bean support922
More to Beans.............................923

Summary923
Exercises924

15: Discovering problems
 929

Unit Testing..................... 931
A Simple Testing Framework.....934
JUnit ...946

Improving reliability with
assertions......................... 951

Assertion syntax952
Using Assertions for Design by

Contract......................................955
Example: DBC + white-box unit

testing .. 960
Building with Ant966

Automate everything966
Problems with make967
Ant: the defacto standard.......... 968
Version control with CVS973
Daily builds.................................976

Logging 977
Logging Levels979
LogRecords982
Handlers 984
Filters... 989

Formatters...................................991
Example: Sending email to report

log messages............................... 992
Controlling Logging Levels through

Namespaces 995
Logging Practices for Large Projects997
Summary...................................1001

Debugging...................... 1001
Debugging with JDB 1002
Graphical debuggers 1008

Profiling and optimizing1008
Tracking memory consumption1009
Tracking CPU usage................. 1009
Coverage testing........................1010
JVM Profiling Interface1010
Using HPROF............................ 1011
Thread performance1013
Optimization guidelines............1014

Doclets 1015
Summary 1018
Exercises1020

16: Analysis and design 1023
Methodology.................. 1023
Phase 0: Make a plan1026

The mission statement............. 1026
Phase 1: What are we
making? 1027
Phase 2: How will we build
it? 1031

Five stages of object design...... 1034
Guidelines for object development1035

Phase 3: Build the core..1036
Phase 4: Iterate the use cases1037
Phase 5: Evolution.........1038
Plans pay off1040
Extreme programming..1040

Write tests first..........................1041
Pair programming.................... 1043

Strategies for transition 1044
Guidelines.................................1044
Management obstacles1046

Summary1048
A: Passing & Returning
Objects 1049

Passing references around1050
Aliasing 1051

Making local copies 1053
Pass by value............................. 1054
Cloning objects 1055
Adding cloneability to a class ... 1056
Successful cloning 1059
The effect of Object.clone() . 1061
Cloning a composed object.......1063
A deep copy with ArrayList ...1066
Deep copy via serialization.......1068
Adding cloneability further down a

hierarchy....................................1071
Why this strange design? 1072

Controlling cloneability. 1073
The copy constructor................ 1078

Read-only classes1084
Creating read-only classes........1086
The drawback to immutability .1087
Immutable Strings..................1089
The String and StringBuffer

classes1093
Strings are special................... 1097

Summary1098
Exercises1099

B: Java Programming
Guidelines 1101

Design1101
Implementation............. 1108

C: Supplements 1117
Foundations for Java
seminar-on-CD............... 1117
Hands-On Java seminar-on-
CD 3rd edition 1118
Thinking in Java Seminar1118
Thinking in Enterprise Java1118
Designing Objects & Systems
Seminar 1119
Thinking in Patterns with
Java................................. 1119

Thinking in Patterns
Seminar........................... 1119
Design Consulting, Reviews
and Walkthroughs.......... 1119

D: Resources 1121
Software.......................... 1121
Books 1121

Analysis & design.......................1122
Python..1125
My own list of books..................1126

Index 1129

 1

Preface
I suggested to my brother Todd, who is making the leap
from hardware into programming, that the next big
revolution will be in genetic engineering.

We’ll have microbes designed to make food, fuel, and plastic; they’ll clean
up pollution and in general allow us to master the manipulation of the
physical world for a fraction of what it costs now. I claimed that it would
make the computer revolution look small in comparison. Feedback

Then I realized I was making a mistake common to science fiction writers:
getting lost in the technology (which is of course easy to do in science
fiction). An experienced writer knows that the story is never about the
things; it’s about the people. Genetics will have a very large impact on our
lives, but I’m not so sure it will dwarf the computer revolution (which
enables the genetic revolution)—or at least the information revolution.
Information is about talking to each other: yes, cars and shoes and
especially genetic cures are important, but in the end those are just
trappings. What truly matters is how we relate to the world. And so much
of that is about communication. Feedback

This book is a case in point. A majority of folks thought I was very bold or
a little crazy to put the entire thing up on the Web. “Why would anyone
buy it?” they asked. If I had been of a more conservative nature I wouldn’t
have done it, but I really didn’t want to write another computer book in
the same old way. I didn’t know what would happen but it turned out to
be the smartest thing I’ve ever done with a book. Feedback

For one thing, people started sending in corrections. This has been an
amazing process, because folks have looked into every nook and cranny
and caught both technical and grammatical errors, and I’ve been able to
eliminate bugs of all sorts that I know would have otherwise slipped
through. People have been simply terrific about this, very often saying
“Now, I don’t mean this in a critical way…” and then giving me a
collection of errors I’m sure I never would have found. I feel like this has

2 Thinking in Java www.BruceEckel.com

been a kind of group process and it has really made the book into
something special. Because of the value of this feedback, I have created
several incarnations of a system called “BackTalk” to collect and
categorize comments. Feedback

But then I started hearing “OK, fine, it’s nice you’ve put up an electronic
version, but I want a printed and bound copy from a real publisher.” I
tried very hard to make it easy for everyone to print it out in a nice looking
format but that didn’t stem the demand for the published book. Most
people don’t want to read the entire book on screen, and hauling around a
sheaf of papers, no matter how nicely printed, didn’t appeal to them
either. (Plus, I think it’s not so cheap in terms of laser printer toner.) It
seems that the computer revolution won’t put publishers out of business,
after all. However, one student suggested this may become a model for
future publishing: books will be published on the Web first, and only if
sufficient interest warrants it will the book be put on paper. Currently, the
great majority of all books are financial failures, and perhaps this new
approach could make the publishing industry more profitable. Feedback

This book became an enlightening experience for me in another way. I
originally approached Java as “just another programming language,”
which in many senses it is. But as time passed and I studied it more
deeply, I began to see that the fundamental intention of this language was
different from other languages I had seen up to that point. Feedback

Programming is about managing complexity: the complexity of the
problem you want to solve, laid upon the complexity of the machine in
which it is solved. Because of this complexity, most of our programming
projects fail. And yet, of all the programming languages of which I am
aware, none of them have gone all-out and decided that their main design
goal would be to conquer the complexity of developing and maintaining
programs1. Of course, many language design decisions were made with
complexity in mind, but at some point there were always some other
issues that were considered essential to be added into the mix. Inevitably,
those other issues are what cause programmers to eventually “hit the

1 I take this back on the 2nd edition: I believe that the Python language comes closest to
doing exactly that. See www.Python.org.

Preface 3

wall” with that language. For example, C++ had to be backwards-
compatible with C (to allow easy migration for C programmers), as well as
efficient. Those are both very useful goals and account for much of the
success of C++, but they also expose extra complexity that prevents some
projects from being finished (certainly, you can blame programmers and
management, but if a language can help by catching your mistakes, why
shouldn’t it?). As another example, Visual Basic (VB) was tied to BASIC,
which wasn’t really designed to be an extensible language, so all the
extensions piled upon VB have produced some truly horrible and
unmaintainable syntax. Perl is backwards-compatible with Awk, Sed,
Grep, and other Unix tools it was meant to replace, and as a result is often
accused of producing “write-only code” (that is, after a few months you
can’t read it). On the other hand, C++, VB, Perl, and other languages like
Smalltalk had some of their design efforts focused on the issue of
complexity and as a result are remarkably successful in solving certain
types of problems. Feedback

What has impressed me most as I have come to understand Java is that
somewhere in the mix of Sun’s design objectives, it appears that there was
the goal of reducing complexity for the programmer. As if to say “we care
about reducing the time and difficulty of producing robust code.” In the
early days, this goal resulted in code that didn’t run very fast (although
there have been many promises made about how quickly Java will
someday run) but it has indeed produced amazing reductions in
development time; half or less of the time that it takes to create an
equivalent C++ program. This result alone can save incredible amounts of
time and money, but Java doesn’t stop there. It goes on to wrap many of
the complex tasks that have become important, such as multithreading
and network programming, in language features or libraries that can at
times make those tasks easy. And finally, it tackles some really big
complexity problems: cross-platform programs, dynamic code changes,
and even security, each of which can fit on your complexity spectrum
anywhere from “impediment” to “show-stopper.” So despite the
performance problems we’ve seen, the promise of Java is tremendous: it
can make us significantly more productive programmers. Feedback

One of the places I see the greatest impact for this is on the Web. Network
programming has always been hard, and Java makes it easy (and the Java
language designers are working on making it even easier). Network

4 Thinking in Java www.BruceEckel.com

programming is how we talk to each other more effectively and cheaper
than we ever have with telephones (email alone has revolutionized many
businesses). As we talk to each other more, amazing things begin to
happen, possibly more amazing even than the promise of genetic
engineering. Feedback

In all ways—creating the programs, working in teams to create the
programs, building user interfaces so the programs can communicate
with the user, running the programs on different types of machines, and
easily writing programs that communicate across the Internet—Java
increases the communication bandwidth between people. I think that the
results of the communication revolution may not be seen from the effects
of moving large quantities of bits around; we shall see the true revolution
because we will all be able to talk to each other more easily: one-on-one,
but also in groups and, as a planet. I've heard it suggested that the next
revolution is the formation of a kind of global mind that results from
enough people and enough interconnectedness. Java may or may not be
the tool that foments that revolution, but at least the possibility has made
me feel like I'm doing something meaningful by attempting to teach the
language. Feedback

Preface to the 3rd edition
Much of the motivation and effort in this edition is to bring the book up to
date with the Java JDK 1.4 release of the language. However, it has also
become clear that most readers use the book to get a solid grasp of the
fundamentals so that they can move on to more complex topics. Because
the language continues to grow, it became necessary—partly so that the
book would not overstretch its bindings—to re-evaluate the meaning of
“fundamentals.” This meant, for example, completely rewriting the
“Concurrency” chapter (formerly called “Multithreading”) so that it gives
you a basic foundation in the core ideas of threading. Without that core,
it’s hard to understand more complex issues of threading. Feedback

I have also come to realize the importance of code testing. Without a
built-in test framework with tests that are run every time you do a build of
your system, you have no way of knowing if your code is reliable or not.
To accomplish this in the book, a special unit testing framework was

Preface 5

created to show and validate the output of each program. This was placed
in chapter 15, a new chapter, along with explanations of ant (the defacto
standard Java build system, similar to make), JUnit (the defacto standard
Java unit testing framework), and coverage of logging and assertions (new
in JDK 1.4) along with an introduction to debugging and profiling. To
encompass all these concepts, the new chapter is named “Discovering
Problems,” and it introduces what I now believe are fundamental skills
that every Java programmer should have in their basic toolkit. Feedback

In addition, I’ve gone over every single example in the book, and asked
myself “why did I do it this way?” and in most cases I have done some
modification and improvement, both to make the examples more
consistent within themselves and also to demonstrate what I consider to
be best practices in Java coding (at least, within the limitations of an
introductory text). Examples that no longer made sense to me were
removed, and new examples have been added. A number of the existing
examples have had very significant redesign and reimplementation. Feedback

The 16 chapters in this book produce what I think is a fundamental
introduction to the Java language. The book can be feasibly used as an
introductory course. But what about the more advanced material? Feedback

The original plan for the book was to add a new section covering the
fundamentals of the “Java 2 Enterprise Edition” (J2EE). Many of these
chapters would be created by my friends and associates who work with me
on seminars and other projects, such as Andrea Provaglio, Bill Venners,
Chuck Allison, Dave Bartlett and Jeremy Meyer. When I looked at the
progress of these new chapters, and the book deadline, I began to get a bit
nervous. Then I noticed that the size of the first 16 chapters was effectively
the same as the size of the 2nd edition of the book. And people sometimes
complain this is already too big. Feedback

Readers have made many, many wonderful comments about the first two
editions of this book, which has naturally been very pleasant for me.
However, every now and then someone will have complaints, and for
some reason one complaint that comes up periodically is “the book is too
big.” In my mind it is faint damnation indeed if “too many pages” is your
only gripe. (One is reminded of the Emperor of Austria’s complaint about
Mozart’s work: “Too many notes!” Not that I am in any way trying to

6 Thinking in Java www.BruceEckel.com

compare myself to Mozart.) In addition, I can only assume that such a
complaint comes from someone who is yet to be acquainted with the
vastness of the Java language itself, and has not seen the rest of the books
on the subject. Despite this, one of the things I have attempted to do in
this edition is trim out the portions that have become obsolete, or at least
nonessential. In general, I’ve tried to go over everything, remove from the
3rd edition what is no longer necessary, include changes, and improve
everything I could. I feel comfortable removing portions because the
original material remains on the Web site (www.BruceEckel.com) and the
CD ROM that accompanies this book, in the form of the freely-
downloadable first and second editions of the book. If you want the old
stuff, it’s still available, and this is a wonderful relief for an author. For
example, the “Design Patterns” chapter became too big and has been
moved into a book of its own: Thinking in Patterns with Java (also
downloadable at the Web site). So, by all rights the book should be
thinner. Feedback

I had already decided that when the next version of Java (JDK 1.5) is
released from Sun, which presumably will include a major new topic
called generics, that I would have to split the book in two in order to add
that new chapter. A little voice said “why wait?” so decided to do it for this
edition, and suddenly everything made sense. I was trying to cram too
much into an introductory book. Feedback

The new book isn’t a second volume, but rather a more advanced topic. It
will be called Thinking in Enterprise Java and is currently available (in
some form) as a free download from www.BruceEckel.com. Because it is
a separate book, it can expand to fit the necessary topics. The goal, like
Thinking in Java, is to produce a very understandable coverage of the
basics of the J2EE technologies so that the reader is prepared for more
advanced coverage of those topics. You can find more details in Appendix
C. Feedback

For those of you who still can’t stand the size of the book, I do apologize.
Believe it or not, I have worked hard to keep it small. Despite the bulk, I
feel like there may be enough alternatives to satisfy you. For one thing,
the book is available electronically, so if you carry your laptop you can put
the book on that and add no extra weight to your daily commute. If you’re
really into slimming down, there are actually Palm Pilot versions of the

Preface 7

book floating around. (One person told me he would read the book in bed
on his Palm with the backlighting on to keep from annoying his wife. I can
only hope that it helps send him to slumberland.) If you need it on paper,
I know of people who print a chapter at a time and carry it in their
briefcase to read on the train. Feedback

Java 2, JDK 1.4
The releases of the Java JDK are numbered 1.0, 1.1, 1.2, 1.3, and for this
book, 1.4. Although these version numbers are still in the “ones,” the
standard way to refer to any version of the language that is JDK 1.2 or
greater is to call it “Java 2.” This indicates the very significant changes
between “old Java”—which had many warts that I complained about in
the first edition of this book—and this more modern and improved
version of the language, which has far fewer warts and many additions
and nice designs. Feedback

This book is written for Java 2, in particular JDK 1.4 (much of the code
will not compile with earlier versions, and the build system will complain
and stop if you try). I have the great luxury of getting rid of all the old stuff
and writing to only the new, improved language because the old
information still exists in the earlier editions, on the Web and on the CD
ROM. Also, because anyone can freely download the JDK from
java.sun.com, it means that by writing to JDK 1.4 I’m not imposing a
financial hardship on someone by forcing them to upgrade. Feedback

Previous versions of Java were slow in coming out for Linux (see
www.Linux.org), but that seems to have been fixed and new versions are
released for Linux at the same time as for other platforms – now even the
Macintosh is starting to keep up with more recent versions of Java. Linux
is a very important development in conjunction with Java, because it is
quickly becoming the most important server platform out there—fast,
reliable, robust, secure, well-maintained, and free, a true revolution in the
history of computing (I don’t think we’ve ever seen all of those features in
any tool before). And Java has found a very important niche in server-side
programming in the form of Servlets and Java ServerPages (JSPs),
technologies that are huge improvements over the traditional CGI
programming (these and related topics are covered in Thinking in
Enterprise Java). Feedback

8 Thinking in Java www.BruceEckel.com

The CD ROM
Another bonus with this edition is the CD ROM that is packaged in the
back of the book. I’ve resisted putting CD ROMs in the back of my books
in the past because I felt the extra charge for a few Kbytes of source code
on this enormous CD was not justified, preferring instead to allow people
to download such things from my Web site. However, you’ll soon see that
this CD ROM is different. Feedback

This CD actually doesn’t contain the source code from the book, but
instead a link to the code at www.MindView.net (you don’t need the link
on the CD to get to the source code. You can just go to the site and find it
that way). There are two reasons for this: the code was not complete at the
time the CD had to be sent to the printer, and this approach allows the
code to evolve and be corrected as any issues arise. Feedback

Because the book has evolved significantly over the three editions, the CD
contains the first and second editions of the book in HTML format,
including sections that for aforementioned reasons were removed from
later editions but which may in some cases be useful to you. In addition
you can download the HTML version of the current (3rd edition) book
from www.MindView.net, and this will include corrections as they are
discovered and fixed. One benefit of the HTML version is that the index is
hyperlinked so navigating it is much simpler. Feedback

The bulk of the 400+ Megabytes of the CD, however, is a full multimedia
course called Foundations for Java. This includes the Thinking in C
seminar, which gives you an introduction to the C syntax, operators and
functions that Java syntax is based upon. In addition, it includes the first
7 lectures from the 2nd edition of the Hands-On Java seminar-on-CD that
I created and narrate. Although historically the entire Hands-On Java CD
is only available for sale separately (this is also the case with the 3rd
edition of the Hands-On Java CD, which may be available when you read
this – see www.MindView.net), I decided to include the first seven
lectures from the 2nd edition because they will not have changed too much
in relationship to the 3rd edition of the book, and so it will not only
provide you (along with Thinking in C) with a foundation for this book,

Preface 9

but in addition I hope it will give you a taste for the quality and value of
the Hands-On Java CD, 3rd edition. Feedback

I originally commissioned Chuck Allison to create the Thinking in C part
of this seminar-on-CD ROM as a standalone product, but decided to
include it with the second editions of both Thinking in C++ and Thinking
in Java because of the consistent experience of having people come to
seminars without an adequate background in C. The thinking apparently
goes “I’m a smart programmer and I don’t want to learn C, but rather C++
or Java, so I’ll just skip C and go directly to C++/Java.” After arriving at
the seminar, it slowly dawns on folks that the prerequisite of
understanding C syntax is there for a very good reason. By including the
CD ROM with the book, we can ensure that everyone attends a seminar
with adequate preparation. Feedback

The CD also allows the book to appeal to a wider audience. Even though
Chapter 3 (Controlling program flow) does cover the fundamentals of the
parts of Java that come from C, the CD is a gentler introduction, and
assumes even less about the student’s programming background than
does the book. And being walked through the material in the first seven
chapters via the corresponding lectures in the 2nd edition of the Hands-On
Java CD should help you get an even better foothold into Java. It is my
hope that by including the CD more people will be able to be brought into
the fold of Java programming. Feedback

 11

Introduction
“He gave man speech, and speech created thought, Which
is the measure of the universe”—Prometheus Unbound,
Shelley

Human beings ... are very much at the mercy of the particular
language which has become the medium of expression for their
society. It is quite an illusion to imagine that one adjusts to reality
essentially without the use of language and that language is merely
an incidental means of solving specific problems of communication
and reflection. The fact of the matter is that the "real world" is to a
large extent unconsciously built up on the language habits of the
group.

The Status Of Linguistics As A Science, 1929, Edward Sapir

Like any human language, Java provides a way to express concepts. If
successful, this medium of expression will be significantly easier and more
flexible than the alternatives as problems grow larger and more complex.
Feedback

You can’t look at Java as just a collection of features—some of the features
make no sense in isolation. You can use the sum of the parts only if you
are thinking about design, not simply coding. And to understand Java in
this way, you must understand the problems with it and with
programming in general. This book discusses programming problems,
why they are problems, and the approach Java has taken to solve them.
Thus, the set of features that I explain in each chapter are based on the
way I see a particular type of problem being solved with the language. In
this way I hope to move you, a little at a time, to the point where the Java
mindset becomes your native tongue. Feedback

Throughout, I’ll be taking the attitude that you want to build a model in
your head that allows you to develop a deep understanding of the
language; if you encounter a puzzle you’ll be able to feed it to your model
and deduce the answer. Feedback

12 Thinking in Java www.BruceEckel.com

Prerequisites
This book assumes that you have some programming familiarity: you
understand that a program is a collection of statements, the idea of a
subroutine/function/macro, control statements such as “if” and looping
constructs such as “while,” etc. However, you might have learned this in
many places, such as programming with a macro language or working
with a tool like Perl. As long as you’ve programmed to the point where you
feel comfortable with the basic ideas of programming, you’ll be able to
work through this book. Of course, the book will be easier for the C
programmers and more so for the C++ programmers, but don’t count
yourself out if you’re not experienced with those languages (but come
willing to work hard; also, the multimedia CD that accompanies this book
will bring you up to speed in the fundamentals necessary to learn Java).
However, I will be introducing the concepts of object-oriented
programming (OOP) and Java’s basic control mechanisms. Feedback

Although references will often be made to C and C++ language features,
these are not intended to be insider comments, but instead to help all
programmers put Java in perspective with those languages, from which,
after all, Java is descended. I will attempt to make these references simple
and to explain anything that I think a non- C/C++ programmer would not
be familiar with. Feedback

Learning Java
At about the same time that my first book Using C++ (Osborne/McGraw-
Hill, 1989) came out, I began teaching that language. Teaching
programming languages has become my profession; I’ve seen nodding
heads, blank faces, and puzzled expressions in audiences all over the
world since 1987. As I began giving in-house training with smaller groups
of people, I discovered something during the exercises. Even those people
who were smiling and nodding were confused about many issues. I found
out, by creating and chairing the C++ track at the Software Development
Conference for a number of years (and later creating and chairing the
Java track), that I and other speakers tended to give the typical audience
too many topics too fast. So eventually, through both variety in the

Introduction 13

audience level and the way that I presented the material, I would end up
losing some portion of the audience. Maybe it’s asking too much, but
because I am one of those people resistant to traditional lecturing (and for
most people, I believe, such resistance results from boredom), I wanted to
try to keep everyone up to speed. Feedback

For a time, I was creating a number of different presentations in fairly
short order. Thus, I ended up learning by experiment and iteration (a
technique that also works well in Java program design). Eventually I
developed a course using everything I had learned from my teaching
experience. It tackles the learning problem in discrete, easy-to-digest
steps, and in a hands-on seminar (the ideal learning situation) there are
exercises following each of the short lessons. My company MindView, Inc.
now gives this as the public and in-house Thinking in Java seminar; this
is our main introductory seminar that provides the foundation for our
more advanced seminars. You can find details at www.MindView.net.
(The introductory seminar is also available as the Hands-On Java CD
ROM. Information is available at the same Web site.) Feedback

The feedback that I get from each seminar helps me change and refocus
the material until I think it works well as a teaching medium. But this
book isn’t just seminar notes—I tried to pack as much information as I
could within these pages, and structured it to draw you through onto the
next subject. More than anything, the book is designed to serve the
solitary reader who is struggling with a new programming language.
Feedback

Goals
Like my previous book Thinking in C++, this book has come to be
structured around the process of teaching the language. In particular, my
motivation is to create something that provides me with a way to teach the
language in my own seminars. When I think of a chapter in the book, I
think in terms of what makes a good lesson during a seminar. My goal is
to get bite-sized pieces that can be taught in a reasonable amount of time,
followed by exercises that are feasible to accomplish in a classroom
situation. Feedback

My goals in this book are to: Feedback

14 Thinking in Java www.BruceEckel.com

1. Present the material one simple step at a time so that you can easily
digest each concept before moving on. Feedback

2. Use examples that are as simple and short as possible. This
sometimes prevents me from tackling “real world” problems, but
I’ve found that beginners are usually happier when they can
understand every detail of an example rather than being impressed
by the scope of the problem it solves. Also, there’s a severe limit to
the amount of code that can be absorbed in a classroom situation.
For this I will no doubt receive criticism for using “toy examples,”
but I’m willing to accept that in favor of producing something
pedagogically useful. Feedback

3. Carefully sequence the presentation of features so that you’re
exposed to a topic before you see it in use. Of course, this isn’t
always possible; in those situations, a brief introductory
description is given. Feedback

4. Give you what I think is important for you to understand about the
language, rather than everything I know. I believe there is an
information importance hierarchy, and that there are some facts
that 95 percent of programmers will never need to know and that
just confuse people and adds to their perception of the complexity
of the language. To take an example from C, if you memorize the
operator precedence table (I never did), you can write clever code.
But if you need to think about it, it will also confuse the
reader/maintainer of that code. So forget about precedence, and
use parentheses when things aren’t clear. Feedback

5. Keep each section focused enough so that the lecture time—and the
time between exercise periods—is small. Not only does this keep
the audience’s minds more active and involved during a hands-on
seminar, but it gives the reader a greater sense of accomplishment.
Feedback

6. Provide you with a solid foundation so that you can understand the
issues well enough to move on to more difficult coursework and
books. Feedback

Introduction 15

JDK HTML documentation
The Java language and libraries from Sun Microsystems (a free download
from java.sun.com) come with documentation in electronic form,
readable using a Web browser, and virtually every third party
implementation of Java has this or an equivalent documentation system.
Almost all the books published on Java have duplicated this
documentation. So you either already have it or you can download it, and
unless necessary, this book will not repeat that documentation because
it’s usually much faster if you find the class descriptions with your Web
browser than if you look them up in a book (and the on-line
documentation is probably more up-to-date). You’ll simply be referred to
“the JDK documentation.” This book will provide extra descriptions of the
classes only when it’s necessary to supplement that documentation so you
can understand a particular example. Feedback

Chapters
This book was designed with one thing in mind: the way people learn the
Java language. Seminar audience feedback helped me understand the
difficult parts that needed illumination. In the areas where I got ambitious
and included too many features all at once, I came to know—through the
process of presenting the material—that if you include a lot of new
features, you need to explain them all, and this easily compounds the
student’s confusion. As a result, I’ve taken a great deal of trouble to
introduce the features as few at a time as possible. Feedback

The goal, then, is for each chapter to teach a single feature, or a small
group of associated features, without relying on features that haven’t been
introduced yet. That way you can digest each piece in the context of your
current knowledge before moving on. Feedback

Here is a brief description of the chapters contained in the book, which
correspond to lectures and exercise periods in the Thinking in Java
seminar. Feedback

16 Thinking in Java www.BruceEckel.com

Chapter 1: Introduction to Objects
(Corresponding lecture on the CD ROM). This chapter is an
overview of what object-oriented programming is all about,
including the answer to the basic question “What is an
object?”, interface vs. implementation, abstraction and
encapsulation, messages and methods, inheritance and
composition, and the subtle concept of polymorphism. You’ll
also get an overview of issues of object creation such as
constructors, where the objects live, where to put them once
they’re created, and the magical garbage collector that cleans
up the objects that are no longer needed. Other issues will be
introduced, including error handling with exceptions,
multithreading for responsive user interfaces, and networking
and the Internet. You’ll learn what makes Java special and
why it’s been so successful. Feedback

Chapter 2: Everything is an Object
(Corresponding lecture on the CD ROM). This chapter moves
you to the point where you can write your first Java program.
It begins with an overview of the essentials: the concept of a
reference to an object; how to create an object; an
introduction to primitive types and arrays; scoping and the
way objects are destroyed by the garbage collector; how
everything in Java is a new data type (class); the basics of
creating your own classes; methods, arguments, and return
values; name visibility and using components from other
libraries; the static keyword; and comments and embedded
documentation. Feedback

Chapter 3: Controlling Program Flow
(Corresponding set of lectures on the CD ROM: Thinking in
C). This chapter begins with all of the operators that come to
Java from C and C++. In addition, you’ll discover common
operator pitfalls, casting, promotion, and precedence. This is
followed by the basic control-flow and selection operations
that you get with virtually any programming language: choice
with if-else; looping with for and while; quitting a loop with
break and continue as well as Java’s labeled break and
labeled continue (which account for the “missing goto” in

Introduction 17

Java); and selection using switch. Although much of this
material has common threads with C and C++ code, there are
some differences. Feedback

Chapter 4: Initialization & Cleanup
(Corresponding lecture on the CD ROM). This chapter begins
by introducing the constructor, which guarantees proper
initialization. The definition of the constructor leads into the
concept of method overloading (since you might want several
constructors). This is followed by a discussion of the process
of cleanup, which is not always as simple as it seems.
Normally, you just drop an object when you’re done with it
and the garbage collector eventually comes along and releases
the memory. This portion explores the garbage collector and
some of its idiosyncrasies. The chapter concludes with a
closer look at how things are initialized: automatic member
initialization, specifying member initialization, the order of
initialization, static initialization and array initialization.
Feedback

Chapter 5: Hiding the Implementation
(Corresponding lecture on the CD ROM). This chapter covers
the way that code is packaged together, and why some parts of
a library are exposed while other parts are hidden. It begins
by looking at the package and import keywords, which
perform file-level packaging and allow you to build libraries of
classes. It then examines subject of directory paths and file
names. The remainder of the chapter looks at the public,
private, and protected keywords, the concept of package
access, and what the different levels of access control mean
when used in various contexts. Feedback

Chapter 6: Reusing Classes
(Corresponding lecture on the CD ROM). The simplest way to
reuse a class is to embed an object inside your new class with
composition. However, composition isn’t the only way to
make new classes from existing ones. The concept of
inheritance is standard in virtually all OOP languages. It’s a
way to take an existing class and add to its functionality (as

18 Thinking in Java www.BruceEckel.com

well as change it, the subject of Chapter 7). Inheritance is
often a way to reuse code by leaving the “base class” the same,
and just patching things here and there to produce what you
want. In this chapter you’ll learn how composition and
inheritance reuse code in Java, and how to apply them. Feedback

Chapter 7: Polymorphism
(Corresponding lecture on the CD ROM). On your own, you
might take nine months to discover and understand
polymorphism, a cornerstone of OOP. Through small, simple
examples you’ll see how to create a family of types with
inheritance and manipulate objects in that family through
their common base class. Java’s polymorphism allows you to
treat all objects in this family generically, which means the
bulk of your code doesn’t rely on specific type information.
This makes your code more flexible, so building programs and
code maintenance is easier and cheaper. Feedback

Chapter 8: Interfaces & Inner Classes
Java provides special tool to set up design and reuse
relationships: the interface, which is a pure abstraction of the
interface of an object. The interface is more than just an
abstract class taken to the extreme, since it allows you to
perform a variation on C++’s “multiple inheritance,” by
creating a class that can be upcast to more than one base type.
Feedback

At first, inner classes look like a simple code hiding
mechanism: you place classes inside other classes. You’ll
learn, however, that the inner class does more than that—it
knows about and can communicate with the surrounding
class. The kind of code you can write with inner classes is
more elegant and clear. However, it is a new concept to most
and it takes some time to become comfortable with design
using inner classes. Feedback

Chapter 9: Error Handling with Exceptions
The basic philosophy of Java is that badly-formed code will
not be run. As much as possible, the compiler catches

Introduction 19

problems, but sometimes a problem—either a programmer
error or a natural error condition that occurs as part of the
normal execution of the program—can be detected and dealt
with only at run time. Java has exception handling to deal
with any problems that arise while the program is running.
This chapter examines how the keywords try, catch, throw,
throws, and finally work in Java; when you should throw
exceptions and what to do when you catch them. In addition,
you’ll see Java’s standard exceptions, how to create your own,
what happens with exceptions in constructors, and how
exception handlers are discovered during an exception. Feedback

Chapter 10: Detecting Types
Java run-time type identification (RTTI) lets you find the
exact type of an object when you have a reference to only the
base type. Normally, you’ll want to intentionally ignore the
exact type and let Java’s dynamic binding mechanism
(polymorphism) implement the correct behavior for that type.
But occasionally it is very helpful to know the exact type of an
object for which you have only a base reference. Often this
information allows you to perform a special-case operation
more efficiently. This chapter also introduces the Java
reflection mechanism. You’ll learn what RTTI and reflection
are for and how to use them, and also how to get rid of RTTI
when it doesn’t belong there. Feedback

Chapter 11: Collections of Objects
It’s a fairly simple program that has only a fixed quantity of
objects with known lifetimes. In general, your programs will
always be creating new objects at a variety of times that will
be known only while the program is running. In addition, you
won’t know until run time the quantity or even the exact type
of the objects you need. To solve the general programming
problem, you need to create any number of objects, anytime,
anywhere. This chapter explores in depth the container
library that Java 2 supplies to hold objects while you’re
working with them: the simple arrays and more sophisticated
containers (data structures) such as ArrayList and
HashMap. Feedback

20 Thinking in Java www.BruceEckel.com

Chapter 12: The Java I/O System
Theoretically, you can divide any program into three parts:
input, process, and output. This implies that I/O
(input/output) is an important part of the equation. In this
chapter you’ll learn about the different classes that Java
provides for reading and writing files, blocks of memory, and
the console. The evolution of the Java I/O framework and the
JDK 1.4 “new” IO (nio) will be examined. In addition, this
chapter shows how you can take an object, “stream” it (so that
it can be placed on disk or sent across a network) and then
reconstruct it, which is handled for you with Java’s object
serialization. Java’s compression libraries, which are used in
the Java ARchive file format (JAR), are examined. Finally, the
new preferences API and regular expressions are explained.
Feedback

Chapter 13: Concurrency
Java provides a built-in facility to support multiple
concurrent subtasks, called threads, running within a single
program. (Unless you have multiple processors on your
machine, this is only the appearance of multiple subtasks.)
Although these can be used anywhere, threads are most
apparent when trying to create a responsive user interface so,
for example, a user isn’t prevented from pressing a button or
entering data while some processing is going on. This chapter
gives you a solid grounding in the fundamentals of concurrent
programming. Feedback

Chapter 14: Creating Windows and Applets
Java comes with the “Swing” GUI library, which is a set of
classes that handle windowing in a portable fashion. These
windowed programs can either be World Wide Web applets
or stand-alone applications. This chapter is an introduction to
the creation of programs using Swing. Applet signing and
Java Web Start are demonstrated. Also, the important
JavaBeans technology is introduced, which is fundamental
for the creation of Rapid-Application Development (RAD)
program-building tools. Feedback

Introduction 21

Chapter 15: Discovering Problems
Language-checking mechanisms can take us only so far in our
quest to develop a correctly-working program. This chapter
presents tools to solve the problems that the compiler doesn’t.
One of the biggest steps forward is the incorporation of
automated unit testing. For this book, a custom testing
system was developed to ensure the correctness of the
program output, but the defacto standard JUnit testing
system is also introduced. Automatic building is implemented
with the open-source standard Ant tool, and for teamwork,
the basics of CVS are explained. For problem reporting at
runtime, this chapter introduces the Java assertion
mechanism (shown here used with Design by Contract), the
logging API, debuggers, profilers and even Doclets (which can
help discover problems in source code).

Chapter 16: Analysis & Design
The object-oriented paradigm is a new and different way of
thinking about programming, and many people have trouble
at first knowing how to approach an OOP project. Once you
understand the concept of an object, and as you learn to think
more in an object-oriented style, you can begin to create
“good” designs that take advantage of all the benefits that
OOP has to offer. This chapter introduces the ideas of
analysis, design, and some ways to approach the problems of
developing good object-oriented programs in a reasonable
amount of time. Topics include UML diagrams and associated
methodology, use cases, CRC cards, iterative development,
Extreme Programming, ways to develop and evolve reusable
code, and strategies for transition to object-oriented
programming.

Appendix A: Passing & Returning Objects
Since the only way you talk to objects in Java is through
references, the concepts of passing an object into a method
and returning an object from a method have some interesting
consequences. This appendix explains what you need to know
to manage objects when you’re moving in and out of methods,

22 Thinking in Java www.BruceEckel.com

and also shows the String class, which uses a different
approach to the problem. Feedback

Appendix B: Java Programming Guidelines
This appendix contains suggestions that I have discovered
and collected over the years to help guide you while
performing low-level program design and writing code. Feedback

Appendix C: Supplements
Descriptions of additional learning material available from
MindView:
1. The CD ROM that’s in the back of this book containing the
Foundations for Java seminar-on-CD, to prepare you for this
book.
2. The Hands-On Java CD ROM, available at
www.MindView.net. A seminar-on-CD that’s inspired by the
material in this book.
3. Thinking in Enterprise Java, which covers more advanced
Java topics appropriate to enterprise programming. Available
at www.MindView.net.
4. Thinking in Patterns with Java, which covers more
advanced Java topics on Design Patterns and problem solving
techniques. Available at www.MindView.net.

Appendix D: Recommended Reading
A list of some of the Java books I’ve found particularly useful.
Feedback

Exercises
I’ve discovered that simple exercises are exceptionally useful to complete
a student’s understanding during a seminar, so you’ll find a set at the end
of each chapter. Feedback

Most exercises are designed to be easy enough that they can be finished in
a reasonable amount of time in a classroom situation while the instructor
observes, making sure that all the students are absorbing the material.
Some exercises are more advanced to prevent boredom for experienced
students. The majority are designed to be solved in a short time and test

Introduction 23

and polish your knowledge. Some are more challenging, but none present
major challenges. (Presumably, you’ll find those on your own—or more
likely they’ll find you). Feedback

Solutions to selected exercises can be found in the electronic document
The Thinking in Java Annotated Solution Guide, available for a small fee
from www.BruceEckel.com. Feedback

Multimedia CD ROM
There are two multimedia CDs associated with this book. The first is
bound into the book itself: Foundations for Java, described in Appendix
D, which prepares you for the book by bringing you up to speed on the
necessary C syntax you need to be able to understand Java. Feedback

A second Multimedia CD ROM is available, which is based on the contents
of the book. This CD ROM is a separate product and contains the entire
contents of the week-long Thinking in Java training seminar. This is
more than 15 hours of lectures that I have recorded, synchronized with
hundreds of slides of information. Because the seminar is based on this
book, it is an ideal accompaniment. Feedback

The CD ROM contains all the lectures (with the important exception of
personalized attention!) from the five-day full-immersion training
seminars. We believe that it sets a new standard for quality. Feedback

The Hands-On Java CD ROM is available only by ordering directly from
the Web site www.BruceEckel.com. Feedback

Source code
All the source code for this book is available as copyrighted freeware,
distributed as a single package, by visiting the Web site
www.BruceEckel.com. To make sure that you get the most current
version, this is the official site for distribution of the code and the
electronic version of the book. You can find mirrored versions of the
electronic book and the code on other sites (some of these sites are found
at www.BruceEckel.com), but you should check the official site to ensure

24 Thinking in Java www.BruceEckel.com

that the mirrored version is actually the most recent edition. You may
distribute the code in classroom and other educational situations. Feedback

The primary goal of the copyright is to ensure that the source of the code
is properly cited, and to prevent you from republishing the code in print
media without permission. (As long as the source is cited, using examples
from the book in most media is generally not a problem.) Feedback

In each source code file you will find a reference to the following copyright
notice: Feedback

//:! :CopyRight.txt
Copyright ©2003 Bruce Eckel
Source code file from the 3rd edition of the book
"Thinking in Java." All rights reserved EXCEPT as
allowed by the following statements:
You can freely use this file
for your own work (personal or commercial),
including modifications and distribution in
executable form only. Permission is granted to use
this file in classroom situations, including its
use in presentation materials, as long as the book
"Thinking in Java" is cited as the source.
Except in classroom situations, you cannot copy
and distribute this code; instead, the sole
distribution point is http://www.BruceEckel.com
(and official mirror sites) where it is
freely available. You cannot remove this
copyright and notice. You cannot distribute
modified versions of the source code in this
package. You cannot use this file in printed
media without the express permission of the
author. Bruce Eckel makes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or implied
warranty of any kind, including any implied
warranty of merchantability, fitness for a
particular purpose or non-infringement. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publisher shall not be liable for any damages
suffered by you or any third party as a result of
using or distributing software. In no event will
Bruce Eckel or the publisher be liable for any

Introduction 25

lost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
punitive damages, however caused and regardless of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Eckel
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of all
necessary servicing, repair, or correction. If you
think you've found an error, please submit the
correction using the form you will find at
www.BruceEckel.com. (Please use the same
form for non-code errors found in the book.)
///:~

You may use the code in your projects and in the classroom (including
your presentation materials) as long as the copyright notice that appears
in each source file is retained. Feedback

Coding standards
In the text of this book, identifiers (method, variable, and class names)
are set in bold. Most keywords are also set in bold, except for those
keywords that are used so much that the bolding can become tedious,
such as “class.” Feedback

I use a particular coding style for the examples in this book. This style
follows the style that Sun itself uses in virtually all of the code you will
find at its site (see java.sun.com/docs/codeconv/index.html), and seems
to be supported by most Java development environments. If you’ve read
my other works, you’ll also notice that Sun’s coding style coincides with
mine—this pleases me, although I had nothing to do with it. The subject of
formatting style is good for hours of hot debate, so I’ll just say I’m not
trying to dictate correct style via my examples; I have my own motivation
for using the style that I do. Because Java is a free-form programming
language, you can continue to use whatever style you’re comfortable with.
Feedback

The programs in this book are files that are included by the word
processor in the text, directly from compiled files. Thus, the code files
printed in the book should all work without compiler errors. The errors
that should cause compile-time error messages are commented out with

26 Thinking in Java www.BruceEckel.com

the comment //! so they can be easily discovered and tested using
automatic means. Errors discovered and reported to the author will
appear first in the distributed source code and later in updates of the book
(which will also appear on the Web site www.BruceEckel.com). Feedback

Java versions
I generally rely on the Sun implementation of Java as a reference when
determining whether behavior is correct. Feedback

Over time, Sun has released three major versions of Java: 1.0, 1.1 and 2
(which is called version 2 even though the releases of the JDK from Sun
continue to use the numbering scheme of 1.2, 1.3, 1.4, etc.). Version 2
seems to finally bring Java into the prime time, in particular where user
interface tools are concerned. This book focuses on and is tested with Java
2, although I do sometimes make concessions to earlier features of Java 2
so that the code will compile under Linux (via the Linux JDK that was
available at this writing). Feedback

If you need to learn about earlier releases of the language that are not
covered in this edition, the first edition of the book is freely downloadable
at www.BruceEckel.com and is also contained on the CD that is bound in
with this book. Feedback

One thing you’ll notice is that, when I do need to mention earlier versions
of the language, I don’t use the sub-revision numbers. In this book I will
refer to Java 1.0, Java 1.1, and Java 2 only, to guard against typographical
errors produced by further sub-revisioning of these products. Feedback

Seminars and mentoring
My company provides five-day, hands-on, public and in-house training
seminars based on the material in this book. Selected material from each
chapter represents a lesson, which is followed by a monitored exercise
period so each student receives personal attention. The audio lectures and
slides for the introductory seminar are also captured on CD ROM to
provide at least some of the experience of the seminar without the travel
and expense. For more information, go to www.BruceEckel.com. Feedback

Introduction 27

My company also provides consulting, mentoring and walkthrough
services to help guide your project through its development cycle—
especially your company’s first Java project. Feedback

Errors
No matter how many tricks a writer uses to detect errors, some always
creep in and these often leap off the page for a fresh reader. Feedback

There is an error submission form linked from the beginning of each
chapter in the HTML version of this book (and on the CD ROM bound
into the back of this book, and downloadable from www.BruceEckel.com)
and also on the Web site itself, on the page for this book. If you discover
anything you believe to be an error, please use this form to submit the
error along with your suggested correction. If necessary, include the
original source file and note any suggested modifications. Your help is
appreciated. Feedback

Note on the cover design
The cover of Thinking in Java is inspired by the American Arts & Crafts
Movement, which began near the turn of the century and reached its
zenith between 1900 and 1920. It began in England as a reaction to both
the machine production of the Industrial Revolution and the highly
ornamental style of the Victorian era. Arts & Crafts emphasized spare
design, the forms of nature as seen in the art nouveau movement, hand-
crafting, and the importance of the individual craftsperson, and yet it did
not eschew the use of modern tools. There are many echoes with the
situation we have today: the turn of the century, the evolution from the
raw beginnings of the computer revolution to something more refined and
meaningful to individual persons, and the emphasis on software
craftsmanship rather than just manufacturing code. Feedback

I see Java in this same way: as an attempt to elevate the programmer
away from an operating-system mechanic and toward being a “software
craftsman.” Feedback

28 Thinking in Java www.BruceEckel.com

Both the author and the book/cover designer (who have been friends
since childhood) find inspiration in this movement, and both own
furniture, lamps, and other pieces that are either original or inspired by
this period. Feedback

The other theme in this cover suggests a collection box that a naturalist
might use to display the insect specimens that he or she has preserved.
These insects are objects, which are placed within the box objects. The
box objects are themselves placed within the “cover object,” which
illustrates the fundamental concept of aggregation in object-oriented
programming. Of course, a programmer cannot help but make the
association with “bugs,” and here the bugs have been captured and
presumably killed in a specimen jar, and finally confined within a small
display box, as if to imply Java’s ability to find, display, and subdue bugs
(which is truly one of its most powerful attributes). Feedback

Acknowledgements
First, thanks to associates who have worked with me to give seminars,
provide consulting, and develop teaching projects: Andrea Provaglio,
Dave Bartlett, Bill Venners, Chuck Allison, Jeremy Meyer, and Larry
O’Brien. I appreciate your patience as I continue to try to develop the best
model for independent folks like us to work together.

Recently, no doubt because of the Internet, I have become associated with
a surprisingly large number of people who assist me in my endeavors,
usually working from their own home offices. In the past, I would have
had to pay for a pretty big office space to accommodate all these folks, but
because of the net and Fedex and occasionally the telephone, I’m able to
benefit from their help without the extra costs. In my attempts to learn to
better “play well with others,” you have all been very helpful, and I hope
to continue learning how to make my own work better through the efforts
of others. Paula Steuer has been invaluable in taking over my haphazard
business practices and making them sane (thanks for prodding me when I
don’t want to do something, Paula). Jonathan Wilcox, Esq., has sifted
through my corporate structure and turned over every possible rock that
might hide scorpions, and frog-marched us through the process of putting
everything straight, legally. Thanks for your care and persistence.

Introduction 29

Sharlynn Cobaugh (who discovered Paula) has made herself an expert in
sound processing and an essential part of creating the multimedia
training CD ROMs, as well as tackling other problems. Thanks for your
perserverance when faced with intractable computer problems. Evan
Cofsky (Evan@TheUnixMan.com) has become an essential part of my
development process, taking to the Python programming language like a
duck (Hmm. Such a mixed metaphor could produce a fat Python) and
solving all kinds of difficult problems, including the (final?) re-
architecting of BackTalk into an email-driven XML database. The folks at
Amaio in Prague have helped me out with several projects. Daniel Will-
Harris was the original work-by-Iinternet inspiration, and he is of course
fundamental to all my design solutions.

For this project, I took another step which had been fermenting in the
back of my mind for awhile. For the summer of 2002, I created an
internship program in Crested Butte, Colorado, initially looking for two
interns and ending up with 5 (two volunteers). Not only did they
contribute to the book but they helped keep me focused on the project.
Thanks to JJ Badri, Ben Hindman, Mihajlo Jovanovic, Mark Welsh.
Chintan Thakker was able to stay for a second internship through the end
of the book process and beyond, and since I had to rent the intern condo
in Mount Crested Butte anyway, we advertised for volunteers and got
Mike Levin, Mike Shea, and Ian Phillips, who all made contributions.
Someday I may do another internship program; visit www.MindView.net
for news.

Thanks to the Doyle Street Cohousing Community for putting up with me
for the two years that it took me to write the first edition of this book (and
for putting up with me at all). Thanks very much to Kevin and Sonda
Donovan for subletting their great place in gorgeous Crested Butte,
Colorado for the summer while I worked on the first edition of the book
(and to Kevin for all the great remodeling on my place in CB). Also thanks
to the friendly residents of Crested Butte and the Rocky Mountain
Biological Laboratory who make me feel so welcome. My yoga teachers in
CB, Maria and Brenda, were instrumental in keeping me sane during the
development of the 3rd edition. Feedback

Thanks to Claudette Moore at Moore Literary Agency for her tremendous
patience and perseverance in getting me exactly what I wanted. Thanks to

30 Thinking in Java www.BruceEckel.com

Paul Petralia at Prentice Hall for continuing to give me what I want, and
for going out of his way to make things run smoothly for me (and for
putting up with all my special requirements). Feedback

My first two books were published with Jeff Pepper as editor at
Osborne/McGraw-Hill. Jeff appeared at the right place and the right time
at Prentice Hall to lay the original groundwork for these books, before
passing the responsibility on to Paul. Thanks, Jeff. Feedback

Thanks to Rolf André Klaedtke (Switzerland); Martin Vlcek, Vlada &
Pavel Lahoda, (Prague); and Marco Cantu (Italy) for hosting me on my
first self-organized European seminar tour. Feedback

I’m especially indebted to Gen Kiyooka and his company Digigami, who
graciously provided my Web server for the first several years of my
presence on the Web. This was an invaluable learning aid. Feedback

Special thanks to Larry and Tina O’Brien, who helped turn my seminar
into the original Hands-On Java CD ROM. (You can find out more at
www.BruceEckel.com.) Feedback

Certain open-source tools have proved invaluable during my development
process and I am very grateful to the creators every time I use these.
Cygwin (http://www.cygwin.com) has solved innumerable problems for
me that Windows can’t/won’t and I become more attached to it each day
(if I only had this 15 years ago when my brain was still hard-wired with
Gnu Emacs). CVS and Ant have become essential to my Java development
process and I couldn’t go back now. I’ve even become fond of JUnit
(http://www.junit.org) now that they’ve actually made it “the simplest
thing that could possibly work.” IBM’s Eclipse (http://www.eclipse.org) is
a truly wonderful contribution to the development community, and I
expect to see great things from it as it continues to evolve (how did IBM
become hip? I must have missed a memo). Linux was used daily during
the development process, especially by the interns. And of course, if I
don’t say it enough everywhere else, I use Python (www.Python.org)
constantly to solve problems, the brainchild of my buddy Guido Van
Rossum and the goofy geniuses at PythonLabs with whom I spent a few
great days doing XP on Zope 3 (Tim, I’ve now framed that mouse you
borrowed, officially named the “TimMouse”). You guys need to find

Introduction 31

healthier places to eat lunch. (Also, thanks to the entire Python
community, an amazing bunch of people).

Lots of people sent in corrections and I am indebted to them all, but
particular thanks go to (for the first edition): Kevin Raulerson (found tons
of great bugs), Bob Resendes (simply incredible), John Pinto, Joe Dante,
Joe Sharp (all three were fabulous), David Combs (many grammar and
clarification corrections), Dr. Robert Stephenson, John Cook, Franklin
Chen, Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles
A. Lee, Austin Maher, Dennis P. Roth, Roque Oliveira, Douglas Dunn,
Dejan Ristic, Neil Galarneau, David B. Malkovsky, Steve Wilkinson, and a
host of others. Prof. Ir. Marc Meurrens put in a great deal of effort to
publicize and make the electronic version of the first edition of the book
available in Europe. Feedback

Thanks to those who helped me rewrite the examples to use the Swing
library, and for other assistance: Jon Shvarts, Thomas Kirsch, Rahim
Adatia, Rajesh Jain, Ravi Manthena, Banu Rajamani, Jens Brandt, Nitin
Shivaram, Malcolm Davis, and everyone who expressed support. Feedback

There have been a spate of smart technical people in my life who have
become friends and have also been both influential and unusual in that
they do yoga and practice other forms of spiritual enhancement, which I
find quite inspirational and instructional. They are Kraig Brockschmidt,
Gen Kiyooka, and Andrea Provaglio (who helps in the understanding of
Java and programming in general in Italy, and now in the United States as
an associate of the MindView team). Feedback

It’s not that much of a surprise to me that understanding Delphi helped
me understand Java, since there are many concepts and language design
decisions in common. My Delphi friends provided assistance by helping
me gain insight into that marvelous programming environment. They are
Marco Cantu (another Italian—perhaps being steeped in Latin gives one
aptitude for programming languages?), Neil Rubenking (who used to do
the yoga/vegetarian/Zen thing until he discovered computers), and of
course Zack Urlocker, a long-time pal whom I’ve traveled the world with.
Feedback

My friend Richard Hale Shaw’s insights and support have been very
helpful (and Kim’s, too). Richard and I spent many months giving

32 Thinking in Java www.BruceEckel.com

seminars together and trying to work out the perfect learning experience
for the attendees. Feedback

The book design, cover design, and cover photo were created by my friend
Daniel Will-Harris, noted author and designer (www.Will-Harris.com),
who used to play with rub-on letters in junior high school while he
awaited the invention of computers and desktop publishing, and
complained of me mumbling over my algebra problems. However, I
produced the camera-ready pages myself, so the typesetting errors are
mine. Microsoft® Word XP for Windows was used to write the book and
to create camera-ready pages in Adobe Acrobat; the book was created
directly from the Acrobat PDF files. (As a tribute to the electronic age, I
happened to be overseas when the final version of the first and second
editions of the book was produced—the first edition was sent from
Capetown, South Africa and the second edition was posted from Prague).
The body typeface is Georgia and the headlines are in Verdana. The cover
typeface is ITC Rennie Mackintosh. Feedback

Thanks to the vendors who created the compilers: Borland, the
Blackdown group (for Linux), and of course, Sun. Feedback

A special thanks to all my teachers and all my students (who are my
teachers as well). The most fun writing teacher was Gabrielle Rico (author
of Writing the Natural Way, Putnam, 1983). I’ll always treasure the
terrific week at Esalen. Feedback

The supporting cast of friends includes, but is not limited to: Andrew
Binstock, Steve Sinofsky, JD Hildebrandt, Tom Keffer, Brian McElhinney,
Brinkley Barr, Bill Gates at Midnight Engineering Magazine, Larry
Constantine and Lucy Lockwood, Greg Perry, Dan Putterman, Christi
Westphal, Gene Wang, Dave Mayer, David Intersimone, Andrea
Rosenfield, Claire Sawyers, more Italians (Laura Fallai, Corrado, Ilsa, and
Cristina Giustozzi), Chris and Laura Strand, the Almquists, Brad Jerbic,
Marilyn Cvitanic, the Mabrys, the Haflingers, the Pollocks, Peter Vinci,
the Robbins Families, the Moelter Families (and the McMillans), Michael
Wilk, Dave Stoner, Laurie Adams, the Cranstons, Larry Fogg, Mike and
Karen Sequeira, Gary Entsminger and Allison Brody, Kevin Donovan and
Sonda Eastlack, Chester and Shannon Andersen, Joe Lordi, Dave and
Brenda Bartlett, David Lee, the Rentschlers, the Sudeks, Dick, Patty, and

Introduction 33

Lee Eckel, Lynn and Todd, and their families. And of course, Mom and
Dad. Feedback

 35

1: Introduction
to Objects

“We cut nature up, organise it into concepts, and ascribe
significances as we do, largely because we are parties to an
agreement that holds throughout our speech community
and is codified in the patterns of our language … we
cannot talk at all except by subscribing to the organisation
and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of
our programming languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification
tools (“bicycles for the mind,” as Steve Jobs is fond of saying) and a
different kind of expressive medium. As a result, the tools are beginning
to look less like machines and more like parts of our minds, and also like
other forms of expression such as writing, painting, sculpture, animation,
and filmmaking. Object-oriented programming (OOP) is part of this
movement toward using the computer as an expressive medium. Feedback

This chapter will introduce you to the basic concepts of OOP, including an
overview of development methods. This chapter, and this book, assume
that you have had experience in a procedural programming language,
although not necessarily C. If you think you need more preparation in
programming and the syntax of C before tackling this book, you should
work through the Foundations for Java training CD ROM, bound in the
back of this book. Feedback

This chapter is background and supplementary material. Many people do
not feel comfortable wading into object-oriented programming without
understanding the big picture first. Thus, there are many concepts that
are introduced here to give you a solid overview of OOP. However, other

36 Thinking in Java www.BruceEckel.com

people may not get the big picture concepts until they’ve seen some of the
mechanics first; these people may become bogged down and lost without
some code to get their hands on. If you’re part of this latter group and are
eager to get to the specifics of the language, feel free to jump past this
chapter—skipping it at this point will not prevent you from writing
programs or learning the language. However, you will want to come back
here eventually to fill in your knowledge so you can understand why
objects are important and how to design with them. Feedback

The progress of
abstraction

All programming languages provide abstractions. It can be argued that
the complexity of the problems you’re able to solve is directly related to
the kind and quality of abstraction. By “kind” I mean, “What is it that you
are abstracting?” Assembly language is a small abstraction of the
underlying machine. Many so-called “imperative” languages that followed
(such as Fortran, BASIC, and C) were abstractions of assembly language.
These languages are big improvements over assembly language, but their
primary abstraction still requires you to think in terms of the structure of
the computer rather than the structure of the problem you are trying to
solve. The programmer must establish the association between the
machine model (in the “solution space,” which is the place where you’re
modeling that problem, such as a computer) and the model of the
problem that is actually being solved (in the “problem space,” which is the
place where the problem exists). The effort required to perform this
mapping, and the fact that it is extrinsic to the programming language,
produces programs that are difficult to write and expensive to maintain,
and as a side effect created the entire “programming methods” industry.
Feedback

The alternative to modeling the machine is to model the problem you’re
trying to solve. Early languages such as LISP and APL chose particular
views of the world (“All problems are ultimately lists” or “All problems are
algorithmic,” respectively). PROLOG casts all problems into chains of
decisions. Languages have been created for constraint-based
programming and for programming exclusively by manipulating graphical

Chapter 1: Introduction to Objects 37

symbols. (The latter proved to be too restrictive.) Each of these
approaches is a good solution to the particular class of problem they’re
designed to solve, but when you step outside of that domain they become
awkward. Feedback

The object-oriented approach goes a step further by providing tools for
the programmer to represent elements in the problem space. This
representation is general enough that the programmer is not constrained
to any particular type of problem. We refer to the elements in the problem
space and their representations in the solution space as “objects.” (You
will also need other objects that don’t have problem-space analogs.) The
idea is that the program is allowed to adapt itself to the lingo of the
problem by adding new types of objects, so when you read the code
describing the solution, you’re reading words that also express the
problem. This is a more flexible and powerful language abstraction than
what we’ve had before1. Thus, OOP allows you to describe the problem in
terms of the problem, rather than in terms of the computer where the
solution will run. There’s still a connection back to the computer: each
object looks quite a bit like a little computer—it has a state, and it has
operations that you can ask it to perform. However, this doesn’t seem like
such a bad analogy to objects in the real world—they all have
characteristics and behaviors. Feedback

Alan Kay summarized five basic characteristics of Smalltalk, the first
successful object-oriented language and one of the languages upon which
Java is based. These characteristics represent a pure approach to object-
oriented programming: Feedback

1. Everything is an object. Think of an object as a fancy
variable; it stores data, but you can “make requests” to that object,
asking it to perform operations on itself. In theory, you can take
any conceptual component in the problem you’re trying to solve
(dogs, buildings, services, etc.) and represent it as an object in your
program. Feedback

1 Some language designers have decided that object-oriented programming by itself is not
adequate to easily solve all programming problems, and advocate the combination of
various approaches into multiparadigm programming languages. See Multiparadigm
Programming in Leda by Timothy Budd (Addison-Wesley 1995).

38 Thinking in Java www.BruceEckel.com

2. A program is a bunch of objects telling each other
what to do by sending messages. To make a request of an
object, you “send a message” to that object. More concretely, you
can think of a message as a request to call a method that belongs to
a particular object. Feedback

3. Each object has its own memory made up of other
objects. Put another way, you create a new kind of object by
making a package containing existing objects. Thus, you can build
complexity into a program while hiding it behind the simplicity of
objects. Feedback

4. Every object has a type. Using the parlance, each object is an
instance of a class, in which “class” is synonymous with “type.” The
most important distinguishing characteristic of a class is “What
messages can you send to it?” Feedback

5. All objects of a particular type can receive the same
messages. This is actually a loaded statement, as you will see
later. Because an object of type “circle” is also an object of type
“shape,” a circle is guaranteed to accept shape messages. This
means you can write code that talks to shapes and automatically
handle anything that fits the description of a shape. This
substitutability is one of the powerful concepts in OOP. Feedback

Booch offers an even more succinct description of an object:

An object has state, behavior and identity.

This means that an object can have internal data (which gives it state),
methods (to produce behavior), and each object can be uniquely
distinguished from every other object—to put this in a concrete sense,
each object has a unique address in memory2. Feedback

2 This is actually a bit restrictive, since objects can conceivably exist in different machines
and address spaces, and they can also be stored on disk. In these cases, the identity of the
object must be determined by something other than memory address.

Chapter 1: Introduction to Objects 39

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of
type; he spoke of “the class of fishes and the class of birds.” The idea that
all objects, while being unique, are also part of a class of objects that have
characteristics and behaviors in common was used directly in the first
object-oriented language, Simula-67, with its fundamental keyword class
that introduces a new type into a program. Feedback

Simula, as its name implies, was created for developing simulations such
as the classic “bank teller problem.” In this, you have a bunch of tellers,
customers, accounts, transactions, and units of money—a lot of “objects.”
Objects which are identical except for their state during a program’s
execution are grouped together into “classes of objects” and that’s where
the keyword class came from. Creating abstract data types (classes) is a
fundamental concept in object-oriented programming. Abstract data
types work almost exactly like built-in types: You can create variables of a
type (called objects or instances in object-oriented parlance) and
manipulate those variables (called sending messages or requests; you
send a message and the object figures out what to do with it). The
members (elements) of each class share some commonality: every account
has a balance, every teller can accept a deposit, etc. At the same time, each
member has its own state: each account has a different balance, each
teller has a name. Thus, the tellers, customers, accounts, transactions,
etc., can each be represented with a unique entity in the computer
program. This entity is the object, and each object belongs to a particular
class that defines its characteristics and behaviors. Feedback

So, although what we really do in object-oriented programming is create
new data types, virtually all object-oriented programming languages use
the “class” keyword. When you see the word “type” think “class” and vice
versa3. Feedback

3 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

40 Thinking in Java www.BruceEckel.com

Since a class describes a set of objects that have identical characteristics
(data elements) and behaviors (functionality), a class is really a data type
because a floating point number, for example, also has a set of
characteristics and behaviors. The difference is that a programmer defines
a class to fit a problem rather than being forced to use an existing data
type that was designed to represent a unit of storage in a machine. You
extend the programming language by adding new data types specific to
your needs. The programming system welcomes the new classes and gives
them all the care and type-checking that it gives to built-in types. Feedback

The object-oriented approach is not limited to building simulations.
Whether or not you agree that any program is a simulation of the system
you’re designing, the use of OOP techniques can easily reduce a large set
of problems to a simple solution. Feedback

Once a class is established, you can make as many objects of that class as
you like, and then manipulate those objects as if they are the elements
that exist in the problem you are trying to solve. Indeed, one of the
challenges of object-oriented programming is to create a one-to-one
mapping between the elements in the problem space and objects in the
solution space. Feedback

But how do you get an object to do useful work for you? There must be a
way to make a request of the object so that it will do something, such as
complete a transaction, draw something on the screen, or turn on a
switch. And each object can satisfy only certain requests. The requests you
can make of an object are defined by its interface, and the type is what
determines the interface. A simple example might be a representation of a
light bulb: Feedback

Light

 on()
 off()
 brighten()
 dim()

Type Name

Interface

Light lt = new Light();
lt.on();

Chapter 1: Introduction to Objects 41

The interface establishes what requests you can make for a particular
object. However, there must be code somewhere to satisfy that request.
This, along with the hidden data, comprises the implementation. From a
procedural programming standpoint, it’s not that complicated. A type has
a method associated with each possible request, and when you make a
particular request to an object, that method is called. This process is
usually summarized by saying that you “send a message” (make a request)
to an object, and the object figures out what to do with that message (it
executes code). Feedback

Here, the name of the type/class is Light, the name of this particular
Light object is lt, and the requests that you can make of a Light object
are to turn it on, turn it off, make it brighter, or make it dimmer. You
create a Light object by defining a “reference” (lt) for that object and
calling new to request a new object of that type. To send a message to the
object, you state the name of the object and connect it to the message
request with a period (dot). From the standpoint of the user of a
predefined class, that’s pretty much all there is to programming with
objects. Feedback

The diagram shown above follows the format of the Unified Modeling
Language (UML). Each class is represented by a box, with the type name
in the top portion of the box, any data members that you care to describe
in the middle portion of the box, and the methods (the functions that
belong to this object, which receive any messages you send to that object)
in the bottom portion of the box. Often, only the name of the class and the
public methods are shown in UML design diagrams, and so the middle
portion is not shown. If you’re interested only in the class name, then the
bottom portion doesn’t need to be shown, either. Feedback

An object provides
services

While you’re trying to develop or understand a program design, one of the
best ways to think about objects is as “service providers.” Your program
itself will provide services to the user, and it will accomplish this by using
the services offered by other objects. Your goal is to produce (or even

42 Thinking in Java www.BruceEckel.com

better, locate in existing code libraries) a set of objects that provide the
ideal services to solve your problem. Feedback

A way to start doing this is to ask “if I could magically pull them out of a
hat, what objects would solve my problem right away?” For example,
suppose you are creating a bookkeeping program. You might imagine
some objects that contain pre-defined bookkeeping input screens, another
set of objects that perform bookkeeping calculations, and an object that
handles printing of checks and invoices on all different kinds of printers.
Maybe some of these objects already exist, and for the ones that don’t,
what would they look like? What services would those objects provide,
and what objects would they need to fulfill their obligations? If you keep
doing this, you will eventually reach a point where you can say either “that
object seems simple enough to sit down and write” or “I’m sure that object
must exist already.” This is a reasonable way to decompose a problem into
a set of objects. Feedback

Thinking of an object as a service provider has an additional benefit: it
helps to improve the cohesiveness of the object. High Cohesion is a
fundamental quality of softare design: it means that the various aspects of
a software component (such as an object, although this could also apply to
a method or a library of objects) “fit together” well. One problem people
have when designing objects is cramming too much functionality into one
object. For example, in your check printing module, you may decide you
need an object that knows all about formatting and printing. You’ll
probably discover that this is too much for one object, and that what you
need is three or more objects. One object might be a catalog of all the
possible check layouts, which can be queried for information about how to
print a check. One object or set of objects could be a generic printing
interface that knows all about different kinds of printers (but nothing
about bookkeeping—this one is a candidate for buying rather than writing
yourself). And a third object could use the services of the other two to
accomplish the task. Thus, each object has a cohesive set of services it
offers. In a good object-oriented design, each object does one thing well,
but doesn’t try to do too much. As seen here, this not only allows the
discovery of objects that might be purchased (the printer interface object),
but it also produces the possibility of an object that might be reused
somewhere else (the catalog of check layouts). Feedback

Chapter 1: Introduction to Objects 43

Treating objects as service providers is a great simplifying tool, and it’s
very useful not only during the design process, but also when someone
else is trying to understand your code or reuse an object—if they can see
the value of the object based on what service it provides, it makes it much
easier to fit it into the design. Feedback

The hidden
implementation

It is helpful to break up the playing field into class creators (those who
create new data types) and client programmers4 (the class consumers
who use the data types in their applications). The goal of the client
programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class
that exposes only what’s necessary to the client programmer and keeps
everything else hidden. Why? Because if it’s hidden, the client
programmer can’t access it, which means that the class creator can change
the hidden portion at will without worrying about the impact on anyone
else. The hidden portion usually represents the tender insides of an object
that could easily be corrupted by a careless or uninformed client
programmer, so hiding the implementation reduces program bugs. Feedback

The concept of implementation hiding cannot be overemphasized. In any
relationship it’s important to have boundaries that are respected by all
parties involved. When you create a library, you establish a relationship
with the client programmer, who is also a programmer, but one who is
putting together an application by using your library, possibly to build a
bigger library. If all the members of a class are available to everyone, then
the client programmer can do anything with that class and there’s no way
to enforce rules. Even though you might really prefer that the client
programmer not directly manipulate some of the members of your class,
without access control there’s no way to prevent it. Everything’s naked to
the world. Feedback

4 I’m indebted to my friend Scott Meyers for this term.

44 Thinking in Java www.BruceEckel.com

So the first reason for access control is to keep client programmers’ hands
off portions they shouldn’t touch—parts that are necessary for the internal
machinations of the data type but not part of the interface that users need
in order to solve their particular problems. This is actually a service to
users because they can easily see what’s important to them and what they
can ignore. Feedback

The second reason for access control is to allow the library designer to
change the internal workings of the class without worrying about how it
will affect the client programmer. For example, you might implement a
particular class in a simple fashion to ease development, and then later
discover that you need to rewrite it in order to make it run faster. If the
interface and implementation are clearly separated and protected, you
can accomplish this easily. Feedback

Java uses three explicit keywords to set the boundaries in a class: public,
private, and protected. Their use and meaning are quite
straightforward. These access specifiers determine who can use the
definitions that follow. public means the following element is available to
everyone. The private keyword, on the other hand, means that no one
can access that element except you, the creator of the type, inside
methods of that type. private is a brick wall between you and the client
programmer. If someone tries to access a private member, they’ll get a
compile-time error. protected acts like private, with the exception that
an inheriting class has access to protected members, but not private
members. Inheritance will be introduced shortly. Feedback

Java also has a “default” access, which comes into play if you don’t use
one of the aforementioned specifiers. This is usually called package
access because classes can access the members of other classes in the
same package, but outside of the package those same members appear to
be private. Feedback

Chapter 1: Introduction to Objects 45

Reusing the
implementation

Once a class has been created and tested, it should (ideally) represent a
useful unit of code. It turns out that this reusability is not nearly so easy to
achieve as many would hope; it takes experience and insight to produce a
reusable object design. But once you have such a design, it begs to be
reused. Code reuse is one of the greatest advantages that object-oriented
programming languages provide. Feedback

The simplest way to reuse a class is to just use an object of that class
directly, but you can also place an object of that class inside a new class.
We call this “creating a member object.” Your new class can be made up of
any number and type of other objects, in any combination that you need
to achieve the functionality desired in your new class. Because you are
composing a new class from existing classes, this concept is called
composition (if the composition happens dynamically, it’s usually called
aggregation). Composition is often referred to as a “has-a” relationship,
as in “a car has an engine.” Feedback

Car Engine

(The above UML diagram indicates composition with the filled diamond,
which states there is one car. I will typically use a simpler form: just a line,
without the diamond, to indicate an association.5) Feedback

Composition comes with a great deal of flexibility. The member objects of
your new class are typically private, making them inaccessible to the client
programmers who are using the class. This allows you to change those
members without disturbing existing client code. You can also change the
member objects at run time, to dynamically change the behavior of your

5 This is usually enough detail for most diagrams, and you don’t need to get specific about
whether you’re using aggregation or composition.

46 Thinking in Java www.BruceEckel.com

program. Inheritance, which is described next, does not have this
flexibility since the compiler must place compile-time restrictions on
classes created with inheritance. Feedback

Because inheritance is so important in object-oriented programming it is
often highly emphasized, and the new programmer can get the idea that
inheritance should be used everywhere. This can result in awkward and
overly complicated designs. Instead, you should first look to composition
when creating new classes, since it is simpler and more flexible. If you
take this approach, your designs will be cleaner. Once you’ve had some
experience, it will be reasonably obvious when you need inheritance.
Feedback

Inheritance:
reusing the interface

By itself, the idea of an object is a convenient tool. It allows you to
package data and functionality together by concept, so you can represent
an appropriate problem-space idea rather than being forced to use the
idioms of the underlying machine. These concepts are expressed as
fundamental units in the programming language by using the class
keyword. Feedback

It seems a pity, however, to go to all the trouble to create a class and then
be forced to create a brand new one that might have similar functionality.
It’s nicer if we can take the existing class, clone it, and then make
additions and modifications to the clone. This is effectively what you get
with inheritance, with the exception that if the original class (called the
base class or superclass or parent class) is changed, the modified “clone”
(called the derived class or inherited class or subclass or child class) also
reflects those changes. Feedback

Chapter 1: Introduction to Objects 47

Base

Derived

(The arrow in the above UML diagram points from the derived class to the
base class. As you will see, there is commonly more than one derived
class.) Feedback

A type does more than describe the constraints on a set of objects; it also
has a relationship with other types. Two types can have characteristics
and behaviors in common, but one type may contain more characteristics
than another and may also handle more messages (or handle them
differently). Inheritance expresses this similarity between types using the
concept of base types and derived types. A base type contains all of the
characteristics and behaviors that are shared among the types derived
from it. You create a base type to represent the core of your ideas about
some objects in your system. From the base type, you derive other types to
express the different ways that this core can be realized. Feedback

For example, a trash-recycling machine sorts pieces of trash. The base
type is “trash,” and each piece of trash has a weight, a value, and so on,
and can be shredded, melted, or decomposed. From this, more specific
types of trash are derived that may have additional characteristics (a
bottle has a color) or behaviors (an aluminum can may be crushed, a steel
can is magnetic). In addition, some behaviors may be different (the value
of paper depends on its type and condition). Using inheritance, you can
build a type hierarchy that expresses the problem you’re trying to solve in
terms of its types. Feedback

A second example is the classic “shape” example, perhaps used in a
computer-aided design system or game simulation. The base type is
“shape,” and each shape has a size, a color, a position, and so on. Each
shape can be drawn, erased, moved, colored, etc. From this, specific types
of shapes are derived (inherited): circle, square, triangle, and so on, each

48 Thinking in Java www.BruceEckel.com

of which may have additional characteristics and behaviors. Certain
shapes can be flipped, for example. Some behaviors may be different, such
as when you want to calculate the area of a shape. The type hierarchy
embodies both the similarities and differences between the shapes. Feedback

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

Casting the solution in the same terms as the problem is tremendously
beneficial because you don’t need a lot of intermediate models to get from
a description of the problem to a description of the solution. With objects,
the type hierarchy is the primary model, so you go directly from the
description of the system in the real world to the description of the system
in code. Indeed, one of the difficulties people have with object-oriented
design is that it’s too simple to get from the beginning to the end. A mind
trained to look for complex solutions can initially be stumped by this
simplicity. Feedback

When you inherit from an existing type, you create a new type. This new
type contains not only all the members of the existing type (although the
private ones are hidden away and inaccessible), but more importantly it
duplicates the interface of the base class. That is, all the messages you can
send to objects of the base class you can also send to objects of the derived
class. Since we know the type of a class by the messages we can send to it,
this means that the derived class is the same type as the base class. In the
previous example, “a circle is a shape.” This type equivalence via

Chapter 1: Introduction to Objects 49

inheritance is one of the fundamental gateways in understanding the
meaning of object-oriented programming. Feedback

Since both the base class and derived class have the same fundamental
interface, there must be some implementation to go along with that
interface. That is, there must be some code to execute when an object
receives a particular message. If you simply inherit a class and don’t do
anything else, the methods from the base-class interface come right along
into the derived class. That means objects of the derived class have not
only the same type, they also have the same behavior, which isn’t
particularly interesting. Feedback

You have two ways to differentiate your new derived class from the
original base class. The first is quite straightforward: You simply add
brand new methods to the derived class. These new methods are not part
of the base class interface. This means that the base class simply didn’t do
as much as you wanted it to, so you added more methods. This simple and
primitive use for inheritance is, at times, the perfect solution to your
problem. However, you should look closely for the possibility that your
base class might also need these additional methods. This process of
discovery and iteration of your design happens regularly in object-
oriented programming. Feedback

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Circle Square Triangle

 FlipVertical()
 FlipHorizontal()

50 Thinking in Java www.BruceEckel.com

Although inheritance may sometimes imply (especially in Java, where the
keyword for inheritance is extends) that you are going to add new
methods to the interface, that’s not necessarily true. The second and more
important way to differentiate your new class is to change the behavior of
an existing base-class method. This is referred to as overriding that
method. Feedback

Shape

 draw()
 erase()
 move()
 getColor()
 setColor()

Triangle

 draw()
 erase()

Circle

 draw()
 erase()

Square

 draw()
 erase()

To override a method, you simply create a new definition for the method
in the derived class. You’re saying, “I’m using the same interface method
here, but I want it to do something different for my new type.” Feedback

Is-a vs. is-like-a relationships
There’s a certain debate that can occur about inheritance: Should
inheritance override only base-class methods (and not add new methods
that aren’t in the base class)? This would mean that the derived type is
exactly the same type as the base class since it has exactly the same
interface. As a result, you can exactly substitute an object of the derived
class for an object of the base class. This can be thought of as pure
substitution, and it’s often referred to as the substitution principle. In a
sense, this is the ideal way to treat inheritance. We often refer to the
relationship between the base class and derived classes in this case as an

Chapter 1: Introduction to Objects 51

is-a relationship, because you can say “a circle is a shape.” A test for
inheritance is to determine whether you can state the is-a relationship
about the classes and have it make sense. Feedback

There are times when you must add new interface elements to a derived
type, thus extending the interface and creating a new type. The new type
can still be substituted for the base type, but the substitution isn’t perfect
because your new methods are not accessible from the base type. This can
be described as an is-like-a relationship (my term). The new type has the
interface of the old type but it also contains other methods, so you can’t
really say it’s exactly the same. For example, consider an air conditioner.
Suppose your house is wired with all the controls for cooling; that is, it has
an interface that allows you to control cooling. Imagine that the air
conditioner breaks down and you replace it with a heat pump, which can
both heat and cool. The heat pump is-like-an air conditioner, but it can do
more. Because the control system of your house is designed only to
control cooling, it is restricted to communication with the cooling part of
the new object. The interface of the new object has been extended, and the
existing system doesn’t know about anything except the original interface.
Feedback

Cooling System

 cool()

Air Conditioner

 cool()

Heat Pump

 cool()
 heat()

Thermostat

 lowerTemperature()

Controls

Of course, once you see this design it becomes clear that the base class
“cooling system” is not general enough, and should be renamed to
“temperature control system” so that it can also include heating—at which
point the substitution principle will work. However, the diagram above is
an example of what can happen with design in the real world. Feedback

52 Thinking in Java www.BruceEckel.com

When you see the substitution principle it’s easy to feel like this approach
(pure substitution) is the only way to do things, and in fact it is nice if
your design works out that way. But you’ll find that there are times when
it’s equally clear that you must add new methods to the interface of a
derived class. With inspection both cases should be reasonably obvious.
Feedback

Interchangeable objects
with polymorphism

When dealing with type hierarchies, you often want to treat an object not
as the specific type that it is, but instead as its base type. This allows you
to write code that doesn’t depend on specific types. In the shape example,
methods manipulate generic shapes without respect to whether they’re
circles, squares, triangles, or some shape that hasn’t even been defined
yet. All shapes can be drawn, erased, and moved, so these methods simply
send a message to a shape object; they don’t worry about how the object
copes with the message. Feedback

Such code is unaffected by the addition of new types, and adding new
types is the most common way to extend an object-oriented program to
handle new situations. For example, you can derive a new subtype of
shape called pentagon without modifying the methods that deal only with
generic shapes. This ability to easily extend a design by deriving new
subtypes is one of the essential ways to encapsulate change. This greatly
improves designs while reducing the cost of software maintenance. Feedback

There’s a problem, however, with attempting to treat derived-type objects
as their generic base types (circles as shapes, bicycles as vehicles,
cormorants as birds, etc.). If a method is going to tell a generic shape to
draw itself, or a generic vehicle to steer, or a generic bird to move, the
compiler cannot know at compile time precisely what piece of code will be
executed. That’s the whole point—when the message is sent, the
programmer doesn’t want to know what piece of code will be executed;
the draw method can be applied equally to a circle, a square, or a triangle,
and the object will execute the proper code depending on its specific type.
If you don’t have to know what piece of code will be executed, then when

Chapter 1: Introduction to Objects 53

you add a new subtype, the code it executes can be different without
requiring changes to the method call. Therefore, the compiler cannot
know precisely what piece of code is executed, so what does it do? For
example, in the following diagram the BirdController object just works
with generic Bird objects, and does not know what exact type they are.
This is convenient from BirdController’s perspective because it doesn’t
have to write special code to determine the exact type of Bird it’s working
with, or that Bird’s behavior. So how does it happen that, when move()
is called while ignoring the specific type of Bird, the right behavior will
occur (a Goose runs, flies, or swims, and a Penguin runs or swims)?
Feedback

What happens
when move() is

called?

Bird

 move()

Goose

 move()

Penguin

 move()

BirdController

 reLocate()

The answer is the primary twist in object-oriented programming: the
compiler cannot make a function call in the traditional sense. The
function call generated by a non-OOP compiler causes what is called early
binding, a term you may not have heard before because you’ve never
thought about it any other way. It means the compiler generates a call to a
specific function name, and the linker resolves this call to the absolute
address of the code to be executed. In OOP, the program cannot
determine the address of the code until run time, so some other scheme is
necessary when a message is sent to a generic object. Feedback

To solve the problem, object-oriented languages use the concept of late
binding. When you send a message to an object, the code being called isn’t
determined until run time. The compiler does ensure that the method
exists and performs type checking on the arguments and return value (a
language in which this isn’t true is called weakly typed), but it doesn’t
know the exact code to execute. Feedback

54 Thinking in Java www.BruceEckel.com

To perform late binding, Java uses a special bit of code in lieu of the
absolute call. This code calculates the address of the method body, using
information stored in the object (this process is covered in great detail in
Chapter 7). Thus, each object can behave differently according to the
contents of that special bit of code. When you send a message to an object,
the object actually does figure out what to do with that message. Feedback

In some languages you must explicitly state that you want a method to
have the flexibility of late-binding properties (C++ uses the virtual
keyword to do this). In these languages, by default, methods are not
dynamically bound. In Java, dynamic binding is the default behavior and
you don’t need to remember to add any extra keywords in order to get
polymorphism. Feedback

Consider the shape example. The family of classes (all based on the same
uniform interface) was diagrammed earlier in this chapter. To
demonstrate polymorphism, we want to write a single piece of code that
ignores the specific details of type and talks only to the base class. That
code is decoupled from type-specific information, and thus is simpler to
write and easier to understand. And, if a new type—a Hexagon, for
example—is added through inheritance, the code you write will work just
as well for the new type of Shape as it did on the existing types. Thus, the
program is extensible. Feedback

If you write a method in Java (as you will soon learn how to do): Feedback

void doStuff(Shape s) {
 s.erase();
 // ...
 s.draw();
}

This method speaks to any Shape, so it is independent of the specific type
of object that it’s drawing and erasing. If some other part of the program
uses the doStuff() method: Feedback

Circle c = new Circle();
Triangle t = new Triangle();
Line l = new Line();
doStuff(c);
doStuff(t);
doStuff(l);

Chapter 1: Introduction to Objects 55

the calls to doStuff() automatically work correctly, regardless of the
exact type of the object. Feedback

This is a rather amazing trick. Consider the line:

doStuff(c);

What’s happening here is that a Circle is being passed into a method
that’s expecting a Shape. Since a Circle is a Shape it can be treated as
one by doStuff(). That is, any message that doStuff() can send to a
Shape, a Circle can accept. So it is a completely safe and logical thing to
do. Feedback

We call this process of treating a derived type as though it were its base
type upcasting. The name cast is used in the sense of casting into a mold
and the up comes from the way the inheritance diagram is typically
arranged, with the base type at the top and the derived classes fanning out
downward. Thus, casting to a base type is moving up the inheritance
diagram: “upcasting.” Feedback

Shape

Circle Square Triangle

"Upcasting"

An object-oriented program contains some upcasting somewhere, because
that’s how you decouple yourself from knowing about the exact type
you’re working with. Look at the code in doStuff(): Feedback

 s.erase();
 // ...
 s.draw();

Notice that it doesn’t say “If you’re a Circle, do this, if you’re a Square,
do that, etc.” If you write that kind of code, which checks for all the
possible types that a Shape can actually be, it’s messy and you need to

56 Thinking in Java www.BruceEckel.com

change it every time you add a new kind of Shape. Here, you just say
“You’re a shape, I know you can erase() and draw() yourself, do it, and
take care of the details correctly.” Feedback

What’s impressive about the code in doStuff() is that, somehow, the
right thing happens. Calling draw() for Circle causes different code to
be executed than when calling draw() for a Square or a Line, but when
the draw() message is sent to an anonymous Shape, the correct
behavior occurs based on the actual type of the Shape. This is amazing
because, as mentioned earlier, when the Java compiler is compiling the
code for doStuff(), it cannot know exactly what types it is dealing with.
So ordinarily, you’d expect it to end up calling the version of erase() and
draw() for the base class Shape, and not for the specific Circle,
Square, or Line. And yet the right thing happens because of
polymorphism. The compiler and run-time system handle the details; all
you need to know right now is that it does happen, and more importantly,
how to design with it. When you send a message to an object, the object
will do the right thing, even when upcasting is involved. Feedback

Abstract base classes and
interfaces
Often in a design, you want the base class to present only an interface for
its derived classes. That is, you don’t want anyone to actually create an
object of the base class, only to upcast to it so that its interface can be
used. This is accomplished by making that class abstract using the
abstract keyword. If anyone tries to make an object of an abstract class,
the compiler prevents them. This is a tool to enforce a particular design.
Feedback

You can also use the abstract keyword to describe a method that hasn’t
been implemented yet—as a stub indicating “here is an interface method
for all types inherited from this class, but at this point I don’t have any
implementation for it.” An abstract method may be created only inside
an abstract class. When the class is inherited, that method must be
implemented, or the inheriting class becomes abstract as well. Creating
an abstract method allows you to put a method in an interface without

Chapter 1: Introduction to Objects 57

being forced to provide a possibly meaningless body of code for that
method. Feedback

The interface keyword takes the concept of an abstract class one step
further by preventing any method definitions at all. The interface is a
very handy and commonly used tool, as it provides the perfect separation
of interface and implementation. In addition, you can combine many
interfaces together, if you wish, whereas inheriting from multiple regular
classes or abstract classes is not possible. Feedback

Object creation, use &
lifetimes

Technically, OOP is just about abstract data typing, inheritance, and
polymorphism, but other issues can be at least as important. This section
will cover these issues. Feedback

One of the most important factors is the way objects are created and
destroyed. Where is the data for an object and how is the lifetime of the
object controlled? There are different philosophies at work here. C++
takes the approach that control of efficiency is the most important issue,
so it gives the programmer a choice. For maximum run-time speed, the
storage and lifetime can be determined while the program is being
written, by placing the objects on the stack (these are sometimes called
automatic or scoped variables) or in the static storage area. This places a
priority on the speed of storage allocation and release, and control of
these can be very valuable in some situations. However, you sacrifice
flexibility because you must know the exact quantity, lifetime, and type of
objects while you're writing the program. If you are trying to solve a more
general problem such as computer-aided design, warehouse management,
or air-traffic control, this is too restrictive. Feedback

The second approach is to create objects dynamically in a pool of memory
called the heap. In this approach, you don't know until run time how
many objects you need, what their lifetime is, or what their exact type is.
Those are determined at the spur of the moment while the program is
running. If you need a new object, you simply make it on the heap at the

58 Thinking in Java www.BruceEckel.com

point that you need it. Because the storage is managed dynamically, at run
time, the amount of time required to allocate storage on the heap can be
noticeably longer than the time to create storage on the stack. (Creating
storage on the stack is often a single assembly instruction to move the
stack pointer down, and another to move it back up. The time to create
heap storage depends on the design of the storage mechanism.) The
dynamic approach makes the generally logical assumption that objects
tend to be complicated, so the extra overhead of finding storage and
releasing that storage will not have an important impact on the creation of
an object. In addition, the greater flexibility is essential to solve the
general programming problem. Feedback

Java uses the second approach, exclusively6. Every time you want to
create an object, you use the new keyword to build a dynamic instance of
that object. Feedback

There's another issue, however, and that's the lifetime of an object. With
languages that allow objects to be created on the stack, the compiler
determines how long the object lasts and can automatically destroy it.
However, if you create it on the heap the compiler has no knowledge of its
lifetime. In a language like C++, you must determine programmatically
when to destroy the object, which can lead to memory leaks if you don’t
do it correctly (and this is a common problem in C++ programs). Java
provides a feature called a garbage collector that automatically discovers
when an object is no longer in use and destroys it. A garbage collector is
much more convenient because it reduces the number of issues that you
must track and the code you must write. More important, the garbage
collector provides a much higher level of insurance against the insidious
problem of memory leaks (which has brought many a C++ project to its
knees). Feedback

Collections and iterators
If you don’t know how many objects you’re going to need to solve a
particular problem, or how long they will last, you also don’t know how to
store those objects. How can you know how much space to create for

6 Primitive types, which you’ll learn about later, are a special case.

Chapter 1: Introduction to Objects 59

those objects? You can’t, since that information isn’t known until run
time. Feedback

The solution to most problems in object-oriented design seems flippant:
you create another type of object. The new type of object that solves this
particular problem holds references to other objects. Of course, you can
do the same thing with an array, which is available in most languages. But
this new object, generally called a container (also called a collection, but
the Java library uses that term in a different sense so this book will use
“container”), will expand itself whenever necessary to accommodate
everything you place inside it. So you don’t need to know how many
objects you’re going to hold in a container. Just create a container object
and let it take care of the details. Feedback

Fortunately, a good OOP language comes with a set of containers as part
of the package. In C++, it’s part of the Standard C++ Library and is
sometimes called the Standard Template Library (STL). Object Pascal has
containers in its Visual Component Library (VCL). Smalltalk has a very
complete set of containers. Java also has containers in its standard
library. In some libraries, a generic container is considered good enough
for all needs, and in others (Java, for example) the library has different
types of containers for different needs: several different kinds of List
classes (to hold sequences), Map classes (also known as associative
arrays, to associate objects with other objects), and Set classes (to hold
one of each type of object). Container libraries may also include queues,
trees, stacks, etc. Feedback

All containers have some way to put things in and get things out; there are
usually methods to add elements to a container, and others to fetch those
elements back out. But fetching elements can be more problematic,
because a single-selection method is restrictive. What if you want to
manipulate or compare a set of elements in the container instead of just
one? Feedback

The solution is an iterator, which is an object whose job is to select the
elements within a container and present them to the user of the iterator.
As a class, it also provides a level of abstraction. This abstraction can be
used to separate the details of the container from the code that’s accessing
that container. The container, via the iterator, is abstracted to be simply a

60 Thinking in Java www.BruceEckel.com

sequence. The iterator allows you to traverse that sequence without
worrying about the underlying structure—that is, whether it’s an
ArrayList, a LinkedList, a Stack, or something else. This gives you the
flexibility to easily change the underlying data structure without
disturbing the code in your program. Java began (in version 1.0 and 1.1)
with a standard iterator, called Enumeration, for all of its container
classes. Java 2 added a much more complete container library that
contains an iterator called Iterator that does more than the older
Enumeration. Feedback

From a design standpoint, all you really want is a sequence that can be
manipulated to solve your problem. If a single type of sequence satisfied
all of your needs, there’d be no reason to have different kinds. There are
two reasons that you need a choice of containers. First, containers provide
different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different from that of
a set or a list. One of these might provide a more flexible solution to your
problem than the other. Second, different containers have different
efficiencies for certain operations. The best example compare two types of
List: an ArrayList and a LinkedList. Both are simple sequences that
can have identical interfaces and external behaviors. But certain
operations can have radically different costs. Randomly accessing
elements in an ArrayList is a constant-time operation; it takes the same
amount of time regardless of the element you select. However, in a
LinkedList it is expensive to move through the list to randomly select an
element, and it takes longer to find an element that is further down the
list. On the other hand, if you want to insert an element in the middle of a
sequence, it’s cheaper in a LinkedList than in an ArrayList. These and
other operations have different efficiencies depending on the underlying
structure of the sequence. In the design phase, you might start with a
LinkedList and, when tuning for performance, change to an ArrayList.
Because of the abstraction via the base class List and via iterators, you
can change from one to the other with minimal impact on your code.
Feedback

The singly rooted hierarchy
One of the issues in OOP that has become especially prominent since the
introduction of C++ is whether all classes should ultimately be inherited

Chapter 1: Introduction to Objects 61

from a single base class. In Java (as with virtually all other OOP
languages) the answer is “yes” and the name of this ultimate base class is
simply Object. It turns out that the benefits of the singly rooted hierarchy
are many. Feedback

All objects in a singly rooted hierarchy have an interface in common, so
they are all ultimately the same fundamental type. The alternative
(provided by C++) is that you don’t know that everything is the same
basic type. From a backward-compatibility standpoint this fits the model
of C better and can be thought of as less restrictive, but when you want to
do full-on object-oriented programming you must then build your own
hierarchy to provide the same convenience that’s built into other OOP
languages. And in any new class library you acquire, some other
incompatible interface will be used. It requires effort (and possibly
multiple inheritance) to work the new interface into your design. Is the
extra “flexibility” of C++ worth it? If you need it—if you have a large
investment in C—it’s quite valuable. If you’re starting from scratch, other
alternatives such as Java can often be more productive. Feedback

All objects in a singly rooted hierarchy (such as Java provides) can be
guaranteed to have certain functionality. You know you can perform
certain basic operations on every object in your system. A singly rooted
hierarchy, along with creating all objects on the heap, greatly simplifies
argument passing (one of the more complex topics in C++). Feedback

A singly rooted hierarchy makes it much easier to implement a garbage
collector (which is conveniently built into Java). The necessary support
can be installed in the base class, and the garbage collector can thus send
the appropriate messages to every object in the system. Without a singly
rooted hierarchy and a system to manipulate an object via a reference, it is
difficult to implement a garbage collector. Feedback

Since run time type information is guaranteed to be in all objects, you’ll
never end up with an object whose type you cannot determine. This is
especially important with system level operations, such as exception
handling, and to allow greater flexibility in programming. Feedback

62 Thinking in Java www.BruceEckel.com

Downcasting vs.
templates/generics
To make these containers reusable, they hold the one universal type in
Java: Object. The singly rooted hierarchy means that everything is an
Object, so a container that holds Objects can hold anything7. This makes
containers easy to reuse. Feedback

To use such a container, you simply add object references to it, and later
ask for them back. But, since the container holds only Objects, when you
add your object reference into the container it is upcast to Object, thus
losing its identity. When you fetch it back, you get an Object reference,
and not a reference to the type that you put in. So how do you turn it back
into something that has the useful interface of the object that you put into
the container? Feedback

Here, the cast is used again, but this time you’re not casting up the
inheritance hierarchy to a more general type, you cast down the hierarchy
to a more specific type. This manner of casting is called downcasting.
With upcasting, you know, for example, that a Circle is a type of Shape
so it’s safe to upcast, but you don’t know that an Object is necessarily a
Circle or a Shape so it’s hardly safe to downcast unless you know exactly
what you’re dealing with. Feedback

It’s not completely dangerous, however, because if you downcast to the
wrong thing you’ll get a run-time error called an exception, which will be
described shortly. When you fetch object references from a container,
though, you must have some way to remember exactly what they are so
you can perform a proper downcast. Feedback

Downcasting and the run-time checks require extra time for the running
program, and extra effort from the programmer. Wouldn’t it make sense
to somehow create the container so that it knows the types that it holds,
eliminating the need for the downcast and a possible mistake? The
solution is called a parameterized type mechanism. A parameterized type
is a class that the compiler can automatically customize to work with

7 Except, unfortunately, for primitives. This is discussed in detail later in the book.

Chapter 1: Introduction to Objects 63

particular types. For example, with a parameterized container, the
compiler could customize that container so that it would accept only
Shapes and fetch only Shapes. Feedback

Parameterized types are an important part of C++, partly because C++
has no singly rooted hierarchy. In C++, the keyword that implements
parameterized types is “template.” Java currently has no parameterized
types since it is possible for it to get by—however awkwardly—using the
singly rooted hierarchy. However, a current proposal for parameterized
types uses a syntax that is strikingly similar to C++ templates, and we can
expect to see parameterized types (which will be called generics) in the
next version of Java. Feedback

Ensuring proper cleanup
Each object requires resources in order to exist, most notably memory.
When an object is no longer needed it must be cleaned up so that these
resources are released for reuse. In simple programming situations the
question of how an object is cleaned up doesn’t seem too challenging: you
create the object, use it for as long as it’s needed, and then it should be
destroyed. However, it’s not hard to encounter situations in which the
situation is more complex. Feedback

Suppose, for example, you are designing a system to manage air traffic for
an airport. (The same model might also work for managing crates in a
warehouse, or a video rental system, or a kennel for boarding pets.) At
first it seems simple: make a container to hold airplanes, then create a
new airplane and place it in the container for each airplane that enters the
air-traffic-control zone. For cleanup, simply delete the appropriate
airplane object when a plane leaves the zone. Feedback

But perhaps you have some other system to record data about the planes;
perhaps data that doesn’t require such immediate attention as the main
controller function. Maybe it’s a record of the flight plans of all the small
planes that leave the airport. So you have a second container of small
planes, and whenever you create a plane object you also put it in this
second container if it’s a small plane. Then some background process
performs operations on the objects in this container during idle moments.
Feedback

64 Thinking in Java www.BruceEckel.com

Now the problem is more difficult: how can you possibly know when to
destroy the objects? When you’re done with the object, some other part of
the system might not be. This same problem can arise in a number of
other situations, and in programming systems (such as C++) in which you
must explicitly delete an object when you’re done with it this can become
quite complex. Feedback

With Java, the garbage collector is designed to take care of the problem of
releasing the memory (although this doesn’t include other aspects of
cleaning up an object). The garbage collector “knows” when an object is
no longer in use, and it then automatically releases the memory for that
object. This (combined with the fact that all objects are inherited from the
single root class Object and that you can create objects only one way, on
the heap) makes the process of programming in Java much simpler than
programming in C++. You have far fewer decisions to make and hurdles
to overcome. Feedback

Garbage collectors vs. efficiency and
flexibility

If all this is such a good idea, why didn’t they do the same thing in C++?
Well of course there’s a price you pay for all this programming
convenience, and that price is run time overhead. As mentioned before, in
C++ you can create objects on the stack, and in this case they’re
automatically cleaned up (but you don’t have the flexibility of creating as
many as you want at run time). Creating objects on the stack is the most
efficient way to allocate storage for objects and to free that storage.
Creating objects on the heap can be much more expensive. Always
inheriting from a base class and making all method calls polymorphic also
exacts a small toll. But the garbage collector is a particular problem
because you never quite know when it’s going to start up or how long it
will take. This means that there’s an inconsistency in the rate of execution
of a Java program, so you can’t use it in certain situations, such as when
the rate of execution of a program is uniformly critical. (These are
generally called real time programs, although not all real time
programming problems are this stringent.) Feedback

The designers of the C++ language, trying to woo C programmers (and
most successfully, at that), did not want to add any features to the

Chapter 1: Introduction to Objects 65

language that would impact the speed or the use of C++ in any situation
where programmers might otherwise choose C. This goal was realized, but
at the price of greater complexity when programming in C++. Java is
simpler than C++, but the trade-off is in efficiency and sometimes
applicability. For a significant portion of programming problems,
however, Java is the superior choice. Feedback

Exception handling:
dealing with errors

Ever since the beginning of programming languages, error handling has
been one of the most difficult issues. Because it’s so hard to design a good
error handling scheme, many languages simply ignore the issue, passing
the problem on to library designers who come up with halfway measures
that work in many situations but that can easily be circumvented,
generally by just ignoring them. A major problem with most error
handling schemes is that they rely on programmer vigilance in following
an agreed-upon convention that is not enforced by the language. If the
programmer is not vigilant—often the case if they are in a hurry—these
schemes can easily be forgotten. Feedback

Exception handling wires error handling directly into the programming
language and sometimes even the operating system. An exception is an
object that is “thrown” from the site of the error and can be “caught” by an
appropriate exception handler designed to handle that particular type of
error. It’s as if exception handling is a different, parallel path of execution
that can be taken when things go wrong. And because it uses a separate
execution path, it doesn’t need to interfere with your normally executing
code. This makes that code simpler to write since you aren’t constantly
forced to check for errors. In addition, a thrown exception is unlike an
error value that’s returned from a method or a flag that’s set by a method
in order to indicate an error condition—these can be ignored. An
exception cannot be ignored, so it’s guaranteed to be dealt with at some
point. Finally, exceptions provide a way to reliably recover from a bad
situation. Instead of just exiting the program you are often able to set
things right and restore execution, which produces much more robust
programs. Feedback

66 Thinking in Java www.BruceEckel.com

Java’s exception handling stands out among programming languages,
because in Java, exception handling was wired in from the beginning and
you’re forced to use it. If you don’t write your code to properly handle
exceptions, you’ll get a compile-time error message. This guaranteed
consistency can sometimes make error handling much easier. Feedback

It’s worth noting that exception handling isn’t an object-oriented feature,
although in object-oriented languages the exception is normally
represented with an object. Exception handling existed before object-
oriented languages. Feedback

Concurrency
A fundamental concept in computer programming is the idea of handling
more than one task at a time. Many programming problems require that
the program be able to stop what it’s doing, deal with some other
problem, and then return to the main process. The solution has been
approached in many ways. Initially, programmers with low-level
knowledge of the machine wrote interrupt service routines and the
suspension of the main process was initiated through a hardware
interrupt. Although this worked well, it was difficult and nonportable, so
it made moving a program to a new type of machine slow and expensive.
Feedback

Sometimes interrupts are necessary for handling time-critical tasks, but
there’s a large class of problems in which you’re simply trying to partition
the problem into separately running pieces so that the whole program can
be more responsive. Within a program, these separately running pieces
are called threads, and the general concept is called concurrency or
multithreading. A common example of multithreading is the user
interface. By using threads, a user can press a button and get a quick
response rather than being forced to wait until the program finishes its
current task. Feedback

Ordinarily, threads are just a way to allocate the time of a single
processor. But if the operating system supports multiple processors, each
thread can be assigned to a different processor and they can truly run in
parallel. One of the convenient features of multithreading at the language
level is that the programmer doesn’t need to worry about whether there

Chapter 1: Introduction to Objects 67

are many processors or just one. The program is logically divided into
threads and if the machine has more than one processor then the program
runs faster, without any special adjustments. Feedback

All this makes threading sound pretty simple. There is a catch: shared
resources. If you have more than one thread running that’s expecting to
access the same resource you have a problem. For example, two processes
can’t simultaneously send information to a printer. To solve the problem,
resources that can be shared, such as the printer, must be locked while
they are being used. So a thread locks a resource, completes its task, and
then releases the lock so that someone else can use the resource. Feedback

Java’s threading is built into the language, which makes a complicated
subject much simpler. The threading is supported on an object level, so
one thread of execution is represented by one object. Java also provides
limited resource locking. It can lock the memory of any object (which is,
after all, one kind of shared resource) so that only one thread can use it at
a time. This is accomplished with the synchronized keyword. Other
types of resources must be locked explicitly by the programmer, typically
by creating an object to represent the lock that all threads must check
before accessing that resource. Feedback

Persistence
When you create an object, it exists for as long as you need it, but under
no circumstances does it exist when the program terminates. While this
makes sense at first, there are situations in which it would be incredibly
useful if an object could exist and hold its information even while the
program wasn’t running. Then the next time you started the program, the
object would be there and it would have the same information it had the
previous time the program was running. Of course, you can get a similar
effect by writing the information to a file or to a database, but in the spirit
of making everything an object it would be quite convenient to be able to
declare an object persistent and have all the details taken care of for you.
Feedback

Java provides support for “lightweight persistence,” which means that you
can easily store objects on disk and later retrieve them. The reason it’s
“lightweight” is that you’re still forced to make explicit calls to do the

68 Thinking in Java www.BruceEckel.com

storage and retrieval. Lightweight persistence can be implemented both
through object serialization (shown in Chapter 12) and Java Data Objects
(JDO, shown in Thinking in Enterprise Java). Feedback

Java and the Internet
If Java is, in fact, yet another computer programming language, you may
question why it is so important and why it is being promoted as a
revolutionary step in computer programming. The answer isn’t
immediately obvious if you’re coming from a traditional programming
perspective. Although Java is very useful for solving traditional stand-
alone programming problems, it is also important because it will solve
programming problems on the World Wide Web. Feedback

What is the Web?
The Web can seem a bit of a mystery at first, with all this talk of “surfing,”
“presence,” and “home pages.” It’s helpful to step back and see what it
really is, but to do this you must understand client/server systems,
another aspect of computing that’s full of confusing issues. Feedback

Client/Server computing
The primary idea of a client/server system is that you have a central
repository of information—some kind of data, often in a database—that
you want to distribute on demand to some set of people or machines. A
key to the client/server concept is that the repository of information is
centrally located so that it can be changed and so that those changes will
propagate out to the information consumers. Taken together, the
information repository, the software that distributes the information, and
the machine(s) where the information and software reside is called the
server. The software that resides on the remote machine, communicates
with the server, fetches the information, processes it, and then displays it
on the remote machine is called the client. Feedback

The basic concept of client/server computing, then, is not so complicated.
The problems arise because you have a single server trying to serve many
clients at once. Generally, a database management system is involved so
the designer “balances” the layout of data into tables for optimal use. In

Chapter 1: Introduction to Objects 69

addition, systems often allow a client to insert new information into a
server. This means you must ensure that one client’s new data doesn’t
walk over another client’s new data, or that data isn’t lost in the process of
adding it to the database (this is called transaction processing). As client
software changes, it must be built, debugged, and installed on the client
machines, which turns out to be more complicated and expensive than
you might think. It’s especially problematic to support multiple types of
computers and operating systems. Finally, there’s the all-important
performance issue: you might have hundreds of clients making requests
of your server at any one time, and so any small delay is crucial. To
minimize latency, programmers work hard to offload processing tasks,
often to the client machine, but sometimes to other machines at the server
site, using so-called middleware. (Middleware is also used to improve
maintainability.) Feedback

The simple idea of distributing information has so many layers of
complexity that the whole problem can seem hopelessly enigmatic. And
yet it’s crucial: client/server computing accounts for roughly half of all
programming activities. It’s responsible for everything from taking orders
and credit-card transactions to the distribution of any kind of data—stock
market, scientific, government, you name it. What we’ve come up with in
the past is individual solutions to individual problems, inventing a new
solution each time. These were hard to create and hard to use, and the
user had to learn a new interface for each one. The entire client/server
problem needs to be solved in a big way. Feedback

The Web as a giant server
The Web is actually one giant client/server system. It’s a bit worse than
that, since you have all the servers and clients coexisting on a single
network at once. You don’t need to know that, since all you care about is
connecting to and interacting with one server at a time (even though you
might be hopping around the world in your search for the correct server).
Feedback

Initially it was a simple one-way process. You made a request of a server
and it handed you a file, which your machine’s browser software (i.e., the
client) would interpret by formatting onto your local machine. But in
short order people began wanting to do more than just deliver pages from

70 Thinking in Java www.BruceEckel.com

a server. They wanted full client/server capability so that the client could
feed information back to the server, for example, to do database lookups
on the server, to add new information to the server, or to place an order
(which required more security than the original systems offered). These
are the changes we’ve been seeing in the development of the Web. Feedback

The Web browser was a big step forward: the concept that one piece of
information could be displayed on any type of computer without change.
However, browsers were still rather primitive and rapidly bogged down by
the demands placed on them. They weren’t particularly interactive, and
tended to clog up both the server and the Internet because any time you
needed to do something that required programming you had to send
information back to the server to be processed. It could take many
seconds or minutes to find out you had misspelled something in your
request. Since the browser was just a viewer it couldn’t perform even the
simplest computing tasks. (On the other hand, it was safe, since it couldn’t
execute any programs on your local machine that might contain bugs or
viruses.) Feedback

To solve this problem, different approaches have been taken. To begin
with, graphics standards have been enhanced to allow better animation
and video within browsers. The remainder of the problem can be solved
only by incorporating the ability to run programs on the client end, under
the browser. This is called client-side programming. Feedback

Client-side programming
The Web’s initial server-browser design provided for interactive content,
but the interactivity was completely provided by the server. The server
produced static pages for the client browser, which would simply interpret
and display them. Basic HTML contains simple mechanisms for data
gathering: text-entry boxes, check boxes, radio boxes, lists and drop-down
lists, as well as a button that can only be programmed to reset the data on
the form or “submit” the data on the form back to the server. This
submission passes through the Common Gateway Interface (CGI)
provided on all Web servers. The text within the submission tells CGI
what to do with it. The most common action is to run a program located
on the server in a directory that’s typically called “cgi-bin.” (If you watch
the address window at the top of your browser when you push a button on

Chapter 1: Introduction to Objects 71

a Web page, you can sometimes see “cgi-bin” within all the gobbledygook
there.) These programs can be written in most languages. Perl has been a
common choice because it is designed for text manipulation and is
interpreted, so it can be installed on any server regardless of processor or
operating system. However, Python (my favorite; see www.Python.org)
has been making inroads because of its greater power and simplicity.
Feedback

Many powerful Web sites today are built strictly on CGI, and you can in
fact do nearly anything with CGI. However, Web sites built on CGI
programs can rapidly become overly complicated to maintain, and there is
also the problem of response time. The response of a CGI program
depends on how much data must be sent, as well as the load on both the
server and the Internet. (On top of this, starting a CGI program tends to
be slow.) The initial designers of the Web did not foresee how rapidly this
bandwidth would be exhausted for the kinds of applications people
developed. For example, any sort of dynamic graphing is nearly
impossible to perform with consistency because a GIF file must be created
and moved from the server to the client for each version of the graph. And
you’ve no doubt had direct experience with something as simple as
validating the data on an input form. You press the submit button on a
page; the data is shipped back to the server; the server starts a CGI
program that discovers an error, formats an HTML page informing you of
the error, and then sends the page back to you; you must then back up a
page and try again. Not only is this slow, it’s inelegant. Feedback

The solution is client-side programming. Most machines that run Web
browsers are powerful engines capable of doing vast work, and with the
original static HTML approach they are sitting there, just idly waiting for
the server to dish up the next page. Client-side programming means that
the Web browser is harnessed to do whatever work it can, and the result
for the user is a much speedier and more interactive experience at your
Web site. Feedback

The problem with discussions of client-side programming is that they
aren’t very different from discussions of programming in general. The
parameters are almost the same, but the platform is different: a Web
browser is like a limited operating system. In the end, you must still
program, and this accounts for the dizzying array of problems and

72 Thinking in Java www.BruceEckel.com

solutions produced by client-side programming. The rest of this section
provides an overview of the issues and approaches in client-side
programming. Feedback

Plug-ins
One of the most significant steps forward in client-side programming is
the development of the plug-in. This is a way for a programmer to add
new functionality to the browser by downloading a piece of code that
plugs itself into the appropriate spot in the browser. It tells the browser
“from now on you can perform this new activity.” (You need to download
the plug-in only once.) Some fast and powerful behavior is added to
browsers via plug-ins, but writing a plug-in is not a trivial task, and isn’t
something you’d want to do as part of the process of building a particular
site. The value of the plug-in for client-side programming is that it allows
an expert programmer to develop a new language and add that language
to a browser without the permission of the browser manufacturer. Thus,
plug-ins provide a “back door” that allows the creation of new client-side
programming languages (although not all languages are implemented as
plug-ins). Feedback

Scripting languages
Plug-ins resulted in an explosion of scripting languages. With a scripting
language you embed the source code for your client-side program directly
into the HTML page, and the plug-in that interprets that language is
automatically activated while the HTML page is being displayed. Scripting
languages tend to be reasonably easy to understand and, because they are
simply text that is part of an HTML page, they load very quickly as part of
the single server hit required to procure that page. The trade-off is that
your code is exposed for everyone to see (and steal). Generally, however,
you aren’t doing amazingly sophisticated things with scripting languages
so this is not too much of a hardship. Feedback

This points out that the scripting languages used inside Web browsers are
really intended to solve specific types of problems, primarily the creation
of richer and more interactive graphical user interfaces (GUIs). However,
a scripting language might solve 80 percent of the problems encountered
in client-side programming. Your problems might very well fit completely
within that 80 percent, and since scripting languages can allow easier and

Chapter 1: Introduction to Objects 73

faster development, you should probably consider a scripting language
before looking at a more involved solution such as Java or ActiveX
programming. Feedback

The most commonly discussed browser scripting languages are JavaScript
(which has nothing to do with Java; it’s named that way just to grab some
of Java’s marketing momentum), VBScript (which looks like Visual
Basic), and Tcl/Tk, which comes from the popular cross-platform GUI-
building language. There are others out there, and no doubt more in
development. Feedback

JavaScript is probably the most commonly supported. It comes built into
both Netscape Navigator and the Microsoft Internet Explorer (IE)—
unfortunately, the flavor of JavaScript on the two browsers can vary
widely (the Mozilla browser, freely downloadable from www.Mozilla.org,
supports the ECMAScript standard, which may one day become
universally supported). In addition, there are probably more JavaScript
books available than there are for the other browser languages, and some
tools automatically create pages using JavaScript. However, if you’re
already fluent in Visual Basic or Tcl/Tk, you’ll be more productive using
those scripting languages rather than learning a new one. (You’ll have
your hands full dealing with the Web issues already.) Feedback

Java
If a scripting language can solve 80 percent of the client-side
programming problems, what about the other 20 percent—the “really
hard stuff?” Java is a popular solution for this. Not only is it a powerful
programming language built to be secure, cross-platform, and
international, but Java is being continually extended to provide language
features and libraries that elegantly handle problems that are difficult in
traditional programming languages, such as multithreading, database
access, network programming, and distributed computing. Java allows
client-side programming via the applet and with Java web start. Feedback

An applet is a mini-program that will run only under a Web browser. The
applet is downloaded automatically as part of a Web page (just as, for
example, a graphic is automatically downloaded). When the applet is
activated it executes a program. This is part of its beauty—it provides you
with a way to automatically distribute the client software from the server

74 Thinking in Java www.BruceEckel.com

at the time the user needs the client software, and no sooner. The user
gets the latest version of the client software without fail and without
difficult reinstallation. Because of the way Java is designed, the
programmer needs to create only a single program, and that program
automatically works with all computers that have browsers with built-in
Java interpreters. (This safely includes the vast majority of machines.)
Since Java is a full-fledged programming language, you can do as much
work as possible on the client before and after making requests of the
server. For example, you won’t need to send a request form across the
Internet to discover that you’ve gotten a date or some other parameter
wrong, and your client computer can quickly do the work of plotting data
instead of waiting for the server to make a plot and ship a graphic image
back to you. Not only do you get the immediate win of speed and
responsiveness, but the general network traffic and load on servers can be
reduced, preventing the entire Internet from slowing down. Feedback

One advantage a Java applet has over a scripted program is that it’s in
compiled form, so the source code isn’t available to the client. On the
other hand, a Java applet can be decompiled without too much trouble,
but hiding your code is often not an important issue. Two other factors
can be important. As you will see later in this book, a compiled Java
applet can require extra time to download, if it is large. A scripted
program will just be integrated into the Web page as part of its text (and
will generally be smaller and reduce server hits). This could be important
to the responsiveness of your Web site. Another factor is the all-important
learning curve. Regardless of what you’ve heard, Java is not a trivial
language to learn. If you’re a Visual Basic programmer, moving to
VBScript will be your fastest solution (assuming you can constrain your
customers to Windows platforms), and since it will probably solve most
typical client/server problems you might be hard pressed to justify
learning Java. If you’re experienced with a scripting language you will
certainly benefit from looking at JavaScript or VBScript before
committing to Java, since they might fit your needs handily and you’ll be
more productive sooner. Feedback

.NET and C#
For awhile, the main competitor to Java applets was Microsoft’s ActiveX,
although it required that the client be running Windows. Since then,

Chapter 1: Introduction to Objects 75

Microsoft has produced a full competitor to Java in the form of the .NET
platform and the C# programming language. .NET is roughly the same as
the Java virtual machine and Java libraries, and C# bears unmistakeable
similarities to Java. This is certainly the best work that Microsoft has done
in the arena of programming languages and programming environments.
Of course, they had the considerable advantage of being able to see what
worked well and what didn’t work so well in Java, and building upon that,
but build they have. This is the first time since its inception that Java has
had any real competition, and if all goes well, the result will be that the
Java designers at Sun will take a hard look at C# and why programmers
might want to move to it, and respond by making fundamental
improvements to Java. Feedback

Currently, the main vulnerability and important question concerning
.NET is whether Microsoft will allow it to be completely ported to other
platforms. They claim there’s no problem doing this, and the Mono
project (www.go-mono.com) has a partial implementation of .NET
working on Linux, but until the implementation is complete and
Microsoft has not decided to squash any part of it, .NET as a cross-
platform solution is still a risky bet. Feedback

To learn more about .NET and C#, see Thinking in C# by Larry O’Brien
and Bruce Eckel, Prentice Hall 2003.

Security
Automatically downloading and running programs across the Internet can
sound like a virus-builder’s dream. If you click on a Web site, you might
automatically download any number of things along with the HTML page:
GIF files, script code, compiled Java code, and ActiveX components.
Some of these are benign; GIF files can’t do any harm, and scripting
languages are generally limited in what they can do. Java was also
designed to run its applets within a “sandbox” of safety, which prevents it
from writing to disk or accessing memory outside the sandbox. Feedback

Microsoft’s ActiveX is at the opposite end of the spectrum. Programming
with ActiveX is like programming Windows—you can do anything you
want. So if you click on a page that downloads an ActiveX component,
that component might cause damage to the files on your disk. Of course,
programs that you load onto your computer that are not restricted to

76 Thinking in Java www.BruceEckel.com

running inside a Web browser can do the same thing. Viruses downloaded
from Bulletin-Board Systems (BBSs) have long been a problem, but the
speed of the Internet amplifies the difficulty. Feedback

The solution seems to be “digital signatures,” whereby code is verified to
show who the author is. This is based on the idea that a virus works
because its creator can be anonymous, so if you remove the anonymity
individuals will be forced to be responsible for their actions. This seems
like a good plan because it allows programs to be much more functional,
and I suspect it will eliminate malicious mischief. If, however, a program
has an unintentional destructive bug it will still cause problems. Feedback

The Java approach is to prevent these problems from occurring, via the
sandbox. The Java interpreter that lives on your local Web browser
examines the applet for any untoward instructions as the applet is being
loaded. In particular, the applet cannot write files to disk or erase files
(one of the mainstays of viruses). Applets are generally considered to be
safe, and since this is essential for reliable client/server systems, any bugs
in the Java language that allow viruses are rapidly repaired. (It’s worth
noting that the browser software actually enforces these security
restrictions, and some browsers allow you to select different security
levels to provide varying degrees of access to your system.) Feedback

You might be skeptical of this rather draconian restriction against writing
files to your local disk. For example, you may want to build a local
database or save data for later use offline. The initial vision seemed to be
that eventually everyone would get online to do anything important, but
that was soon seen to be impractical (although low-cost “Internet
appliances” might someday satisfy the needs of a significant segment of
users). The solution is the “signed applet” that uses public-key encryption
to verify that an applet does indeed come from where it claims it does. A
signed applet can still trash your disk, but the theory is that since you can
now hold the applet creator accountable they won’t do vicious things. Java
provides a framework for digital signatures so that you will eventually be
able to allow an applet to step outside the sandbox if necessary. Chapter
14 contains an example of how to sign an applet. Feedback

In addition, Java Web Start is a relatively new way to easily distribute
stand-alone programs that don’t need a web browser in which to run. This

Chapter 1: Introduction to Objects 77

technology has the potential of solving many client side problems
associated with running programs inside a browser. Web Start programs
can either be signed, or they can ask the client for permission every time
they are doing something potentially dangerous on the local system.
Chapter 14 has a simple example and explanation of Java Web Start.
Feedback

Digital signatures have missed an important issue, which is the speed that
people move around on the Internet. If you download a buggy program
and it does something untoward, how long will it be before you discover
the damage? It could be days or even weeks. By then, how will you track
down the program that’s done it? And what good will it do you at that
point? Feedback

Internet vs. intranet
The Web is the most general solution to the client/server problem, so it
makes sense to use the same technology to solve a subset of the problem,
in particular the classic client/server problem within a company. With
traditional client/server approaches you have the problem of multiple
types of client computers, as well as the difficulty of installing new client
software, both of which are handily solved with Web browsers and client-
side programming. When Web technology is used for an information
network that is restricted to a particular company, it is referred to as an
intranet. Intranets provide much greater security than the Internet, since
you can physically control access to the servers within your company. In
terms of training, it seems that once people understand the general
concept of a browser it’s much easier for them to deal with differences in
the way pages and applets look, so the learning curve for new kinds of
systems seems to be reduced. Feedback

The security problem brings us to one of the divisions that seems to be
automatically forming in the world of client-side programming. If your
program is running on the Internet, you don’t know what platform it will
be working under, and you want to be extra careful that you don’t
disseminate buggy code. You need something cross-platform and secure,
like a scripting language or Java. Feedback

If you’re running on an intranet, you might have a different set of
constraints. It’s not uncommon that your machines could all be

78 Thinking in Java www.BruceEckel.com

Intel/Windows platforms. On an intranet, you’re responsible for the
quality of your own code and can repair bugs when they’re discovered. In
addition, you might already have a body of legacy code that you’ve been
using in a more traditional client/server approach, whereby you must
physically install client programs every time you do an upgrade. The time
wasted in installing upgrades is the most compelling reason to move to
browsers, because upgrades are invisible and automatic (Java Web Start
is also a solution to this problem). If you are involved in such an intranet,
the most sensible approach to take is the shortest path that allows you to
use your existing code base, rather than trying to recode your programs in
a new language. Feedback

When faced with this bewildering array of solutions to the client-side
programming problem, the best plan of attack is a cost-benefit analysis.
Consider the constraints of your problem and what would be the shortest
path to your solution. Since client-side programming is still
programming, it’s always a good idea to take the fastest development
approach for your particular situation. This is an aggressive stance to
prepare for inevitable encounters with the problems of program
development. Feedback

Server-side programming
This whole discussion has ignored the issue of server-side programming.
What happens when you make a request of a server? Most of the time the
request is simply “send me this file.” Your browser then interprets the file
in some appropriate fashion: as an HTML page, a graphic image, a Java
applet, a script program, etc. A more complicated request to a server
generally involves a database transaction. A common scenario involves a
request for a complex database search, which the server then formats into
an HTML page and sends to you as the result. (Of course, if the client has
more intelligence via Java or a scripting language, the raw data can be
sent and formatted at the client end, which will be faster and less load on
the server.) Or you might want to register your name in a database when
you join a group or place an order, which will involve changes to that
database. These database requests must be processed via some code on
the server side, which is generally referred to as server-side programming.
Traditionally, server-side programming has been performed using Perl,
Python, C++, or some other language, to create CGI programs, but more

Chapter 1: Introduction to Objects 79

sophisticated systems have been appearing. These include Java-based
Web servers that allow you to perform all your server-side programming
in Java by writing what are called servlets. Servlets and their offspring,
JSPs, are two of the most compelling reasons that companies who develop
Web sites are moving to Java, especially because they eliminate the
problems of dealing with differently abled browsers (these topics are
covered in Thinking in Enterprise Java). Feedback

Applications
Much of the brouhaha over Java has been over applets. Java is actually a
general-purpose programming language that can solve any type of
problem—at least in theory. And as pointed out previously, there might be
more effective ways to solve most client/server problems. When you move
out of the applet arena (and simultaneously release the restrictions, such
as the one against writing to disk) you enter the world of general-purpose
applications that run standalone, without a Web browser, just like any
ordinary program does. Here, Java’s strength is not only in its portability,
but also its programmability. As you’ll see throughout this book, Java has
many features that allow you to create robust programs in a shorter
period than with previous programming languages. Feedback

Be aware that this is a mixed blessing. You pay for the improvements
through slower execution speed (although there is significant work going
on in this area—in particular, the so-called “hotspot” performance
improvements in recent versions of Java). Like any language, Java has
built-in limitations that might make it inappropriate to solve certain types
of programming problems. Java is a rapidly evolving language, however,
and as each new release comes out it becomes more and more attractive
for solving larger sets of problems. Feedback

Why Java succeeds
The reason Java has been so successful is that the goal was to solve many
of the problems facing developers today. A fundamental goal of Java is
improved productivity. This productivity comes in many ways, but the
language is designed to be a significant improvement over its

80 Thinking in Java www.BruceEckel.com

predecessors, and to provide important benefits to the programmer.
Feedback

Systems are easier
to express and understand
Classes designed to fit the problem tend to express it better. This means
that when you write the code, you’re describing your solution in the terms
of the problem space (“Put the grommet in the bin”) rather than the terms
of the computer, which is the solution space (“Set the bit in the chip that
means that the relay will close”). You deal with higher-level concepts and
can do much more with a single line of code. Feedback

The other benefit of this ease of expression is maintenance, which (if
reports can be believed) is a huge portion of the cost over a program’s
lifetime. If a program is easier to understand, then it’s easier to maintain.
This can also reduce the cost of creating and maintaining the
documentation. Feedback

Maximal leverage with libraries
The fastest way to create a program is to use code that’s already written: a
library. A major goal in Java is to make library use easier. This is
accomplished by casting libraries into new data types (classes), so that
bringing in a library means adding new types to the language. Because the
Java compiler takes care of how the library is used—guaranteeing proper
initialization and cleanup, and ensuring that methods are called
properly—you can focus on what you want the library to do, not how you
have to do it. Feedback

Error handling
Error handling in C is a notorious problem, and one that is often
ignored—finger-crossing is usually involved. If you’re building a large,
complex program, there’s nothing worse than having an error buried
somewhere with no clue as to where it came from. Java exception
handling is a way to guarantee that an error is noticed, and that
something happens as a result. Feedback

Chapter 1: Introduction to Objects 81

Programming in the large
Many traditional languages have built-in limitations to program size and
complexity. BASIC, for example, can be great for pulling together quick
solutions for certain classes of problems, but if the program gets more
than a few pages long, or ventures out of the normal problem domain of
that language, it’s like trying to swim through an ever-more viscous fluid.
There’s no clear line that tells you when your language is failing you, and
even if there were, you’d ignore it. You don’t say, “My BASIC program just
got too big; I’ll have to rewrite it in C!” Instead, you try to shoehorn a few
more lines in to add that one new feature. So the extra costs come
creeping up on you. Feedback

Java is designed to aid programming in the large—that is, to erase those
creeping-complexity boundaries between a small program and a large
one. You certainly don’t need to use OOP when you’re writing a “hello
world” style utility program, but the features are there when you need
them. And the compiler is aggressive about ferreting out bug-producing
errors for small and large programs alike. Feedback

Java vs. C++?
Java looks a lot like C++, and so naturally it would seem that C++ will be
replaced by Java. But I’m starting to question this logic. For one thing,
C++ still has some features that Java doesn’t, and although there have
been a lot of promises about Java someday being as fast or faster than
C++, we’ve seen steady improvements but no dramatic breakthroughs.
Also, there seems to be a continuing interest in C++, so I don’t think that
language is going away any time soon. Languages seem to hang around.
Feedback

I’m beginning to think that the strength of Java lies in a slightly different
arena than that of C++. C++ is a language that doesn’t try to fit a mold.
Certainly it has been adapted in a number of ways to solve particular
problems. Some C++ tools combine libraries, component models, and
code-generation tools to solve the problem of developing windowed end-
user applications (for Microsoft Windows). And yet, what do the vast
majority of Windows developers use? Microsoft’s Visual Basic (VB). This

82 Thinking in Java www.BruceEckel.com

despite the fact that VB produces the kind of code that becomes
unmanageable when the program is only a few pages long (and syntax
that can be positively mystifying). As successful and popular as VB is, it’s
not a very good example of language design. It would be nice to have the
ease and power of VB without the resulting unmanageable code. And
that’s where I think Java will shine: as the “next VB8.” You may or may
not shudder to hear this, but think about it: so much of Java is intended to
make it easy for the programmer to solve application-level problems like
networking and cross-platform UI, and yet it has a language design that
allows the creation of very large and flexible bodies of code. Add to this
the fact that Java’s type checking and error handling is a big improvement
over most languages and you have the makings of a significant leap
forward in programming productivity. Feedback

If you’re developing all your code primarily from scratch, then the
simplicity of Java over C++ will significantly shorten your development
time—the anecdotal evidence (stories from C++ teams that I’ve talked to
who have switched to Java) suggests a doubling of development speed
over C++. If Java performance doesn’t matter or you can somehow
compensate for it, sheer time-to-market issues make it difficult to choose
C++ over Java. Feedback

The biggest issue is performance. Interpreted Java has been slow, even 20
to 50 times slower than C in the original Java interpreters. This has
improved greatly over time (especially with more recent versions of Java),
but it will still remain an important number. Computers are about speed;
if it wasn’t significantly faster to do something on a computer then you’d
do it by hand. (I’ve even heard it suggested that you start with Java, to
gain the short development time, then use a tool and support libraries to
translate your code to C++, if you need faster execution speed.) Feedback

The key to making Java feasible for many development projects is the
appearance of speed improvements like so-called “just-in time” (JIT)
compilers, Sun’s own “hotspot” technology, and even native code

8 Microsoft is effectively saying “not so fast” with C# and .NET. Numerous people have
raised the question of whether VB programmers want to change to anything else, whether
that be Java, C#, or even VB.NET.

Chapter 1: Introduction to Objects 83

compilers. Of course, native code compilers will eliminate the touted
cross-platform execution of the compiled programs, but they will also
bring the speed of the executable closer to that of C and C++. And cross-
compiling a program in Java should be a lot easier than doing so in C or
C++. (In theory, you just recompile, but that promise has been made
before for other languages.) Feedback

Summary
This chapter attempts to give you a feel for the broad issues of object-
oriented programming and Java, including why OOP is different, and why
Java in particular is different. Feedback

OOP and Java may not be for everyone. It’s important to evaluate your
own needs and decide whether Java will optimally satisfy those needs, or
if you might be better off with another programming system (including
the one you’re currently using). If you know that your needs will be very
specialized for the foreseeable future and if you have specific constraints
that may not be satisfied by Java, then you owe it to yourself to investigate
the alternatives (In particular, I recommend looking at Python; see
www.Python.org). Even if you eventually choose Java as your language,
you’ll at least understand what the options were and have a clear vision of
why you took that direction. Feedback

You know what a procedural program looks like: data definitions and
function calls. To find the meaning of such a program you have to work a
little, looking through the function calls and low-level concepts to create a
model in your mind. This is the reason we need intermediate
representations when designing procedural programs—by themselves,
these programs tend to be confusing because the terms of expression are
oriented more toward the computer than to the problem you’re solving.
Feedback

Because Java adds many new concepts on top of what you find in a
procedural language, your natural assumption may be that the main() in
a Java program will be far more complicated than for the equivalent C
program. Here, you’ll be pleasantly surprised: A well-written Java
program is generally far simpler and much easier to understand than the
equivalent C program. What you’ll see are the definitions of the objects

84 Thinking in Java www.BruceEckel.com

that represent concepts in your problem space (rather than the issues of
the computer representation) and messages sent to those objects to
represent the activities in that space. One of the delights of object-
oriented programming is that, with a well-designed program, it’s easy to
understand the code by reading it. Usually there’s a lot less code as well,
because many of your problems will be solved by reusing existing library
code. Feedback

 85

2: Everything
is an Object

Although it is based on C++, Java is more of a “pure”
object-oriented language.

Both C++ and Java are hybrid languages, but in Java the designers felt
that the hybridization was not as important as it was in C++. A hybrid
language allows multiple programming styles; the reason C++ is hybrid is
to support backward compatibility with the C language. Because C++ is a
superset of the C language, it includes many of that language’s
undesirable features, which can make some aspects of C++ overly
complicated. Feedback

The Java language assumes that you want to do only object-oriented
programming. This means that before you can begin you must shift your
mindset into an object-oriented world (unless it’s already there). The
benefit of this initial effort is the ability to program in a language that is
simpler to learn and to use than many other OOP languages. In this
chapter we’ll see the basic components of a Java program and we’ll learn
that everything in Java is an object, even a Java program. Feedback

You manipulate objects
with references

Each programming language has its own means of manipulating data.
Sometimes the programmer must be constantly aware of what type of
manipulation is going on. Are you manipulating the object directly, or are
you dealing with some kind of indirect representation (a pointer in C or
C++) that must be treated with a special syntax? Feedback

86 Thinking in Java www.BruceEckel.com

All this is simplified in Java. You treat everything as an object, using a
single consistent syntax. Although you treat everything as an object, the
identifier you manipulate is actually a “reference” to an object1. You might
imagine this scene as a television (the object) with your remote control
(the reference). As long as you’re holding this reference, you have a
connection to the television, but when someone says “change the channel”
or “lower the volume,” what you’re manipulating is the reference, which in
turn modifies the object. If you want to move around the room and still
control the television, you take the remote/reference with you, not the
television. Feedback

Also, the remote control can stand on its own, with no television. That is,
just because you have a reference doesn’t mean there’s necessarily an
object connected to it. So if you want to hold a word or sentence, you
create a String reference: Feedback

String s;

But here you’ve created only the reference, not an object. If you decided to
send a message to s at this point, you’ll get an error (at run time) because
s isn’t actually attached to anything (there’s no television). A safer
practice, then, is always to initialize a reference when you create it: Feedback

String s = "asdf";

1 This can be a flashpoint. There are those who say “clearly, it’s a pointer,” but this
presumes an underlying implementation. Also, Java references are much more akin to
C++ references than pointers in their syntax. In the first edition of this book, I chose to
invent a new term, “handle,” because C++ references and Java references have some
important differences. I was coming out of C++ and did not want to confuse the C++
programmers whom I assumed would be the largest audience for Java. In the 2nd edition, I
decided that “reference” was the more commonly used term, and that anyone changing
from C++ would have a lot more to cope with than the terminology of references, so they
might as well jump in with both feet. However, there are people who disagree even with
the term “reference.” I read in one book where it was “completely wrong to say that Java
supports pass by reference,” because Java object identifiers (according to that author) are
actually “object references.” And (he goes on) everything is actually pass by value. So
you’re not passing by reference, you’re “passing an object reference by value.” One could
argue for the precision of such convoluted explanations, but I think my approach
simplifies the understanding of the concept without hurting anything (well, the language
lawyers may claim that I’m lying to you, but I’ll say that I’m providing an appropriate
abstraction.)

Chapter 2: Everything is an Object 87

However, this uses a special Java feature: strings can be initialized with
quoted text. Normally, you must use a more general type of initialization
for objects. Feedback

You must create
all the objects

When you create a reference, you want to connect it with a new object.
You do so, in general, with the new keyword. new says, “Make me a new
one of these objects.” So in the above example, you can say: Feedback

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives
information about how to make the String by supplying an initial
character string. Feedback

Of course, String is not the only type that exists. Java comes with a
plethora of ready-made types. What’s more important is that you can
create your own types. In fact, that’s the fundamental activity in Java
programming, and it’s what you’ll be learning about in the rest of this
book. Feedback

Where storage lives
It’s useful to visualize some aspects of how things are laid out while the
program is running, in particular how memory is arranged. There are six
different places to store data: Feedback

1. Registers. This is the fastest storage because it exists in a place
different from that of other storage: inside the processor. However,
the number of registers is severely limited, so registers are
allocated by the compiler according to its needs. You don’t have
direct control, nor do you see any evidence in your programs that
registers even exist. Feedback

2. The stack. This lives in the general RAM (random-access
memory) area, but has direct support from the processor via its
stack pointer. The stack pointer is moved down to create new

88 Thinking in Java www.BruceEckel.com

memory and moved up to release that memory. This is an
extremely fast and efficient way to allocate storage, second only to
registers. The Java compiler must know, while it is creating the
program, the exact size and lifetime of all the data that is stored on
the stack, because it must generate the code to move the stack
pointer up and down. This constraint places limits on the flexibility
of your programs, so while some Java storage exists on the stack—
in particular, object references—Java objects themselves are not
placed on the stack. Feedback

3. The heap. This is a general-purpose pool of memory (also in the
RAM area) where all Java objects live. The nice thing about the
heap is that, unlike the stack, the compiler doesn’t need to know
how much storage it needs to allocate from the heap or how long
that storage must stay on the heap. Thus, there’s a great deal of
flexibility in using storage on the heap. Whenever you need to
create an object, you simply write the code to create it using new,
and the storage is allocated on the heap when that code is executed.
Of course there’s a price you pay for this flexibility: it takes more
time to allocate heap storage than it does to allocate stack storage
(if you even could create objects on the stack in Java, as you can in
C++). Feedback

4. Static storage. “Static” is used here in the sense of “in a fixed
location” (although it’s also in RAM). Static storage contains data
that is available for the entire time a program is running. You can
use the static keyword to specify that a particular element of an
object is static, but Java objects themselves are never placed in
static storage. Feedback

5. Constant storage. Constant values are often placed directly in
the program code, which is safe since they can never change.
Sometimes constants are cordoned off by themselves so that they
can be optionally placed in read-only memory (ROM), in
embedded systems. Feedback

6. Non-RAM storage. If data lives completely outside a program it
can exist while the program is not running, outside the control of
the program. The two primary examples of this are streamed

Chapter 2: Everything is an Object 89

objects, in which objects are turned into streams of bytes, generally
to be sent to another machine, and persistent objects, in which the
objects are placed on disk so they will hold their state even when
the program is terminated. The trick with these types of storage is
turning the objects into something that can exist on the other
medium, and yet can be resurrected into a regular RAM-based
object when necessary. Java provides support for lightweight
persistence, and future versions of Java might provide more
complete solutions for persistence. Feedback

Special case: primitive types
One group of types, which you’ll use quite often in your programming,
gets special treatment. You can think of these as “primitive” types. The
reason for the special treatment is that to create an object with new—
especially a small, simple variable—isn’t very efficient because new places
objects on the heap. For these types Java falls back on the approach taken
by C and C++. That is, instead of creating the variable using new, an
“automatic” variable is created that is not a reference. The variable holds
the value, and it’s placed on the stack so it’s much more efficient. Feedback

Java determines the size of each primitive type. These sizes don’t change
from one machine architecture to another as they do in most languages.
This size invariance is one reason Java programs are portable. Feedback

Primitive
type

Size Minimum Maximum Wrapper
type

boolean — — — Boolean

char 16-bit Unicode 0 Unicode 216- 1 Character

byte 8-bit -128 +127 Byte

short 16-bit -215 +215—1 Short

int 32-bit -231 +231—1 Integer

long 64-bit -263 +263—1 Long

float 32-bit IEEE754 IEEE754 Float

double 64-bit IEEE754 IEEE754 Double

void — — — Void

90 Thinking in Java www.BruceEckel.com

All numeric types are signed, so don’t look for unsigned types. Feedback

The size of the boolean type is not explicitly specified; it is only defined
to be able to take the literal values true or false. Feedback

The “wrapper” classes for the primitive data types allow you to make a
nonprimitive object on the heap to represent that primitive type. For
example: Feedback

char c = 'x';
Character C = new Character(c);

Or you could also use:

Character C = new Character('x');

The reasons for doing this will be shown in a later chapter. Feedback

High-precision numbers
Java includes two classes for performing high-precision arithmetic:
BigInteger and BigDecimal. Although these approximately fit into the
same category as the “wrapper” classes, neither one has a primitive
analogue. Feedback

Both classes have methods that provide analogues for the operations that
you perform on primitive types. That is, you can do anything with a
BigInteger or BigDecimal that you can with an int or float, it’s just
that you must use method calls instead of operators. Also, since there’s
more involved, the operations will be slower. You’re exchanging speed for
accuracy. Feedback

BigInteger supports arbitrary-precision integers. This means that you
can accurately represent integral values of any size without losing any
information during operations. Feedback

BigDecimal is for arbitrary-precision fixed-point numbers; you can use
these for accurate monetary calculations, for example. Feedback

Consult the JDK documentation for details about the constructors and
methods you can call for these two classes. Feedback

Chapter 2: Everything is an Object 91

Arrays in Java
Virtually all programming languages support arrays. Using arrays in C
and C++ is perilous because those arrays are only blocks of memory. If a
program accesses the array outside of its memory block or uses the
memory before initialization (common programming errors) there will be
unpredictable results. Feedback

One of the primary goals of Java is safety, so many of the problems that
plague programmers in C and C++ are not repeated in Java. A Java array
is guaranteed to be initialized and cannot be accessed outside of its range.
The range checking comes at the price of having a small amount of
memory overhead on each array as well as verifying the index at run time,
but the assumption is that the safety and increased productivity is worth
the expense. Feedback

When you create an array of objects, you are really creating an array of
references, and each of those references is automatically initialized to a
special value with its own keyword: null. When Java sees null, it
recognizes that the reference in question isn’t pointing to an object. You
must assign an object to each reference before you use it, and if you try to
use a reference that’s still null, the problem will be reported at run time.
Thus, typical array errors are prevented in Java. Feedback

You can also create an array of primitives. Again, the compiler guarantees
initialization because it zeroes the memory for that array. Feedback

Arrays will be covered in detail in later chapters. Feedback

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a variable
occupies a significant portion of the programming effort. How long does
the variable last? If you are supposed to destroy it, when should you?
Confusion over variable lifetimes can lead to a lot of bugs, and this section
shows how Java greatly simplifies the issue by doing all the cleanup work
for you. Feedback

92 Thinking in Java www.BruceEckel.com

Scoping
Most procedural languages have the concept of scope. This determines
both the visibility and lifetime of the names defined within that scope. In
C, C++, and Java, scope is determined by the placement of curly braces
{}. So for example: Feedback

{
 int x = 12;
 // Only x available
 {
 int q = 96;
 // Both x & q available
 }
 // Only x available
 // q “out of scope”
}

A variable defined within a scope is available only to the end of that scope.
Feedback

Any text after a ‘//’ to the end of a line is a comment.

Indentation makes Java code easier to read. Since Java is a free-form
language, the extra spaces, tabs, and carriage returns do not affect the
resulting program. Feedback

Note that you cannot do the following, even though it is legal in C and
C++:

{
 int x = 12;
 {
 int x = 96; // Illegal
 }
}

The compiler will announce that the variable x has already been defined.
Thus the C and C++ ability to “hide” a variable in a larger scope is not
allowed because the Java designers thought that it led to confusing
programs. Feedback

Chapter 2: Everything is an Object 93

Scope of objects
Java objects do not have the same lifetimes as primitives. When you
create a Java object using new, it hangs around past the end of the scope.
Thus if you use:

{
 String s = new String("a string");
} // End of scope

the reference s vanishes at the end of the scope. However, the String
object that s was pointing to is still occupying memory. In this bit of code,
there is no way to access the object because the only reference to it is out
of scope. In later chapters you’ll see how the reference to the object can be
passed around and duplicated during the course of a program. Feedback

It turns out that because objects created with new stay around for as long
as you want them, a whole slew of C++ programming problems simply
vanish in Java. The hardest problems seem to occur in C++ because you
don’t get any help from the language in making sure that the objects are
available when they’re needed. And more important, in C++ you must
make sure that you destroy the objects when you’re done with them.
Feedback

That brings up an interesting question. If Java leaves the objects lying
around, what keeps them from filling up memory and halting your
program? This is exactly the kind of problem that would occur in C++.
This is where a bit of magic happens. Java has a garbage collector, which
looks at all the objects that were created with new and figures out which
ones are not being referenced anymore. Then it releases the memory for
those objects, so the memory can be used for new objects. This means that
you never need to worry about reclaiming memory yourself. You simply
create objects, and when you no longer need them they will go away by
themselves. This eliminates a certain class of programming problem: the
so-called “memory leak,” in which a programmer forgets to release
memory. Feedback

94 Thinking in Java www.BruceEckel.com

Creating new
data types: class

If everything is an object, what determines how a particular class of object
looks and behaves? Put another way, what establishes the type of an
object? You might expect there to be a keyword called “type,” and that
certainly would have made sense. Historically, however, most object-
oriented languages have used the keyword class to mean “I’m about to
tell you what a new type of object looks like.” The class keyword (which is
so common that it will not be emboldened throughout this book) is
followed by the name of the new type. For example: Feedback

class ATypeName { /* Class body goes here */ }

This introduces a new type, although the class body consists only of a
comment (the stars and slashes and what is inside, which will be
discussed later in this chapter), so there is not too much that you can do
with it. However, you can create an object of this type using new:

ATypeName a = new ATypeName();

But you cannot tell it to do much of anything (that is, you cannot send it
any interesting messages) until you define some methods for it. Feedback

Fields and methods
When you define a class (and all you do in Java is define classes, make
objects of those classes, and send messages to those objects), you can put
two types of elements in your class: fields (sometimes called data
members), and methods (sometimes called member functions). A field is
an object of any type that you can communicate with via its reference. It
can also be one of the primitive types (which isn’t a reference). If it is a
reference to an object, you must initialize that reference to connect it to an
actual object (using new, as seen earlier) in a special method called a
constructor (described fully in Chapter 4). If it is a primitive type you can
initialize it directly at the point of definition in the class. (As you’ll see
later, references can also be initialized at the point of definition.) Feedback

Chapter 2: Everything is an Object 95

Each object keeps its own storage for its fields; the fields are not shared
among objects. Here is an example of a class with some fields: Feedback

class DataOnly {
 int i;
 float f;
 boolean b;
}

This class doesn’t do anything, but you can create an object: Feedback

DataOnly d = new DataOnly();

You can assign values to the fields, but you must first know how to refer to
a member of an object. This is accomplished by stating the name of the
object reference, followed by a period (dot), followed by the name of the
member inside the object: Feedback

objectReference.member

For example: Feedback

d.i = 47;
d.f = 1.1f; // ‘f’ after number indicates float constant
d.b = false;

It is also possible that your object might contain other objects that contain
data you’d like to modify. For this, you just keep “connecting the dots.”
For example: Feedback

myPlane.leftTank.capacity = 100;

The DataOnly class cannot do much of anything except hold data,
because it has no methods. To understand how those work, you must first
understand arguments and return values, which will be described
shortly. Feedback

Default values for primitive members
When a primitive data type is a member of a class, it is guaranteed to get a
default value if you do not initialize it:

Primitive type Default

boolean false

96 Thinking in Java www.BruceEckel.com

Primitive type Default

char ‘\u0000’ (null)

byte (byte)0

short (short)0

int 0

long 0L

float 0.0f

double 0.0d

Note carefully that the default values are what Java guarantees when the
variable is used as a member of a class. This ensures that member
variables of primitive types will always be initialized (something C++
doesn’t do), reducing a source of bugs. However, this initial value may not
be correct or even legal for the program you are writing. It’s best to always
explicitly initialize your variables. Feedback

This guarantee doesn’t apply to “local” variables—those that are not fields
of a class. Thus, if within a method definition you have:

int x;

Then x will get some arbitrary value (as in C and C++); it will not
automatically be initialized to zero. You are responsible for assigning an
appropriate value before you use x. If you forget, Java definitely improves
on C++: you get a compile-time error telling you the variable might not
have been initialized. (Many C++ compilers will warn you about
uninitialized variables, but in Java these are errors.) Feedback

Methods, arguments,
and return values

In many languages (like C and C++), the term function is used to describe
a named subroutine. The term that is more commonly used in Java is
method, as in “a way to do something.” If you want, you can continue
thinking in terms of functions. It’s really only a syntactic difference, but
this book follows the common Java usage of the term “method.” Feedback

Chapter 2: Everything is an Object 97

Methods in Java determine the messages an object can receive. In this
section you will learn how simple it is to define a method. Feedback

The fundamental parts of a method are the name, the arguments, the
return type, and the body. Here is the basic form:

returnType methodName(/* Argument list */) {
 /* Method body */
}

The return type is the type of the value that pops out of the method after
you call it. The argument list gives the types and names for the
information you want to pass into the method. The method name and
argument list together uniquely identify the method. Feedback

Methods in Java can be created only as part of a class. A method can be
called only for an object2, and that object must be able to perform that
method call. If you try to call the wrong method for an object, you’ll get an
error message at compile time. You call a method for an object by naming
the object followed by a period (dot), followed by the name of the method
and its argument list, like this:

objectName.methodName(arg1, arg2, arg3);

For example, suppose you have a method f() that takes no arguments
and returns a value of type int. Then, if you have an object called a for
which f() can be called, you can say this:

int x = a.f();

The type of the return value must be compatible with the type of x. Feedback

This act of calling a method is commonly referred to as sending a
message to an object. In the above example, the message is f() and the
object is a. Object-oriented programming is often summarized as simply
“sending messages to objects.” Feedback

2 static methods, which you’ll learn about soon, can be called for the class, without an
object.

98 Thinking in Java www.BruceEckel.com

The argument list
The method argument list specifies what information you pass into the
method. As you might guess, this information—like everything else in
Java—takes the form of objects. So, what you must specify in the
argument list are the types of the objects to pass in and the name to use
for each one. As in any situation in Java where you seem to be handing
objects around, you are actually passing references3. The type of the
reference must be correct, however. If the argument is supposed to be a
String, you must pass in a String or the compiler will give an error.
Feedback

Consider a method that takes a String as its argument. Here is the
definition, which must be placed within a class definition for it to be
compiled:

int storage(String s) {
 return s.length() * 2;
}

This method tells you how many bytes are required to hold the
information in a particular String. (Each char in a String is 16 bits, or
two bytes, long, to support Unicode characters.) The argument is of type
String and is called s. Once s is passed into the method, you can treat it
just like any other object. (You can send messages to it.) Here, the
length() method is called, which is one of the methods for Strings; it
returns the number of characters in a string. Feedback

You can also see the use of the return keyword, which does two things.
First, it means “leave the method, I’m done.” Second, if the method
produces a value, that value is placed right after the return statement. In
this case, the return value is produced by evaluating the expression
s.length() * 2. Feedback

3 With the usual exception of the aforementioned “special” data types boolean, char,
byte, short, int, long, float, and double. In general, though, you pass objects, which
really means you pass references to objects.

Chapter 2: Everything is an Object 99

You can return any type you want, but if you don’t want to return
anything at all, you do so by indicating that the method returns void.
Here are some examples:

boolean flag() { return true; }
float naturalLogBase() { return 2.718f; }
void nothing() { return; }
void nothing2() {}

When the return type is void, then the return keyword is used only to
exit the method, and is therefore unnecessary when you reach the end of
the method. You can return from a method at any point, but if you’ve
given a non-void return type then the compiler will force you (with error
messages) to return the appropriate type of value regardless of where you
return. Feedback

At this point, it can look like a program is just a bunch of objects with
methods that take other objects as arguments and send messages to those
other objects. That is indeed much of what goes on, but in the following
chapter you’ll learn how to do the detailed low-level work by making
decisions within a method. For this chapter, sending messages will
suffice. Feedback

Building a Java program
There are several other issues you must understand before seeing your
first Java program. Feedback

Name visibility
A problem in any programming language is the control of names. If you
use a name in one module of the program, and another programmer uses
the same name in another module, how do you distinguish one name
from another and prevent the two names from “clashing?” In C this is a
particular problem because a program is often an unmanageable sea of
names. C++ classes (on which Java classes are based) nest functions
within classes so they cannot clash with function names nested within
other classes. However, C++ still allows global data and global functions,
so clashing is still possible. To solve this problem, C++ introduced
namespaces using additional keywords. Feedback

100 Thinking in Java www.BruceEckel.com

Java was able to avoid all of this by taking a fresh approach. To produce
an unambiguous name for a library, the specifier used is not unlike an
Internet domain name. In fact, the Java creators want you to use your
Internet domain name in reverse since those are guaranteed to be unique.
Since my domain name is BruceEckel.com, my utility library of foibles
would be named com.bruceeckel.utility.foibles. After your reversed
domain name, the dots are intended to represent subdirectories. Feedback

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc.,
were capitalized by convention, so the library would appear:
COM.bruceeckel.utility.foibles. Partway through the development of
Java 2, however, it was discovered that this caused problems, and so now
the entire package name is lowercase. Feedback

This mechanism means that all of your files automatically live in their
own namespaces, and each class within a file must have a unique
identifier. So you do not need to learn special language features to solve
this problem—the language takes care of it for you. Feedback

Using other components
Whenever you want to use a predefined class in your program, the
compiler must know how to locate it. Of course, the class might already
exist in the same source code file that it’s being called from. In that case,
you simply use the class—even if the class doesn’t get defined until later in
the file (Java eliminates the “forward referencing” problem so you don’t
need to think about it). Feedback

What about a class that exists in some other file? You might think that the
compiler should be smart enough to simply go and find it, but there is a
problem. Imagine that you want to use a class with a particular name, but
more than one definition for that class exists (presumably these are
different definitions). Or worse, imagine that you’re writing a program,
and as you’re building it you add a new class to your library that conflicts
with the name of an existing class. Feedback

To solve this problem, you must eliminate all potential ambiguities. This
is accomplished by telling the Java compiler exactly what classes you want
using the import keyword. import tells the compiler to bring in a
package, which is a library of classes. (In other languages, a library could

Chapter 2: Everything is an Object 101

consist of functions and data as well as classes, but remember that all
code in Java must be written inside a class.) Feedback

Most of the time you’ll be using components from the standard Java
libraries that come with your compiler. With these, you don’t need to
worry about long, reversed domain names; you just say, for example:

import java.util.ArrayList;

to tell the compiler that you want to use Java’s ArrayList class. However,
util contains a number of classes and you might want to use several of
them without declaring them all explicitly. This is easily accomplished by
using ‘*’ to indicate a wild card:

import java.util.*;

It is more common to import a collection of classes in this manner than to
import classes individually. Feedback

The static keyword
Ordinarily, when you create a class you are describing how objects of that
class look and how they will behave. You don’t actually get anything until
you create an object of that class with new, and at that point data storage
is created and methods become available. Feedback

But there are two situations in which this approach is not sufficient. One
is if you want to have only one piece of storage for a particular piece of
data, regardless of how many objects are created, or even if no objects are
created. The other is if you need a method that isn’t associated with any
particular object of this class. That is, you need a method that you can call
even if no objects are created. You can achieve both of these effects with
the static keyword. When you say something is static, it means that data
or method is not tied to any particular object instance of that class. So
even if you’ve never created an object of that class you can call a static
method or access a piece of static data. With ordinary, non-static data
and methods you must create an object and use that object to access the
data or method, since non-static data and methods must know the
particular object they are working with. Of course, since static methods
don’t need any objects to be created before they are used, they cannot
directly access non-static members or methods by simply calling those

102 Thinking in Java www.BruceEckel.com

other members without referring to a named object (since non-static
members and methods must be tied to a particular object). Feedback

Some object-oriented languages use the terms class data and class
methods, meaning that the data and methods exist only for the class as a
whole, and not for any particular objects of the class. Sometimes the Java
literature uses these terms too. Feedback

To make a field or method static, you simply place the keyword before
the definition. For example, the following produces a static field and
initializes it: Feedback

class StaticTest {
 static int i = 47;
}

Now even if you make two StaticTest objects, there will still be only one
piece of storage for StaticTest.i. Both objects will share the same i.
Consider: Feedback

StaticTest st1 = new StaticTest();
StaticTest st2 = new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since they
refer to the same piece of memory. Feedback

There are two ways to refer to a static variable. As indicated above, you
can name it via an object, by saying, for example, st2.i. You can also refer
to it directly through its class name, something you cannot do with a non-
static member. (This is the preferred way to refer to a static variable
since it emphasizes that variable’s static nature.) Feedback

StaticTest.i++;

The ++ operator increments the variable. At this point, both st1.i and
st2.i will have the value 48. Feedback

Similar logic applies to static methods. You can refer to a static method
either through an object as you can with any method, or with the special
additional syntax ClassName.method(). You define a static method in
a similar way: Feedback

class StaticFun {

Chapter 2: Everything is an Object 103

 static void incr() { StaticTest.i++; }
}

You can see that the StaticFun method incr() increments the static
data i using the ++ operator. You can call incr() in the typical way,
through an object: Feedback

StaticFun sf = new StaticFun();
sf.incr();

Or, because incr() is a static method, you can call it directly through its
class: Feedback

StaticFun.incr();

While static, when applied to a field, definitely changes the way the data
is created (one for each class vs. the non-static one for each object), when
applied to a method it’s not so dramatic. An important use of static for
methods is to allow you to call that method without creating an object.
This is essential, as we will see, in defining the main() method that is the
entry point for running an application. Feedback

Like any method, a static method can create or use named objects of its
type, so a static method is often used as a “shepherd” for a flock of
instances of its own type. Feedback

Your first Java program
Finally, here’s the first complete program. It starts by printing a string,
and then the date, using the Date class from the Java standard library.
Feedback

// HelloDate.java
import java.util.*;

public class HelloDate {
 public static void main(String[] args) {
 System.out.println("Hello, it's: ");
 System.out.println(new Date());
 }
}

104 Thinking in Java www.BruceEckel.com

At the beginning of each program file, you must place the import
statement to bring in any extra classes you’ll need for the code in that file.
Note that I say “extra.” That’s because there’s a certain library of classes
that are automatically brought into every Java file: java.lang. Start up
your Web browser and look at the documentation from Sun. (If you
haven’t downloaded it from java.sun.com or otherwise installed the Java
documentation, do so now4). If you look at the list of the packages, you’ll
see all the different class libraries that come with Java. Select java.lang.
This will bring up a list of all the classes that are part of that library. Since
java.lang is implicitly included in every Java code file, these classes are
automatically available. There’s no Date class listed in java.lang, which
means you must import another library to use that. If you don’t know the
library where a particular class is, or if you want to see all of the classes,
you can select “Tree” in the Java documentation. Now you can find every
single class that comes with Java. Then you can use the browser’s “find”
function to find Date. When you do you’ll see it listed as java.util.Date,
which lets you know that it’s in the util library and that you must import
java.util.* in order to use Date. Feedback

If you go back to the beginning, select java.lang and then System, you’ll
see that the System class has several fields, and if you select out you’ll
discover that it’s a static PrintStream object. Since it’s static you don’t
need to create anything. The out object is always there and you can just
use it. What you can do with this out object is determined by the type it
is: a PrintStream. Conveniently, PrintStream is shown in the
description as a hyperlink, so if you click on that you’ll see a list of all the
methods you can call for PrintStream. There are quite a few and these
will be covered later in this book. For now all we’re interested in is
println(), which in effect means “print what I’m giving you out to the
console and end with a new line.” Thus, in any Java program you write
you can say System.out.println("things"); whenever you want to
print something to the console. Feedback

4 The Java compiler and documentation from Sun was not included on this book’s CD
because it tends to change regularly. By downloading it yourself you will get the most
recent version.

Chapter 2: Everything is an Object 105

The name of the class is the same as the name of the file. When you’re
creating a stand-alone program such as this one, one of the classes in the
file must have the same name as the file. (The compiler complains if you
don’t do this.) That class must contain a method called main() with this
signature: Feedback

public static void main(String[] args) {

The public keyword means that the method is available to the outside
world (described in detail in Chapter 5). The argument to main() is an
array of String objects. The args won’t be used in this program, but the
Java compiler insists that they be there because they hold the arguments
from the command line. Feedback

The line that prints the date is quite interesting: Feedback

System.out.println(new Date());

The argument is a Date object that is being created just to send its value
to println(). As soon as this statement is finished, that Date is
unnecessary, and the garbage collector can come along and get it anytime.
We don’t need to worry about cleaning it up. Feedback

Compiling and running
To compile and run this program, and all the other programs in this book,
you must first have a Java programming environment. There are a
number of third-party development environments, but in this book we
will assume that you are using the JDK from Sun, which is free. If you are
using another development system5, you will need to look in the
documentation for that system to determine how to compile and run
programs. Feedback

Get on the Internet and go to java.sun.com. There you will find
information and links that will lead you through the process of
downloading and installing the JDK for your particular platform. Feedback

5 IBM’s “jikes” compiler is a common alternative, as it is significantly faster than Sun’s
javac.

106 Thinking in Java www.BruceEckel.com

Once the JDK is installed, and you’ve set up your computer’s path
information so that it will find javac and java, download and unpack the
source code for this book (you can find it on the CD ROM that’s bound in
with this book, or at www.BruceEckel.com). This will create a
subdirectory for each chapter in this book. Move to subdirectory c02 and
type: Feedback

javac HelloDate.java

This command should produce no response. If you get any kind of an
error message it means you haven’t installed the JDK properly and you
need to investigate those problems. Feedback

On the other hand, if you just get your command prompt back, you can
type:

java HelloDate

and you’ll get the message and the date as output. Feedback

This is the process you can use to compile and run each of the programs in
this book. However, you will see that the source code for this book also
has a file called build.xml in each chapter, and this contains “ant”
commands for automatically building the files for that chapter. Buildfiles
and ant (including where to download it) are described more fully in
Chapter 15, but once you have ant installed (from
http://jakarta.apache.org/ant) you can just type ‘ant’ at the command
prompt to compile and run the programs in each chapter. If you haven’t
installed ant yet, you can just type the javac and java commands by
hand. Feedback

Comments and embedded
documentation

There are two types of comments in Java. The first is the traditional C-
style comment that was inherited by C++. These comments begin with a
/* and continue, possibly across many lines, until a */. Note that many
programmers will begin each line of a continued comment with a *, so
you’ll often see:

Chapter 2: Everything is an Object 107

/* This is a comment
 * that continues
 * across lines
 */

Remember, however, that everything inside the /* and */ is ignored, so
there’s no difference in saying: Feedback

/* This is a comment that
continues across lines */

The second form of comment comes from C++. It is the single-line
comment, which starts at a // and continues until the end of the line. This
type of comment is convenient and commonly used because it’s easy. You
don’t need to hunt on the keyboard to find / and then * (instead, you just
press the same key twice), and you don’t need to close the comment. So
you will often see: Feedback

// This is a one-line comment

Comment documentation
One of the better ideas in Java is that writing code isn’t the only important
activity—documenting it is at least as important. Possibly the biggest
problem with documenting code has been maintaining that
documentation. If the documentation and the code are separate, it
becomes a hassle to change the documentation every time you change the
code. The solution seems simple: link the code to the documentation. The
easiest way to do this is to put everything in the same file. To complete the
picture, however, you need a special comment syntax to mark the
documentation, and a tool to extract those comments and put them in a
useful form. This is what Java has done. Feedback

The tool to extract the comments is called javadoc, and it is part of the
JDK installation. It uses some of the technology from the Java compiler to
look for special comment tags that you put in your programs. It not only
extracts the information marked by these tags, but it also pulls out the
class name or method name that adjoins the comment. This way you can
get away with the minimal amount of work to generate decent program
documentation. Feedback

108 Thinking in Java www.BruceEckel.com

The output of javadoc is an HTML file that you can view with your Web
browser. Thus, javadoc allows you to create and maintain a single source
file and automatically generate useful documentation. Because of javadoc
we have a standard for creating documentation, and it’s easy enough that
we can expect or even demand documentation with all Java libraries.
Feedback

In addition, you can write your own javadoc handlers, called doclets, if
you want to perform special operations on the information processed by
javadoc (output in a different format, for example). Doclets are
introduced in Chapter 15. Feedback

What follows is only an introduction and overview of the basics of
javadoc. A thorough description can be found in the JDK documentation
downloadable from java.sun.com (note that this documentation doesn’t
come packed with the JDK; you have to do a separate download to get it).
When you unpack the documentation, look in the “tooldocs” subdirectory
(or follow the “tooldocs” link). Feedback

Syntax
All of the javadoc commands occur only within /** comments. The
comments end with */ as usual. There are two primary ways to use
javadoc: embed HTML, or use “doc tags.” Standalone doc tags are
commands that start with a ‘@’ and are placed at the beginning of a
comment line. (A leading ‘*’, however, is ignored.) Inline doc tags can
appear anywhere within a javadoc comment, also start with a ‘@’ but are
surrounded by curly braces. Feedback

There are three “types” of comment documentation, which correspond to
the element the comment precedes: class, variable, or method. That is, a
class comment appears right before the definition of a class; a variable
comment appears right in front of the definition of a variable, and a
method comment appears right in front of the definition of a method. As a
simple example: Feedback

/** A class comment */
public class docTest {
 /** A variable comment */
 public int i;
 /** A method comment */

Chapter 2: Everything is an Object 109

 public void f() {}
}

Note that javadoc will process comment documentation for only public
and protected members. Comments for private and package-access
members (see Chapter 5) are ignored and you’ll see no output. (However,
you can use the -private flag to include private members as well.) This
makes sense, since only public and protected members are available
outside the file, which is the client programmer’s perspective. However,
all class comments are included in the output. Feedback

The output for the above code is an HTML file that has the same standard
format as all the rest of the Java documentation, so users will be
comfortable with the format and can easily navigate your classes. It’s
worth entering the above code, sending it through javadoc and viewing
the resulting HTML file to see the results. Feedback

Embedded HTML
Javadoc passes HTML commands through to the generated HTML
document. This allows you full use of HTML; however, the primary
motive is to let you format code, such as: Feedback

/**
* <pre>
* System.out.println(new Date());
* </pre>
*/

You can also use HTML just as you would in any other Web document to
format the regular text in your descriptions: Feedback

/**
* You can even insert a list:
*
* Item one
* Item two
* Item three
*
*/

Note that within the documentation comment, asterisks at the beginning
of a line are thrown away by javadoc, along with leading spaces. Javadoc

110 Thinking in Java www.BruceEckel.com

reformats everything so that it conforms to the standard documentation
appearance. Don’t use headings such as <h1> or <hr> as embedded
HTML because javadoc inserts its own headings and yours will interfere
with them. Feedback

All types of comment documentation—class, variable, and method—can
support embedded HTML. Feedback

Some example tags
Here are some of the javadoc tags available for code documentation.
Before trying to do anything serious using javadoc, you should consult the
javadoc reference in the downloadable JDK documentation to get full
coverage of the way to use javadoc. Feedback

@see: referring to other classes
@see tags allow you to refer to the documentation in other classes.
Javadoc will generate HTML with the @see tags hyperlinked to the other
documentation. The forms are: Feedback

@see classname
@see fully-qualified-classname
@see fully-qualified-classname#method-name

Each one adds a hyperlinked “See Also” entry to the generated
documentation. Javadoc will not check the hyperlinks you give it to make
sure they are valid. Feedback

{@link package.class#member label}
Very similar to @see, except that it can be used inline and uses the label
as the hyperlink text rather than “See Also.”

{@docRoot}
Produces the relative path to the documentation root directory. Useful for
explicit hyperlinking to pages in the documentation tree.

{@inheritDoc}
Inherits the documentation from the nearest base class of this class into
the current doc comment.

Chapter 2: Everything is an Object 111

@version
This is of the form:

@version version-information

in which version-information is any significant information you see fit
to include. When the -version flag is placed on the javadoc command
line, the version information will be called out specially in the generated
HTML documentation. Feedback

@author
This is of the form:

@author author-information

in which author-information is, presumably, your name, but it could
also include your email address or any other appropriate information.
When the -author flag is placed on the javadoc command line, the author
information will be called out specially in the generated HTML
documentation. Feedback

You can have multiple author tags for a list of authors, but they must be
placed consecutively. All the author information will be lumped together
into a single paragraph in the generated HTML. Feedback

@since
This tag allows you to indicate the version of this code that began using a
particular feature. You’ll see it appearing in the HTML Java
documentation to indicate what version of the JDK is used. Feedback

@param
This is used for method documentation, and is of the form:

@param parameter-name description

in which parameter-name is the identifier in the method parameter
list, and description is text that can continue on subsequent lines. The
description is considered finished when a new documentation tag is

112 Thinking in Java www.BruceEckel.com

encountered. You can have any number of these, presumably one for each
parameter. Feedback

@return
This is used for method documentation, and looks like this:

@return description

in which description gives you the meaning of the return value. It can
continue on subsequent lines. Feedback

@throws
Exceptions will be demonstrated in Chapter 9, but briefly they are objects
that can be “thrown” out of a method if that method fails. Although only
one exception object can emerge when you call a method, a particular
method might produce any number of different types of exceptions, all of
which need descriptions. So the form for the exception tag is:

@throws fully-qualified-class-name description

in which fully-qualified-class-name gives an unambiguous name of an
exception class that’s defined somewhere, and description (which can
continue on subsequent lines) tells you why this particular type of
exception can emerge from the method call. Feedback

@deprecated
This is used to indicate features that were superseded by an improved
feature. The deprecated tag is a suggestion that you no longer use this
particular feature, since sometime in the future it is likely to be removed.
A method that is marked @deprecated causes the compiler to issue a
warning if it is used. Feedback

Documentation example
 Here is the first Java program again, this time with documentation
comments added:

//: c02:HelloDate.java
import java.util.*;

Chapter 2: Everything is an Object 113

/** The first Thinking in Java example program.
 * Displays a string and today's date.
 * @author Bruce Eckel
 * @author www.BruceEckel.com
 * @version 2.0
*/
public class HelloDate {
 /** Sole entry point to class & application
 * @param args array of string arguments
 * @return No return value
 * @exception exceptions No exceptions thrown
 */
 public static void main(String[] args) {
 System.out.println("Hello, it's: ");
 System.out.println(new Date());
 }
} ///:~

The first line of the file uses my own technique of putting a ‘//:’ as a
special marker for the comment line containing the source file name. That
line contains the path information to the file (in this case, c02 indicates
Chapter 2) followed by the file name6. The last line also finishes with a
comment, and this one (‘///:~’) indicates the end of the source code
listing, which allows it to be automatically updated into the text of this
book after being checked with a compiler and executed. Feedback

Coding style
The style described in the Code Conventions for the Java Programming
Language7 is to capitalize the first letter of a class name. If the class name
consists of several words, they are run together (that is, you don’t use

6 Originally, I created a tool using Python (see www.Python.org) uses this information to
extract the code files, put them in appropriate subdirectories, and create makefiles. In this
edition, all the files are stored in CVS and automatically incorporated into this book using
a VBA (Visual Basic for Applications) macro. This new approach seems to work much
better in terms of code maintenance, mostly because of CVS.

7 http://java.sun.com/docs/codeconv/index.html. To preserve space in this book and
seminar presentations, not all of these guidelines could be followed.

114 Thinking in Java www.BruceEckel.com

underscores to separate the names), and the first letter of each embedded
word is capitalized, such as: Feedback

class AllTheColorsOfTheRainbow { // ...

This is sometimes called “camel-casing.” For almost everything else:
methods, fields (member variables), and object reference names, the
accepted style is just as it is for classes except that the first letter of the
identifier is lowercase. For example: Feedback

class AllTheColorsOfTheRainbow {
 int anIntegerRepresentingColors;
 void changeTheHueOfTheColor(int newHue) {
 // ...
 }
 // ...
}

Of course, you should remember that the user must also type all these
long names, and so be merciful. Feedback

The Java code you will see in the Sun libraries also follows the placement
of open-and-close curly braces that you see used in this book. Feedback

Summary
The goal of this chapter is just enough Java to understand how to write a
simple program. You’ve also gotten an overview of the language and some
of its basic ideas. However, the examples so far have all been of the form
“do this, then do that, then do something else.” What if you want the
program to make choices, such as “if the result of doing this is red, do
that; if not, then do something else”? The support in Java for this
fundamental programming activity will be covered in the next chapter.
Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

Chapter 2: Everything is an Object 115

1. Following the HelloDate.java example in this chapter, create a
“hello, world” program that simply prints out that statement. You
need only a single method in your class (the “main” one that gets
executed when the program starts). Remember to make it static
and to include the argument list, even though you don’t use the
argument list. Compile the program with javac and run it using
java. If you are using a different development environment than
the JDK, learn how to compile and run programs in that
environment. Feedback

2. Find the code fragments involving ATypeName and turn them
into a program that compiles and runs. Feedback

3. Turn the DataOnly code fragments into a program that compiles
and runs. Feedback

4. Modify Exercise 3 so that the values of the data in DataOnly are
assigned to and printed in main(). Feedback

5. Write a program that includes and calls the storage() method
defined as a code fragment in this chapter. Feedback

6. Turn the StaticFun code fragments into a working program.
Feedback

7. Write a program that prints three arguments taken from the
command line. To do this, you’ll need to index into the command-
line array of Strings. Feedback

8. Turn the AllTheColorsOfTheRainbow example into a program
that compiles and runs. Feedback

9. Find the code for the second version of HelloDate.java, which is
the simple comment documentation example. Execute javadoc
on the file and view the results with your Web browser. Feedback

10. Turn docTest into a file that compiles and then run it through
javadoc. Verify the resulting documentation with your Web
browser. Feedback

116 Thinking in Java www.BruceEckel.com

11. Add an HTML list of items to the documentation in Exercise 10.
Feedback

12. Take the program in Exercise 1 and add comment documentation
to it. Extract this comment documentation into an HTML file
using javadoc and view it with your Web browser. Feedback

13. In Chapter 4, locate the Overloading.java example and add
jabadoc documentation. Extract this comment documentation into
an HTML file using javadoc and view it with your Web browser.
Feedback

 117

3: Controlling
Program Flow

Like a sentient creature, a program must manipulate its
world and make choices during execution.

In Java you manipulate data using operators, and you make choices with
execution control statements. Java was inherited from C++, so most of
these statements and operators will be familiar to C and C++
programmers. Java has also added some improvements and
simplifications. Feedback

If you find yourself floundering a bit in this chapter, make sure you go
through the multimedia CD ROM bound into this book: Foundations for
Java. It contains audio lectures, slides, exercises, and solutions
specifically designed to bring you up to speed with the fundamentals
necessary to learn Java. Feedback

Using Java operators
An operator takes one or more arguments and produces a new value. The
arguments are in a different form than ordinary method calls, but the
effect is the same. Addition (+), subtraction and unary minus (-),
multiplication (*), division (/), and assignment (=) all work much the
same in any programming language. Feedback

All operators produce a value from their operands. In addition, an
operator can change the value of an operand. This is called a side effect.
The most common use for operators that modify their operands is to
generate the side effect, but you should keep in mind that the value
produced is available for your use just as in operators without side effects.
Feedback

118 Thinking in Java www.BruceEckel.com

Almost all operators work only with primitives. The exceptions are ‘=’,
‘==’ and ‘!=’, which work with all objects (and are a point of confusion for
objects). In addition, the String class supports ‘+’ and ‘+=’. Feedback

Precedence
Operator precedence defines how an expression evaluates when several
operators are present. Java has specific rules that determine the order of
evaluation. The easiest one to remember is that multiplication and
division happen before addition and subtraction. Programmers often
forget the other precedence rules, so you should use parentheses to make
the order of evaluation explicit. For example: Feedback

a = x + y - 2/2 + z;

has a very different meaning from the same statement with a particular
grouping of parentheses: Feedback

a = x + (y - 2)/(2 + z);

Assignment
Assignment is performed with the operator =. It means “take the value of
the right-hand side (often called the rvalue) and copy it into the left-hand
side (often called the lvalue).” An rvalue is any constant, variable or
expression that can produce a value, but an lvalue must be a distinct,
named variable. (That is, there must be a physical space to store the
value.) For instance, you can assign a constant value to a variable:

a = 4;

but you cannot assign anything to constant value—it cannot be an lvalue.
(You can’t say 4 = a;.) Feedback

Assignment of primitives is quite straightforward. Since the primitive
holds the actual value and not a reference to an object, when you assign
primitives you copy the contents from one place to another. For example,
if you say a = b for primitives, then the contents of b are copied into a. If
you then go on to modify a, b is naturally unaffected by this modification.
As a programmer, this is what you’ve come to expect for most situations.
Feedback

Chapter 3: Controlling Program Flow 119

When you assign objects, however, things change. Whenever you
manipulate an object, what you’re manipulating is the reference, so when
you assign “from one object to another” you’re actually copying a
reference from one place to another. This means that if you say c = d for
objects, you end up with both c and d pointing to the object that,
originally, only d pointed to. Here’s an example that demonstrates this
behavior: Feedback

//: c03:Assignment.java
// Assignment with objects is a bit tricky.
import com.bruceeckel.simpletest.*;

class Number {
 int i;
}

public class Assignment {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Number n1 = new Number();
 Number n2 = new Number();
 n1.i = 9;
 n2.i = 47;
 System.out.println("1: n1.i: " + n1.i +
 ", n2.i: " + n2.i);
 n1 = n2;
 System.out.println("2: n1.i: " + n1.i +
 ", n2.i: " + n2.i);
 n1.i = 27;
 System.out.println("3: n1.i: " + n1.i +
 ", n2.i: " + n2.i);
 monitor.expect(new String[] {
 "1: n1.i: 9, n2.i: 47",
 "2: n1.i: 47, n2.i: 47",
 "3: n1.i: 27, n2.i: 27"
 });
 }
} ///:~

First, notice that something new has been added. The line:

import com.bruceeckel.simpletest.*;

120 Thinking in Java www.BruceEckel.com

Imports the “simpletest” library that has been created to test the code in
this book, and is explained in Chapter 15. At the beginning of the
Assignment class, you see the line:

 static Test monitor = new Test();

This creates an instance of the simpletest class Test, called monitor.
Finally, at the end of main(), you see the statement:

 monitor.expect(new String[] {
 "1: n1.i: 9, n2.i: 47",
 "2: n1.i: 47, n2.i: 47",
 "3: n1.i: 27, n2.i: 27"
 });

This is the expected output of the program, expressed as an array of
String objects. When the program is run, it not only prints out the
output, but it compares it to this array to verify that the array is correct.
Thus, when you see a program in this book that uses simpletest, you will
also see an expect() call that will show you what the output of the
program is. This way, you see validated output from the program.

The Number class is simple, and two instances of it (n1 and n2) are
created within main(). The i value within each Number is given a
different value, and then n2 is assigned to n1, and n1 is changed. In many
programming languages you would expect n1 and n2 to be independent
at all times, but because you’ve assigned a reference, you’ll see the output
in the expect() statement. Changing the n1 object appears to change the
n2 object as well! This is because both n1 and n2 contain the same
reference, which is pointing to the same object. (The original reference
that was in n1, that pointed to the object holding a value of 9, was
overwritten during the assignment and effectively lost; its object will be
cleaned up by the garbage collector.) Feedback

This phenomenon is often called aliasing and it’s a fundamental way that
Java works with objects. But what if you don’t want aliasing to occur in
this case? You could forego the assignment and say: Feedback

n1.i = n2.i;

This retains the two separate objects instead of tossing one and tying n1
and n2 to the same object, but you’ll soon realize that manipulating the

Chapter 3: Controlling Program Flow 121

fields within objects is messy and goes against good object-oriented
design principles. This is a nontrivial topic, so it is left for Appendix A,
which is devoted to aliasing. In the meantime, you should keep in mind
that assignment for objects can add surprises. Feedback

Aliasing during method calls
Aliasing will also occur when you pass an object into a method:

//: c03:PassObject.java
// Passing objects to methods may not be what
// you're used to.
import com.bruceeckel.simpletest.*;

class Letter {
 char c;
}

public class PassObject {
 static Test monitor = new Test();
 static void f(Letter y) {
 y.c = 'z';
 }
 public static void main(String[] args) {
 Letter x = new Letter();
 x.c = 'a';
 System.out.println("1: x.c: " + x.c);
 f(x);
 System.out.println("2: x.c: " + x.c);
 monitor.expect(new String[] {
 "1: x.c: a",
 "2: x.c: z"
 });
 }
} ///:~

In many programming languages, the method f() would appear to be
making a copy of its argument Letter y inside the scope of the method.
But once again a reference is being passed so the line Feedback

y.c = 'z';

is actually changing the object outside of f(). The output in the expect()
statement shows this. Feedback

122 Thinking in Java www.BruceEckel.com

Aliasing and its solution is a complex issue and, although you must wait
until Appendix A for all the answers, you should be aware of it at this
point so you can watch for pitfalls. Feedback

Mathematical operators
The basic mathematical operators are the same as the ones available in
most programming languages: addition (+), subtraction (-), division (/),
multiplication (*) and modulus (%, which produces the remainder from
integer division). Integer division truncates, rather than rounds, the
result. Feedback

Java also uses a shorthand notation to perform an operation and an
assignment at the same time. This is denoted by an operator followed by
an equal sign, and is consistent with all the operators in the language
(whenever it makes sense). For example, to add 4 to the variable x and
assign the result to x, use: x += 4. Feedback

This example shows the use of the mathematical operators:

//: c03:MathOps.java
// Demonstrates the mathematical operators.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class MathOps {
 static Test monitor = new Test();
 // Shorthand to print a string and an int:
 static void printInt(String s, int i) {
 System.out.println(s + " = " + i);
 }
 // Shorthand to print a string and a float:
 static void printFloat(String s, float f) {
 System.out.println(s + " = " + f);
 }
 public static void main(String[] args) {
 // Create a random number generator,
 // seeds with current time by default:
 Random rand = new Random();
 int i, j, k;
 // Choose value from 0 to 99:
 j = rand.nextInt(100);
 k = rand.nextInt(100);

Chapter 3: Controlling Program Flow 123

 printInt("j", j); printInt("k", k);
 i = j + k; printInt("j + k", i);
 i = j - k; printInt("j - k", i);
 i = k / j; printInt("k / j", i);
 i = k * j; printInt("k * j", i);
 i = k % j; printInt("k % j", i);
 j %= k; printInt("j %= k", j);
 // Floating-point number tests:
 float u,v,w; // applies to doubles, too
 v = rand.nextFloat();
 w = rand.nextFloat();
 printFloat("v", v); printFloat("w", w);
 u = v + w; printFloat("v + w", u);
 u = v - w; printFloat("v - w", u);
 u = v * w; printFloat("v * w", u);
 u = v / w; printFloat("v / w", u);
 // the following also works for
 // char, byte, short, int, long,
 // and double:
 u += v; printFloat("u += v", u);
 u -= v; printFloat("u -= v", u);
 u *= v; printFloat("u *= v", u);
 u /= v; printFloat("u /= v", u);
 monitor.expect(new String[] {
 "%% j = -?\\d+",
 "%% k = -?\\d+",
 "%% j \\+ k = -?\\d+",
 "%% j - k = -?\\d+",
 "%% k / j = -?\\d+",
 "%% k * j = -?\\d+",
 "%% k % j = -?\\d+",
 "%% j %= k = -?\\d+",
 "%% v = -?\\d+\\.\\d+(E-?\\d)?",
 "%% w = -?\\d+\\.\\d+(E-?\\d)?",
 "%% v \\+ w = -?\\d+\\.\\d+(E-?\\d)??",
 "%% v - w = -?\\d+\\.\\d+(E-?\\d)??",
 "%% v * w = -?\\d+\\.\\d+(E-?\\d)??",
 "%% v / w = -?\\d+\\.\\d+(E-?\\d)??",
 "%% u \\+= v = -?\\d+\\.\\d+(E-?\\d)??",
 "%% u -= v = -?\\d+\\.\\d+(E-?\\d)??",
 "%% u *= v = -?\\d+\\.\\d+(E-?\\d)??",
 "%% u /= v = -?\\d+\\.\\d+(E-?\\d)??"
 });
 }

124 Thinking in Java www.BruceEckel.com

} ///:~

The first thing you will see are some shorthand methods for printing: the
printInt() prints a String followed by an int and the pringFloat()
prints a String followed by a float. Feedback

To generate numbers, the program first creates a Random object.
Because no arguments are passed during creation, Java uses the current
time as a seed for the random number generator. The program generates
a number of different types of random numbers with the Random object
simply by calling the methods: nextInt() and nextFloat() (you can
also call nextLong() or nextDouble()). Feedback

The modulus operator, when used with the result of the random number
generator, limits the result to an upper bound of the operand minus one
(99 in this case). Feedback

Regular expressions
Since random numbers are used to generate the output for this program,
the expect() statement can’t just show literal output as it did before,
since the output will vary from one run to the next. To solve this problem,
regular expressions, a new feature introduced in Java JDK 1.4 (but an old
feature in languages like Perl and Python) will be used inside the
expect() statement. Although coverage of this intensely powerful tool
doesn’t occur until Chapter 12, to understand these statements you’ll need
an introduction to regular expressions. Here, you’ll learn just enough to
read the expect() statements, but if you want a full description, look up
java.util.regex.Pattern in the downloadable JDK documentation.
Feedback

A regular expression is a way to describe strings in general terms, so that
you can say: “if a string has these things in it, then it matches what I’m
looking for.” For example, to say that a number might or might not be
preceded by a minus sign, you put in the minus sign followed by a
question mark, like this: Feedback

-?

To describe an integer, you say that it’s one more digits. In regular
expressions, a digit is ‘\d’, but in a Java String you have to “escape” the

Chapter 3: Controlling Program Flow 125

backslash by putting in a second backslash: ‘\\d’. To indicate “one or
more of the preceding expression” in regular expressions, you use the ‘+’.
So to say “possibly a minus sign, followed by one or more digits,” you
write: Feedback

-?\\d+

Which you can see in the first lines of the expect() statement, above.

One thing that is not part of the regular expression syntax is the ‘%% ’
(note the space included for readability) at the beginning of the lines in
the expect() statement. This is a flag used by simpletest to indicate
that the rest of the line is a regular expression. So you won’t see it in
normal regular expressions, only in simpletest expect() statements.
Feedback

Any other characters that are not special characters to regular expression
searches are treated as exact matches. So in the first line:

%% j = -?\\d+

The ‘j = ’ is matched exactly. However, in the third line the ‘+’ in ‘j + k’
must be escaped because it is a special regular expression character, as is
‘*’. The rest of the lines should be understandable from this introduction.
Later in the book, when additional features of regular expressions are
used inside expect() statements, they will be explained. Feedback

Unary minus and plus operators
The unary minus (-) and unary plus (+) are the same operators as binary
minus and plus. The compiler figures out which use is intended by the
way you write the expression. For instance, the statement Feedback

x = -a;

has an obvious meaning. The compiler is able to figure out: Feedback

x = a * -b;

but the reader might get confused, so it is clearer to say: Feedback

x = a * (-b);

126 Thinking in Java www.BruceEckel.com

Unary minus inverts the sign on the data. Unary plus provides symmetry
with unary minus, although it doesn’t have any effect. Feedback

Auto increment and decrement
Java, like C, is full of shortcuts. Shortcuts can make code much easier to
type, and either easier or harder to read. Feedback

Two of the nicer shortcuts are the increment and decrement operators
(often referred to as the auto-increment and auto-decrement operators).
The decrement operator is -- and means “decrease by one unit.” The
increment operator is ++ and means “increase by one unit.” If a is an int,
for example, the expression ++a is equivalent to (a = a + 1). Increment
and decrement operators not only modify the variable, but also produce
the value of the variable as a result. Feedback

There are two versions of each type of operator, often called the prefix and
postfix versions. Pre-increment means the ++ operator appears before
the variable or expression, and post-increment means the ++ operator
appears after the variable or expression. Similarly, pre-decrement means
the -- operator appears before the variable or expression, and post-
decrement means the -- operator appears after the variable or expression.
For pre-increment and pre-decrement, (i.e., ++a or --a), the operation is
performed and the value is produced. For post-increment and post-
decrement (i.e. a++ or a--), the value is produced, then the operation is
performed. As an example: Feedback

//: c03:AutoInc.java
// Demonstrates the ++ and -- operators.
import com.bruceeckel.simpletest.*;

public class AutoInc {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int i = 1;
 System.out.println("i : " + i);
 System.out.println("++i : " + ++i); // Pre-increment
 System.out.println("i++ : " + i++); // Post-increment
 System.out.println("i : " + i);
 System.out.println("--i : " + --i); // Pre-decrement
 System.out.println("i-- : " + i--); // Post-decrement
 System.out.println("i : " + i);

Chapter 3: Controlling Program Flow 127

 monitor.expect(new String[] {
 "i : 1",
 "++i : 2",
 "i++ : 2",
 "i : 3",
 "--i : 2",
 "i-- : 2",
 "i : 1"
 });
 }
} ///:~

You can see that for the prefix form you get the value after the operation
has been performed, but with the postfix form you get the value before the
operation is performed. These are the only operators (other than those
involving assignment) that have side effects. (That is, they change the
operand rather than using just its value.) Feedback

The increment operator is one explanation for the name C++, implying
“one step beyond C.” In an early Java speech, Bill Joy (one of the Java
creators), said that “Java=C++--” (C plus plus minus minus), suggesting
that Java is C++ with the unnecessary hard parts removed and therefore a
much simpler language. As you progress in this book you’ll see that many
parts are simpler, and yet Java isn’t that much easier than C++. Feedback

Relational operators
Relational operators generate a boolean result. They evaluate the
relationship between the values of the operands. A relational expression
produces true if the relationship is true, and false if the relationship is
untrue. The relational operators are less than (<), greater than (>), less
than or equal to (<=), greater than or equal to (>=), equivalent (==) and
not equivalent (!=). Equivalence and nonequivalence work with all built-
in data types, but the other comparisons won’t work with type boolean.
Feedback

Testing object equivalence
The relational operators == and != also work with all objects, but their
meaning often confuses the first-time Java programmer. Here’s an
example: Feedback

128 Thinking in Java www.BruceEckel.com

//: c03:Equivalence.java
import com.bruceeckel.simpletest.*;

public class Equivalence {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Integer n1 = new Integer(47);
 Integer n2 = new Integer(47);
 System.out.println(n1 == n2);
 System.out.println(n1 != n2);
 monitor.expect(new String[] {
 "false",
 "true"
 });
 }
} ///:~

The expression System.out.println(n1 == n2) will print the result of
the boolean comparison within it. Surely the output should be true and
then false, since both Integer objects are the same. But while the
contents of the objects are the same, the references are not the same and
the operators == and != compare object references. So the output is
actually false and then true. Naturally, this surprises people at first.
Feedback

What if you want to compare the actual contents of an object for
equivalence? You must use the special method equals() that exists for
all objects (not primitives, which work fine with == and !=). Here’s how
it’s used: Feedback

//: c03:EqualsMethod.java
import com.bruceeckel.simpletest.*;

public class EqualsMethod {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Integer n1 = new Integer(47);
 Integer n2 = new Integer(47);
 System.out.println(n1.equals(n2));
 monitor.expect(new String[] {
 "true"
 });
 }

Chapter 3: Controlling Program Flow 129

} ///:~

The result will be true, as you would expect. Ah, but it’s not as simple as
that. If you create your own class, like this: Feedback

//: c03:EqualsMethod2.java
import com.bruceeckel.simpletest.*;

class Value {
 int i;
}

public class EqualsMethod2 {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Value v1 = new Value();
 Value v2 = new Value();
 v1.i = v2.i = 100;
 System.out.println(v1.equals(v2));
 monitor.expect(new String[] {
 "false"
 });
 }
} ///:~

you’re back to square one: the result is false. This is because the default
behavior of equals() is to compare references. So unless you override
equals() in your new class you won’t get the desired behavior.
Unfortunately, you won’t learn about overriding until Chapter 7, but being
aware of the way equals() behaves might save you some grief in the
meantime. Feedback

Most of the Java library classes implement equals() so that it compares
the contents of objects instead of their references. Feedback

Logical operators
Each of the logical operators AND (&&), OR (||) and NOT (!) produces a
boolean value of true or false based on the logical relationship of its
arguments. This example uses the relational and logical operators: Feedback

//: c03:Bool.java
// Relational and logical operators.
import com.bruceeckel.simpletest.*;

130 Thinking in Java www.BruceEckel.com

import java.util.*;

public class Bool {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Random rand = new Random();
 int i = rand.nextInt(100);
 int j = rand.nextInt(100);
 System.out.println("i = " + i);
 System.out.println("j = " + j);
 System.out.println("i > j is " + (i > j));
 System.out.println("i < j is " + (i < j));
 System.out.println("i >= j is " + (i >= j));
 System.out.println("i <= j is " + (i <= j));
 System.out.println("i == j is " + (i == j));
 System.out.println("i != j is " + (i != j));
 // Treating an int as a boolean is not legal Java:
//! System.out.println("i && j is " + (i && j));
//! System.out.println("i || j is " + (i || j));
//! System.out.println("!i is " + !i);
 System.out.println("(i < 10) && (j < 10) is "
 + ((i < 10) && (j < 10)));
 System.out.println("(i < 10) || (j < 10) is "
 + ((i < 10) || (j < 10)));
 monitor.expect(new String[] {
 "%% i = -?\\d+",
 "%% j = -?\\d+",
 "%% i > j is (true|false)",
 "%% i < j is (true|false)",
 "%% i >= j is (true|false)",
 "%% i <= j is (true|false)",
 "%% i == j is (true|false)",
 "%% i != j is (true|false)",
 "%% \\(i < 10\\) && \\(j < 10\\) is (true|false)",
 "%% \\(i < 10\\) \\|\\| \\(j < 10\\) is (true|false)"
 });
 }
} ///:~

In the above regular expressions in the expect() statement, parentheses
have the effect of grouping an expression, and the vertical bar ‘|’ means
OR. So:

(true|false)

Chapter 3: Controlling Program Flow 131

Means that this part of the string may be either ‘true’ or ‘false’. Because
these characters are special in regular expressions, they must be escaped
with a ‘\\’ if you want them to appear as ordinary characters in the
expression. Feedback

You can apply AND, OR, or NOT to boolean values only. You can’t use a
non-boolean as if it were a boolean in a logical expression as you can in
C and C++. You can see the failed attempts at doing this commented out
with a //! comment marker. The subsequent expressions, however,
produce boolean values using relational comparisons, then use logical
operations on the results. Feedback

Note that a boolean value is automatically converted to an appropriate
text form if it’s used where a String is expected. Feedback

You can replace the definition for int in the above program with any other
primitive data type except boolean. Be aware, however, that the
comparison of floating-point numbers is very strict. A number that is the
tiniest fraction different from another number is still “not equal.” A
number that is the tiniest bit above zero is still nonzero. Feedback

Short-circuiting
When dealing with logical operators you run into a phenomenon called
“short circuiting.” This means that the expression will be evaluated only
until the truth or falsehood of the entire expression can be unambiguously
determined. As a result, all the parts of a logical expression might not be
evaluated. Here’s an example that demonstrates short-circuiting:

//: c03:ShortCircuit.java
// Demonstrates short-circuiting behavior.
// with logical operators.
import com.bruceeckel.simpletest.*;

public class ShortCircuit {
 static Test monitor = new Test();
 static boolean test1(int val) {
 System.out.println("test1(" + val + ")");
 System.out.println("result: " + (val < 1));
 return val < 1;
 }
 static boolean test2(int val) {

132 Thinking in Java www.BruceEckel.com

 System.out.println("test2(" + val + ")");
 System.out.println("result: " + (val < 2));
 return val < 2;
 }
 static boolean test3(int val) {
 System.out.println("test3(" + val + ")");
 System.out.println("result: " + (val < 3));
 return val < 3;
 }
 public static void main(String[] args) {
 if(test1(0) && test2(2) && test3(2))
 System.out.println("expression is true");
 else
 System.out.println("expression is false");
 monitor.expect(new String[] {
 "test1(0)",
 "result: true",
 "test2(2)",
 "result: false",
 "expression is false"
 });
 }
} ///:~

Each test performs a comparison against the argument and returns true
or false. It also prints information to show you that it’s being called. The
tests are used in the expression: Feedback

if(test1(0) && test2(2) && test3(2))

You might naturally think that all three tests would be executed, but the
output shows otherwise. The first test produced a true result, so the
expression evaluation continues. However, the second test produced a
false result. Since this means that the whole expression must be false,
why continue evaluating the rest of the expression? It could be expensive.
The reason for short-circuiting, in fact, is that you can get a potential
performance increase if all the parts of a logical expression do not need to
be evaluated. Feedback

Bitwise operators
The bitwise operators allow you to manipulate individual bits in an
integral primitive data type. Bitwise operators perform Boolean algebra

Chapter 3: Controlling Program Flow 133

on the corresponding bits in the two arguments to produce the result.
Feedback

The bitwise operators come from C’s low-level orientation: you were often
manipulating hardware directly and had to set the bits in hardware
registers. Java was originally designed to be embedded in TV set-top
boxes, so this low-level orientation still made sense. However, you
probably won’t use the bitwise operators much. Feedback

The bitwise AND operator (&) produces a one in the output bit if both
input bits are one; otherwise it produces a zero. The bitwise OR operator
(|) produces a one in the output bit if either input bit is a one and
produces a zero only if both input bits are zero. The bitwise EXCLUSIVE
OR, or XOR (^), produces a one in the output bit if one or the other input
bit is a one, but not both. The bitwise NOT (~, also called the ones
complement operator) is a unary operator; it takes only one argument.
(All other bitwise operators are binary operators.) Bitwise NOT produces
the opposite of the input bit—a one if the input bit is zero, a zero if the
input bit is one. Feedback

The bitwise operators and logical operators use the same characters, so it
is helpful to have a mnemonic device to help you remember the meanings:
since bits are “small,” there is only one character in the bitwise operators.
Feedback

Bitwise operators can be combined with the = sign to unite the operation
and assignment: &=, |= and ^= are all legitimate. (Since ~ is a unary
operator it cannot be combined with the = sign.) Feedback

The boolean type is treated as a one-bit value so it is somewhat different.
You can perform a bitwise AND, OR and XOR, but you can’t perform a
bitwise NOT (presumably to prevent confusion with the logical NOT). For
booleans the bitwise operators have the same effect as the logical
operators except that they do not short circuit. Also, bitwise operations on
booleans include an XOR logical operator that is not included under the
list of “logical” operators. You’re prevented from using booleans in shift
expressions, which are described next. Feedback

134 Thinking in Java www.BruceEckel.com

Shift operators
The shift operators also manipulate bits. They can be used solely with
primitive, integral types. The left-shift operator (<<) produces the
operand to the left of the operator shifted to the left by the number of bits
specified after the operator (inserting zeroes at the lower-order bits). The
signed right-shift operator (>>) produces the operand to the left of the
operator shifted to the right by the number of bits specified after the
operator. The signed right shift >> uses sign extension: if the value is
positive, zeroes are inserted at the higher-order bits; if the value is
negative, ones are inserted at the higher-order bits. Java has also added
the unsigned right shift >>>, which uses zero extension: regardless of the
sign, zeroes are inserted at the higher-order bits. This operator does not
exist in C or C++. Feedback

If you shift a char, byte, or short, it will be promoted to int before the
shift takes place, and the result will be an int. Only the five low-order bits
of the right-hand side will be used. This prevents you from shifting more
than the number of bits in an int. If you’re operating on a long, you’ll get
a long result. Only the six low-order bits of the right-hand side will be
used so you can’t shift more than the number of bits in a long. Feedback

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The
lvalue is replaced by the lvalue shifted by the rvalue. There is a problem,
however, with the unsigned right shift combined with assignment. If you
use it with byte or short you don’t get the correct results. Instead, these
are promoted to int and right shifted, but then truncated as they are
assigned back into their variables, so you get -1 in those cases. The
following example demonstrates this: Feedback

//: c03:URShift.java
// Test of unsigned right shift.
import com.bruceeckel.simpletest.*;

public class URShift {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int i = -1;
 System.out.println(i >>>= 10);
 long l = -1;
 System.out.println(l >>>= 10);

Chapter 3: Controlling Program Flow 135

 short s = -1;
 System.out.println(s >>>= 10);
 byte b = -1;
 System.out.println(b >>>= 10);
 b = -1;
 System.out.println(b>>>10);
 monitor.expect(new String[] {
 "4194303",
 "18014398509481983",
 "-1",
 "-1",
 "4194303"
 });
 }
} ///:~

In the last shift, the resulting value is not assigned back into b, but is
printed directly and so the correct behavior occurs. Feedback

Here’s an example that demonstrates the use of all the operators involving
bits:

//: c03:BitManipulation.java
// Using the bitwise operators.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class BitManipulation {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Random rand = new Random();
 int i = rand.nextInt();
 int j = rand.nextInt();
 printBinaryInt("-1", -1);
 printBinaryInt("+1", +1);
 int maxpos = 2147483647;
 printBinaryInt("maxpos", maxpos);
 int maxneg = -2147483648;
 printBinaryInt("maxneg", maxneg);
 printBinaryInt("i", i);
 printBinaryInt("~i", ~i);
 printBinaryInt("-i", -i);
 printBinaryInt("j", j);
 printBinaryInt("i & j", i & j);
 printBinaryInt("i | j", i | j);

136 Thinking in Java www.BruceEckel.com

 printBinaryInt("i ^ j", i ^ j);
 printBinaryInt("i << 5", i << 5);
 printBinaryInt("i >> 5", i >> 5);
 printBinaryInt("(~i) >> 5", (~i) >> 5);
 printBinaryInt("i >>> 5", i >>> 5);
 printBinaryInt("(~i) >>> 5", (~i) >>> 5);

 long l = rand.nextLong();
 long m = rand.nextLong();
 printBinaryLong("-1L", -1L);
 printBinaryLong("+1L", +1L);
 long ll = 9223372036854775807L;
 printBinaryLong("maxpos", ll);
 long lln = -9223372036854775808L;
 printBinaryLong("maxneg", lln);
 printBinaryLong("l", l);
 printBinaryLong("~l", ~l);
 printBinaryLong("-l", -l);
 printBinaryLong("m", m);
 printBinaryLong("l & m", l & m);
 printBinaryLong("l | m", l | m);
 printBinaryLong("l ^ m", l ^ m);
 printBinaryLong("l << 5", l << 5);
 printBinaryLong("l >> 5", l >> 5);
 printBinaryLong("(~l) >> 5", (~l) >> 5);
 printBinaryLong("l >>> 5", l >>> 5);
 printBinaryLong("(~l) >>> 5", (~l) >>> 5);
 monitor.expect("BitManipulation.out");
 }
 static void printBinaryInt(String s, int i) {
 System.out.println(
 s + ", int: " + i + ", binary: ");
 System.out.print(" ");
 for(int j = 31; j >=0; j--)
 if(((1 << j) & i) != 0)
 System.out.print("1");
 else
 System.out.print("0");
 System.out.println();
 }
 static void printBinaryLong(String s, long l) {
 System.out.println(
 s + ", long: " + l + ", binary: ");
 System.out.print(" ");

Chapter 3: Controlling Program Flow 137

 for(int i = 63; i >=0; i--)
 if(((1L << i) & l) != 0)
 System.out.print("1");
 else
 System.out.print("0");
 System.out.println();
 }
} ///:~

The two methods at the end, printBinaryInt() and
printBinaryLong(), take an int or a long, respectively, and print it out
in binary format along with a descriptive string. You can ignore the
implementation of these for now. Feedback

You’ll note the use of System.out.print() instead of
System.out.println(). The print() method does not emit a new line,
so it allows you to output a line in pieces. Feedback

In this case, the expect() statement takes a file name, from which it
reads the expected lines (which may or may not include regular
expressions). This is useful in situations where the output is too long or
inappropriate to include in the book. The files ending with “.out” are part
of the code distribution, available for download from
www.BruceEckel.com, so you can open the file and look at it to see what
the output should be (or simply run the program yourself). Feedback

As well as demonstrating the effect of all the bitwise operators for int and
long, this example also shows the minimum, maximum, +1 and -1 values
for int and long so you can see what they look like. Note that the high bit
represents the sign: 0 means positive and 1 means negative. The output
for the int portion looks like this:

-1, int: -1, binary:
 11111111111111111111111111111111
+1, int: 1, binary:
 00000000000000000000000000000001
maxpos, int: 2147483647, binary:
 01111111111111111111111111111111
maxneg, int: -2147483648, binary:
 10000000000000000000000000000000
i, int: 59081716, binary:
 00000011100001011000001111110100
~i, int: -59081717, binary:

138 Thinking in Java www.BruceEckel.com

 11111100011110100111110000001011
-i, int: -59081716, binary:
 11111100011110100111110000001100
j, int: 198850956, binary:
 00001011110110100011100110001100
i & j, int: 58720644, binary:
 00000011100000000000000110000100
i | j, int: 199212028, binary:
 00001011110111111011101111111100
i ^ j, int: 140491384, binary:
 00001000010111111011101001111000
i << 5, int: 1890614912, binary:
 01110000101100000111111010000000
i >> 5, int: 1846303, binary:
 00000000000111000010110000011111
(~i) >> 5, int: -1846304, binary:
 11111111111000111101001111100000
i >>> 5, int: 1846303, binary:
 00000000000111000010110000011111
(~i) >>> 5, int: 132371424, binary:
 00000111111000111101001111100000

The binary representation of the numbers is referred to as signed two’s
complement. Feedback

Ternary if-else operator
This operator is unusual because it has three operands. It is truly an
operator because it produces a value, unlike the ordinary if-else statement
that you’ll see in the next section of this chapter. The expression is of the
form: Feedback

boolean-exp ? value0 : value1

If boolean-exp evaluates to true, value0 is evaluated and its result
becomes the value produced by the operator. If boolean-exp is false,
value1 is evaluated and its result becomes the value produced by the
operator. Feedback

Of course, you could use an ordinary if-else statement (described later),
but the ternary operator is much terser. Although C (where this operator
originated) prides itself on being a terse language, and the ternary
operator might have been introduced partly for efficiency, you should be

Chapter 3: Controlling Program Flow 139

somewhat wary of using it on an everyday basis—it’s easy to produce
unreadable code. Feedback

The conditional operator can be used for its side effects or for the value it
produces, but in general you want the value since that’s what makes the
operator distinct from the if-else. Here’s an example: Feedback

static int ternary(int i) {
 return i < 10 ? i * 100 : i * 10;
}

You can see that this code is more compact than what you’d need to write
without the ternary operator: Feedback

static int alternative(int i) {
 if (i < 10)
 return i * 100;
 else
 return i * 10;
}

The second form is easier to understand, and doesn’t require a lot more
typing. So be sure to ponder your reasons when choosing the ternary
operator—it’s generally warranted when you’re setting a variable to one of
two values. Feedback

The comma operator
The comma is used in C and C++ not only as a separator in function
argument lists, but also as an operator for sequential evaluation. The sole
place that the comma operator is used in Java is in for loops, which will
be described later in this chapter. Feedback

String operator +
There’s one special usage of an operator in Java: the + operator can be
used to concatenate strings, as you’ve already seen. It seems a natural use
of the + even though it doesn’t fit with the traditional way that + is used.
This capability seemed like a good idea in C++, so operator overloading
was added to C++ to allow the C++ programmer to add meanings to
almost any operator. Unfortunately, operator overloading combined with
some of the other restrictions in C++ turns out to be a fairly complicated

140 Thinking in Java www.BruceEckel.com

feature for programmers to design into their classes. Although operator
overloading would have been much simpler to implement in Java than it
was in C++, this feature was still considered too complex, so Java
programmers cannot implement their own overloaded operators as C++
programmers can. Feedback

The use of the String + has some interesting behavior. If an expression
begins with a String, then all operands that follow must be Strings
(remember that the compiler will turn a quoted sequence of characters
into a String): Feedback

int x = 0, y = 1, z = 2;
String sString = "x, y, z ";
System.out.println(sString + x + y + z);

Here, the Java compiler will convert x, y, and z into their String
representations instead of adding them together first. And if you say:

System.out.println(x + sString);

Java will turn x into a String. Feedback

Common pitfalls when using
operators
One of the pitfalls when using operators is trying to get away without
parentheses when you are even the least bit uncertain about how an
expression will evaluate. This is still true in Java. Feedback

An extremely common error in C and C++ looks like this:

while(x = y) {
 //
}

The programmer was clearly trying to test for equivalence (==) rather
than do an assignment. In C and C++ the result of this assignment will
always be true if y is nonzero, and you’ll probably get an infinite loop. In
Java, the result of this expression is not a boolean, but the compiler
expects a boolean and won’t convert from an int, so it will conveniently
give you a compile-time error and catch the problem before you ever try to
run the program. So the pitfall never happens in Java. (The only time you

Chapter 3: Controlling Program Flow 141

won’t get a compile-time error is when x and y are boolean, in which
case x = y is a legal expression, and in the above case, probably an error.)
Feedback

A similar problem in C and C++ is using bitwise AND and OR instead of
the logical versions. Bitwise AND and OR use one of the characters (& or
|) while logical AND and OR use two (&& and ||). Just as with = and ==,
it’s easy to type just one character instead of two. In Java, the compiler
again prevents this because it won’t let you cavalierly use one type where
it doesn’t belong. Feedback

Casting operators
The word cast is used in the sense of “casting into a mold.” Java will
automatically change one type of data into another when appropriate. For
instance, if you assign an integral value to a floating-point variable, the
compiler will automatically convert the int to a float. Casting allows you
to make this type conversion explicit, or to force it when it wouldn’t
normally happen. Feedback

To perform a cast, put the desired data type (including all modifiers)
inside parentheses to the left of any value. Here’s an example:

void casts() {
 int i = 200;
 long l = (long)i;
 long l2 = (long)200;
}

As you can see, it’s possible to perform a cast on a numeric value as well
as on a variable. In both casts shown here, however, the cast is
superfluous, since the compiler will automatically promote an int value to
a long when necessary. However, you are allowed to use superfluous
casts to make a point or to make your code more clear. In other situations,
a cast may be essential just to get the code to compile. Feedback

In C and C++, casting can cause some headaches. In Java, casting is safe,
with the exception that when you perform a so-called narrowing
conversion (that is, when you go from a data type that can hold more
information to one that doesn’t hold as much) you run the risk of losing
information. Here the compiler forces you to do a cast, in effect saying

142 Thinking in Java www.BruceEckel.com

“this can be a dangerous thing to do—if you want me to do it anyway you
must make the cast explicit.” With a widening conversion an explicit cast
is not needed because the new type will more than hold the information
from the old type so that no information is ever lost. Feedback

Java allows you to cast any primitive type to any other primitive type,
except for boolean, which doesn’t allow any casting at all. Class types do
not allow casting. To convert one to the other there must be special
methods. (String is a special case, and you’ll find out later in this book
that objects can be cast within a family of types; an Oak can be cast to a
Tree and vice-versa, but not to a foreign type such as a Rock.) Feedback

Literals
Ordinarily when you insert a literal value into a program the compiler
knows exactly what type to make it. Sometimes, however, the type is
ambiguous. When this happens you must guide the compiler by adding
some extra information in the form of characters associated with the
literal value. The following code shows these characters: Feedback

//: c03:Literals.java

public class Literals {
 char c = 0xffff; // max char hex value
 byte b = 0x7f; // max byte hex value
 short s = 0x7fff; // max short hex value
 int i1 = 0x2f; // Hexadecimal (lowercase)
 int i2 = 0X2F; // Hexadecimal (uppercase)
 int i3 = 0177; // Octal (leading zero)
 // Hex and Oct also work with long.
 long n1 = 200L; // long suffix
 long n2 = 200l; // long suffix
 long n3 = 200;
 //! long l6(200); // not allowed
 float f1 = 1;
 float f2 = 1F; // float suffix
 float f3 = 1f; // float suffix
 float f4 = 1e-45f; // 10 to the power
 float f5 = 1e+9f; // float suffix
 double d1 = 1d; // double suffix
 double d2 = 1D; // double suffix
 double d3 = 47e47d; // 10 to the power
} ///:~

Chapter 3: Controlling Program Flow 143

Hexadecimal (base 16), which works with all the integral data types, is
denoted by a leading 0x or 0X followed by 0-9 and a-f either in upper or
lowercase. If you try to initialize a variable with a value bigger than it can
hold (regardless of the numerical form of the value), the compiler will give
you an error message. Notice in the above code the maximum possible
hexadecimal values for char, byte, and short. If you exceed these, the
compiler will automatically make the value an int and tell you that you
need a narrowing cast for the assignment. You’ll know you’ve stepped
over the line. Feedback

Octal (base 8) is denoted by a leading zero in the number and digits from
0-7. There is no literal representation for binary numbers in C, C++ or
Java. Feedback

A trailing character after a literal value establishes its type. Upper or
lowercase L means long, upper or lowercase F means float and upper or
lowercase D means double. Feedback

Exponents use a notation that I’ve always found rather dismaying: 1.39 e-
47f. In science and engineering, ‘e’ refers to the base of natural
logarithms, approximately 2.718. (A more precise double value is
available in Java as Math.E.) This is used in exponentiation expressions
such as 1.39 x e-47, which means 1.39 x 2.718-47. However, when FORTRAN
was invented they decided that e would naturally mean “ten to the
power,” which is an odd decision because FORTRAN was designed for
science and engineering and one would think its designers would be
sensitive about introducing such an ambiguity.1 At any rate, this custom

1 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620.
At that time, and throughout the 1960s and into the 1970s, FORTRAN was an all
uppercase language. This probably started because many of the early input devices were
old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’
in the exponential notation was also always upper case and was never confused with the
natural logarithm base ‘e’, which is always lowercase. The ‘E’ simply stood for exponential,
which was for the base of the number system used—usually 10. At the time octal was also
widely used by programmers. Although I never saw it used, if I had seen an octal number
in exponential notation I would have considered it to be base 8. The first time I remember
seeing an exponential using a lowercase ‘e’ was in the late 1970s and I also found it
confusing. The problem arose as lowercase crept into FORTRAN, not at its beginning. We
actually had functions to use if you really wanted to use the natural logarithm base, but
they were all uppercase.”

144 Thinking in Java www.BruceEckel.com

was followed in C, C++ and now Java. So if you’re used to thinking in
terms of e as the base of natural logarithms, you must do a mental
translation when you see an expression such as 1.39 e-47f in Java; it
means 1.39 x 10-47. Feedback

Note that you don’t need to use the trailing character when the compiler
can figure out the appropriate type. With Feedback

long n3 = 200;

there’s no ambiguity, so an L after the 200 would be superfluous.
However, with Feedback

float f4 = 1e-47f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without
the trailing f it will give you an error telling you that you must use a cast
to convert double to float. Feedback

Promotion
You’ll discover that if you perform any mathematical or bitwise operations
on primitive data types that are smaller than an int (that is, char, byte,
or short), those values will be promoted to int before performing the
operations, and the resulting value will be of type int. So if you want to
assign back into the smaller type, you must use a cast. (And, since you’re
assigning back into a smaller type, you might be losing information.) In
general, the largest data type in an expression is the one that determines
the size of the result of that expression; if you multiply a float and a
double, the result will be double; if you add an int and a long, the
result will be long. Feedback

Java has no “sizeof”
In C and C++, the sizeof() operator satisfies a specific need: it tells you
the number of bytes allocated for data items. The most compelling need
for sizeof() in C and C++ is portability. Different data types might be
different sizes on different machines, so the programmer must find out
how big those types are when performing operations that are sensitive to
size. For example, one computer might store integers in 32 bits, whereas
another might store integers as 16 bits. Programs could store larger values

Chapter 3: Controlling Program Flow 145

in integers on the first machine. As you might imagine, portability is a
huge headache for C and C++ programmers. Feedback

Java does not need a sizeof() operator for this purpose because all the
data types are the same size on all machines. You do not need to think
about portability on this level—it is designed into the language. Feedback

Precedence revisited
Upon hearing me complain about the complexity of remembering
operator precedence during one of my seminars, a student suggested a
mnemonic that is simultaneously a commentary: “Ulcer Addicts Really
Like C A lot.”

Mnemonic Operator type Operators

Ulcer Unary + - ++--

Addicts Arithmetic (and shift) * / % + - << >>

Really Relational > < >= <= == !=

Like Logical (and bitwise) && || & | ^

C Conditional (ternary) A > B ? X : Y

A Lot Assignment = (and compound
assignment like *=)

Of course, with the shift and bitwise operators distributed around the
table it is not a perfect mnemonic, but for non-bit operations it works.

A compendium of operators
The following example shows which primitive data types can be used with
particular operators. Basically, it is the same example repeated over and
over, but using different primitive data types. The file will compile
without error because the lines that would cause errors are commented
out with a //!. Feedback

//: c03:AllOps.java
// Tests all the operators on all the primitive data types
// to show which ones are accepted by the Java compiler.

public class AllOps {

146 Thinking in Java www.BruceEckel.com

 // To accept the results of a boolean test:
 void f(boolean b) {}
 void boolTest(boolean x, boolean y) {
 // Arithmetic operators:
 //! x = x * y;
 //! x = x / y;
 //! x = x % y;
 //! x = x + y;
 //! x = x - y;
 //! x++;
 //! x--;
 //! x = +y;
 //! x = -y;
 // Relational and logical:
 //! f(x > y);
 //! f(x >= y);
 //! f(x < y);
 //! f(x <= y);
 f(x == y);
 f(x != y);
 f(!y);
 x = x && y;
 x = x || y;
 // Bitwise operators:
 //! x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 //! x += y;
 //! x -= y;
 //! x *= y;
 //! x /= y;
 //! x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:

Chapter 3: Controlling Program Flow 147

 //! char c = (char)x;
 //! byte B = (byte)x;
 //! short s = (short)x;
 //! int i = (int)x;
 //! long l = (long)x;
 //! float f = (float)x;
 //! double d = (double)x;
 }
 void charTest(char x, char y) {
 // Arithmetic operators:
 x = (char)(x * y);
 x = (char)(x / y);
 x = (char)(x % y);
 x = (char)(x + y);
 x = (char)(x - y);
 x++;
 x--;
 x = (char)+y;
 x = (char)-y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x= (char)~y;
 x = (char)(x & y);
 x = (char)(x | y);
 x = (char)(x ^ y);
 x = (char)(x << 1);
 x = (char)(x >> 1);
 x = (char)(x >>> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;

148 Thinking in Java www.BruceEckel.com

 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void byteTest(byte x, byte y) {
 // Arithmetic operators:
 x = (byte)(x* y);
 x = (byte)(x / y);
 x = (byte)(x % y);
 x = (byte)(x + y);
 x = (byte)(x - y);
 x++;
 x--;
 x = (byte)+ y;
 x = (byte)- y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = (byte)~y;
 x = (byte)(x & y);
 x = (byte)(x | y);
 x = (byte)(x ^ y);
 x = (byte)(x << 1);
 x = (byte)(x >> 1);
 x = (byte)(x >>> 1);
 // Compound assignment:

Chapter 3: Controlling Program Flow 149

 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void shortTest(short x, short y) {
 // Arithmetic operators:
 x = (short)(x * y);
 x = (short)(x / y);
 x = (short)(x % y);
 x = (short)(x + y);
 x = (short)(x - y);
 x++;
 x--;
 x = (short)+y;
 x = (short)-y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = (short)~y;
 x = (short)(x & y);

150 Thinking in Java www.BruceEckel.com

 x = (short)(x | y);
 x = (short)(x ^ y);
 x = (short)(x << 1);
 x = (short)(x >> 1);
 x = (short)(x >>> 1);
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;
 byte B = (byte)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void intTest(int x, int y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);

Chapter 3: Controlling Program Flow 151

 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 long l = (long)x;
 float f = (float)x;
 double d = (double)x;
 }
 void longTest(long x, long y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:

152 Thinking in Java www.BruceEckel.com

 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 x = ~y;
 x = x & y;
 x = x | y;
 x = x ^ y;
 x = x << 1;
 x = x >> 1;
 x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 x <<= 1;
 x >>= 1;
 x >>>= 1;
 x &= y;
 x ^= y;
 x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 float f = (float)x;
 double d = (double)x;
 }
 void floatTest(float x, float y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;

Chapter 3: Controlling Program Flow 153

 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;
 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;
 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 double d = (double)x;
 }

154 Thinking in Java www.BruceEckel.com

 void doubleTest(double x, double y) {
 // Arithmetic operators:
 x = x * y;
 x = x / y;
 x = x % y;
 x = x + y;
 x = x - y;
 x++;
 x--;
 x = +y;
 x = -y;
 // Relational and logical:
 f(x > y);
 f(x >= y);
 f(x < y);
 f(x <= y);
 f(x == y);
 f(x != y);
 //! f(!x);
 //! f(x && y);
 //! f(x || y);
 // Bitwise operators:
 //! x = ~y;
 //! x = x & y;
 //! x = x | y;
 //! x = x ^ y;
 //! x = x << 1;
 //! x = x >> 1;
 //! x = x >>> 1;
 // Compound assignment:
 x += y;
 x -= y;
 x *= y;
 x /= y;
 x %= y;
 //! x <<= 1;
 //! x >>= 1;
 //! x >>>= 1;
 //! x &= y;
 //! x ^= y;
 //! x |= y;
 // Casting:
 //! boolean b = (boolean)x;
 char c = (char)x;

Chapter 3: Controlling Program Flow 155

 byte B = (byte)x;
 short s = (short)x;
 int i = (int)x;
 long l = (long)x;
 float f = (float)x;
 }
} ///:~

Note that boolean is quite limited. You can assign to it the values true
and false, and you can test it for truth or falsehood, but you cannot add
booleans or perform any other type of operation on them. Feedback

In char, byte, and short you can see the effect of promotion with the
arithmetic operators. Each arithmetic operation on any of those types
results in an int result, which must be explicitly cast back to the original
type (a narrowing conversion that might lose information) to assign back
to that type. With int values, however, you do not need to cast, because
everything is already an int. Don’t be lulled into thinking everything is
safe, though. If you multiply two ints that are big enough, you’ll overflow
the result. The following example demonstrates this: Feedback

//: c03:Overflow.java
// Surprise! Java lets you overflow.
import com.bruceeckel.simpletest.*;

public class Overflow {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int big = 0x7fffffff; // max int value
 System.out.println("big = " + big);
 int bigger = big * 4;
 System.out.println("bigger = " + bigger);
 monitor.expect(new String[] {
 "big = 2147483647",
 "bigger = -4"
 });
 }
} ///:~

You get no errors or warnings from the compiler, and no exceptions at run
time. Java is good, but it’s not that good. Feedback

156 Thinking in Java www.BruceEckel.com

Compound assignments do not require casts for char, byte, or short,
even though they are performing promotions that have the same results
as the direct arithmetic operations. On the other hand, the lack of the cast
certainly simplifies the code. Feedback

You can see that, with the exception of boolean, any primitive type can
be cast to any other primitive type. Again, you must be aware of the effect
of a narrowing conversion when casting to a smaller type, otherwise you
might unknowingly lose information during the cast. Feedback

Execution control
Java uses all of C’s execution control statements, so if you’ve programmed
with C or C++ then most of what you see will be familiar. Most procedural
programming languages have some kind of control statements, and there
is often overlap among languages. In Java, the keywords include if-else,
while, do-while, for, and a selection statement called switch. Java
does not, however, support the much-maligned goto (which can still be
the most expedient way to solve certain types of problems). You can still
do a goto-like jump, but it is much more constrained than a typical goto.
Feedback

true and false
All conditional statements use the truth or falsehood of a conditional
expression to determine the execution path. An example of a conditional
expression is A == B. This uses the conditional operator == to see if the
value of A is equivalent to the value of B. The expression returns true or
false. Any of the relational operators you’ve seen earlier in this chapter
can be used to produce a conditional statement. Note that Java doesn’t
allow you to use a number as a boolean, even though it’s allowed in C
and C++ (where truth is nonzero and falsehood is zero). If you want to use
a non-boolean in a boolean test, such as if(a), you must first convert it
to a boolean value using a conditional expression, such as if(a != 0).
Feedback

Chapter 3: Controlling Program Flow 157

if-else
The if-else statement is probably the most basic way to control program
flow. The else is optional, so you can use if in two forms:

if(Boolean-expression)
 statement

or

if(Boolean-expression)
 statement
else
 statement

The conditional must produce a boolean result. The statement is either a
simple statement terminated by a semicolon or a compound statement,
which is a group of simple statements enclosed in braces. Any time the
word “statement” is used, it always implies that the statement can be
simple or compound. Feedback

As an example of if-else, here is a test() method that will tell you
whether a guess is above, below, or equivalent to a target number:

//: c03:IfElse.java
import com.bruceeckel.simpletest.*;

public class IfElse {
 static Test monitor = new Test();
 static int test(int testval, int target) {
 int result = 0;
 if(testval > target)
 result = +1;
 else if(testval < target)
 result = -1;
 else
 result = 0; // Match
 return result;
 }
 public static void main(String[] args) {
 System.out.println(test(10, 5));
 System.out.println(test(5, 10));
 System.out.println(test(5, 5));
 monitor.expect(new String[] {

158 Thinking in Java www.BruceEckel.com

 "1",
 "-1",
 "0"
 });
 }
} ///:~

It is conventional to indent the body of a control flow statement so the
reader can easily determine where it begins and ends.

return
The return keyword has two purposes: it specifies what value a method
will return (if it doesn’t have a void return value) and it causes that value
to be returned immediately. The test() method above can be rewritten to
take advantage of this: Feedback

//: c03:IfElse2.java
import com.bruceeckel.simpletest.*;

public class IfElse2 {
 static Test monitor = new Test();
 static int test(int testval, int target) {
 if(testval > target)
 return +1;
 else if(testval < target)
 return -1;
 else
 return 0; // Match
 }
 public static void main(String[] args) {
 System.out.println(test(10, 5));
 System.out.println(test(5, 10));
 System.out.println(test(5, 5));
 monitor.expect(new String[] {
 "1",
 "-1",
 "0"
 });
 }
} ///:~

There’s no need for else because the method will not continue after
executing a return. Feedback

Chapter 3: Controlling Program Flow 159

Iteration
while, do-while and for control looping and are sometimes classified as
iteration statements. A statement repeats until the controlling Boolean-
expression evaluates to false. The form for a while loop is

while(Boolean-expression)
 statement

The Boolean-expression is evaluated once at the beginning of the loop
and again before each further iteration of the statement. Feedback

Here’s a simple example that generates random numbers until a
particular condition is met:

//: c03:WhileTest.java
// Demonstrates the while loop.
import com.bruceeckel.simpletest.*;

public class WhileTest {
 static Test monitor = new Test();
 public static void main(String[] args) {
 double r = 0;
 while(r < 0.99d) {
 r = Math.random();
 System.out.println(r);
 monitor.expect(new String[] {
 "%% \\d\\.\\d+E?-?\\d*"
 }, Test.AT_LEAST);
 }
 }
} ///:~

This uses the static method random() in the Math library, which
generates a double value between 0 and 1. (It includes 0, but not 1.) The
conditional expression for the while says “keep doing this loop until the
number is 0.99 or greater.” Each time you run this program you’ll get a
different-sized list of numbers. Feedback

In the expect() statement, you see the Test.AT_LEAST flag following
the expected list of strings. The expect() statement can include several
different flags to modify its behavior; this one says that expect() should

160 Thinking in Java www.BruceEckel.com

see at least the lines shown, but others may also appear (which it ignores).
Here, it says “you should see at least one double value.” Feedback

do-while
The form for do-while is

do
 statement
while(Boolean-expression);

The sole difference between while and do-while is that the statement of
the do-while always executes at least once, even if the expression
evaluates to false the first time. In a while, if the conditional is false the
first time the statement never executes. In practice, do-while is less
common than while. Feedback

for
A for loop performs initialization before the first iteration. Then it
performs conditional testing and, at the end of each iteration, some form
of “stepping.” The form of the for loop is:

for(initialization; Boolean-expression; step)
 statement

Any of the expressions initialization, Boolean-expression or step can be
empty. The expression is tested before each iteration, and as soon as it
evaluates to false, execution will continue at the line following the for
statement. At the end of each loop, the step executes. Feedback

for loops are usually used for “counting” tasks:

//: c03:ListCharacters.java
// Demonstrates "for" loop by listing
// all the lowercase ASCII letters.
import com.bruceeckel.simpletest.*;

public class ListCharacters {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 128; i++)
 if(Character.isLowerCase((char)i))
 System.out.println("value: " + i +

Chapter 3: Controlling Program Flow 161

 " character: " + (char)i);
 monitor.expect(new String[] {
 "value: 97 character: a",
 "value: 98 character: b",
 "value: 99 character: c",
 "value: 100 character: d",
 "value: 101 character: e",
 "value: 102 character: f",
 "value: 103 character: g",
 "value: 104 character: h",
 "value: 105 character: i",
 "value: 106 character: j",
 "value: 107 character: k",
 "value: 108 character: l",
 "value: 109 character: m",
 "value: 110 character: n",
 "value: 111 character: o",
 "value: 112 character: p",
 "value: 113 character: q",
 "value: 114 character: r",
 "value: 115 character: s",
 "value: 116 character: t",
 "value: 117 character: u",
 "value: 118 character: v",
 "value: 119 character: w",
 "value: 120 character: x",
 "value: 121 character: y",
 "value: 122 character: z"
 });
 }
} ///:~

Note that the variable i is defined at the point where it is used, inside the
control expression of the for loop, rather than at the beginning of the
block denoted by the open curly brace. The scope of i is the expression
controlled by the for. Feedback

This program also uses the java.lang.Character “wrapper” class, which
not only wraps the primitive char type in an object, but also provides
other utilities. Here, the static isLowerCase() method is used to detect
whether the character in question is a lower-case letter. Feedback

Traditional procedural languages like C require that all variables be
defined at the beginning of a block so when the compiler creates a block it

162 Thinking in Java www.BruceEckel.com

can allocate space for those variables. In Java and C++ you can spread
your variable declarations throughout the block, defining them at the
point that you need them. This allows a more natural coding style and
makes code easier to understand. Feedback

You can define multiple variables within a for statement, but they must
be of the same type:

for(int i = 0, j = 1;
 i < 10 && j != 11;
 i++, j++)
 /* body of for loop */;

The int definition in the for statement covers both i and j. The ability to
define variables in the control expression is limited to the for loop. You
cannot use this approach with any of the other selection or iteration
statements. Feedback

The comma operator
Earlier in this chapter I stated that the comma operator (not the comma
separator, which is used to separate definitions and method arguments)
has only one use in Java: in the control expression of a for loop. In both
the initialization and step portions of the control expression you can have
a number of statements separated by commas, and those statements will
be evaluated sequentially. The previous bit of code uses this ability. Here’s
another example:

//: c03:CommaOperator.java
import com.bruceeckel.simpletest.*;

public class CommaOperator {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 1, j = i + 10; i < 5;
 i++, j = i * 2) {
 System.out.println("i= " + i + " j= " + j);
 }
 monitor.expect(new String[] {
 "i= 1 j= 11",
 "i= 2 j= 4",
 "i= 3 j= 6",
 "i= 4 j= 8"

Chapter 3: Controlling Program Flow 163

 });
 }
} ///:~

You can see that in both the initialization and step portions the
statements are evaluated in sequential order. Also, the initialization
portion can have any number of definitions of one type. Feedback

break and continue
Inside the body of any of the iteration statements you can also control the
flow of the loop by using break and continue. break quits the loop
without executing the rest of the statements in the loop. continue stops
the execution of the current iteration and goes back to the beginning of
the loop to begin the next iteration. Feedback

This program shows examples of break and continue within for and
while loops:

//: c03:BreakAndContinue.java
// Demonstrates break and continue keywords.
import com.bruceeckel.simpletest.*;

public class BreakAndContinue {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 100; i++) {
 if(i == 74) break; // Out of for loop
 if(i % 9 != 0) continue; // Next iteration
 System.out.println(i);
 }
 int i = 0;
 // An "infinite loop":
 while(true) {
 i++;
 int j = i * 27;
 if(j == 1269) break; // Out of loop
 if(i % 10 != 0) continue; // Top of loop
 System.out.println(i);
 }
 monitor.expect(new String[] {
 "0",
 "9",
 "18",

164 Thinking in Java www.BruceEckel.com

 "27",
 "36",
 "45",
 "54",
 "63",
 "72",
 "10",
 "20",
 "30",
 "40"
 });
 }
} ///:~

In the for loop the value of i never gets to 100 because the break
statement breaks out of the loop when i is 74. Normally, you’d use a
break like this only if you didn’t know when the terminating condition
was going to occur. The continue statement causes execution to go back
to the top of the iteration loop (thus incrementing i) whenever i is not
evenly divisible by 9. When it is, the value is printed. Feedback

The second portion shows an “infinite loop” that would, in theory,
continue forever. However, inside the loop there is a break statement
that will break out of the loop. In addition, you’ll see that the continue
moves back to the top of the loop without completing the remainder.
(Thus printing happens in the second loop only when the value of i is
divisible by 10.) In the output, The value 0 is printed because 0 % 9
produces 0. Feedback

A second form of the infinite loop is for(;;). The compiler treats both
while(true) and for(;;) in the same way so whichever one you use is a
matter of programming taste. Feedback

The infamous “goto”
The goto keyword has been present in programming languages from the
beginning. Indeed, goto was the genesis of program control in assembly
language: “if condition A, then jump here, otherwise jump there.” If you
read the assembly code that is ultimately generated by virtually any
compiler, you’ll see that program control contains many jumps (the Java
compiler produces its own “assembly code,” but this code is run by the
Java Virtual Machine rather than directly on a hardware CPU).

Chapter 3: Controlling Program Flow 165

A goto is a jump at the source-code level, and that’s what brought it into
disrepute. If a program will always jump from one point to another, isn’t
there some way to reorganize the code so the flow of control is not so
jumpy? goto fell into true disfavor with the publication of the famous
“Goto considered harmful” paper by Edsger Dijkstra, and since then goto-
bashing has been a popular sport, with advocates of the cast-out keyword
scurrying for cover. Feedback

As is typical in situations like this, the middle ground is the most fruitful.
The problem is not the use of goto, but the overuse of goto—in rare
situations goto is actually the best way to structure control flow. Feedback

Although goto is a reserved word in Java, it is not used in the language;
Java has no goto. However, it does have something that looks a bit like a
jump tied in with the break and continue keywords. It’s not a jump but
rather a way to break out of an iteration statement. The reason it’s often
thrown in with discussions of goto is because it uses the same
mechanism: a label. Feedback

A label is an identifier followed by a colon, like this:

label1:

The only place a label is useful in Java is right before an iteration
statement. And that means right before—it does no good to put any other
statement between the label and the iteration. And the sole reason to put
a label before an iteration is if you’re going to nest another iteration or a
switch inside it. That’s because the break and continue keywords will
normally interrupt only the current loop, but when used with a label
they’ll interrupt the loops up to where the label exists: Feedback

label1:
outer-iteration {
 inner-iteration {
 //…
 break; // 1
 //…
 continue; // 2
 //…
 continue label1; // 3
 //…
 break label1; // 4

166 Thinking in Java www.BruceEckel.com

 }
}

In case 1, the break breaks out of the inner iteration and you end up in
the outer iteration. In case 2, the continue moves back to the beginning
of the inner iteration. But in case 3, the continue label1 breaks out of
the inner iteration and the outer iteration, all the way back to label1.
Then it does in fact continue the iteration, but starting at the outer
iteration. In case 4, the break label1 also breaks all the way out to
label1, but it does not re-enter the iteration. It actually does break out of
both iterations. Feedback

Here is an example using for loops:

//: c03:LabeledFor.java
// Java's "labeled for" loop.
import com.bruceeckel.simpletest.*;

public class LabeledFor {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int i = 0;
 outer: // Can't have statements here
 for(; true ;) { // infinite loop
 inner: // Can't have statements here
 for(; i < 10; i++) {
 System.out.println("i = " + i);
 if(i == 2) {
 System.out.println("continue");
 continue;
 }
 if(i == 3) {
 System.out.println("break");
 i++; // Otherwise i never
 // gets incremented.
 break;
 }
 if(i == 7) {
 System.out.println("continue outer");
 i++; // Otherwise i never
 // gets incremented.
 continue outer;
 }
 if(i == 8) {

Chapter 3: Controlling Program Flow 167

 System.out.println("break outer");
 break outer;
 }
 for(int k = 0; k < 5; k++) {
 if(k == 3) {
 System.out.println("continue inner");
 continue inner;
 }
 }
 }
 }
 // Can't break or continue
 // to labels here
 monitor.expect(new String[] {
 "i = 0",
 "continue inner",
 "i = 1",
 "continue inner",
 "i = 2",
 "continue",
 "i = 3",
 "break",
 "i = 4",
 "continue inner",
 "i = 5",
 "continue inner",
 "i = 6",
 "continue inner",
 "i = 7",
 "continue outer",
 "i = 8",
 "break outer"
 });
 }
} ///:~

Note that break breaks out of the for loop, and that the increment-
expression doesn’t occur until the end of the pass through the for loop.
Since break skips the increment expression, the increment is performed
directly in the case of i == 3. The continue outer statement in the case
of i == 7 also goes to the top of the loop and also skips the increment, so
it too is incremented directly. Feedback

168 Thinking in Java www.BruceEckel.com

If not for the break outer statement, there would be no way to get out of
the outer loop from within an inner loop, since break by itself can break
out of only the innermost loop. (The same is true for continue.) Feedback

Of course, in the cases where breaking out of a loop will also exit the
method, you can simply use a return. Feedback

Here is a demonstration of labeled break and continue statements with
while loops:

//: c03:LabeledWhile.java
// Java's "labeled while" loop.
import com.bruceeckel.simpletest.*;

public class LabeledWhile {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int i = 0;
 outer:
 while(true) {
 System.out.println("Outer while loop");
 while(true) {
 i++;
 System.out.println("i = " + i);
 if(i == 1) {
 System.out.println("continue");
 continue;
 }
 if(i == 3) {
 System.out.println("continue outer");
 continue outer;
 }
 if(i == 5) {
 System.out.println("break");
 break;
 }
 if(i == 7) {
 System.out.println("break outer");
 break outer;
 }
 }
 }
 monitor.expect(new String[] {
 "Outer while loop",

Chapter 3: Controlling Program Flow 169

 "i = 1",
 "continue",
 "i = 2",
 "i = 3",
 "continue outer",
 "Outer while loop",
 "i = 4",
 "i = 5",
 "break",
 "Outer while loop",
 "i = 6",
 "i = 7",
 "break outer"
 });
 }
} ///:~

The same rules hold true for while: Feedback

1. A plain continue goes to the top of the innermost loop and
continues.

2. A labeled continue goes to the label and re-enters the loop right
after that label.

3. A break “drops out of the bottom” of the loop.

4. A labeled break drops out of the bottom of the end of the loop
denoted by the label.

It’s important to remember that the only reason to use labels in Java is
when you have nested loops and you want to break or continue through
more than one nested level. Feedback

In Dijkstra’s “goto considered harmful” paper, what he specifically
objected to was the labels, not the goto. He observed that the number of
bugs seems to increase with the number of labels in a program. Labels
and gotos make programs difficult to analyze statically, since it introduces
cycles in the program execution graph. Note that Java labels don’t suffer
from this problem, since they are constrained in their placement and can’t
be used to transfer control in an ad hoc manner. It’s also interesting to
note that this is a case where a language feature is made more useful by
restricting the power of the statement. Feedback

170 Thinking in Java www.BruceEckel.com

switch
The switch is sometimes classified as a selection statement. The switch
statement selects from among pieces of code based on the value of an
integral expression. Its form is: Feedback

switch(integral-selector) {
 case integral-value1 : statement; break;
 case integral-value2 : statement; break;
 case integral-value3 : statement; break;
 case integral-value4 : statement; break;
 case integral-value5 : statement; break;
 // ...
 default: statement;
}

Integral-selector is an expression that produces an integral value. The
switch compares the result of integral-selector to each integral-value. If
it finds a match, the corresponding statement (simple or compound)
executes. If no match occurs, the default statement executes. Feedback

You will notice in the above definition that each case ends with a break,
which causes execution to jump to the end of the switch body. This is the
conventional way to build a switch statement, but the break is optional.
If it is missing, the code for the following case statements execute until a
break is encountered. Although you don’t usually want this kind of
behavior, it can be useful to an experienced programmer. Note the last
statement, following the default, doesn’t have a break because the
execution just falls through to where the break would have taken it
anyway. You could put a break at the end of the default statement with
no harm if you considered it important for style’s sake. Feedback

The switch statement is a clean way to implement multi-way selection
(i.e., selecting from among a number of different execution paths), but it
requires a selector that evaluates to an integral value such as int or char.
If you want to use, for example, a string or a floating-point number as a
selector, it won’t work in a switch statement. For non-integral types, you
must use a series of if statements. Feedback

Here’s an example that creates letters randomly and determines whether
they’re vowels or consonants: Feedback

Chapter 3: Controlling Program Flow 171

//: c03:VowelsAndConsonants.java
// Demonstrates the switch statement.
import com.bruceeckel.simpletest.*;

public class VowelsAndConsonants {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 100; i++) {
 char c = (char)(Math.random() * 26 + 'a');
 System.out.print(c + ": ");
 switch(c) {
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u': System.out.println("vowel");
 break;
 case 'y':
 case 'w': System.out.println("Sometimes a vowel");
 break;
 default: System.out.println("consonant");
 }
 monitor.expect(new String[] {
 "%% [aeiou]: vowel|[yw]: Sometimes a vowel|" +
 "[^aeiouyw]: consonant"
 }, Test.AT_LEAST);
 }
 }
} ///:~

Since Math.random() generates a value between 0 and 1, you need
only multiply it by the upper bound of the range of numbers you want to
produce (26 for the letters in the alphabet) and add an offset to establish
the lower bound. Feedback

Although it appears you’re switching on a character here, the switch
statement is actually using the integral value of the character. The singly-
quoted characters in the case statements also produce integral values
that are used for comparison. Feedback

Notice how the cases can be “stacked” on top of each other to provide
multiple matches for a particular piece of code. You should also be aware
that it’s essential to put the break statement at the end of a particular

172 Thinking in Java www.BruceEckel.com

case, otherwise control will simply drop through and continue processing
on the next case. Feedback

In the regular expression in this expect() statement, the ‘|’ is used to
indicate three different possibilities. The ‘[]’ encloses a “set” of characters
in a regular expression, so the first part says “one of a, e, i, o, or u,
followed by a colon and the word ‘vowel’.” The second possibility indicates
either y or w and “: Sometimes a vowel.” The set in the third possibility
begins with a ‘^’ which means “not any of the characters in this set,” so it
indicates anything other than a vowel will match. Feedback

Calculation details
The statement:

char c = (char)(Math.random() * 26 + 'a');

deserves a closer look. Math.random() produces a double, so the
value 26 is converted to a double to perform the multiplication, which
also produces a double. This means that ‘a’ must be converted to a
double to perform the addition. The double result is turned back into a
char with a cast. Feedback

What does the cast to char do? That is, if you have the value 29.7 and you
cast it to a char, is the resulting value 30 or 29? The answer to this can be
seen in this example: Feedback

//: c03:CastingNumbers.java
// What happens when you cast a float
// or double to an integral value?
import com.bruceeckel.simpletest.*;

public class CastingNumbers {
 static Test monitor = new Test();
 public static void main(String[] args) {
 double
 above = 0.7,
 below = 0.4;
 System.out.println("above: " + above);
 System.out.println("below: " + below);
 System.out.println("(int)above: " + (int)above);
 System.out.println("(int)below: " + (int)below);
 System.out.println("(char)('a' + above): " +

Chapter 3: Controlling Program Flow 173

 (char)('a' + above));
 System.out.println("(char)('a' + below): " +
 (char)('a' + below));
 monitor.expect(new String[] {
 "above: 0.7",
 "below: 0.4",
 "(int)above: 0",
 "(int)below: 0",
 "(char)('a' + above): a",
 "(char)('a' + below): a"
 });
 }
} ///:~

So the answer is that casting from a float or double to an integral value
always truncates the number. Feedback

A second question concerns Math.random(). Does it produce a value
from zero to one, inclusive or exclusive of the value ‘1’? In math lingo, is it
(0,1), or [0,1], or (0,1] or [0,1)? (The square bracket means “includes”
whereas the parenthesis means “doesn’t include.”) Again, a test program
might provide the answer: Feedback

//: c03:RandomBounds.java
// Does Math.random() produce 0.0 and 1.0?
// {RunByHand}

public class RandomBounds {
 static void usage() {
 System.out.println("Usage: \n\t" +
 "RandomBounds lower\n\tRandomBounds upper");
 System.exit(1);
 }
 public static void main(String[] args) {
 if(args.length != 1) usage();
 if(args[0].equals("lower")) {
 while(Math.random() != 0.0)
 ; // Keep trying
 System.out.println("Produced 0.0!");
 }
 else if(args[0].equals("upper")) {
 while(Math.random() != 1.0)
 ; // Keep trying
 System.out.println("Produced 1.0!");

174 Thinking in Java www.BruceEckel.com

 }
 else
 usage();
 }
} ///:~

To run the program, you type a command line of either: Feedback

java RandomBounds lower

or

java RandomBounds upper

In both cases you are forced to break out of the program manually, so it
would appear that Math.random() never produces either 0.0 or 1.0.
But this is where such an experiment can be deceiving. If you consider2
that there are about 262 different double fractions between 0 and 1, the
likelihood of reaching any one value experimentally might exceed the
lifetime of one computer, or even one experimenter. It turns out that 0.0
is included in the output of Math.random(). Or, in math lingo, it is
[0,1). Feedback

Summary
This chapter concludes the study of fundamental features that appear in
most programming languages: calculation, operator precedence, type
casting, and selection and iteration. Now you’re ready to begin taking

2 Chuck Allison writes: The total number of numbers in a floating-point number system is
2(M-m+1)b^(p-1) + 1
where b is the base (usually 2), p is the precision (digits in the mantissa), M is the largest
exponent, and m is the smallest exponent. IEEE 754 uses:
M = 1023, m = -1022, p = 53, b = 2
so the total number of numbers is
2(1023+1022+1)2^52
= 2((2^10-1) + (2^10-1))2^52
= (2^10-1)2^54
= 2^64 - 2^54
Half of these numbers (corresponding to exponents in the range [-1022, 0]) are less than 1
in magnitude (both positive and negative), so 1/4 of that expression, or 2^62 - 2^52 + 1
(approximately 2^62) is in the range [0,1). See my paper at
http://www.freshsources.com/1995006a.htm (last of text).

Chapter 3: Controlling Program Flow 175

steps that move you closer to the world of object-oriented programming.
The next chapter will cover the important issues of initialization and
cleanup of objects, followed in the subsequent chapter by the essential
concept of implementation hiding. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. There are two expressions in the section labeled “precedence”
early in this chapter. Put these expressions into a program and
demonstrate that they produce different results. Feedback

2. Put the methods ternary() and alternative() into a working
program. Feedback

3. From the sections labeled “if-else” and “return”, modify the two
test() methods so that testval is tested to see if it is within the
range between (and including) the arguments begin and end.
Feedback

4. Write a program that prints values from one to 100. Feedback

5. Modify Exercise 4 so that the program exits by using the break
keyword at value 47. Try using return instead. Feedback

6. Write a method that takes two String arguments, and uses all the
boolean comparisons to compare the two Strings and print the
results. For the == and !=, also perform the equals() test. In
main(), call your method with some different String objects.
Feedback

7. Write a program that generates 25 random int values. For each
value, use an if-else statement to classify it as greater than, less
than or equal to a second randomly-generated value. Feedback

8. Modify Exercise 7 so that your code is surrounded by an “infinite”
while loop. It will then run until you interrupt it from the
keyboard (typically by pressing Control-C). Feedback

176 Thinking in Java www.BruceEckel.com

9. Write a program that uses two nested for loops and the modulus
operator (%) to detect and print prime numbers (integral numbers
that are not evenly divisible by any other numbers except for
themselves and 1). Feedback

10. Create a switch statement that prints a message for each case,
and put the switch inside a for loop that tries each case. Put a
break after each case and test it, then remove the breaks and
see what happens. Feedback

 177

4: Initialization
& Cleanup

As the computer revolution progresses, “unsafe”
programming has become one of the major culprits that
makes programming expensive.

Two of these safety issues are initialization and cleanup. Many C bugs
occur when the programmer forgets to initialize a variable. This is
especially true with libraries when users don’t know how to initialize a
library component, or even that they must. Cleanup is a special problem
because it’s easy to forget about an element when you’re done with it,
since it no longer concerns you. Thus, the resources used by that element
are retained and you can easily end up running out of resources (most
notably, memory). Feedback

C++ introduced the concept of a constructor, a special method
automatically called when an object is created. Java also adopted the
constructor, and in addition has a garbage collector that automatically
releases memory resources when they’re no longer being used. This
chapter examines the issues of initialization and cleanup, and their
support in Java. Feedback

Guaranteed initialization
with the constructor

You can imagine creating a method called initialize() for every class you
write. The name is a hint that it should be called before using the object.
Unfortunately, this means the user must remember to call the method. In
Java, the class designer can guarantee initialization of every object by
providing a special method called a constructor. If a class has a
constructor, Java automatically calls that constructor when an object is

178 Thinking in Java www.BruceEckel.com

created, before users can even get their hands on it. So initialization is
guaranteed. Feedback

The next challenge is what to name this method. There are two issues. The
first is that any name you use could clash with a name you might like to
use as a member in the class. The second is that because the compiler is
responsible for calling the constructor, it must always know which
method to call. The C++ solution seems the easiest and most logical, so
it’s also used in Java: the name of the constructor is the same as the name
of the class. It makes sense that such a method will be called
automatically on initialization. Feedback

Here’s a simple class with a constructor:

//: c04:SimpleConstructor.java
// Demonstration of a simple constructor.
import com.bruceeckel.simpletest.*;

class Rock {
 Rock() { // This is the constructor
 System.out.println("Creating Rock");
 }
}

public class SimpleConstructor {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 10; i++)
 new Rock();
 monitor.expect(new String[] {
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock",
 "Creating Rock"
 });
 }
} ///:~

Chapter 4: Initialization & Cleanup 179

Now, when an object is created: Feedback

new Rock();

storage is allocated and the constructor is called. It is guaranteed that the
object will be properly initialized before you can get your hands on it.
Feedback

Note that the coding style of making the first letter of all methods
lowercase does not apply to constructors, since the name of the
constructor must match the name of the class exactly. Feedback

Like any method, the constructor can have arguments to allow you to
specify how an object is created. The above example can easily be changed
so the constructor takes an argument:

//: c04:SimpleConstructor2.java
// Constructors can have arguments.
import com.bruceeckel.simpletest.*;

class Rock2 {
 Rock2(int i) {
 System.out.println("Creating Rock number " + i);
 }
}

public class SimpleConstructor2 {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 10; i++)
 new Rock2(i);
 monitor.expect(new String[] {
 "Creating Rock number 0",
 "Creating Rock number 1",
 "Creating Rock number 2",
 "Creating Rock number 3",
 "Creating Rock number 4",
 "Creating Rock number 5",
 "Creating Rock number 6",
 "Creating Rock number 7",
 "Creating Rock number 8",
 "Creating Rock number 9"
 });
 }

180 Thinking in Java www.BruceEckel.com

} ///:~

Constructor arguments provide you with a way to provide parameters for
the initialization of an object. For example, if the class Tree has a
constructor that takes a single integer argument denoting the height of
the tree, you would create a Tree object like this: Feedback

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let you
create a Tree object any other way. Feedback

Constructors eliminate a large class of problems and make the code easier
to read. In the preceding code fragment, for example, you don’t see an
explicit call to some initialize() method that is conceptually separate
from creation. In Java, creation and initialization are unified concepts—
you can’t have one without the other. Feedback

The constructor is an unusual type of method because it has no return
value. This is distinctly different from a void return value, in which the
method returns nothing but you still have the option to make it return
something else. Constructors return nothing and you don’t have an option
(the new expression does return a reference to the newly-created object,
but the constructor itself has no return value). If there was a return value,
and if you could select your own, the compiler would somehow need to
know what to do with that return value. Feedback

Method overloading
One of the important features in any programming language is the use of
names. When you create an object, you give a name to a region of storage.
A method is a name for an action. By using names to describe your
system, you create a program that is easier for people to understand and
change. It’s a lot like writing prose—the goal is to communicate with your
readers. Feedback

You refer to all objects and methods by using names. Well-chosen names
make it easier for you and others to understand your code. Feedback

A problem arises when mapping the concept of nuance in human
language onto a programming language. Often, the same word expresses a

Chapter 4: Initialization & Cleanup 181

number of different meanings—it’s overloaded. This is useful, especially
when it comes to trivial differences. You say “wash the shirt,” “wash the
car,” and “wash the dog.” It would be silly to be forced to say, “shirtWash
the shirt,” “carWash the car,” and “dogWash the dog” just so the listener
doesn’t need to make any distinction about the action performed. Most
human languages are redundant, so even if you miss a few words, you can
still determine the meaning. We don’t need unique identifiers—we can
deduce meaning from context. Feedback

Most programming languages (C in particular) require you to have a
unique identifier for each function. So you could not have one function
called print() for printing integers and another called print() for
printing floats—each function requires a unique name. Feedback

In Java (and C++), another factor forces the overloading of method
names: the constructor. Because the constructor’s name is predetermined
by the name of the class, there can be only one constructor name. But
what if you want to create an object in more than one way? For example,
suppose you build a class that can initialize itself in a standard way or by
reading information from a file. You need two constructors, one that takes
no arguments (the default constructor1, also called the no-arg
constructor), and one that takes a String as an argument, which is the
name of the file from which to initialize the object. Both are constructors,
so they must have the same name—the name of the class. Thus, method
overloading is essential to allow the same method name to be used with
different argument types. And although method overloading is a must for
constructors, it’s a general convenience and can be used with any method.
Feedback

Here’s an example that shows both overloaded constructors and
overloaded ordinary methods:

//: c04:Overloading.java
// Demonstration of both constructor
// and ordinary method overloading.

1 In some of the Java literature from Sun they instead refer to these with the awkward but
descriptive name “no-arg constructors.” The term “default constructor” has been in use for
many years and so I will use that.

182 Thinking in Java www.BruceEckel.com

import com.bruceeckel.simpletest.*;
import java.util.*;

class Tree {
 int height;
 Tree() {
 System.out.println("Planting a seedling");
 height = 0;
 }
 Tree(int i) {
 System.out.println("Creating new Tree that is "
 + i + " feet tall");
 height = i;
 }
 void info() {
 System.out.println("Tree is " + height + " feet tall");
 }
 void info(String s) {
 System.out.println(s + ": Tree is "
 + height + " feet tall");
 }
}

public class Overloading {
 static Test monitor = new Test();
 public static void main(String[] args) {
 for(int i = 0; i < 5; i++) {
 Tree t = new Tree(i);
 t.info();
 t.info("overloaded method");
 }
 // Overloaded constructor:
 new Tree();
 monitor.expect(new String[] {
 "Creating new Tree that is 0 feet tall",
 "Tree is 0 feet tall",
 "overloaded method: Tree is 0 feet tall",
 "Creating new Tree that is 1 feet tall",
 "Tree is 1 feet tall",
 "overloaded method: Tree is 1 feet tall",
 "Creating new Tree that is 2 feet tall",
 "Tree is 2 feet tall",
 "overloaded method: Tree is 2 feet tall",
 "Creating new Tree that is 3 feet tall",

Chapter 4: Initialization & Cleanup 183

 "Tree is 3 feet tall",
 "overloaded method: Tree is 3 feet tall",
 "Creating new Tree that is 4 feet tall",
 "Tree is 4 feet tall",
 "overloaded method: Tree is 4 feet tall",
 "Planting a seedling"
 });
 }
} ///:~

A Tree object can be created either as a seedling, with no argument, or as
a plant grown in a nursery, with an existing height. To support this, there
is a default constructor, and one that takes the existing height. Feedback

You might also want to call the info() method in more than one way. For
example, if you have an extra message you want printed, you can use
info(String), and info() if you have nothing more to say. It would seem
strange to give two separate names to what is obviously the same concept.
Fortunately, method overloading allows you to use the same name for
both. Feedback

Distinguishing overloaded methods
If the methods have the same name, how can Java know which method
you mean? There’s a simple rule: each overloaded method must take a
unique list of argument types. Feedback

If you think about this for a second, it makes sense: how else could a
programmer tell the difference between two methods that have the same
name, other than by the types of their arguments? Feedback

Even differences in the ordering of arguments are sufficient to distinguish
two methods: (Although you don’t normally want to take this approach, as
it produces difficult-to-maintain code.) Feedback

//: c04:OverloadingOrder.java
// Overloading based on the order of the arguments.
import com.bruceeckel.simpletest.*;

public class OverloadingOrder {
 static Test monitor = new Test();
 static void print(String s, int i) {
 System.out.println("String: " + s + ", int: " + i);

184 Thinking in Java www.BruceEckel.com

 }
 static void print(int i, String s) {
 System.out.println("int: " + i + ", String: " + s);
 }
 public static void main(String[] args) {
 print("String first", 11);
 print(99, "Int first");
 monitor.expect(new String[] {
 "String: String first, int: 11",
 "int: 99, String: Int first"
 });
 }
} ///:~

The two print() methods have identical arguments, but the order is
different, and that’s what makes them distinct. Feedback

Overloading with primitives
A primitive can be automatically promoted from a smaller type to a larger
one and this can be slightly confusing in combination with overloading.
The following example demonstrates what happens when a primitive is
handed to an overloaded method:

//: c04:PrimitiveOverloading.java
// Promotion of primitives and overloading.
import com.bruceeckel.simpletest.*;

public class PrimitiveOverloading {
 static Test monitor = new Test();
 void f1(char x) { System.out.println("f1(char)"); }
 void f1(byte x) { System.out.println("f1(byte)"); }
 void f1(short x) { System.out.println("f1(short)"); }
 void f1(int x) { System.out.println("f1(int)"); }
 void f1(long x) { System.out.println("f1(long)"); }
 void f1(float x) { System.out.println("f1(float)"); }
 void f1(double x) { System.out.println("f1(double)"); }

 void f2(byte x) { System.out.println("f2(byte)"); }
 void f2(short x) { System.out.println("f2(short)"); }
 void f2(int x) { System.out.println("f2(int)"); }
 void f2(long x) { System.out.println("f2(long)"); }
 void f2(float x) { System.out.println("f2(float)"); }
 void f2(double x) { System.out.println("f2(double)"); }

Chapter 4: Initialization & Cleanup 185

 void f3(short x) { System.out.println("f3(short)"); }
 void f3(int x) { System.out.println("f3(int)"); }
 void f3(long x) { System.out.println("f3(long)"); }
 void f3(float x) { System.out.println("f3(float)"); }
 void f3(double x) { System.out.println("f3(double)"); }

 void f4(int x) { System.out.println("f4(int)"); }
 void f4(long x) { System.out.println("f4(long)"); }
 void f4(float x) { System.out.println("f4(float)"); }
 void f4(double x) { System.out.println("f4(double)"); }

 void f5(long x) { System.out.println("f5(long)"); }
 void f5(float x) { System.out.println("f5(float)"); }
 void f5(double x) { System.out.println("f5(double)"); }

 void f6(float x) { System.out.println("f6(float)"); }
 void f6(double x) { System.out.println("f6(double)"); }

 void f7(double x) { System.out.println("f7(double)"); }

 void testConstVal() {
 System.out.println("Testing with 5");
 f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5);
 }
 void testChar() {
 char x = 'x';
 System.out.println("char argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 void testByte() {
 byte x = 0;
 System.out.println("byte argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 void testShort() {
 short x = 0;
 System.out.println("short argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 void testInt() {
 int x = 0;
 System.out.println("int argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);

186 Thinking in Java www.BruceEckel.com

 }
 void testLong() {
 long x = 0;
 System.out.println("long argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 void testFloat() {
 float x = 0;
 System.out.println("float argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 void testDouble() {
 double x = 0;
 System.out.println("double argument:");
 f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x);
 }
 public static void main(String[] args) {
 PrimitiveOverloading p =
 new PrimitiveOverloading();
 p.testConstVal();
 p.testChar();
 p.testByte();
 p.testShort();
 p.testInt();
 p.testLong();
 p.testFloat();
 p.testDouble();
 monitor.expect(new String[] {
 "Testing with 5",
 "f1(int)",
 "f2(int)",
 "f3(int)",
 "f4(int)",
 "f5(long)",
 "f6(float)",
 "f7(double)",
 "char argument:",
 "f1(char)",
 "f2(int)",
 "f3(int)",
 "f4(int)",
 "f5(long)",
 "f6(float)",
 "f7(double)",

Chapter 4: Initialization & Cleanup 187

 "byte argument:",
 "f1(byte)",
 "f2(byte)",
 "f3(short)",
 "f4(int)",
 "f5(long)",
 "f6(float)",
 "f7(double)",
 "short argument:",
 "f1(short)",
 "f2(short)",
 "f3(short)",
 "f4(int)",
 "f5(long)",
 "f6(float)",
 "f7(double)",
 "int argument:",
 "f1(int)",
 "f2(int)",
 "f3(int)",
 "f4(int)",
 "f5(long)",
 "f6(float)",
 "f7(double)",
 "long argument:",
 "f1(long)",
 "f2(long)",
 "f3(long)",
 "f4(long)",
 "f5(long)",
 "f6(float)",
 "f7(double)",
 "float argument:",
 "f1(float)",
 "f2(float)",
 "f3(float)",
 "f4(float)",
 "f5(float)",
 "f6(float)",
 "f7(double)",
 "double argument:",
 "f1(double)",
 "f2(double)",
 "f3(double)",

188 Thinking in Java www.BruceEckel.com

 "f4(double)",
 "f5(double)",
 "f6(double)",
 "f7(double)"
 });
 }
} ///:~

You’ll see that the constant value 5 is treated as an int, so if an overloaded
method is available that takes an int it is used. In all other cases, if you
have a data type that is smaller than the argument in the method, that
data type is promoted. char produces a slightly different effect, since if it
doesn’t find an exact char match, it is promoted to int. Feedback

What happens if your argument is bigger than the argument expected by
the overloaded method? A modification of the above program gives the
answer:

//: c04:Demotion.java
// Demotion of primitives and overloading.
import com.bruceeckel.simpletest.*;

public class Demotion {
 static Test monitor = new Test();
 void f1(char x) { System.out.println("f1(char)"); }
 void f1(byte x) { System.out.println("f1(byte)"); }
 void f1(short x) { System.out.println("f1(short)"); }
 void f1(int x) { System.out.println("f1(int)"); }
 void f1(long x) { System.out.println("f1(long)"); }
 void f1(float x) { System.out.println("f1(float)"); }
 void f1(double x) { System.out.println("f1(double)"); }

 void f2(char x) { System.out.println("f2(char)"); }
 void f2(byte x) { System.out.println("f2(byte)"); }
 void f2(short x) { System.out.println("f2(short)"); }
 void f2(int x) { System.out.println("f2(int)"); }
 void f2(long x) { System.out.println("f2(long)"); }
 void f2(float x) { System.out.println("f2(float)"); }

 void f3(char x) { System.out.println("f3(char)"); }
 void f3(byte x) { System.out.println("f3(byte)"); }
 void f3(short x) { System.out.println("f3(short)"); }
 void f3(int x) { System.out.println("f3(int)"); }
 void f3(long x) { System.out.println("f3(long)"); }

Chapter 4: Initialization & Cleanup 189

 void f4(char x) { System.out.println("f4(char)"); }
 void f4(byte x) { System.out.println("f4(byte)"); }
 void f4(short x) { System.out.println("f4(short)"); }
 void f4(int x) { System.out.println("f4(int)"); }

 void f5(char x) { System.out.println("f5(char)"); }
 void f5(byte x) { System.out.println("f5(byte)"); }
 void f5(short x) { System.out.println("f5(short)"); }

 void f6(char x) { System.out.println("f6(char)"); }
 void f6(byte x) { System.out.println("f6(byte)"); }

 void f7(char x) { System.out.println("f7(char)"); }

 void testDouble() {
 double x = 0;
 System.out.println("double argument:");
 f1(x);f2((float)x);f3((long)x);f4((int)x);
 f5((short)x);f6((byte)x);f7((char)x);
 }
 public static void main(String[] args) {
 Demotion p = new Demotion();
 p.testDouble();
 monitor.expect(new String[] {
 "double argument:",
 "f1(double)",
 "f2(float)",
 "f3(long)",
 "f4(int)",
 "f5(short)",
 "f6(byte)",
 "f7(char)"
 });
 }
} ///:~

Here, the methods take narrower primitive values. If your argument is
wider then you must cast to the necessary type using the type name in
parentheses. If you don’t do this, the compiler will issue an error message.
Feedback

190 Thinking in Java www.BruceEckel.com

You should be aware that this is a narrowing conversion, which means
you might lose information during the cast. This is why the compiler
forces you to do it—to flag the narrowing conversion. Feedback

Overloading on return values
It is common to wonder “Why only class names and method argument
lists? Why not distinguish between methods based on their return
values?” For example, these two methods, which have the same name and
arguments, are easily distinguished from each other: Feedback

void f() {}
int f() {}

This works fine when the compiler can unequivocally determine the
meaning from the context, as in int x = f(). However, you can also call a
method and ignore the return value. This is often referred to as calling a
method for its side effect since you don’t care about the return value but
instead want the other effects of the method call. So if you call the method
this way: Feedback

f();

how can Java determine which f() should be called? And how could
someone reading the code see it? Because of this sort of problem, you
cannot use return value types to distinguish overloaded methods. Feedback

Default constructors
As mentioned previously, a default constructor (a.k.a. a “no-arg”
constructor) is one without arguments, used to create a “basic object.” If
you create a class that has no constructors, the compiler will automatically
create a default constructor for you. For example: Feedback

//: c04:DefaultConstructor.java

class Bird {
 int i;
}

public class DefaultConstructor {
 public static void main(String[] args) {
 Bird nc = new Bird(); // Default!

Chapter 4: Initialization & Cleanup 191

 }
} ///:~

The line Feedback

new Bird();

creates a new object and calls the default constructor, even though one
was not explicitly defined. Without it we would have no method to call to
build our object. However, if you define any constructors (with or without
arguments), the compiler will not synthesize one for you: Feedback

class Hat {
 Hat(int i) {}
 Hat(double d) {}
}

Now if you say: Feedback

new Hat();

the compiler will complain that it cannot find a constructor that matches.
It’s as if when you don’t put in any constructors, the compiler says “You
are bound to need some constructor, so let me make one for you.” But if
you write a constructor, the compiler says “You’ve written a constructor so
you know what you’re doing; if you didn’t put in a default it’s because you
meant to leave it out.” Feedback

The this keyword
If you have two objects of the same type called a and b, you might wonder
how it is that you can call a method f() for both those objects: Feedback

class Banana { void f(int i) { /* ... */ } }
Banana a = new Banana(), b = new Banana();
a.f(1);
b.f(2);

If there’s only one method called f(), how can that method know whether
it’s being called for the object a or b? Feedback

To allow you to write the code in a convenient object-oriented syntax in
which you “send a message to an object,” the compiler does some
undercover work for you. There’s a secret first argument passed to the

192 Thinking in Java www.BruceEckel.com

method f(), and that argument is the reference to the object that’s being
manipulated. So the two method calls become something like: Feedback

Banana.f(a,1);
Banana.f(b,2);

This is internal and you can’t write these expressions and get the compiler
to accept them, but it gives you an idea of what’s happening. Feedback

Suppose you’re inside a method and you’d like to get the reference to the
current object. Since that reference is passed secretly by the compiler,
there’s no identifier for it. However, for this purpose there’s a keyword:
this. The this keyword—which can be used only inside a method—
produces the reference to the object the method has been called for. You
can treat this reference just like any other object reference. Keep in mind
that if you’re calling a method of your class from within another method
of your class, you don’t need to use this. You simply call the method. The
current this reference is automatically used for the other method. Thus
you can say: Feedback

class Apricot {
 void pick() { /* ... */ }
 void pit() { pick(); /* ... */ }
}

Inside pit(), you could say this.pick() but there’s no need to2. The
compiler does it for you automatically. The this keyword is used only for
those special cases in which you need to explicitly use the reference to the
current object. For example, it’s often used in return statements when
you want to return the reference to the current object: Feedback

//: c04:Leaf.java
// Simple use of the "this" keyword.
import com.bruceeckel.simpletest.*;

2 Some people will obsessively put this in front of every method call and field reference,
arguing that it makes it “clearer and more explicit.” Don’t do it. There’s a reason that we
use high-level languages: they do things for us. If you put this in when it’s not necessary,
you will confuse and annoy everyone who reads your code, since all the rest of the code
they’ve read won’t use this everywhere. Following a consistent and straightforward coding
style saves time and money.

Chapter 4: Initialization & Cleanup 193

public class Leaf {
 static Test monitor = new Test();
 int i = 0;
 Leaf increment() {
 i++;
 return this;
 }
 void print() {
 System.out.println("i = " + i);
 }
 public static void main(String[] args) {
 Leaf x = new Leaf();
 x.increment().increment().increment().print();
 monitor.expect(new String[] {
 "i = 3"
 });
 }
} ///:~

Because increment() returns the reference to the current object via the
this keyword, multiple operations can easily be performed on the same
object. Feedback

Calling constructors from constructors
When you write several constructors for a class, there are times when
you’d like to call one constructor from another to avoid duplicating code.
You can make such a call using the this keyword. Feedback

Normally, when you say this, it is in the sense of “this object” or “the
current object,” and by itself it produces the reference to the current
object. In a constructor, the this keyword takes on a different meaning
when you give it an argument list: it makes an explicit call to the
constructor that matches that argument list. Thus you have a
straightforward way to call other constructors: Feedback

//: c04:Flower.java
// Calling constructors with "this."
import com.bruceeckel.simpletest.*;

public class Flower {
 static Test monitor = new Test();
 int petalCount = 0;
 String s = new String("null");

194 Thinking in Java www.BruceEckel.com

 Flower(int petals) {
 petalCount = petals;
 System.out.println(
 "Constructor w/ int arg only, petalCount= "
 + petalCount);
 }
 Flower(String ss) {
 System.out.println(
 "Constructor w/ String arg only, s=" + ss);
 s = ss;
 }
 Flower(String s, int petals) {
 this(petals);
//! this(s); // Can't call two!
 this.s = s; // Another use of "this"
 System.out.println("String & int args");
 }
 Flower() {
 this("hi", 47);
 System.out.println("default constructor (no args)");
 }
 void print() {
//! this(11); // Not inside non-constructor!
 System.out.println(
 "petalCount = " + petalCount + " s = "+ s);
 }
 public static void main(String[] args) {
 Flower x = new Flower();
 x.print();
 monitor.expect(new String[] {
 "Constructor w/ int arg only, petalCount= 47",
 "String & int args",
 "default constructor (no args)",
 "petalCount = 47 s = hi"
 });
 }
} ///:~

The constructor Flower(String s, int petals) shows that, while you can
call one constructor using this, you cannot call two. In addition, the
constructor call must be the first thing you do or you’ll get a compiler
error message. Feedback

Chapter 4: Initialization & Cleanup 195

This example also shows another way you’ll see this used. Since the name
of the argument s and the name of the member data s are the same,
there’s an ambiguity. You can resolve it by saying this.s to refer to the
member data. You’ll often see this form used in Java code, and it’s used in
numerous places in this book. Feedback

In print() you can see that the compiler won’t let you call a constructor
from inside any method other than a constructor. Feedback

The meaning of static
With the this keyword in mind, you can more fully understand what it
means to make a method static. It means that there is no this for that
particular method. You cannot call non-static methods from inside
static methods3 (although the reverse is possible), and you can call a
static method for the class itself, without any object. In fact, that’s
primarily what a static method is for. It’s as if you’re creating the
equivalent of a global function (from C). Except global functions are not
permitted in Java, and putting the static method inside a class allows it
access to other static methods and to static fields. Feedback

Some people argue that static methods are not object-oriented since they
do have the semantics of a global function; with a static method you
don’t send a message to an object, since there’s no this. This is probably a
fair argument, and if you find yourself using a lot of static methods you
should probably rethink your strategy. However, statics are pragmatic
and there are times when you genuinely need them, so whether or not
they are “proper OOP” should be left to the theoreticians. Indeed, even
Smalltalk has the equivalent in its “class methods.” Feedback

3 The one case in which this is possible occurs if you pass a reference to an object into the
static method. Then, via the reference (which is now effectively this), you can call non-
static methods and access non-static fields. But typically if you want to do something like
this you’ll just make an ordinary, non-static method.

196 Thinking in Java www.BruceEckel.com

Cleanup: finalization and
garbage collection

Programmers know about the importance of initialization, but often
forget the importance of cleanup. After all, who needs to clean up an int?
But with libraries, simply “letting go” of an object once you’re done with it
is not always safe. Of course, Java has the garbage collector to reclaim the
memory of objects that are no longer used. Now consider an unusual case.
Suppose your object allocates “special” memory without using new. The
garbage collector knows only how to release memory allocated with new,
so it won’t know how to release the object’s “special” memory. To handle
this case, Java provides a method called finalize() that you can define
for your class. Here’s how it’s supposed to work. When the garbage
collector is ready to release the storage used for your object, it will first
call finalize(), and only on the next garbage-collection pass will it
reclaim the object’s memory. So if you choose to use finalize(), it gives
you the ability to perform some important cleanup at the time of garbage
collection. Feedback

This is a potential programming pitfall because some programmers,
especially C++ programmers, might initially mistake finalize() for the
destructor in C++, which is a function that is always called when an object
is destroyed. But it is important to distinguish between C++ and Java
here, because in C++ objects always get destroyed (in a bug-free
program), whereas in Java objects do not always get garbage-collected.
Or, put another way: Feedback

1. Your objects might not get garbage-collected.

2. Garbage collection is not destruction.

If you remember this, you will stay out of trouble. What it means is that if
there is some activity that must be performed before you no longer need
an object, you must perform that activity yourself. Java has no destructor
or similar concept, so you must create an ordinary method to perform this
cleanup. For example, suppose in the process of creating your object it
draws itself on the screen. If you don’t explicitly erase its image from the

Chapter 4: Initialization & Cleanup 197

screen, it might never get cleaned up. If you put some kind of erasing
functionality inside finalize(), then if an object is garbage-collected and
finalize() is called (there’s no guarantee this will happen), then the
image will first be removed from the screen, but if it isn’t, the image will
remain. Feedback

You might find that the storage for an object never gets released because
your program never nears the point of running out of storage. If your
program completes and the garbage collector never gets around to
releasing the storage for any of your objects, that storage will be returned
to the operating system en masse as the program exits. This is a good
thing, because garbage collection has some overhead, and if you never do
it you never incur that expense. Feedback

What is finalize() for?
So, if you should not use finalize() as a general-purpose cleanup
method, what good is it? Feedback

A third point to remember is:

3. Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is to
recover memory that your program is no longer using. So any activity that
is associated with garbage collection, most notably your finalize()
method, must also be only about memory and its deallocation. Feedback

Does this mean that if your object contains other objects finalize()
should explicitly release those objects? Well, no—the garbage collector
takes care of the release of all object memory regardless of how the object
is created. It turns out that the need for finalize() is limited to special
cases, in which your object can allocate some storage in some way other
than creating an object. But, you might observe, everything in Java is an
object so how can this be? Feedback

It would seem that finalize() is in place because of the possibility that
you’ll do something C-like by allocating memory using a mechanism other
than the normal one in Java. This can happen primarily through native
methods, which are a way to call non-Java code from Java. (Native

198 Thinking in Java www.BruceEckel.com

methods are covered in Appendix B in the electronic 2nd edition of this
book, available on this book’s CD ROM and at www.BruceEckel.com.) C
and C++ are the only languages currently supported by native methods,
but since they can call subprograms in other languages, you can effectively
call anything. Inside the non-Java code, C’s malloc() family of functions
might be called to allocate storage, and unless you call free() that storage
will not be released, causing a memory leak. Of course, free() is a C and
C++ function, so you’d need to call it in a native method inside your
finalize(). Feedback

After reading this, you probably get the idea that you won’t use
finalize() much4. You’re correct; it is not the appropriate place for
normal cleanup to occur. So where should normal cleanup be performed?
Feedback

You must perform cleanup
To clean up an object, the user of that object must call a cleanup method
at the point the cleanup is desired. This sounds pretty straightforward,
but it collides a bit with the C++ concept of the destructor. In C++, all
objects are destroyed. Or rather, all objects should be destroyed. If the
C++ object is created as a local (i.e., on the stack—not possible in Java),
then the destruction happens at the closing curly brace of the scope in
which the object was created. If the object was created using new (like in
Java) the destructor is called when the programmer calls the C++
operator delete (which doesn’t exist in Java). If the C++ programmer
forgets to call delete, the destructor is never called and you have a
memory leak, plus the other parts of the object never get cleaned up. This
kind of bug can be very difficult to track down, and is one of the
compelling reasons to move from C++ to Java. Feedback

In contrast, Java doesn’t allow you to create local objects—you must
always use new. But in Java, there’s no “delete” to call to release the
object since the garbage collector releases the storage for you. So from a
simplistic standpoint you could say that because of garbage collection,

4 Joshua Bloch goes further in his section titled “avoid finalizers”: “Finalizers are
unpredictable, often dangerous, and generally unnecessary.” Effective Java, page 20
(Addison-Wesley 2001).

Chapter 4: Initialization & Cleanup 199

Java has no destructor. You’ll see as this book progresses, however, that
the presence of a garbage collector does not remove the need for or utility
of destructors. (And you should never call finalize() directly, so that’s
not an appropriate avenue for a solution.) If you want some kind of
cleanup performed other than storage release you must still explicitly call
an appropriate method in Java, which is the equivalent of a C++
destructor without the convenience. Feedback

Remember that neither garbage collection nor finalization is guaranteed.
If the Java Virtual Machine (JVM) isn’t close to running out of memory,
then it might not waste time recovering memory through garbage
collection. Feedback

The termination condition
In general, you can’t rely on finalize() being called, and you must create
separate “cleanup” methods and call them explicitly. So it appears that
finalize() is only useful for obscure memory cleanup that most
programmers will never use. However, there is a very interesting use of
finalize() which does not rely on it being called every time. This is the
verification of the termination condition5 of an object. Feedback

At the point that you’re no longer interested in an object—when it’s ready
to be cleaned up—that object should be in a state whereby its memory can
be safely released. For example, if the object represents an open file, that
file should be closed by the programmer before the object is garbage-
collected. If any portions of the object are not properly cleaned up, then
you have a bug in your program that could be very difficult to find. The
value of finalize() is that it can be used to eventually discover this
condition, even if it isn’t always called. If one of the finalizations happens
to reveal the bug, then you discover the problem, which is all you really
care about. Feedback

Here’s a simple example of how you might use it:

//: c04:TerminationCondition.java

5 A term coined by Bill Venners (www.artima.com) during a seminar that he and I were
giving together.

200 Thinking in Java www.BruceEckel.com

// Using finalize() to detect an object that
// hasn't been properly cleaned up.
import com.bruceeckel.simpletest.*;

class Book {
 boolean checkedOut = false;
 Book(boolean checkOut) {
 checkedOut = checkOut;
 }
 void checkIn() {
 checkedOut = false;
 }
 public void finalize() {
 if(checkedOut)
 System.out.println("Error: checked out");
 }
}

public class TerminationCondition {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Book novel = new Book(true);
 // Proper cleanup:
 novel.checkIn();
 // Drop the reference, forget to clean up:
 new Book(true);
 // Force garbage collection & finalization:
 System.gc();
 monitor.expect(new String[] {
 "Error: checked out"}, Test.WAIT);
 }
} ///:~

The termination condition is that all Book objects are supposed to be
checked in before they are garbage-collected, but in main() a
programmer error doesn’t check in one of the books. Without finalize()
to verify the termination condition, this could be a difficult bug to find.
Feedback

Note that System.gc() is used to force finalization (and you should do
this during program development to speed debugging). But even if it isn’t,
it’s highly probable that the errant Book will eventually be discovered

Chapter 4: Initialization & Cleanup 201

through repeated executions of the program (assuming the program
allocates enough storage to cause the garbage collector to execute). Feedback

How a garbage collector works
If you come from a programming language where allocating objects on the
heap is expensive, you may naturally assume that Java’s scheme of
allocating everything (except primitives) on the heap is also expensive.
However, it turns out that the garbage collector can have a significant
impact on increasing the speed of object creation. This might sound a bit
odd at first—that storage release affects storage allocation—but it’s the
way some JVMs work and it means that allocating storage for heap
objects in Java can be nearly as fast as creating storage on the stack in
other languages. Feedback

For example, you can think of the C++ heap as a yard where each object
stakes out its own piece of turf. This real estate can become abandoned
sometime later and must be reused. In some JVMs, the Java heap is quite
different; it’s more like a conveyor belt that moves forward every time you
allocate a new object. This means that object storage allocation is
remarkably rapid. The “heap pointer” is simply moved forward into virgin
territory, so it’s effectively the same as C++’s stack allocation. (Of course,
there’s a little extra overhead for bookkeeping but it’s nothing like
searching for storage.) Feedback

Now you might observe that the heap isn’t in fact a conveyor belt, and if
you treat it that way you’ll eventually start paging memory a lot (which is
a big performance hit) and later run out. The trick is that the garbage
collector steps in and while it collects the garbage it compacts all the
objects in the heap so that you’ve effectively moved the “heap pointer”
closer to the beginning of the conveyor belt and further away from a page
fault. The garbage collector rearranges things and makes it possible for
the high-speed, infinite-free-heap model to be used while allocating
storage. Feedback

To understand how this works, you need to get a little better idea of the
way different garbage collector (GC) schemes work. A simple but slow GC
technique is reference counting. This means that each object contains a
reference counter, and every time a reference is attached to an object the
reference count is increased. Every time a reference goes out of scope or is

202 Thinking in Java www.BruceEckel.com

set to null, the reference count is decreased. Thus, managing reference
counts is a small but constant overhead that happens throughout the
lifetime of your program. The garbage collector moves through the entire
list of objects and when it finds one with a reference count of zero it
releases that storage. The one drawback is that if objects circularly refer to
each other they can have nonzero reference counts while still being
garbage. Locating such self-referential groups requires significant extra
work for the garbage collector. Reference counting is commonly used to
explain one kind of garbage collection but it doesn’t seem to be used in
any JVM implementations. Feedback

In faster schemes, garbage collection is not based on reference counting.
Instead, it is based on the idea that any nondead object must ultimately be
traceable back to a reference that lives either on the stack or in static
storage. The chain might go through several layers of objects. Thus, if you
start in the stack and the static storage area and walk through all the
references you’ll find all the live objects. For each reference that you find,
you must trace into the object that it points to and then follow all the
references in that object, tracing into the objects they point to, etc., until
you’ve moved through the entire web that originated with the reference on
the stack or in static storage. Each object that you move through must still
be alive. Note that there is no problem with detached self-referential
groups—these are simply not found, and are therefore automatically
garbage. Feedback

In the approach described here, the JVM uses an adaptive garbage-
collection scheme, and what it does with the live objects that it locates
depends on the variant currently being used. One of these variants is stop-
and-copy. This means that—for reasons that will become apparent—the
program is first stopped (this is not a background collection scheme).
Then, each live object that is found is copied from one heap to another,
leaving behind all the garbage. In addition, as the objects are copied into
the new heap they are packed end-to-end, thus compacting the new heap
(and allowing new storage to simply be reeled off the end as previously
described). Feedback

Of course, when an object is moved from one place to another, all
references that point at (i.e., that reference) the object must be changed.
The reference that goes from the heap or the static storage area to the

Chapter 4: Initialization & Cleanup 203

object can be changed right away, but there can be other references
pointing to this object that will be encountered later during the “walk.”
These are fixed up as they are found (you could imagine a table that maps
old addresses to new ones). Feedback

There are two issues that make these so-called “copy collectors”
inefficient. The first is the idea that you have two heaps and you slosh all
the memory back and forth between these two separate heaps,
maintaining twice as much memory as you actually need. Some JVMs deal
with this by allocating the heap in chunks as needed and simply copying
from one chunk to another. Feedback

The second issue is the copying. Once your program becomes stable it
might be generating little or no garbage. Despite that, a copy collector will
still copy all the memory from one place to another, which is wasteful. To
prevent this, some JVMs detect that no new garbage is being generated
and switch to a different scheme (this is the “adaptive” part). This other
scheme is called mark and sweep, and it’s what earlier versions of Sun’s
JVM used all the time. For general use, mark and sweep is fairly slow, but
when you know you’re generating little or no garbage it’s fast. Feedback

Mark and sweep follows the same logic of starting from the stack and
static storage and tracing through all the references to find live objects.
However, each time it finds a live object that object is marked by setting a
flag in it, but the object isn’t collected yet. Only when the marking process
is finished does the sweep occur. During the sweep, the dead objects are
released. However, no copying happens, so if the collector chooses to
compact a fragmented heap it does so by shuffling objects around. Feedback

The “stop-and-copy” refers to the idea that this type of garbage collection
is not done in the background; instead, the program is stopped while the
GC occurs. In the Sun literature you’ll find many references to garbage
collection as a low-priority background process, but it turns out that the
GC was not implemented that way, at least in earlier versions of the Sun
JVM. Instead, the Sun garbage collector ran when memory got low. In
addition, mark-and-sweep requires that the program be stopped. Feedback

As previously mentioned, in the JVM described here memory is allocated
in big blocks. If you allocate a large object, it gets its own block. Strict
stop-and-copy requires copying every live object from the source heap to a

204 Thinking in Java www.BruceEckel.com

new heap before you could free the old one, which translates to lots of
memory. With blocks, the GC can typically copy objects to dead blocks as
it collects. Each block has a generation count to keep track of whether it’s
alive. In the normal case, only the blocks created since the last GC are
compacted; all other blocks get their generation count bumped if they
have been referenced from somewhere. This handles the normal case of
lots of short-lived temporary objects. Periodically, a full sweep is made—
large objects are still not copied (just get their generation count bumped)
and blocks containing small objects are copied and compacted. The JVM
monitors the efficiency of GC and if it becomes a waste of time because all
objects are long-lived then it switches to mark-and-sweep. Similarly, the
JVM keeps track of how successful mark-and-sweep is, and if the heap
starts to become fragmented it switches back to stop-and-copy. This is
where the “adaptive” part comes in, so you end up with a mouthful:
“adaptive generational stop-and-copy mark-and-sweep.” Feedback

There are a number of additional speedups possible in a JVM. An
especially important one involves the operation of the loader and what is
called a just-in-time (JIT) compiler. A JIT compiler partially or fully
converts a program into native machine code, so it doesn’t need to be
interpreted by the JVM and thus runs much faster. When a class must be
loaded (typically, the first time you want to create an object of that class),
the .class file is located and the byte codes for that class are brought into
memory. At this point, one approach is to simply JIT all the code, but this
has two drawbacks: it takes a little more time, which, compounded
throughout the life of the program, can add up; and it increases the size of
the executable (byte codes are significantly more compact than expanded
JIT code) and this might cause paging, which definitely slows down a
program. An alternative approach is lazy evaluation, which means that
the code is not JIT compiled until necessary. Thus, code that never gets
executed might never get JIT compiled. The Java HotSpot technologies in
recent JDKs take a similar approach by increasingly optimizing a piece of
code each time it is executed, so the more the code is executed, the faster
it gets. Feedback

Chapter 4: Initialization & Cleanup 205

Member initialization
Java goes out of its way to guarantee that variables are properly initialized
before they are used. In the case of variables that are defined locally to a
method, this guarantee comes in the form of a compile-time error. So if
you say: Feedback

 void f() {
 int i;
 i++; // Error -- i not initialized
 }

you’ll get an error message that says that i might not have been initialized.
Of course, the compiler could have given i a default value, but it’s more
likely that this is a programmer error and a default value would have
covered that up. Forcing the programmer to provide an initialization
value is more likely to catch a bug. Feedback

If a primitive is a field in a class, however, things are a bit different. Since
any method can initialize or use that data, it might not be practical to
force the user to initialize it to its appropriate value before the data is
used. However, it’s unsafe to leave it with a garbage value, so each
primitive field of a class is guaranteed to get an initial value. Those values
can be seen here: Feedback

//: c04:InitialValues.java
// Shows default initial values.
import com.bruceeckel.simpletest.*;

public class InitialValues {
 boolean t;
 char c;
 byte b;
 short s;
 int i;
 long l;
 float f;
 double d;
 void print(String s) { System.out.println(s); }
 void printInitialValues() {
 print("Data type Initial value");
 print("boolean " + t);

206 Thinking in Java www.BruceEckel.com

 print("char [" + c + "]");
 print("byte " + b);
 print("short " + s);
 print("int " + i);
 print("long " + l);
 print("float " + f);
 print("double " + d);
 }
 static Test monitor = new Test();
 public static void main(String[] args) {
 InitialValues iv = new InitialValues();
 iv.printInitialValues();
 /* You could also say:
 new InitialValues().printInitialValues();
 */
 monitor.expect(new String[] {
 "Data type Initial value",
 "boolean false",
 "char [" + (char)0 + "]",
 "byte 0",
 "short 0",
 "int 0",
 "long 0",
 "float 0.0",
 "double 0.0"
 });
 }
} ///:~

You can see that even though the values are not specified, they
automatically get initialized (The char value is a zero, which prints as a
space). So at least there’s no threat of working with uninitialized
variables. Feedback

You’ll see later that when you define an object reference inside a class
without initializing it to a new object, that reference is given a special
value of null (which is a Java keyword). Feedback

Specifying initialization
What happens if you want to give a variable an initial value? One direct
way to do this is simply to assign the value at the point you define the
variable in the class. (Notice you cannot do this in C++, although C++

Chapter 4: Initialization & Cleanup 207

novices always try.) Here the field definitions in class InitialValues are
changed to provide initial values:

class InitialValues {
 boolean b = true;
 char c = 'x';
 byte B = 47;
 short s = 0xff;
 int i = 999;
 long l = 1;
 float f = 3.14f;
 double d = 3.14159;
 //. . .

You can also initialize nonprimitive objects in this same way. If Depth is
a class, you can create a variable and initialize it like so: Feedback

class Measurement {
 Depth d = new Depth();
 // . . .

If you haven’t given d an initial value and you try to use it anyway, you’ll
get a run-time error called an exception (covered in Chapter 9). Feedback

You can even call a method to provide an initialization value:

class CInit {
 int i = f();
 //...
}

This method can have arguments, of course, but those arguments cannot
be other class members that haven’t been initialized yet. Thus, you can do
this: Feedback

class CInit {
 int i = f();
 int j = g(i);
 //...
}

But you cannot do this: Feedback

class CInit {
 int j = g(i);
 int i = f();

208 Thinking in Java www.BruceEckel.com

 //...
}

This is one place in which the compiler, appropriately, does complain
about forward referencing, since this has to do with the order of
initialization and not the way the program is compiled. Feedback

This approach to initialization is simple and straightforward. It has the
limitation that every object of type InitialValues will get these same
initialization values. Sometimes this is exactly what you need, but at other
times you need more flexibility. Feedback

Constructor initialization
The constructor can be used to perform initialization, and this gives you
greater flexibility in your programming since you can call methods and
perform actions at run time to determine the initial values. There’s one
thing to keep in mind, however: you aren’t precluding the automatic
initialization, which happens before the constructor is entered. So, for
example, if you say:

class Counter {
 int i;
 Counter() { i = 7; }
 // . . .

then i will first be initialized to 0, then to 7. This is true with all the
primitive types and with object references, including those that are given
explicit initialization at the point of definition. For this reason, the
compiler doesn’t try to force you to initialize elements in the constructor
at any particular place, or before they are used—initialization is already
guaranteed6. Feedback

Order of initialization
Within a class, the order of initialization is determined by the order that
the variables are defined within the class. The variable definitions may be

6 In contrast, C++ has the constructor initializer list that causes initialization to occur
before entering the constructor body, and is enforced for objects. See Thinking in C++, 2nd
edition (available on this book’s CD ROM and at www.BruceEckel.com).

Chapter 4: Initialization & Cleanup 209

scattered throughout and in between method definitions, but the
variables are initialized before any methods can be called—even the
constructor. For example: Feedback

//: c04:OrderOfInitialization.java
// Demonstrates initialization order.
import com.bruceeckel.simpletest.*;

// When the constructor is called to create a
// Tag object, you'll see a message:
class Tag {
 Tag(int marker) {
 System.out.println("Tag(" + marker + ")");
 }
}

class Card {
 Tag t1 = new Tag(1); // Before constructor
 Card() {
 // Indicate we're in the constructor:
 System.out.println("Card()");
 t3 = new Tag(33); // Reinitialize t3
 }
 Tag t2 = new Tag(2); // After constructor
 void f() {
 System.out.println("f()");
 }
 Tag t3 = new Tag(3); // At end
}

public class OrderOfInitialization {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Card t = new Card();
 t.f(); // Shows that construction is done
 monitor.expect(new String[] {
 "Tag(1)",
 "Tag(2)",
 "Tag(3)",
 "Card()",
 "Tag(33)",
 "f()"
 });
 }

210 Thinking in Java www.BruceEckel.com

} ///:~

In Card, the definitions of the Tag objects are intentionally scattered
about to prove that they’ll all get initialized before the constructor is
entered or anything else can happen. In addition, t3 is reinitialized inside
the constructor. Feedback

From the output, you can see that, the t3 reference gets initialized twice,
once before and once during the constructor call. (The first object is
dropped, so it can be garbage-collected later.) This might not seem
efficient at first, but it guarantees proper initialization—what would
happen if an overloaded constructor were defined that did not initialize t3
and there wasn’t a “default” initialization for t3 in its definition? Feedback

Static data initialization
When the data is static the same thing happens; if it’s a primitive and you
don’t initialize it, it gets the standard primitive initial values. If it’s a
reference to an object, it’s null unless you create a new object and attach
your reference to it. Feedback

If you want to place initialization at the point of definition, it looks the
same as for non-statics. There’s only a single piece of storage for a static,
regardless of how many objects are created. But the question arises of
when the static storage gets initialized. An example makes this question
clear: Feedback

//: c04:StaticInitialization.java
// Specifying initial values in a class definition.
import com.bruceeckel.simpletest.*;

class Bowl {
 Bowl(int marker) {
 System.out.println("Bowl(" + marker + ")");
 }
 void f(int marker) {
 System.out.println("f(" + marker + ")");
 }
}

class Table {
 static Bowl b1 = new Bowl(1);
 Table() {

Chapter 4: Initialization & Cleanup 211

 System.out.println("Table()");
 b2.f(1);
 }
 void f2(int marker) {
 System.out.println("f2(" + marker + ")");
 }
 static Bowl b2 = new Bowl(2);
}

class Cupboard {
 Bowl b3 = new Bowl(3);
 static Bowl b4 = new Bowl(4);
 Cupboard() {
 System.out.println("Cupboard()");
 b4.f(2);
 }
 void f3(int marker) {
 System.out.println("f3(" + marker + ")");
 }
 static Bowl b5 = new Bowl(5);
}

public class StaticInitialization {
 static Test monitor = new Test();
 public static void main(String[] args) {
 System.out.println("Creating new Cupboard() in main");
 new Cupboard();
 System.out.println("Creating new Cupboard() in main");
 new Cupboard();
 t2.f2(1);
 t3.f3(1);
 monitor.expect(new String[] {
 "Bowl(1)",
 "Bowl(2)",
 "Table()",
 "f(1)",
 "Bowl(4)",
 "Bowl(5)",
 "Bowl(3)",
 "Cupboard()",
 "f(2)",
 "Creating new Cupboard() in main",
 "Bowl(3)",
 "Cupboard()",

212 Thinking in Java www.BruceEckel.com

 "f(2)",
 "Creating new Cupboard() in main",
 "Bowl(3)",
 "Cupboard()",
 "f(2)",
 "f2(1)",
 "f3(1)"
 });
 }
 static Table t2 = new Table();
 static Cupboard t3 = new Cupboard();
} ///:~

Bowl allows you to view the creation of a class, and Table and
Cupboard create static members of Bowl scattered through their class
definitions. Note that Cupboard creates a non-static Bowl b3 prior to
the static definitions. Feedback

From the output, you can see that the static initialization occurs only if
it’s necessary. If you don’t create a Table object and you never refer to
Table.b1 or Table.b2, the static Bowl b1 and b2 will never be created.
They are initialized only when the first Table object is created (or the
first static access occurs). After that, the static objects are not
reinitialized. Feedback

The order of initialization is statics first, if they haven’t already been
initialized by a previous object creation, and then the non-static objects.
You can see the evidence of this in the output. Feedback

It’s helpful to summarize the process of creating an object. Consider a
class called Dog: Feedback

1. The first time an object of type Dog is created (the constructor is
actually a static method), or the first time a static method or
static field of class Dog is accessed, the Java interpreter must
locate Dog.class, which it does by searching through the
classpath. Feedback

2. As Dog.class is loaded (creating a Class object, which you’ll learn
about later), all of its static initializers are run. Thus, static
initialization takes place only once, as the Class object is loaded for
the first time. Feedback

Chapter 4: Initialization & Cleanup 213

3. When you create a new Dog(), the construction process for a
Dog object first allocates enough storage for a Dog object on the
heap. Feedback

4. This storage is wiped to zero, automatically setting all the
primitives in that Dog object to their default values (zero for
numbers and the equivalent for boolean and char) and the
references to null. Feedback

5. Any initializations that occur at the point of field definition are
executed. Feedback

6. Constructors are executed. As you shall see in Chapter 6, this might
actually involve a fair amount of activity, especially when
inheritance is involved. Feedback

Explicit static initialization
Java allows you to group other static initializations inside a special
“static clause” (sometimes called a static block) in a class. It looks like
this: Feedback

class Spoon {
 static int i;
 static {
 i = 47;
 }
 // . . .

It appears to be a method, but it’s just the static keyword followed by a
block of code. This code, like other static initializations, is executed only
once, the first time you make an object of that class or the first time you
access a static member of that class (even if you never make an object of
that class). For example: Feedback

//: c04:ExplicitStatic.java
// Explicit static initialization with the "static" clause.
import com.bruceeckel.simpletest.*;

class Cup {
 Cup(int marker) {
 System.out.println("Cup(" + marker + ")");
 }

214 Thinking in Java www.BruceEckel.com

 void f(int marker) {
 System.out.println("f(" + marker + ")");
 }
}

class Cups {
 static Cup c1;
 static Cup c2;
 static {
 c1 = new Cup(1);
 c2 = new Cup(2);
 }
 Cups() {
 System.out.println("Cups()");
 }
}

public class ExplicitStatic {
 static Test monitor = new Test();
 public static void main(String[] args) {
 System.out.println("Inside main()");
 Cups.c1.f(99); // (1)
 monitor.expect(new String[] {
 "Inside main()",
 "Cup(1)",
 "Cup(2)",
 "f(99)"
 });
 }
 // static Cups x = new Cups(); // (2)
 // static Cups y = new Cups(); // (2)
} ///:~

The static initializers for Cups run when either the access of the static
object c1 occurs on the line marked (1), or if line (1) is commented out and
the lines marked (2) are uncommented. If both (1) and (2) are commented
out, the static initialization for Cups never occurs. Also, it doesn’t matter
if one or both of the lines marked (2) are uncommented; the static
initialization only occurs once. Feedback

Non-static instance initialization
Java provides a similar syntax for initializing non-static variables for
each object. Here’s an example:

Chapter 4: Initialization & Cleanup 215

//: c04:Mugs.java
// Java "Instance Initialization."
import com.bruceeckel.simpletest.*;

class Mug {
 Mug(int marker) {
 System.out.println("Mug(" + marker + ")");
 }
 void f(int marker) {
 System.out.println("f(" + marker + ")");
 }
}

public class Mugs {
 static Test monitor = new Test();
 Mug c1;
 Mug c2;
 {
 c1 = new Mug(1);
 c2 = new Mug(2);
 System.out.println("c1 & c2 initialized");
 }
 Mugs() {
 System.out.println("Mugs()");
 }
 public static void main(String[] args) {
 System.out.println("Inside main()");
 Mugs x = new Mugs();
 monitor.expect(new String[] {
 "Inside main()",
 "Mug(1)",
 "Mug(2)",
 "c1 & c2 initialized",
 "Mugs()"
 });
 }
} ///:~

You can see that the instance initialization clause: Feedback

 {
 c1 = new Mug(1);
 c2 = new Mug(2);
 System.out.println("c1 & c2 initialized");
 }

216 Thinking in Java www.BruceEckel.com

looks exactly like the static initialization clause except for the missing
static keyword. This syntax is necessary to support the initialization of
anonymous inner classes (see Chapter 8). Feedback

Array initialization
Initializing arrays in C is error-prone and tedious. C++ uses aggregate
initialization to make it much safer7. Java has no “aggregates” like C++,
since everything is an object in Java. It does have arrays, and these are
supported with array initialization. Feedback

An array is simply a sequence of either objects or primitives, all the same
type and packaged together under one identifier name. Arrays are defined
and used with the square-brackets indexing operator []. To define an
array you simply follow your type name with empty square brackets:
Feedback

int[] a1;

You can also put the square brackets after the identifier to produce exactly
the same meaning: Feedback

int a1[];

This conforms to expectations from C and C++ programmers. The former
style, however, is probably a more sensible syntax, since it says that the
type is “an int array.” That style will be used in this book. Feedback

The compiler doesn’t allow you to tell it how big the array is. This brings
us back to that issue of “references.” All that you have at this point is a
reference to an array, and there’s been no space allocated for the array. To
create storage for the array you must write an initialization expression.
For arrays, initialization can appear anywhere in your code, but you can
also use a special kind of initialization expression that must occur at the
point where the array is created. This special initialization is a set of
values surrounded by curly braces. The storage allocation (the equivalent

7 See Thinking in C++, 2nd edition for a complete description of C++ aggregate
initialization.

Chapter 4: Initialization & Cleanup 217

of using new) is taken care of by the compiler in this case. For example:
Feedback

int[] a1 = { 1, 2, 3, 4, 5 };

So why would you ever define an array reference without an array? Feedback

int[] a2;

Well, it’s possible to assign one array to another in Java, so you can say:
Feedback

a2 = a1;

What you’re really doing is copying a reference, as demonstrated here:
Feedback

//: c04:Arrays.java
// Arrays of primitives.
import com.bruceeckel.simpletest.*;

public class Arrays {
 static Test monitor = new Test();
 public static void main(String[] args) {
 int[] a1 = { 1, 2, 3, 4, 5 };
 int[] a2;
 a2 = a1;
 for(int i = 0; i < a2.length; i++)
 a2[i]++;
 for(int i = 0; i < a1.length; i++)
 System.out.println(
 "a1[" + i + "] = " + a1[i]);
 monitor.expect(new String[] {
 "a1[0] = 2",
 "a1[1] = 3",
 "a1[2] = 4",
 "a1[3] = 5",
 "a1[4] = 6"
 });
 }
} ///:~

You can see that a1 is given an initialization value while a2 is not; a2 is
assigned later—in this case, to another array. Feedback

218 Thinking in Java www.BruceEckel.com

There’s something new here: all arrays have an intrinsic member
(whether they’re arrays of objects or arrays of primitives) that you can
query—but not change—to tell you how many elements there are in the
array. This member is length. Since arrays in Java, like C and C++, start
counting from element zero, the largest element you can index is length -
1. If you go out of bounds, C and C++ quietly accept this and allow you to
stomp all over your memory, which is the source of many infamous bugs.
However, Java protects you against such problems by causing a run-time
error (an exception, the subject of Chapter 9) if you step out of bounds. Of
course, checking every array access costs time and code and there’s no
way to turn it off, which means that array accesses might be a source of
inefficiency in your program if they occur at a critical juncture. For
Internet security and programmer productivity, the Java designers
thought that this was a worthwhile trade-off. Feedback

What if you don’t know how many elements you’re going to need in your
array while you’re writing the program? You simply use new to create the
elements in the array. Here, new works even though it’s creating an array
of primitives (new won’t create a nonarray primitive): Feedback

//: c04:ArrayNew.java
// Creating arrays with new.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class ArrayNew {
 static Test monitor = new Test();
 static Random rand = new Random();
 public static void main(String[] args) {
 int[] a;
 a = new int[rand.nextInt(20)];
 System.out.println("length of a = " + a.length);
 for(int i = 0; i < a.length; i++)
 System.out.println("a[" + i + "] = " + a[i]);
 monitor.expect(new Object[] {
 "%% length of a = \\d+",
 new TestExpression("%% a\\[\\d+\\] = 0", a.length)
 });
 }
} ///:~

Chapter 4: Initialization & Cleanup 219

The expect() statement contains something new in this example: the
TestExpression class. A TestExpression object takes an expression,
either an ordinary string or a regular expression as shown here, and a
second integer argument which indicates that the preceding expression
will be repeated that many times. TestExpression not only prevents
needless duplication in the code, but in this case, it allows the number of
repetitions to be determined at runtime. Feedback

The size of the array is chosen at random, using the Random.nextInt()
method, which produces a value from zero to that of its argument.
Because of the randomness, it’s clear that array creation is actually
happening at run time. In addition, the output of this program shows that
array elements of primitive types are automatically initialized to “empty”
values. (For numerics and char, this is zero, and for boolean, it’s false.)
Feedback

Of course, the array could also have been defined and initialized in the
same statement:

int[] a = new int[rand.nextInt(20)];

This is the preferred way to do it, if you can. Feedback

If you’re dealing with an array of nonprimitive objects, you must always
use new. Here, the reference issue comes up again because what you
create is an array of references. Consider the wrapper type Integer,
which is a class and not a primitive: Feedback

//: c04:ArrayClassObj.java
// Creating an array of nonprimitive objects.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class ArrayClassObj {
 static Test monitor = new Test();
 static Random rand = new Random();
 public static void main(String[] args) {
 Integer[] a = new Integer[rand.nextInt(20)];
 System.out.println("length of a = " + a.length);
 for(int i = 0; i < a.length; i++) {
 a[i] = new Integer(rand.nextInt(500));
 System.out.println("a[" + i + "] = " + a[i]);
 }

220 Thinking in Java www.BruceEckel.com

 monitor.expect(new Object[] {
 "%% length of a = \\d+",
 new TestExpression("%% a\\[\\d+\\] = \\d+", a.length)
 });
 }
} ///:~

Here, even after new is called to create the array: Feedback

Integer[] a = new Integer[rand.nextInt(20)];

it’s only an array of references, and not until the reference itself is
initialized by creating a new Integer object is the initialization complete:
Feedback

a[i] = new Integer(rand.nextInt(500));

If you forget to create the object, however, you’ll get an exception at run
time when you try to use the empty array location. Feedback

Take a look at the formation of the String object inside the print
statements. You can see that the reference to the Integer object is
automatically converted to produce a String representing the value
inside the object. Feedback

It’s also possible to initialize arrays of objects using the curly-brace-
enclosed list. There are two forms:

//: c04:ArrayInit.java
// Array initialization.

public class ArrayInit {
 public static void main(String[] args) {
 Integer[] a = {
 new Integer(1),
 new Integer(2),
 new Integer(3),
 };
 Integer[] b = new Integer[] {
 new Integer(1),
 new Integer(2),
 new Integer(3),
 };
 }
} ///:~

Chapter 4: Initialization & Cleanup 221

The first form is useful at times, but it’s more limited since the size of the
array is determined at compile time. The final comma in the list of
initializers is optional. (This feature makes for easier maintenance of long
lists.) Feedback

The second form provides a convenient syntax to create and call methods
that can produce the same effect as C’s variable argument lists (known as
“varargs” in C). These can include unknown quantity of arguments as well
as unknown types. Since all classes are ultimately inherited from the
common root class Object (a subject you will learn more about as this
book progresses), you can create a method that takes an array of Object
and call it like this: Feedback

//: c04:VarArgs.java
// Using the array syntax to create variable argument lists.
import com.bruceeckel.simpletest.*;

class A { int i; }

public class VarArgs {
 static Test monitor = new Test();
 static void print(Object[] x) {
 for(int i = 0; i < x.length; i++)
 System.out.println(x[i]);
 }
 public static void main(String[] args) {
 print(new Object[] {
 new Integer(47), new VarArgs(),
 new Float(3.14), new Double(11.11)
 });
 print(new Object[] {"one", "two", "three" });
 print(new Object[] {new A(), new A(), new A()});
 monitor.expect(new Object[] {
 "47",
 "%% VarArgs@\\p{XDigit}+",
 "3.14",
 "11.11",
 "one",
 "two",
 "three",
 new TestExpression("%% A@\\p{XDigit}+", 3)
 });
 }

222 Thinking in Java www.BruceEckel.com

} ///:~

You can see that print() takes an array of Object, then steps through
the array and prints each one. The standard Java library classes produce
sensible output, but the objects of the classes created here—A and
VarArgs—print the class name, followed by an ‘@’ sign, and yet another
regular expression construct: \p{XDigit}, which indicates a hexadecimal
digit. The trailing ‘+’ means there will be one or more hexadecimal digits.
Thus, the default behavior (if you don’t define a toString() method for
your class, which will be described later in the book) is to print the class
name and the address of the object. Feedback

Multidimensional arrays
Java allows you to easily create multidimensional arrays:

//: c04:MultiDimArray.java
// Creating multidimensional arrays.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class MultiDimArray {
 static Test monitor = new Test();
 static Random rand = new Random();
 public static void main(String[] args) {
 int[][] a1 = {
 { 1, 2, 3, },
 { 4, 5, 6, },
 };
 for(int i = 0; i < a1.length; i++)
 for(int j = 0; j < a1[i].length; j++)
 System.out.println(
 "a1[" + i + "][" + j + "] = " + a1[i][j]);
 // 3-D array with fixed length:
 int[][][] a2 = new int[2][2][4];
 for(int i = 0; i < a2.length; i++)
 for(int j = 0; j < a2[i].length; j++)
 for(int k = 0; k < a2[i][j].length; k++)
 System.out.println("a2[" + i + "][" + j + "][" +
 k + "] = " + a2[i][j][k]);
 // 3-D array with varied-length vectors:
 int[][][] a3 = new int[rand.nextInt(7)][][];
 for(int i = 0; i < a3.length; i++) {

Chapter 4: Initialization & Cleanup 223

 a3[i] = new int[rand.nextInt(5)][];
 for(int j = 0; j < a3[i].length; j++)
 a3[i][j] = new int[rand.nextInt(5)];
 }
 for(int i = 0; i < a3.length; i++)
 for(int j = 0; j < a3[i].length; j++)
 for(int k = 0; k < a3[i][j].length; k++)
 System.out.println("a3[" + i + "][" + j + "][" +
 k + "] = " + a3[i][j][k]);
 // Array of nonprimitive objects:
 Integer[][] a4 = {
 { new Integer(1), new Integer(2)},
 { new Integer(3), new Integer(4)},
 { new Integer(5), new Integer(6)},
 };
 for(int i = 0; i < a4.length; i++)
 for(int j = 0; j < a4[i].length; j++)
 System.out.println("a4[" + i + "][" + j +
 "] = " + a4[i][j]);
 Integer[][] a5;
 a5 = new Integer[3][];
 for(int i = 0; i < a5.length; i++) {
 a5[i] = new Integer[3];
 for(int j = 0; j < a5[i].length; j++)
 a5[i][j] = new Integer(i*j);
 }
 for(int i = 0; i < a5.length; i++)
 for(int j = 0; j < a5[i].length; j++)
 System.out.println("a5[" + i + "][" + j +
 "] = " + a5[i][j]);
 // Output test
 int ln = 0;
 for(int i = 0; i < a3.length; i++)
 for(int j = 0; j < a3[i].length; j++)
 for(int k = 0; k < a3[i][j].length; k++)
 ln++;
 monitor.expect(new Object[] {
 "a1[0][0] = 1",
 "a1[0][1] = 2",
 "a1[0][2] = 3",
 "a1[1][0] = 4",
 "a1[1][1] = 5",
 "a1[1][2] = 6",
 new TestExpression(

224 Thinking in Java www.BruceEckel.com

 "%% a2\\[\\d\\]\\[\\d\\]\\[\\d\\] = 0", 16),
 new TestExpression(
 "%% a3\\[\\d\\]\\[\\d\\]\\[\\d\\] = 0", ln),
 "a4[0][0] = 1",
 "a4[0][1] = 2",
 "a4[1][0] = 3",
 "a4[1][1] = 4",
 "a4[2][0] = 5",
 "a4[2][1] = 6",
 "a5[0][0] = 0",
 "a5[0][1] = 0",
 "a5[0][2] = 0",
 "a5[1][0] = 0",
 "a5[1][1] = 1",
 "a5[1][2] = 2",
 "a5[2][0] = 0",
 "a5[2][1] = 2",
 "a5[2][2] = 4"
 });
 }
} ///:~

The code used for printing uses length so that it doesn’t depend on fixed
array sizes. Feedback

The first example shows a multidimensional array of primitives. You
delimit each vector in the array with curly braces:

 int[][] a1 = {
 { 1, 2, 3, },
 { 4, 5, 6, },
 };

Each set of square brackets moves you into the next level of the array.
Feedback

The second example shows a three-dimensional array allocated with new.
Here, the whole array is allocated at once:

int[][][] a2 = new int[2][2][4];

But the third example shows that each vector in the arrays that make up
the matrix can be of any length:

 int[][][] a3 = new int[rand.nextInt(7)][][];

Chapter 4: Initialization & Cleanup 225

 for(int i = 0; i < a3.length; i++) {
 a3[i] = new int[rand.nextInt(5)][];
 for(int j = 0; j < a3[i].length; j++)
 a3[i][j] = new int[rand.nextInt(5)];
 }

The first new creates an array with a random-length first element and the
rest undetermined. The second new inside the for loop fills out the
elements but leaves the third index undetermined until you hit the third
new. Feedback

You will see from the output that array values are automatically initialized
to zero if you don’t give them an explicit initialization value.

You can deal with arrays of nonprimitive objects in a similar fashion,
which is shown in the fourth example, demonstrating the ability to collect
many new expressions with curly braces:

 Integer[][] a4 = {
 { new Integer(1), new Integer(2)},
 { new Integer(3), new Integer(4)},
 { new Integer(5), new Integer(6)},
 };

The fifth example shows how an array of nonprimitive objects can be built
up piece by piece:

 Integer[][] a5;
 a5 = new Integer[3][];
 for(int i = 0; i < a5.length; i++) {
 a5[i] = new Integer[3];
 for(int j = 0; j < a5[i].length; j++)
 a5[i][j] = new Integer(i*j);
 }

The i*j is just to put an interesting value into the Integer. Feedback

Summary
This seemingly elaborate mechanism for initialization, the constructor,
should give you a strong hint about the critical importance placed on
initialization in the language. As Bjarne Stroustrup, the inventor of C++,
was designing that language, one of the first observations he made about

226 Thinking in Java www.BruceEckel.com

productivity in C was that improper initialization of variables causes a
significant portion of programming problems. These kinds of bugs are
hard to find, and similar issues apply to improper cleanup. Because
constructors allow you to guarantee proper initialization and cleanup (the
compiler will not allow an object to be created without the proper
constructor calls), you get complete control and safety. Feedback

In C++, destruction is quite important because objects created with new
must be explicitly destroyed. In Java, the garbage collector automatically
releases the memory for all objects, so the equivalent cleanup method in
Java isn’t necessary much of the time (but when it is, as observed in this
chapter, you must do it yourself). In cases where you don’t need
destructor-like behavior, Java’s garbage collector greatly simplifies
programming, and adds much-needed safety in managing memory. Some
garbage collectors can even clean up other resources like graphics and file
handles. However, the garbage collector does add a run-time cost, the
expense of which is difficult to put into perspective because of the
historical slowness of Java interpreters. Although Java has had significant
performance increases over time, the speed problem has taken its toll on
the adoption of the language for certain types of programming problems.
Feedback

Because of the guarantee that all objects will be constructed, there’s
actually more to the constructor than what is shown here. In particular,
when you create new classes using either composition or inheritance the
guarantee of construction also holds, and some additional syntax is
necessary to support this. You’ll learn about composition, inheritance,
and how they affect constructors in future chapters. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create a class with a default constructor (one that takes no
arguments) that prints a message. Create an object of this class.
Feedback

2. Add an overloaded constructor to Exercise 1 that takes a String
argument and prints it along with your message. Feedback

Chapter 4: Initialization & Cleanup 227

3. Create an array of object references of the class you created in
Exercise 2, but don’t actually create objects to assign into the
array. When you run the program, notice whether the initialization
messages from the constructor calls are printed. Feedback

4. Complete Exercise 3 by creating objects to attach to the array of
references. Feedback

5. Create an array of String objects and assign a string to each
element. Print the array using a for loop. Feedback

6. Create a class called Dog with an overloaded bark() method.
This method should be overloaded based on various primitive data
types, and print different types of barking, howling, etc.,
depending on which overloaded version is called. Write a main()
that calls all the different versions. Feedback

7. Modify Exercise 6 so that two of the overloaded methods have two
arguments (of two different types), but in reversed order relative
to each other. Verify that this works. Feedback

8. Create a class without a constructor, and then create an object of
that class in main() to verify that the default constructor is
automatically synthesized. Feedback

9. Create a class with two methods. Within the first method, call the
second method twice: the first time without using this, and the
second time using this. Feedback

10. Create a class with two (overloaded) constructors. Using this, call
the second constructor inside the first one. Feedback

11. Create a class with a finalize() method that prints a message. In
main(), create an object of your class. Explain the behavior of
your program. Feedback

12. Modify Exercise 11 so that your finalize() will always be called.
Feedback

13. Create a class called Tank that can be filled and emptied, and has
a termination condition that it must be empty when the object is

228 Thinking in Java www.BruceEckel.com

cleaned up. Write a finalize() that verifies this termination
condition. In main(), test the possible scenarios that can occur
when your Tank is used. Feedback

14. Create a class containing an int and a char that are not initialized,
and print their values to verify that Java performs default
initialization. Feedback

15. Create a class containing an uninitialized String reference.
Demonstrate that this reference is initialized by Java to null.
Feedback

16. Create a class with a String field that is initialized at the point of
definition, and another one that is initialized by the constructor.
What is the difference between the two approaches? Feedback

17. Create a class with a static String field that is initialized at the
point of definition, and another one that is initialized by the static
block. Add a static method that prints both fields and
demonstrates that they are both initialized before they are used.
Feedback

18. Create a class with a String that is initialized using “instance
initialization.” Describe a use for this feature (other than the one
specified in this book). Feedback

19. Write a method that creates and initializes a two-dimensional
array of double. The size of the array is determined by the
arguments of the method, and the initialization values are a range
determined by beginning and ending values that are also
arguments of the method. Create a second method that will print
the array generated by the first method. In main() test the
methods by creating and printing several different sizes of arrays.
Feedback

20. Repeat Exercise 19 for a three-dimensional array. Feedback

21. Comment the line marked (1) in ExplicitStatic.java and verify
that the static initialization clause is not called. Now uncomment
one of the lines marked (2) and verify that the static initialization

Chapter 4: Initialization & Cleanup 229

clause is called. Now uncomment the other line marked (2) and
verify that static initialization only occurs once. Feedback

 231

5: Hiding the
Implementation

A primary consideration in object-oriented design is
“separating the things that change from the things that
stay the same.”

This is particularly important for libraries. The user (client programmer)
of that library must be able to rely on the part they use, and know that
they won’t need to rewrite code if a new version of the library comes out.
On the flip side, the library creator must have the freedom to make
modifications and improvements with the certainty that the client
programmer’s code won’t be affected by those changes. Feedback

This can be achieved through convention. For example, the library
programmer must agree to not remove existing methods when modifying
a class in the library, since that would break the client programmer’s code.
The reverse situation is thornier, however. In the case of a field, how can
the library creator know which fields have been accessed by client
programmers? This is also true with methods that are only part of the
implementation of a class, and not meant to be used directly by the client
programmer. But what if the library creator wants to rip out an old
implementation and put in a new one? Changing any of those members
might break a client programmer’s code. Thus the library creator is in a
strait jacket and can’t change anything. Feedback

To solve this problem, Java provides access specifiers to allow the library
creator to say what is available to the client programmer and what is not.
The levels of access control from “most access” to “least access” are
public, protected, package access (which has no keyword), and
private. From the previous paragraph you might think that, as a library
designer, you’ll want to keep everything as “private” as possible, and
expose only the methods that you want the client programmer to use. This
is exactly right, even though it’s often counterintuitive for people who

232 Thinking in Java www.BruceEckel.com

program in other languages (especially C) and are used to accessing
everything without restriction. By the end of this chapter you should be
convinced of the value of access control in Java. Feedback

The concept of a library of components and the control over who can
access the components of that library is not complete, however. There’s
still the question of how the components are bundled together into a
cohesive library unit. This is controlled with the package keyword in
Java, and the access specifiers are affected by whether a class is in the
same package or in a separate package. So to begin this chapter, you’ll
learn how library components are placed into packages. Then you’ll be
able to understand the complete meaning of the access specifiers. Feedback

package: the library unit
A package is what becomes available when you use the import keyword
to bring in an entire library, such as

import java.util.*;

This brings in the entire utility library that’s part of the standard Java
distribution. For instance, there’s a class called ArrayList in java.util,
so you can now either specify the full name java.util.ArrayList (which
you can do without the import statement), or you can simply say
ArrayList (because of the import). Feedback

If you want to bring in a single class, you can name that class in the
import statement

import java.util.ArrayList;

Now you can use ArrayList with no qualification. However, none of the
other classes in java.util are available. Feedback

The reason for all this importing is to provide a mechanism to manage
name spaces. The names of all your class members are insulated from
each other. A method f() inside a class A will not clash with an f() that
has the same signature (argument list) in class B. But what about the class
names? Suppose you create a Stack class that is installed on a machine
which already has a Stack class that’s written by someone else? This
potential clashing of names is why it’s important to have complete control

Chapter 5: Hiding the Implementation 233

over the name spaces in Java, and to be able to create a completely unique
name regardless of the constraints of the Internet. Feedback

Most of the examples thus far in this book have existed in a single file and
have been designed for local use, so they haven’t bothered with package
names. (In this case the class name is placed in the “default package.”)
This is certainly an option, and for simplicity’s sake this approach will be
used whenever possible throughout the rest of this book. However, if
you’re planning to create libraries or programs that are friendly to other
Java programs on the same machine, you must think about preventing
class name clashes. Feedback

When you create a source-code file for Java, it’s commonly called a
compilation unit (sometimes a translation unit). Each compilation unit
must have a name ending in .java, and inside the compilation unit there
can be a public class that must have the same name as the file (including
capitalization, but excluding the .java filename extension). There can be
only one public class in each compilation unit, otherwise the compiler
will complain. If there are additional classes in that compilation unit, they
are hidden from the world outside that package because they’re not
public, and they comprise “support” classes for the main public class.
Feedback

When you compile a .java file you get an output file for each class in the
.java file. Each output file has the name of a class in the .java file, but
with an extension of .class. Thus you can end up with quite a few .class
files from a small number of .java files. If you’ve programmed with a
compiled language, you might be used to the compiler spitting out an
intermediate form (usually an “obj” file) that is then packaged together
with others of its kind using a linker (to create an executable file) or a
librarian (to create a library). That’s not how Java works. A working
program is a bunch of .class files, which can be packaged and
compressed into a JAR file (using Java’s jar archiver). The Java
interpreter is responsible for finding, loading, and interpreting1 these
files. Feedback

1 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java
compilers that generate a single executable file.

234 Thinking in Java www.BruceEckel.com

A library is a group of these class files. Each file has one class that is
public (you’re not forced to have a public class, but it’s typical), so
there’s one component for each file. If you want to say that all these
components (each in their own separate .java and .class files) belong
together, that’s where the package keyword comes in. Feedback

When you say:

package mypackage;

at the beginning of a file (if you use a package statement, it must appear
as the first noncomment in the file), you’re stating that this compilation
unit is part of a library named mypackage. Or, put another way, you’re
saying that the public class name within this compilation unit is under
the umbrella of the name mypackage, and if anyone wants to use the
name they must either fully specify the name or use the import keyword
in combination with mypackage (using the choices given previously).
Note that the convention for Java package names is to use all lowercase
letters, even for intermediate words. Feedback

For example, suppose the name of the file is MyClass.java. This means
there can be one and only one public class in that file, and the name of
that class must be MyClass (including the capitalization):

package mypackage;
public class MyClass {
 // . . .

Now, if someone wants to use MyClass or, for that matter, any of the
other public classes in mypackage, they must use the import keyword
to make the name or names in mypackage available. The alternative is
to give the fully qualified name:

mypackage.MyClass m = new mypackage.MyClass();

The import keyword can make this much cleaner:

import mypackage.*;
// . . .
MyClass m = new MyClass();

It’s worth keeping in mind that what the package and import keywords
allow you to do, as a library designer, is to divide up the single global

Chapter 5: Hiding the Implementation 235

name space so you won’t have clashing names, no matter how many
people get on the Internet and start writing classes in Java. Feedback

Creating unique package names
You might observe that, since a package never really gets “packaged” into
a single file, a package could be made up of many .class files, and things
could get a bit cluttered. To prevent this, a logical thing to do is to place all
the .class files for a particular package into a single directory; that is, use
the hierarchical file structure of the operating system to your advantage.
This is one way that Java references the problem of clutter; you’ll see the
other way later when the jar utility is introduced. Feedback

Collecting the package files into a single subdirectory solves two other
problems: creating unique package names, and finding those classes that
might be buried in a directory structure someplace. This is accomplished,
as was introduced in Chapter 2, by encoding the path of the location of the
.class file into the name of the package. By convention, the first part of
the package name is the Internet domain name of the creator of the
class, reversed. Since Internet domain names are guaranteed to be
unique, if you follow this convention your package name will be unique
and you’ll never have a name clash. (That is, until you lose the domain
name to someone else who starts writing Java code with the same path
names as you did.) Of course, if you don’t have your own domain name
then you must fabricate an unlikely combination (such as your first and
last name) to create unique package names. If you’ve decided to start
publishing Java code it’s worth the relatively small effort to get a domain
name. Feedback

The second part of this trick is resolving the package name into a
directory on your machine, so when the Java program runs and it needs to
load the .class file (which it does dynamically, at the point in the program
where it needs to create an object of that particular class, or the first time
you access a static member of the class), it can locate the directory where
the .class file resides. Feedback

The Java interpreter proceeds as follows. First, it finds the environment
variable CLASSPATH (set via the operating system, and sometimes by the
installation program that installs Java or a Java-based tool on your
machine). CLASSPATH contains one or more directories that are used as

236 Thinking in Java www.BruceEckel.com

roots in a search for .class files. Starting at that root, the interpreter will
take the package name and replace each dot with a slash to generate a
path name from the CLASSPATH root (so package foo.bar.baz
becomes foo\bar\baz or foo/bar/baz or possibly something else,
depending on your operating system). This is then concatenated to the
various entries in the CLASSPATH. That’s where it looks for the .class
file with the name corresponding to the class you’re trying to create. (It
also searches some standard directories relative to where the Java
interpreter resides). Feedback

To understand this, consider my domain name, which is
bruceeckel.com. By reversing this, com.bruceeckel establishes my
unique global name for my classes. (The com, edu, org, etc., extension was
formerly capitalized in Java packages, but this was changed in Java 2 so
the entire package name is lowercase.) I can further subdivide this by
deciding that I want to create a library named simple, so I’ll end up with
a package name:

package com.bruceeckel.simple;

Now this package name can be used as an umbrella name space for the
following two files: Feedback

//: com:bruceeckel:simple:Vector.java
// Creating a package.
package com.bruceeckel.simple;

public class Vector {
 public Vector() {
 System.out.println("com.bruceeckel.simple.Vector");
 }
} ///:~

When you create your own packages, you’ll discover that the package
statement must be the first noncomment code in the file. The second file
looks much the same: Feedback

//: com:bruceeckel:simple:List.java
// Creating a package.
package com.bruceeckel.simple;

public class List {
 public List() {

Chapter 5: Hiding the Implementation 237

 System.out.println("com.bruceeckel.simple.List");
 }
} ///:~

Both of these files are placed in the subdirectory on my system: Feedback

C:\DOC\JavaT\com\bruceeckel\simple

If you walk back through this, you can see the package name
com.bruceeckel.simple, but what about the first portion of the path?
That’s taken care of in the CLASSPATH environment variable, which is,
on my machine: Feedback

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\JavaT

You can see that the CLASSPATH can contain a number of alternative
search paths. Feedback

There’s a variation when using JAR files, however. You must put the name
of the JAR file in the classpath, not just the path where it’s located. So for
a JAR named grape.jar your classpath would include:

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar

Once the classpath is set up properly, the following file can be placed in
any directory:

//: c05:LibTest.java
// Uses the library.
import com.bruceeckel.simpletest.*;
import com.bruceeckel.simple.*;

public class LibTest {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Vector v = new Vector();
 List l = new List();
 monitor.expect(new String[] {
 "com.bruceeckel.simple.Vector",
 "com.bruceeckel.simple.List"
 });
 }
} ///:~

238 Thinking in Java www.BruceEckel.com

When the compiler encounters the import statement for the simple
library, it begins searching at the directories specified by CLASSPATH,
looking for subdirectory com\bruceeckel\simple, then seeking the
compiled files of the appropriate names (Vector.class for Vector and
List.class for List). Note that both the classes and the desired methods
in Vector and List must be public. Feedback

Setting the CLASSPATH has been such a trial for beginning Java users (it
was for me, when I started) that Sun made the JDK in Java 2 a bit
smarter. You’ll find that, when you install it, even if you don’t set a
CLASSPATH you’ll be able to compile and run basic Java programs. To
compile and run the source-code package for this book (available on the
CD ROM packaged with this book, or at www.BruceEckel.com), however,
you will need to add the base directory of the book’s code tree to your
CLASSPATH. Feedback

Collisions
What happens if two libraries are imported via * and they include the
same names? For example, suppose a program does this:

import com.bruceeckel.simple.*;
import java.util.*;

Since java.util.* also contains a Vector class, this causes a potential
collision. However, as long as you don’t write the code that actually causes
the collision, everything is OK—this is good because otherwise you might
end up doing a lot of typing to prevent collisions that would never happen.
Feedback

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know, and the
reader can’t know either. So the compiler complains and forces you to be
explicit. If I want the standard Java Vector, for example, I must say:

java.util.Vector v = new java.util.Vector();

Chapter 5: Hiding the Implementation 239

Since this (along with the CLASSPATH) completely specifies the location
of that Vector, there’s no need for the import java.util.* statement
unless I’m using something else from java.util. Feedback

A custom tool library
With this knowledge, you can now create your own libraries of tools to
reduce or eliminate duplicate code. Consider, for example, creating an
alias for System.out.println() to reduce typing. This can be part of a
package called tools:

//: com:bruceeckel:tools:P.java
// The P.rint & P.rintln shorthand.
package com.bruceeckel.tools;

public class P {
 public static void rint(String s) {
 System.out.print(s);
 }
 public static void rintln(String s) {
 System.out.println(s);
 }
} ///:~

You can use this shorthand to print a String either with a newline
(P.rintln()) or without a newline (P.rint()). Feedback

You can guess that the location of this file must be in a directory that
starts at one of the CLASSPATH locations, then continues
com/bruceeckel/tools. After compiling, the P.class file can be used
anywhere on your system with an import statement:

//: c05:ToolTest.java
// Uses the tools library.
import com.bruceeckel.simpletest.*;
import com.bruceeckel.tools.*;

public class ToolTest {
 static Test monitor = new Test();
 public static void main(String[] args) {
 P.rintln("Available from now on!");
 P.rintln("" + 100); // Force it to be a String
 P.rintln("" + 100L);

240 Thinking in Java www.BruceEckel.com

 P.rintln("" + 3.14159);
 monitor.expect(new String[] {
 "Available from now on!",
 "100",
 "100",
 "3.14159"
 });
 }
} ///:~

Notice that all objects can easily be forced into String representations by
putting them in a String expression; in the above case, starting the
expression with an empty String does the trick. But this brings up an
interesting observation. If you call System.out.println(100), it works
without casting it to a String. With some extra overloading, you can get
the P class to do this as well (this is an exercise at the end of this chapter).
Feedback

So from now on, whenever you come up with a useful new utility, you can
add it to your own tools or util directory. Feedback

Using imports to change behavior
A feature that is missing from Java is C’s conditional compilation, which
allows you to change a switch and get different behavior without changing
any other code. The reason such a feature was left out of Java is probably
because it is most often used in C to solve cross-platform issues: different
portions of the code are compiled depending on the platform that the
code is being compiled for. Since Java is intended to be automatically
cross-platform, such a feature should not be necessary. Feedback

However, there are other valuable uses for conditional compilation. A very
common use is for debugging code. The debugging features are enabled
during development, and disabled in the shipping product. You can
accomplish this by changing the package that’s imported to change the
code that’s used in your program from the debug version to the
production version. This technique can be used for any kind of
conditional code. Feedback

Chapter 5: Hiding the Implementation 241

Package caveat
It’s worth remembering that anytime you create a package, you implicitly
specify a directory structure when you give the package a name. The
package must live in the directory indicated by its name, which must be a
directory that is searchable starting from the CLASSPATH.
Experimenting with the package keyword can be a bit frustrating at first,
because unless you adhere to the package-name to directory-path rule,
you’ll get a lot of mysterious run-time messages about not being able to
find a particular class, even if that class is sitting there in the same
directory. If you get a message like this, try commenting out the package
statement, and if it runs you’ll know where the problem lies. Feedback

Java access specifiers
When used, the Java access specifiers public, protected, and private
are placed in front of each definition for each member in your class,
whether it’s a field or a method. Each access specifier controls the access
for only that particular definition. This is a distinct contrast to C++, in
which the access specifier controls all the definitions following it until
another access specifier comes along. Feedback

One way or another, everything has some kind of access specified for it. In
the following sections, you’ll learn all about the various types of access,
starting with the default access. Feedback

Package access
What if you give no access specifier at all, as in all the examples before
this chapter? The default access has no keyword, but it is commonly
referred to as package access (and sometimes “friendly”). It means that
all the other classes in the current package have access to that member,
but to all the classes outside of this package the member appears to be
private. Since a compilation unit—a file—can belong only to a single
package, all the classes within a single compilation unit are automatically
available each other via package access. Feedback

Package access allows you to group related classes together in a package
so that they can easily interact with each other. When you put classes

242 Thinking in Java www.BruceEckel.com

together in a package, thus granting mutual access to their package-access
members, you “own” the code in that package. It makes sense that only
code you own should have package access to other code you own. You
could say that package access gives a meaning or a reason for grouping
classes together in a package. In many languages the way you organize
your definitions in files can be arbitrary, but in Java you’re compelled to
organize them in a sensible fashion. In addition, you’ll probably want to
exclude classes that shouldn’t have access to the classes being defined in
the current package. Feedback

The class controls which code has access to its members. There’s no magic
way to “break in.” Code from another package can’t show up and say, “Hi,
I’m a friend of Bob’s!” and expect to see the protected, package-access,
and private members of Bob. The only way to grant access to a member
is to: Feedback

1. Make the member public. Then everybody, everywhere, can access
it. Feedback

2. Give the member package access by leaving off any access specifier,
and put the other classes in the same package. Then the other
classes in that package can access the member. Feedback

3. As you’ll see in Chapter 6, when inheritance is introduced, an
inherited class can access a protected member as well as a public
member (but not private members). It can access package-acess
members only if the two classes are in the same package. But don’t
worry about that now. Feedback

4. Provide “accessor/mutator” methods (also known as “get/set”
methods) that read and change the value. This is the most civilized
approach in terms of OOP, and it is fundamental to JavaBeans, as
you’ll see in Chapter 14. Feedback

public: interface access
When you use the public keyword, it means that the member declaration
that immediately follows public is available to everyone, in particular to
the client programmer who uses the library. Suppose you define a package
dessert containing the following compilation unit: Feedback

Chapter 5: Hiding the Implementation 243

//: c05:dessert:Cookie.java
// Creates a library.
package c05.dessert;

public class Cookie {
 public Cookie() {
 System.out.println("Cookie constructor");
 }
 void bite() { System.out.println("bite"); }
} ///:~

Remember, Cookie.java must reside in a subdirectory called dessert, in
a directory under c05 (indicating Chapter 5 of this book) that must be
under one of the CLASSPATH directories. Don’t make the mistake of
thinking that Java will always look at the current directory as one of the
starting points for searching. If you don’t have a ‘.’ as one of the paths in
your CLASSPATH, Java won’t look there. Feedback

Now if you create a program that uses Cookie:

//: c05:Dinner.java
// Uses the library.
import com.bruceeckel.simpletest.*;
import c05.dessert.*;

public class Dinner {
 static Test monitor = new Test();
 public Dinner() {
 System.out.println("Dinner constructor");
 }
 public static void main(String[] args) {
 Cookie x = new Cookie();
 //! x.bite(); // Can't access
 monitor.expect(new String[] {
 "Cookie constructor"
 });
 }
} ///:~

you can create a Cookie object, since its constructor is public and the
class is public. (We’ll look more at the concept of a public class later.)
However, the bite() member is inaccessible inside Dinner.java since
bite() provides access only within package dessert, so the compiler
prevents you from using it. Feedback

244 Thinking in Java www.BruceEckel.com

The default package
You might be surprised to discover that the following code compiles, even
though it would appear that it breaks the rules:

//: c05:Cake.java
// Accesses a class in a separate compilation unit.
import com.bruceeckel.simpletest.*;

class Cake {
 static Test monitor = new Test();
 public static void main(String[] args) {
 Pie x = new Pie();
 x.f();
 monitor.expect(new String[] {
 "Pie.f()"
 });
 }
} ///:~

In a second file, in the same directory:

//: c05:Pie.java
// The other class.

class Pie {
 void f() { System.out.println("Pie.f()"); }
} ///:~

You might initially view these as completely foreign files, and yet Cake is
able to create a Pie object and call its f() method! (Note that you must
have ‘.’ in your CLASSPATH in order for the files to compile.) You’d
typically think that Pie and f() have package access and therefore not
available to Cake. They do have package access—that part is correct. The
reason that they are available in Cake.java is because they are in the
same directory and have no explicit package name. Java treats files like
this as implicitly part of the “default package” for that directory, and thus
they provide package access to all the other files in that directory. Feedback

private: you can’t touch that!
The private keyword means that no one can access that member except
the class that contains that member, inside methods of that class. Other

Chapter 5: Hiding the Implementation 245

classes in the same package cannot access private members, so it’s as if
you’re even insulating the class against yourself. On the other hand, it’s
not unlikely that a package might be created by several people
collaborating together, so private allows you to freely change that
member without concern that it will affect another class in the same
package. Feedback

The default package access often provides an adequate amount of hiding;
remember, a package-access member is inaccessible to the client
programmer using the class. This is nice, since the default access is the
one that you normally use (and the one that you’ll get if you forget to add
any access control). Thus, you’ll typically think about access for the
members that you explicitly want to make public for the client
programmer, and as a result, you might not initially think you’ll use the
private keyword often since it’s tolerable to get away without it. (This is a
distinct contrast with C++.) However, it turns out that the consistent use
of private is very important, especially where multithreading is
concerned. (As you’ll see in Chapter 13.) Feedback

Here’s an example of the use of private:

//: c05:IceCream.java
// Demonstrates "private" keyword.

class Sundae {
 private Sundae() {}
 static Sundae makeASundae() {
 return new Sundae();
 }
}

public class IceCream {
 public static void main(String[] args) {
 //! Sundae x = new Sundae();
 Sundae x = Sundae.makeASundae();
 }
} ///:~

This shows an example in which private comes in handy: you might want
to control how an object is created and prevent someone from directly
accessing a particular constructor (or all of them). In the example above,

246 Thinking in Java www.BruceEckel.com

you cannot create a Sundae object via its constructor; instead you must
call the makeASundae() method to do it for you2. Feedback

Any method that you’re certain is only a “helper” method for that class
can be made private, to ensure that you don’t accidentally use it
elsewhere in the package and thus prohibit yourself from changing or
removing the method. Making a method private guarantees that you
retain this option. Feedback

The same is true for a private field inside a class. Unless you must expose
the underlying implementation (which is a much rarer situation than you
might think), you should make all fields private. However, just because a
reference to an object is private inside a class doesn't mean that some
other object can't have a public reference to the same object. (See
Appendix A for issues about aliasing.) Feedback

protected: inheritance access
Understanding the protected access specifier requires a jump ahead.
First, you should be aware that you don’t need to understand this section
to continue through this book up through inheritance (Chapter 6). But for
completeness, here is a brief description and example using protected.
Feedback

The protected keyword deals with a concept called inheritance, which
takes an existing class—which we refer to as the base class—and adds new
members to that class without touching the existing class. You can also
change the behavior of existing members of the class. To inherit from an
existing class, you say that your new class extends an existing class, like
this:

class Foo extends Bar {

The rest of the class definition looks the same. Feedback

2 There’s another effect in this case: Since the default constructor is the only one defined,
and it’s private, it will prevent inheritance of this class. (A subject that will be introduced
in Chapter 6.)

Chapter 5: Hiding the Implementation 247

If you create a new package and inherit from a class in another package,
the only members you have access to are the public members of the
original package. (Of course, if you perform the inheritance in the same
package, you can manipulate all the members that have package access)
Sometimes the creator of the base class would like to take a particular
member and grant access to derived classes but not the world in general.
That’s what protected does. protected also gives package access—that
is, other classes in the same package may access protected elements.

If you refer back to the file Cookie.java, the following class cannot call
the package-access member bite():

//: c05:ChocolateChip.java
// Can't use package-access member from another package.
import com.bruceeckel.simpletest.*;
import c05.dessert.*;

public class ChocolateChip extends Cookie {
 private static Test monitor = new Test();
 public ChocolateChip() {
 System.out.println("ChocolateChip constructor");
 }
 public static void main(String[] args) {
 ChocolateChip x = new ChocolateChip();
 //! x.bite(); // Can't access bite
 monitor.expect(new String[] {
 "Cookie constructor",
 "ChocolateChip constructor"
 });
 }
} ///:~

One of the interesting things about inheritance is that if a method bite()
exists in class Cookie, then it also exists in any class inherited from
Cookie. But since bite() has package access and is in a foreign package,
it’s unavailable to us in this one. Of course, you could make it public, but
then everyone would have access and maybe that’s not what you want. If
we change the class Cookie as follows:

public class Cookie {
 public Cookie() {
 System.out.println("Cookie constructor");
 }

248 Thinking in Java www.BruceEckel.com

 protected void bite() {
 System.out.println("bite");
 }
}

then bite() still has the equivalent of package access within package
dessert, but it is also accessible to anyone inheriting from Cookie.
However, it is not public. Feedback

Interface and
implementation

Access control is often referred to as implementation hiding. Wrapping
data and methods within classes in combination with implementation
hiding is often called encapsulation3. The result is a data type with
characteristics and behaviors. Feedback

Access control puts boundaries within a data type for two important
reasons. The first is to establish what the client programmers can and
can’t use. You can build your internal mechanisms into the structure
without worrying that the client programmers will accidentally treat the
internals as part of the interface that they should be using. Feedback

This feeds directly into the second reason, which is to separate the
interface from the implementation. If the structure is used in a set of
programs, but client programmers can’t do anything but send messages to
the public interface, then you are free to change anything that’s not
public (e.g., package access, protected, or private) without breaking
client code. Feedback

We’re now in the world of object-oriented programming, where a class is
actually describing “a class of objects,” as you would describe a class of
fishes or a class of birds. Any object belonging to this class will share these
characteristics and behaviors. The class is a description of the way all
objects of this type will look and act. Feedback

3 However, people often refer to implementation hiding alone as encapsulation.

Chapter 5: Hiding the Implementation 249

In the original OOP language, Simula-67, the keyword class was used to
describe a new data type. The same keyword has been used for most
object-oriented languages. This is the focal point of the whole language:
the creation of new data types that are more than just boxes containing
data and methods. Feedback

The class is the fundamental OOP concept in Java. It is one of the
keywords that will not be set in bold in this book—it becomes annoying
with a word repeated as often as “class.” Feedback

For clarity, you might prefer a style of creating classes that puts the
public members at the beginning, followed by the protected, package
access, and private members. The advantage is that the user of the class
can then read down from the top and see first what’s important to them
(the public members, because they can be accessed outside the file), and
stop reading when they encounter the non-public members, which are
part of the internal implementation:

public class X {
 public void pub1() { /* . . . */ }
 public void pub2() { /* . . . */ }
 public void pub3() { /* . . . */ }
 private void priv1() { /* . . . */ }
 private void priv2() { /* . . . */ }
 private void priv3() { /* . . . */ }
 private int i;
 // . . .
}

This will make it only partially easier to read because the interface and
implementation are still mixed together. That is, you still see the source
code—the implementation—because it’s right there in the class. In
addition, the comment documentation supported by javadoc (described in
Chapter 2) lessens the importance of code readability by the client
programmer. Displaying the interface to the consumer of a class is really
the job of the class browser, a tool whose job is to look at all the available
classes and show you what you can do with them (i.e., what members are
available) in a useful fashion. Class browsers have become an expected
part of any good Java development tool. Feedback

250 Thinking in Java www.BruceEckel.com

Class access
In Java, the access specifiers can also be used to determine which classes
within a library will be available to the users of that library. If you want a
class to be available to a client programmer, you use the public keyword
on the entire class definition. This controls whether the client
programmer can even create an object of the class. Feedback

To control the access of a class, the specifier must appear before the
keyword class. Thus you can say:

public class Widget {

Now if the name of your library is mylib any client programmer can
access Widget by saying

import mylib.Widget;

or

import mylib.*;

However, there’s an extra set of constraints: Feedback

1. There can be only one public class per compilation unit (file). The
idea is that each compilation unit has a single public interface
represented by that public class. It can have as many supporting
package-access classes as you want. If you have more than one
public class inside a compilation unit, the compiler will give you
an error message. Feedback

2. The name of the public class must exactly match the name of the
file containing the compilation unit, including capitalization. So for
Widget, the name of the file must be Widget.java, not
widget.java or WIDGET.java. Again, you’ll get a compile-time
error if they don’t agree. Feedback

3. It is possible, though not typical, to have a compilation unit with no
public class at all. In this case, you can name the file whatever you
like. Feedback

Chapter 5: Hiding the Implementation 251

What if you’ve got a class inside mylib that you’re just using to
accomplish the tasks performed by Widget or some other public class in
mylib? You don’t want to go to the bother of creating documentation for
the client programmer, and you think that sometime later you might want
to completely change things and rip out your class altogether, substituting
a different one. To give you this flexibility, you need to ensure that no
client programmers become dependent on your particular
implementation details hidden inside mylib. To accomplish this, you just
leave the public keyword off the class, in which case it has package
access. (That class can be used only within that package.) Feedback

When you create a package-access class, it still makes sense to make the
fields of the class private—you should always make fields as private as
possible—but it’s generally reasonable to give the methods the same
access as the class (package access). Since a package-access class is
usually used only within the package, you only need to make the methods
of such a class public if you’re forced to—and in those cases, the compiler
will tell you. Feedback

Note that a class cannot be private (that would make it accessible to no
one but the class), or protected4. So you have only two choices for class
access: package access or public. If you don’t want anyone else to have
access to that class, you can make all the constructors private, thereby
preventing anyone but you, inside a static member of the class, from
creating an object of that class. Here’s an example: Feedback

//: c05:Lunch.java
// Demonstrates class access specifiers. Make a class
// effectively private with private constructors:

class Soup {
 private Soup() {}
 // (1) Allow creation via static method:
 public static Soup makeSoup() {
 return new Soup();
 }
 // (2) Create a static object and return a reference

4 Actually, an inner class can be private or protected, but that’s a special case. These will
be introduced in Chapter 7.

252 Thinking in Java www.BruceEckel.com

 // upon request.(The "Singleton" pattern):
 private static Soup ps1 = new Soup();
 public static Soup access() {
 return ps1;
 }
 public void f() {}
}

class Sandwich { // Uses Lunch
 void f() { new Lunch(); }
}

// Only one public class allowed per file:
public class Lunch {
 void test() {
 // Can't do this! Private constructor:
 //! Soup priv1 = new Soup();
 Soup priv2 = Soup.makeSoup();
 Sandwich f1 = new Sandwich();
 Soup.access().f();
 }
} ///:~

Up to now, most of the methods have been returning either void or a
primitive type, so the definition:

 public static Soup access() {
 return ps1;
 }

might look a little confusing at first. The word before the method name
(access) tells what the method returns. So far this has most often been
void, which means it returns nothing. But you can also return a reference
to an object, which is what happens here. This method returns a reference
to an object of class Soup. Feedback

The class Soup shows how to prevent direct creation of a class by
making all the constructors private. Remember that if you don’t
explicitly create at least one constructor, the default constructor (a
constructor with no arguments) will be created for you. By writing the
default constructor, it won’t be created automatically. By making it
private, no one can create an object of that class. But now how does
anyone use this class? The above example shows two options. First, a

Chapter 5: Hiding the Implementation 253

static method is created that creates a new Soup and returns a reference
to it. This could be useful if you want to do some extra operations on the
Soup before returning it, or if you want to keep count of how many Soup
objects to create (perhaps to restrict their population). Feedback

The second option uses what’s called a design pattern, which is covered in
Thinking in Patterns with Java at www.BruceEckel.com. This particular
pattern is called a “singleton” because it allows only a single object to ever
be created. The object of class Soup is created as a static private
member of Soup, so there’s one and only one, and you can’t get at it
except through the public method access(). Feedback

As previously mentioned, if you don’t put an access specifier for class
access it defaults to package access. This means that an object of that class
can be created by any other class in the package, but not outside the
package. (Remember, all the files within the same directory that don’t
have explicit package declarations are implicitly part of the default
package for that directory.) However, if a static member of that class is
public, the client programmer can still access that static member even
though they cannot create an object of that class. Feedback

Summary
In any relationship it’s important to have boundaries that are respected by
all parties involved. When you create a library, you establish a
relationship with the user of that library—the client programmer—who is
another programmer, but one putting together an application or using
your library to build a bigger library. Feedback

Without rules, client programmers can do anything they want with all the
members of a class, even if you might prefer they don’t directly
manipulate some of the members. Everything’s naked to the world. Feedback

This chapter looked at how classes are built to form libraries; first, the
way a group of classes is packaged within a library, and second, the way
the class controls access to its members. Feedback

It is estimated that a C programming project begins to break down
somewhere between 50K and 100K lines of code because C has a single

254 Thinking in Java www.BruceEckel.com

“name space,” so names begin to collide, causing an extra management
overhead. In Java, the package keyword, the package naming scheme,
and the import keyword give you complete control over names, so the
issue of name collision is easily avoided. Feedback

There are two reasons for controlling access to members. The first is to
keep users’ hands off tools that they shouldn’t touch; tools that are
necessary for the internal machinations of the data type, but not part of
the interface that users need to solve their particular problems. So making
methods and fields private is a service to users because they can easily
see what’s important to them and what they can ignore. It simplifies their
understanding of the class. Feedback

The second and most important reason for access control is to allow the
library designer to change the internal workings of the class without
worrying about how it will affect the client programmer. You might build
a class one way at first, and then discover that restructuring your code will
provide much greater speed. If the interface and implementation are
clearly separated and protected, you can accomplish this without forcing
the user to rewrite their code. Feedback

Access specifiers in Java give valuable control to the creator of a class. The
users of the class can clearly see exactly what they can use and what to
ignore. More important, though, is the ability to ensure that no user
becomes dependent on any part of the underlying implementation of a
class. If you know this as the creator of the class, you can change the
underlying implementation at will, because you know that no client
programmer will be affected by the changes—they can’t access that part of
the class. Feedback

When you have the ability to change the underlying implementation, you
can freely improve your design. You also have the freedom to make
mistakes. No matter how carefully you plan and design, you’ll make
mistakes. Knowing that it’s relatively safe to make these mistakes means
you’ll be more experimental, you’ll learn faster, and you’ll finish your
project sooner. Feedback

The public interface to a class is what the user does see, so that is the most
important part of the class to get “right” during analysis and design. Even
that allows you some leeway for change. If you don’t get the interface right

Chapter 5: Hiding the Implementation 255

the first time, you can add more methods, as long as you don’t remove any
that client programmers have already used in their code. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Write a program that creates an ArrayList object without
explicitly importing java.util.*. Feedback

2. In the section labeled “package: the library unit,” turn the code
fragments concerning mypackage into a compiling and running
set of Java files. Feedback

3. In the section labeled “Collisions,” take the code fragments and
turn them into a program, and verify that collisions do in fact
occur. Feedback

4. Generalize the class P defined in this chapter by adding all the
overloaded versions of rint() and rintln() necessary to handle
all the different basic Java types. Feedback

5. Create a class with public, private, protected, and package-
access fields and method members. Create an object of this class
and see what kind of compiler messages you get when you try to
access all the class members. Be aware that classes in the same
directory are part of the “default” package. Feedback

6. Create a class with protected data. Create a second class in the
same file with a method that manipulates the protected data in
the first class. Feedback

7. Change the class Cookie as specified in the section labeled
“protected: inheritance access.” Verify that bite() is not
public. Feedback

8. In the section titled “Class access” you’ll find code fragments
describing mylib and Widget. Create this library, then create a
Widget in a class that is not part of the mylib package. Feedback

256 Thinking in Java www.BruceEckel.com

9. Create a new directory and edit your CLASSPATH to include that
new directory. Copy the P.class file (produced by compiling
com.bruceeckel.tools.P.java) to your new directory and then
change the names of the file, the P class inside and the method
names. (You might also want to add additional output to watch
how it works.) Create another program in a different directory that
uses your new class. Feedback

10. Following the form of the example Lunch.java, create a class
called ConnectionManager that manages a fixed array of
Connection objects. The client programmer must not be able to
explicitly create Connection objects, but can only get them via a
static method in ConnectionManager. When the
ConnectionManager runs out of objects, it returns a null
reference. Test the classes in main(). Feedback

11. Create the following file in the c05/local directory (presumably in
your CLASSPATH):

// c05:local:PackagedClass.java
package c05.local;
class PackagedClass {
 public PackagedClass() {
 System.out.println("Creating a packaged class");
 }
}

Then create the following file in a directory other than c05:

// c05:foreign:Foreign.java
package c05.foreign;
import c05.local.*;
public class Foreign {
 public static void main (String[] args) {
 PackagedClass pc = new PackagedClass();
 }
}

Explain why the compiler generates an error. Would making the
Foreign class part of the c05.local package change anything?
Feedback

 257

6: Reusing Classes
One of the most compelling features about Java is code
reuse. But to be revolutionary, you’ve got to be able to do
a lot more than copy code and change it.

That’s the approach used in procedural languages like C, and it hasn’t
worked very well. Like everything in Java, the solution revolves around
the class. You reuse code by creating new classes, but instead of creating
them from scratch, you use existing classes that someone has already built
and debugged. Feedback

The trick is to use the classes without soiling the existing code. In this
chapter you’ll see two ways to accomplish this. The first is quite
straightforward: You simply create objects of your existing class inside the
new class. This is called composition, because the new class is composed
of objects of existing classes. You’re simply reusing the functionality of the
code, not its form. Feedback

The second approach is more subtle. It creates a new class as a type of an
existing class. You literally take the form of the existing class and add code
to it without modifying the existing class. This magical act is called
inheritance, and the compiler does most of the work. Inheritance is one of
the cornerstones of object-oriented programming, and has additional
implications that will be explored in Chapter 7. Feedback

It turns out that much of the syntax and behavior are similar for both
composition and inheritance (which makes sense because they are both
ways of making new types from existing types). In this chapter, you’ll
learn about these code reuse mechanisms. Feedback

Composition syntax
Until now, composition has been used quite frequently. You simply place
object references inside new classes. For example, suppose you’d like an
object that holds several String objects, a couple of primitives, and an

258 Thinking in Java www.BruceEckel.com

object of another class. For the nonprimitive objects, you put references
inside your new class, but you define the primitives directly:

//: c06:SprinklerSystem.java
// Composition for code reuse.
import com.bruceeckel.simpletest.*;

class WaterSource {
 private String s;
 WaterSource() {
 System.out.println("WaterSource()");
 s = new String("Constructed");
 }
 public String toString() { return s; }
}

public class SprinklerSystem {
 private static Test monitor = new Test();
 private String valve1, valve2, valve3, valve4;
 private WaterSource source;
 private int i;
 private float f;
 public String toString() {
 return
 "valve1 = " + valve1 + "\n" +
 "valve2 = " + valve2 + "\n" +
 "valve3 = " + valve3 + "\n" +
 "valve4 = " + valve4 + "\n" +
 "i = " + i + "\n" +
 "f = " + f + "\n" +
 "source = " + source;
 }
 public static void main(String[] args) {
 SprinklerSystem sprinklers = new SprinklerSystem();
 System.out.println(sprinklers);
 monitor.expect(new String[] {
 "valve1 = null",
 "valve2 = null",
 "valve3 = null",
 "valve4 = null",
 "i = 0",
 "f = 0.0",
 "source = null"
 });

Chapter 6: Reusing Classes 259

 }
} ///:~

One of the methods defined in both classes is special: toString(). You
will learn later that every nonprimitive object has a toString() method,
and it’s called in special situations when the compiler wants a String but
it’s got an object. So in the expression in SprinklerSystem.toString():

"source = " + source;

the compiler sees you trying to add a String object ("source = ") to a
WaterSource. Because you can only “add” a String to another String,
it says “I’ll turn source into a String by calling toString()!” After doing
this it can combine the two Strings and pass the resulting String to
System.out.println(). Any time you want to allow this behavior with a
class you create you need only write a toString() method. Feedback

Primitives that are fields in a class are automatically initialized to zero, as
noted in Chapter 2. But the object references are initialized to null, and if
you try to call methods for any of them you’ll get an exception. It’s actually
good (and useful) that you can still print them out without throwing an
exception. Feedback

It makes sense that the compiler doesn’t just create a default object for
every reference because that would incur unnecessary overhead in many
cases. If you want the references initialized, you can do it: Feedback

1. At the point the objects are defined. This means that they’ll always
be initialized before the constructor is called. Feedback

2. In the constructor for that class. Feedback

3. Right before you actually need to use the object. This is often called
lazy initialization. It can reduce overhead in situations where
object creation is expensive and the object doesn’t need to be
created every time. Feedback

All three approaches are shown here: Feedback

//: c06:Bath.java
// Constructor initialization with composition.
import com.bruceeckel.simpletest.*;

260 Thinking in Java www.BruceEckel.com

class Soap {
 private String s;
 Soap() {
 System.out.println("Soap()");
 s = new String("Constructed");
 }
 public String toString() { return s; }
}

public class Bath {
 private static Test monitor = new Test();
 private String // Initializing at point of definition:
 s1 = new String("Happy"),
 s2 = "Happy",
 s3, s4;
 private Soap castille;
 private int i;
 private float toy;
 public Bath() {
 System.out.println("Inside Bath()");
 s3 = new String("Joy");
 i = 47;
 toy = 3.14f;
 castille = new Soap();
 }
 public String toString() {
 if(s4 == null) // Delayed initialization:
 s4 = new String("Joy");
 return
 "s1 = " + s1 + "\n" +
 "s2 = " + s2 + "\n" +
 "s3 = " + s3 + "\n" +
 "s4 = " + s4 + "\n" +
 "i = " + i + "\n" +
 "toy = " + toy + "\n" +
 "castille = " + castille;
 }
 public static void main(String[] args) {
 Bath b = new Bath();
 System.out.println(b);
 monitor.expect(new String[] {
 "Inside Bath()",
 "Soap()",
 "s1 = Happy",

Chapter 6: Reusing Classes 261

 "s2 = Happy",
 "s3 = Joy",
 "s4 = Joy",
 "i = 47",
 "toy = 3.14",
 "castille = Constructed"
 });
 }
} ///:~

Note that in the Bath constructor a statement is executed before any of
the initializations take place. When you don’t initialize at the point of
definition, there’s still no guarantee that you’ll perform any initialization
before you send a message to an object reference—except for the
inevitable run-time exception. Feedback

When toString() is called it fills in s4 so that all the fields are properly
initialized by the time they are used. Feedback

Inheritance syntax
Inheritance is an integral part of Java (and all OOP languages). It turns
out that you’re always doing inheritance when you create a class, because
unless you explicitly inherit from some other class, you implicitly inherit
from Java’s standard root class Object. Feedback

The syntax for composition is obvious, but to perform inheritance there’s
a distinctly different form. When you inherit, you say “This new class is
like that old class.” You state this in code by giving the name of the class
as usual, but before the opening brace of the class body, put the keyword
extends followed by the name of the base class. When you do this, you
automatically get all the fields and methods in the base class. Here’s an
example: Feedback

//: c06:Detergent.java
// Inheritance syntax & properties.
import com.bruceeckel.simpletest.*;

class Cleanser {
 protected static Test monitor = new Test();
 private String s = new String("Cleanser");
 public void append(String a) { s += a; }

262 Thinking in Java www.BruceEckel.com

 public void dilute() { append(" dilute()"); }
 public void apply() { append(" apply()"); }
 public void scrub() { append(" scrub()"); }
 public String toString() { return s; }
 public static void main(String[] args) {
 Cleanser x = new Cleanser();
 x.dilute(); x.apply(); x.scrub();
 System.out.println(x);
 monitor.expect(new String[] {
 "Cleanser dilute() apply() scrub()"
 });
 }
}

public class Detergent extends Cleanser {
 // Change a method:
 public void scrub() {
 append(" Detergent.scrub()");
 super.scrub(); // Call base-class version
 }
 // Add methods to the interface:
 public void foam() { append(" foam()"); }
 // Test the new class:
 public static void main(String[] args) {
 Detergent x = new Detergent();
 x.dilute();
 x.apply();
 x.scrub();
 x.foam();
 System.out.println(x);
 System.out.println("Testing base class:");
 monitor.expect(new String[] {
 "Cleanser dilute() apply() " +
 "Detergent.scrub() scrub() foam()",
 "Testing base class:",
 });
 Cleanser.main(args);
 }
} ///:~

This demonstrates a number of features. First, in the Cleanser
append() method, Strings are concatenated to s using the += operator,
which is one of the operators (along with ‘+’) that the Java designers
“overloaded” to work with Strings. Feedback

Chapter 6: Reusing Classes 263

Second, both Cleanser and Detergent contain a main() method. You
can create a main() for each one of your classes, and it’s often
recommended to code this way so that your test code is wrapped in with
the class. Even if you have a lot of classes in a program, only the main()
for the class invoked on the command line will be called. (As long as
main() is public, it doesn’t matter whether the class that it’s part of is
public.) So in this case, when you say java Detergent,
Detergent.main() will be called. But you can also say java Cleanser
to invoke Cleanser.main(), even though Cleanser is not a public
class. This technique of putting a main() in each class allows easy unit
testing for each class. And you don’t need to remove the main() when
you’re finished testing; you can leave it in for later testing. Feedback

Here, you can see that Detergent.main() calls Cleanser.main()
explicitly, passing it the same arguments from the command line
(however, you could pass it any String array). Feedback

It’s important that all of the methods in Cleanser are public. Remember
that if you leave off any access specifier the member defaults to package
access, which allows access only to package members. Thus, within this
package, anyone could use those methods if there were no access
specifier. Detergent would have no trouble, for example. However, if a
class from some other package were to inherit from Cleanser it could
access only public members. So to plan for inheritance, as a general rule
make all fields private and all methods public. (protected members
also allow access by derived classes; you’ll learn about this later.) Of
course, in particular cases you must make adjustments, but this is a useful
guideline. Feedback

Note that Cleanser has a set of methods in its interface: append(),
dilute(), apply(), scrub(), and toString(). Because Detergent is
derived from Cleanser (via the extends keyword) it automatically gets
all these methods in its interface, even though you don’t see them all
explicitly defined in Detergent. You can think of inheritance, then, as
reusing the class. Feedback

As seen in scrub(), it’s possible to take a method that’s been defined in
the base class and modify it. In this case, you might want to call the
method from the base class inside the new version. But inside scrub()

264 Thinking in Java www.BruceEckel.com

you cannot simply call scrub(), since that would produce a recursive
call, which isn’t what you want. To solve this problem Java has the
keyword super that refers to the “superclass” that the current class has
been inherited from. Thus the expression super.scrub() calls the base-
class version of the method scrub(). Feedback

When inheriting you’re not restricted to using the methods of the base
class. You can also add new methods to the derived class exactly the way
you put any method in a class: just define it. The method foam() is an
example of this. Feedback

In Detergent.main() you can see that for a Detergent object you can
call all the methods that are available in Cleanser as well as in
Detergent (i.e., foam()). Feedback

Initializing the base class
Since there are now two classes involved—the base class and the derived
class—instead of just one, it can be a bit confusing to try to imagine the
resulting object produced by a derived class. From the outside, it looks
like the new class has the same interface as the base class and maybe
some additional methods and fields. But inheritance doesn’t just copy the
interface of the base class. When you create an object of the derived class,
it contains within it a subobject of the base class. This subobject is the
same as if you had created an object of the base class by itself. It’s just
that, from the outside, the subobject of the base class is wrapped within
the derived-class object. Feedback

Of course, it’s essential that the base-class subobject be initialized
correctly, and there’s only one way to guarantee this: perform the
initialization in the constructor, by calling the base-class constructor,
which has all the appropriate knowledge and privileges to perform the
base-class initialization. Java automatically inserts calls to the base-class
constructor in the derived-class constructor. The following example shows
this working with three levels of inheritance: Feedback

//: c06:Cartoon.java
// Constructor calls during inheritance.
import com.bruceeckel.simpletest.*;

class Art {

Chapter 6: Reusing Classes 265

 Art() {
 System.out.println("Art constructor");
 }
}

class Drawing extends Art {
 Drawing() {
 System.out.println("Drawing constructor");
 }
}

public class Cartoon extends Drawing {
 private static Test monitor = new Test();
 public Cartoon() {
 System.out.println("Cartoon constructor");
 }
 public static void main(String[] args) {
 Cartoon x = new Cartoon();
 monitor.expect(new String[] {
 "Art constructor",
 "Drawing constructor",
 "Cartoon constructor"
 });
 }
} ///:~

You can see that the construction happens from the base “outward,” so
the base class is initialized before the derived-class constructors can
access it. Even if you don’t create a constructor for Cartoon(), the
compiler will synthesize a default constructor for you that calls the base
class constructor. Feedback

Constructors with arguments
The above example has default constructors; that is, they don’t have any
arguments. It’s easy for the compiler to call these because there’s no
question about what arguments to pass. If your class doesn’t have default
arguments, or if you want to call a base-class constructor that has an
argument, you must explicitly write the calls to the base-class constructor
using the super keyword and the appropriate argument list:

//: c06:Chess.java
// Inheritance, constructors and arguments.

266 Thinking in Java www.BruceEckel.com

import com.bruceeckel.simpletest.*;

class Game {
 Game(int i) {
 System.out.println("Game constructor");
 }
}

class BoardGame extends Game {
 BoardGame(int i) {
 super(i);
 System.out.println("BoardGame constructor");
 }
}

public class Chess extends BoardGame {
 private static Test monitor = new Test();
 Chess() {
 super(11);
 System.out.println("Chess constructor");
 }
 public static void main(String[] args) {
 Chess x = new Chess();
 monitor.expect(new String[] {
 "Game constructor",
 "BoardGame constructor",
 "Chess constructor"
 });
 }
} ///:~

If you don’t call the base-class constructor in BoardGame(), the
compiler will complain that it can’t find a constructor of the form
Game(). In addition, the call to the base-class constructor must be the
first thing you do in the derived-class constructor. (The compiler will
remind you if you get it wrong.) Feedback

Catching base constructor exceptions
As just noted, the compiler forces you to place the base-class constructor
call first in the body of the derived-class constructor. This means nothing
else can appear before it. As you’ll see in Chapter 9, this also prevents a

Chapter 6: Reusing Classes 267

derived-class constructor from catching any exceptions that come from a
base class. This can be inconvenient at times. Feedback

Combining composition
and inheritance

It is very common to use composition and inheritance together. The
following example shows the creation of a more complex class, using both
inheritance and composition, along with the necessary constructor
initialization:

//: c06:PlaceSetting.java
// Combining composition & inheritance.
import com.bruceeckel.simpletest.*;

class Plate {
 Plate(int i) {
 System.out.println("Plate constructor");
 }
}

class DinnerPlate extends Plate {
 DinnerPlate(int i) {
 super(i);
 System.out.println("DinnerPlate constructor");
 }
}

class Utensil {
 Utensil(int i) {
 System.out.println("Utensil constructor");
 }
}

class Spoon extends Utensil {
 Spoon(int i) {
 super(i);
 System.out.println("Spoon constructor");
 }
}

268 Thinking in Java www.BruceEckel.com

class Fork extends Utensil {
 Fork(int i) {
 super(i);
 System.out.println("Fork constructor");
 }
}

class Knife extends Utensil {
 Knife(int i) {
 super(i);
 System.out.println("Knife constructor");
 }
}

// A cultural way of doing something:
class Custom {
 Custom(int i) {
 System.out.println("Custom constructor");
 }
}

public class PlaceSetting extends Custom {
 private static Test monitor = new Test();
 private Spoon sp;
 private Fork frk;
 private Knife kn;
 private DinnerPlate pl;
 public PlaceSetting(int i) {
 super(i + 1);
 sp = new Spoon(i + 2);
 frk = new Fork(i + 3);
 kn = new Knife(i + 4);
 pl = new DinnerPlate(i + 5);
 System.out.println("PlaceSetting constructor");
 }
 public static void main(String[] args) {
 PlaceSetting x = new PlaceSetting(9);
 monitor.expect(new String[] {
 "Custom constructor",
 "Utensil constructor",
 "Spoon constructor",
 "Utensil constructor",
 "Fork constructor",
 "Utensil constructor",

Chapter 6: Reusing Classes 269

 "Knife constructor",
 "Plate constructor",
 "DinnerPlate constructor",
 "PlaceSetting constructor"
 });
 }
} ///:~

While the compiler forces you to initialize the base classes, and requires
that you do it right at the beginning of the constructor, it doesn’t watch
over you to make sure that you initialize the member objects, so you must
remember to pay attention to that. Feedback

Guaranteeing proper cleanup
Java doesn’t have the C++ concept of a destructor, a method that is
automatically called when an object is destroyed. The reason is probably
that in Java the practice is simply to forget about objects rather than to
destroy them, allowing the garbage collector to reclaim the memory as
necessary. Feedback

Often this is fine, but there are times when your class might perform some
activities during its lifetime that require cleanup. As mentioned in
Chapter 4, you can’t know when the garbage collector will be called, or if it
will be called. So if you want something cleaned up for a class, you must
explicitly write a special method to do it, and make sure that the client
programmer knows that they must call this method. On top of this—as
described in Chapter 9 (“Error Handling with Exceptions”)—you must
guard against an exception by putting such cleanup in a finally clause.
Feedback

Consider an example of a computer-aided design system that draws
pictures on the screen:

//: c06:CADSystem.java
// Ensuring proper cleanup.
package c06;
import com.bruceeckel.simpletest.*;
import java.util.*;

class Shape {
 Shape(int i) {

270 Thinking in Java www.BruceEckel.com

 System.out.println("Shape constructor");
 }
 void dispose() {
 System.out.println("Shape dispose");
 }
}

class Circle extends Shape {
 Circle(int i) {
 super(i);
 System.out.println("Drawing Circle");
 }
 void dispose() {
 System.out.println("Erasing Circle");
 super.dispose();
 }
}

class Triangle extends Shape {
 Triangle(int i) {
 super(i);
 System.out.println("Drawing Triangle");
 }
 void dispose() {
 System.out.println("Erasing Triangle");
 super.dispose();
 }
}

class Line extends Shape {
 private int start, end;
 Line(int start, int end) {
 super(start);
 this.start = start;
 this.end = end;
 System.out.println("Drawing Line: "+ start+ ", "+ end);
 }
 void dispose() {
 System.out.println("Erasing Line: "+ start+ ", "+ end);
 super.dispose();
 }
}

public class CADSystem extends Shape {

Chapter 6: Reusing Classes 271

 private static Test monitor = new Test();
 private Circle c;
 private Triangle t;
 private Line[] lines = new Line[5];
 public CADSystem(int i) {
 super(i + 1);
 for(int j = 0; j < lines.length; j++)
 lines[j] = new Line(j, j*j);
 c = new Circle(1);
 t = new Triangle(1);
 System.out.println("Combined constructor");
 }
 public void dispose() {
 System.out.println("CADSystem.dispose()");
 // The order of cleanup is the reverse
 // of the order of initialization
 t.dispose();
 c.dispose();
 for(int i = lines.length - 1; i >= 0; i--)
 lines[i].dispose();
 super.dispose();
 }
 public static void main(String[] args) {
 CADSystem x = new CADSystem(47);
 try {
 // Code and exception handling...
 } finally {
 x.dispose();
 }
 monitor.expect(new String[] {
 "Shape constructor",
 "Shape constructor",
 "Drawing Line: 0, 0",
 "Shape constructor",
 "Drawing Line: 1, 1",
 "Shape constructor",
 "Drawing Line: 2, 4",
 "Shape constructor",
 "Drawing Line: 3, 9",
 "Shape constructor",
 "Drawing Line: 4, 16",
 "Shape constructor",
 "Drawing Circle",
 "Shape constructor",

272 Thinking in Java www.BruceEckel.com

 "Drawing Triangle",
 "Combined constructor",
 "CADSystem.dispose()",
 "Erasing Triangle",
 "Shape dispose",
 "Erasing Circle",
 "Shape dispose",
 "Erasing Line: 4, 16",
 "Shape dispose",
 "Erasing Line: 3, 9",
 "Shape dispose",
 "Erasing Line: 2, 4",
 "Shape dispose",
 "Erasing Line: 1, 1",
 "Shape dispose",
 "Erasing Line: 0, 0",
 "Shape dispose",
 "Shape dispose"
 });
 }
} ///:~

Everything in this system is some kind of Shape (which is itself a kind of
Object since it’s implicitly inherited from the root class). Each class
overrides Shape’s dispose() method in addition to calling the base-
class version of that method using super. The specific Shape classes—
Circle, Triangle and Line—all have constructors that “draw,” although
any method called during the lifetime of the object could be responsible
for doing something that needs cleanup. Each class has its own
dispose() method to restore nonmemory things back to the way they
were before the object existed. Feedback

In main(), you can see two keywords that are new, and won’t officially
be introduced until Chapter 9: try and finally. The try keyword indicates
that the block that follows (delimited by curly braces) is a guarded region,
which means that it is given special treatment. One of these special
treatments is that the code in the finally clause following this guarded
region is always executed, no matter how the try block exits. (With
exception handling, it’s possible to leave a try block in a number of
nonordinary ways.) Here, the finally clause is saying “always call
dispose() for x, no matter what happens.” These keywords will be
explained thoroughly in Chapter 9. Feedback

Chapter 6: Reusing Classes 273

Note that in your cleanup method you must also pay attention to the
calling order for the base-class and member-object cleanup methods in
case one subobject depends on another. In general, you should follow the
same form that is imposed by a C++ compiler on its destructors: First
perform all of the cleanup work specific to your class, in the reverse order
of creation. (In general, this requires that base-class elements still be
viable.) Then call the base-class cleanup method, as demonstrated here.
Feedback

There can be many cases in which the cleanup issue is not a problem; you
just let the garbage collector do the work. But when you must do it
explicitly, diligence and attention are required, because there’s not much
you can rely on when it comes to garbage collection. The garbage collector
might never be called. If it is, it can reclaim objects in any order it wants.
It’s best to not rely on garbage collection for anything but memory
reclamation. If you want cleanup to take place, make your own cleanup
methods and don’t rely on finalize(). Feedback

Name hiding
If a Java base class has a method name that’s overloaded several times,
redefining that method name in the derived class will not hide any of the
base-class versions (unlike C++). Thus overloading works regardless of
whether the method was defined at this level or in a base class:

//: c06:Hide.java
// Overloading a base-class method name in a derived class
// does not hide the base-class versions.
import com.bruceeckel.simpletest.*;

class Homer {
 char doh(char c) {
 System.out.println("doh(char)");
 return 'd';
 }
 float doh(float f) {
 System.out.println("doh(float)");
 return 1.0f;
 }
}

class Milhouse {}

274 Thinking in Java www.BruceEckel.com

class Bart extends Homer {
 void doh(Milhouse m) {
 System.out.println("doh(Milhouse)");
 }
}

public class Hide {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Bart b = new Bart();
 b.doh(1);
 b.doh('x');
 b.doh(1.0f);
 b.doh(new Milhouse());
 monitor.expect(new String[] {
 "doh(float)",
 "doh(char)",
 "doh(float)",
 "doh(Milhouse)"
 });
 }
} ///:~

You can see that all the overloaded methods of Homer are available in
Bart, even though Bart introduces a new overloaded method (in C++
doing this would hide the base-class methods). As you’ll see in the next
chapter, it’s far more common to override methods of the same name,
using exactly the same signature and return type as in the base class. It
can be confusing otherwise (which is why C++ disallows it, to prevent you
from making what is probably a mistake). Feedback

Choosing composition
vs. inheritance

Both composition and inheritance allow you to place subobjects inside
your new class (composition explicitly does this; with inheritance it’s
implicit). You might wonder about the difference between the two, and
when to choose one over the other. Feedback

Chapter 6: Reusing Classes 275

Composition is generally used when you want the features of an existing
class inside your new class, but not its interface. That is, you embed an
object so that you can use it to implement functionality in your new class,
but the user of your new class sees the interface you’ve defined for the
new class rather than the interface from the embedded object. For this
effect, you embed private objects of existing classes inside your new
class. Feedback

Sometimes it makes sense to allow the class user to directly access the
composition of your new class; that is, to make the member objects
public. The member objects use implementation hiding themselves, so
this is a safe thing to do. When the user knows you’re assembling a bunch
of parts, it makes the interface easier to understand. A car object is a
good example: Feedback

//: c06:Car.java
// Composition with public objects.

class Engine {
 public void start() {}
 public void rev() {}
 public void stop() {}
}

class Wheel {
 public void inflate(int psi) {}
}

class Window {
 public void rollup() {}
 public void rolldown() {}
}

class Door {
 public Window window = new Window();
 public void open() {}
 public void close() {}
}

public class Car {
 public Engine engine = new Engine();
 public Wheel[] wheel = new Wheel[4];
 public Door

276 Thinking in Java www.BruceEckel.com

 left = new Door(),
 right = new Door(); // 2-door
 public Car() {
 for(int i = 0; i < 4; i++)
 wheel[i] = new Wheel();
 }
 public static void main(String[] args) {
 Car car = new Car();
 car.left.window.rollup();
 car.wheel[0].inflate(72);
 }
} ///:~

Because in this case the composition of a car is part of the analysis of the
problem (and not simply part of the underlying design), making the
members public assists the client programmer’s understanding of how to
use the class and requires less code complexity for the creator of the class.
However, keep in mind that this is a special case and that in general you
should make fields private. Feedback

When you inherit, you take an existing class and make a special version of
it. In general, this means that you’re taking a general-purpose class and
specializing it for a particular need. With a little thought, you’ll see that it
would make no sense to compose a car using a vehicle object—a car
doesn’t contain a vehicle, it is a vehicle. The is-a relationship is expressed
with inheritance, and the has-a relationship is expressed with
composition. Feedback

protected
Now that you’ve been introduced to inheritance, the keyword protected
finally has meaning. In an ideal world, the private keyword would be
enough. In real projects there are times when you want to make
something hidden from the world at large and yet allow access for
members of derived classes. The protected keyword is a nod to
pragmatism. It says “This is private as far as the class user is concerned,
but available to anyone who inherits from this class or anyone else in the
same package.” (protected in Java also provides package access.)
Feedback

Chapter 6: Reusing Classes 277

The best approach is to leave the fields private—you should always
preserve your right to change the underlying implementation. You can
then allow controlled access to inheritors of your class through
protected methods:

//: c06:Orc.java
// The protected keyword.
import com.bruceeckel.simpletest.*;
import java.util.*;

class Villain {
 private String name;
 protected void set(String nm) { name = nm; }
 public Villain(String name) { this.name = name; }
 public String toString() {
 return "I'm a Villain and my name is " + name;
 }
}

public class Orc extends Villain {
 private static Test monitor = new Test();
 private int orcNumber;
 public Orc(String name, int orcNumber) {
 super(name);
 this.orcNumber = orcNumber;
 }
 public void change(String name, int orcNumber) {
 set(name); // Available because it's protected
 this.orcNumber = orcNumber;
 }
 public String toString() {
 return "Orc " + orcNumber + ": " + super.toString();
 }
 public static void main(String[] args) {
 Orc orc = new Orc("Limburger", 12);
 System.out.println(orc);
 orc.change("Bob", 19);
 System.out.println(orc);
 monitor.expect(new String[] {
 "Orc 12: I'm a Villain and my name is Limburger",
 "Orc 19: I'm a Villain and my name is Bob"
 });
 }
} ///:~

278 Thinking in Java www.BruceEckel.com

You can see that change() has access to set() because it’s protected.
Also note the way that Orc’s toString() method is defined in terms of
the base-class version of toString(). Feedback

Incremental development
One of the advantages of inheritance is that it supports incremental
development. You can introduce new code without causing bugs in
existing code; in fact, you isolate new bugs inside the new code. By
inheriting from an existing, functional class and adding fields and
methods (and redefining existing methods), you leave the existing code—
that someone else might still be using—untouched and unbugged. If a bug
happens, you know that it’s in your new code, which is much shorter and
easier to read than if you had modified the body of existing code. Feedback

It’s rather amazing how cleanly the classes are separated. You don’t even
need the source code for the methods in order to reuse the code. At most,
you just import a package. (This is true for both inheritance and
composition.) Feedback

It’s important to realize that program development is an incremental
process, just like human learning. You can do as much analysis as you
want, but you still won’t know all the answers when you set out on a
project. You’ll have much more success—and more immediate feedback—
if you start out to “grow” your project as an organic, evolutionary creature,
rather than constructing it all at once like a glass-box skyscraper. Feedback

Although inheritance for experimentation can be a useful technique, at
some point after things stabilize you need to take a new look at your class
hierarchy with an eye to collapsing it into a sensible structure. Remember
that underneath it all, inheritance is meant to express a relationship that
says “This new class is a type of that old class.” Your program should not
be concerned with pushing bits around, but instead with creating and
manipulating objects of various types to express a model in the terms that
come from the problem space. Feedback

Chapter 6: Reusing Classes 279

Upcasting
The most important aspect of inheritance is not that it provides methods
for the new class. It’s the relationship expressed between the new class
and the base class. This relationship can be summarized by saying “The
new class is a type of the existing class.” Feedback

This description is not just a fanciful way of explaining inheritance—it’s
supported directly by the language. As an example, consider a base class
called Instrument that represents musical instruments, and a derived
class called Wind. Because inheritance means that all of the methods in
the base class are also available in the derived class, any message you can
send to the base class can also be sent to the derived class. If the
Instrument class has a play() method, so will Wind instruments. This
means we can accurately say that a Wind object is also a type of
Instrument. The following example shows how the compiler supports
this notion: Feedback

//: c06:Wind.java
// Inheritance & upcasting.
import java.util.*;

class Instrument {
 public void play() {}
 static void tune(Instrument i) {
 // ...
 i.play();
 }
}

// Wind objects are instruments
// because they have the same interface:
public class Wind extends Instrument {
 public static void main(String[] args) {
 Wind flute = new Wind();
 Instrument.tune(flute); // Upcasting
 }
} ///:~

What’s interesting in this example is the tune() method, which accepts
an Instrument reference. However, in Wind.main() the tune()

280 Thinking in Java www.BruceEckel.com

method is called by giving it a Wind reference. Given that Java is
particular about type checking, it seems strange that a method that
accepts one type will readily accept another type, until you realize that a
Wind object is also an Instrument object, and there’s no method that
tune() could call for an Instrument that isn’t also in Wind. Inside
tune(), the code works for Instrument and anything derived from
Instrument, and the act of converting a Wind reference into an
Instrument reference is called upcasting. Feedback

Why “upcasting”?
The reason for the term is historical, and based on the way class
inheritance diagrams have traditionally been drawn: with the root at the
top of the page, growing downward. (Of course, you can draw your
diagrams any way you find helpful.) The inheritance diagram for
Wind.java is then: Feedback

Instrument

Wind

Casting from a derived type to a base type moves up on the inheritance
diagram, so it’s commonly referred to as upcasting. Upcasting is always
safe because you’re going from a more specific type to a more general
type. That is, the derived class is a superset of the base class. It might
contain more methods than the base class, but it must contain at least the
methods in the base class. The only thing that can occur to the class
interface during the upcast is that it can lose methods, not gain them. This
is why the compiler allows upcasting without any explicit casts or other
special notation. Feedback

You can also perform the reverse of upcasting, called downcasting, but
this involves a dilemma that is the subject of Chapter 10. Feedback

Chapter 6: Reusing Classes 281

Composition vs. inheritance revisited
In object-oriented programming, the most likely way that you’ll create
and use code is by simply packaging data and methods together into a
class, and using objects of that class. You’ll also use existing classes to
build new classes with composition. Less frequently, you’ll use
inheritance. So although inheritance gets a lot of emphasis while learning
OOP, it doesn’t mean that you should use it everywhere you possibly can.
On the contrary, you should use it sparingly, only when it’s clear that
inheritance is useful. One of the clearest ways to determine whether you
should use composition or inheritance is to ask whether you’ll ever need
to upcast from your new class to the base class. If you must upcast, then
inheritance is necessary, but if you don’t need to upcast, then you should
look closely at whether you need inheritance. The next chapter
(polymorphism) provides one of the most compelling reasons for
upcasting, but if you remember to ask “Do I need to upcast?” you’ll have a
good tool for deciding between composition and inheritance. Feedback

The final keyword
Java’s final keyword has slightly different meanings depending on the
context, but in general it says “This cannot be changed.” You might want
to prevent changes for two reasons: design or efficiency. Because these
two reasons are quite different, it’s possible to misuse the final keyword.
Feedback

The following sections discuss the three places where final can be used:
for data, methods, and classes. Feedback

Final data
Many programming languages have a way to tell the compiler that a piece
of data is “constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change. Feedback

2. It can be a value initialized at run time that you don’t want
changed. Feedback

282 Thinking in Java www.BruceEckel.com

In the case of a compile-time constant, the compiler is allowed to “fold”
the constant value into any calculations in which it’s used; that is, the
calculation can be performed at compile time, eliminating some run-time
overhead. In Java, these sorts of constants must be primitives and are
expressed using the final keyword. A value must be given at the time of
definition of such a constant. Feedback

A field that is both static and final has only one piece of storage that
cannot be changed. Feedback

When using final with object references rather than primitives the
meaning gets a bit confusing. With a primitive, final makes the value a
constant, but with an object reference, final makes the reference a
constant. Once the reference is initialized to an object, it can never be
changed to point to another object. However, the object itself can be
modified; Java does not provide a way to make any arbitrary object a
constant. (You can, however, write your class so that objects have the
effect of being constant.) This restriction includes arrays, which are also
objects. Feedback

Here’s an example that demonstrates final fields:

//: c06:FinalData.java
// The effect of final on fields.
import com.bruceeckel.simpletest.*;
import java.util.*;

class Value {
 int i; // Package access
 public Value(int i) { this.i = i; }
}

public class FinalData {
 private static Test monitor = new Test();
 private static Random rand = new Random();
 private String id;
 public FinalData(String id) { this.id = id; }
 // Can be compile-time constants:
 private final int VAL_ONE = 9;
 private static final int VAL_TWO = 99;
 // Typical public constant:
 public static final int VAL_THREE = 39;

Chapter 6: Reusing Classes 283

 // Cannot be compile-time constants:
 private final int i4 = rand.nextInt(20);
 static final int i5 = rand.nextInt(20);
 private Value v1 = new Value(11);
 private final Value v2 = new Value(22);
 private static final Value v3 = new Value(33);
 // Arrays:
 private final int[] a = { 1, 2, 3, 4, 5, 6 };
 public String toString() {
 return id + ": " + "i4 = " + i4 + ", i5 = " + i5;
 }
 public static void main(String[] args) {
 FinalData fd1 = new FinalData("fd1");
 //! fd1.VAL_ONE++; // Error: can't change value
 fd1.v2.i++; // Object isn't constant!
 fd1.v1 = new Value(9); // OK -- not final
 for(int i = 0; i < fd1.a.length; i++)
 fd1.a[i]++; // Object isn't constant!
 //! fd1.v2 = new Value(0); // Error: Can't
 //! fd1.v3 = new Value(1); // change reference
 //! fd1.a = new int[3];
 System.out.println(fd1);
 System.out.println("Creating new FinalData");
 FinalData fd2 = new FinalData("fd2");
 System.out.println(fd1);
 System.out.println(fd2);
 monitor.expect(new String[] {
 "%% fd1: i4 = \\d+, i5 = \\d+",
 "Creating new FinalData",
 "%% fd1: i4 = \\d+, i5 = \\d+",
 "%% fd2: i4 = \\d+, i5 = \\d+"
 });
 }
} ///:~

Since VAL_ONE and VAL_TWO are final primitives with compile-
time values, they can both be used as compile-time constants and are not
different in any important way. VAL_THREE is the more typical way
you’ll see such constants defined: public so they’re usable outside the
package, static to emphasize that there’s only one, and final to say that
it’s a constant. Note that final static primitives with constant initial
values (that is, compile-time constants) are named with all capitals by
convention, with words separated by underscores (This is just like C

284 Thinking in Java www.BruceEckel.com

constants, which is where the convention originated.) Also note that i5
cannot be known at compile time, so it is not capitalized. Feedback

Just because something is final doesn’t mean that its value is known at
compile time. This is demonstrated by initializing i4 and i5 at run time
using randomly generated numbers. This portion of the example also
shows the difference between making a final value static or non-static.
This difference shows up only when the values are initialized at run time,
since the compile-time values are treated the same by the compiler. (And
presumably optimized out of existence.) The difference is shown when
you run the program. Note that the values of i4 for fd1 and fd2 are
unique, but the value for i5 is not changed by creating the second
FinalData object. That’s because it’s static and is initialized once upon
loading and not each time a new object is created. Feedback

The variables v1 through v3 demonstrate the meaning of a final
reference. As you can see in main(), just because v2 is final doesn’t
mean that you can’t change its value. Because it’s a reference, final means
that you cannot rebind v2 to a new object. You can also see the same
meaning holds true for an array, which is just another kind of reference.
(There is no way that I know of to make the array references themselves
final.) Making references final seems less useful than making primitives
final. Feedback

Blank finals
Java allows the creation of blank finals, which are fields that are declared
as final but are not given an initialization value. In all cases, the blank
final must be initialized before it is used, and the compiler ensures this.
However, blank finals provide much more flexibility in the use of the
final keyword since, for example, a final field inside a class can now be
different for each object and yet it retains its immutable quality. Here’s an
example: Feedback

//: c06:BlankFinal.java
// "Blank" final fields.

class Poppet {
 private int i;
 Poppet(int ii) { i = ii; }
}

Chapter 6: Reusing Classes 285

public class BlankFinal {
 private final int i = 0; // Initialized final
 private final int j; // Blank final
 private final Poppet p; // Blank final reference
 // Blank finals MUST be initialized in the constructor:
 public BlankFinal() {
 j = 1; // Initialize blank final
 p = new Poppet(1); // Initialize blank final reference
 }
 public BlankFinal(int x) {
 j = x; // Initialize blank final
 p = new Poppet(x); // Initialize blank final reference
 }
 public static void main(String[] args) {
 new BlankFinal();
 new BlankFinal(47);
 }
} ///:~

You’re forced to perform assignments to finals either with an expression
at the point of definition of the field or in every constructor. That way it’s
guaranteed that the final field is always initialized before use. Feedback

Final arguments
Java allows you to make arguments final by declaring them as such in the
argument list. This means that inside the method you cannot change what
the argument reference points to:

//: c06:FinalArguments.java
// Using "final" with method arguments.

class Gizmo {
 public void spin() {}
}

public class FinalArguments {
 void with(final Gizmo g) {
 //! g = new Gizmo(); // Illegal -- g is final
 }
 void without(Gizmo g) {
 g = new Gizmo(); // OK -- g not final
 g.spin();

286 Thinking in Java www.BruceEckel.com

 }
 // void f(final int i) { i++; } // Can't change
 // You can only read from a final primitive:
 int g(final int i) { return i + 1; }
 public static void main(String[] args) {
 FinalArguments bf = new FinalArguments();
 bf.without(null);
 bf.with(null);
 }
} ///:~

The methods f() and g() show what happens when primitive arguments
are final: you can read the argument, but you can't change it. This feature
seems only marginally useful, and probably not something you’ll use.
Feedback

Final methods
There are two reasons for final methods. The first is to put a “lock” on the
method to prevent any inheriting class from changing its meaning. This is
done for design reasons when you want to make sure that a method’s
behavior is retained during inheritance and cannot be overridden. Feedback

The second reason for final methods is efficiency. If you make a method
final, you are allowing the compiler to turn any calls to that method into
inline calls. When the compiler sees a final method call it can (at its
discretion) skip the normal approach of inserting code to perform the
method call mechanism (push arguments on the stack, hop over to the
method code and execute it, hop back and clean off the stack arguments,
and deal with the return value) and instead replace the method call with a
copy of the actual code in the method body. This eliminates the overhead
of the method call. Of course, if a method is big, then your code begins to
bloat and you probably won’t see any performance gains from inlining,
since any improvements will be dwarfed by the amount of time spent
inside the method. It is implied that the Java compiler is able to detect
these situations and choose wisely whether to inline a final method.
However, it’s best to let the compiler and JVM handle efficiency issues

Chapter 6: Reusing Classes 287

and make a method final only if you want to explicitly prevent
overriding1. Feedback

final and private
Any private methods in a class are implicitly final. Because you can’t
access a private method, you can’t override it. You can add the final
specifier to a private method but it doesn’t give that method any extra
meaning. Feedback

This issue can cause confusion, because if you try to override a private
method (which is implicitly final) it seems to work, and the compiler
doesn’t give an error message:

//: c06:FinalOverridingIllusion.java
// It only looks like you can override
// a private or private final method.
import com.bruceeckel.simpletest.*;

class WithFinals {
 // Identical to "private" alone:
 private final void f() {
 System.out.println("WithFinals.f()");
 }
 // Also automatically "final":
 private void g() {
 System.out.println("WithFinals.g()");
 }
}

class OverridingPrivate extends WithFinals {
 private final void f() {
 System.out.println("OverridingPrivate.f()");
 }
 private void g() {
 System.out.println("OverridingPrivate.g()");
 }
}

1 Don’t fall prey to the urge to prematurely optimize. If you get your system working and
it’s too slow, it’s doubtful that you can fix it with the final keyword. However, Chapter 15
has information about profiling, which can be helpful in speeding up your program.

288 Thinking in Java www.BruceEckel.com

class OverridingPrivate2 extends OverridingPrivate {
 public final void f() {
 System.out.println("OverridingPrivate2.f()");
 }
 public void g() {
 System.out.println("OverridingPrivate2.g()");
 }
}

public class FinalOverridingIllusion {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 OverridingPrivate2 op2 = new OverridingPrivate2();
 op2.f();
 op2.g();
 // You can upcast:
 OverridingPrivate op = op2;
 // But you can't call the methods:
 //! op.f();
 //! op.g();
 // Same here:
 WithFinals wf = op2;
 //! wf.f();
 //! wf.g();
 monitor.expect(new String[] {
 "OverridingPrivate2.f()",
 "OverridingPrivate2.g()"
 });
 }
} ///:~

“Overriding” can only occur if something is part of the base-class
interface. That is, you must be able to upcast an object to its base type and
call the same method (the point of this will become clear in the next
chapter). If a method is private, it isn’t part of the base-class interface. It
is just some code that’s hidden away inside the class, and it just happens
to have that name, but if you create a public, protected or package-
access method with the same name in the derived class, there’s no
connection to the method that might happen to have that name in the
base class. You haven’t overridden the method, you’ve just created a new
method. Since a private method is unreachable and effectively invisible,

Chapter 6: Reusing Classes 289

it doesn’t factor into anything except for the code organization of the class
for which it was defined. Feedback

Final classes
When you say that an entire class is final (by preceding its definition with
the final keyword), you state that you don’t want to inherit from this class
or allow anyone else to do so. In other words, for some reason the design
of your class is such that there is never a need to make any changes, or for
safety or security reasons you don’t want subclassing. Feedback

//: c06:Jurassic.java
// Making an entire class final.

class SmallBrain {}

final class Dinosaur {
 int i = 7;
 int j = 1;
 SmallBrain x = new SmallBrain();
 void f() {}
}

//! class Further extends Dinosaur {}
// error: Cannot extend final class 'Dinosaur'

public class Jurassic {
 public static void main(String[] args) {
 Dinosaur n = new Dinosaur();
 n.f();
 n.i = 40;
 n.j++;
 }
} ///:~

Note that the fields of a final class can be final or not, as you choose. The
same rules apply to final for fields regardless of whether the class is
defined as final. However, because it prevents inheritance all methods in
a final class are implicitly final, since there’s no way to override them.
You can add the final specifier to a method in a final class, but it doesn’t
add any meaning. Feedback

290 Thinking in Java www.BruceEckel.com

Final caution
It can seem to be sensible to make a method final while you’re designing
a class. You might feel that no one could possibly want to override your
methods. Sometimes this is true. Feedback

But be careful with your assumptions. In general, it’s difficult to anticipate
how a class can be reused, especially a general-purpose class. If you define
a method as final you might prevent the possibility of reusing your class
through inheritance in some other programmer’s project simply because
you couldn’t imagine it being used that way. Feedback

The standard Java library is a good example of this. In particular, the Java
1.0/1.1 Vector class was commonly used and might have been even more
useful if, in the name of efficiency (which was almost certainly an
illusion), all the methods hadn’t been made final. It’s easily conceivable
that you might want to inherit and override with such a fundamentally
useful class, but the designers somehow decided this wasn’t appropriate.
This is ironic for two reasons. First, Stack is inherited from Vector,
which says that a Stack is a Vector, which isn’t really true from a logical
standpoint. Second, many of the most important methods of Vector,
such as addElement() and elementAt() are synchronized. As you
will see in Chapter 11, this incurs a significant performance overhead that
probably wipes out any gains provided by final. This lends credence to
the theory that programmers are consistently bad at guessing where
optimizations should occur. It’s just too bad that such a clumsy design
made it into the standard library where everyone had to cope with it.
(Fortunately, the Java 2 container library replaces Vector with
ArrayList, which behaves much more civilly. Unfortunately, there’s still
new code being written that uses the old container library.) Feedback

It’s also interesting to note that Hashtable, another important Java
1.0/1.1 standard library class, does not have any final methods. As
mentioned elsewhere in this book, it’s quite obvious that some classes
were designed by completely different people than others. (You’ll see that
the method names in Hashtable are much briefer compared to those in
Vector, another piece of evidence.) This is precisely the sort of thing that
should not be obvious to consumers of a class library. When things are
inconsistent it just makes more work for the user. Yet another paean to

Chapter 6: Reusing Classes 291

the value of design and code walkthroughs. (Note that the Java 2
container library replaces Hashtable with HashMap.) Feedback

Initialization and
class loading

In more traditional languages, programs are loaded all at once as part of
the startup process. This is followed by initialization, and then the
program begins. The process of initialization in these languages must be
carefully controlled so that the order of initialization of statics doesn’t
cause trouble. C++, for example, has problems if one static expects
another static to be valid before the second one has been initialized.
Feedback

Java doesn’t have this problem because it takes a different approach to
loading. Because everything in Java is an object, many activities become
easier, and this is one of them. As you will learn more fully in the next
chapter, the compiled code for each class exists in its own separate file.
That file isn’t loaded until the code is needed. In general, you can say that
“Class code is loaded at the point of first use.” This is often not until the
first object of that class is constructed, but loading also occurs when a
static field or static method is accessed. Feedback

The point of first use is also where the static initialization takes place. All
the static objects and the static code block will be initialized in textual
order (that is, the order that you write them down in the class definition)
at the point of loading. The statics, of course, are initialized only once.
Feedback

Initialization with inheritance
It’s helpful to look at the whole initialization process, including
inheritance, to get a full picture of what happens. Consider the following
example:

//: c06:Beetle.java
// The full process of initialization.
import com.bruceeckel.simpletest.*;

292 Thinking in Java www.BruceEckel.com

class Insect {
 protected static Test monitor = new Test();
 private int i = 9;
 protected int j;
 Insect() {
 System.out.println("i = " + i + ", j = " + j);
 j = 39;
 }
 private static int x1 =
 print("static Insect.x1 initialized");
 static int print(String s) {
 System.out.println(s);
 return 47;
 }
}

public class Beetle extends Insect {
 private int k = print("Beetle.k initialized");
 public Beetle() {
 System.out.println("k = " + k);
 System.out.println("j = " + j);
 }
 private static int x2 =
 print("static Beetle.x2 initialized");
 public static void main(String[] args) {
 System.out.println("Beetle constructor");
 Beetle b = new Beetle();
 monitor.expect(new String[] {
 "static Insect.x1 initialized",
 "static Beetle.x2 initialized",
 "Beetle constructor",
 "i = 9, j = 0",
 "Beetle.k initialized",
 "k = 47",
 "j = 39"
 });
 }
} ///:~

The first thing that happens when you run Java on Beetle is that you try
to access Beetle.main() (a static method), so the loader goes out and
finds the compiled code for the Beetle class (this happens to be in a file
called Beetle.class). In the process of loading it, the loader notices that it

Chapter 6: Reusing Classes 293

has a base class (that’s what the extends keyword says), which it then
loads. This will happen whether or not you’re going to make an object of
that base class. (Try commenting out the object creation to prove it to
yourself.) Feedback

If the base class has a base class, that second base class would then be
loaded, and so on. Next, the static initialization in the root base class (in
this case, Insect) is performed, and then the next derived class, and so
on. This is important because the derived-class static initialization might
depend on the base class member being initialized properly. Feedback

At this point, the necessary classes have all been loaded so the object can
be created. First, all the primitives in this object are set to their default
values and the object references are set to null—this happens in one fell
swoop by setting the memory in the object to binary zero. Then the base-
class constructor will be called. In this case the call is automatic, but you
can also specify the base-class constructor call (as the first operation in
the Beetle() constructor) using super. The base class construction goes
through the same process in the same order as the derived-class
constructor. After the base-class constructor completes, the instance
variables are initialized in textual order. Finally, the rest of the body of the
constructor is executed. Feedback

Summary
Both inheritance and composition allow you to create a new type from
existing types. Typically, however, composition reuses existing types as
part of the underlying implementation of the new type, and inheritance
reuses the interface. Since the derived class has the base-class interface, it
can be upcast to the base, which is critical for polymorphism, as you’ll see
in the next chapter. Feedback

Despite the strong emphasis on inheritance in object-oriented
programming, when you start a design you should generally prefer
composition during the first cut and use inheritance only when it is clearly
necessary. Composition tends to be more flexible. In addition, by using
the added artifice of inheritance with your member type, you can change
the exact type, and thus the behavior, of those member objects at run

294 Thinking in Java www.BruceEckel.com

time. Therefore, you can change the behavior of the composed object at
run time. Feedback

When designing a system, your goal is to find or create a set of classes in
which each class has a specific use and is neither too big (encompassing
so much functionality that it’s unwieldy to reuse) nor annoyingly small
(you can’t use it by itself or without adding functionality). Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create two classes, A and B, with default constructors (empty
argument lists) that announce themselves. Inherit a new class
called C from A, and create a member of class B inside C. Do not
create a constructor for C. Create an object of class C and observe
the results. Feedback

2. Modify Exercise 1 so that A and B have constructors with
arguments instead of default constructors. Write a constructor for
C and perform all initialization within C’s constructor. Feedback

3. Create a simple class. Inside a second class, define a reference to
an object of the first class. Use lazy initialization to instantiate this
object. Feedback

4. Inherit a new class from class Detergent. Override scrub() and
add a new method called sterilize(). Feedback

5. Take the file Cartoon.java and comment out the constructor for
the Cartoon class. Explain what happens. Feedback

6. Take the file Chess.java and comment out the constructor for the
Chess class. Explain what happens. Feedback

7. Prove that default constructors are created for you by the
compiler. Feedback

8. Prove that the base-class constructors are (a) always called, and
(b) called before derived-class constructors. Feedback

Chapter 6: Reusing Classes 295

9. Create a base class with only a nondefault constructor, and a
derived class with both a default (no-arg) and nondefault
constructor. In the derived-class constructors, call the base-class
constructor. Feedback

10. Create a class called Root that contains an instance of each of the
classes (that you also create) named Component1,
Component2, and Component3. Derive a class Stem from
Root that also contains an instance of each “component.” All
classes should have default constructors that print a message
about that class. Feedback

11. Modify Exercise 10 so that each class only has nondefault
constructors. Feedback

12. Add a proper hierarchy of dispose() methods to all the classes in
Exercise 11. Feedback

13. Create a class with a method that is overloaded three times.
Inherit a new class, add a new overloading of the method, and
show that all four methods are available in the derived class. Feedback

14. In Car.java add a service() method to Engine and call this
method in main(). Feedback

15. Create a class inside a package. Your class should contain a
protected method. Outside of the package, try to call the
protected method and explain the results. Now inherit from your
class and call the protected method from inside a method of your
derived class. Feedback

16. Create a class called Amphibian. From this, inherit a class called
Frog. Put appropriate methods in the base class. In main(),
create a Frog and upcast it to Amphibian, and demonstrate that
all the methods still work. Feedback

17. Modify Exercise 16 so that Frog overrides the method definitions
from the base class (provides new definitions using the same
method signatures). Note what happens in main(). Feedback

296 Thinking in Java www.BruceEckel.com

18. Create a class with a static final field and a final field and
demonstrate the difference between the two. Feedback

19. Create a class with a blank final reference to an object. Perform
the initialization of the blank final inside all constructors.
Demonstrate the guarantee that the final must be initialized
before use, and that it cannot be changed once initialized. Feedback

20. Create a class with a final method. Inherit from that class and
attempt to override that method. Feedback

21. Create a final class and attempt to inherit from it. Feedback

22. Prove that class loading takes place only once. Prove that loading
may be caused by either the creation of the first instance of that
class, or the access of a static member. Feedback

23. In Beetle.java, inherit a specific type of beetle from class Beetle,
following the same format as the existing classes. Trace and
explain the output. Feedback

 297

7: Polymorphism
Polymorphism is the third essential feature of an object-
oriented programming language, after data abstraction
and inheritance.

It provides another dimension of separation of interface from
implementation, to decouple what from how. Polymorphism allows
improved code organization and readability as well as the creation of
extensible programs that can be “grown” not only during the original
creation of the project but also when new features are desired. Feedback

Encapsulation creates new data types by combining characteristics and
behaviors. Implementation hiding separates the interface from the
implementation by making the details private. This sort of mechanical
organization makes ready sense to someone with a procedural
programming background. But polymorphism deals with decoupling in
terms of types. In the last chapter, you saw how inheritance allows the
treatment of an object as its own type or its base type. This ability is
critical because it allows many types (derived from the same base type) to
be treated as if they were one type, and a single piece of code to work on
all those different types equally. The polymorphic method call allows one
type to express its distinction from another, similar type, as long as
they’re both derived from the same base type. This distinction is
expressed through differences in behavior of the methods that you can
call through the base class. Feedback

In this chapter, you’ll learn about polymorphism (also called dynamic
binding or late binding or run-time binding) starting from the basics,
with simple examples that strip away everything but the polymorphic
behavior of the program. Feedback

Upcasting revisited
In Chapter 6 you saw how an object can be used as its own type or as an
object of its base type. Taking an object reference and treating it as a

298 Thinking in Java www.BruceEckel.com

reference to its base type is called upcasting, because of the way
inheritance trees are drawn with the base class at the top. Feedback

You also saw a problem arise, which is embodied in the following example
about musical instruments. Since several examples play Notes, we should
create the Note class separately, in a package:

//: c07:music:Note.java
// Notes to play on musical instruments.
package c07.music;
import com.bruceeckel.simpletest.*;

public class Note {
 private String noteName;
 private Note(String noteName) {
 this.noteName = noteName;
 }
 public String toString() { return noteName; }
 public static final Note
 MIDDLE_C = new Note("Middle C"),
 C_SHARP = new Note("C Sharp"),
 B_FLAT = new Note("B Flat");
 // Etc.
} ///:~

This is an “enumeration” class, which has a fixed number of constant
objects to choose from. You can’t make additional objects because the
constructor is private.

In the following example, Wind is a type of Instrument, therefore
Wind is inherited from Instrument:

//: c07:music:Music.java
// Inheritance & upcasting.
package c07.music;
import com.bruceeckel.simpletest.*;

public class Music {
 private static Test monitor = new Test();
 public static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }
 public static void main(String[] args) {

Chapter 7: Polymorphism 299

 Wind flute = new Wind();
 tune(flute); // Upcasting
 monitor.expect(new String[] {
 "Wind.play() Middle C"
 });
 }
} ///:~

//: c07:music:Wind.java
package c07.music;

// Wind objects are instruments
// because they have the same interface:
public class Wind extends Instrument {
 // Redefine interface method:
 public void play(Note n) {
 System.out.println("Wind.play() " + n);
 }
} ///:~

//: c07:music:Music.java
// Inheritance & upcasting.
package c07.music;
import com.bruceeckel.simpletest.*;

public class Music {
 private static Test monitor = new Test();
 public static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }
 public static void main(String[] args) {
 Wind flute = new Wind();
 tune(flute); // Upcasting
 monitor.expect(new String[] {
 "Wind.play() Middle C"
 });
 }
} ///:~

The method Music.tune() accepts an Instrument reference, but also
anything derived from Instrument. In main(), you can see this
happening as a Wind reference is passed to tune(), with no cast
necessary. This is acceptable—the interface in Instrument must exist in
Wind, because Wind is inherited from Instrument. Upcasting from

300 Thinking in Java www.BruceEckel.com

Wind to Instrument may “narrow” that interface, but it cannot make it
anything less than the full interface to Instrument. Feedback

Forgetting the object type
Music.java might seem strange to you. Why should anyone intentionally
forget the type of an object? This is what happens when you upcast, and it
seems like it could be much more straightforward if tune() simply takes
a Wind reference as its argument. This brings up an essential point: If
you did that, you’d need to write a new tune() for every type of
Instrument in your system. Suppose we follow this reasoning and add
Stringed and Brass instruments: Feedback

//: c07:music:Music2.java
// Overloading instead of upcasting.
package c07.music;
import com.bruceeckel.simpletest.*;

class Stringed extends Instrument {
 public void play(Note n) {
 System.out.println("Stringed.play() " + n);
 }
}

class Brass extends Instrument {
 public void play(Note n) {
 System.out.println("Brass.play() " + n);
 }
}

public class Music2 {
 private static Test monitor = new Test();
 public static void tune(Wind i) {
 i.play(Note.MIDDLE_C);
 }
 public static void tune(Stringed i) {
 i.play(Note.MIDDLE_C);
 }
 public static void tune(Brass i) {
 i.play(Note.MIDDLE_C);
 }
 public static void main(String[] args) {
 Wind flute = new Wind();

Chapter 7: Polymorphism 301

 Stringed violin = new Stringed();
 Brass frenchHorn = new Brass();
 tune(flute); // No upcasting
 tune(violin);
 tune(frenchHorn);
 monitor.expect(new String[] {
 "Wind.play() Middle C",
 "Stringed.play() Middle C",
 "Brass.play() Middle C"
 });
 }
} ///:~

This works, but there’s a major drawback: You must write type-specific
methods for each new Instrument class you add. This means more
programming in the first place, but it also means that if you want to add a
new method like tune() or a new type of Instrument, you’ve got a lot of
work to do. Add the fact that the compiler won’t give you any error
messages if you forget to overload one of your methods and the whole
process of working with types becomes unmanageable. Feedback

Wouldn’t it be much nicer if you could just write a single method that
takes the base class as its argument, and not any of the specific derived
classes? That is, wouldn’t it be nice if you could forget that there are
derived classes, and write your code to talk only to the base class? Feedback

That’s exactly what polymorphism allows you to do. However, most
programmers who come from a procedural programming background
have a bit of trouble with the way polymorphism works. Feedback

The twist
The difficulty with Music.java can be seen by running the program. The
output is Wind.play(). This is clearly the desired output, but it doesn’t
seem to make sense that it would work that way. Look at the tune()
method:

 public static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }

302 Thinking in Java www.BruceEckel.com

It receives an Instrument reference. So how can the compiler possibly
know that this Instrument reference points to a Wind in this case and
not a Brass or Stringed? The compiler can’t. To get a deeper
understanding of the issue, it’s helpful to examine the subject of binding.
Feedback

Method-call binding
Connecting a method call to a method body is called binding. When
binding is performed before the program is run (by the compiler and
linker, if there is one), it’s called early binding. You might not have heard
the term before because it has never been an option with procedural
languages. C compilers have only one kind of method call, and that’s early
binding. Feedback

The confusing part of the above program revolves around early binding
because the compiler cannot know the correct method to call when it has
only an Instrument reference. Feedback

The solution is called late binding, which means that the binding occurs
at run time, based on the type of object. Late binding is also called
dynamic binding or run-time binding. When a language implements late
binding, there must be some mechanism to determine the type of the
object at run time and to call the appropriate method. That is, the
compiler still doesn’t know the object type, but the method-call
mechanism finds out and calls the correct method body. The late-binding
mechanism varies from language to language, but you can imagine that
some sort of type information must be installed in the objects. Feedback

All method binding in Java uses late binding unless a method has been
declared final. This means that ordinarily you don’t need to make any
decisions about whether late binding will occur—it happens
automatically. Feedback

Why would you declare a method final? As noted in the last chapter, it
prevents anyone from overriding that method. Perhaps more important, it
effectively “turns off” dynamic binding, or rather it tells the compiler that
dynamic binding isn’t necessary. This allows the compiler to generate
slightly more efficient code for final method calls. However, in most
cases it won’t make any overall performance difference in your program,

Chapter 7: Polymorphism 303

so it’s best to only use final as a design decision, and not as an attempt to
improve performance. Feedback

Producing the right behavior
Once you know that all method binding in Java happens polymorphically
via late binding, you can write your code to talk to the base class and know
that all the derived-class cases will work correctly using the same code. Or
to put it another way, you “send a message to an object and let the object
figure out the right thing to do.” Feedback

The classic example in OOP is the “shape” example. This is commonly
used because it is easy to visualize, but unfortunately it can confuse novice
programmers into thinking that OOP is just for graphics programming,
which is of course not the case. Feedback

The shape example has a base class called Shape and various derived
types: Circle, Square, Triangle, etc. The reason the example works so
well is that it’s easy to say “a circle is a type of shape” and be understood.
The inheritance diagram shows the relationships: Feedback

Cast "up" the
inheritance

diagram

Circle
Reference

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

The upcast could occur in a statement as simple as:

Shape s = new Circle();

Here, a Circle object is created and the resulting reference is immediately
assigned to a Shape, which would seem to be an error (assigning one type

304 Thinking in Java www.BruceEckel.com

to another); and yet it’s fine because a Circle is a Shape by inheritance.
So the compiler agrees with the statement and doesn’t issue an error
message. Feedback

Suppose you call one of the base-class methods (that have been
overridden in the derived classes):

s.draw();

Again, you might expect that Shape’s draw() is called because this is,
after all, a Shape reference—so how could the compiler know to do
anything else? And yet the proper Circle.draw() is called because of late
binding (polymorphism). Feedback

The following example puts it a slightly different way:

//: c07:Shapes.java
// Polymorphism in Java.
import com.bruceeckel.simpletest.*;
import java.util.*;

class Shape {
 void draw() {}
 void erase() {}
}

class Circle extends Shape {
 void draw() {
 System.out.println("Circle.draw()");
 }
 void erase() {
 System.out.println("Circle.erase()");
 }
}

class Square extends Shape {
 void draw() {
 System.out.println("Square.draw()");
 }
 void erase() {
 System.out.println("Square.erase()");
 }
}

Chapter 7: Polymorphism 305

class Triangle extends Shape {
 void draw() {
 System.out.println("Triangle.draw()");
 }
 void erase() {
 System.out.println("Triangle.erase()");
 }
}

// A "factory" that randomly creates shapes:
class RandomShapeGenerator {
 private Random rand = new Random();
 public Shape next() {
 switch(rand.nextInt(3)) {
 default:
 case 0: return new Circle();
 case 1: return new Square();
 case 2: return new Triangle();
 }
 }
}

public class Shapes {
 private static Test monitor = new Test();
 private static RandomShapeGenerator gen =
 new RandomShapeGenerator();
 public static void main(String[] args) {
 Shape[] s = new Shape[9];
 // Fill up the array with shapes:
 for(int i = 0; i < s.length; i++)
 s[i] = gen.next();
 // Make polymorphic method calls:
 for(int i = 0; i < s.length; i++)
 s[i].draw();
 monitor.expect(new Object[] {
 new TestExpression("%% (Circle|Square|Triangle)"
 + "\\.draw\\(\\)", s.length)
 });
 }
} ///:~

The base class Shape establishes the common interface to anything
inherited from Shape—that is, all shapes can be drawn and erased. The

306 Thinking in Java www.BruceEckel.com

derived classes override these definitions to provide unique behavior for
each specific type of shape. Feedback

RandomShapeGenerator is a kind of “factory” that produces a
reference to a randomly-selected Shape object each time you call its
next() method. Note that the upcasting happens in the return
statements, each of which takes a reference to a Circle, Square, or
Triangle and sends it out of next() as the return type, Shape. So
whenever you call next(), you never get a chance to see what specific
type it is, since you always get back a plain Shape reference. Feedback

main() contains an array of Shape references filled through calls to
RandomShapeGenerator.next(). At this point you know you have
Shapes, but you don’t know anything more specific than that (and
neither does the compiler). However, when you step through this array
and call draw() for each one, the correct type-specific behavior
magically occurs, as you can see from the output when you run the
program. Feedback

The point of choosing the shapes randomly is to drive home the
understanding that the compiler can have no special knowledge that
allows it to make the correct calls at compile time. All the calls to draw()
must be made through dynamic binding. Feedback

Extensibility
Now let’s return to the musical instrument example. Because of
polymorphism, you can add as many new types as you want to the system
without changing the tune() method. In a well-designed OOP program,
most or all of your methods will follow the model of tune() and
communicate only with the base-class interface. Such a program is
extensible because you can add new functionality by inheriting new data
types from the common base class. The methods that manipulate the
base-class interface will not need to be changed at all to accommodate the
new classes. Feedback

Consider what happens if you take the instrument example and add more
methods in the base class and a number of new classes. Here’s the
diagram:

Chapter 7: Polymorphism 307

Instrument

void play()
String what()
void adjust()

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

All these new classes work correctly with the old, unchanged tune()
method. Even if tune() is in a separate file and new methods are added
to the interface of Instrument, tune() will still work correctly, even
without recompiling it. Here is the implementation of the above diagram:
Feedback

//: c07:music3:Music3.java
// An extensible program.
package c07.music3;
import com.bruceeckel.simpletest.*;
import c07.music.Note;

class Instrument {
 void play(Note n) {
 System.out.println("Instrument.play() " + n);
 }
 String what() { return "Instrument"; }

308 Thinking in Java www.BruceEckel.com

 void adjust() {}
}

class Wind extends Instrument {
 void play(Note n) {
 System.out.println("Wind.play() " + n);
 }
 String what() { return "Wind"; }
 void adjust() {}
}

class Percussion extends Instrument {
 void play(Note n) {
 System.out.println("Percussion.play() " + n);
 }
 String what() { return "Percussion"; }
 void adjust() {}
}

class Stringed extends Instrument {
 void play(Note n) {
 System.out.println("Stringed.play() " + n);
 }
 String what() { return "Stringed"; }
 void adjust() {}
}

class Brass extends Wind {
 void play(Note n) {
 System.out.println("Brass.play() " + n);
 }
 void adjust() {
 System.out.println("Brass.adjust()");
 }
}

class Woodwind extends Wind {
 void play(Note n) {
 System.out.println("Woodwind.play() " + n);
 }
 String what() { return "Woodwind"; }
}

public class Music3 {

Chapter 7: Polymorphism 309

 private static Test monitor = new Test();
 // Doesn't care about type, so new types
 // added to the system still work right:
 public static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }
 public static void tuneAll(Instrument[] e) {
 for(int i = 0; i < e.length; i++)
 tune(e[i]);
 }
 public static void main(String[] args) {
 // Upcasting during addition to the array:
 Instrument[] orchestra = {
 new Wind(),
 new Percussion(),
 new Stringed(),
 new Brass(),
 new Woodwind()
 };
 tuneAll(orchestra);
 monitor.expect(new String[] {
 "Wind.play() Middle C",
 "Percussion.play() Middle C",
 "Stringed.play() Middle C",
 "Brass.play() Middle C",
 "Woodwind.play() Middle C"
 });
 }
} ///:~

The new methods are what(), which returns a String reference with a
description of the class, and adjust(), which provides some way to adjust
each instrument. Feedback

In main(), when you place something inside the orchestra array you
automatically upcast to Instrument. Feedback

You can see that the tune() method is blissfully ignorant of all the code
changes that have happened around it, and yet it works correctly. This is
exactly what polymorphism is supposed to provide. Changes in your code
don’t cause damage to parts of the program that should not be affected.
Put another way, polymorphism is an important technique for the

310 Thinking in Java www.BruceEckel.com

programmer to “separate the things that change from the things that stay
the same.” Feedback

Pitfall: “overriding” private
methods
Here’s something you might innocently try to do:

//: c07:PrivateOverride.java
// Abstract classes and methods.
import com.bruceeckel.simpletest.*;

public class PrivateOverride {
 private static Test monitor = new Test();
 private void f() {
 System.out.println("private f()");
 }
 public static void main(String args[]) {
 PrivateOverride po = new Derived();
 po.f();
 monitor.expect(new String[] {
 "private f()"
 });
 }
}

class Derived extends PrivateOverride {
 public void f() {
 System.out.println("public f()");
 }
} ///:~

You might reasonably expect the output to be “public f()”, but a private
method is automatically final, and is also hidden from the derived class.
So Derived’s f() in this case is a brand new method—it’s not even
overloaded since the base-class version of f() isn’t visible in Derived.
Feedback

The result of this is that only non-private methods may be overriden, but
you should watch out for the appearance of overriding private methods,
which generates no compiler warnings but doesn’t do what you might

Chapter 7: Polymorphism 311

expect. To be clear, you should use a different name from a private base-
class method in your derived class. Feedback

Abstract classes
and methods

In all the instrument examples, the methods in the base class
Instrument were always “dummy” methods. If these methods are ever
called, you’ve done something wrong. That’s because the intent of
Instrument is to create a common interface for all the classes derived
from it. Feedback

The only reason to establish this common interface is so it can be
expressed differently for each different subtype. It establishes a basic
form, so you can say what’s in common with all the derived classes.
Another way of saying this is to call Instrument an abstract base class
(or simply an abstract class). You create an abstract class when you want
to manipulate a set of classes through this common interface. All derived-
class methods that match the signature of the base-class declaration will
be called using the dynamic binding mechanism. (However, as seen in the
last section, if the method’s name is the same as the base class but the
arguments are different, you’ve got overloading, which probably isn’t what
you want.) Feedback

If you have an abstract class like Instrument, objects of that class almost
always have no meaning. That is, Instrument is meant to express only
the interface, and not a particular implementation, so creating an
Instrument object makes no sense, and you’ll probably want to prevent
the user from doing it. This can be accomplished by making all the
methods in Instrument print error messages, but that delays the
information until run time and requires reliable exhaustive testing on the
user’s part. It’s better to catch problems at compile time. Feedback

312 Thinking in Java www.BruceEckel.com

Java provides a mechanism for doing this called the abstract method1.
This is a method that is incomplete; it has only a declaration and no
method body. Here is the syntax for an abstract method declaration:

abstract void f();

A class containing abstract methods is called an abstract class. If a class
contains one or more abstract methods, the class itself must be qualified
as abstract. (Otherwise, the compiler gives you an error message.) Feedback

If an abstract class is incomplete, what is the compiler supposed to do
when someone tries to make an object of that class? It cannot safely create
an object of an abstract class, so you get an error message from the
compiler. This way the compiler ensures the purity of the abstract class,
and you don’t need to worry about misusing it. Feedback

If you inherit from an abstract class and you want to make objects of the
new type, you must provide method definitions for all the abstract
methods in the base class. If you don’t (and you may choose not to), then
the derived class is also abstract and the compiler will force you to qualify
that class with the abstract keyword. Feedback

It’s possible to create a class as abstract without including any abstract
methods. This is useful when you’ve got a class in which it doesn’t make
sense to have any abstract methods, and yet you want to prevent any
instances of that class. Feedback

The Instrument class can easily be turned into an abstract class. Only
some of the methods will be abstract, since making a class abstract
doesn’t force you to make all the methods abstract. Here’s what it looks
like:

1 For C++ programmers, this is the analogue of C++’s pure virtual function.

Chapter 7: Polymorphism 313

abstract Instrument

abstract void play();
String what() { /* ... */ }
abstract void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

extends extends extends

Here’s the orchestra example modified to use abstract classes and
methods:

//: c07:music4:Music4.java
// Abstract classes and methods.
package c07.music4;
import com.bruceeckel.simpletest.*;
import java.util.*;
import c07.music.Note;

abstract class Instrument {
 private int i; // Storage allocated for each
 public abstract void play(Note n);
 public String what() {
 return "Instrument";
 }
 public abstract void adjust();
}

314 Thinking in Java www.BruceEckel.com

class Wind extends Instrument {
 public void play(Note n) {
 System.out.println("Wind.play() " + n);
 }
 public String what() { return "Wind"; }
 public void adjust() {}
}

class Percussion extends Instrument {
 public void play(Note n) {
 System.out.println("Percussion.play() " + n);
 }
 public String what() { return "Percussion"; }
 public void adjust() {}
}

class Stringed extends Instrument {
 public void play(Note n) {
 System.out.println("Stringed.play() " + n);
 }
 public String what() { return "Stringed"; }
 public void adjust() {}
}

class Brass extends Wind {
 public void play(Note n) {
 System.out.println("Brass.play() " + n);
 }
 public void adjust() {
 System.out.println("Brass.adjust()");
 }
}

class Woodwind extends Wind {
 public void play(Note n) {
 System.out.println("Woodwind.play() " + n);
 }
 public String what() { return "Woodwind"; }
}

public class Music4 {
 private static Test monitor = new Test();
 // Doesn't care about type, so new types

Chapter 7: Polymorphism 315

 // added to the system still work right:
 static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }
 static void tuneAll(Instrument[] e) {
 for(int i = 0; i < e.length; i++)
 tune(e[i]);
 }
 public static void main(String[] args) {
 // Upcasting during addition to the array:
 Instrument[] orchestra = {
 new Wind(),
 new Percussion(),
 new Stringed(),
 new Brass(),
 new Woodwind()
 };
 tuneAll(orchestra);
 monitor.expect(new String[] {
 "Wind.play() Middle C",
 "Percussion.play() Middle C",
 "Stringed.play() Middle C",
 "Brass.play() Middle C",
 "Woodwind.play() Middle C"
 });
 }
} ///:~

You can see that there’s really no change except in the base class. Feedback

It’s helpful to create abstract classes and methods because they make the
abstractness of a class explicit, and tell both the user and the compiler
how it was intended to be used. Feedback

Constructors and
polymorphism

As usual, constructors are different from other kinds of methods. This is
also true when polymorphism is involved. Even though constructors are
not polymorphic (they’re actually static methods, but the static

316 Thinking in Java www.BruceEckel.com

declaration is implicit), it’s important to understand the way constructors
work in complex hierarchies and with polymorphism. This understanding
will help you avoid unpleasant entanglements. Feedback

Order of constructor calls
The order of constructor calls was briefly discussed in Chapter 4 and
again in Chapter 6, but that was before polymorphism was introduced.
Feedback

A constructor for the base class is always called during the construction
process for a derived class, chaining up the inheritance hierarchy so that a
constructor for every base class is called. This makes sense because the
constructor has a special job: to see that the object is built properly. A
derived class has access to its own members only, and not to those of the
base class (whose members are typically private). Only the base-class
constructor has the proper knowledge and access to initialize its own
elements. Therefore, it’s essential that all constructors get called,
otherwise the entire object wouldn’t be constructed. That’s why the
compiler enforces a constructor call for every portion of a derived class. It
will silently call the default constructor if you don’t explicitly call a base-
class constructor in the derived-class constructor body. If there is no
default constructor, the compiler will complain. (In the case where a class
has no constructors, the compiler will automatically synthesize a default
constructor.) Feedback

Let’s take a look at an example that shows the effects of composition,
inheritance, and polymorphism on the order of construction:

//: c07:Sandwich.java
// Order of constructor calls.
package c07;
import com.bruceeckel.simpletest.*;

class Meal {
 Meal() { System.out.println("Meal()"); }
}

class Bread {
 Bread() { System.out.println("Bread()"); }
}

Chapter 7: Polymorphism 317

class Cheese {
 Cheese() { System.out.println("Cheese()"); }
}

class Lettuce {
 Lettuce() { System.out.println("Lettuce()"); }
}

class Lunch extends Meal {
 Lunch() { System.out.println("Lunch()"); }
}

class PortableLunch extends Lunch {
 PortableLunch() { System.out.println("PortableLunch()");}
}

public class Sandwich extends PortableLunch {
 private static Test monitor = new Test();
 private Bread b = new Bread();
 private Cheese c = new Cheese();
 private Lettuce l = new Lettuce();
 public Sandwich() {
 System.out.println("Sandwich()");
 }
 public static void main(String[] args) {
 new Sandwich();
 monitor.expect(new String[] {
 "Meal()",
 "Lunch()",
 "PortableLunch()",
 "Bread()",
 "Cheese()",
 "Lettuce()",
 "Sandwich()"
 });
 }
} ///:~

This example creates a complex class out of other classes, and each class
has a constructor that announces itself. The important class is
Sandwich, which reflects three levels of inheritance (four, if you count
the implicit inheritance from Object) and three member objects. You can
see the output when a Sandwich object is created in main(). This

318 Thinking in Java www.BruceEckel.com

means that the order of constructor calls for a complex object is as
follows: Feedback

1. The base-class constructor is called. This step is repeated
recursively such that the root of the hierarchy is constructed first,
followed by the next-derived class, etc., until the most-derived class
is reached. Feedback

2. Member initializers are called in the order of declaration. Feedback

3. The body of the derived-class constructor is called. Feedback

The order of the constructor calls is important. When you inherit, you
know all about the base class and can access any public and protected
members of the base class. This means that you must be able to assume
that all the members of the base class are valid when you’re in the derived
class. In a normal method, construction has already taken place, so all the
members of all parts of the object have been built. Inside the constructor,
however, you must be able to assume that all members that you use have
been built. The only way to guarantee this is for the base-class constructor
to be called first. Then when you’re in the derived-class constructor, all
the members you can access in the base class have been initialized.
“Knowing that all members are valid” inside the constructor is also the
reason that, whenever possible, you should initialize all member objects
(that is, objects placed in the class using composition) at their point of
definition in the class (e.g., b, c, and l in the example above). If you follow
this practice, you will help ensure that all base class members and
member objects of the current object have been initialized. Unfortunately,
this doesn’t handle every case, as you will see in the next section. Feedback

Inheritance and cleanup
When using composition and inheritance to create a new class, most of
the time you won’t have to worry about cleaning up—subobjects can
usually be left to the garbage collector. If you do have cleanup issues, you
must be diligent, and create a dispose() method (the name I have
chosen to use here; you may come up with something better) for your new
class. And with inheritance, you must override dispose() in the derived
class if you have any special cleanup that must happen as part of garbage
collection. When you override dispose() in an inherited class, it’s

Chapter 7: Polymorphism 319

important to remember to call the base-class version of dispose(), since
otherwise the base-class cleanup will not happen. The following example
demonstrates this:

//: c07:Frog.java
// Cleanup and inheritance.
import com.bruceeckel.simpletest.*;

class Characteristic {
 private String s;
 Characteristic(String s) {
 this.s = s;
 System.out.println("Creating Characteristic " + s);
 }
 protected void dispose() {
 System.out.println("finalizing Characteristic " + s);
 }
}

class Description {
 private String s;
 Description(String s) {
 this.s = s;
 System.out.println("Creating Description " + s);
 }
 protected void dispose() {
 System.out.println("finalizing Description " + s);
 }
}

class LivingCreature {
 private Characteristic p = new Characteristic("is alive");
 private Description t =
 new Description("Basic Living Creature");
 LivingCreature() {
 System.out.println("LivingCreature()");
 }
 protected void dispose() {
 System.out.println("LivingCreature dispose");
 t.dispose();
 p.dispose();
 }
}

320 Thinking in Java www.BruceEckel.com

class Animal extends LivingCreature {
 private Characteristic p= new Characteristic("has heart");
 private Description t =
 new Description("Animal not Vegetable");
 Animal() {
 System.out.println("Animal()");
 }
 protected void dispose() {
 System.out.println("Animal dispose");
 t.dispose();
 p.dispose();
 super.dispose();
 }
}

class Amphibian extends Animal {
 private Characteristic p =
 new Characteristic("can live in water");
 private Description t =
 new Description("Both water and land");
 Amphibian() {
 System.out.println("Amphibian()");
 }
 protected void dispose() {
 System.out.println("Amphibian dispose");
 t.dispose();
 p.dispose();
 super.dispose();
 }
}

public class Frog extends Amphibian {
 private Characteristic p = new Characteristic("Croaks");
 private Description t = new Description("Eats Bugs");
 private static Test monitor = new Test();
 public Frog() {
 System.out.println("Frog()");
 }
 protected void dispose() {
 System.out.println("Frog dispose");
 t.dispose();
 p.dispose();
 super.dispose();
 }

Chapter 7: Polymorphism 321

 public static void main(String[] args) {
 Frog frog = new Frog();
 System.out.println("Bye!");
 frog.dispose();
 monitor.expect(new String[] {
 "Creating Characteristic is alive",
 "Creating Description Basic Living Creature",
 "LivingCreature()",
 "Creating Characteristic has heart",
 "Creating Description Animal not Vegetable",
 "Animal()",
 "Creating Characteristic can live in water",
 "Creating Description Both water and land",
 "Amphibian()",
 "Creating Characteristic Croaks",
 "Creating Description Eats Bugs",
 "Frog()",
 "Bye!",
 "Frog dispose",
 "finalizing Description Eats Bugs",
 "finalizing Characteristic Croaks",
 "Amphibian dispose",
 "finalizing Description Both water and land",
 "finalizing Characteristic can live in water",
 "Animal dispose",
 "finalizing Description Animal not Vegetable",
 "finalizing Characteristic has heart",
 "LivingCreature dispose",
 "finalizing Description Basic Living Creature",
 "finalizing Characteristic is alive"
 });
 }
} ///:~

Each class in the hierarchy also contains a member objects of types
Characteristic and Description, which must also be disposed. The
order of disposal should be the reverse of the order of initialization, in
case one subobject is dependent on another. For fields, this means the
reverse of the order of declaration (since fields are initialized in
declaration order). For base classes (following the form that’s used in C++
for destructors), you should perform the derived-class cleanup first, then
the base-class cleanup. That’s because the derived-class cleanup could call
some methods in the base class that require that the base-class

322 Thinking in Java www.BruceEckel.com

components are still alive, so you must not destroy them prematurely.
From the output you can see that all parts of the Frog object are disposed
in reverse order of creation. Feedback

From this example, you can see that although you don’t always need to
perform cleanup, when you do the process requires care and awareness.
Feedback

Behavior of polymorphic methods
inside constructors
The hierarchy of constructor calls brings up an interesting dilemma. What
happens if you’re inside a constructor and you call a dynamically-bound
method of the object being constructed? Inside an ordinary method you
can imagine what will happen—the dynamically-bound call is resolved at
runtime because the object cannot know whether it belongs to the class
that the method is in or some class derived from it. For consistency, you
might think this is what should happen inside constructors. Feedback

This is not exactly the case. If you call a dynamically-bound method inside
a constructor, the overridden definition for that method is used. However,
the effect can be rather unexpected, and can conceal some difficult-to-find
bugs. Feedback

Conceptually, the constructor’s job is to bring the object into existence
(which is hardly an ordinary feat). Inside any constructor, the entire
object might be only partially formed—you can know only that the base-
class objects have been initialized, but you cannot know which classes are
inherited from you. A dynamically bound method call, however, reaches
“outward” into the inheritance hierarchy. It calls a method in a derived
class. If you do this inside a constructor, you call a method that might
manipulate members that haven’t been initialized yet—a sure recipe for
disaster. Feedback

You can see the problem in the following example:

//: c07:PolyConstructors.java
// Constructors and polymorphism
// don't produce what you might expect.
import com.bruceeckel.simpletest.*;

Chapter 7: Polymorphism 323

abstract class Glyph {
 abstract void draw();
 Glyph() {
 System.out.println("Glyph() before draw()");
 draw();
 System.out.println("Glyph() after draw()");
 }
}

class RoundGlyph extends Glyph {
 private int radius = 1;
 RoundGlyph(int r) {
 radius = r;
 System.out.println(
 "RoundGlyph.RoundGlyph(), radius = " + radius);
 }
 void draw() {
 System.out.println(
 "RoundGlyph.draw(), radius = " + radius);
 }
}

public class PolyConstructors {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 new RoundGlyph(5);
 monitor.expect(new String[] {
 "Glyph() before draw()",
 "RoundGlyph.draw(), radius = 0",
 "Glyph() after draw()",
 "RoundGlyph.RoundGlyph(), radius = 5"
 });
 }
} ///:~

In Glyph, the draw() method is abstract, so it is designed to be
overridden. Indeed, you are forced to override it in RoundGlyph. But
the Glyph constructor calls this method, and the call ends up in
RoundGlyph.draw(), which would seem to be the intent. But if you
look at the output, you can see that when Glyph’s constructor calls
draw(), the value of radius isn’t even the default initial value 1. It’s 0.
This would probably result in either a dot or nothing at all being drawn on

324 Thinking in Java www.BruceEckel.com

the screen, and you’d be left staring, trying to figure out why the program
won’t work. Feedback

The order of initialization described in the earlier section isn’t quite
complete, and that’s the key to solving the mystery. The actual process of
initialization is:

1. The storage allocated for the object is initialized to binary zero
before anything else happens. Feedback

2. The base-class constructors are called as described previously. At
this point, the overridden draw() method is called (yes, before the
RoundGlyph constructor is called), which discovers a radius
value of zero, due to step 1. Feedback

3. Member initializers are called in the order of declaration. Feedback

4. The body of the derived-class constructor is called. Feedback

There’s an upside to this, which is that everything is at least initialized to
zero (or whatever zero means for that particular data type) and not just
left as garbage. This includes object references that are embedded inside a
class via composition, which become null. So if you forget to initialize
that reference you’ll get an exception at run time. Everything else gets
zero, which is usually a telltale value when looking at output. Feedback

On the other hand, you should be pretty horrified at the outcome of this
program. You’ve done a perfectly logical thing, and yet the behavior is
mysteriously wrong, with no complaints from the compiler. (C++
produces more rational behavior in this situation.) Bugs like this could
easily be buried and take a long time to discover. Feedback

As a result, a good guideline for constructors is, “Do as little as possible to
set the object into a good state, and if you can possibly avoid it, don’t call
any methods.” The only safe methods to call inside a constructor are those
that are final in the base class. (This also applies to private methods,
which are automatically final.) These cannot be overridden and thus
cannot produce this kind of surprise. Feedback

Chapter 7: Polymorphism 325

Designing with inheritance
Once you learn about polymorphism, it can seem that everything ought to
be inherited because polymorphism is such a clever tool. This can burden
your designs; in fact if you choose inheritance first when you’re using an
existing class to make a new class, things can become needlessly
complicated. Feedback

A better approach is to choose composition first, especially when it’s not
obvious which one you should use. Composition does not force a design
into an inheritance hierarchy. But composition is also more flexible since
it’s possible to dynamically choose a type (and thus behavior) when using
composition, whereas inheritance requires an exact type to be known at
compile time. The following example illustrates this:

//: c07:Transmogrify.java
// Dynamically changing the behavior of an object
// via composition (the "State" design pattern).
import com.bruceeckel.simpletest.*;

abstract class Actor {
 abstract void act();
}

class HappyActor extends Actor {
 void act() {
 System.out.println("HappyActor");
 }
}

class SadActor extends Actor {
 void act() {
 System.out.println("SadActor");
 }
}

class Stage {
 private Actor actor = new HappyActor();
 void change() { actor = new SadActor(); }
 void performPlay() { actor.act(); }
}

326 Thinking in Java www.BruceEckel.com

public class Transmogrify {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Stage stage = new Stage();
 stage.performPlay();
 stage.change();
 stage.performPlay();
 monitor.expect(new String[] {
 "HappyActor",
 "SadActor"
 });
 }
} ///:~

A Stage object contains a reference to an Actor, which is initialized to a
HappyActor object. This means performPlay() produces a particular
behavior. But since a reference can be rebound to a different object at run
time, a reference for a SadActor object can be substituted in actor and
then the behavior produced by performPlay() changes. Thus you gain
dynamic flexibility at run time. (This is also called the State Pattern. See
Thinking in Patterns with Java at www.BruceEckel.com.) In contrast,
you can’t decide to inherit differently at run time; that must be completely
determined at compile time. Feedback

A general guideline is “Use inheritance to express differences in behavior,
and fields to express variations in state.” In the above example, both are
used: two different classes are inherited to express the difference in the
act() method, and Stage uses composition to allow its state to be
changed. In this case, that change in state happens to produce a change in
behavior. Feedback

Pure inheritance vs. extension
When studying inheritance, it would seem that the cleanest way to create
an inheritance hierarchy is to take the “pure” approach. That is, only
methods that have been established in the base class or interface are to
be overridden in the derived class, as seen in this diagram:

Chapter 7: Polymorphism 327

Shape

draw()
erase()

Circle

draw()
erase()

Square

draw()
erase()

Triangle

draw()
erase()

This can be called a pure “is-a” relationship because the interface of a
class establishes what it is. Inheritance guarantees that any derived class
will have the interface of the base class and nothing less. If you follow the
above diagram, derived classes will also have no more than the base class
interface. Feedback

This can be thought of as pure substitution, because derived class objects
can be perfectly substituted for the base class, and you never need to
know any extra information about the subclasses when you’re using them:

Circle, Square,
Line, or new type

of Shape

Talks to Shape
Message

"Is-a"
relationship

That is, the base class can receive any message you can send to the
derived class because the two have exactly the same interface. All you
need to do is upcast from the derived class and never look back to see
what exact type of object you’re dealing with. Everything is handled
through polymorphism. Feedback

When you see it this way, it seems like a pure “is-a” relationship is the
only sensible way to do things, and any other design indicates muddled
thinking and is by definition broken. This too is a trap. As soon as you
start thinking this way, you’ll turn around and discover that extending the
interface (which, unfortunately, the keyword extends seems to
encourage) is the perfect solution to a particular problem. This could be

328 Thinking in Java www.BruceEckel.com

termed an “is-like-a” relationship because the derived class is like the base
class—it has the same fundamental interface—but it has other features
that require additional methods to implement:

Useful

void f()
void g()

void f()

void g()

void u()

void v()

void w()

MoreUseful

}
Assume this

represents a big
interface

"Is-like-a"

} Extending
the interface

While this is also a useful and sensible approach (depending on the
situation) it has a drawback. The extended part of the interface in the
derived class is not available from the base class, so once you upcast you
can’t call the new methods:

Useful part
Talks to Useful

object Message

MoreUseful
part

If you’re not upcasting in this case, it won’t bother you, but often you’ll get
into a situation in which you need to rediscover the exact type of the
object so you can access the extended methods of that type. The following
section shows how this is done. Feedback

Chapter 7: Polymorphism 329

Downcasting and run time
type identification
Since you lose the specific type information via an upcast (moving up the
inheritance hierarchy), it makes sense that to retrieve the type
information—that is, to move back down the inheritance hierarchy—you
use a downcast. However, you know an upcast is always safe; the base
class cannot have a bigger interface than the derived class, therefore every
message you send through the base class interface is guaranteed to be
accepted. But with a downcast, you don’t really know that a shape (for
example) is actually a circle. It could instead be a triangle or square or
some other type. Feedback

Useful

void f()
void g()

void f()

void g()

void u()

void v()

void w()

MoreUseful

}
Assume this

represents a big
interface

"Is-like-a"

} Extending
the interface

To solve this problem there must be some way to guarantee that a
downcast is correct, so you won’t accidentally cast to the wrong type and
then send a message that the object can’t accept. This would be quite
unsafe. Feedback

In some languages (like C++) you must perform a special operation in
order to get a type-safe downcast, but in Java every cast is checked! So
even though it looks like you’re just performing an ordinary parenthesized
cast, at run time this cast is checked to ensure that it is in fact the type you
think it is. If it isn’t, you get a ClassCastException. This act of checking

330 Thinking in Java www.BruceEckel.com

types at run time is called run-time type identification (RTTI). The
following example demonstrates the behavior of RTTI:

//: c07:RTTI.java
// Downcasting & Run-Time Type Identification (RTTI).
// {ThrowsException}

class Useful {
 public void f() {}
 public void g() {}
}

class MoreUseful extends Useful {
 public void f() {}
 public void g() {}
 public void u() {}
 public void v() {}
 public void w() {}
}

public class RTTI {
 public static void main(String[] args) {
 Useful[] x = {
 new Useful(),
 new MoreUseful()
 };
 x[0].f();
 x[1].g();
 // Compile time: method not found in Useful:
 //! x[1].u();
 ((MoreUseful)x[1]).u(); // Downcast/RTTI
 ((MoreUseful)x[0]).u(); // Exception thrown
 }
} ///:~

As in the diagram, MoreUseful extends the interface of Useful. But
since it’s inherited, it can also be upcast to a Useful. You can see this
happening in the initialization of the array x in main(). Since both
objects in the array are of class Useful, you can send the f() and g()
methods to both, and if you try to call u() (which exists only in
MoreUseful) you’ll get a compile-time error message. Feedback

If you want to access the extended interface of a MoreUseful object, you
can try to downcast. If it’s the correct type, it will be successful. Otherwise,

Chapter 7: Polymorphism 331

you’ll get a ClassCastException. You don’t need to write any special
code for this exception, since it indicates a programmer error that could
happen anywhere in a program. Feedback

There’s more to RTTI than a simple cast. For example, there’s a way to see
what type you’re dealing with before you try to downcast it. All of Chapter
10 is devoted to the study of different aspects of Java run-time type
identification. Feedback

Summary
Polymorphism means “different forms.” In object-oriented programming,
you have the same face (the common interface in the base class) and
different forms using that face: the different versions of the dynamically
bound methods. Feedback

You’ve seen in this chapter that it’s impossible to understand, or even
create, an example of polymorphism without using data abstraction and
inheritance. Polymorphism is a feature that cannot be viewed in isolation
(like a switch statement can, for example), but instead works only in
concert, as part of a “big picture” of class relationships. People are often
confused by other, non-object-oriented features of Java, like method
overloading, which are sometimes presented as object-oriented. Don’t be
fooled: If it isn’t late binding, it isn’t polymorphism. Feedback

To use polymorphism—and thus object-oriented techniques—effectively
in your programs you must expand your view of programming to include
not just members and messages of an individual class, but also the
commonality among classes and their relationships with each other.
Although this requires significant effort, it’s a worthy struggle, because
the results are faster program development, better code organization,
extensible programs, and easier code maintenance. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

332 Thinking in Java www.BruceEckel.com

1. Add a new method in the base class of Shapes.java that prints a
message, but don’t override it in the derived classes. Explain what
happens. Now override it in one of the derived classes but not the
others, and see what happens. Finally, override it in all the derived
classes. Feedback

2. Add a new type of Shape to Shapes.java and verify in main()
that polymorphism works for your new type as it does in the old
types. Feedback

3. Change Music3.java so that what() becomes the root Object
method toString(). Try printing the Instrument objects using
System.out.println() (without any casting). Feedback

4. Add a new type of Instrument to Music3.java and verify that
polymorphism works for your new type. Feedback

5. Modify Music3.java so that it randomly creates Instrument
objects the way Shapes.java does. Feedback

6. Create an inheritance hierarchy of Rodent: Mouse, Gerbil,
Hamster, etc. In the base class, provide methods that are
common to all Rodents, and override these in the derived classes
to perform different behaviors depending on the specific type of
Rodent. Create an array of Rodent, fill it with different specific
types of Rodents, and call your base-class methods to see what
happens. Feedback

7. Modify Exercise 6 so that Rodent is an abstract class. Make the
methods of Rodent abstract whenever possible. Feedback

8. Create a class as abstract without including any abstract
methods, and verify that you cannot create any instances of that
class. Feedback

9. Add class Pickle to Sandwich.java. Feedback

10. Modify Exercise 6 so that it demonstrates the order of
initialization of the base classes and derived classes. Now add
member objects to both the base and derived classes, and show the

Chapter 7: Polymorphism 333

order in which their initialization occurs during construction.
Feedback

11. Create a base class with two methods. In the first method, call the
second method. Inherit a class and override the second method.
Create an object of the derived class, upcast it to the base type, and
call the first method. Explain what happens. Feedback

12. Create a base class with an abstract print() method that is
overridden in a derived class. The overridden version of the
method prints the value of an int variable defined in the derived
class. At the point of definition of this variable, give it a nonzero
value. In the base-class constructor, call this method. In main(),
create an object of the derived type, and then call its print()
method. Explain the results. Feedback

13. Following the example in Transmogrify.java, create a Starship
class containing an AlertStatus reference that can indicate three
different states. Include methods to change the states. Feedback

14. Create an abstract class with no methods. Derive a class and add
a method. Create a static method that takes a reference to the
base class, downcasts it to the derived class, and calls the method.
In main(), demonstrate that it works. Now put the abstract
declaration for the method in the base class, thus eliminating the
need for the downcast. Feedback

 335

8: Interfaces &
Inner Classes

Interfaces and inner classes provide more sophisticated
ways to organize and control the objects in your system.

C++, for example, does not contain such mechanisms, although the clever
programmer may simulate them. The fact that they exist in Java indicates
that they were considered important enough to provide direct support
through language keywords. Feedback

In Chapter 7, you learned about the abstract keyword, which allows you
to create one or more methods in a class that have no definitions—you
provide part of the interface without providing a corresponding
implementation, which is created by inheritors. The interface keyword
produces a completely abstract class, one that provides no
implementation at all. You’ll learn that the interface is more than just an
abstract class taken to the extreme, since it allows you to perform a
variation on C++’s “multiple inheritance,” by creating a class that can be
upcast to more than one base type. Feedback

At first, inner classes look like a simple code-hiding mechanism: you place
classes inside other classes. You’ll learn, however, that the inner class
does more than that—it knows about and can communicate with the
surrounding class—and that the kind of code you can write with inner
classes is more elegant and clear, although it is a new concept to most. It
takes some time to become comfortable with design using inner classes.
Feedback

Interfaces
The interface keyword takes the abstract concept one step further. You
could think of it as a “pure” abstract class. It allows the creator to
establish the form for a class: method names, argument lists, and return

336 Thinking in Java www.BruceEckel.com

types, but no method bodies. An interface can also contain fields, but
these are implicitly static and final. An interface provides only a form,
but no implementation. Feedback

An interface says: “This is what all classes that implement this particular
interface will look like.” Thus, any code that uses a particular interface
knows what methods might be called for that interface, and that’s all. So
the interface is used to establish a “protocol” between classes. (Some
object-oriented programming languages have a keyword called protocol
to do the same thing.) Feedback

To create an interface, use the interface keyword instead of the class
keyword. Like a class, you can add the public keyword before the
interface keyword (but only if that interface is defined in a file of the
same name) or leave it off to give package access, so that it is only usable
within the same package. Feedback

To make a class that conforms to a particular interface (or group of
interfaces) use the implements keyword. implements says “The
interface is what it looks like, but now I’m going to say how it works.”
Other than that, it looks like inheritance. The diagram for the instrument
example shows this:

Chapter 8: Interfaces & Inner Classes 337

interface Instrument

void play();
String what();
void adjust();

Wind

void play()
String what()
void adjust()

Stringed

void play()
String what()
void adjust()

Woodwind

void play()
String what()

Brass

void play()
void adjust()

Percussion

void play()
String what()
void adjust()

extendsextends

implements implements implements

You can see from the Woodwind and Brass classes that once you’ve
implemented an interface, that implementation becomes an ordinary
class that can be extended in the regular way. Feedback

You can choose to explicitly declare the method declarations in an
interface as public. But they are public even if you don’t say it. So
when you implement an interface, the methods from the interface
must be defined as public. Otherwise they would default to package
access, and you’d be reducing the accessibility of a method during
inheritance, which is not allowed by the Java compiler. Feedback

You can see this in the modified version of the Instrument example.
Note that every method in the interface is strictly a declaration, which is
the only thing the compiler allows. In addition, none of the methods in
Instrument are declared as public, but they’re automatically public
anyway:

338 Thinking in Java www.BruceEckel.com

//: c08:music5:Music5.java
// Interfaces.
package c08.music5;
import com.bruceeckel.simpletest.*;
import c07.music.Note;

interface Instrument {
 // Compile-time constant:
 int i = 5; // static & final
 // Cannot have method definitions:
 void play(Note n); // Automatically public
 String what();
 void adjust();
}

class Wind implements Instrument {
 public void play(Note n) {
 System.out.println("Wind.play() " + n);
 }
 public String what() { return "Wind"; }
 public void adjust() {}
}

class Percussion implements Instrument {
 public void play(Note n) {
 System.out.println("Percussion.play() " + n);
 }
 public String what() { return "Percussion"; }
 public void adjust() {}
}

class Stringed implements Instrument {
 public void play(Note n) {
 System.out.println("Stringed.play() " + n);
 }
 public String what() { return "Stringed"; }
 public void adjust() {}
}

class Brass extends Wind {
 public void play(Note n) {
 System.out.println("Brass.play() " + n);
 }
 public void adjust() {

Chapter 8: Interfaces & Inner Classes 339

 System.out.println("Brass.adjust()");
 }
}

class Woodwind extends Wind {
 public void play(Note n) {
 System.out.println("Woodwind.play() " + n);
 }
 public String what() { return "Woodwind"; }
}

public class Music5 {
 private static Test monitor = new Test();
 // Doesn't care about type, so new types
 // added to the system still work right:
 static void tune(Instrument i) {
 // ...
 i.play(Note.MIDDLE_C);
 }
 static void tuneAll(Instrument[] e) {
 for(int i = 0; i < e.length; i++)
 tune(e[i]);
 }
 public static void main(String[] args) {
 // Upcasting during addition to the array:
 Instrument[] orchestra = {
 new Wind(),
 new Percussion(),
 new Stringed(),
 new Brass(),
 new Woodwind()
 };
 tuneAll(orchestra);
 monitor.expect(new String[] {
 "Wind.play() Middle C",
 "Percussion.play() Middle C",
 "Stringed.play() Middle C",
 "Brass.play() Middle C",
 "Woodwind.play() Middle C"
 });
 }
} ///:~

340 Thinking in Java www.BruceEckel.com

The rest of the code works the same. It doesn’t matter if you are upcasting
to a “regular” class called Instrument, an abstract class called
Instrument, or to an interface called Instrument. The behavior is the
same. In fact, you can see in the tune() method that there isn’t any
evidence about whether Instrument is a “regular” class, an abstract
class, or an interface. This is the intent: Each approach gives the
programmer different control over the way objects are created and used.
Feedback

“Multiple inheritance” in Java
The interface isn’t simply a “more pure” form of abstract class. It has a
higher purpose than that. Because an interface has no implementation
at all—that is, there is no storage associated with an interface—there’s
nothing to prevent many interfaces from being combined. This is
valuable because there are times when you need to say “An x is an a and a
b and a c.” In C++, this act of combining multiple class interfaces is called
multiple inheritance, and it carries some rather sticky baggage because
each class can have an implementation. In Java, you can perform the
same act, but only one of the classes can have an implementation, so the
problems seen in C++ do not occur with Java when combining multiple
interfaces:

Abstract or Concrete
 Base Class

interface 1

interface 2

interface n

Base Class Methods interface 1 ...interface 2 interface n

......

In a derived class, you aren’t forced to have a base class that is either an
abstract or “concrete” (one with no abstract methods). If you do inherit
from a non-interface, you can inherit from only one. All the rest of the
base elements must be interfaces. You place all the interface names after
the implements keyword and separate them with commas. You can have
as many interfaces as you want—each one becomes an independent type

Chapter 8: Interfaces & Inner Classes 341

that you can upcast to. The following example shows a concrete class
combined with several interfaces to produce a new class: Feedback

//: c08:Adventure.java
// Multiple interfaces.

interface CanFight {
 void fight();
}

interface CanSwim {
 void swim();
}

interface CanFly {
 void fly();
}

class ActionCharacter {
 public void fight() {}
}

class Hero extends ActionCharacter
 implements CanFight, CanSwim, CanFly {
 public void swim() {}
 public void fly() {}
}

public class Adventure {
 public static void t(CanFight x) { x.fight(); }
 public static void u(CanSwim x) { x.swim(); }
 public static void v(CanFly x) { x.fly(); }
 public static void w(ActionCharacter x) { x.fight(); }
 public static void main(String[] args) {
 Hero h = new Hero();
 t(h); // Treat it as a CanFight
 u(h); // Treat it as a CanSwim
 v(h); // Treat it as a CanFly
 w(h); // Treat it as an ActionCharacter
 }
} ///:~

You can see that Hero combines the concrete class ActionCharacter
with the interfaces CanFight, CanSwim, and CanFly. When you

342 Thinking in Java www.BruceEckel.com

combine a concrete class with interfaces this way, the concrete class must
come first, then the interfaces. (The compiler gives an error otherwise.)
Feedback

Note that the signature for fight() is the same in the interface
CanFight and the class ActionCharacter, and that fight() is not
provided with a definition in Hero. The rule for an interface is that you
can inherit from it (as you will see shortly), but then you’ve got another
interface. If you want to create an object of the new type, it must be a
class with all definitions provided. Even though Hero does not explicitly
provide a definition for fight(), the definition comes along with
ActionCharacter so it is automatically provided and it’s possible to
create objects of Hero. Feedback

In class Adventure, you can see that there are four methods that take as
arguments the various interfaces and the concrete class. When a Hero
object is created, it can be passed to any of these methods, which means it
is being upcast to each interface in turn. Because of the way interfaces
are designed in Java, this works without any particular effort on the part
of the programmer. Feedback

Keep in mind that the core reason for interfaces is shown in the above
example: to be able to upcast to more than one base type. However, a
second reason for using interfaces is the same as using an abstract base
class: to prevent the client programmer from making an object of this
class and to establish that it is only an interface. This brings up a
question: Should you use an interface or an abstract class? An
interface gives you the benefits of an abstract class and the benefits of
an interface, so if it’s possible to create your base class without any
method definitions or member variables you should always prefer
interfaces to abstract classes. In fact, if you know something is going to
be a base class, your first choice should be to make it an interface, and
only if you’re forced to have method definitions or member variables
should you change to an abstract class, or if necessary a concrete class.
Feedback

Name collisions when combining interfaces
You can encounter a small pitfall when implementing multiple interfaces.
In the above example, both CanFight and ActionCharacter have an

Chapter 8: Interfaces & Inner Classes 343

identical void fight() method. This is not a problem, because the
method is identical in both cases, but what if it isn’t? Here’s an example:

//: c08:InterfaceCollision.java

interface I1 { void f(); }
interface I2 { int f(int i); }
interface I3 { int f(); }
class C { public int f() { return 1; } }

class C2 implements I1, I2 {
 public void f() {}
 public int f(int i) { return 1; } // overloaded
}

class C3 extends C implements I2 {
 public int f(int i) { return 1; } // overloaded
}

class C4 extends C implements I3 {
 // Identical, no problem:
 public int f() { return 1; }
}

// Methods differ only by return type:
//! class C5 extends C implements I1 {}
//! interface I4 extends I1, I3 {} ///:~

The difficulty occurs because overriding, implementation, and
overloading get unpleasantly mixed together, and overloaded methods
cannot differ only by return type. When the last two lines are
uncommented, the error messages say it all:

InterfaceCollision.java:23: f() in C cannot implement f() in I1;
attempting to use incompatible return type
found : int
required: void
InterfaceCollision.java:24: interfaces I3 and I1 are incompatible; both
define f(), but with different return type

Using the same method names in different interfaces that are intended to
be combined generally causes confusion in the readability of the code, as
well. Strive to avoid it. Feedback

344 Thinking in Java www.BruceEckel.com

Extending an interface
with inheritance
You can easily add new method declarations to an interface using
inheritance, and you can also combine several interfaces into a new
interface with inheritance. In both cases you get a new interface, as
seen in this example:

//: c08:HorrorShow.java
// Extending an interface with inheritance.

interface Monster {
 void menace();
}

interface DangerousMonster extends Monster {
 void destroy();
}

interface Lethal {
 void kill();
}

class DragonZilla implements DangerousMonster {
 public void menace() {}
 public void destroy() {}
}

interface Vampire extends DangerousMonster, Lethal {
 void drinkBlood();
}

class VeryBadVampire implements Vampire {
 public void menace() {}
 public void destroy() {}
 public void kill() {}
 public void drinkBlood() {}
}

public class HorrorShow {
 static void u(Monster b) { b.menace(); }
 static void v(DangerousMonster d) {
 d.menace();

Chapter 8: Interfaces & Inner Classes 345

 d.destroy();
 }
 static void w(Lethal l) { l.kill(); }
 public static void main(String[] args) {
 DangerousMonster barney = new DragonZilla();
 u(barney);
 v(barney);
 Vampire vlad = new VeryBadVampire();
 u(vlad);
 v(vlad);
 w(vlad);
 }
} ///:~

DangerousMonster is a simple extension to Monster that produces a
new interface. This is implemented in DragonZilla. Feedback

The syntax used in Vampire works only when inheriting interfaces.
Normally, you can use extends with only a single class, but since an
interface can be made from multiple other interfaces, extends can refer
to multiple base interfaces when building a new interface. As you can
see, the interface names are simply separated with commas. Feedback

Grouping constants
Because any fields you put into an interface are automatically static and
final, the interface is a convenient tool for creating groups of constant
values, much as you would with an enum in C or C++. For example:

//: c08:Months.java
// Using interfaces to create groups of constants.
package c08;

public interface Months {
 int
 JANUARY = 1, FEBRUARY = 2, MARCH = 3,
 APRIL = 4, MAY = 5, JUNE = 6, JULY = 7,
 AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10,
 NOVEMBER = 11, DECEMBER = 12;
} ///:~

Notice the Java style of using all uppercase letters (with underscores to
separate multiple words in a single identifier) for static finals that have
constant initializers. Feedback

346 Thinking in Java www.BruceEckel.com

The fields in an interface are automatically public, so it’s unnecessary
to specify that. Feedback

You can use the constants from outside the package by importing c08.*
or c08.Months just as you would with any other package, and
referencing the values with expressions like Months.JANUARY. Of
course, what you get is just an int, so there isn’t the extra type safety that
C++’s enum has, but this (commonly used) technique is certainly an
improvement over hard-coding numbers into your programs. (That
approach is often referred to as using “magic numbers” and it produces
very difficult-to-maintain code.) Feedback

If you do want extra type safety, you can build a class like this1:

//: c08:Month.java
// A more robust enumeration system.
package c08;
import com.bruceeckel.simpletest.*;

public final class Month {
 private static Test monitor = new Test();
 private String name;
 private static int counter = 1;
 private int order = counter++;
 private Month(String nm) { name = nm; }
 public String toString() { return name; }
 public final static Month
 JAN = new Month("January"),
 FEB = new Month("February"),
 MAR = new Month("March"),
 APR = new Month("April"),
 MAY = new Month("May"),
 JUN = new Month("June"),
 JUL = new Month("July"),
 AUG = new Month("August"),
 SEP = new Month("September"),
 OCT = new Month("October"),
 NOV = new Month("November"),

1 This approach was inspired by an e-mail from Rich Hoffarth. Item 21 in Joshua Bloch’s

Effective Java (Addison-Wesley, 2001) covers the topic in much more detail.

Chapter 8: Interfaces & Inner Classes 347

 DEC = new Month("December");
 public final static Month[] month = {
 JAN, FEB, MAR, APR, MAY, JUN,
 JUL, AUG, SEP, OCT, NOV, DEC
 };
 public final static Month number(int ord) {
 return month[ord - 1];
 }
 public static void main(String[] args) {
 Month m = Month.JAN;
 System.out.println(m);
 m = Month.number(12);
 System.out.println(m);
 System.out.println(m == Month.DEC);
 System.out.println(m.equals(Month.DEC));
 System.out.println(Month.month[3]);
 monitor.expect(new String[] {
 "January",
 "December",
 "true",
 "true",
 "April"
 });
 }
} ///:~

Month is a final class with a private constructor so no one can inherit
from it or make any instances of it. The only instances are the final static
ones created in the class itself: JAN, FEB, MAR, etc. These objects are
also used in the array month, which lets you iterate through an array of
Month2 bjects. The number() method allows you to select a Month by
giving its corresponding month number. In main() you can see the type
safety: m is a Month object so it can be assigned only to a Month. The
previous example Months.java provided only int values, so an int
variable intended to represent a month could actually be given any integer
value, which wasn’t very safe. Feedback

This approach also allows you to use == or equals() interchangeably, as
shown at the end of main(). This works because there can be only one
instance of each value of Month. In Chapter 11 you’ll learn about another
way to set up classes so the objects can be compared to each other. Feedback

There’s also a month field in java.util.Calendar. Feedback

348 Thinking in Java www.BruceEckel.com

Apache’s “Jakarta Commons” project contains tools to create
enumerations similar to the above, but with less effort. See
jakarta.apache.org/commons, under “lang,” in the package
org.apache.commons.lang.enum. This project also has many other
potentially useful libraries. Feedback

Initializing fields in interfaces
Fields defined in interfaces are automatically static and final. These
cannot be “blank finals,” but they can be initialized with nonconstant
expressions. For example:

//: c08:RandVals.java
// Initializing interface fields with
// non-constant initializers.
import java.util.*;

public interface RandVals {
 Random rand = new Random();
 int randomInt = rand.nextInt(10);
 long randomLong = rand.nextLong() * 10;
 float randomFloat = rand.nextLong() * 10;
 double randomDouble = rand.nextDouble() * 10;
} ///:~

Since the fields are static, they are initialized when the class is first
loaded, which happens when any of the fields are accessed for the first
time. Here’s a simple test: Feedback

//: c08:TestRandVals.java
import com.bruceeckel.simpletest.*;

public class TestRandVals {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 System.out.println(RandVals.randomInt);
 System.out.println(RandVals.randomLong);
 System.out.println(RandVals.randomFloat);
 System.out.println(RandVals.randomDouble);
 monitor.expect(new String[] {
 "%% -?\\d+",
 "%% -?\\d+",
 "%% -?\\d\\.\\d+E?-?\\d+",

Chapter 8: Interfaces & Inner Classes 349

 "%% -?\\d\\.\\d+E?-?\\d+"
 });
 }
} ///:~

The fields, of course, are not part of the interface but instead are stored in
the static storage area for that interface. Feedback

Nesting interfaces
Interfaces may be nested within classes and within other interfaces2. This
reveals a number of very interesting features:

//: c08:nesting:NestingInterfaces.java
package c08.nesting;

class A {
 interface B {
 void f();
 }
 public class BImp implements B {
 public void f() {}
 }
 private class BImp2 implements B {
 public void f() {}
 }
 public interface C {
 void f();
 }
 class CImp implements C {
 public void f() {}
 }
 private class CImp2 implements C {
 public void f() {}
 }
 private interface D {
 void f();
 }
 private class DImp implements D {
 public void f() {}
 }

2 Thanks to Martin Danner for asking this question during a seminar.

350 Thinking in Java www.BruceEckel.com

 public class DImp2 implements D {
 public void f() {}
 }
 public D getD() { return new DImp2(); }
 private D dRef;
 public void receiveD(D d) {
 dRef = d;
 dRef.f();
 }
}

interface E {
 interface G {
 void f();
 }
 // Redundant "public":
 public interface H {
 void f();
 }
 void g();
 // Cannot be private within an interface:
 //! private interface I {}
}

public class NestingInterfaces {
 public class BImp implements A.B {
 public void f() {}
 }
 class CImp implements A.C {
 public void f() {}
 }
 // Cannot implement a private interface except
 // within that interface's defining class:
 //! class DImp implements A.D {
 //! public void f() {}
 //! }
 class EImp implements E {
 public void g() {}
 }
 class EGImp implements E.G {
 public void f() {}
 }
 class EImp2 implements E {
 public void g() {}

Chapter 8: Interfaces & Inner Classes 351

 class EG implements E.G {
 public void f() {}
 }
 }
 public static void main(String[] args) {
 A a = new A();
 // Can't access A.D:
 //! A.D ad = a.getD();
 // Doesn't return anything but A.D:
 //! A.DImp2 di2 = a.getD();
 // Cannot access a member of the interface:
 //! a.getD().f();
 // Only another A can do anything with getD():
 A a2 = new A();
 a2.receiveD(a.getD());
 }
} ///:~

The syntax for nesting an interface within a class is reasonably obvious,
and just like non-nested interfaces these can have public or package-
access visibility. You can also see that both public and package-access
nested interfaces can be implemented as public, package-access, and
private nested classes. Feedback

As a new twist, interfaces can also be private, as seen in A.D (the same
qualification syntax is used for nested interfaces as for nested classes).
What good is a private nested interface? You might guess that it can only
be implemented as a private inner class as in DImp, but A.DImp2
shows that it can also be implemented as a public class. However,
A.DImp2 can only be used as itself. You are not allowed to mention the
fact that it implements the private interface, so implementing a private
interface is a way to force the definition of the methods in that interface
without adding any type information (that is, without allowing any
upcasting). Feedback

The method getD() produces a further quandary concerning the private
interface: it’s a public method that returns a reference to a private
interface. What can you do with the return value of this method? In
main(), you can see several attempts to use the return value, all of which
fail. The only thing that works is if the return value is handed to an object
that has permission to use it—in this case, another A, via the receiveD()
method. Feedback

352 Thinking in Java www.BruceEckel.com

Interface E shows that interfaces can be nested within each other.
However, the rules about interfaces—in particular, that all interface
elements must be public—are strictly enforced here, so an interface
nested within another interface is automatically public and cannot be
made private. Feedback

NestingInterfaces shows the various ways that nested interfaces can be
implemented. In particular, notice that when you implement an interface,
you are not required to implement any interfaces nested within. Also,
private interfaces cannot be implemented outside of their defining
classes. Feedback

Initially, these features may seem like they are added strictly for syntactic
consistency, but I generally find that once you know about a feature, you
often discover places where it is useful. Feedback

Inner classes
It’s possible to place a class definition within another class definition. This
is called an inner class. The inner class is a valuable feature because it
allows you to group classes that logically belong together and to control
the visibility of one within the other. However, it’s important to
understand that inner classes are distinctly different from composition.
Feedback

While you’re learning about them, the need for inner classes isn’t always
obvious. At the end of this section, after all of the syntax and semantics of
inner classes have been described, you’ll find examples that should begin
to make clear the benefits of inner classes. Feedback

You create an inner class just as you’d expect—by placing the class
definition inside a surrounding class: Feedback

//: c08:Parcel1.java
// Creating inner classes.

public class Parcel1 {
 class Contents {
 private int i = 11;
 public int value() { return i; }
 }

Chapter 8: Interfaces & Inner Classes 353

 class Destination {
 private String label;
 Destination(String whereTo) {
 label = whereTo;
 }
 String readLabel() { return label; }
 }
 // Using inner classes looks just like
 // using any other class, within Parcel1:
 public void ship(String dest) {
 Contents c = new Contents();
 Destination d = new Destination(dest);
 System.out.println(d.readLabel());
 }
 public static void main(String[] args) {
 Parcel1 p = new Parcel1();
 p.ship("Tanzania");
 }
} ///:~

The inner classes, when used inside ship(), look just like the use of any
other classes. Here, the only practical difference is that the names are
nested within Parcel1. You’ll see in a while that this isn’t the only
difference. Feedback

More typically, an outer class will have a method that returns a reference
to an inner class, like this:

//: c08:Parcel2.java
// Returning a reference to an inner class.

public class Parcel2 {
 class Contents {
 private int i = 11;
 public int value() { return i; }
 }
 class Destination {
 private String label;
 Destination(String whereTo) {
 label = whereTo;
 }
 String readLabel() { return label; }
 }
 public Destination to(String s) {

354 Thinking in Java www.BruceEckel.com

 return new Destination(s);
 }
 public Contents cont() {
 return new Contents();
 }
 public void ship(String dest) {
 Contents c = cont();
 Destination d = to(dest);
 System.out.println(d.readLabel());
 }
 public static void main(String[] args) {
 Parcel2 p = new Parcel2();
 p.ship("Tanzania");
 Parcel2 q = new Parcel2();
 // Defining references to inner classes:
 Parcel2.Contents c = q.cont();
 Parcel2.Destination d = q.to("Borneo");
 }
} ///:~

If you want to make an object of the inner class anywhere except from
within a non-static method of the outer class, you must specify the type
of that object as OuterClassName.InnerClassName, as seen in main().
Feedback

Inner classes and upcasting
So far, inner classes don’t seem that dramatic. After all, if it’s hiding
you’re after, Java already has a perfectly good hiding mechanism—just
give the class package access (visible only within a package) rather than
creating it as an inner class. Feedback

However, inner classes really come into their own when you start
upcasting to a base class, and in particular to an interface. (The effect of
producing an interface reference from an object that implements it is
essentially the same as upcasting to a base class.) That’s because the inner
class—the implementation of the interface—can then be completely
unseen and unavailable to anyone, which is convenient for hiding the
implementation. All you get back is a reference to the base class or the
interface. Feedback

Chapter 8: Interfaces & Inner Classes 355

First, the common interfaces will be defined in their own files so they can
be used in all the examples:

//: c08:Destination.java
public interface Destination {
 String readLabel();
} ///:~

//: c08:Contents.java
public interface Contents {
 int value();
} ///:~

Now Contents and Destination represent interfaces available to the
client programmer. (The interface, remember, automatically makes all
of its members public.) Feedback

When you get back a reference to the base class or the interface, it’s
possible that you can’t even find out the exact type, as shown here:

//: c08:TestParcel.java
// Returning a reference to an inner class.

class Parcel3 {
 private class PContents implements Contents {
 private int i = 11;
 public int value() { return i; }
 }
 protected class PDestination implements Destination {
 private String label;
 private PDestination(String whereTo) {
 label = whereTo;
 }
 public String readLabel() { return label; }
 }
 public Destination dest(String s) {
 return new PDestination(s);
 }
 public Contents cont() {
 return new PContents();
 }
}

public class TestParcel {
 public static void main(String[] args) {

356 Thinking in Java www.BruceEckel.com

 Parcel3 p = new Parcel3();
 Contents c = p.cont();
 Destination d = p.dest("Tanzania");
 // Illegal -- can't access private class:
 //! Parcel3.PContents pc = p.new PContents();
 }
} ///:~

In the example, main() must be in a separate class in order to
demonstrate the privateness of the inner class PContents. Feedback

In Parcel3, something new has been added: the inner class PContents
is private so no one but Parcel3 can access it. PDestination is
protected, so no one but Parcel3, classes in the same package (since
protected also gives package access), and the inheritors of Parcel3 can
access PDestination. This means that the client programmer has
restricted knowledge and access to these members. In fact, you can’t even
downcast to a private inner class (or a protected inner class unless
you’re an inheritor), because you can’t access the name, as you can see in
class TestParcel. Thus, the private inner class provides a way for the
class designer to completely prevent any type-coding dependencies and to
completely hide details about implementation. In addition, extension of
an interface is useless from the client programmer’s perspective since
the client programmer cannot access any additional methods that aren’t
part of the public interface. This also provides an opportunity for the
Java compiler to generate more efficient code. Feedback

Normal (non-inner) classes cannot be made private or protected—they
may only be given public or package access. Feedback

Inner classes
in methods and scopes
What you’ve seen so far encompasses the typical use for inner classes. In
general, the code that you’ll write and read involving inner classes will be
“plain” inner classes that are simple and easy to understand. However, the
design for inner classes is quite complete and there are a number of other,
more obscure, ways that you can use them if you choose: inner classes can
be created within a method or even an arbitrary scope. There are two
reasons for doing this: Feedback

Chapter 8: Interfaces & Inner Classes 357

1. As shown previously, you’re implementing an interface of some
kind so that you can create and return a reference. Feedback

2. You’re solving a complicated problem and you want to create a
class to aid in your solution, but you don’t want it publicly
available. Feedback

In the following examples, the previous code will be modified to use:
Feedback

1. A class defined within a method

2. A class defined within a scope inside a method

3. An anonymous class implementing an interface

4. An anonymous class extending a class that has a nondefault
constructor

5. An anonymous class that performs field initialization

6. An anonymous class that performs construction using instance
initialization (anonymous inner classes cannot have constructors)

Although it’s an ordinary class with an implementation, Wrapping is
also being used as a common “interface” to its derived classes:

//: c08:Wrapping.java
public class Wrapping {
 private int i;
 public Wrapping(int x) { i = x; }
 public int value() { return i; }
} ///:~

You’ll notice above that Wrapping has a constructor that requires an
argument, to make things a bit more interesting. Feedback

The first example shows the creation of an entire class within the scope of
a method (instead of the scope of another class). This is called a local
inner class:

//: c08:Parcel4.java
// Nesting a class within a method.

358 Thinking in Java www.BruceEckel.com

public class Parcel4 {
 public Destination dest(String s) {
 class PDestination implements Destination {
 private String label;
 private PDestination(String whereTo) {
 label = whereTo;
 }
 public String readLabel() { return label; }
 }
 return new PDestination(s);
 }
 public static void main(String[] args) {
 Parcel4 p = new Parcel4();
 Destination d = p.dest("Tanzania");
 }
} ///:~

The class PDestination is part of dest() rather than being part of
Parcel4. (Also notice that you could use the class identifier
PDestination for an inner class inside each class in the same
subdirectory without a name clash.) Therefore, PDestination cannot be
accessed outside of dest(). Notice the upcasting that occurs in the return
statement—nothing comes out of dest() except a reference to
Destination, the base class. Of course, the fact that the name of the class
PDestination is placed inside dest() doesn’t mean that PDestination
is not a valid object once dest() returns. Feedback

The next example shows how you can nest an inner class within any
arbitrary scope:

//: c08:Parcel5.java
// Nesting a class within a scope.

public class Parcel5 {
 private void internalTracking(boolean b) {
 if(b) {
 class TrackingSlip {
 private String id;
 TrackingSlip(String s) {
 id = s;
 }
 String getSlip() { return id; }
 }

Chapter 8: Interfaces & Inner Classes 359

 TrackingSlip ts = new TrackingSlip("slip");
 String s = ts.getSlip();
 }
 // Can't use it here! Out of scope:
 //! TrackingSlip ts = new TrackingSlip("x");
 }
 public void track() { internalTracking(true); }
 public static void main(String[] args) {
 Parcel5 p = new Parcel5();
 p.track();
 }
} ///:~

The class TrackingSlip is nested inside the scope of an if statement.
This does not mean that the class is conditionally created—it gets
compiled along with everything else. However, it’s not available outside
the scope in which it is defined. Other than that, it looks just like an
ordinary class. Feedback

Anonymous inner classes
The next example looks a little strange:

//: c08:Parcel6.java
// A method that returns an anonymous inner class.

public class Parcel6 {
 public Contents cont() {
 return new Contents() {
 private int i = 11;
 public int value() { return i; }
 }; // Semicolon required in this case
 }
 public static void main(String[] args) {
 Parcel6 p = new Parcel6();
 Contents c = p.cont();
 }
} ///:~

The cont() method combines the creation of the return value with the
definition of the class that represents that return value! In addition, the
class is anonymous—it has no name. To make matters a bit worse, it looks
like you’re starting out to create a Contents object: Feedback

360 Thinking in Java www.BruceEckel.com

return new Contents()

But then, before you get to the semicolon, you say, “But wait, I think I’ll
slip in a class definition”: Feedback

return new Contents() {
 private int i = 11;
 public int value() { return i; }
};

What this strange syntax means is: “Create an object of an anonymous
class that’s inherited from Contents.” The reference returned by the new
expression is automatically upcast to a Contents reference. The
anonymous inner-class syntax is a shorthand for: Feedback

class MyContents implements Contents {
 private int i = 11;
 public int value() { return i; }
}
return new MyContents();

In the anonymous inner class, Contents is created using a default
constructor. The following code shows what to do if your base class needs
a constructor with an argument: Feedback

//: c08:Parcel7.java
// An anonymous inner class that calls
// the base-class constructor.

public class Parcel7 {
 public Wrapping wrap(int x) {
 // Base constructor call:
 return new Wrapping(x) { // Pass constructor argument.
 public int value() {
 return super.value() * 47;
 }
 }; // Semicolon required
 }
 public static void main(String[] args) {
 Parcel7 p = new Parcel7();
 Wrapping w = p.wrap(10);
 }
} ///:~

Chapter 8: Interfaces & Inner Classes 361

That is, you simply pass the appropriate argument to the base-class
constructor, seen here as the x passed in new Wrapping(x).

The semicolon at the end of the anonymous inner class doesn’t mark the
end of the class body (as it does in C++). Instead, it marks the end of the
expression that happens to contain the anonymous class. Thus, it’s
identical to the use of the semicolon everywhere else. Feedback

You can also perform initialization when you define fields in an
anonymous class:

//: c08:Parcel8.java
// An anonymous inner class that performs
// initialization. A briefer version of Parcel5.java.

public class Parcel8 {
 // Argument must be final to use inside
 // anonymous inner class:
 public Destination dest(final String dest) {
 return new Destination() {
 private String label = dest;
 public String readLabel() { return label; }
 };
 }
 public static void main(String[] args) {
 Parcel8 p = new Parcel8();
 Destination d = p.dest("Tanzania");
 }
} ///:~

If you’re defining an anonymous inner class and want to use an object
that’s defined outside the anonymous inner class, the compiler requires
that the argument reference be final, like the argument to dest(). If you
forget, you’ll get a compile-time error message. Feedback

As long as you’re simply assigning a field, the above approach is fine. But
what if you need to perform some constructor-like activity? You can’t have
a named constructor in an anonymous class (since there’s no name!) but
with instance initialization, you can, in effect, create a constructor for an
anonymous inner class, like this: Feedback

//: c08:AnonymousConstructor.java
// Creating a constructor for an anonymous inner class.

362 Thinking in Java www.BruceEckel.com

import com.bruceeckel.simpletest.*;

abstract class Base {
 public Base(int i) {
 System.out.println("Base constructor, i = " + i);
 }
 abstract public void f();
}

public class AnonymousConstructor {
 private static Test monitor = new Test();
 public static Base getBase(int i) {
 return new Base(i) {
 {
 System.out.println("Inside instance initializer");
 }
 public void f() {
 System.out.println("In anonymous f()");
 }
 };
 }
 public static void main(String[] args) {
 Base base = getBase(47);
 base.f();
 monitor.expect(new String[] {
 "Base constructor, i = 47",
 "Inside instance initializer",
 "In anonymous f()"
 });
 }
} ///:~

In this case, the variable i did not have to be final. While i is passed to the
base constructor of the anonymous class, it is never directly used inside
the anonymous class. Feedback

Here’s the “parcel” theme with instance initialization. Note that the
arguments to dest() must be final since they are used within the
anonymous class:

//: c08:Parcel9.java
// Using "instance initialization" to perform
// construction on an anonymous inner class.
import com.bruceeckel.simpletest.*;

Chapter 8: Interfaces & Inner Classes 363

public class Parcel9 {
 private static Test monitor = new Test();
 public Destination
 dest(final String dest, final float price) {
 return new Destination() {
 private int cost;
 // Instance initialization for each object:
 {
 cost = Math.round(price);
 if(cost > 100)
 System.out.println("Over budget!");
 }
 private String label = dest;
 public String readLabel() { return label; }
 };
 }
 public static void main(String[] args) {
 Parcel9 p = new Parcel9();
 Destination d = p.dest("Tanzania", 101.395F);
 monitor.expect(new String[] {
 "Over budget!"
 });
 }
} ///:~

Inside the instance initializer you can see code that couldn’t be executed
as part of a field initializer (that is, the if statement). So in effect, an
instance initializer is the constructor for an anonymous inner class. Of
course, it’s limited; you can’t overload instance initializers so you can have
only one of these constructors. Feedback

The link to the outer class
So far, it appears that inner classes are just a name-hiding and code-
organization scheme, which is helpful but not totally compelling.
However, there’s another twist. When you create an inner class, an object
of that inner class has a link to the enclosing object that made it, and so it
can access the members of that enclosing object—without any special
qualifications. In addition, inner classes have access rights to all the

364 Thinking in Java www.BruceEckel.com

elements in the enclosing class3. The following example demonstrates
this: Feedback

//: c08:Sequence.java
// Holds a sequence of Objects.
import com.bruceeckel.simpletest.*;

interface Selector {
 boolean end();
 Object current();
 void next();
}

public class Sequence {
 private static Test monitor = new Test();
 private Object[] objects;
 private int next = 0;
 public Sequence(int size) { objects = new Object[size]; }
 public void add(Object x) {
 if(next < objects.length)
 objects[next++] = x;
 }
 private class SSelector implements Selector {
 private int i = 0;
 public boolean end() { return i == objects.length; }
 public Object current() { return objects[i]; }
 public void next() { if(i < objects.length) i++; }
 }
 public Selector getSelector() { return new SSelector(); }
 public static void main(String[] args) {
 Sequence sequence = new Sequence(10);
 for(int i = 0; i < 10; i++)
 sequence.add(Integer.toString(i));
 Selector selector = sequence.getSelector();
 while(!selector.end()) {
 System.out.println(selector.current());
 selector.next();
 }
 monitor.expect(new String[] {

3 This is very different from the design of nested classes in C++, which is simply a name-
hiding mechanism. There is no link to an enclosing object and no implied permissions in
C++.

Chapter 8: Interfaces & Inner Classes 365

 "0",
 "1",
 "2",
 "3",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9"
 });
 }
} ///:~

The Sequence is simply a fixed-sized array of Object with a class
wrapped around it. You call add() to add a new Object to the end of the
sequence (if there’s room left). To fetch each of the objects in a
Sequence, there’s an interface called Selector, which allows you to see
if you’re at the end(), to look at the current() Object, and to move to
the next() Object in the Sequence. Because Selector is an interface,
many other classes can implement the interface in their own ways, and
many methods can take the interface as an argument, in order to create
generic code. Feedback

Here, the SSelector is a private class that provides Selector
functionality. In main(), you can see the creation of a Sequence,
followed by the addition of a number of String objects. Then, a Selector
is produced with a call to getSelector() and this is used to move
through the Sequence and select each item. Feedback

At first, the creation of SSelector looks like just another inner class. But
examine it closely. Note that each of the methods end(), current(), and
next() refer to objects, which is a reference that isn’t part of SSelector,
but is instead a private field in the enclosing class. However, the inner
class can access methods and fields from the enclosing class as if it owned
them. This turns out to be very convenient, as you can see in the above
example. Feedback

So an inner class has automatic access to the members of the enclosing
class. How can this happen? The inner class must keep a reference to the
particular object of the enclosing class that was responsible for creating it.

366 Thinking in Java www.BruceEckel.com

Then when you refer to a member of the enclosing class, that (hidden)
reference is used to select that member. Fortunately, the compiler takes
care of all these details for you, but you can also understand now that an
object of an inner class can be created only in association with an object of
the enclosing class. Construction of the inner class object requires the
reference to the object of the enclosing class, and the compiler will
complain if it cannot access that reference. Most of the time this occurs
without any intervention on the part of the programmer. Feedback

Nested classes
If you don’t need a connection between the inner class object and the
outer class object, then you can make the inner class static. This is
commonly called a nested class4. To understand the meaning of static
when applied to inner classes, you must remember that the object of an
ordinary inner class implicitly keeps a reference to the object of the
enclosing class that created it. This is not true, however, when you say an
inner class is static. A nested class means: Feedback

1. You don’t need an outer-class object in order to create an object of
a nested class. Feedback

2. You can’t access a non-static outer-class object from an object of a
nested class. Feedback

Nested classes are different from ordinary inner classes in another way, as
well. Fields and methods in ordinary inner classes can only be at the outer
level of a class, so ordinary inner classes cannot have static data, static
fields, or nested classes. However, nested classes can have all of these:
Feedback

//: c08:Parcel10.java
// Nested classes (static inner classes).

public class Parcel10 {
 private static class ParcelContents implements Contents {
 private int i = 11;

4 Roughly similar to nested classes in C++, except that those classes cannot access private
members as they can in Java.

Chapter 8: Interfaces & Inner Classes 367

 public int value() { return i; }
 }
 protected static class ParcelDestination
 implements Destination {
 private String label;
 private ParcelDestination(String whereTo) {
 label = whereTo;
 }
 public String readLabel() { return label; }
 // Nested classes can contain other static elements:
 public static void f() {}
 static int x = 10;
 static class AnotherLevel {
 public static void f() {}
 static int x = 10;
 }
 }
 public static Destination dest(String s) {
 return new ParcelDestination(s);
 }
 public static Contents cont() {
 return new ParcelContents();
 }
 public static void main(String[] args) {
 Contents c = cont();
 Destination d = dest("Tanzania");
 }
} ///:~

In main(), no object of Parcel10 is necessary; instead you use the
normal syntax for selecting a static member to call the methods that
return references to Contents and Destination. Feedback

As you will see shortly, in an ordinary (non-static) inner class, the link to
the outer class object is achieved with a special this reference. A nested
class does not have this special this reference, which makes it analogous
to a static method. Feedback

Normally you can’t put any code inside an interface, but a nested class
can be part of an interface. Since the class is static it doesn’t violate the
rules for interfaces—the nested class is only placed inside the namespace
of the interface:

//: c08:IInterface.java

368 Thinking in Java www.BruceEckel.com

// Nested classes inside interfaces.

public interface IInterface {
 static class Inner {
 int i, j, k;
 public Inner() {}
 void f() {}
 }
} ///:~

Earlier in this book I suggested putting a main() in every class to act as a
test bed for that class. One drawback to this is the amount of extra
compiled code you must carry around. If this is a problem, you can use a
nested class to hold your test code: Feedback

//: c08:TestBed.java
// Putting test code in a nested class.

public class TestBed {
 public TestBed() {}
 public void f() { System.out.println("f()"); }
 public static class Tester {
 public static void main(String[] args) {
 TestBed t = new TestBed();
 t.f();
 }
 }
} ///:~

This generates a separate class called TestBed$Tester (to run the
program, you say java TestBed$Tester). You can use this class for
testing, but you don’t need to include it in your shipping product—you can
simply delete TestBed$Tester.class before packaging things up. Feedback

Referring to the outer class object
If you need to produce the reference to the outer class object, you name
the outer class followed by a dot and this. For example, in the class
Sequence.SSelector, any of its methods can produce the stored
reference to the outer class Sequence by saying Sequence.this. The
resulting reference is automatically the correct type. (This is known and
checked at compile time, so there is no run-time overhead.) Feedback

Chapter 8: Interfaces & Inner Classes 369

Sometimes you want to tell some other object to create an object of one of
its inner classes. To do this you must provide a reference to the other
outer class object in the new expression, like this:

//: c08:Parcel11.java
// Creating instances of inner classes.

public class Parcel11 {
 class Contents {
 private int i = 11;
 public int value() { return i; }
 }
 class Destination {
 private String label;
 Destination(String whereTo) { label = whereTo; }
 String readLabel() { return label; }
 }
 public static void main(String[] args) {
 Parcel11 p = new Parcel11();
 // Must use instance of outer class
 // to create an instances of the inner class:
 Parcel11.Contents c = p.new Contents();
 Parcel11.Destination d = p.new Destination("Tanzania");
 }
} ///:~

To create an object of the inner class directly, you don’t follow the same
form and refer to the outer class name Parcel11 as you might expect, but
instead you must use an object of the outer class to make an object of the
inner class:

Parcel11.Contents c = p.new Contents();

Thus, it’s not possible to create an object of the inner class unless you
already have an object of the outer class. This is because the object of the
inner class is quietly connected to the object of the outer class that it was
made from. However, if you make a nested class (a static inner class),
then it doesn’t need a reference to the outer class object. Feedback

370 Thinking in Java www.BruceEckel.com

Reaching outward from a multiply-
nested class
5It doesn’t matter how deeply an inner class may be nested—it can
transparently access all of the members of all the classes it is nested
within, as seen here:

//: c08:MultiNestingAccess.java
// Nested classes can access all members of all
// levels of the classes they are nested within.

class MNA {
 private void f() {}
 class A {
 private void g() {}
 public class B {
 void h() {
 g();
 f();
 }
 }
 }
}

public class MultiNestingAccess {
 public static void main(String[] args) {
 MNA mna = new MNA();
 MNA.A mnaa = mna.new A();
 MNA.A.B mnaab = mnaa.new B();
 mnaab.h();
 }
} ///:~

You can see that in MNA.A.B, the methods g() and f() are callable
without any qualification (despite the fact that they are private). This
example also demonstrates the syntax necessary to create objects of
multiply-nested inner classes when you create the objects in a different
class. The “.new” syntax produces the correct scope so you do not have to
qualify the class name in the constructor call. Feedback

5 Thanks again to Martin Danner.

Chapter 8: Interfaces & Inner Classes 371

Inheriting from inner classes
Because the inner class constructor must attach to a reference of the
enclosing class object, things are slightly complicated when you inherit
from an inner class. The problem is that the “secret” reference to the
enclosing class object must be initialized, and yet in the derived class
there’s no longer a default object to attach to. The answer is to use a
syntax provided to make the association explicit: Feedback

//: c08:InheritInner.java
// Inheriting an inner class.

class WithInner {
 class Inner {}
}

public class InheritInner extends WithInner.Inner {
 //! InheritInner() {} // Won't compile
 InheritInner(WithInner wi) {
 wi.super();
 }
 public static void main(String[] args) {
 WithInner wi = new WithInner();
 InheritInner ii = new InheritInner(wi);
 }
} ///:~

You can see that InheritInner is extending only the inner class, not the
outer one. But when it comes time to create a constructor, the default one
is no good and you can’t just pass a reference to an enclosing object. In
addition, you must use the syntax Feedback

enclosingClassReference.super();

inside the constructor. This provides the necessary reference and the
program will then compile. Feedback

Can inner classes be overridden?
What happens when you create an inner class, then inherit from the
enclosing class and redefine the inner class? That is, is it possible to
override the entire inner class? This seems like it would be a powerful

372 Thinking in Java www.BruceEckel.com

concept, but “overriding” an inner class as if it were another method of
the outer class doesn’t really do anything: Feedback

//: c08:BigEgg.java
// An inner class cannot be overriden like a method.
import com.bruceeckel.simpletest.*;

class Egg {
 protected class Yolk {
 public Yolk() { System.out.println("Egg.Yolk()"); }
 }
 private Yolk y;
 public Egg() {
 System.out.println("New Egg()");
 y = new Yolk();
 }
}

public class BigEgg extends Egg {
 private static Test monitor = new Test();
 public class Yolk {
 public Yolk() { System.out.println("BigEgg.Yolk()"); }
 }
 public static void main(String[] args) {
 new BigEgg();
 monitor.expect(new String[] {
 "New Egg()",
 "Egg.Yolk()"
 });
 }
} ///:~

The default constructor is synthesized automatically by the compiler, and
this calls the base-class default constructor. You might think that since a
BigEgg is being created, the “overridden” version of Yolk would be used,
but this is not the case, as you can see from the output. Feedback

This example shows that there isn’t any extra inner class magic going on
when you inherit from the outer class. The two inner classes are
completely separate entities, each in their own namespace. However, it’s
still possible to explicitly inherit from the inner class: Feedback

//: c08:BigEgg2.java
// Proper inheritance of an inner class.

Chapter 8: Interfaces & Inner Classes 373

import com.bruceeckel.simpletest.*;

class Egg2 {
 protected class Yolk {
 public Yolk() { System.out.println("Egg2.Yolk()"); }
 public void f() { System.out.println("Egg2.Yolk.f()");}
 }
 private Yolk y = new Yolk();
 public Egg2() { System.out.println("New Egg2()"); }
 public void insertYolk(Yolk yy) { y = yy; }
 public void g() { y.f(); }
}

public class BigEgg2 extends Egg2 {
 private static Test monitor = new Test();
 public class Yolk extends Egg2.Yolk {
 public Yolk() { System.out.println("BigEgg2.Yolk()"); }
 public void f() {
 System.out.println("BigEgg2.Yolk.f()");
 }
 }
 public BigEgg2() { insertYolk(new Yolk()); }
 public static void main(String[] args) {
 Egg2 e2 = new BigEgg2();
 e2.g();
 monitor.expect(new String[] {
 "Egg2.Yolk()",
 "New Egg2()",
 "Egg2.Yolk()",
 "BigEgg2.Yolk()",
 "BigEgg2.Yolk.f()"
 });
 }
} ///:~

Now BigEgg2.Yolk explicitly extends Egg2.Yolk and overrides its
methods. The method insertYolk() allows BigEgg2 to upcast one of its
own Yolk objects into the y reference in Egg2, so when g() calls y.f()
the overridden version of f() is used. The second call to Egg2.Yolk() is
the base-class constructor call of the BigEgg2.Yolk constructor. You can
see that the overridden version of f() is used when g() is called. Feedback

374 Thinking in Java www.BruceEckel.com

Local inner classes
As noted earlier, inner classes can also be created inside code blocks,
typically inside the body of a method. A local inner class cannot have an
access specifier because it isn’t part of the outer class, but it does have
acces to the final variables in the current code block and all the members
of the enclosing class. Here’s an example comparing the creation of a local
inner class with an anonymous inner class: Feedback

//: c08:LocalInnerClass.java
// Holds a sequence of Objects.
import com.bruceeckel.simpletest.*;

interface Counter {
 int next();
}

public class LocalInnerClass {
 private static Test monitor = new Test();
 private int count = 0;
 Counter getCounter(final String name) {
 // A local inner class:
 class LocalCounter implements Counter {
 public LocalCounter() {
 // Local inner class can have a constructor
 System.out.println("LocalCounter()");
 }
 public int next() {
 System.out.print(name); // Access local final
 return count++;
 }
 }
 return new LocalCounter();
 }
 // The same thing with an anonymous inner class:
 Counter getCounter2(final String name) {
 return new Counter() {
 // Anonymous inner class cannot have a named
 // constructor, only an instance initializer:
 {
 System.out.println("Counter()");
 }
 public int next() {

Chapter 8: Interfaces & Inner Classes 375

 System.out.print(name); // Access local final
 return count++;
 }
 };
 }
 public static void main(String[] args) {
 LocalInnerClass lic = new LocalInnerClass();
 Counter
 c1 = lic.getCounter("Local inner "),
 c2 = lic.getCounter2("Anonymous inner ");
 for(int i = 0; i < 5; i++)
 System.out.println(c1.next());
 for(int i = 0; i < 5; i++)
 System.out.println(c2.next());
 monitor.expect(new String[] {
 "LocalCounter()",
 "Counter()",
 "Local inner 0",
 "Local inner 1",
 "Local inner 2",
 "Local inner 3",
 "Local inner 4",
 "Anonymous inner 5",
 "Anonymous inner 6",
 "Anonymous inner 7",
 "Anonymous inner 8",
 "Anonymous inner 9"
 });
 }
} ///:~

Counter returns the next value in a sequence. It is implemented as both
a local class, and an anonymous inner class, both of which have the same
behaviors and capabilities. Since the name of the local inner class in not
accessible outside the method, the only justification for using a local inner
class instead of an anonymous inner class is if you need a named
constructor and/or overloaded constructor, since an anonymous inner
class can only use instance initialization. Feedback

The only reason to make a local inner class rather than an anonymous
inner class is if you need to make more than one object of that class.
Feedback

376 Thinking in Java www.BruceEckel.com

Inner class identifiers
Since every class produces a .class file that holds all the information
about how to create objects of this type (this information produces a
“meta-class” called the Class object), you might guess that inner classes
must also produce .class files to contain the information for their Class
objects. The names of these files/classes have a strict formula: the name
of the enclosing class, followed by a ‘$’, followed by the name of the inner
class. For example, the .class files created by LocalInnerClass.java
include: Feedback

Counter.class
LocalInnerClass$2.class
LocalInnerClass$1LocalCounter.class
LocalInnerClass.class

If inner classes are anonymous, the compiler simply starts generating
numbers as inner class identifiers. If inner classes are nested within inner
classes, their names are simply appended after a ‘$’ and the outer class
identifier(s). Feedback

Although this scheme of generating internal names is simple and
straightforward, it’s also robust and handles most situations6. Since it is
the standard naming scheme for Java, the generated files are
automatically platform-independent. (Note that the Java compiler is
changing your inner classes in all sorts of other ways in order to make
them work.) Feedback

Why inner classes?
At this point you’ve seen a lot of syntax and semantics describing the way
inner classes work, but this doesn’t answer the question of why they exist.
Why did Sun go to so much trouble to add this fundamental language
feature? Feedback

6 On the other hand, ‘$’ is a meta-character to the Unix shell and so you’ll sometimes have
trouble when listing the .class files. This is a bit strange coming from Sun, a Unix-based
company. My guess is that they weren’t considering this issue, but instead thought you’d
naturally focus on the source-code files.

Chapter 8: Interfaces & Inner Classes 377

Typically, the inner class inherits from a class or implements an
interface, and the code in the inner class manipulates the outer class
object that it was created within. So you could say that an inner class
provides a kind of window into the outer class. Feedback

A question that cuts to the heart of inner classes is this: if I just need a
reference to an interface, why don’t I just make the outer class
implement that interface? The answer is “If that’s all you need, then
that’s how you should do it.” So what is it that distinguishes an inner class
implementing an interface from an outer class implementing the same
interface? The answer is that you can’t always have the convenience of
interfaces—sometimes you’re working with implementations. So the
most compelling reason for inner classes is: Feedback

Each inner class can independently inherit from an implementation.
Thus, the inner class is not limited by whether the outer class is
already inheriting from an implementation.

Without the ability that inner classes provide to inherit—in effect—from
more than one concrete or abstract class, some design and programming
problems would be intractable. So one way to look at the inner class is as
the rest of the solution of the multiple-inheritance problem. Interfaces
solve part of the problem, but inner classes effectively allow “multiple
implementation inheritance.” That is, inner classes effectively allow you to
inherit from more than one non-interface. Feedback

To see this in more detail, consider a situation where you have two
interfaces that must somehow be implemented within a class. Because of
the flexibility of interfaces, you have two choices: a single class or an inner
class:

//: c08:MultiInterfaces.java
// Two ways that a class can implement multiple interfaces.

interface A {}
interface B {}

class X implements A, B {}

class Y implements A {
 B makeB() {

378 Thinking in Java www.BruceEckel.com

 // Anonymous inner class:
 return new B() {};
 }
}

public class MultiInterfaces {
 static void takesA(A a) {}
 static void takesB(B b) {}
 public static void main(String[] args) {
 X x = new X();
 Y y = new Y();
 takesA(x);
 takesA(y);
 takesB(x);
 takesB(y.makeB());
 }
} ///:~

Of course, this assumes that the structure of your code makes logical
sense either way. However, you’ll ordinarily have some kind of guidance
from the nature of the problem about whether to use a single class or an
inner class. But without any other constraints, in the above example the
approach you take doesn’t really make much difference from an
implementation standpoint. Both of them work. Feedback

However, if you have abstract or concrete classes instead of interfaces,
you are suddenly limited to using inner classes if your class must
somehow implement both of the others:

//: c08:MultiImplementation.java
// With concrete or abstract classes, inner
// classes are the only way to produce the effect
// of "multiple implementation inheritance."
package c08;

class D {}
abstract class E {}

class Z extends D {
 E makeE() { return new E() {}; }
}

public class MultiImplementation {
 static void takesD(D d) {}

Chapter 8: Interfaces & Inner Classes 379

 static void takesE(E e) {}
 public static void main(String[] args) {
 Z z = new Z();
 takesD(z);
 takesE(z.makeE());
 }
} ///:~

If you didn’t need to solve the “multiple implementation inheritance”
problem, you could conceivably code around everything else without the
need for inner classes. But with inner classes you have these additional
features: Feedback

1. The inner class can have multiple instances, each with its own state
information that is independent of the information in the outer
class object. Feedback

2. In a single outer class you can have several inner classes, each of
which implement the same interface or inherit from the same
class in a different way. An example of this will be shown shortly.
Feedback

3. The point of creation of the inner class object is not tied to the
creation of the outer class object. Feedback

4. There is no potentially confusing “is-a” relationship with the inner
class; it’s a separate entity. Feedback

As an example, if Sequence.java did not use inner classes, you’d have to
say “a Sequence is a Selector,” and you’d only be able to have one
Selector in existence for a particular Sequence. You can easily have a
second method, getRSelector(), that produces a Selector that moves
backward through the sequence. This kind of flexibility is only available
with inner classes. Feedback

Closures & Callbacks
A closure is a callable object that retains information from the scope in
which it was created. From this definition, you can see that an inner class
is an object-oriented closure, because it doesn’t just contain each piece of
information from the outer class object (“the scope in which it was
created”), but it automatically holds a reference back to the whole outer

380 Thinking in Java www.BruceEckel.com

class object, where it has permission to manipulate all the members, even
private ones. Feedback

One of the most compelling arguments made to include some kind of
pointer mechanism in Java was to allow callbacks. With a callback, some
other object is given a piece of information that allows it to call back into
the originating object at some later point. This is a very powerful concept,
as you will see later in the book. If a callback is implemented using a
pointer, however, you must rely on the programmer to behave and not
misuse the pointer. As you’ve seen by now, Java tends to be more careful
than that, so pointers were not included in the language. Feedback

The closure provided by the inner class is a perfect solution; more flexible
and far safer than a pointer. Here’s an example:

//: c08:Callbacks.java
// Using inner classes for callbacks
import com.bruceeckel.simpletest.*;

interface Incrementable {
 void increment();
}

// Very simple to just implement the interface:
class Callee1 implements Incrementable {
 private int i = 0;
 public void increment() {
 i++;
 System.out.println(i);
 }
}

class MyIncrement {
 void increment() {
 System.out.println("Other operation");
 }
 static void f(MyIncrement mi) { mi.increment(); }
}

// If your class must implement increment() in
// some other way, you must use an inner class:
class Callee2 extends MyIncrement {
 private int i = 0;

Chapter 8: Interfaces & Inner Classes 381

 private void incr() {
 i++;
 System.out.println(i);
 }
 private class Closure implements Incrementable {
 public void increment() { incr(); }
 }
 Incrementable getCallbackReference() {
 return new Closure();
 }
}

class Caller {
 private Incrementable callbackReference;
 Caller(Incrementable cbh) { callbackReference = cbh; }
 void go() { callbackReference.increment(); }
}

public class Callbacks {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Callee1 c1 = new Callee1();
 Callee2 c2 = new Callee2();
 MyIncrement.f(c2);
 Caller caller1 = new Caller(c1);
 Caller caller2 = new Caller(c2.getCallbackReference());
 caller1.go();
 caller1.go();
 caller2.go();
 caller2.go();
 monitor.expect(new String[] {
 "Other operation",
 "1",
 "2",
 "1",
 "2"
 });
 }
} ///:~

This example also provides a further distinction between implementing
an interface in an outer class versus doing so in an inner class. Callee1 is
clearly the simpler solution in terms of the code. Callee2 inherits from
MyIncrement, which already has a different increment() method that

382 Thinking in Java www.BruceEckel.com

does something unrelated to the one expected by the Incrementable
interface. When MyIncrement is inherited into Callee2, increment()
can’t be overridden for use by Incrementable, so you’re forced to
provide a separate implementation using an inner class. Also note that
when you create an inner class you do not add to or modify the interface
of the outer class. Feedback

Notice that everything except getCallbackReference() in Callee2 is
private. To allow any connection to the outside world, the interface
Incrementable is essential. Here you can see how interfaces allow for
a complete separation of interface from implementation. Feedback

The inner class Closure implements Incrementable to provide a hook
back into Callee2—but a safe hook. Whoever gets the Incrementable
reference can, of course, only call increment() and has no other abilities
(unlike a pointer, which would allow you to run wild). Feedback

Caller takes an Incrementable reference in its constructor (although
the capturing of the callback reference could happen at any time) and
then, sometime later, uses the reference to “call back” into the Callee
class. Feedback

The value of the callback is in its flexibility—you can dynamically decide
what methods will be called at run time. The benefit of this will become
more evident in Chapter 14, where callbacks are used everywhere to
implement graphical user interface (GUI) functionality. Feedback

Inner classes & control frameworks
A more concrete example of the use of inner classes can be found in
something that I will refer to here as a control framework. Feedback

An application framework is a class or a set of classes that’s designed to
solve a particular type of problem. To apply an application framework,
you typically inherit from one or more classes and override some of the
methods. The code that you write in the overridden methods customizes
the general solution provided by that application framework, in order to
solve your specific problem (this is an example of the Template Method
design pattern; see Thinking in Patterns with Java at
www.BruceEckel.com). The control framework is a particular type of

Chapter 8: Interfaces & Inner Classes 383

application framework dominated by the need to respond to events; a
system that primarily responds to events is called an event-driven system.
One of the most important problems in application programming is the
graphical user interface (GUI), which is almost entirely event-driven. As
you will see in Chapter 14, the Java Swing library is a control framework
that elegantly solves the GUI problem and that heavily uses inner classes.
Feedback

To see how inner classes allow the simple creation and use of control
frameworks, consider a control framework whose job is to execute events
whenever those events are “ready.” Although “ready” could mean
anything, in this case the default will be based on clock time. What follows
is a control framework that contains no specific information about what
it’s controlling. That information is supplied during inheritance, when the
“template method” is implemented. Feedback

First, here is the interface that describes any control event. It’s an
abstract class instead of an actual interface because the default
behavior is to perform the control based on time. Thus, some of the
implementation is included here: Feedback

//: c08:controller:Event.java
// The common methods for any control event.
package c08.controller;

abstract public class Event {
 private long eventTime;
 protected final long delayTime;
 public Event(long delayTime) {
 this.delayTime = delayTime;
 start();
 }
 public void start() { // Allows restarting
 eventTime = System.currentTimeMillis() + delayTime;
 }
 public boolean ready() {
 return System.currentTimeMillis() >= eventTime;
 }
 abstract public void action();
} ///:~

384 Thinking in Java www.BruceEckel.com

The constructor captures the time (from the time of creation of the object)
when you want the Event to run, and then calls start(), which takes the
current time and adds the delay time to produce the time when the event
will occur. start() is a separate method rather than being included in the
constructor because this way, it allows you to restart the timer after the
event has run out, so the Event object can be reused. For example, if you
want a repeating event you can simply call start() inside your action()
method. Feedback

ready() tells you when it’s time to run the action() method. Of course,
ready() could be overridden in a derived class to base the Event on
something other than time. Feedback

The following file contains the actual control framework that manages
and fires events. The Event objects are held inside a container object of
type ArrayList, which you’ll learn more about in Chapter 11. For now, all
you need to know is that add() will append an Object to the end of the
ArrayList, size() produces the number of entries in the ArrayList,
get() will fetch an element from the ArrayList at a particular index, and
remove() removes an element from the ArrayList, given the element
number you want to remove. Feedback

//: c08:controller:Controller.java
// With Event, the generic framework for control systems.
package c08.controller;
import java.util.*;

public class Controller {
 // An object from java.util to hold Event objects:
 private List eventList = new ArrayList();
 public void addEvent(Event c) { eventList.add(c); }
 public void run() {
 while(eventList.size() > 0) {
 for(int i = 0; i < eventList.size(); i++) {
 Event e = (Event)eventList.get(i);
 if(e.ready()) {
 System.out.println(e);
 e.action();
 eventList.remove(i);
 }
 }
 }

Chapter 8: Interfaces & Inner Classes 385

 }
} ///:~

The run() method loops through eventList, hunting for an Event
object that’s ready() to run. For each one it finds ready(), it prints
information using the object’s toString() method, calls the action()
method, and then removes the Event from the list. Feedback

Note that so far in this design you know nothing about exactly what an
Event does. And this is the crux of the design; how it “separates the
things that change from the things that stay the same.” Or, to use my
term, the “vector of change” is the different actions of the various kinds of
Event objects, and you express different actions by creating different
Event subclasses. Feedback

This is where inner classes come into play. They allow two things:

1. To create the entire implementation of a control framework in a
single class, thereby encapsulating everything that’s unique about
that implementation. Inner classes are used to express the many
different kinds of action() necessary to solve the problem. Feedback

2. Inner classes keep this implementation from becoming awkward,
since you’re able to easily access any of the members in the outer
class. Without this ability the code might become unpleasant
enough that you’d end up seeking an alternative. Feedback

Consider a particular implementation of the control framework designed
to control greenhouse functions7. Each action is entirely different: turning
lights, water, and thermostats on and off, ringing bells, and restarting the
system. But the control framework is designed to easily isolate this
different code. Inner classes allow you to have multiple derived versions
of the same base class, Event, within a single class. For each type of
action you inherit a new Event inner class, and write the control code in
the action() implementation. Feedback

7 For some reason this has always been a pleasing problem for me to solve; it came from
my earlier book C++ Inside & Out, but Java allows a much more elegant solution.

386 Thinking in Java www.BruceEckel.com

As is typical with an application framework, the class
GreenhouseControls is inherited from Controller:

//: c08:GreenhouseControls.java
// This produces a specific application of the
// control system, all in a single class. Inner
// classes allow you to encapsulate different
// functionality for each type of event.
import com.bruceeckel.simpletest.*;
import c08.controller.*;

public class GreenhouseControls extends Controller {
 private static Test monitor = new Test();
 private boolean light = false;
 public class LightOn extends Event {
 public LightOn(long delayTime) { super(delayTime); }
 public void action() {
 // Put hardware control code here to
 // physically turn on the light.
 light = true;
 }
 public String toString() { return "Light is on"; }
 }
 public class LightOff extends Event {
 public LightOff(long delayTime) { super(delayTime); }
 public void action() {
 // Put hardware control code here to
 // physically turn off the light.
 light = false;
 }
 public String toString() { return "Light is off"; }
 }
 private boolean water = false;
 public class WaterOn extends Event {
 public WaterOn(long delayTime) { super(delayTime); }
 public void action() {
 // Put hardware control code here.
 water = true;
 }
 public String toString() {
 return "Greenhouse water is on";
 }
 }
 public class WaterOff extends Event {

Chapter 8: Interfaces & Inner Classes 387

 public WaterOff(long delayTime) { super(delayTime); }
 public void action() {
 // Put hardware control code here.
 water = false;
 }
 public String toString() {
 return "Greenhouse water is off";
 }
 }
 private String thermostat = "Day";
 public class ThermostatNight extends Event {
 public ThermostatNight(long delayTime) {
 super(delayTime);
 }
 public void action() {
 // Put hardware control code here.
 thermostat = "Night";
 }
 public String toString() {
 return "Thermostat on night setting";
 }
 }
 public class ThermostatDay extends Event {
 public ThermostatDay(long delayTime) {
 super(delayTime);
 }
 public void action() {
 // Put hardware control code here.
 thermostat = "Day";
 }
 public String toString() {
 return "Thermostat on day setting";
 }
 }
 // An example of an action() that inserts a
 // new one of itself into the event list:
 public class Bell extends Event {
 public Bell(long delayTime) { super(delayTime); }
 public void action() {
 addEvent(new Bell(delayTime));
 }
 public String toString() { return "Bing!"; }
 }
 public class Restart extends Event {

388 Thinking in Java www.BruceEckel.com

 private Event[] eventList;
 public Restart(long delayTime, Event[] eventList) {
 super(delayTime);
 this.eventList = eventList;
 for(int i = 0; i < eventList.length; i++)
 addEvent(eventList[i]);
 }
 public void action() {
 for(int i = 0; i < eventList.length; i++) {
 eventList[i].start(); // Rerun each event
 addEvent(eventList[i]);
 }
 start(); // Rerun this Event
 addEvent(this);
 }
 public String toString() {
 return "Restarting system";
 }
 }
 public class Terminate extends Event {
 public Terminate(long delayTime) { super(delayTime); }
 public void action() { System.exit(0); }
 public String toString() { return "Terminating"; }
 }
} ///:~

Note that light, water, and thermostat belong to the outer class
GreenhouseControls, and yet the inner classes can access those fields
without qualification or special permission. Also, most of the action()
methods involve some sort of hardware control. Feedback

Most of the Event classes look similar, but Bell and Restart are special.
Bell rings and then adds a new Bell object to the event list, so it will ring
again later. Notice how inner classes almost look like multiple
inheritance: Bell and Restart have all the methods of Event and also
appear to have all the methods of the outer class GreenhouseControls.
Feedback

Restart is given an array of Event objects that it adds to the controller.
Since Restart() is just another Event object, you can also add a
Restart object within Restart.action() so that the system regularly
restarts itself. Feedback

Chapter 8: Interfaces & Inner Classes 389

The following class configures the system by creating a
GreenhouseControls object and adding various kinds of Event
objects. This is an example of the Command design pattern: Feedback

//: c08:GreenhouseController.java
// Configure and execute the greenhouse system.
// {Args: 5000}
import c08.controller.*;

public class GreenhouseController {
 public static void main(String[] args) {
 GreenhouseControls gc = new GreenhouseControls();
 // Instead of hard-wiring, you could parse
 // configuration information from a text file here:
 gc.addEvent(gc.new Bell(900));
 Event[] eventList = {
 gc.new ThermostatNight(0),
 gc.new LightOn(200),
 gc.new LightOff(400),
 gc.new WaterOn(600),
 gc.new WaterOff(800),
 gc.new ThermostatDay(1400)
 };
 gc.addEvent(gc.new Restart(2000, eventList));
 if(args.length == 1)
 gc.addEvent(
 gc.new Terminate(Integer.parseInt(args[0])));
 gc.run();
 }
} ///:~

This class initializes the system, so it adds all the appropriate events. Of
course, a more flexible way to accomplish this is to avoid hard-coding the
events and instead read them from a file. (An exercise in Chapter 12 asks
you to modify this example to do just that.) If you provide a command-
line argument, it uses this to terminate the program after that many
milliseconds (this is used for testing). Feedback

This example should move you toward an appreciation of the value of
inner classes, especially when used within a control framework. However,
in Chapter 14 you’ll see how elegantly inner classes are used to describe
the actions of a graphical user interface. By the time you finish that
chapter you should be fully convinced. Feedback

390 Thinking in Java www.BruceEckel.com

Summary
Interfaces and inner classes are more sophisticated concepts than what
you’ll find in many OOP languages. For example, there’s nothing like
them in C++. Together, they solve the same problem that C++ attempts to
solve with its multiple inheritance (MI) feature. However, MI in C++
turns out to be rather difficult to use, while Java interfaces and inner
classes are, by comparison, much more accessible. Feedback

Although the features themselves are reasonably straightforward, the use
of these features is a design issue, much the same as polymorphism. Over
time, you’ll become better at recognizing situations where you should use
an interface, or an inner class, or both. But at this point in this book you
should at least be comfortable with the syntax and semantics. As you see
these language features in use you’ll eventually internalize them. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Prove that the fields in an interface are implicitly static and
final. Feedback

2. Create an interface containing three methods, in its own
package. Implement the interface in a different package. Feedback

3. Prove that all the methods in an interface are automatically
public. Feedback

4. In c07:Sandwich.java, create an interface called FastFood
(with appropriate methods) and change Sandwich so that it also
implements FastFood. Feedback

5. Create three interfaces, each with two methods. Inherit a new
interface from the three, adding a new method. Create a class by
implementing the new interface and also inheriting from a
concrete class. Now write four methods, each of which takes one of
the four interfaces as an argument. In main(), create an object
of your class and pass it to each of the methods. Feedback

Chapter 8: Interfaces & Inner Classes 391

6. Modify Exercise 5 by creating an abstract class and inheriting
that into the derived class. Feedback

7. Modify Music5.java by adding a Playable interface. Move the
play() declaration from Instrument to Playable. Add
Playable to the derived classes by including it in the
implements list. Change tune() so that it takes a Playable
instead of an Instrument. Feedback

8. Change Exercise 6 in Chapter 7 so that Rodent is an interface.
Feedback

9. In Adventure.java, add an interface called CanClimb,
following the form of the other interfaces. Feedback

10. Write a program that imports and uses Month.java. Feedback

11. Following the example given in Month.java, create an
enumeration of days of the week. Feedback

12. Create an interface with at least one method, in its own package.
Create a class in a separate package. Add a protected inner class
that implements the interface. In a third package, inherit from
your class and, inside a method, return an object of the protected
inner class, upcasting to the interface during the return. Feedback

13. Create an interface with at least one method, and implement that
interface by defining an inner class within a method, which
returns a reference to your interface. Feedback

14. Repeat Exercise 13 but define the inner class within a scope within
a method. Feedback

15. Repeat Exercise 13 using an anonymous inner class. Feedback

16. Modify HorrorShow.java to implement DangerousMonster
and Vampire using anonymous classes.

17. Create a private inner class that implements a public interface.
Write a method that returns a reference to an instance of the
private inner class, upcast to the interface. Show that the inner
class is completely hidden by trying to downcast to it. Feedback

392 Thinking in Java www.BruceEckel.com

18. Create a class with a nondefault constructor (one with arguments)
and no default constructor (no “no-arg” constructor). Create a
second class that has a method which returns a reference to the
first class. Create the object to return by making an anonymous
inner class that inherits from the first class. Feedback

19. Create a class with a private field and a private method. Create
an inner class with a method that modifies the outer class field and
calls the outer class method. In a second outer class method,
create an object of the inner class and call its method, then show
the effect on the outer class object. Feedback

20. Repeat Exercise 19 using an anonymous inner class. Feedback

21. Create a class containing a nested class. In main(), create an
instance of the inner class. Feedback

22. Create an interface containing a nested class. Implement this
interface and create an instance of the nested class. Feedback

23. Create a class containing an inner class that itself contains an
inner class. Repeat this using nested classes. Note the names of
the .class files produced by the compiler. Feedback

24. Create a class with an inner class. In a separate class, make an
instance of the inner class. Feedback

25. Create a class with an inner class that has a nondefault constructor
(one that takes arguments). Create a second class with an inner
class that inherits from the first inner class. Feedback

26. Repair the problem in WindError.java. Feedback

27. Modify Sequence.java by adding a method getRSelector()
that produces a different implementation of the Selector
interface that moves backward through the sequence from the
end to the beginning. Feedback

28. Create an interface U with three methods. Create a class A with a
method that produces a reference to a U by building an
anonymous inner class. Create a second class B that contains an

Chapter 8: Interfaces & Inner Classes 393

array of U. B should have one method that accepts and stores a
reference to a U in the array, a second method that sets a reference
in the array (specified by the method argument) to null and a
third method that moves through the array and calls the methods
in U. In main(), create a group of A objects and a single B. Fill
the B with U references produced by the A objects. Use the B to
call back into all the A objects. Remove some of the U references
from the B. Feedback

29. In GreenhouseControls.java, add Event inner classes that
turn fans on and off. Configure GreenhouseController.java to
use these new Event objects. Feedback

30. Inherit from GreenhouseControls in
GreenhouseControls.java to add Event inner classes that turn
water mist generators on and off. Write a new version of
GreenhouseController.java to use these new Event objects.

31. Show that an inner class has access to the private elements of its
outer class. Determine whether the reverse is true. Feedback

 395

9: Error Handling
with Exceptions

The basic philosophy of Java is that “badly formed code
will not be run.”

The ideal time to catch an error is at compile time, before you even try to
run the program. However, not all errors can be detected at compile time.
The rest of the problems must be handled at run time, through some
formality that allows the originator of the error to pass appropriate
information to a recipient who will know how to handle the difficulty
properly. Feedback

C and other earlier languages often had multiple error-handling schemes,
and these were generally established by convention and not as part of the
programming language. Typically, you returned a special value or set a
flag, and the recipient was supposed to look at the value or the flag and
determine that something was amiss. However, as the years passed, it was
discovered that programmers who use a library tend to think of
themselves as invincible—as in, “Yes, errors might happen to others, but
not in my code.” So, not too surprisingly, they wouldn’t check for the error
conditions (and sometimes the error conditions were too silly to check
for1). If you were thorough enough to check for an error every time you
called a method, your code could turn into an unreadable nightmare.
Because programmers could still coax systems out of these languages they
were resistant to admitting the truth: that this approach to handling
errors was a major limitation to creating large, robust, maintainable
programs. Feedback

The solution is to take the casual nature out of error handling and to
enforce formality. This actually has a long history, since implementations

1 The C programmer can look up the return value of printf() for an example of this.

396 Thinking in Java www.BruceEckel.com

of exception handling go back to operating systems in the 1960s, and even
to BASIC’s “on error goto.” But C++ exception handling was based on
Ada, and Java’s is based primarily on C++ (although it looks more like
that in Object Pascal). Feedback

The word “exception” is meant in the sense of “I take exception to that.”
At the point where the problem occurs you might not know what to do
with it, but you do know that you can’t just continue on merrily; you must
stop and somebody, somewhere, must figure out what to do. But you don’t
have enough information in the current context to fix the problem. So you
hand the problem out to a higher context where someone is qualified to
make the proper decision (much like a chain of command). Feedback

The other rather significant benefit of exceptions is that they clean up
error handling code. Instead of checking for a particular error and dealing
with it at multiple places in your program, you no longer need to check at
the point of the method call (since the exception will guarantee that
someone catches it). And, you need to handle the problem in only one
place, the so-called exception handler. This saves you code, and it
separates the code that describes what you want to do from the code that
is executed when things go awry. In general, reading, writing, and
debugging code becomes much clearer with exceptions than when using
the old way of error handling. Feedback

Because exception handling is the only official way that Java reports
errors, and it is enforced by the Java compiler, there are only so many
examples that can be written in this book without learning about
exception handling. This chapter introduces you to the code you need to
write to properly handle exceptions, and the way you can generate your
own exceptions if one of your methods gets into trouble. Feedback

Basic exceptions
An exceptional condition is a problem that prevents the continuation of
the method or scope that you’re in. It’s important to distinguish an
exceptional condition from a normal problem, in which you have enough
information in the current context to somehow cope with the difficulty.
With an exceptional condition, you cannot continue processing because
you don’t have the information necessary to deal with the problem in the

Chapter 9: Error Handling with Exceptions 397

current context. All you can do is jump out of the current context and
relegate that problem to a higher context. This is what happens when you
throw an exception. Feedback

Division is a simple example. If you’re about to divide by zero, it’s worth
checking for that condition. But what does it mean that the denominator
is zero? Maybe you know, in the context of the problem you’re trying to
solve in that particular method, how to deal with a zero denominator. But
if it’s an unexpected value, you can’t deal with it and so must throw an
exception rather than continuing along that execution path. Feedback

When you throw an exception, several things happen. First, the exception
object is created in the same way that any Java object is created: on the
heap, with new. Then the current path of execution (the one you couldn’t
continue) is stopped and the reference for the exception object is ejected
from the current context. At this point the exception handling mechanism
takes over and begins to look for an appropriate place to continue
executing the program. This appropriate place is the exception handler,
whose job is to recover from the problem so the program can either try
another tack or just continue. Feedback

As a simple example of throwing an exception, consider an object
reference called t. It’s possible that you might be passed a reference that
hasn’t been initialized, so you might want to check before trying to call a
method using that object reference. You can send information about the
error into a larger context by creating an object representing your
information and “throwing” it out of your current context. This is called
throwing an exception. Here’s what it looks like:

if(t == null)
 throw new NullPointerException();

This throws the exception, which allows you—in the current context—to
abdicate responsibility for thinking about the issue further. It’s just
magically handled somewhere else. Precisely where will be shown shortly.
Feedback

Exception arguments
Like any object in Java, you always create exceptions on the heap using
new, which allocates storage and calls a constructor. There are two

398 Thinking in Java www.BruceEckel.com

constructors in all standard exceptions: the first is the default constructor,
and the second takes a string argument so you can place pertinent
information in the exception:

 throw new NullPointerException("t = null");

This string can later be extracted using various methods, as you’ll see.
Feedback

The keyword throw causes a number of relatively magical things to
happen. Typically, you’ll first use new to create an object that represents
the error condition. You give the resulting reference to throw. The object
is, in effect, “returned” from the method, even though that object type
isn’t normally what the method is designed to return. A simplistic way to
think about exception handling is as an alternate return mechanism,
although you get into trouble if you take that analogy too far. You can also
exit from ordinary scopes by throwing an exception. But a value is
returned, and the method or scope exits. Feedback

Any similarity to an ordinary return from a method ends here, because
where you return is someplace completely different from where you
return for a normal method call. (You end up in an appropriate exception
handler that might be far—many levels away on the call stack—from
where the exception was thrown.) Feedback

In addition, you can throw any type of Throwable (the exception root
class) object that you want. Typically, you’ll throw a different class of
exception for each different type of error. The information about the error
is represented both inside the exception object and implicitly in the name
of the exception class, so someone in the bigger context can figure out
what to do with your exception. (Often, the only information is the type of
exception, and nothing meaningful is stored within the exception object.)
Feedback

Catching an exception
If a method throws an exception, it must assume that exception will be
“caught” and dealt with. One of the advantages of exception handling is
that it allows you to concentrate on the problem you’re trying to solve in

Chapter 9: Error Handling with Exceptions 399

one place, and then deal with the errors from that code in another place.
Feedback

To see how an exception is caught, you must first understand the concept
of a guarded region. This is a section of code that might produce
exceptions, and is followed by the code to handle those exceptions. Feedback

The try block
If you’re inside a method and you throw an exception (or another method
you call within this method throws an exception), that method will exit in
the process of throwing. If you don’t want a throw to exit the method,
you can set up a special block within that method to capture the
exception. This is called the try block because you “try” your various
method calls there. The try block is an ordinary scope, preceded by the
keyword try: Feedback

try {
 // Code that might generate exceptions
}

If you were checking for errors carefully in a programming language that
didn’t support exception handling, you’d have to surround every method
call with setup and error testing code, even if you call the same method
several times. With exception handling, you put everything in a try block
and capture all the exceptions in one place. This means your code is much
easier to write and read because the goal of the code is not confused with
the error checking. Feedback

Exception handlers
Of course, the thrown exception must end up someplace. This “place” is
the exception handler, and there’s one for every exception type you want
to catch. Exception handlers immediately follow the try block and are
denoted by the keyword catch:

try {
 // Code that might generate exceptions
} catch(Type1 id1) {
 // Handle exceptions of Type1
} catch(Type2 id2) {
 // Handle exceptions of Type2

400 Thinking in Java www.BruceEckel.com

} catch(Type3 id3) {
 // Handle exceptions of Type3
}

// etc...

Each catch clause (exception handler) is like a little method that takes one
and only one argument of a particular type. The identifier (id1, id2, and
so on) can be used inside the handler, just like a method argument.
Sometimes you never use the identifier because the type of the exception
gives you enough information to deal with the exception, but the identifier
must still be there. Feedback

The handlers must appear directly after the try block. If an exception is
thrown, the exception handling mechanism goes hunting for the first
handler with an argument that matches the type of the exception. Then it
enters that catch clause, and the exception is considered handled. The
search for handlers stops once the catch clause is finished. Only the
matching catch clause executes—it’s not like a switch statement in which
you need a break after each case to prevent the remaining ones from
executing. Feedback

Note that, within the try block, a number of different method calls might
generate the same exception, but you need only one handler. Feedback

Termination vs. resumption
There are two basic models in exception handling theory. In termination
(which is what Java and C++ support), you assume the error is so critical
that there’s no way to get back to where the exception occurred. Whoever
threw the exception decided that there was no way to salvage the
situation, and they don’t want to come back. Feedback

The alternative is called resumption. It means that the exception handler
is expected to do something to rectify the situation, and then the faulting
method is retried, presuming success the second time. If you want
resumption, it means you still hope to continue execution after the
exception is handled. In this case, your exception is more like a method
call—which is how you should set up situations in Java in which you want
resumption-like behavior. (That is, don’t throw an exception; call a
method that fixes the problem.) Alternatively, place your try block inside

Chapter 9: Error Handling with Exceptions 401

a while loop that keeps reentering the try block until the result is
satisfactory. Feedback

Historically, programmers using operating systems that supported
resumptive exception handling eventually ended up using termination-
like code and skipping resumption. So although resumption sounds
attractive at first, it isn’t quite so useful in practice. The dominant reason
is probably the coupling that results: your handler must often be aware of
where the exception is thrown, and contain nongeneric code specific to
the throwing location. This makes the code difficult to write and maintain,
especially for large systems where the exception can be generated from
many points. Feedback

Creating your own
exceptions

You’re not stuck using the existing Java exceptions. The JDK exception
hierarchy can’t foresee all the errors you might want to report, so you can
create your own, to denote a special problem that your library might
encounter. Feedback

To create your own exception class, you must inherit from an existing
exception class, preferably one that is close in meaning to your new
exception (although this is often not possible). The most trivial way to
create a new type of exception is just to let the compiler create the default
constructor for you, so it requires almost no code at all:

//: c09:SimpleExceptionDemo.java
// Inheriting your own exceptions.
import com.bruceeckel.simpletest.*;

class SimpleException extends Exception {}

public class SimpleExceptionDemo {
 private static Test monitor = new Test();
 public void f() throws SimpleException {
 System.out.println("Throw SimpleException from f()");
 throw new SimpleException();
 }

402 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 SimpleExceptionDemo sed = new SimpleExceptionDemo();
 try {
 sed.f();
 } catch(SimpleException e) {
 System.err.println("Caught it!");
 }
 monitor.expect(new String[] {
 "Throw SimpleException from f()",
 "Caught it!"
 });
 }
} ///:~

The compiler creates a default constructor, which automatically (and
invisibly) calls the base-class default constructor. Of course, in this case
you don’t get a SimpleException(String) constructor, but in practice
that isn’t used much. As you’ll see, the most important thing about an
exception is the class name, so most of the time an exception like the one
shown above is satisfactory. Feedback

Here, the result is printed to the console standard error stream by writing
to System.err. This is usually a better place to send error information
than System.out, which may be redirected. If you send output to
System.err it will not be redirected along with System.out so the user
is more likely to notice it. Feedback

You can also create an exception class that has a constructor with a
String argument:

//: c09:FullConstructors.java
import com.bruceeckel.simpletest.*;

class MyException extends Exception {
 public MyException() {}
 public MyException(String msg) { super(msg); }
}

public class FullConstructors {
 private static Test monitor = new Test();
 public static void f() throws MyException {
 System.out.println("Throwing MyException from f()");
 throw new MyException();

Chapter 9: Error Handling with Exceptions 403

 }
 public static void g() throws MyException {
 System.out.println("Throwing MyException from g()");
 throw new MyException("Originated in g()");
 }
 public static void main(String[] args) {
 try {
 f();
 } catch(MyException e) {
 e.printStackTrace();
 }
 try {
 g();
 } catch(MyException e) {
 e.printStackTrace();
 }
 monitor.expect(new String[] {
 "Throwing MyException from f()",
 "MyException",
 "%% \tat FullConstructors.f\\(.*\\)",
 "%% \tat FullConstructors.main\\(.*\\)",
 "Throwing MyException from g()",
 "MyException: Originated in g()",
 "%% \tat FullConstructors.g\\(.*\\)",
 "%% \tat FullConstructors.main\\(.*\\)"
 });
 }
} ///:~

The added code is small—the addition of two constructors that define the
way MyException is created. In the second constructor, the base-class
constructor with a String argument is explicitly invoked by using the
super keyword. Feedback

In the handlers, one of the Throwable (from which Exception is
inherited) methods is called: printStackTrace(). This produces
information about the sequence of methods that were called to get to the
point where the exception happened. By default, the information goes to
the standard error stream, but overloaded versions allow you to send the
results to any other stream as well. Feedback

The process of creating your own exceptions can be taken further. You can
add extra constructors and members:

404 Thinking in Java www.BruceEckel.com

//: c09:ExtraFeatures.java
// Further embellishment of exception classes.
import com.bruceeckel.simpletest.*;

class MyException2 extends Exception {
 private int x;
 public MyException2() {}
 public MyException2(String msg) { super(msg); }
 public MyException2(String msg, int x) {
 super(msg);
 this.x = x;
 }
 public int val() { return x; }
 public String getMessage() {
 return "Detail Message: "+ x + " "+ super.getMessage();
 }
}

public class ExtraFeatures {
 private static Test monitor = new Test();
 public static void f() throws MyException2 {
 System.out.println("Throwing MyException2 from f()");
 throw new MyException2();
 }
 public static void g() throws MyException2 {
 System.out.println("Throwing MyException2 from g()");
 throw new MyException2("Originated in g()");
 }
 public static void h() throws MyException2 {
 System.out.println("Throwing MyException2 from h()");
 throw new MyException2("Originated in h()", 47);
 }
 public static void main(String[] args) {
 try {
 f();
 } catch(MyException2 e) {
 e.printStackTrace();
 }
 try {
 g();
 } catch(MyException2 e) {
 e.printStackTrace();
 }
 try {

Chapter 9: Error Handling with Exceptions 405

 h();
 } catch(MyException2 e) {
 e.printStackTrace();
 System.err.println("e.val() = " + e.val());
 }
 monitor.expect(new String[] {
 "Throwing MyException2 from f()",
 "MyException2: Detail Message: 0 null",
 "%% \tat ExtraFeatures.f\\(.*\\)",
 "%% \tat ExtraFeatures.main\\(.*\\)",
 "Throwing MyException2 from g()",
 "MyException2: Detail Message: 0 Originated in g()",
 "%% \tat ExtraFeatures.g\\(.*\\)",
 "%% \tat ExtraFeatures.main\\(.*\\)",
 "Throwing MyException2 from h()",
 "MyException2: Detail Message: 47 Originated in h()",
 "%% \tat ExtraFeatures.h\\(.*\\)",
 "%% \tat ExtraFeatures.main\\(.*\\)",
 "e.val() = 47"
 });
 }
} ///:~

A field i has been added, along with a method that reads that value and an
additional constructor that sets it. In addition,
Throwable.getMessage() has been overridden to produce a more
interesting detail message. getMessage() is something like toString()
for exception classes. Feedback

Since an exception is just another kind of object, you can continue this
process of embellishing the power of your exception classes. Keep in
mind, however, that all this dressing-up might be lost on the client
programmers using your packages, since they might simply look for the
exception to be thrown and nothing more. (That’s the way most of the
Java library exceptions are used.) Feedback

The exception specification
In Java, you’re encouraged to inform the client programmer, who calls
your method, of the exceptions that might be thrown from your method.
This is civilized, because the caller can know exactly what code to write to
catch all potential exceptions. Of course, if source code is available, the

406 Thinking in Java www.BruceEckel.com

client programmer could hunt through and look for throw statements,
but often a library doesn’t come with sources. To prevent this from being
a problem, Java provides syntax (and forces you to use that syntax) to
allow you to politely tell the client programmer what exceptions this
method throws, so the client programmer can handle them. This is the
exception specification, and it’s part of the method declaration, appearing
after the argument list. Feedback

The exception specification uses an additional keyword, throws, followed
by a list of all the potential exception types. So your method definition
might look like this:

void f() throws TooBig, TooSmall, DivZero { //...

If you say

void f() { // ...

it means that no exceptions are thrown from the method. (Except for the
exceptions inherited from RuntimeException, which can be thrown
anywhere without exception specifications—this will be described later.)
Feedback

You can’t lie about an exception specification—if the code within your
method causes exceptions but your method doesn’t handle them, the
compiler will detect this and tell you that you must either handle the
exception or indicate with an exception specification that it may be
thrown from your method. By enforcing exception specifications from top
to bottom, Java guarantees that a certain level of exception correctness
can be ensured at compile time. Feedback

There is one place you can lie: you can claim to throw an exception that
you really don’t. The compiler takes your word for it, and forces the users
of your method to treat it as if it really does throw that exception. This has
the beneficial effect of being a placeholder for that exception, so you can
actually start throwing the exception later without requiring changes to
existing code. It’s also important for creating abstract base classes and
interfaces whose derived classes or implementations may need to throw
exceptions. Feedback

Chapter 9: Error Handling with Exceptions 407

Exceptions that are checked and enforced at compile time are called
checked exceptions. Feedback

Catching any exception
It is possible to create a handler that catches any type of exception. You do
this by catching the base-class exception type Exception (there are other
types of base exceptions, but Exception is the base that’s pertinent to
virtually all programming activities):

catch(Exception e) {
 System.err.println("Caught an exception");
}

This will catch any exception, so if you use it you’ll want to put it at the
end of your list of handlers to avoid preempting any exception handlers
that might otherwise follow it. Feedback

Since the Exception class is the base of all the exception classes that are
important to the programmer, you don’t get much specific information
about the exception, but you can call the methods that come from its base
type Throwable:

String getMessage()
String getLocalizedMessage()
Gets the detail message, or a message adjusted for this particular locale.
Feedback

String toString()
Returns a short description of the Throwable, including the detail
message if there is one. Feedback

void printStackTrace()
void printStackTrace(PrintStream)
void printStackTrace(java.io.PrintWriter)
Prints the Throwable and the Throwable’s call stack trace. The call stack
shows the sequence of method calls that brought you to the point at which
the exception was thrown. The first version prints to standard error, the
second and third prints to a stream of your choice (in Chapter 12, you’ll
understand why there are two types of streams). Feedback

408 Thinking in Java www.BruceEckel.com

Throwable fillInStackTrace()
Records information within this Throwable object about the current
state of the stack frames. Useful when an application is rethrowing an
error or exception (more about this shortly). Feedback

In addition, you get some other methods from Throwable’s base type
Object (everybody’s base type). The one that might come in handy for
exceptions is getClass(), which returns an object representing the class
of this object. You can in turn query this Class object for its name with
getName(). You can also do more sophisticated things with Class
objects that aren’t necessary in exception handling. Feedback

Here’s an example that shows the use of the basic Exception methods:

//: c09:ExceptionMethods.java
// Demonstrating the Exception Methods.
import com.bruceeckel.simpletest.*;

public class ExceptionMethods {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 try {
 throw new Exception("My Exception");
 } catch(Exception e) {
 System.err.println("Caught Exception");
 System.err.println("getMessage():" + e.getMessage());
 System.err.println("getLocalizedMessage():" +
 e.getLocalizedMessage());
 System.err.println("toString():" + e);
 System.err.println("printStackTrace():");
 e.printStackTrace();
 }
 monitor.expect(new String[] {
 "Caught Exception",
 "getMessage():My Exception",
 "getLocalizedMessage():My Exception",
 "toString():java.lang.Exception: My Exception",
 "printStackTrace():",
 "java.lang.Exception: My Exception",
 "%% \tat ExceptionMethods.main\\(.*\\)"
 });
 }
} ///:~

Chapter 9: Error Handling with Exceptions 409

You can see that the methods provide successively more information—
each is effectively a superset of the previous one. Feedback

Rethrowing an exception
Sometimes you’ll want to rethrow the exception that you just caught,
particularly when you use Exception to catch any exception. Since you
already have the reference to the current exception, you can simply
rethrow that reference:

catch(Exception e) {
 System.err.println("An exception was thrown");
 throw e;
}

Rethrowing an exception causes it to go to the exception handlers in the
next-higher context. Any further catch clauses for the same try block are
still ignored. In addition, everything about the exception object is
preserved, so the handler at the higher context that catches the specific
exception type can extract all the information from that object. Feedback

If you simply rethrow the current exception, the information that you
print about that exception in printStackTrace() will pertain to the
exception’s origin, not the place where you rethrow it. If you want to
install new stack trace information, you can do so by calling
fillInStackTrace(), which returns an exception object that it creates by
stuffing the current stack information into the old exception object. Here’s
what it looks like: Feedback

//: c09:Rethrowing.java
// Demonstrating fillInStackTrace()
import com.bruceeckel.simpletest.*;

public class Rethrowing {
 private static Test monitor = new Test();
 public static void f() throws Exception {
 System.out.println("originating the exception in f()");
 throw new Exception("thrown from f()");
 }
 public static void g() throws Throwable {
 try {
 f();
 } catch(Exception e) {

410 Thinking in Java www.BruceEckel.com

 System.err.println("Inside g(),e.printStackTrace()");
 e.printStackTrace();
 throw e; // 17
 // throw e.fillInStackTrace(); // 18
 }
 }
 public static void
 main(String[] args) throws Throwable {
 try {
 g();
 } catch(Exception e) {
 System.err.println(
 "Caught in main, e.printStackTrace()");
 e.printStackTrace();
 }
 monitor.expect(new String[] {
 "originating the exception in f()",
 "Inside g(),e.printStackTrace()",
 "java.lang.Exception: thrown from f()",
 "\tat Rethrowing.f(Rethrowing.java:9)",
 "\tat Rethrowing.g(Rethrowing.java:12)",
 "\tat Rethrowing.main(Rethrowing.java:23)",
 "Caught in main, e.printStackTrace()",
 "java.lang.Exception: thrown from f()",
 "\tat Rethrowing.f(Rethrowing.java:9)",
 "\tat Rethrowing.g(Rethrowing.java:12)",
 "\tat Rethrowing.main(Rethrowing.java:23)"
 });
 }
} ///:~

The important line numbers are marked as comments. With line 17
uncommented (as shown), the output is as shown, so the exception stack
trace always remembers its true point of origin, no matter how many
times it gets rethrown. Feedback

With line 17 commented and line 18 uncommented, fillInStackTrace()
is used instead, and the result is:

originating the exception in f()
Inside g(),e.printStackTrace()
java.lang.Exception: thrown from f()
 at Rethrowing.f(Rethrowing.java:9)
 at Rethrowing.g(Rethrowing.java:12)

Chapter 9: Error Handling with Exceptions 411

 at Rethrowing.main(Rethrowing.java:23)
Caught in main, e.printStackTrace()
java.lang.Exception: thrown from f()
 at Rethrowing.g(Rethrowing.java:18)
 at Rethrowing.main(Rethrowing.java:23)

(Plus additional complaints from the Test.expect() method.) Because of
fillInStackTrace(), line 18 becomes the new point of origin of the
exception. Feedback

The class Throwable must appear in the exception specification for g()
and main() because fillInStackTrace() produces a reference to a
Throwable object. Since Throwable is a base class of Exception, it’s
possible to get an object that’s a Throwable but not an Exception, so
the handler for Exception in main() might miss it. To make sure
everything is in order, the compiler forces an exception specification for
Throwable. For example, the exception in the following program is not
caught in main(): Feedback

//: c09:ThrowOut.java
// {ThrowsException}
public class ThrowOut {
 public static void
 main(String[] args) throws Throwable {
 try {
 throw new Throwable();
 } catch(Exception e) {
 System.err.println("Caught in main()");
 }
 }
} ///:~

It’s also possible to rethrow a different exception from the one you caught.
If you do this, you get a similar effect as when you use
fillInStackTrace()—the information about the original site of the
exception is lost, and what you’re left with is the information pertaining to
the new throw: Feedback

//: c09:RethrowNew.java
// Rethrow a different object from the one that was caught.
// {ThrowsException}
import com.bruceeckel.simpletest.*;

412 Thinking in Java www.BruceEckel.com

class OneException extends Exception {
 public OneException(String s) { super(s); }
}

class TwoException extends Exception {
 public TwoException(String s) { super(s); }
}

public class RethrowNew {
 private static Test monitor = new Test();
 public static void f() throws OneException {
 System.out.println("originating the exception in f()");
 throw new OneException("thrown from f()");
 }
 public static void
 main(String[] args) throws TwoException {
 try {
 f();
 } catch(OneException e) {
 System.err.println(
 "Caught in main, e.printStackTrace()");
 e.printStackTrace();
 throw new TwoException("from main()");
 }
 monitor.expect(new String[] {
 "originating the exception in f()",
 "Caught in main, e.printStackTrace()",
 "OneException: thrown from f()",
 "\tat RethrowNew.f(RethrowNew.java:18)",
 "\tat RethrowNew.main(RethrowNew.java:22)",
 "Exception in thread \"main\" " +
 "TwoException: from main()",
 "\tat RethrowNew.main(RethrowNew.java:28)"
 });
 }
} ///:~

The final exception knows only that it came from main(), and not from
f(). Feedback

You never have to worry about cleaning up the previous exception, or any
exceptions for that matter. They’re all heap-based objects created with
new, so the garbage collector automatically cleans them all up. Feedback

Chapter 9: Error Handling with Exceptions 413

Exception chaining
Often you want to catch one exception and throw another, but still keep
the information about the originating exception—this is called exception
chaining. Prior to JDK 1.4, programmers had to write their own code to
preserve the original exception information, but now all Throwable
subclasses may take a cause object in their constructor. The cause is
intended to be the originating exception, and by passing it in you
maintain the stack trace back to its origin, even though you’re creating
and throwing a new exception at this point. Feedback

It’s interesting to note that the only Throwable subclasses that provide
the cause argument in the constructor are the three fundamental
exception classes Error (used by the JVM to report system errors),
Exception and RuntimeException. If you want to chain any other
exception types, you do it through the initCause() method rather than
the constructor. Feedback

Here’s an example that allows you to dynamically add fields to a
DynamicFields object at run time:

//: c09:DynamicFields.java
// A Class that dynamically adds fields to itself.
// Demonstrates exception chaining.
// {ThrowsException}
import com.bruceeckel.simpletest.*;

class DynamicFieldsException extends Exception {}

public class DynamicFields {
 private static Test monitor = new Test();
 private Object[][] fields;
 public DynamicFields(int initialSize) {
 fields = new Object[initialSize][2];
 for(int i = 0; i < initialSize; i++)
 fields[i] = new Object[] { null, null };
 }
 public String toString() {
 StringBuffer result = new StringBuffer();
 for(int i = 0; i < fields.length; i++) {
 result.append(fields[i][0]);
 result.append(": ");

414 Thinking in Java www.BruceEckel.com

 result.append(fields[i][1]);
 result.append("\n");
 }
 return result.toString();
 }
 private int hasField(String id) {
 for(int i = 0; i < fields.length; i++)
 if(id.equals(fields[i][0]))
 return i;
 return -1;
 }
 private int
 getFieldNumber(String id) throws NoSuchFieldException {
 int fieldNum = hasField(id);
 if(fieldNum == -1)
 throw new NoSuchFieldException();
 return fieldNum;
 }
 private int makeField(String id) {
 for(int i = 0; i < fields.length; i++)
 if(fields[i][0] == null) {
 fields[i][0] = id;
 return i;
 }
 // No empty fields. Add one:
 Object[][]tmp = new Object[fields.length + 1][2];
 for(int i = 0; i < fields.length; i++)
 tmp[i] = fields[i];
 for(int i = fields.length; i < tmp.length; i++)
 tmp[i] = new Object[] { null, null };
 fields = tmp;
 // Reursive call with expanded fields:
 return makeField(id);
 }
 public Object
 getField(String id) throws NoSuchFieldException {
 return fields[getFieldNumber(id)][1];
 }
 public Object setField(String id, Object value)
 throws DynamicFieldsException {
 if(value == null) {
 // Most exceptions don't have a "cause" constructor.
 // In these cases you must use initCause(),
 // available in all Throwable subclasses.

Chapter 9: Error Handling with Exceptions 415

 DynamicFieldsException dfe =
 new DynamicFieldsException();
 dfe.initCause(new NullPointerException());
 throw dfe;
 }
 int fieldNumber = hasField(id);
 if(fieldNumber == -1)
 fieldNumber = makeField(id);
 Object result = null;
 try {
 result = getField(id); // Get old value
 } catch(NoSuchFieldException e) {
 // Use constructor that takes "cause":
 throw new RuntimeException(e);
 }
 fields[fieldNumber][1] = value;
 return result;
 }
 public static void main(String[] args) {
 DynamicFields df = new DynamicFields(3);
 System.out.println(df);
 try {
 df.setField("d", "A value for d");
 df.setField("number", new Integer(47));
 df.setField("number2", new Integer(48));
 System.out.println(df);
 df.setField("d", "A new value for d");
 df.setField("number3", new Integer(11));
 System.out.println(df);
 System.out.println(df.getField("d"));
 Object field = df.getField("a3"); // Exception
 } catch(NoSuchFieldException e) {
 throw new RuntimeException(e);
 } catch(DynamicFieldsException e) {
 throw new RuntimeException(e);
 }
 monitor.expect(new String[] {
 "null: null",
 "null: null",
 "null: null",
 "",
 "d: A value for d",
 "number: 47",
 "number2: 48",

416 Thinking in Java www.BruceEckel.com

 "",
 "d: A new value for d",
 "number: 47",
 "number2: 48",
 "number3: 11",
 "",
 "A value for d",
 "Exception in thread \"main\" " +
 "java.lang.RuntimeException: " +
 "java.lang.NoSuchFieldException",
 "\tat DynamicFields.main(DynamicFields.java:98)",
 "Caused by: java.lang.NoSuchFieldException",
 "\tat DynamicFields.getFieldNumber(" +
 "DynamicFields.java:37)",
 "\tat DynamicFields.getField(DynamicFields.java:58)",
 "\tat DynamicFields.main(DynamicFields.java:96)"
 });
 }
} ///:~

Each DynamicFields object contains an array of Object-Object pairs.
The first object is the field identifier (a String) and the second is the field
value, which can be any type except an unwrapped primitive. When you
create the object you make an educated guess about how many fields you
need. When you call setField(), it either finds the existing field by that
name or creates a new one, and puts in your value. If it runs out of space,
it adds new space by creating an array of length one longer, and copying
the old elements in. If you try to put in a null value, then it throws a
DynamicFieldsException by creating one and using initCause() to
insert a NullPointerException as the cause. Feedback

As a return value, setField() also fetches out the old value at that field
location using getField(), which could throw a
NoSuchFieldException. If the client programmer calls getField(),
then they are responsible for handling NoSuchFieldException, but if
this exception is thrown inside setField(), it’s a programming error and
so the NoSuchFieldException is converted to a RuntimeException
using the constructor that takes a cause argument. Feedback

Chapter 9: Error Handling with Exceptions 417

Standard Java exceptions
The Java class Throwable describes anything that can be thrown as an
exception. There are two general types of Throwable objects (“types of”
= “inherited from”). Error represents compile-time and system errors
that you don’t worry about catching (except in special cases). Exception
is the basic type that can be thrown from any of the standard Java library
class methods and from your methods and run-time accidents. So the
Java programmer’s base type of interest is usually Exception. Feedback

The best way to get an overview of the exceptions is to browse the HTML
Java documentation that you can download from java.sun.com. It’s worth
doing this once just to get a feel for the various exceptions, but you’ll soon
see that there isn’t anything special between one exception and the next
except for the name. Also, the number of exceptions in Java keeps
expanding; basically it’s pointless to print them in a book. Any new library
you get from a third-party vendor will probably have its own exceptions as
well. The important thing to understand is the concept and what you
should do with the exceptions. Feedback

The basic idea is that the name of the exception represents the problem
that occurred, and the exception name is intended to be relatively self-
explanatory. The exceptions are not all defined in java.lang; some are
created to support other libraries such as util, net, and io, which you can
see from their full class names or what they are inherited from. For
example, all I/O exceptions are inherited from java.io.IOException.
Feedback

The special case of
RuntimeException
The first example in this chapter was

if(t == null)
 throw new NullPointerException();

It can be a bit horrifying to think that you must check for null on every
reference that is passed into a method (since you can’t know if the caller
has passed you a valid reference). Fortunately, you don’t—this is part of

418 Thinking in Java www.BruceEckel.com

the standard run-time checking that Java performs for you, and if any call
is made to a null reference, Java will automatically throw a
NullPointerException. So the above bit of code is always superfluous.
Feedback

There’s a whole group of exception types that are in this category. They’re
always thrown automatically by Java and you don’t need to include them
in your exception specifications. Conveniently enough, they’re all grouped
together by putting them under a single base class called
RuntimeException, which is a perfect example of inheritance: it
establishes a family of types that have some characteristics and behaviors
in common. Also, you never need to write an exception specification
saying that a method might throw a RuntimeException (or any type
inherited from RuntimeException) because they are unchecked
exceptions. Because they indicate bugs, you don’t usually catch a
RuntimeException—it’s dealt with automatically. If you were forced to
check for RuntimeExceptions your code could get too messy. Even
though you don’t typically catch RuntimeExceptions, in your own
packages you might choose to throw some of the RuntimeExceptions.
Feedback

What happens when you don’t catch such exceptions? Since the compiler
doesn’t enforce exception specifications for these, it’s quite plausible that
a RuntimeException could percolate all the way out to your main()
method without being caught. To see what happens in this case, try the
following example:

//: c09:NeverCaught.java
// Ignoring RuntimeExceptions.
// {ThrowsException}
import com.bruceeckel.simpletest.*;

public class NeverCaught {
 private static Test monitor = new Test();
 static void f() {
 throw new RuntimeException("From f()");
 }
 static void g() {
 f();
 }
 public static void main(String[] args) {

Chapter 9: Error Handling with Exceptions 419

 g();
 monitor.expect(new String[] {
 "Exception in thread \"main\" " +
 "java.lang.RuntimeException: From f()",
 " at NeverCaught.f(NeverCaught.java:7)",
 " at NeverCaught.g(NeverCaught.java:10)",
 " at NeverCaught.main(NeverCaught.java:13)"
 });
 }
} ///:~

You can already see that a RuntimeException (or anything inherited
from it) is a special case, since the compiler doesn’t require an exception
specification for these types. Feedback

So the answer is: If a RuntimeException gets all the way out to
main() without being caught, printStackTrace() is called for that
exception as the program exits. Feedback

Keep in mind that you can only ignore exceptions of type
RuntimeException (and subclasses) in your coding, since all other
handling is carefully enforced by the compiler. The reasoning is that a
RuntimeException represents a programming error:

1. An error you cannot anticipate. For example, a null reference that
is outside of your control. Feedback

2. An error that you, as a programmer, should have checked for in
your code (such as ArrayIndexOutOfBoundsException where
you should have paid attention to the size of the array). An
exception that happens from point #1 often becomes an issue for
point #2. Feedback

You can see what a tremendous benefit it is to have exceptions in this
case, since they help in the debugging process. Feedback

It’s interesting to notice that you cannot classify Java exception handling
as a single-purpose tool. Yes, it is designed to handle those pesky run-time
errors that will occur because of forces outside your code’s control, but it’s
also essential for certain types of programming bugs that the compiler
cannot detect. Feedback

420 Thinking in Java www.BruceEckel.com

Performing cleanup
with finally

There’s often some piece of code that you want to execute whether or not
an exception is thrown within a try block. This usually pertains to some
operation other than memory recovery (since that’s taken care of by the
garbage collector). To achieve this effect, you use a finally clause2 at the
end of all the exception handlers. The full picture of an exception
handling section is thus:

try {
 // The guarded region: Dangerous activities
 // that might throw A, B, or C
} catch(A a1) {
 // Handler for situation A
} catch(B b1) {
 // Handler for situation B
} catch(C c1) {
 // Handler for situation C
} finally {
 // Activities that happen every time
}

To demonstrate that the finally clause always runs, try this program:
Feedback

//: c09:FinallyWorks.java
// The finally clause is always executed.
import com.bruceeckel.simpletest.*;

class ThreeException extends Exception {}

public class FinallyWorks {
 private static Test monitor = new Test();
 static int count = 0;
 public static void main(String[] args) {
 while(true) {

2 C++ exception handling does not have the finally clause because it relies on destructors
to accomplish this sort of cleanup.

Chapter 9: Error Handling with Exceptions 421

 try {
 // Post-increment is zero first time:
 if(count++ == 0)
 throw new ThreeException();
 System.out.println("No exception");
 } catch(ThreeException e) {
 System.err.println("ThreeException");
 } finally {
 System.err.println("In finally clause");
 if(count == 2) break; // out of "while"
 }
 }
 monitor.expect(new String[] {
 "ThreeException",
 "In finally clause",
 "No exception",
 "In finally clause"
 });
 }
} ///:~

From the output, you can see that whether or not an exception is thrown,
the finally clause is always executed. Feedback

This program also gives a hint for how you can deal with the fact that
exceptions in Java (like exceptions in C++) do not allow you to resume
back to where the exception was thrown, as discussed earlier. If you place
your try block in a loop, you can establish a condition that must be met
before you continue the program. You can also add a static counter or
some other device to allow the loop to try several different approaches
before giving up. This way you can build a greater level of robustness into
your programs. Feedback

What’s finally for?
In a language without garbage collection and without automatic
destructor calls3, finally is important because it allows the programmer

3 A destructor is a function that’s always called when an object becomes unused. You
always know exactly where and when the destructor gets called. C++ has automatic
destructor calls, and C# (which is much more like Java) has a way that automatic
destruction can occur.

422 Thinking in Java www.BruceEckel.com

to guarantee the release of memory regardless of what happens in the try
block. But Java has garbage collection, so releasing memory is virtually
never a problem. Also, it has no destructors to call. So when do you need
to use finally in Java? Feedback

finally is necessary when you need to set something other than memory
back to its original state. This is some kind of cleanup like an open file or
network connection, something you’ve drawn on the screen, or even a
switch in the outside world, as modeled in the following example:

//: c09:Switch.java
public class Switch {
 private boolean state = false;
 public boolean read() { return state; }
 public void on() { state = true; }
 public void off() { state = false; }
} ///:~

//: c09:OnOffException1.java
public class OnOffException1 extends Exception {} ///:~

//: c09:OnOffException2.java
public class OnOffException2 extends Exception {} ///:~

//: c09:OnOffSwitch.java
// Why use finally?

public class OnOffSwitch {
 private static Switch sw = new Switch();
 public static void f()
 throws OnOffException1,OnOffException2 {}
 public static void main(String[] args) {
 try {
 sw.on();
 // Code that can throw exceptions...
 f();
 sw.off();
 } catch(OnOffException1 e) {
 System.err.println("OnOffException1");
 sw.off();
 } catch(OnOffException2 e) {
 System.err.println("OnOffException2");
 sw.off();
 }
 }

Chapter 9: Error Handling with Exceptions 423

} ///:~

The goal here is to make sure that the switch is off when main() is
completed, so sw.off() is placed at the end of the try block and at the
end of each exception handler. But it’s possible that an exception could be
thrown that isn’t caught here, so sw.off() would be missed. However,
with finally you can place the cleanup code from a try block in just one
place: Feedback

//: c09:WithFinally.java
// Finally Guarantees cleanup.

public class WithFinally {
 static Switch sw = new Switch();
 public static void main(String[] args) {
 try {
 sw.on();
 // Code that can throw exceptions...
 OnOffSwitch.f();
 } catch(OnOffException1 e) {
 System.err.println("OnOffException1");
 } catch(OnOffException2 e) {
 System.err.println("OnOffException2");
 } finally {
 sw.off();
 }
 }
} ///:~

Here the sw.off() has been moved to just one place, where it’s
guaranteed to run no matter what happens. Feedback

Even in cases in which the exception is not caught in the current set of
catch clauses, finally will be executed before the exception handling
mechanism continues its search for a handler at the next higher level:

//: c09:AlwaysFinally.java
// Finally is always executed.
import com.bruceeckel.simpletest.*;

class FourException extends Exception {}

public class AlwaysFinally {
 private static Test monitor = new Test();

424 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 System.out.println("Entering first try block");
 try {
 System.out.println("Entering second try block");
 try {
 throw new FourException();
 } finally {
 System.out.println("finally in 2nd try block");
 }
 } catch(FourException e) {
 System.err.println(
 "Caught FourException in 1st try block");
 } finally {
 System.err.println("finally in 1st try block");
 }
 monitor.expect(new String[] {
 "Entering first try block",
 "Entering second try block",
 "finally in 2nd try block",
 "Caught FourException in 1st try block",
 "finally in 1st try block"
 });
 }
} ///:~

The finally statement will also be executed in situations in which break
and continue statements are involved. Note that, along with the labeled
break and labeled continue, finally eliminates the need for a goto
statement in Java. Feedback

Pitfall: the lost exception
Unfortunately, there’s a flaw in Java’s exception implementation.
Although exceptions are an indication of a crisis in your program and
should never be ignored, it’s possible for an exception to simply be lost.
This happens with a particular configuration using a finally clause:
Feedback

//: c09:LostMessage.java
// How an exception can be lost.
// {ThrowsException}
import com.bruceeckel.simpletest.*;

class VeryImportantException extends Exception {

Chapter 9: Error Handling with Exceptions 425

 public String toString() {
 return "A very important exception!";
 }
}

class HoHumException extends Exception {
 public String toString() {
 return "A trivial exception";
 }
}

public class LostMessage {
 private static Test monitor = new Test();
 void f() throws VeryImportantException {
 throw new VeryImportantException();
 }
 void dispose() throws HoHumException {
 throw new HoHumException();
 }
 public static void main(String[] args) throws Exception {
 LostMessage lm = new LostMessage();
 try {
 lm.f();
 } finally {
 lm.dispose();
 }
 monitor.expect(new String[] {
 "Exception in thread \"main\" A trivial exception",
 "\tat LostMessage.dispose(LostMessage.java:24)",
 "\tat LostMessage.main(LostMessage.java:31)"
 }); }
} ///:~

You can see that there’s no evidence of the VeryImportantException,
which is simply replaced by the HoHumException in the finally
clause. This is a rather serious pitfall, since it means that an exception can
be completely lost, and in a far more subtle and difficult-to-detect fashion
than the example above. In contrast, C++ treats the situation in which a
second exception is thrown before the first one is handled as a dire
programming error. Perhaps a future version of Java will repair this
problem (on the other hand, you will typically wrap any method that
throws an exception, such as dispose(), inside a try-catch clause).
Feedback

426 Thinking in Java www.BruceEckel.com

Exception restrictions
When you override a method, you can throw only the exceptions that have
been specified in the base-class version of the method. This is a useful
restriction, since it means that code that works with the base class will
automatically work with any object derived from the base class (a
fundamental OOP concept, of course), including exceptions. Feedback

This example demonstrates the kinds of restrictions imposed (at compile
time) for exceptions:

//: c09:StormyInning.java
// Overridden methods may throw only the exceptions
// specified in their base-class versions, or exceptions
// derived from the base-class exceptions.

class BaseballException extends Exception {}
class Foul extends BaseballException {}
class Strike extends BaseballException {}

abstract class Inning {
 Inning() throws BaseballException {}
 void event() throws BaseballException {
 // Doesn't actually have to throw anything
 }
 abstract void atBat() throws Strike, Foul;
 void walk() {} // Throws no checked exceptions
}

class StormException extends Exception {}
class RainedOut extends StormException {}
class PopFoul extends Foul {}

interface Storm {
 void event() throws RainedOut;
 void rainHard() throws RainedOut;
}

public class StormyInning extends Inning implements Storm {
 // OK to add new exceptions for constructors, but you
 // must deal with the base constructor exceptions:
 StormyInning() throws RainedOut, BaseballException {}
 StormyInning(String s) throws Foul, BaseballException {}

Chapter 9: Error Handling with Exceptions 427

 // Regular methods must conform to base class:
//! void walk() throws PopFoul {} //Compile error
 // Interface CANNOT add exceptions to existing
 // methods from the base class:
//! public void event() throws RainedOut {}
 // If the method doesn't already exist in the
 // base class, the exception is OK:
 public void rainHard() throws RainedOut {}
 // You can choose to not throw any exceptions,
 // even if the base version does:
 public void event() {}
 // Overridden methods can throw inherited exceptions:
 void atBat() throws PopFoul {}
 public static void main(String[] args) {
 try {
 StormyInning si = new StormyInning();
 si.atBat();
 } catch(PopFoul e) {
 System.err.println("Pop foul");
 } catch(RainedOut e) {
 System.err.println("Rained out");
 } catch(BaseballException e) {
 System.err.println("Generic baseball exception");
 }
 // Strike not thrown in derived version.
 try {
 // What happens if you upcast?
 Inning i = new StormyInning();
 i.atBat();
 // You must catch the exceptions from the
 // base-class version of the method:
 } catch(Strike e) {
 System.err.println("Strike");
 } catch(Foul e) {
 System.err.println("Foul");
 } catch(RainedOut e) {
 System.err.println("Rained out");
 } catch(BaseballException e) {
 System.err.println("Generic baseball exception");
 }
 }
} ///:~

428 Thinking in Java www.BruceEckel.com

In Inning, you can see that both the constructor and the event()
method say they will throw an exception, but they never do. This is legal
because it allows you to force the user to catch any exceptions that might
be added in overridden versions of event(). The same idea holds for
abstract methods, as seen in atBat(). Feedback

The interface Storm is interesting because it contains one method
(event()) that is defined in Inning, and one method that isn’t. Both
methods throw a new type of exception, RainedOut. When
StormyInning extends Inning and implements Storm, you’ll see
that the event() method in Storm cannot change the exception
interface of event() in Inning. Again, this makes sense because
otherwise you’d never know if you were catching the correct thing when
working with the base class. Of course, if a method described in an
interface is not in the base class, such as rainHard(), then there’s no
problem if it throws exceptions. Feedback

The restriction on exceptions does not apply to constructors. You can see
in StormyInning that a constructor can throw anything it wants,
regardless of what the base-class constructor throws. However, since a
base-class constructor must always be called one way or another (here,
the default constructor is called automatically), the derived-class
constructor must declare any base-class constructor exceptions in its
exception specification. Note that a derived-class constructor cannot catch
exceptions thrown by its base-class constructor. Feedback

The reason StormyInning.walk() will not compile is that it throws an
exception, while Inning.walk() does not. If this was allowed, then you
could write code that called Inning.walk() and that didn’t have to
handle any exceptions, but then when you substituted an object of a class
derived from Inning, exceptions would be thrown so your code would
break. By forcing the derived-class methods to conform to the exception
specifications of the base-class methods, substitutability of objects is
maintained. Feedback

The overridden event() method shows that a derived-class version of a
method may choose not to throw any exceptions, even if the base-class
version does. Again, this is fine since it doesn’t break any code that is
written—assuming the base-class version throws exceptions. Similar logic

Chapter 9: Error Handling with Exceptions 429

applies to atBat(), which throws PopFoul, an exception that is derived
from Foul thrown by the base-class version of atBat(). This way, if
someone writes code that works with Inning and calls atBat(), they
must catch the Foul exception. Since PopFoul is derived from Foul, the
exception handler will also catch PopFoul. Feedback

The last point of interest is in main(). Here you can see that if you’re
dealing with exactly a StormyInning object, the compiler forces you to
catch only the exceptions that are specific to that class, but if you upcast to
the base type then the compiler (correctly) forces you to catch the
exceptions for the base type. All these constraints produce much more
robust exception-handling code4. Feedback

It’s useful to realize that although exception specifications are enforced by
the compiler during inheritance, the exception specifications are not part
of the type of a method, which is comprised of only the method name and
argument types. Therefore, you cannot overload methods based on
exception specifications. In addition, just because an exception
specification exists in a base-class version of a method doesn’t mean that
it must exist in the derived-class version of the method. This is quite
different from inheritance rules, where a method in the base class must
also exist in the derived class. Put another way, the “exception
specification interface” for a particular method may narrow during
inheritance and overriding, but it may not widen—this is precisely the
opposite of the rule for the class interface during inheritance. Feedback

Constructors
When writing code with exceptions, it’s particularly important that you
always ask, “If an exception occurs, will this be properly cleaned up?”
Most of the time you’re fairly safe, but in constructors there’s a problem.
The constructor puts the object into a safe starting state, but it might
perform some operation—such as opening a file—that doesn’t get cleaned
up until the user is finished with the object and calls a special cleanup

4 ISO C++ added similar constraints that require derived-method exceptions to be the
same as, or derived from, the exceptions thrown by the base-class method. This is one case
in which C++ is actually able to check exception specifications at compile time.

430 Thinking in Java www.BruceEckel.com

method. If you throw an exception from inside a constructor, these
cleanup behaviors might not occur properly. This means that you must be
especially diligent while you write your constructor. Feedback

Since you’ve just learned about finally, you might think that it is the
correct solution. But it’s not quite that simple, because finally performs
the cleanup code every time, even in the situations in which you don’t
want the cleanup code executed until the cleanup method runs. Thus, if
you do perform cleanup in finally, you must set some kind of flag when
the constructor finishes normally so that you don’t do anything in the
finally block if the flag is set. Because this isn’t particularly elegant (you
are coupling your code from one place to another), it’s best if you try to
avoid performing this kind of cleanup in finally unless you are forced to.
Feedback

In the following example, a class called InputFile is created that opens a
file and allows you to read it one line (converted into a String) at a time.
It uses the classes FileReader and BufferedReader from the Java
standard I/O library that will be discussed in Chapter 12, but which are
simple enough that you probably won’t have any trouble understanding
their basic use:

//: c09:Cleanup.java
// Paying attention to exceptions in constructors.
import com.bruceeckel.simpletest.*;
import java.io.*;

class InputFile {
 private BufferedReader in;
 public InputFile(String fname) throws Exception {
 try {
 in = new BufferedReader(new FileReader(fname));
 // Other code that might throw exceptions
 } catch(FileNotFoundException e) {
 System.err.println("Could not open " + fname);
 // Wasn't open, so don't close it
 throw e;
 } catch(Exception e) {
 // All other exceptions must close it
 try {
 in.close();
 } catch(IOException e2) {

Chapter 9: Error Handling with Exceptions 431

 System.err.println("in.close() unsuccessful");
 }
 throw e; // Rethrow
 } finally {
 // Don't close it here!!!
 }
 }
 public String getLine() {
 String s;
 try {
 s = in.readLine();
 } catch(IOException e) {
 throw new RuntimeException("readLine() failed");
 }
 return s;
 }
 public void dispose() {
 try {
 in.close();
 System.out.println("dispose() successful");
 } catch(IOException e2) {
 throw new RuntimeException("in.close() failed");
 }
 }
}

public class Cleanup {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 try {
 InputFile in = new InputFile("Cleanup.java");
 String s;
 int i = 1;
 while((s = in.getLine()) != null)
 ; // Perform line-by-line processing here...
 in.dispose();
 } catch(Exception e) {
 System.err.println("Caught Exception in main");
 e.printStackTrace();
 }
 monitor.expect(new String[] {
 "dispose() successful"
 });
 }

432 Thinking in Java www.BruceEckel.com

} ///:~

The constructor for InputFile takes a String argument, which is the
name of the file you want to open. Inside a try block, it creates a
FileReader using the file name. A FileReader isn’t particularly useful
until you turn around and use it to create a BufferedReader that you
can actually talk to—notice that one of the benefits of InputFile is that it
combines these two actions. Feedback

If the FileReader constructor is unsuccessful, it throws a
FileNotFoundException, which must be caught separately. This is the
one case in which you don’t want to close the file, because it wasn’t
successfully opened. Any other catch clauses must close the file because it
was opened by the time those catch clauses are entered. (Of course, this is
trickier if more than one method can throw a FileNotFoundException.
In that case, you might want to break things into several try blocks.) The
close() method might throw an exception so it is tried and caught even
though it’s within the block of another catch clause—it’s just another pair
of curly braces to the Java compiler. After performing local operations,
the exception is rethrown, which is appropriate because this constructor
failed, and you wouldn’t want the calling method to assume that the
object had been properly created and was valid. Feedback

In this example, which doesn’t use the aforementioned flagging
technique, the finally clause is definitely not the place to close() the
file, since that would close it every time the constructor completed. Since
we want the file to be open for the useful lifetime of the InputFile object
this would not be appropriate. Feedback

The getLine() method returns a String containing the next line in the
file. It calls readLine(), which can throw an exception, but that
exception is caught so getLine() doesn’t throw any exceptions. One of
the design issues with exceptions is whether to handle an exception
completely at this level, to handle it partially and pass the same exception
(or a different one) on, or whether to simply pass it on. Passing it on,
when appropriate, can certainly simplify coding. In this situation, the
getLine() method converts the exception to a RuntimeException to
indicate a programming error. Feedback

Chapter 9: Error Handling with Exceptions 433

The dispose() method must be called by the user when finished using
the InputFile object. This will release the system resources (such as file
handles) that are used by the BufferedReader and/or FileReader
objects. You don’t want to do this until you’re finished with the InputFile
object, at the point you’re going to let it go. You might think of putting
such functionality into a finalize() method, but as mentioned in Chapter
4 you can’t always be sure that finalize() will be called (even if you can
be sure that it will be called, you don’t know when). This is one of the
downsides to Java: all cleanup—other than memory cleanup—doesn’t
happen automatically, so you must inform the client programmer that
they are responsible, and possibly guarantee that cleanup occurs using
finalize(). Feedback

In Cleanup.java an InputFile is created to open the same source file
that creates the program, the file is read in a line at a time, and line
numbers are added. All exceptions are caught generically in main(),
although you could choose greater granularity. Feedback

One of the benefits of this example is to show you why exceptions are
introduced at this point in the book—there are many libraries (like I/O,
above) that you can’t use without dealing with exceptions. Exceptions are
so integral to programming in Java, especially because the compiler
enforces them, that you can accomplish only so much without knowing
how to work with them. Feedback

Exception matching
When an exception is thrown, the exception handling system looks
through the “nearest” handlers in the order they are written. When it
finds a match, the exception is considered handled, and no further
searching occurs. Feedback

Matching an exception doesn’t require a perfect match between the
exception and its handler. A derived-class object will match a handler for
the base class, as shown in this example:

//: c09:Human.java
// Catching exception hierarchies.
import com.bruceeckel.simpletest.*;

434 Thinking in Java www.BruceEckel.com

class Annoyance extends Exception {}
class Sneeze extends Annoyance {}

public class Human {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 try {
 throw new Sneeze();
 } catch(Sneeze s) {
 System.err.println("Caught Sneeze");
 } catch(Annoyance a) {
 System.err.println("Caught Annoyance");
 }
 monitor.expect(new String[] {
 "Caught Sneeze"
 });
 }
} ///:~

The Sneeze exception will be caught by the first catch clause that it
matches—which is the first one, of course. However, if you remove the
first catch clause, leaving only: Feedback

 try {
 throw new Sneeze();
 } catch(Annoyance a) {
 System.err.println("Caught Annoyance");
 }

The code will still work because it’s catching the base class of Sneeze. Put
another way, catch(Annoyance e) will catch an Annoyance or any
class derived from it. This is useful because if you decide to add more
derived exceptions to a method, then the client programmer’s code will
not need changing as long as the client catches the base class exceptions.
Feedback

If you try to “mask” the derived-class exceptions by putting the base-class
catch clause first, like this:

 try {
 throw new Sneeze();
 } catch(Annoyance a) {
 System.err.println("Caught Annoyance");
 } catch(Sneeze s) {

Chapter 9: Error Handling with Exceptions 435

 System.err.println("Caught Sneeze");
 }

the compiler will give you an error message, since it sees that the Sneeze
catch-clause can never be reached. Feedback

Alternative approaches
An exception-handling system is a trap door that allows your program to
abandon execution of the normal sequence of statements. The trap door is
used when an “exceptional condition” occurs, such that normal execution
is no longer possible or desirable. Exceptions represent conditions that
the current method is unable to handle. The reason exception handling
systems were developed is because the approach of dealing with each
possible error condition produced by each function call was too onerous,
and programmers simply weren’t doing it. As a result, they were ignoring
the errors. It’s worth observing that the issue of programmer convenience
in handling errors was a prime motivation for exceptions in the first place.
Feedback

One of the important guidelines in exception handling is “don’t catch an
exception unless you know what to do with it.” In fact, one of the
important goals of exception handling is to move the error-handling code
away from the point where the errors occur. This allows you to focus on
what you want to accomplish, in one section of your code, and how you’re
going to deal with problems, in a distinct separate section of your code. As
a result, your mainline code is not cluttered with error-handling logic and
it’s much easier to understand and maintain. Feedback

Checked exceptions complicate this scenario a bit, because they force you
to add catch clauses in places where you may not be ready to handle an
error. This results in the “harmful if swallowed” problem:

try {
 // ... to do something useful
} catch(ObligatoryException e) {} // Gulp!

Programmers (myself included, in the first edition of this book) would
just do the simplest thing, and swallow the exception—often
unintentionally, but once you do it the compiler has been satisfied, so

436 Thinking in Java www.BruceEckel.com

unless you remember to revisit and correct the code, the exception will be
lost. The exception happens, but it vanishes completely when swallowed.
Because the compiler forces you to write code right away to handle the
exception, this seems like the easiest solution even though it’s probably
the worst thing you can do. Feedback

Horrified upon realizing that I had done this, in the 2nd edition I “fixed”
the problem by printing the stack trace inside the handler (as is still
seen—appropriately—in a number of examples in this chapter). While this
is useful to trace the behavior of exceptions, it still indicates that you don’t
really know what to do with the exception at that point in your code. In
this section we’ll look at some of the issues and complications arising
from checked exceptions, and options that you have when dealing with
them. Feedback

Note that, despite its seeming simplicity, this is not only a complicated
topic, it is also an issue of some volatility. There are people who are very
strongly on both sides of the fence and who feel like the correct answer
(theirs) is blatantly obvious. I believe the reason for one of these positions
is the distinct benefit seen in going from a poorly-typed language like pre-
ANSI C to a strong, statically typed language (that is, checked at compile-
time) like C++ or Java. When you make that transition (as I did), the
benefits are so dramatic that it can seem like strong static type checking is
always the best answer to most problems. My hope is to relate a little bit
of my own evolution which has brought the absolute value of strong static
type checking into question: clearly, it’s very helpful much of the time, but
there’s a fuzzy line we cross when it begins to get in the way and become a
hindrance (one of my favorite quotes is: “All models are wrong. Some are
useful.”). Feedback

History
Exception handling originated in systems like PL/1 and Mesa, and later
appeared in CLU, Smalltalk, Modula-3, Ada, Eiffel, C++, Python, Java,
and the post-Java languages Ruby and C#. The Java design is similar to
C++, except in places where the Java designers felt that the C++ design
caused problems. Feedback

To provide programmers with a framework that they were more likely to
use for error handling and recovery, exception handling was added to C++

Chapter 9: Error Handling with Exceptions 437

rather late in the standardization process, promoted by Bjarne Stroustrup,
the language’s original author. The model for C++ exceptions came
primarily from CLU. However, other languages existed at that time which
also supported exception handling: Ada, Smalltalk (both of which had
exceptions but no exception specifications) and Modula-3 (which
included both exceptions and specifications). Feedback

In their seminal paper on the subject5, Liskov and Snyder note that a
major defect of languages like C that report errors in a transient fashion is
that:

“…every invocation must be followed by a conditional test to
determine what the outcome was. This requirement leads to
programs that are difficult to read, and probably inefficient as well,
thus discouraging programmers from signaling and handling
exceptions.”

Note that one of the original motivations of exception handling was to
prevent this requirement, but with checked exceptions in Java we
commonly see exactly this kind of code. They go on to say:

“…requiring that the text of a handler be attached to the invocation
that raises the exception would lead to unreadable programs in
which expressions were broken up with handlers.” Feedback

Following the CLU approach when designing C++ exceptions, Stroustrup
stated that the goal was to reduce the amount of code required to recover
from errors. I believe that he was observing that programmers were
typically not writing error handling code in C because the amount and
placement of such code was daunting and distracting. As a result, they
were used to doing it the C way, ignoring errors in code and using
debuggers to track down problems. To use exceptions, these C
programmers had to be convinced to write “additional” code that they
weren’t normally writing. Thus, to draw them into a better way of
handling errors, the amount of code they would need to “add” must not be

5 Barbara Liskov and Alan Snyder: Exception Handling in CLU, IEEE Transactions on
Software Engineering, Vol. SE-5, No. 6, November 1979. This paper is not available on the
Internet, only in print form so you’ll have to contact a library to get a copy.

438 Thinking in Java www.BruceEckel.com

onerous. I think it’s important to keep this goal in mind when looking at
the effects of checked exceptions in Java. Feedback

C++ brought an additional idea over from CLU: the exception
specification, to programmatically state in the method signature what
exceptions may result from calling that method. The exception
specification really has two purposes. It can say “I’m originating this
exception in my code, you handle it.” But it can also mean “I’m ignoring
this exception that can occur as a result of my code, you handle it.” We’ve
been focusing on the “you handle it” part when looking at the mechanics
and syntax of exceptions, but here I’m particularly interested in the fact
that often, we ignore exceptions and that’s what the exception
specification can state. Feedback

In C++ the exception specification is not part of the type information of a
function. The only compile-time checking is to ensure that exception
specifications are used consistently; for example, if a function or method
throws exceptions, then the overloaded or derived versions must also
throw those exceptions. Unlike Java, however, no compile-time checking
occurs to determine whether or not the function or method will actually
throw that exception, or whether the exception specification is complete
(that is, whether it accurately describes all exceptions that may be
thrown). That validation does happen, but only at runtime. If an
exception is thrown which violates the exception specification, the C++
program will call the standard library function unexpected(). Feedback

It is interesting to note that, because of the use of templates, exception
specifications are not used at all in the standard C++ library. Exception
specifications, then, may have a significant impact on the design of Java
generics (Java’s version of C++ templates, expected to appear in JDK 1.5).
Feedback

Perspectives
First, it’s worth noting that Java effectively invented the checked
exception (clearly inspired by C++ exception specifications and the fact
that C++ programmers typically don’t bother with them). It has been an
experiment, which no language since has chosen to duplicate. Feedback

Chapter 9: Error Handling with Exceptions 439

Secondly, checked exceptions appear to be an obvious good thing when
seen in introductory examples and in small programs. It has been
suggested that the subtle difficulties begin to appear when programs start
to get large. Of course, largeness doesn’t happen overnight, it creeps.
Languages that may not be suited for large-scale projects are used for
small projects that grow, and at some point we realize that things have
gone from manageable to hard. This is what I’m suggesting may be the
case with too much type checking; in particular, with checked exceptions.
Feedback

The scale of the program seems to be a significant issue. This is a problem
because most discussions tend to use small programs as demonstrations.
One of the C# designers observed6 that:

“Examination of small programs leads to the conclusion that
requiring exception specifications could both enhance developer
productivity and enhance code quality, but experience with large
software projects suggests a different result—decreased productivity
and little or no increase in code quality.” Feedback

In reference to uncaught exceptions, the CLU creators stated7:

“We felt it was unrealistic to require the programmer to provide
handlers in situations where no meaningful action can be taken.”
Feedback

Stroustrup states8, when explaining why a function declaration with no
specification means that it can throw any exception, rather than no
exceptions:

“However, that would require exception specifications for essentially
every function, would be a significant cause for recompilation, and
would inhibit cooperation with software written in other languages.

6 http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOTNET&P=R32820

7 ibid

8 Bjarne Stroustrup, The C++Programming Language, 3rd edition, Addison-Wesley 1997,
pp 376.

440 Thinking in Java www.BruceEckel.com

This would encourage programmers to subvert the exception-
handling mechanisms and to write spurious code to suppress
exceptions. It would provide a false sense of security to people who
failed to notice the exception.”

This subversion is exactly what we see happening with checked exceptions
in Java. Feedback

Martin Fowler (author of UML Distilled, Refactoring, and Analysis
Patterns) wrote the following to me:

“…on the whole I think that exceptions are good, but Java checked
exceptions are more trouble than they are worth.” Feedback

I now think that Java’s important step was unifying the error reporting
model, so that all errors are reported using exceptions. This wasn’t
happening with C++, because for backwards compatibility with C the old
model of just ignoring errors was still available. But if you have consistent
reporting with exceptions, then the exceptions can be used if desired, and
if not they will propagate out to the highest level (the console or other
container program). When Java changed the C++ model so that
exceptions were the only way to report errors, the extra enforcement of
checked exceptions may have become less necessary. Feedback

In the past, I have been a strong believer that both checked exceptions
and strong static type checking were essential to robust program
development. However, both anectodal and direct experience9 with
languages that are more dynamic than static have lead me to think that
the great benefits actually come from:

1. A unified error-reporting model via exceptions, regardless of
whether the programmer is forced by the compiler to handle them.

2. Type checking, regardless of when it takes place. That is, as long as
proper use of a type is enforced, it doesn’t matter if it happens at
compile time or run time. Feedback

9 Indirectly with Smalltalk via conversations with many experienced programmers in that
language; directly with Python (www.Python.org).

Chapter 9: Error Handling with Exceptions 441

On top of this, there are very significant productivity benefits to reducing
the compile-time constraints upon the programmer. Indeed, reflection
(and eventually, generics) is required to compensate for the over-
constraining nature of strong static typing, as you shall see in the next
chapter and in a number of examples throughout the book. Feedback

I’ve already been told by some that what I say here constitutes blasphemy
and by uttering these words my reputation will be destroyed, civilizations
will fall, and a higher percentage of programming projects will fail. The
belief that the compiler can save your project by pointing out errors at
compile time runs strong, but it’s even more important to realize the
limitation of what the compiler is able to do—in Chapter 15 I emphasize
the value of an automated build process and unit testing, which give you
far more leverage than you get by trying to turn everything into a syntax
error. It’s worth keeping in mind that:

A good programming language is one that helps programmers write
good programs. No programming language will prevent its users
from writing bad programs10. Feedback

In any event, the likelihood of checked exceptions ever being removed
from Java seems dim. It would be too radical of a language change, and
proponents within Sun appear to be quite strong. Sun has a history and
policy of absolute backwards compatibility—to give you a sense of this,
virtually all Sun software runs on all Sun hardware, no matter how old.
However, if you find that some checked exceptions are getting in your
way, or especially if you find yourself being forced to catch exceptions but
you don’t know what to do with them, there are some alternatives. Feedback

Passing exceptions to the console
In simple programs, like many of those in this book, the easiest way to
preserve the exceptions without writing a lot of code is to pass them out of
main(), to the console. For example, if you want to open a file for
reading (something you’ll learn about in detail in chapter 12), you must
open and close a FileInputStream, which throws exceptions. For a

10 (Kees Koster, designer of the CDL language, as quoted by Bertrand Meyer, designer of
the Eiffel Language). http://www.elj.com/elj/v1/n1/bm/right/.

442 Thinking in Java www.BruceEckel.com

simple program, you can do this (you’ll see this approach used in
numerous places throughout this book): Feedback

//: c09:MainException.java
import java.io.*;

public class MainException {
 // Pass all exceptions to the console:
 public static void main(String[] args) throws Exception {
 // Open the file:
 FileInputStream file =
 new FileInputStream("MainException.java");
 // Use the file ...
 // Close the file:
 file.close();
 }
} ///:~

Note that main() is also a method that may have an exception
specification, and here the type of exception is Exception, the root class
of all checked exceptions. By passing it out to the console, you are relieved
from writing try-catch clauses within the body of main().
(Unfortunately, file I/O is significantly more complex than it would
appear to be from this example, so don’t get too excited until after you’ve
read Chapter 12). Feedback

Converting checked to unchecked
exceptions
The above approach is convenient when you’re writing a main(), but not
generally useful. The real problem is when you are writing an ordinary
method body, and you call another method and realize: “I have no idea
what to do with this exception here, but I don’t want to swallow it or print
some banal message.” With JDK 1.4 chained exceptions, a new and simple
solution prevents itself. You simply “wrap” a checked exception inside a
RuntimeException, like this: Feedback

try {
 // ... to do something useful
} catch(IDontKnowWhatToDoWithThisCheckedException e) {
 throw new RuntimeException(e);
}

Chapter 9: Error Handling with Exceptions 443

This seems to be an ideal solution if you want to “turn off” the checked
exception—you don’t swallow it, you don’t have to put it in your method’s
exception specification, but because of exception chaining you don’t lose
any information from the original exception. Feedback

This technique provides the option to ignore the exception and let it
bubble up the call stack without being required to write try-catch clauses
and/or exception specifications. However, you may still catch and handle
the specific exception by using getCause(), as seen here: Feedback

//: c09:TurnOffChecking.java
// "Turning off" Checked exceptions.
import com.bruceeckel.simpletest.*;
import java.io.*;

class WrapCheckedException {
 void throwRuntimeException(int type) {
 try {
 switch(type) {
 case 0: throw new FileNotFoundException();
 case 1: throw new IOException();
 case 2: throw new RuntimeException("Where am I?");
 default: return;
 }
 } catch(Exception e) { // Adapt to unchecked:
 throw new RuntimeException(e);
 }
 }
}

class SomeOtherException extends Exception {}

public class TurnOffChecking {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 WrapCheckedException wce = new WrapCheckedException();
 // You can call f() without a try block, and let
 // RuntimeExceptions go out of the method:
 wce.throwRuntimeException(3);
 // Or you can choose to catch exceptions:
 for(int i = 0; i < 4; i++)
 try {
 if(i < 3)

444 Thinking in Java www.BruceEckel.com

 wce.throwRuntimeException(i);
 else
 throw new SomeOtherException();
 } catch(SomeOtherException e) {
 System.out.println("SomeOtherException: " + e);
 } catch(RuntimeException re) {
 try {
 throw re.getCause();
 } catch(FileNotFoundException e) {
 System.out.println(
 "FileNotFoundException: " + e);
 } catch(IOException e) {
 System.out.println("IOException: " + e);
 } catch(Throwable e) {
 System.out.println("Throwable: " + e);
 }
 }
 monitor.expect(new String[] {
 "FileNotFoundException: " +
 "java.io.FileNotFoundException",
 "IOException: java.io.IOException",
 "Throwable: java.lang.RuntimeException: Where am I?",
 "SomeOtherException: SomeOtherException"
 });
 }
} ///:~

WrapCheckedException.throwRuntimeException() contains
code that generates different types of exceptions. These are caught and
wrapped inside RuntimeException objects, so they become the “cause”
of those exceptions. Feedback

In TurnOffChecking, you can see that it’s possible to call
throwRuntimeException() with no try block because the method
does not throw any checked exceptions. However, when you’re ready to
catch exceptions, you still have the ability to catch any exception you want
by putting your code inside a try block. You start by catching all the the
exceptions you explicitly know might emerge from the code in your try
block—in this case, SomeOtherException is caught first. Lastly, you
catch RuntimeException and throw the result of getCause() (the
wrapped exception). This extracts the originating exceptions, which can
then be handled in their own catch clauses. Feedback

Chapter 9: Error Handling with Exceptions 445

The technique of wrapping a checked exception in a RuntimeException
will be used when appropriate, throughout the rest of this book. Feedback

Exception guidelines
Use exceptions to:

1. Handle problems at the appropriate level. (Avoid catching
exceptions unless you know what to do with them).

2. Fix the problem and call the method that caused the exception
again.

3. Patch things up and continue without retrying the method.

4. Calculate some alternative result instead of what the method was
supposed to produce.

5. Do whatever you can in the current context and rethrow the same
exception to a higher context.

6. Do whatever you can in the current context and throw a different
exception to a higher context.

7. Terminate the program.

8. Simplify. (If your exception scheme makes things more
complicated, then it is painful and annoying to use.)

9. Make your library and program safer. (This is a short-term
investment for debugging, and a long-term investment (for
application robustness.) Feedback

Summary
Improved error recovery is one of the most powerful ways that you can
increase the robustness of your code. Error recovery is a fundamental
concern for every program you write, but it’s especially important in Java,
where one of the primary goals is to create program components for
others to use. To create a robust system, each component must be robust.
By providing a consistent error-reporting model with exceptions, Java

446 Thinking in Java www.BruceEckel.com

allows components to reliably communicate problems to client code.
Feedback

The goals for exception handling in Java are to simplify the creation of
large, reliable programs using less code than currently possible, and with
more confidence that your application doesn’t have an unhandled error.
Exceptions are not terribly difficult to learn, and are one of those features
that provide immediate and significant benefits to your project. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create a class with a main() that throws an object of class
Exception inside a try block. Give the constructor for
Exception a String argument. Catch the exception inside a
catch clause and print the String argument. Add a finally clause
and print a message to prove you were there. Feedback

2. Create your own exception class using the extends keyword.
Write a constructor for this class that takes a String argument
and stores it inside the object with a String reference. Write a
method that prints out the stored String. Create a try-catch
clause to exercise your new exception. Feedback

3. Write a class with a method that throws an exception of the type
created in Exercise 2. Try compiling it without an exception
specification to see what the compiler says. Add the appropriate
exception specification. Try out your class and its exception inside
a try-catch clause. Feedback

4. Define an object reference and initialize it to null. Try to call a
method through this reference. Now wrap the code in a try-catch
clause to catch the exception. Feedback

5. Create a class with two methods, f() and g(). In g(), throw an
exception of a new type that you define. In f(), call g(), catch its
exception and, in the catch clause, throw a different exception (of
a second type that you define). Test your code in main(). Feedback

Chapter 9: Error Handling with Exceptions 447

6. Repeat the previous exercise, but inside the catch clause, wrap
g()’s exception in a RuntimeException.

7. Create three new types of exceptions. Write a class with a method
that throws all three. In main(), call the method but only use a
single catch clause that will catch all three types of exceptions.
Feedback

8. Write code to generate and catch an
ArrayIndexOutOfBoundsException. Feedback

9. Create your own resumption-like behavior using a while loop that
repeats until an exception is no longer thrown. Feedback

10. Create a three-level hierarchy of exceptions. Now create a base-
class A with a method that throws an exception at the base of your
hierarchy. Inherit B from A and override the method so it throws
an exception at level two of your hierarchy. Repeat by inheriting
class C from B. In main(), create a C and upcast it to A, then call
the method. Feedback

11. Demonstrate that a derived-class constructor cannot catch
exceptions thrown by its base-class constructor. Feedback

12. Show that OnOffSwitch.java can fail by throwing a
RuntimeException inside the try block. Feedback

13. Show that WithFinally.java doesn’t fail by throwing a
RuntimeException inside the try block. Feedback

14. Modify Exercise 7 by adding a finally clause. Verify your finally
clause is executed, even if a NullPointerException is thrown.
Feedback

15. Create an example where you use a flag to control whether cleanup
code is called, as described in the second paragraph after the
heading “Constructors.” Feedback

16. Modify StormyInning.java by adding an UmpireArgument
exception type, and methods that throw this exception. Test the
modified hierarchy. Feedback

448 Thinking in Java www.BruceEckel.com

17. Remove the first catch clause in Human.java and verify that the
code still compiles and runs properly. Feedback

18. Add a second level of exception loss to LostMessage.java so that
the HoHumException is itself replaced by a third exception.
Feedback

19. Add an appropriate set of exceptions to
c08:GreenhouseControls.java. Feedback

20. Add an appropriate set of exceptions to c08:Sequence.java.

21. Change the file name string in MainException.java to name a
file that doesn’t exist. Run the program and note the result.

 449

10: Detecting types
The idea of run-time type identification (RTTI) seems
fairly simple at first: it lets you find the exact type of an
object when you only have a reference to the base type.

However, the need for RTTI uncovers a whole plethora of interesting (and
often perplexing) OO design issues, and raises fundamental questions of
how you should structure your programs. Feedback

This chapter looks at the ways that Java allows you to discover
information about objects and classes at run time. This takes two forms:
“traditional” RTTI, which assumes that you have all the types available at
compile time and run time, and the “reflection” mechanism, which allows
you to discover class information solely at run time. The “traditional”
RTTI will be covered first, followed by a discussion of reflection. Feedback

The need for RTTI
Consider the now familiar example of a class hierarchy that uses
polymorphism. The generic type is the base class Shape, and the specific
derived types are Circle, Square, and Triangle:

Shape

draw()

Circle Square Triangle

This is a typical class hierarchy diagram, with the base class at the top and
the derived classes growing downward. The normal goal in object-
oriented programming is for your code to manipulate references to the
base type (Shape, in this case), so if you decide to extend the program by

450 Thinking in Java www.BruceEckel.com

adding a new class (such as Rhomboid, derived from Shape), the bulk
of the code is not affected. In this example, the dynamically bound
method in the Shape interface is draw(), so the intent is for the client
programmer to call draw() through a generic Shape reference. draw()
is overridden in all of the derived classes, and because it is a dynamically
bound method, the proper behavior will occur even though it is called
through a generic Shape reference. That’s polymorphism. Feedback

Thus, you generally create a specific object (Circle, Square, or
Triangle), upcast it to a Shape (forgetting the specific type of the
object), and use that anonymous Shape reference in the rest of the
program. Feedback

As a brief review of polymorphism and upcasting, you might code the
above example as follows:

//: c10:Shapes.java
import com.bruceeckel.simpletest.*;

class Shape {
 void draw() { System.out.println(this + ".draw()"); }
}

class Circle extends Shape {
 public String toString() { return "Circle"; }
}

class Square extends Shape {
 public String toString() { return "Square"; }
}

class Triangle extends Shape {
 public String toString() { return "Triangle"; }
}

public class Shapes {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 // Array of Object, not Shape:
 Object[] shapeList = {
 new Circle(),
 new Square(),
 new Triangle()

Chapter 10: Detecting Types 451

 };
 for(int i = 0; i < shapeList.length; i++)
 ((Shape)shapeList[i]).draw(); // Must cast
 monitor.expect(new String[] {
 "Circle.draw()",
 "Square.draw()",
 "Triangle.draw()"
 });
 }
} ///:~

The base class contains a draw() method that indirectly uses
toString() to print an identifier for the class by passing this to
System.out.println(). If that method sees an object, it automatically
calls the toString() method to produce a String representation. Each of
the derived classes overrides the toString() method (from Object) so
that draw() ends up (polymorphically) printing something different in
each case. Feedback

In main(), specific types of Shape are created and added to an array.
This array is a bit odd because it isn’t an array of Shape (although it
could be), but instead an array of the root class Object. The reason for
this is to start preparing you for Chapter 11, which presents tools called
collections (also called containers), whose sole job is to hold and manage
other objects for you. However, to be generally useful these collections
need to hold anything, therefore they hold Objects. So an array of Object
will demonstrate an important issue that you will encounter in the
Chapter 11 collections. Feedback

In this example, the upcast occurs when the shape is placed in the array of
Objects. Since everything in Java (with the exception of primitives) is an
Object, an array of Objects can also hold Shape objects. But during the
upcast to Object, the fact is lost that the objects are Shapes. To the
array, they are just Objects. Feedback

At the point that you fetch an element out of the array with the index
operator, things get a little busy. Since the array holds only Objects,
indexing naturally produces an Object reference. But we know it’s really
a Shape reference, and we want to send Shape messages to that object.
So a cast to Shape is necessary using the traditional “(Shape)” cast. This
is the most basic form of RTTI, since in Java all casts are checked at run

452 Thinking in Java www.BruceEckel.com

time for correctness. That’s exactly what RTTI means: at run time, the
type of an object is identified. Feedback

In this case, the RTTI cast is only partial: the Object is cast to a Shape,
and not all the way to a Circle, Square, or Triangle. That’s because the
only thing we know at this point is that the array is full of Shapes. At
compile time, this is enforced only by your own self-imposed rules, but at
run time the cast ensures it. Feedback

Now polymorphism takes over and the exact code that’s executed for the
Shape is determined by whether the reference is for a Circle, Square,
or Triangle. And in general, this is how it should be; you want the bulk of
your code to know as little as possible about specific types of objects, and
to just deal with the general representation of a family of objects (in this
case, Shape). As a result, your code will be easier to write, read, and
maintain, and your designs will be easier to implement, understand, and
change. So polymorphism is a general goal in object-oriented
programming. Feedback

But what if you have a special programming problem that’s easiest to
solve if you know the exact type of a generic reference? For example,
suppose you want to allow your users to highlight all the shapes of any
particular type by turning them purple. This way, they can find all the
triangles on the screen by highlighting them. Or perhaps your method
needs to “rotate” a list of shapes, but it makes no sense to rotate a circle so
you’d like to skip only the circle objects. With RTTI, you can ask a Shape
reference the exact type that it’s referring to, and thus select and isolate
special cases. Feedback

The Class object
To understand how RTTI works in Java, you must first know how type
information is represented at run time. This is accomplished through a
special kind of object called the Class object, which contains information
about the class. In fact, the Class object is used to create all of the
“regular” objects of your class. Feedback

There’s a Class object for each class that is part of your program. That is,
each time you write and compile a new class, a single Class object is also
created (and stored, appropriately enough, in an identically named .class

Chapter 10: Detecting Types 453

file). At run time, when you want to make an object of that class, the Java
Virtual Machine (JVM) that’s executing your program first checks to see if
the Class object for that type is loaded. If not, the JVM loads it by finding
the .class file with that name. Thus, a Java program isn’t completely
loaded before it begins, which is different from many traditional
languages. Feedback

Once the Class object for that type is in memory, it is used to create all
objects of that type. If this seems shadowy or if you don’t really believe it,
here’s a demonstration program to prove it: Feedback

//: c10:SweetShop.java
// Examination of the way the class loader works.
import com.bruceeckel.simpletest.*;

class Candy {
 static {
 System.out.println("Loading Candy");
 }
}

class Gum {
 static {
 System.out.println("Loading Gum");
 }
}

class Cookie {
 static {
 System.out.println("Loading Cookie");
 }
}

public class SweetShop {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 System.out.println("inside main");
 new Candy();
 System.out.println("After creating Candy");
 try {
 Class.forName("Gum");
 } catch(ClassNotFoundException e) {
 System.out.println("Couldn't find Gum");

454 Thinking in Java www.BruceEckel.com

 }
 System.out.println("After Class.forName(\"Gum\")");
 new Cookie();
 System.out.println("After creating Cookie");
 monitor.expect(new String[] {
 "inside main",
 "Loading Candy",
 "After creating Candy",
 "Loading Gum",
 "After Class.forName(\"Gum\")",
 "Loading Cookie",
 "After creating Cookie"
 });
 }
} ///:~

Each of the classes Candy, Gum, and Cookie have a static clause that is
executed as the class is loaded for the first time. Information will be
printed to tell you when loading occurs for that class. In main(), the
object creations are spread out between print statements to help detect
the time of loading. Feedback

You can see from the output that each Class object is loaded only when
it’s needed, and the static initialization is performed upon class loading.
Feedback

A particularly interesting line is:

Class.forName("Gum");

This method is a static member of Class (to which all Class objects
belong). A Class object is like any other object and so you can get and
manipulate a reference to it (that’s what the loader does). One of the ways
to get a reference to the Class object is forName(), which takes a
String containing the textual name (watch the spelling and
capitalization!) of the particular class you want a reference for. It returns
a Class reference, which is being ignored here—the call to forName() is
being made for its side effect, which is to load the class Gum if it isn’t
already loaded. In the process of loading, Gum’s static clause is
executed. Feedback

In the above example, if Class.forName() fails because it can’t find the
class you’re trying to load, it will throw a ClassNotFoundException

Chapter 10: Detecting Types 455

(ideally, exception names tell you just about everything you need to know
about the problem). Here, we simply report the problem and move on, but
in more sophisticated programs you might try to fix the problem inside
the exception handler. Feedback

Class literals
Java provides a second way to produce the reference to the Class object,
using a class literal. In the above program this would look like:

Gum.class;

which is not only simpler, but also safer since it’s checked at compile time.
Because it eliminates the method call, it’s also more efficient. Feedback

Class literals work with regular classes as well as interfaces, arrays, and
primitive types. In addition, there’s a standard field called TYPE that
exists for each of the primitive wrapper classes. The TYPE field produces
a reference to the Class object for the associated primitive type, such
that:

… is equivalent to …

boolean.class Boolean.TYPE

char.class Character.TYPE

byte.class Byte.TYPE

short.class Short.TYPE

int.class Integer.TYPE

long.class Long.TYPE

float.class Float.TYPE

double.class Double.TYPE

void.class Void.TYPE

My preference is to use the “.class” versions if you can, since they’re more
consistent with regular classes. Feedback

456 Thinking in Java www.BruceEckel.com

Checking before a cast
So far, you’ve seen RTTI forms including:

1. The classic cast; e.g., “(Shape),” which uses RTTI to make sure the
cast is correct. This will throw a ClassCastException if you’ve
performed a bad cast.

2. The Class object representing the type of your object. The Class
object can be queried for useful run time information. Feedback

In C++, the classic cast “(Shape)” does not perform RTTI. It simply tells
the compiler to treat the object as the new type. In Java, which does
perform the type check, this cast is often called a “type safe downcast.”
The reason for the term “downcast” is the historical arrangement of the
class hierarchy diagram. If casting a Circle to a Shape is an upcast, then
casting a Shape to a Circle is a downcast. However, you know a Circle
is also a Shape, and the compiler freely allows an upcast assignment, but
you don’t know that a Shape is necessarily a Circle, so the compiler
doesn’t allow you to perform a downcast assignment without using an
explicit cast. Feedback

There’s a third form of RTTI in Java. This is the keyword instanceof that
tells you if an object is an instance of a particular type. It returns a
boolean so you use it in the form of a question, like this:

if(x instanceof Dog)
 ((Dog)x).bark();

The above if statement checks to see if the object x belongs to the class
Dog before casting x to a Dog. It’s important to use instanceof before a
downcast when you don’t have other information that tells you the type of
the object; otherwise you’ll end up with a ClassCastException. Feedback

Ordinarily, you might be hunting for one type (triangles to turn purple,
for example), but you can easily tally all of the objects using instanceof.
Suppose you have a family of Pet classes:

//: c10:Pet.java
package c10;
public class Pet {} ///:~

Chapter 10: Detecting Types 457

//: c10:Dog.java
package c10;
public class Dog extends Pet {} ///:~

//: c10:Pug.java
package c10;
public class Pug extends Dog {} ///:~

//: c10:Cat.java
package c10;
public class Cat extends Pet {} ///:~

//: c10:Rodent.java
package c10;
public class Rodent extends Pet {} ///:~

//: c10:Gerbil.java
package c10;
public class Gerbil extends Rodent {} ///:~

//: c10:Hamster.java
package c10;
public class Hamster extends Rodent {} ///:~

In the coming example we want to to keep track of the number of any
particular type of Pet, so we’ll need a class that holds this number in an
int. You can think of it as a modifiable Integer: Feedback

//: c10:Counter.java
package c10;

public class Counter {
 int i;
 public String toString() { return Integer.toString(i); }
} ///:~

Next, we need a tool that holds two things together: an indicator of the
Pet type, and a Counter to hold the pet quantity. That is, we want to be
able to say “how may Gerbil objects are there?” An ordinary array won’t
work here, because you refer to objects in an array by their index number.
What we want to do here is refer to the objects in the array by their Pet
type. We want to associate Counter objects with Pet objects. There is a
standard data structure for doing exactly this kind of thing, called an
associative array. Here is an extremely simple version: Feedback

//: c10:AssociativeArray.java

458 Thinking in Java www.BruceEckel.com

// Associates keys with values.
package c10;
import com.bruceeckel.simpletest.*;

public class AssociativeArray {
 private static Test monitor = new Test();
 private Object[][] pairs;
 private int index;
 public AssociativeArray(int length) {
 pairs = new Object[length][2];
 }
 public void put(Object key, Object value) {
 if(index >= pairs.length)
 throw new ArrayIndexOutOfBoundsException();
 pairs[index++] = new Object[] { key, value };
 }
 public Object get(Object key) {
 for(int i = 0; i < index; i++)
 if(key.equals(pairs[i][0]))
 return pairs[i][1];
 throw new RuntimeException("Failed to find key");
 }
 public String toString() {
 String result = "";
 for(int i = 0; i < index; i++) {
 result += pairs[i][0] + " : " + pairs[i][1];
 if(i < index - 1) result += "\n";
 }
 return result;
 }
 public static void main(String[] args) {
 AssociativeArray map = new AssociativeArray(6);
 map.put("sky", "blue");
 map.put("grass", "green");
 map.put("ocean", "dancing");
 map.put("tree", "tall");
 map.put("earth", "brown");
 map.put("sun", "warm");
 try {
 map.put("extra", "object"); // Past the end
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Too many objects!");
 }
 System.out.println(map);

Chapter 10: Detecting Types 459

 System.out.println(map.get("ocean"));
 monitor.expect(new String[] {
 "Too many objects!",
 "sky : blue",
 "grass : green",
 "ocean : dancing",
 "tree : tall",
 "earth : brown",
 "sun : warm",
 "dancing"
 });
 }
} ///:~

Your first observation might be that this appears to be a general-purpose
tool, so why not put it in a package like com.bruceeckel.tools? Well, it
is indeed a general-purpose tool—so useful, in fact, that java.util
contains a number of associative arrays (which are also called maps) that
do a lot more than this one does, and do it a lot faster. A large portion of
Chapter 11 is devoted to associative arrays, but they are significantly more
complicated and so using this one will keep things simple and at the same
time begin to familiarize you with the value of associative arrays. Feedback

In an associative array, the “indexer” is called a key and the associated
object is called a value. Here, we associate keys and values by putting
them in an array of two-element arrays, which you see here as pairs. This
will just be a fixed-length array which is created in the constructor, so we
need index to make sure we don’t run off the end. When you put() in a
new key-value pair, a new 2-element array is created and inserted at the
next available location in pairs. If index is greater than or equal to the
length of pairs, then an exception is thrown. Feedback

To use the get() method, you pass in the key that you want it to look up,
and it produces the associated value as the result or throws an exception if
it can’t be found. The get() method is using what is possibly the least
efficient approach imaginable to locate the value: starting at the top of the
array and using equals() to compare keys. But the point here is
simplicity, not efficiency, and the real maps in Chapter 11 have solved the
performance problems, so we don’t need to worry about it here. Feedback

460 Thinking in Java www.BruceEckel.com

The essential methods in an associative array are put() and get(), but
for easy display toString() has been overridden to print the key-value
pairs. To show that it works, main() loads an AssociativeArray with
pairs of strings and prints the resulting map, followed by a get() of one of
the values. Feedback

Now that all the tools are in place, we can use instanceof to count Pets:

//: c10:PetCount.java
// Using instanceof.
package c10;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class PetCount {
 private static Test monitor = new Test();
 private static Random rand = new Random();
 static String[] typenames = {
 "Pet", "Dog", "Pug", "Cat",
 "Rodent", "Gerbil", "Hamster",
 };
 // Exceptions thrown to console:
 public static void main(String[] args) {
 Object[] pets = new Object[15];
 try {
 Class[] petTypes = {
 Class.forName("c10.Dog"),
 Class.forName("c10.Pug"),
 Class.forName("c10.Cat"),
 Class.forName("c10.Rodent"),
 Class.forName("c10.Gerbil"),
 Class.forName("c10.Hamster"),
 };
 for(int i = 0; i < pets.length; i++)
 pets[i] = petTypes[rand.nextInt(petTypes.length)]
 .newInstance();
 } catch(InstantiationException e) {
 System.out.println("Cannot instantiate");
 System.exit(1);
 } catch(IllegalAccessException e) {
 System.out.println("Cannot access");
 System.exit(1);
 } catch(ClassNotFoundException e) {
 System.out.println("Cannot find class");

Chapter 10: Detecting Types 461

 System.exit(1);
 }
 AssociativeArray map =
 new AssociativeArray(typenames.length);
 for(int i = 0; i < typenames.length; i++)
 map.put(typenames[i], new Counter());
 for(int i = 0; i < pets.length; i++) {
 Object o = pets[i];
 if(o instanceof Pet)
 ((Counter)map.get("Pet")).i++;
 if(o instanceof Dog)
 ((Counter)map.get("Dog")).i++;
 if(o instanceof Pug)
 ((Counter)map.get("Pug")).i++;
 if(o instanceof Cat)
 ((Counter)map.get("Cat")).i++;
 if(o instanceof Rodent)
 ((Counter)map.get("Rodent")).i++;
 if(o instanceof Gerbil)
 ((Counter)map.get("Gerbil")).i++;
 if(o instanceof Hamster)
 ((Counter)map.get("Hamster")).i++;
 }
 // List each individual pet:
 for(int i = 0; i < pets.length; i++)
 System.out.println(pets[i].getClass());
 // Show the counts:
 System.out.println(map);
 monitor.expect(new Object[] {
 new TestExpression("%% class c10\\."+
 "(Dog|Pug|Cat|Rodent|Gerbil|Hamster)",
 pets.length),
 new TestExpression(
 "%% (Pet|Dog|Pug|Cat|Rodent|Gerbil|Hamster)" +
 " : \\d+", typenames.length)
 });
 }
} ///:~

In main() an array petTypes of Class objects is created using
Class.forName(). Since the Pet objects are in package c09, the
package name must be used when naming the classes. Feedback

462 Thinking in Java www.BruceEckel.com

Next, the pets array is filled by randomly inexing into petTypes and
using the selected Class object to generate a new instance of that class
with Class.newInstance(), which uses the default (no-arg) class
constructor to generate the new object. Feedback

Both forName() and newInstance() can generate exceptions, which
you can see handled in the catch clauses following the try block. Again,
the names of the exceptions are relatively useful explanations of what
went wrong (IllegalAccessException relates to a violation of the Java
security mechanism). Feedback

After creating the AssociativeArray, it is filled with key-value pairs of
pet names and Counter objects. Then each Pet in the randomly-
generated array is tested and counted using instanceof. The array and
AssociativeArray are printed so you can compare the results. Feedback

There’s a rather narrow restriction on instanceof: you can compare it to
a named type only, and not to a Class object. In the example above you
might feel that it’s tedious to write out all of those instanceof
expressions, and you’re right. But there is no way to cleverly automate
instanceof by creating an array of Class objects and comparing it to
those instead (stay tuned—you’ll see an alternative). This isn’t as great a
restriction as you might think, because you’ll eventually understand that
your design is probably flawed if you end up writing a lot of instanceof
expressions. Feedback

Of course this example is contrived—you’d probably put a static field in
each type and increment it in the constructor to keep track of the counts.
You would do something like that if you had control of the source code for
the class and could change it. Since this is not always the case, RTTI can
come in handy. Feedback

Using class literals
It’s interesting to see how the PetCount.java example can be rewritten
using class literals. The result is cleaner in many ways:

//: c10:PetCount2.java
// Using class literals.
package c10;
import com.bruceeckel.simpletest.*;

Chapter 10: Detecting Types 463

import java.util.*;

public class PetCount2 {
 private static Test monitor = new Test();
 private static Random rand = new Random();
 public static void main(String[] args) {
 Object[] pets = new Object[15];
 Class[] petTypes = {
 // Class literals:
 Pet.class,
 Dog.class,
 Pug.class,
 Cat.class,
 Rodent.class,
 Gerbil.class,
 Hamster.class,
 };
 try {
 for(int i = 0; i < pets.length; i++) {
 // Offset by one to eliminate Pet.class:
 int rnd = 1 + rand.nextInt(petTypes.length - 1);
 pets[i] = petTypes[rnd].newInstance();
 }
 } catch(InstantiationException e) {
 System.out.println("Cannot instantiate");
 System.exit(1);
 } catch(IllegalAccessException e) {
 System.out.println("Cannot access");
 System.exit(1);
 }
 AssociativeArray map =
 new AssociativeArray(petTypes.length);
 for(int i = 0; i < petTypes.length; i++)
 map.put(petTypes[i].toString(), new Counter());
 for(int i = 0; i < pets.length; i++) {
 Object o = pets[i];
 if(o instanceof Pet)
 ((Counter)map.get("class c10.Pet")).i++;
 if(o instanceof Dog)
 ((Counter)map.get("class c10.Dog")).i++;
 if(o instanceof Pug)
 ((Counter)map.get("class c10.Pug")).i++;
 if(o instanceof Cat)
 ((Counter)map.get("class c10.Cat")).i++;

464 Thinking in Java www.BruceEckel.com

 if(o instanceof Rodent)
 ((Counter)map.get("class c10.Rodent")).i++;
 if(o instanceof Gerbil)
 ((Counter)map.get("class c10.Gerbil")).i++;
 if(o instanceof Hamster)
 ((Counter)map.get("class c10.Hamster")).i++;
 }
 // List each individual pet:
 for(int i = 0; i < pets.length; i++)
 System.out.println(pets[i].getClass());
 // Show the counts:
 System.out.println(map);
 monitor.expect(new Object[] {
 new TestExpression("%% class c10\\." +
 "(Dog|Pug|Cat|Rodent|Gerbil|Hamster)",
 pets.length),
 new TestExpression("%% class c10\\." +
 "(Pet|Dog|Pug|Cat|Rodent|Gerbil|Hamster) : \\d+",
 petTypes.length)
 });
 }
} ///:~

Here, the typenames array has been removed in favor of getting the type
name strings from the Class object. Notice that the system can
distinguish between classes and interfaces. Feedback

You can also see that the creation of petTypes does not need to be
surrounded by a try block since it’s evaluated at compile time and thus
won’t throw any exceptions, unlike Class.forName(). Feedback

When the Pet objects are dynamically created, you can see that the
random number is restricted so it is between one and petTypes.length
and does not include zero. That’s because zero refers to Pet.class, and
presumably a generic Pet object is not interesting. However, since
Pet.class is part of petTypes the result is that all of the pets get counted.
Feedback

A dynamic instanceof
The Class.isInstance method provides a way to dynamically call the
instanceof operator. Thus, all those tedious instanceof statements can
be removed in the PetCount example:

Chapter 10: Detecting Types 465

//: c10:PetCount3.java
// Using isInstance()
package c10;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class PetCount3 {
 private static Test monitor = new Test();
 private static Random rand = new Random();
 public static void main(String[] args) {
 Object[] pets = new Object[15];
 Class[] petTypes = {
 // Class literals:
 Pet.class,
 Dog.class,
 Pug.class,
 Cat.class,
 Rodent.class,
 Gerbil.class,
 Hamster.class,
 };
 try {
 for(int i = 0; i < pets.length; i++) {
 // Offset by one to eliminate Pet.class:
 int rnd = 1 + rand.nextInt(petTypes.length - 1);
 pets[i] = petTypes[rnd].newInstance();
 }
 } catch(InstantiationException e) {
 System.out.println("Cannot instantiate");
 System.exit(1);
 } catch(IllegalAccessException e) {
 System.out.println("Cannot access");
 System.exit(1);
 }
 AssociativeArray map =
 new AssociativeArray(petTypes.length);
 for(int i = 0; i < petTypes.length; i++)
 map.put(petTypes[i].toString(), new Counter());
 for(int i = 0; i < pets.length; i++) {
 Object o = pets[i];
 // Using Class.isInstance() to eliminate
 // individual instanceof expressions:
 for(int j = 0; j < petTypes.length; ++j)
 if(petTypes[j].isInstance(o))

466 Thinking in Java www.BruceEckel.com

 ((Counter)map.get(petTypes[j].toString())).i++;
 }
 // List each individual pet:
 for(int i = 0; i < pets.length; i++)
 System.out.println(pets[i].getClass());
 // Show the counts:
 System.out.println(map);
 monitor.expect(new Object[] {
 new TestExpression("%% class c10\\." +
 "(Dog|Pug|Cat|Rodent|Gerbil|Hamster)",
 pets.length),
 new TestExpression("%% class c10\\." +
 "(Pet|Dog|Pug|Cat|Rodent|Gerbil|Hamster) : \\d+",
 petTypes.length)
 });
 }
} ///:~

You can see that the isInstance() method has eliminated the need for
the instanceof expressions. In addition, this means that you can add
new types of pets simply by changing the petTypes array; the rest of the
program does not need modification (as it did when using the instanceof
expressions). Feedback

instanceof vs. Class equivalence
When querying for type information, there’s an important difference
between either form of instanceof (that is, instanceof or
isInstance(), which produce equivalent results) and the direct
comparison of the Class objects. Here’s an example that demonstrates
the difference:

//: c10:FamilyVsExactType.java
// The difference between instanceof and class
package c10;
import com.bruceeckel.simpletest.*;

class Base {}
class Derived extends Base {}

public class FamilyVsExactType {
 private static Test monitor = new Test();
 static void test(Object x) {
 System.out.println("Testing x of type " +

Chapter 10: Detecting Types 467

 x.getClass());
 System.out.println("x instanceof Base " +
 (x instanceof Base));
 System.out.println("x instanceof Derived " +
 (x instanceof Derived));
 System.out.println("Base.isInstance(x) " +
 Base.class.isInstance(x));
 System.out.println("Derived.isInstance(x) " +
 Derived.class.isInstance(x));
 System.out.println("x.getClass() == Base.class " +
 (x.getClass() == Base.class));
 System.out.println("x.getClass() == Derived.class " +
 (x.getClass() == Derived.class));
 System.out.println("x.getClass().equals(Base.class)) "+
 (x.getClass().equals(Base.class)));
 System.out.println(
 "x.getClass().equals(Derived.class)) " +
 (x.getClass().equals(Derived.class)));
 }
 public static void main(String[] args) {
 test(new Base());
 test(new Derived());
 monitor.expect(new String[] {
 "Testing x of type class c10.Base",
 "x instanceof Base true",
 "x instanceof Derived false",
 "Base.isInstance(x) true",
 "Derived.isInstance(x) false",
 "x.getClass() == Base.class true",
 "x.getClass() == Derived.class false",
 "x.getClass().equals(Base.class)) true",
 "x.getClass().equals(Derived.class)) false",
 "Testing x of type class c10.Derived",
 "x instanceof Base true",
 "x instanceof Derived true",
 "Base.isInstance(x) true",
 "Derived.isInstance(x) true",
 "x.getClass() == Base.class false",
 "x.getClass() == Derived.class true",
 "x.getClass().equals(Base.class)) false",
 "x.getClass().equals(Derived.class)) true"
 });
 }
} ///:~

468 Thinking in Java www.BruceEckel.com

The test() method performs type checking with its argument using both
forms of instanceof. It then gets the Class reference and uses == and
equals() to test for equality of the Class objects. Reassuringly,
instanceof and isInstance() produce exactly the same results, as do
equals() and ==. But the tests themselves draw different conclusions. In
keeping with the concept of type, instanceof says “are you this class, or a
class derived from this class?” On the other hand, if you compare the
actual Class objects using ==, there is no concern with inheritance—it’s
either the exact type or it isn’t. Feedback

RTTI syntax
Java performs its RTTI using the Class object, even if you’re doing
something like a cast. The class Class also has a number of other ways
you can use RTTI. Feedback

First, you must get a reference to the appropriate Class object. One way
to do this, as shown in the previous example, is to use a string and the
Class.forName() method. This is convenient because you don’t need an
object of that type in order to get the Class reference. However, if you do
already have an object of the type you’re interested in, you can fetch the
Class reference by calling a method that’s part of the Object root class:
getClass(). This returns the Class reference representing the actual
type of the object. Class has many interesting methods, demonstrated in
the following example: Feedback

//: c10:ToyTest.java
// Testing class Class.
import com.bruceeckel.simpletest.*;

interface HasBatteries {}
interface Waterproof {}
interface Shoots {}
class Toy {
 // Comment out the following default constructor
 // to see NoSuchMethodError from (*1*)
 Toy() {}
 Toy(int i) {}
}

class FancyToy extends Toy

Chapter 10: Detecting Types 469

implements HasBatteries, Waterproof, Shoots {
 FancyToy() { super(1); }
}

public class ToyTest {
 private static Test monitor = new Test();
 static void printInfo(Class cc) {
 System.out.println("Class name: " + cc.getName() +
 " is interface? [" + cc.isInterface() + "]");
 }
 public static void main(String[] args) {
 Class c = null;
 try {
 c = Class.forName("FancyToy");
 } catch(ClassNotFoundException e) {
 System.out.println("Can't find FancyToy");
 System.exit(1);
 }
 printInfo(c);
 Class[] faces = c.getInterfaces();
 for(int i = 0; i < faces.length; i++)
 printInfo(faces[i]);
 Class cy = c.getSuperclass();
 Object o = null;
 try {
 // Requires default constructor:
 o = cy.newInstance(); // (*1*)
 } catch(InstantiationException e) {
 System.out.println("Cannot instantiate");
 System.exit(1);
 } catch(IllegalAccessException e) {
 System.out.println("Cannot access");
 System.exit(1);
 }
 printInfo(o.getClass());
 monitor.expect(new String[] {
 "Class name: FancyToy is interface? [false]",
 "Class name: HasBatteries is interface? [true]",
 "Class name: Waterproof is interface? [true]",
 "Class name: Shoots is interface? [true]",
 "Class name: Toy is interface? [false]"
 });
 }
} ///:~

470 Thinking in Java www.BruceEckel.com

You can see that class FancyToy is quite complicated, since it inherits
from Toy and implements the interfaces HasBatteries,
Waterproof, and Shoots. In main(), a Class reference is created and
initialized to the FancyToy Class using forName() inside an
appropriate try block. Feedback

The Class.getInterfaces() method returns an array of Class objects
representing the interfaces that are contained in the Class object of
interest. Feedback

If you have a Class object you can also ask it for its direct base class using
getSuperclass(). This, of course, returns a Class reference that you can
further query. This means that, at run time, you can discover an object’s
entire class hierarchy. Feedback

The newInstance() method of Class can, at first, seem like just another
way to clone() an object. However, you can create a new object with
newInstance() without an existing object, as seen here, because there
is no Toy object—only cy, which is a reference to y’s Class object. This is
a way to implement a “virtual constructor,” which allows you to say “I
don’t know exactly what type you are, but create yourself properly
anyway.” In the example above, cy is just a Class reference with no
further type information known at compile time. And when you create a
new instance, you get back an Object reference. But that reference is
pointing to a Toy object. Of course, before you can send any messages
other than those accepted by Object, you have to investigate it a bit and
do some casting. In addition, the class that’s being created with
newInstance() must have a default constructor. In the next section,
you’ll see how to dynamically create objects of classes using any
constructor, with the Java reflection API (Application Programmer
Interface). Feedback

The final method in the listing is printInfo(), which takes a Class
reference and gets its name with getName(), and finds out whether it’s
an interface with isInterface(). Thus, with the Class object you can
find out just about everything you want to know about an object. Feedback

Chapter 10: Detecting Types 471

Reflection: run time
class information

If you don’t know the precise type of an object, RTTI will tell you.
However, there’s a limitation: the type must be known at compile time in
order for you to be able to detect it using RTTI and do something useful
with the information. Put another way, the compiler must know about all
the classes you’re working with for RTTI. Feedback

This doesn’t seem like that much of a limitation at first, but suppose
you’re given a reference to an object that’s not in your program space. In
fact, the class of the object isn’t even available to your program at compile
time. For example, suppose you get a bunch of bytes from a disk file or
from a network connection and you’re told that those bytes represent a
class. Since the compiler can’t know about this class that shows up later
while it’s compiling the code for your program, how can you possibly use
such a class? Feedback

In a traditional programming environment this seems like a far-fetched
scenario. But as we move into a larger programming world there are
important cases in which this happens. The first is component-based
programming, in which you build projects using Rapid Application
Development (RAD) in an application builder tool. This is a visual
approach to creating a program (which you see on the screen as a “form”)
by moving icons that represent components onto the form. These
components are then configured by setting some of their values at
program time. This design-time configuration requires that any
component be instantiable, that it exposes parts of itself, and that it allows
its values to be read and set. In addition, components that handle GUI
events must expose information about appropriate methods so that the
RAD environment can assist the programmer in overriding these event-
handling methods. Reflection provides the mechanism to detect the
available methods and produce the method names. Java provides a
structure for component-based programming through JavaBeans
(described in Chapter 14). Feedback

472 Thinking in Java www.BruceEckel.com

Another compelling motivation for discovering class information at run
time is to provide the ability to create and execute objects on remote
platforms across a network. This is called Remote Method Invocation
(RMI) and it allows a Java program to have objects distributed across
many machines. This distribution can happen for a number of reasons:
for example, perhaps you’re doing a computation-intensive task and you
want to break it up and put pieces on machines that are idle in order to
speed things up. In some situations you might want to place code that
handles particular types of tasks (e.g., “Business Rules” in a multitier
client/server architecture) on a particular machine, so that machine
becomes a common repository describing those actions and it can be
easily changed to affect everyone in the system. (This is an interesting
development, since the machine exists solely to make software changes
easy!) Along these lines, distributed computing also supports specialized
hardware that might be good at a particular task—matrix inversions, for
example—but inappropriate or too expensive for general purpose
programming. Feedback

The class Class (described previously in this chapter) supports the
concept of reflection, and there’s an additional library,
java.lang.reflect, with classes Field, Method, and Constructor
(each of which implement the Member interface). Objects of these
types are created by the JVM at run time to represent the corresponding
member in the unknown class. You can then use the Constructors to
create new objects, the get() and set() methods to read and modify the
fields associated with Field objects, and the invoke() method to call a
method associated with a Method object. In addition, you can call the
convenience methods getFields(), getMethods(),
getConstructors(), etc., to return arrays of the objects representing the
fields, methods, and constructors. (You can find out more by looking up
the class Class in the JDK documentation.) Thus, the class information
for anonymous objects can be completely determined at run time, and
nothing need be known at compile time. Feedback

It’s important to realize that there’s nothing magic about reflection. When
you’re using reflection to interact with an object of an unknown type, the
JVM will simply look at the object and see that it belongs to a particular
class (just like ordinary RTTI) but then, before it can do anything else, the
Class object must be loaded. Thus, the .class file for that particular type

Chapter 10: Detecting Types 473

must still be available to the JVM, either on the local machine or across
the network. So the true difference between RTTI and reflection is that
with RTTI, the compiler opens and examines the .class file at compile
time. Put another way, you can call all the methods of an object in the
“normal” way. With reflection, the .class file is unavailable at compile
time; it is opened and examined by the run-time environment. Feedback

A class method extractor
You’ll rarely need to use the reflection tools directly; they’re in the
language to support other Java features, such as object serialization
(Chapter 12) and JavaBeans (Chapter 14). However, there are times when
it’s quite useful to be able to dynamically extract information about a
class. One extremely useful tool is a class method extractor. As mentioned
before, looking at a class definition source code or JDK documentation
shows only the methods that are defined or overridden within that class
definition. But there could be dozens more available to you that have
come from base classes. To locate these is both tedious and time
consuming1. Fortunately, reflection provides a way to write a simple tool
that will automatically show you the entire interface. Here’s the way it
works:

//: c10:ShowMethods.java
// Using reflection to show all the methods of a class,
// even if the methods are defined in the base class.
// {Args: ShowMethods}
import java.lang.reflect.*;
import java.util.regex.*;

public class ShowMethods {
 private static final String usage =
 "usage: \n" +
 "ShowMethods pified.class.name\n" +
 "To show all methods in class or: \n" +
 "ShowMethods pified.class.name word\n" +
 "To search for methods involving 'word'";
 private static Pattern p = Pattern.compile("\\w+\\.");

1 Especially in the past. However, Sun has greatly improved its HTML Java documentation
so that it’s easier to see base-class methods.

474 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 if(args.length < 1) {
 System.out.println(usage);
 System.exit(0);
 }
 int lines = 0;
 try {
 Class c = Class.forName(args[0]);
 Method[] m = c.getMethods();
 Constructor[] ctor = c.getConstructors();
 if(args.length == 1) {
 for(int i = 0; i < m.length; i++)
 System.out.println(
 p.matcher(m[i].toString()).replaceAll(""));
 for(int i = 0; i < ctor.length; i++)
 System.out.println(
 p.matcher(ctor[i].toString()).replaceAll(""));
 lines = m.length + ctor.length;
 } else {
 for(int i = 0; i < m.length; i++)
 if(m[i].toString().indexOf(args[1]) != -1) {
 System.out.println(
 p.matcher(m[i].toString()).replaceAll(""));
 lines++;
 }
 for(int i = 0; i < ctor.length; i++)
 if(ctor[i].toString().indexOf(args[1]) != -1) {
 System.out.println(p.matcher(
 ctor[i].toString()).replaceAll(""));
 lines++;
 }
 }
 } catch(ClassNotFoundException e) {
 System.out.println("No such class: " + e);
 }
 }
} ///:~

The Class methods getMethods() and getConstructors() return an
array of Method and array of Constructor, respectively. Each of these
classes has further methods to dissect the names, arguments, and return
values of the methods they represent. But you can also just use
toString(), as is done here, to produce a String with the entire method
signature. The rest of the code extracts the command line information,

Chapter 10: Detecting Types 475

determines if a particular signature matches your target string (using
indexOf()), and strips off the name qualifiers. Feedback

To strip the name qualifiers like “java.lang.” from “java.lang.String,”
Java JDK 1.4 regular expressions offer a powerful and succinct tool that
has been available in some languages for many years. You’ve already seen
simple usage of regular expressions inside the expect() statements of
the com.bruceeckel.simpletest.Test class. In the above example, you
can see the basic coding steps necessary to use regular expressions in your
own programs. Feedback

After importing java.util.regex, you first compile the regular expression
using the static Pattern.compile() method, which produces a Pattern
object using the string argument. In this case, the argument is

"\\w+\\."

To understand this or any other regular expression, look at the JDK
documentation under java.util.regex.Pattern. For this one, you’ll find
that ‘\w’ means “a word character: [a-zA-Z_0-9].” The ‘+’ means “one or
more of the preceeding expression”—so in this case, one or more word
characters—and the ‘\.’ produces a literal period (rather than the period
operator which means “any character” in a regular expression). So this
expression will match any sequence of word characters followed by a
period, which is exactly what we need to strip off the qualifiers. Feedback

After you have a compiled Pattern object, you use it by calling the
matcher() method, passing the string that you want to search. The
matcher() method produces a Matcher object, which has a set of
operations to choose from (you can see all of these in the JDK
documentation for java.util.regex.Matcher). Here, the replaceAll()
method is used to replace all the matches with empty strings—that is, to
delete the matches. Feedback

As a more compact alternative, you can use the regular expressions built
into the String class. For example, the last use of replaceAll() in the
above program could be rewritten from:

p.matcher(ctor[i].toString()).replaceAll("")

to

476 Thinking in Java www.BruceEckel.com

ctor[i].toString().replaceAll("\\w+\\.", "")

without precompiling the regular expression. This form is good for single-
shot uses of regular expressions, but the precompiled form is significantly
more efficient if you need to use the regular expression more than once, as
is the case with this example. Feedback

This example shows reflection in action, since the result produced by
Class.forName() cannot be known at compile time, and therefore all
the method signature information is being extracted at run time. If you
investigate the JDK documentation on reflection, you’ll see that there is
enough support to actually set up and make a method call on an object
that’s totally unknown at compile time (there will be examples of this later
in this book). Although initially this is something you may not think you’ll
ever need, the value of full reflection can be quite surprising. Feedback

An enlightening experiment is to run

java ShowMethods ShowMethods

This produces a listing that includes a public default constructor, even
though you can see from the code that no constructor was defined. The
constructor you see is the one that’s automatically synthesized by the
compiler. If you then make ShowMethods a non-public class (that is,
package access), the synthesized default constructor no longer shows up
in the output. The synthesized default constructor is automatically given
the same access as the class. Feedback

Another interesting experiment is to invoke java ShowMethods
java.lang.String with an extra argument of char, int, String, etc.

This tool can be a real time-saver while you’re programming, when you
can’t remember if a class has a particular method and you don’t want to
go hunting through the index or class hierarchy in the JDK
documentation, or if you don’t know whether that class can do anything
with, for example, Color objects. Feedback

Chapter 14 contains a GUI version of this program (customized to extract
information for Swing components) so you can leave it running while
you’re writing code, to allow quick lookups. Feedback

Chapter 10: Detecting Types 477

Summary
RTTI allows you to discover type information from an anonymous base-
class reference. Thus, it’s ripe for misuse by the novice since it might
make sense before polymorphic method calls do. For many people coming
from a procedural background, it’s difficult not to organize their programs
into sets of switch statements. They could accomplish this with RTTI and
thus lose the important value of polymorphism in code development and
maintenance. The intent of Java is that you use polymorphic method calls
throughout your code, and you use RTTI only when you must. Feedback

However, using polymorphic method calls as they are intended requires
that you have control of the base-class definition because at some point in
the extension of your program you might discover that the base class
doesn’t include the method you need. If the base class comes from a
library or is otherwise controlled by someone else, one solution to the
problem is RTTI: You can inherit a new type and add your extra method.
Elsewhere in the code you can detect your particular type and call that
special method. This doesn’t destroy the polymorphism and extensibility
of the program because adding a new type will not require you to hunt for
switch statements in your program. However, when you add new code in
your main body that requires your new feature, you must use RTTI to
detect your particular type. Feedback

Putting a feature in a base class might mean that, for the benefit of one
particular class, all of the other classes derived from that base require
some meaningless stub of a method. This makes the interface less clear
and annoys those who must override abstract methods when they derive
from that base class. For example, consider a class hierarchy representing
musical instruments. Suppose you wanted to clear the spit valves of all the
appropriate instruments in your orchestra. One option is to put a
clearSpitValve() method in the base class Instrument, but this is
confusing because it implies that Percussion and Electronic
instruments also have spit valves. RTTI provides a much more reasonable
solution in this case because you can place the method in the specific class
(Wind in this case), where it’s appropriate. However, a more appropriate
solution is to put a prepareInstrument() method in the base class, but

478 Thinking in Java www.BruceEckel.com

you might not see this when you’re first solving the problem and could
mistakenly assume that you must use RTTI. Feedback

Finally, RTTI will sometimes solve efficiency problems. Suppose your
code nicely uses polymorphism, but it turns out that one of your objects
reacts to this general purpose code in a horribly inefficient way. You can
pick out that type using RTTI and write case-specific code to improve the
efficiency. Be wary, however, of programming for efficiency too soon. It’s
a seductive trap. It’s best to get the program working first, then decide if
it’s running fast enough, and only then should you attack efficiency
issues—with a profiler (see Chapter 15). Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Add Rhomboid to Shapes.java. Create a Rhomboid, upcast it
to a Shape, then downcast it back to a Rhomboid. Try
downcasting to a Circle and see what happens. Feedback

2. Modify Exercise 1 so that it uses instanceof to check the type
before performing the downcast. Feedback

3. Modify Shapes.java so that it can “highlight” (set a flag) in all
shapes of a particular type. The toString() method for each
derived Shape should indicate whether that Shape is
“highlighted.” Feedback

4. Modify SweetShop.java so that each type of object creation is
controlled by a command-line argument. That is, if your command
line is “java SweetShop Candy,” then only the Candy object is
created. Notice how you can control which Class objects are
loaded via the command-line argument. Feedback

5. Add a new type of Pet to PetCount3.java. Verify that it is
created and counted correctly in main(). Feedback

6. Write a method that takes an object and recursively prints all the
classes in that object’s hierarchy. Feedback

Chapter 10: Detecting Types 479

7. Modify Exercise 6 so that it uses Class. getDeclaredFields() to
also display information about the fields in a class. Feedback

8. In ToyTest.java, comment out Toy’s default constructor and
explain what happens. Feedback

9. Incorporate a new kind of interface into ToyTest.java and
verify that it is detected and displayed properly. Feedback

10. Write a program to determine whether an array of char is a
primitive type or a true object. Feedback

11. Implement clearSpitValve() as described in the summary.
Feedback

12. Implement the rotate(Shape) method described in this chapter,
such that it checks to see if it is rotating a Circle (and, if so,
doesn’t perform the operation). Feedback

13. In ToyTest.java, use reflection to create a Toy object using the
nondefault constructor. Feedback

14. Look up the interface for java.lang.Class in the JDK
documentation from java.sun.com. Write a program that takes the
name of a class as a command-line argument, then uses the Class
methods to dump all the information available for that class. Test
your program with a standard library class and a class you create.
Feedback

15. Modify the regular expression in ShowMethods.java to
additionally strip off the keywords native and final (hint: use the
“or” operator ‘|’).

 481

11: Collections of
Objects

It’s a fairly simple program that has only a fixed quantity
of objects with known lifetimes.

In general, your programs will always be creating new objects based on
some criteria that will be known only at the time the program is running.
You won’t know until runtime the quantity or even the exact type of the
objects you need. To solve the general programming problem, you need to
be able to create any number of objects, anytime, anywhere. So you can’t
rely on creating a named reference to hold each one of your objects:

MyObject myReference;

since you’ll never know how many of these you’ll actually need. Feedback

Most languages provide some way to solve this rather essential problem.
Java has several ways to hold objects (or rather, references to objects).
The built-in type is the array, which has been discussed before. Also, the
Java utilities library has a reasonably complete set of container classes
(also known as collection classes, but because the Java 2 libraries use the
name Collection to refer to a particular subset of the library, I shall also
use the more inclusive term “container”). Containers provide
sophisticated ways to hold and even manipulate your objects. Feedback

Arrays
Most of the necessary introduction to arrays is in the last section of
Chapter 4, which showed how you define and initialize an array. Holding
objects is the focus of this chapter, and an array is just one way to hold
objects. But there are a number of other ways to hold objects, so what
makes an array special? Feedback

482 Thinking in Java www.BruceEckel.com

There are two issues that distinguish arrays from other types of
containers: efficiency and type. The array is the most efficient way that
Java provides to store and randomly access a sequence of object
references. The array is a simple linear sequence, which makes element
access fast, but you pay for this speed: when you create an array object, its
size is fixed and cannot be changed for the lifetime of that array object.
You might suggest creating an array of a particular size and then, if you
run out of space, creating a new one and moving all the references from
the old one to the new one. This is the behavior of the ArrayList class,
which will be studied later in this chapter. However, because of the
overhead of this flexibility, an ArrayList is measurably less efficient than
an array. Feedback

In C++, the vector container class does know the type of objects it holds,
but it has a different drawback when compared with arrays in Java: the
C++ vector’s operator[] doesn’t do bounds checking, so you can run
past the end1. In Java, you get bounds checking regardless of whether
you’re using an array or a container—you’ll get a RuntimeException if
you exceed the bounds. This type of exception indicates a programmer
error, and thus you don’t need to check for it in your code. As an aside, the
reason the C++ vector doesn’t check bounds with every access is speed—
in Java you have the constant performance overhead of bounds checking
all the time for both arrays and containers. Feedback

The other generic container classes that will be studied in this chapter,
List, Set, and Map, all deal with objects as if they had no specific type.
That is, they treat them as type Object, the root class of all classes in
Java. This works fine from one standpoint: you need to build only one
container, and any Java object will go into that container. (Except for
primitives—these can be placed in containers as constants using the Java
primitive wrapper classes, or as changeable values by wrapping in your
own class.) This is the second place where an array is superior to the
generic containers: when you create an array, you create it to hold a
specific type. This means that you get compile-time type checking to
prevent you from putting the wrong type in, or mistaking the type that

1 It’s possible, however, to ask how big the vector is, and the at() method does perform
bounds checking.

Chapter 11: Collections of Objects 483

you’re extracting. Of course, Java will prevent you from sending an
inappropriate message to an object, either at compile time or at run time.
So it’s not much riskier one way or the other, it’s just nicer if the compiler
points it out to you, faster at run time, and there’s less likelihood that the
end user will get surprised by an exception. Feedback

For efficiency and type checking it’s always worth trying to use an array.
However, when you’re trying to solve a more general problem arrays can
be too restrictive. After looking at arrays, the rest of this chapter will be
devoted to the container classes provided by Java. Feedback

Arrays are first-class objects
Regardless of what type of array you’re working with, the array identifier
is actually a reference to a true object that’s created on the heap. This is
the object that holds the references to the other objects, and it can be
created either implicitly, as part of the array initialization syntax, or
explicitly with a new expression. Part of the array object (in fact, the only
field or method you can access) is the read-only length member that tells
you how many elements can be stored in that array object. The ‘[]’ syntax
is the only other access that you have to the array object. Feedback

The following example shows the various ways that an array can be
initialized, and how the array references can be assigned to different array
objects. It also shows that arrays of objects and arrays of primitives are
almost identical in their use. The only difference is that arrays of objects
hold references, while arrays of primitives hold the primitive values
directly. Feedback

//: c11:ArraySize.java
// Initialization & re-assignment of arrays.
import com.bruceeckel.simpletest.*;

class Weeble {} // A small mythical creature

public class ArraySize {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 // Arrays of objects:
 Weeble[] a; // Null reference
 Weeble[] b = new Weeble[5]; // Null references

484 Thinking in Java www.BruceEckel.com

 Weeble[] c = new Weeble[4];
 for(int i = 0; i < c.length; i++)
 c[i] = new Weeble();
 // Aggregate initialization:
 Weeble[] d = {
 new Weeble(), new Weeble(), new Weeble()
 };
 // Dynamic aggregate initialization:
 a = new Weeble[] {
 new Weeble(), new Weeble()
 };
 System.out.println("a.length=" + a.length);
 System.out.println("b.length = " + b.length);
 // The references inside the array are
 // automatically initialized to null:
 for(int i = 0; i < b.length; i++)
 System.out.println("b[" + i + "]=" + b[i]);
 System.out.println("c.length = " + c.length);
 System.out.println("d.length = " + d.length);
 a = d;
 System.out.println("a.length = " + a.length);

 // Arrays of primitives:
 int[] e; // Null reference
 int[] f = new int[5];
 int[] g = new int[4];
 for(int i = 0; i < g.length; i++)
 g[i] = i*i;
 int[] h = { 11, 47, 93 };
 // Compile error: variable e not initialized:
 //!System.out.println("e.length=" + e.length);
 System.out.println("f.length = " + f.length);
 // The primitives inside the array are
 // automatically initialized to zero:
 for(int i = 0; i < f.length; i++)
 System.out.println("f[" + i + "]=" + f[i]);
 System.out.println("g.length = " + g.length);
 System.out.println("h.length = " + h.length);
 e = h;
 System.out.println("e.length = " + e.length);
 e = new int[] { 1, 2 };
 System.out.println("e.length = " + e.length);
 monitor.expect(new String[] {
 "a.length=2",

Chapter 11: Collections of Objects 485

 "b.length = 5",
 "b[0]=null",
 "b[1]=null",
 "b[2]=null",
 "b[3]=null",
 "b[4]=null",
 "c.length = 4",
 "d.length = 3",
 "a.length = 3",
 "f.length = 5",
 "f[0]=0",
 "f[1]=0",
 "f[2]=0",
 "f[3]=0",
 "f[4]=0",
 "g.length = 4",
 "h.length = 3",
 "e.length = 3",
 "e.length = 2"
 });
 }
} ///:~

The array a is initially just a null reference, and the compiler prevents
you from doing anything with this reference until you’ve properly
initialized it. The array b is initialized to point to an array of Weeble
references, but no actual Weeble objects are ever placed in that array.
However, you can still ask what the size of the array is, since b is pointing
to a legitimate object. This brings up a slight drawback: you can’t find out
how many elements are actually in the array, since length tells you only
how many elements can be placed in the array; that is, the size of the
array object, not the number of elements it actually holds. However, when
an array object is created its references are automatically initialized to
null, so you can see whether a particular array slot has an object in it by
checking to see whether it’s null. Similarly, an array of primitives is
automatically initialized to zero for numeric types, (char)0 for char, and
false for boolean. Feedback

Array c shows the creation of the array object followed by the assignment
of Weeble objects to all the slots in the array. Array d shows the
“aggregate initialization” syntax that causes the array object to be created

486 Thinking in Java www.BruceEckel.com

(implicitly with new on the heap, just like for array c) and initialized with
Weeble objects, all in one statement. Feedback

The next array initialization could be thought of as a “dynamic aggregate
initialization.” The aggregate initialization used by d must be used at the
point of d’s definition, but with the second syntax you can create and
initialize an array object anywhere. For example, suppose hide() is a
method that takes an array of Weeble objects. You could call it by saying:

hide(d);

but you can also dynamically create the array you want to pass as the
argument:

hide(new Weeble[] { new Weeble(), new Weeble() });

In many situations this syntax provides a more convenient way to write
code. Feedback

The expression:

a = d;

shows how you can take a reference that’s attached to one array object
and assign it to another array object, just as you can do with any other
type of object reference. Now both a and d are pointing to the same array
object on the heap. Feedback

The second part of ArraySize.java shows that primitive arrays work just
like object arrays except that primitive arrays hold the primitive values
directly. Feedback

Containers of primitives
Container classes can hold only references to Objects. An array, however,
can be created to hold primitives directly, as well as references to
Objects. It is possible to use the “wrapper” classes such as Integer,
Double, etc. to place primitive values inside a container, but the wrapper
classes for primitives can be awkward to use. In addition, it’s much more
efficient to create and access an array of primitives than a container of
wrapped primitives. Feedback

Chapter 11: Collections of Objects 487

Of course, if you’re using a primitive type and you need the flexibility of a
container that automatically expands when more space is needed, the
array won’t work and you’re forced to use a container of wrapped
primitives. You might think that there should be a specialized type of
ArrayList for each of the primitive data types, but Java doesn’t provide
this for you.2 Feedback

Returning an array
Suppose you’re writing a method and you don’t just want to return just
one thing, but a whole bunch of things. Languages like C and C++ make
this difficult because you can’t just return an array, only a pointer to an
array. This introduces problems because it becomes messy to control the
lifetime of the array, which easily leads to memory leaks. Feedback

Java takes a similar approach, but you just “return an array.” Unlike C++,
with Java you never worry about responsibility for that array—it will be
around as long as you need it, and the garbage collector will clean it up
when you’re done. Feedback

As an example, consider returning an array of String:

//: c11:IceCream.java
// Returning arrays from methods.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class IceCream {
 private static Test monitor = new Test();
 private static Random rand = new Random();
 public static final String[] flavors = {
 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",
 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",
 "Praline Cream", "Mud Pie"
 };
 public static String[] flavorSet(int n) {
 String[] results = new String[n];
 boolean[] picked = new boolean[flavors.length];

2 This is one of the places where C++ is distinctly superior to Java, since C++ supports
parameterized types with the template keyword.

488 Thinking in Java www.BruceEckel.com

 for(int i = 0; i < n; i++) {
 int t;
 do
 t = rand.nextInt(flavors.length);
 while(picked[t]);
 results[i] = flavors[t];
 picked[t] = true;
 }
 return results;
 }
 public static void main(String[] args) {
 for(int i = 0; i < 20; i++) {
 System.out.println(
 "flavorSet(" + i + ") = ");
 String[] fl = flavorSet(flavors.length);
 for(int j = 0; j < fl.length; j++)
 System.out.println("\t" + fl[j]);
 monitor.expect(new Object[] {
 "%% flavorSet\\(\\d+\\) = ",
 new TestExpression("%% \\t(Chocolate|Strawberry|"
 + "Vanilla Fudge Swirl|Mint Chip|Mocha Almond "
 + "Fudge|Rum Raisin|Praline Cream|Mud Pie)", 8)
 });
 }
 }
} ///:~

The method flavorSet() creates an array of String called results. The
size of this array is n, determined by the argument you pass into the
method. Then it proceeds to choose flavors randomly from the array
flavors and place them into results, which it finally returns. Returning
an array is just like returning any other object—it’s a reference. It’s not
important that the array was created within flavorSet(), or that the
array was created anyplace else, for that matter. The garbage collector
takes care of cleaning up the array when you’re done with it, and the array
will persist for as long as you need it. Feedback

As an aside, notice that when flavorSet() chooses flavors randomly, it
ensures that a particular choice hasn’t already been selected. This is
performed in a do loop that keeps making random choices until it finds
one that’s not already in the picked array. (Of course, a String
comparison could also have been performed to see if the random choice

Chapter 11: Collections of Objects 489

was already in the results array.) If it’s successful, it adds the entry and
finds the next one (i gets incremented). Feedback

main() prints out 20 full sets of flavors, so you can see that flavorSet()
chooses the flavors in a random order each time. It’s easiest to see this if
you redirect the output into a file. And while you’re looking at the file,
remember, you just want the ice cream, you don’t need it. Feedback

The Arrays class
In java.util, you’ll find the Arrays class, which holds a set of static
methods that perform utility functions for arrays. There are four basic
methods: equals(), to compare two arrays for equality; fill(), to fill an
array with a value; sort(), to sort the array; and binarySearch(), to
find an element in a sorted array. All of these methods are overloaded for
all the primitive types and Objects. In addition, there’s a single asList()
method that takes any array and turns it into a List container—which
you’ll learn about later in this chapter. Feedback

While useful, the Arrays class stops short of being fully functional. For
example, it would be nice to be able to easily print the elements of an
array without having to code a for loop by hand every time. And as you’ll
see, the fill() method only takes a single value and places it in the array,
so if you wanted—for example—to fill an array with randomly generated
numbers, fill() is no help. Feedback

Thus it makes sense to supplement the Arrays class with some additional
utilities, which will be placed in the package com.bruceeckel.util for
convenience. These will print an array of any type, and fill an array with
values or objects that are created by an object called a generator that you
can define. Feedback

Because code needs to be created for each primitive type as well as
Object, there’s a lot of nearly duplicated code3. For example, a

3 The C++ programmer will note how much the code could be collapsed with the use of
default arguments and templates. The Python programmer will note that this entire library
would be largely unnecessary in that language.

490 Thinking in Java www.BruceEckel.com

“generator” interface is required for each type because the return type of
next() must be different in each case: Feedback

//: com:bruceeckel:util:Generator.java
package com.bruceeckel.util;
public interface Generator { Object next(); } ///:~

//: com:bruceeckel:util:BooleanGenerator.java
package com.bruceeckel.util;
public interface BooleanGenerator { boolean next(); } ///:~

//: com:bruceeckel:util:ByteGenerator.java
package com.bruceeckel.util;
public interface ByteGenerator { byte next(); } ///:~

//: com:bruceeckel:util:CharGenerator.java
package com.bruceeckel.util;
public interface CharGenerator { char next(); } ///:~

//: com:bruceeckel:util:ShortGenerator.java
package com.bruceeckel.util;
public interface ShortGenerator { short next(); } ///:~

//: com:bruceeckel:util:IntGenerator.java
package com.bruceeckel.util;
public interface IntGenerator { int next(); } ///:~

//: com:bruceeckel:util:LongGenerator.java
package com.bruceeckel.util;
public interface LongGenerator { long next(); } ///:~

//: com:bruceeckel:util:FloatGenerator.java
package com.bruceeckel.util;
public interface FloatGenerator { float next(); } ///:~

//: com:bruceeckel:util:DoubleGenerator.java
package com.bruceeckel.util;
public interface DoubleGenerator { double next(); } ///:~

Arrays2 contains a variety of toString() methods, overloaded for each
type. These methods allow you to easily print an array. The toString()
code introduces the use of StringBuffer instead of String objects. This
is a nod to efficiency—when you’re assembling a string in a method that
might be called a lot, it’s wiser to use the more efficient StringBuffer
rather than the more convenient String operations. Here, the

Chapter 11: Collections of Objects 491

StringBuffer is created with an initial value, and Strings are appended.
Finally, the result is converted to a String as the return value: Feedback

//: com:bruceeckel:util:Arrays2.java
// A supplement to java.util.Arrays, to provide additional
// useful functionality when working with arrays. Allows
// any array to be converted to a String, and to be filled
// via a user-defined "generator" object.
package com.bruceeckel.util;
import java.util.*;

public class Arrays2 {
 public static String toString(boolean[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(byte[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(char[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(short[] a) {
 StringBuffer result = new StringBuffer("[");

492 Thinking in Java www.BruceEckel.com

 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(int[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(long[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(float[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");
 }
 result.append("]");
 return result.toString();
 }
 public static String toString(double[] a) {
 StringBuffer result = new StringBuffer("[");
 for(int i = 0; i < a.length; i++) {
 result.append(a[i]);
 if(i < a.length - 1)
 result.append(", ");

Chapter 11: Collections of Objects 493

 }
 result.append("]");
 return result.toString();
 }
 // Fill an array using a generator:
 public static void fill(Object[] a, Generator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(Object[] a, int from, int to, Generator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void
 fill(boolean[] a, BooleanGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(boolean[] a, int from, int to,BooleanGenerator gen){
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(byte[] a, ByteGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(byte[] a, int from, int to, ByteGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(char[] a, CharGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(char[] a, int from, int to, CharGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(short[] a, ShortGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(short[] a, int from, int to, ShortGenerator gen) {
 for(int i = from; i < to; i++)

494 Thinking in Java www.BruceEckel.com

 a[i] = gen.next();
 }
 public static void fill(int[] a, IntGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(int[] a, int from, int to, IntGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(long[] a, LongGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(long[] a, int from, int to, LongGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(float[] a, FloatGenerator gen) {
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(float[] a, int from, int to, FloatGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 public static void fill(double[] a, DoubleGenerator gen){
 fill(a, 0, a.length, gen);
 }
 public static void
 fill(double[] a, int from, int to, DoubleGenerator gen) {
 for(int i = from; i < to; i++)
 a[i] = gen.next();
 }
 private static Random r = new Random();
 public static class
 RandBooleanGenerator implements BooleanGenerator {
 public boolean next() { return r.nextBoolean(); }
 }
 public static class
 RandByteGenerator implements ByteGenerator {
 public byte next() { return (byte)r.nextInt(); }
 }
 private static String ssource =

Chapter 11: Collections of Objects 495

 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 private static char[] src = ssource.toCharArray();
 public static class
 RandCharGenerator implements CharGenerator {
 public char next() {
 return src[r.nextInt(src.length)];
 }
 }
 public static class
 RandStringGenerator implements Generator {
 private int len;
 private RandCharGenerator cg = new RandCharGenerator();
 public RandStringGenerator(int length) {
 len = length;
 }
 public Object next() {
 char[] buf = new char[len];
 for(int i = 0; i < len; i++)
 buf[i] = cg.next();
 return new String(buf);
 }
 }
 public static class
 RandShortGenerator implements ShortGenerator {
 public short next() { return (short)r.nextInt(); }
 }
 public static class
 RandIntGenerator implements IntGenerator {
 private int mod = 10000;
 public RandIntGenerator() {}
 public RandIntGenerator(int modulo) { mod = modulo; }
 public int next() { return r.nextInt(mod); }
 }
 public static class
 RandLongGenerator implements LongGenerator {
 public long next() { return r.nextLong(); }
 }
 public static class
 RandFloatGenerator implements FloatGenerator {
 public float next() { return r.nextFloat(); }
 }
 public static class
 RandDoubleGenerator implements DoubleGenerator {
 public double next() {return r.nextDouble();}

496 Thinking in Java www.BruceEckel.com

 }
} ///:~

To fill an array of elements using a generator, the fill() method takes a
reference to an appropriate generator interface, which has a next()
method that will somehow produce an object of the right type (depending
on how the interface is implemented). The fill() method simply calls
next() until the desired range has been filled. Now you can create any
generator by implementing the appropriate interface, and use your
generator with fill(). Feedback

Random data generators are useful for testing, so a set of inner classes is
created to implement all the primitive generator interfaces, as well as a
String generator to represent Object. You can see that
RandStringGenerator uses RandCharGenerator to fill an array of
characters, which is then turned into a String. The size of the array is
determined by the constructor argument. Feedback

To generate numbers that aren’t too large, RandIntGenerator defaults
to a modulus of 10,000, but the overloaded constructor allows you to
choose a smaller value. Feedback

Here’s a program to test the library, and to demonstrate how it is used:

//: c11:TestArrays2.java
// Test and demonstrate Arrays2 utilities.
import com.bruceeckel.util.*;

public class TestArrays2 {
 public static void main(String[] args) {
 int size = 6;
 // Or get the size from the command line:
 if(args.length != 0) {
 size = Integer.parseInt(args[0]);
 if(size < 3) {
 System.out.println("arg must be >= 3");
 System.exit(1);
 }
 }
 boolean[] a1 = new boolean[size];
 byte[] a2 = new byte[size];
 char[] a3 = new char[size];
 short[] a4 = new short[size];

Chapter 11: Collections of Objects 497

 int[] a5 = new int[size];
 long[] a6 = new long[size];
 float[] a7 = new float[size];
 double[] a8 = new double[size];
 Arrays2.fill(a1, new Arrays2.RandBooleanGenerator());
 System.out.println("a1 = " + Arrays2.toString(a1));
 Arrays2.fill(a2, new Arrays2.RandByteGenerator());
 System.out.println("a2 = " + Arrays2.toString(a2));
 Arrays2.fill(a3, new Arrays2.RandCharGenerator());
 System.out.println("a3 = " + Arrays2.toString(a3));
 Arrays2.fill(a4, new Arrays2.RandShortGenerator());
 System.out.println("a4 = " + Arrays2.toString(a4));
 Arrays2.fill(a5, new Arrays2.RandIntGenerator());
 System.out.println("a5 = " + Arrays2.toString(a5));
 Arrays2.fill(a6, new Arrays2.RandLongGenerator());
 System.out.println("a6 = " + Arrays2.toString(a6));
 Arrays2.fill(a7, new Arrays2.RandFloatGenerator());
 System.out.println("a7 = " + Arrays2.toString(a7));
 Arrays2.fill(a8, new Arrays2.RandDoubleGenerator());
 System.out.println("a8 = " + Arrays2.toString(a8));
 }
} ///:~

The size parameter has a default value, but you can also set it from the
command line. Feedback

Filling an array
The Java standard library Arrays also has a fill() method, but that is
rather trivial—it only duplicates a single value into each location, or in the
case of objects, copies the same reference into each location. Using
Arrays2.toString(), the Arrays.fill() methods can be easily
demonstrated:

//: c11:FillingArrays.java
// Using Arrays.fill()
import com.bruceeckel.simpletest.*;
import com.bruceeckel.util.*;
import java.util.*;

public class FillingArrays {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 int size = 6;

498 Thinking in Java www.BruceEckel.com

 // Or get the size from the command line:
 if(args.length != 0)
 size = Integer.parseInt(args[0]);
 boolean[] a1 = new boolean[size];
 byte[] a2 = new byte[size];
 char[] a3 = new char[size];
 short[] a4 = new short[size];
 int[] a5 = new int[size];
 long[] a6 = new long[size];
 float[] a7 = new float[size];
 double[] a8 = new double[size];
 String[] a9 = new String[size];
 Arrays.fill(a1, true);
 System.out.println("a1 = " + Arrays2.toString(a1));
 Arrays.fill(a2, (byte)11);
 System.out.println("a2 = " + Arrays2.toString(a2));
 Arrays.fill(a3, 'x');
 System.out.println("a3 = " + Arrays2.toString(a3));
 Arrays.fill(a4, (short)17);
 System.out.println("a4 = " + Arrays2.toString(a4));
 Arrays.fill(a5, 19);
 System.out.println("a5 = " + Arrays2.toString(a5));
 Arrays.fill(a6, 23);
 System.out.println("a6 = " + Arrays2.toString(a6));
 Arrays.fill(a7, 29);
 System.out.println("a7 = " + Arrays2.toString(a7));
 Arrays.fill(a8, 47);
 System.out.println("a8 = " + Arrays2.toString(a8));
 Arrays.fill(a9, "Hello");
 System.out.println("a9 = " + Arrays.asList(a9));
 // Manipulating ranges:
 Arrays.fill(a9, 3, 5, "World");
 System.out.println("a9 = " + Arrays.asList(a9));
 monitor.expect(new String[] {
 "a1 = [true, true, true, true, true, true]",
 "a2 = [11, 11, 11, 11, 11, 11]",
 "a3 = [x, x, x, x, x, x]",
 "a4 = [17, 17, 17, 17, 17, 17]",
 "a5 = [19, 19, 19, 19, 19, 19]",
 "a6 = [23, 23, 23, 23, 23, 23]",
 "a7 = [29.0, 29.0, 29.0, 29.0, 29.0, 29.0]",
 "a8 = [47.0, 47.0, 47.0, 47.0, 47.0, 47.0]",
 "a9 = [Hello, Hello, Hello, Hello, Hello, Hello]",
 "a9 = [Hello, Hello, Hello, World, World, Hello]"

Chapter 11: Collections of Objects 499

 });
 }
} ///:~

You can either fill the entire array, or—as the last two statements show—a
range of elements. But since you can only provide a single value to use for
filling using Arrays.fill(), the Arrays2.fill() methods produce much
more interesting results. Feedback

Copying an array
The Java standard library provides a static method,
System.arraycopy(), which can make much faster copies of an array
than if you use a for loop to perform the copy by hand.
System.arraycopy() is overloaded to handle all types. Here’s an
example that manipulates arrays of int:

//: c11:CopyingArrays.java
// Using System.arraycopy()
import com.bruceeckel.simpletest.*;
import com.bruceeckel.util.*;
import java.util.*;

public class CopyingArrays {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 int[] i = new int[7];
 int[] j = new int[10];
 Arrays.fill(i, 47);
 Arrays.fill(j, 99);
 System.out.println("i = " + Arrays2.toString(i));
 System.out.println("j = " + Arrays2.toString(j));
 System.arraycopy(i, 0, j, 0, i.length);
 System.out.println("j = " + Arrays2.toString(j));
 int[] k = new int[5];
 Arrays.fill(k, 103);
 System.arraycopy(i, 0, k, 0, k.length);
 System.out.println("k = " + Arrays2.toString(k));
 Arrays.fill(k, 103);
 System.arraycopy(k, 0, i, 0, k.length);
 System.out.println("i = " + Arrays2.toString(i));
 // Objects:
 Integer[] u = new Integer[10];
 Integer[] v = new Integer[5];

500 Thinking in Java www.BruceEckel.com

 Arrays.fill(u, new Integer(47));
 Arrays.fill(v, new Integer(99));
 System.out.println("u = " + Arrays.asList(u));
 System.out.println("v = " + Arrays.asList(v));
 System.arraycopy(v, 0, u, u.length/2, v.length);
 System.out.println("u = " + Arrays.asList(u));
 monitor.expect(new String[] {
 "i = [47, 47, 47, 47, 47, 47, 47]",
 "j = [99, 99, 99, 99, 99, 99, 99, 99, 99, 99]",
 "j = [47, 47, 47, 47, 47, 47, 47, 99, 99, 99]",
 "k = [47, 47, 47, 47, 47]",
 "i = [103, 103, 103, 103, 103, 47, 47]",
 "u = [47, 47, 47, 47, 47, 47, 47, 47, 47, 47]",
 "v = [99, 99, 99, 99, 99]",
 "u = [47, 47, 47, 47, 47, 99, 99, 99, 99, 99]"
 });
 }
} ///:~

The arguments to arraycopy() are the source array, the offset into the
source array from whence to start copying, the destination array, the
offset into the destination array where the copying begins, and the
number of elements to copy. Naturally, any violation of the array
boundaries will cause an exception. Feedback

The example shows that both primitive arrays and object arrays can be
copied. However, if you copy arrays of objects then only the references get
copied—there’s no duplication of the objects themselves. This is called a
shallow copy (see Appendix A). Feedback

Comparing arrays
Arrays provides the overloaded method equals() to compare entire
arrays for equality. Again, these are overloaded for all the primitives, and
for Object. To be equal, the arrays must have the same number of
elements and each element must be equivalent to each corresponding
element in the other array, using the equals() for each element. (For
primitives, that primitive’s wrapper class equals() is used; for example,
Integer.equals() for int.) For example:

//: c11:ComparingArrays.java
// Using Arrays.equals()
import com.bruceeckel.simpletest.*;

Chapter 11: Collections of Objects 501

import java.util.*;

public class ComparingArrays {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 int[] a1 = new int[10];
 int[] a2 = new int[10];
 Arrays.fill(a1, 47);
 Arrays.fill(a2, 47);
 System.out.println(Arrays.equals(a1, a2));
 a2[3] = 11;
 System.out.println(Arrays.equals(a1, a2));
 String[] s1 = new String[5];
 Arrays.fill(s1, "Hi");
 String[] s2 = {"Hi", "Hi", "Hi", "Hi", "Hi"};
 System.out.println(Arrays.equals(s1, s2));
 monitor.expect(new String[] {
 "true",
 "false",
 "true"
 });
 }
} ///:~

Originally, a1 and a2 are exactly equal, so the output is “true,” but then
one of the elements is changed which makes the result “false.” In the last
case, all the elements of s1 point to the same object, but s2 has five
unique objects. However, array equality is based on contents (via
Object.equals()) and so the result is “true.” Feedback

Array element comparisons
One of the missing features in the Java 1.0 and 1.1 libraries was
algorithmic operations—even simple sorting. This was a rather confusing
situation to someone expecting an adequate standard library. Fortunately,
Java 2 remedied the situation, at least for the sorting problem. Feedback

A problem with writing generic sorting code is that sorting must perform
comparisons based on the actual type of the object. Of course, one
approach is to write a different sorting method for every different type,
but you should be able to recognize that this does not produce code that is
easily reused for new types. Feedback

502 Thinking in Java www.BruceEckel.com

A primary goal of programming design is to “separate things that change
from things that stay the same,” and here, the code that stays the same is
the general sort algorithm, but the thing that changes from one use to the
next is the way objects are compared. So instead of placing the
comparison code into many different sort routines, the technique of the
callback is used. With a callback, the part of the code that varies from case
to case is separated, and the part of the code that’s always the same will
call back to the code that changes. Feedback

Java has two ways to provide comparison functionality. The first is with
the “natural” comparison method that is imparted to a class by
implementing the java.lang.Comparable interface. This is a very
simple interface with a single method, compareTo(). This method takes
another Object as an argument, and produces a negative value if the
current object is less than the argument, zero if the argument is equal, and
a positive value if the current object is greater than the argument . Feedback

Here’s a class that implements Comparable and demonstrates the
comparability by using the Java standard library method Arrays.sort():

//: c11:CompType.java
// Implementing Comparable in a class.
import com.bruceeckel.util.*;
import java.util.*;

public class CompType implements Comparable {
 int i;
 int j;
 public CompType(int n1, int n2) {
 i = n1;
 j = n2;
 }
 public String toString() {
 return "[i = " + i + ", j = " + j + "]";
 }
 public int compareTo(Object rv) {
 int rvi = ((CompType)rv).i;
 return (i < rvi ? -1 : (i == rvi ? 0 : 1));
 }
 private static Random r = new Random();
 private static int randInt() { return r.nextInt(100); }
 public static Generator generator() {

Chapter 11: Collections of Objects 503

 return new Generator() {
 public Object next() {
 return new CompType(randInt(), randInt());
 }
 };
 }
 public static void main(String[] args) {
 CompType[] a = new CompType[10];
 Arrays2.fill(a, generator());
 System.out.println(
 "before sorting, a = " + Arrays.asList(a));
 Arrays.sort(a);
 System.out.println(
 "after sorting, a = " + Arrays.asList(a));
 }
} ///:~

When you define the comparison method, you are responsible for
deciding what it means to compare one of your objects to another. Here,
only the i values are used in the comparison, and the j values are ignored.
Feedback

The static randInt() method produces positive values between zero and
100, and the generator() method produces an object that implements
the Generator interface, by creating an anonymous inner class (see
Chapter 8). This builds CompType objects by initializing them with
random values. In main(), the generator is used to fill an array of
CompType, which is then sorted. If Comparable hadn’t been
implemented, then you’d get a compile-time error message when you
tried to call sort(). Feedback

Now suppose someone hands you a class that doesn’t implement
Comparable, or they hand you this class that does implement
Comparable, but you decide you don’t like the way it works and would
rather have a different comparison method for the type. The solution is in
contrast to hard-wiring the comparison code into each different object.
Instead, the strategy design pattern4 is used. With a strategy, the part of
the code that varies is encapsulated inside its own class (the strategy

4 Design Patterns, Erich Gamma et al., Addison-Wesley 1995.

504 Thinking in Java www.BruceEckel.com

object). You hand a strategy object to the code that’s always the same,
which uses the strategy to fulfill its algorithm. That way you can make
different objects to express different ways of comparison and feed them to
the same sorting code. Here, you create a strategy by defining a separate
class that implements an interface called Comparator. This has two
methods, compare() and equals(). However, you don’t have to
implement equals() except for special performance needs, because
anytime you create a class it is implicitly inherited from Object, which
has an equals(). So you can just use the default Object equals() and
satisfy the contract imposed by the interface. Feedback

The Collections class (which we’ll look at more later) contains a single
Comparator that reverses the natural sorting order. This can easily be
applied to the CompType: Feedback

//: c11:Reverse.java
// The Collecions.reverseOrder() Comparator
import com.bruceeckel.util.*;
import java.util.*;

public class Reverse {
 public static void main(String[] args) {
 CompType[] a = new CompType[10];
 Arrays2.fill(a, CompType.generator());
 System.out.println(
 "before sorting, a = " + Arrays.asList(a));
 Arrays.sort(a, Collections.reverseOrder());
 System.out.println(
 "after sorting, a = " + Arrays.asList(a));
 }
} ///:~

The call to Collections.reverseOrder() produces the reference to the
Comparator. Feedback

As a second example, the following Comparator compares CompType
objects based on their j values rather than their i values:

//: c11:ComparatorTest.java
// Implementing a Comparator for a class.
import com.bruceeckel.util.*;
import java.util.*;

Chapter 11: Collections of Objects 505

class CompTypeComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 int j1 = ((CompType)o1).j;
 int j2 = ((CompType)o2).j;
 return (j1 < j2 ? -1 : (j1 == j2 ? 0 : 1));
 }
}

public class ComparatorTest {
 public static void main(String[] args) {
 CompType[] a = new CompType[10];
 Arrays2.fill(a, CompType.generator());
 System.out.println(
 "before sorting, a = " + Arrays.asList(a));
 Arrays.sort(a, new CompTypeComparator());
 System.out.println(
 "after sorting, a = " + Arrays.asList(a));
 }
} ///:~

The compare() method must return a negative integer, zero, or a
positive integer if the first argument is less than, equal to, or greater than
the second, respectively. Feedback

Sorting an array
With the built-in sorting methods, you can sort any array of primitives,
and any array of objects that either implements Comparable or has an
associated Comparator. This fills a big hole in the Java libraries—
believe it or not, there was no support in Java 1.0 or 1.1 for sorting
Strings! Here’s an example that generates random String objects and
sorts them:

//: c11:StringSorting.java
// Sorting an array of Strings.
import com.bruceeckel.util.*;
import java.util.*;

public class StringSorting {
 public static void main(String[] args) {
 String[] sa = new String[30];
 Arrays2.fill(sa, new Arrays2.RandStringGenerator(5));
 System.out.println(
 "Before sorting: " + Arrays.asList(sa));

506 Thinking in Java www.BruceEckel.com

 Arrays.sort(sa);
 System.out.println(
 "After sorting: " + Arrays.asList(sa));
 }
} ///:~

One thing you’ll notice about the output in the String sorting algorithm is
that it’s lexicographic, so it puts all the words starting with uppercase
letters first, followed by all the words starting with lowercase letters.
(Telephone books are typically sorted this way.) You may also want to
group the words together regardless of case, and you can do this by
defining a Comparator class, thereby overriding the default String
Comparable behavior. For reuse, this will be added to the “util”
package: Feedback

//: com:bruceeckel:util:AlphabeticComparator.java
// Keeping upper and lowercase letters together.
package com.bruceeckel.util;
import java.util.*;

public class AlphabeticComparator implements Comparator {
 public int compare(Object o1, Object o2) {
 String s1 = (String)o1;
 String s2 = (String)o2;
 return s1.toLowerCase().compareTo(s2.toLowerCase());
 }
} ///:~

By casting to String at the beginning, you’ll get an exception if you
attempt to use this with the wrong type. Each String is converted to
lowercase before the comparison. String’s built-in compareTo()
method provides the desired functionality. Feedback

Here’s a test using AlphabeticComparator:

//: c11:AlphabeticSorting.java
// Keeping upper and lowercase letters together.
import com.bruceeckel.util.*;
import java.util.*;

public class AlphabeticSorting {
 public static void main(String[] args) {
 String[] sa = new String[30];
 Arrays2.fill(sa, new Arrays2.RandStringGenerator(5));

Chapter 11: Collections of Objects 507

 System.out.println(
 "Before sorting: " + Arrays.asList(sa));
 Arrays.sort(sa, new AlphabeticComparator());
 System.out.println(
 "After sorting: " + Arrays.asList(sa));
 }
} ///:~

The sorting algorithm that’s used in the Java standard library is designed
to be optimal for the particular type you’re sorting—a Quicksort for
primitives, and a stable merge sort for objects. So you shouldn’t need to
spend any time worrying about performance unless your profiler points
you to the sorting process as a bottleneck. Feedback

Searching a sorted array
Once an array is sorted, you can perform a fast search for a particular item
using Arrays.binarySearch(). However, it’s very important that you
do not try to use binarySearch() on an unsorted array—the results will
be unpredictable. The following example uses a RandIntGenerator to
fill an array, and then uses the same generator to produce values to search
for: Feedback

//: c11:ArraySearching.java
// Using Arrays.binarySearch().
import com.bruceeckel.util.*;
import java.util.*;

public class ArraySearching {
 public static void main(String[] args) {
 int[] a = new int[100];
 Arrays2.RandIntGenerator gen =
 new Arrays2.RandIntGenerator(1000);
 Arrays2.fill(a, gen);
 Arrays.sort(a);
 System.out.println(
 "Sorted array: " + Arrays2.toString(a));
 while(true) {
 int r = gen.next();
 int location = Arrays.binarySearch(a, r);
 if(location >= 0) {
 System.out.println("Location of " + r +
 " is " + location + ", a[" +

508 Thinking in Java www.BruceEckel.com

 location + "] = " + a[location]);
 break; // Out of while loop
 }
 }
 }
} ///:~

In the while loop, random values are generated as search items, until one
of them is found. Feedback

Arrays.binarySearch() produces a value greater than or equal to zero
if the search item is found. Otherwise, it produces a negative value
representing the place that the element should be inserted if you are
maintaining the sorted array by hand. The value produced is

-(insertion point) - 1

The insertion point is the index of the first element greater than the key,
or a.size(), if all elements in the array are less than the specified key.
Feedback

If the array contains duplicate elements, there is no guarantee which one
will be found. The algorithm is thus not really designed to support
duplicate elements, but rather to tolerate them. If you need a sorted list of
nonduplicated elements, use a TreeSet (to maintain sorted order) or
LinkedHashSet (to maintain insertion order), which will be introduced
later in this chapter. These classes take care of all the details for you
automatically. Only in cases of performance bottlenecks should you
replace one of these classes with a hand-maintained array. Feedback

If you have sorted an object array using a Comparator (primitive arrays
do not allow sorting with a Comparator), you must include that same
Comparator when you perform a binarySearch() (using the
overloaded version of the method that’s provided). For example, the
AlphabeticSorting.java program can be modified to perform a search:

//: c11:AlphabeticSearch.java
// Searching with a Comparator.
import com.bruceeckel.simpletest.*;
import com.bruceeckel.util.*;
import java.util.*;

public class AlphabeticSearch {

Chapter 11: Collections of Objects 509

 private static Test monitor = new Test();
 public static void main(String[] args) {
 String[] sa = new String[30];
 Arrays2.fill(sa, new Arrays2.RandStringGenerator(5));
 AlphabeticComparator comp = new AlphabeticComparator();
 Arrays.sort(sa, comp);
 int index = Arrays.binarySearch(sa, sa[10], comp);
 System.out.println("Index = " + index);
 monitor.expect(new String[] {
 "Index = 10"
 });
 }
} ///:~

The Comparator must be passed to the overloaded binarySearch() as
the third argument. In the above example, success is guaranteed because
the search item is selected from the array itself. Feedback

Array summary
To summarize what you’ve seen so far, your first and most efficient choice
to hold a group of objects should be an array, and you’re forced into this
choice if you want to hold a group of primitives. In the remainder of this
chapter we’ll look at the more general case, when you don’t know at the
time you’re writing the program how many objects you’re going to need,
or if you need a more sophisticated way to store your objects. Java
provides a library of container classes to solve this problem, the basic
types of which are List, Set, and Map. You can solve a surprising
number of problems using these tools. Feedback

Among their other characteristics—Set, for example, holds only one
object of each value, and Map is an associative array that lets you
associate any object with any other object—the Java container classes will
automatically resize themselves. So, unlike arrays, you can put in any
number of objects and you don’t need to worry about how big to make the
container while you’re writing the program. Feedback

Introduction to containers
To me, container classes are one of the most powerful tools for raw
development because they significantly increase your programming

510 Thinking in Java www.BruceEckel.com

muscle. The Java 2 containers represent a thorough redesign5 of the
rather poor showings in Java 1.0 and 1.1. Some of the redesign makes
things tighter and more sensible. It also fills out the functionality of the
containers library, providing the behavior of linked lists, queues, and
deques (double-ended queues, pronounced “decks”). Feedback

The design of a containers library is difficult (true of most library design
problems). In C++, the container classes covered the bases with many
different classes. This was better than what was available prior to the C++
container classes (nothing), but it didn’t translate well into Java. On the
other extreme, I’ve seen a containers library that consists of a single class,
“container,” which acts like both a linear sequence and an associative
array at the same time. The Java 2 container library strikes a balance: the
full functionality that you expect from a mature container library, but
easier to learn and use than the C++ container classes and other similar
container libraries. The result can seem a bit odd in places. Unlike some
of the decisions made in the early Java libraries, these oddities were not
accidents, but carefully considered decisions based on trade-offs in
complexity. It might take you a little while to get comfortable with some
aspects of the library, but I think you’ll find yourself rapidly acquiring and
using these new tools. Feedback

The Java 2 container library takes the issue of “holding your objects” and
divides it into two distinct concepts:

1. Collection: a group of individual elements, often with some rule
applied to them. A List must hold the elements in a particular
sequence, and a Set cannot have any duplicate elements. (A bag,
which is not implemented in the Java container library—since
Lists provide you with enough of that functionality—has no such
rules.) Feedback

2. Map: a group of key-value object pairs. At first glance, this might
seem like it ought to be a Collection of pairs, but when you try to
implement it that way the design gets awkward, so it’s clearer to
make it a separate concept. On the other hand, it’s convenient to

5 By Joshua Bloch at Sun.

Chapter 11: Collections of Objects 511

look at portions of a Map by creating a Collection to represent
that portion. Thus, a Map can return a Set of its keys, a
Collection of its values, or a Set of its pairs. Maps, like arrays,
can easily be expanded to multiple dimensions without adding new
concepts: you simply make a Map whose values are Maps (and the
values of those Maps can be Maps, etc.). Feedback

We will first look at the general features of containers, then go into
details, and finally learn why there are different versions of some
containers, and how to choose between them. Feedback

Printing containers
Unlike arrays, the containers print nicely without any help. Here’s an
example that also introduces you to the basic types of containers:

//: c11:PrintingContainers.java
// Containers print themselves automatically.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class PrintingContainers {
 private static Test monitor = new Test();
 static Collection fill(Collection c) {
 c.add("dog");
 c.add("dog");
 c.add("cat");
 return c;
 }
 static Map fill(Map m) {
 m.put("dog", "Bosco");
 m.put("dog", "Spot");
 m.put("cat", "Rags");
 return m;
 }
 public static void main(String[] args) {
 System.out.println(fill(new ArrayList()));
 System.out.println(fill(new HashSet()));
 System.out.println(fill(new HashMap()));
 monitor.expect(new String[] {
 "[dog, dog, cat]",
 "[dog, cat]",
 "{dog=Spot, cat=Rags}"

512 Thinking in Java www.BruceEckel.com

 });
 }
} ///:~

As mentioned before, there are two basic categories in the Java container
library. The distinction is based on the number of items that are held in
each location of the container. The Collection category only holds one
item in each location (the name is a bit misleading since entire container
libraries are often called “collections”). It includes the List, which holds a
group of items in a specified sequence, and the Set, which only allows the
addition of one item of each type. The ArrayList is a type of List, and
HashSet is a type of Set. To add items to any Collection, there’s an
add() method. Feedback

The Map holds key-value pairs, rather like a mini database. The above
program uses one flavor of Map, the HashMap. If you have a Map that
associates states with their capitals and you want to know the capital of
Ohio, you look it up—almost as if you were indexing into an array. (Maps
are also called associative arrays.) To add elements to a Map there’s a
put() method that takes a key and a value as arguments. The above
example only shows adding elements and does not look the elements up
after they’re added. That will be shown later. Feedback

The overloaded fill() methods fill Collections and Maps, respectively.
If you look at the output, you can see that the default printing behavior
(provided via the container’s various toString() methods) produces
quite readable results, so no additional printing support is necessary as it
was with arrays. A Collection is printed surrounded by square braces,
with each element separated by a comma. A Map is surrounded by curly
braces, with each key and value associated with an equal sign (keys on the
left, values on the right). Feedback

You can also immediately see the basic behavior of the different
containers. The List holds the objects exactly as they are entered, without
any reordering or editing. The Set, however, only accepts one of each
object and it uses its own internal ordering method (in general, you are
only concerned with whether or not something is a member of the Set,
not the order in which it appears—for that you’d use a List). And the
Map also only accepts one of each type of item, based on the key, and it
also has its own internal ordering and does not care about the order in

Chapter 11: Collections of Objects 513

which you enter the items. If maintaining the insertion sequence is
important, you can use a LinkedHashSet or LinkedHashMap. Feedback

Filling containers
Although the problem of printing the containers is taken care of, filling
containers suffers from the same deficiency as java.util.Arrays. Just
like Arrays, there is a companion class called Collections containing
static utility methods including one called fill(). This fill() also just
duplicates a single object reference throughout the container, and also
only works for List objects and not Sets or Maps:

//: c11:FillingLists.java
// The Collections.fill() method.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class FillingLists {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 List list = new ArrayList();
 for(int i = 0; i < 10; i++)
 list.add("");
 Collections.fill(list, "Hello");
 System.out.println(list);
 monitor.expect(new String[] {
 "[Hello, Hello, Hello, Hello, Hello, " +
 "Hello, Hello, Hello, Hello, Hello]"
 });
 }
} ///:~

This method is made even less useful by the fact that it can only replace
elements that are already in the List, and will not add new elements.
Feedback

To be able to create interesting examples, here is a complementary
Collections2 library (part of com.bruceeckel.util for convenience)
with a fill() method that uses a generator to add elements, and allows
you to specify the number of elements you want to add(). The
Generator interface defined previously will work for Collections, but
the Map requires its own generator interface since a pair of objects (one

514 Thinking in Java www.BruceEckel.com

key and one value) must be produced by each call to next(). Here is the
Pair class:

//: com:bruceeckel:util:Pair.java
package com.bruceeckel.util;

public class Pair {
 public Object key, value;
 public Pair(Object k, Object v) {
 key = k;
 value = v;
 }
} ///:~

Next, the generator interface that produces the Pair:

//: com:bruceeckel:util:MapGenerator.java
package com.bruceeckel.util;
public interface MapGenerator { Pair next(); } ///:~

With these, a set of utilities for working with the container classes can be
developed:

//: com:bruceeckel:util:Collections2.java
// To fill any type of container using a generator object.
package com.bruceeckel.util;
import java.util.*;

public class Collections2 {
 // Fill an array using a generator:
 public static void
 fill(Collection c, Generator gen, int count) {
 for(int i = 0; i < count; i++)
 c.add(gen.next());
 }
 public static void
 fill(Map m, MapGenerator gen, int count) {
 for(int i = 0; i < count; i++) {
 Pair p = gen.next();
 m.put(p.key, p.value);
 }
 }
 public static class
 RandStringPairGenerator implements MapGenerator {
 private Arrays2.RandStringGenerator gen;

Chapter 11: Collections of Objects 515

 public RandStringPairGenerator(int len) {
 gen = new Arrays2.RandStringGenerator(len);
 }
 public Pair next() {
 return new Pair(gen.next(), gen.next());
 }
 }
 // Default object so you don't have to create your own:
 public static RandStringPairGenerator rsp =
 new RandStringPairGenerator(10);
 public static class
 StringPairGenerator implements MapGenerator {
 private int index = -1;
 private String[][] d;
 public StringPairGenerator(String[][] data) {
 d = data;
 }
 public Pair next() {
 // Force the index to wrap:
 index = (index + 1) % d.length;
 return new Pair(d[index][0], d[index][1]);
 }
 public StringPairGenerator reset() {
 index = -1;
 return this;
 }
 }
 // Use a predefined dataset:
 public static StringPairGenerator geography =
 new StringPairGenerator(CountryCapitals.pairs);
 // Produce a sequence from a 2D array:
 public static class StringGenerator implements Generator{
 private String[][] d;
 private int position;
 private int index = -1;
 public StringGenerator(String[][] data, int pos) {
 d = data;
 position = pos;
 }
 public Object next() {
 // Force the index to wrap:
 index = (index + 1) % d.length;
 return d[index][position];
 }

516 Thinking in Java www.BruceEckel.com

 public StringGenerator reset() {
 index = -1;
 return this;
 }
 }
 // Use a predefined dataset:
 public static StringGenerator countries =
 new StringGenerator(CountryCapitals.pairs, 0);
 public static StringGenerator capitals =
 new StringGenerator(CountryCapitals.pairs, 1);
} ///:~

Both versions of fill() take an argument that determines the number of
items to add to the container. In addition, there are two generators for the
map: RandStringPairGenerator, which creates any number of pairs of
gibberish Strings with length determined by the constructor argument;
and StringPairGenerator, which produces pairs of Strings given a
two-dimensional array of String. The StringGenerator also takes a
two-dimensional array of String but generates single items rather than
Pairs. The static rsp, geography, countries, and capitals objects
provide prebuilt generators, the last three using all the countries of the
world and their capitals. Note that if you try to create more pairs than are
available, the generators will loop around to the beginning, and if you are
putting the pairs into a Map, the duplicates will just be ignored. Feedback

Here is the predefined dataset, which consists of country names and their
capitals:

//: com:bruceeckel:util:CountryCapitals.java
package com.bruceeckel.util;

public class CountryCapitals {
 public static final String[][] pairs = {
 // Africa
 {"ALGERIA","Algiers"}, {"ANGOLA","Luanda"},
 {"BENIN","Porto-Novo"}, {"BOTSWANA","Gaberone"},
 {"BURKINA FASO","Ouagadougou"},
 {"BURUNDI","Bujumbura"},
 {"CAMEROON","Yaounde"}, {"CAPE VERDE","Praia"},
 {"CENTRAL AFRICAN REPUBLIC","Bangui"},
 {"CHAD","N'djamena"}, {"COMOROS","Moroni"},
 {"CONGO","Brazzaville"}, {"DJIBOUTI","Dijibouti"},
 {"EGYPT","Cairo"}, {"EQUATORIAL GUINEA","Malabo"},

Chapter 11: Collections of Objects 517

 {"ERITREA","Asmara"}, {"ETHIOPIA","Addis Ababa"},
 {"GABON","Libreville"}, {"THE GAMBIA","Banjul"},
 {"GHANA","Accra"}, {"GUINEA","Conakry"},
 {"GUINEA","-"}, {"BISSAU","Bissau"},
 {"COTE D'IVOIR (IVORY COAST)","Yamoussoukro"},
 {"KENYA","Nairobi"}, {"LESOTHO","Maseru"},
 {"LIBERIA","Monrovia"}, {"LIBYA","Tripoli"},
 {"MADAGASCAR","Antananarivo"}, {"MALAWI","Lilongwe"},
 {"MALI","Bamako"}, {"MAURITANIA","Nouakchott"},
 {"MAURITIUS","Port Louis"}, {"MOROCCO","Rabat"},
 {"MOZAMBIQUE","Maputo"}, {"NAMIBIA","Windhoek"},
 {"NIGER","Niamey"}, {"NIGERIA","Abuja"},
 {"RWANDA","Kigali"},
 {"SAO TOME E PRINCIPE","Sao Tome"},
 {"SENEGAL","Dakar"}, {"SEYCHELLES","Victoria"},
 {"SIERRA LEONE","Freetown"}, {"SOMALIA","Mogadishu"},
 {"SOUTH AFRICA","Pretoria/Cape Town"},
 {"SUDAN","Khartoum"},
 {"SWAZILAND","Mbabane"}, {"TANZANIA","Dodoma"},
 {"TOGO","Lome"}, {"TUNISIA","Tunis"},
 {"UGANDA","Kampala"},
 {"DEMOCRATIC REPUBLIC OF THE CONGO (ZAIRE)",
 "Kinshasa"},
 {"ZAMBIA","Lusaka"}, {"ZIMBABWE","Harare"},
 // Asia
 {"AFGHANISTAN","Kabul"}, {"BAHRAIN","Manama"},
 {"BANGLADESH","Dhaka"}, {"BHUTAN","Thimphu"},
 {"BRUNEI","Bandar Seri Begawan"},
 {"CAMBODIA","Phnom Penh"},
 {"CHINA","Beijing"}, {"CYPRUS","Nicosia"},
 {"INDIA","New Delhi"}, {"INDONESIA","Jakarta"},
 {"IRAN","Tehran"}, {"IRAQ","Baghdad"},
 {"ISRAEL","Tel Aviv"}, {"JAPAN","Tokyo"},
 {"JORDAN","Amman"}, {"KUWAIT","Kuwait City"},
 {"LAOS","Vientiane"}, {"LEBANON","Beirut"},
 {"MALAYSIA","Kuala Lumpur"}, {"THE MALDIVES","Male"},
 {"MONGOLIA","Ulan Bator"},
 {"MYANMAR (BURMA)","Rangoon"},
 {"NEPAL","Katmandu"}, {"NORTH KOREA","P'yongyang"},
 {"OMAN","Muscat"}, {"PAKISTAN","Islamabad"},
 {"PHILIPPINES","Manila"}, {"QATAR","Doha"},
 {"SAUDI ARABIA","Riyadh"}, {"SINGAPORE","Singapore"},
 {"SOUTH KOREA","Seoul"}, {"SRI LANKA","Colombo"},
 {"SYRIA","Damascus"},

518 Thinking in Java www.BruceEckel.com

 {"TAIWAN (REPUBLIC OF CHINA)","Taipei"},
 {"THAILAND","Bangkok"}, {"TURKEY","Ankara"},
 {"UNITED ARAB EMIRATES","Abu Dhabi"},
 {"VIETNAM","Hanoi"}, {"YEMEN","Sana'a"},
 // Australia and Oceania
 {"AUSTRALIA","Canberra"}, {"FIJI","Suva"},
 {"KIRIBATI","Bairiki"},
 {"MARSHALL ISLANDS","Dalap-Uliga-Darrit"},
 {"MICRONESIA","Palikir"}, {"NAURU","Yaren"},
 {"NEW ZEALAND","Wellington"}, {"PALAU","Koror"},
 {"PAPUA NEW GUINEA","Port Moresby"},
 {"SOLOMON ISLANDS","Honaira"}, {"TONGA","Nuku'alofa"},
 {"TUVALU","Fongafale"}, {"VANUATU","< Port-Vila"},
 {"WESTERN SAMOA","Apia"},
 // Eastern Europe and former USSR
 {"ARMENIA","Yerevan"}, {"AZERBAIJAN","Baku"},
 {"BELARUS (BYELORUSSIA)","Minsk"},
 {"GEORGIA","Tbilisi"},
 {"KAZAKSTAN","Almaty"}, {"KYRGYZSTAN","Alma-Ata"},
 {"MOLDOVA","Chisinau"}, {"RUSSIA","Moscow"},
 {"TAJIKISTAN","Dushanbe"}, {"TURKMENISTAN","Ashkabad"},
 {"UKRAINE","Kyiv"}, {"UZBEKISTAN","Tashkent"},
 // Europe
 {"ALBANIA","Tirana"}, {"ANDORRA","Andorra la Vella"},
 {"AUSTRIA","Vienna"}, {"BELGIUM","Brussels"},
 {"BOSNIA","-"}, {"HERZEGOVINA","Sarajevo"},
 {"CROATIA","Zagreb"}, {"CZECH REPUBLIC","Prague"},
 {"DENMARK","Copenhagen"}, {"ESTONIA","Tallinn"},
 {"FINLAND","Helsinki"}, {"FRANCE","Paris"},
 {"GERMANY","Berlin"}, {"GREECE","Athens"},
 {"HUNGARY","Budapest"}, {"ICELAND","Reykjavik"},
 {"IRELAND","Dublin"}, {"ITALY","Rome"},
 {"LATVIA","Riga"}, {"LIECHTENSTEIN","Vaduz"},
 {"LITHUANIA","Vilnius"}, {"LUXEMBOURG","Luxembourg"},
 {"MACEDONIA","Skopje"}, {"MALTA","Valletta"},
 {"MONACO","Monaco"}, {"MONTENEGRO","Podgorica"},
 {"THE NETHERLANDS","Amsterdam"}, {"NORWAY","Oslo"},
 {"POLAND","Warsaw"}, {"PORTUGAL","Lisbon"},
 {"ROMANIA","Bucharest"}, {"SAN MARINO","San Marino"},
 {"SERBIA","Belgrade"}, {"SLOVAKIA","Bratislava"},
 {"SLOVENIA","Ljujiana"}, {"SPAIN","Madrid"},
 {"SWEDEN","Stockholm"}, {"SWITZERLAND","Berne"},
 {"UNITED KINGDOM","London"}, {"VATICAN CITY","---"},
 // North and Central America

Chapter 11: Collections of Objects 519

 {"ANTIGUA AND BARBUDA","Saint John's"},
 {"BAHAMAS","Nassau"},
 {"BARBADOS","Bridgetown"}, {"BELIZE","Belmopan"},
 {"CANADA","Ottawa"}, {"COSTA RICA","San Jose"},
 {"CUBA","Havana"}, {"DOMINICA","Roseau"},
 {"DOMINICAN REPUBLIC","Santo Domingo"},
 {"EL SALVADOR","San Salvador"},
 {"GRENADA","Saint George's"},
 {"GUATEMALA","Guatemala City"},
 {"HAITI","Port-au-Prince"},
 {"HONDURAS","Tegucigalpa"}, {"JAMAICA","Kingston"},
 {"MEXICO","Mexico City"}, {"NICARAGUA","Managua"},
 {"PANAMA","Panama City"}, {"ST. KITTS","-"},
 {"NEVIS","Basseterre"}, {"ST. LUCIA","Castries"},
 {"ST. VINCENT AND THE GRENADINES","Kingstown"},
 {"UNITED STATES OF AMERICA","Washington, D.C."},
 // South America
 {"ARGENTINA","Buenos Aires"},
 {"BOLIVIA","Sucre (legal)/La Paz(administrative)"},
 {"BRAZIL","Brasilia"}, {"CHILE","Santiago"},
 {"COLOMBIA","Bogota"}, {"ECUADOR","Quito"},
 {"GUYANA","Georgetown"}, {"PARAGUAY","Asuncion"},
 {"PERU","Lima"}, {"SURINAME","Paramaribo"},
 {"TRINIDAD AND TOBAGO","Port of Spain"},
 {"URUGUAY","Montevideo"}, {"VENEZUELA","Caracas"},
 };
} ///:~

This is simply a two-dimensional array of String data6. Here’s a simple
test using the fill() methods and generators:

//: c11:FillTest.java
import com.bruceeckel.util.*;
import java.util.*;

public class FillTest {
 private static Generator sg =
 new Arrays2.RandStringGenerator(7);
 public static void main(String[] args) {
 List list = new ArrayList();

6 This data was found on the Internet, then processed by creating a Python program (see
www.Python.org).

520 Thinking in Java www.BruceEckel.com

 Collections2.fill(list, sg, 25);
 System.out.println(list + "\n");
 List list2 = new ArrayList();
 Collections2.fill(list2, Collections2.capitals, 25);
 System.out.println(list2 + "\n");
 Set set = new HashSet();
 Collections2.fill(set, sg, 25);
 System.out.println(set + "\n");
 Map m = new HashMap();
 Collections2.fill(m, Collections2.rsp, 25);
 System.out.println(m + "\n");
 Map m2 = new HashMap();
 Collections2.fill(m2, Collections2.geography, 25);
 System.out.println(m2);
 }
} ///:~

With these tools you can easily test the various containers by filling them
with interesting data. Feedback

Container disadvantage:
unknown type

The “disadvantage” to using the Java containers is that you lose type
information when you put an object into a container. This happens
because the programmer of that container class had no idea what specific
type you wanted to put in the container, and making the container hold
only your type would prevent it from being a general-purpose tool. So
instead, the container holds references to Object, which is the root of all
the classes so it holds any type. (Of course, this doesn’t include primitive
types, since they aren’t real objects, and thus, are not inherited from
anything.) This is a great solution, except: Feedback

1. Since the type information is thrown away when you put an object
reference into a container, there’s no restriction on the type of
object that can be put into your container, even if you mean it to
hold only, say, cats. Someone could just as easily put a dog into the
container. Feedback

Chapter 11: Collections of Objects 521

2. Since the type information is lost, the only thing the container
knows that it holds is a reference to an object. You must perform a
cast to the correct type before you use it. Feedback

On the up side, Java won’t let you misuse the objects that you put into a
container. If you throw a dog into a container of cats and then try to treat
everything in the container as a cat, you’ll get a RuntimeException
when you pull the dog reference out of the cat container and try to cast it
to a cat. Feedback

Here’s an example using the basic workhorse container, ArrayList. For
starters, you can think of ArrayList as “an array that automatically
expands itself.” Using an ArrayList is straightforward: create one, put
objects in using add(), and later get them out with get() using an
index—just like you would with an array but without the square brackets7.
ArrayList also has a method size() to let you know how many elements
have been added so you don’t inadvertently run off the end and cause an
exception. Feedback

First, Cat and Dog classes are created:

//: c11:Cat.java
package c11;

public class Cat {
 private int catNumber;
 public Cat(int i) { catNumber = i; }
 public void print() {
 System.out.println("Cat #" + catNumber);
 }
} ///:~

//: c11:Dog.java
package c11;

public class Dog {
 private int dogNumber;
 public Dog(int i) { dogNumber = i; }
 public void print() {

7 This is a place where operator overloading would be nice.

522 Thinking in Java www.BruceEckel.com

 System.out.println("Dog #" + dogNumber);
 }
} ///:~

Cats and Dogs are placed into the container, then pulled out:

//: c11:CatsAndDogs.java
// Simple container example.
// {ThrowsException}
package c11;
import java.util.*;

public class CatsAndDogs {
 public static void main(String[] args) {
 List cats = new ArrayList();
 for(int i = 0; i < 7; i++)
 cats.add(new Cat(i));
 // Not a problem to add a dog to cats:
 cats.add(new Dog(7));
 for(int i = 0; i < cats.size(); i++)
 ((Cat)cats.get(i)).print();
 // Dog is detected only at run time
 }
} ///:~

The classes Cat and Dog are distinct—they have nothing in common
except that they are Objects. (If you don’t explicitly say what class you’re
inheriting from, you automatically inherit from Object.) Since
ArrayList holds Objects, you can not only put Cat objects into this
container using the ArrayList method add(), but you can also add Dog
objects without complaint at either compile time or run time. When you
go to fetch out what you think are Cat objects using the ArrayList
method get(), you get back a reference to an object that you must cast to
a Cat. Then you need to surround the entire expression with parentheses
to force the evaluation of the cast before calling the print() method for
Cat, otherwise you’ll get a syntax error. Then, at run time, when you try to
cast the Dog object to a Cat, you’ll get an exception. Feedback

This is more than just an annoyance. It’s something that can create
difficult-to-find bugs. If one part (or several parts) of a program inserts
objects into a container, and you discover only in a separate part of the
program through an exception that a bad object was placed in the
container, then you must find out where the bad insert occurred. Most of

Chapter 11: Collections of Objects 523

the time you this isn’t a problem, but you should be aware of the
possibility. Feedback

Sometimes it works anyway
It turns out that in some cases things seem to work correctly without
casting back to your original type. One case is quite special: the String
class has some extra help from the compiler to make it work smoothly.
Whenever the compiler expects a String object and it hasn’t got one, it
will automatically call the toString() method that’s defined in Object
and can be overridden by any Java class. This method produces the
desired String object, which is then used wherever it is wanted. Feedback

Thus, all you need to do to make objects of your class print is to override
the toString() method, as shown in the following example:

//: c11:Mouse.java
// Overriding toString().

public class Mouse {
 private int mouseNumber;
 public Mouse(int i) { mouseNumber = i; }
 // Override Object.toString():
 public String toString() {
 return "This is Mouse #" + mouseNumber;
 }
 public int getNumber() { return mouseNumber; }
} ///:~

//: c11:MouseTrap.java

public class MouseTrap {
 static void caughtYa(Object m) {
 Mouse mouse = (Mouse)m; // Cast from Object
 System.out.println("Mouse: " + mouse.getNumber());
 }
} ///:~

//: c11:WorksAnyway.java
// In special cases, things just seem to work correctly.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class WorksAnyway {

524 Thinking in Java www.BruceEckel.com

 private static Test monitor = new Test();
 public static void main(String[] args) {
 List mice = new ArrayList();
 for(int i = 0; i < 3; i++)
 mice.add(new Mouse(i));
 for(int i = 0; i < mice.size(); i++) {
 // No cast necessary, automatic
 // call to Object.toString():
 System.out.println("Free mouse: " + mice.get(i));
 MouseTrap.caughtYa(mice.get(i));
 }
 monitor.expect(new String[] {
 "Free mouse: This is Mouse #0",
 "Mouse: 0",
 "Free mouse: This is Mouse #1",
 "Mouse: 1",
 "Free mouse: This is Mouse #2",
 "Mouse: 2"
 });
 }
} ///:~

You can see toString() overridden in Mouse. In the second for loop in
main() you find the statement:

System.out.println("Free mouse: " + mice.get(i));

After the ‘+’ sign the compiler expects to see a String object. get()
produces an Object, so to get the desired String the compiler implicitly
calls toString(). Unfortunately, you can work this kind of magic only
with String; it isn’t available for any other type. Feedback

A second approach to hiding the cast has been placed inside
MouseTrap. The caughtYa() method accepts not a Mouse, but an
Object, which it then casts to a Mouse. This is quite presumptuous, of
course, since by accepting an Object anything could be passed to the
method. However, if the cast is incorrect—if you passed the wrong type—
you’ll get an exception at run time. This is not as good as compile-time
checking but it’s still robust. Note that in the use of this method:

MouseTrap.caughtYa(mice.get(i));

no cast is necessary. Feedback

Chapter 11: Collections of Objects 525

Making a type-conscious ArrayList
You might not want to give up on this issue just yet. A more ironclad
solution is to create a new class using the ArrayList, such that it will
accept only your type and produce only your type:

//: c11:MouseList.java
// A type-conscious List.
import java.util.*;

public class MouseList {
 private List list = new ArrayList();
 public void add(Mouse m) { list.add(m); }
 public Mouse get(int index) {
 return (Mouse)list.get(index);
 }
 public int size() { return list.size(); }
} ///:~

Here’s a test for the new container:

//: c11:MouseListTest.java
import com.bruceeckel.simpletest.*;

public class MouseListTest {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 MouseList mice = new MouseList();
 for(int i = 0; i < 3; i++)
 mice.add(new Mouse(i));
 for(int i = 0; i < mice.size(); i++)
 MouseTrap.caughtYa(mice.get(i));
 monitor.expect(new String[] {
 "Mouse: 0",
 "Mouse: 1",
 "Mouse: 2"
 });
 }
} ///:~

This is similar to the previous example, except that the new MouseList
class has a private member of type ArrayList, and methods just like
ArrayList. However, it doesn’t accept and produce generic Objects, only
Mouse objects. Feedback

526 Thinking in Java www.BruceEckel.com

Note that if MouseList had instead been inherited from ArrayList, the
add(Mouse) method would simply overload the existing add(Object)
and there would still be no restriction on what type of objects could be
added, and you wouldn’t get the desired results. Using composition, the
MouseList simply uses the ArrayList, performing some activities
before passing the responsibility for the rest of the operation on to the
ArrayList. Feedback

Because a MouseList will accept only a Mouse, if you say:

mice.add(new Pigeon());

you will get an error message at compile time. This approach, while more
tedious from a coding standpoint, will tell you immediately if you’re using
a type improperly. Feedback

Note that no cast is necessary when using get()—it’s always a Mouse.
Feedback

Parameterized types
This kind of problem isn’t isolated—there are numerous cases in which
you need to create new types based on other types, and in which it is
useful to have specific type information at compile time. This is the
concept of a parameterized type. In C++, this is directly supported by the
language using templates. It is likely that Java JDK 1.5 of will provide
generics, the Java version of parameterized types. Feedback

Iterators
In any container class, you must have a way to put things in and a way to
get things out. After all, that’s the primary job of a container—to hold
things. In the ArrayList, add() is the way that you insert objects, and
get() is one way to get things out. ArrayList is quite flexible—you can
select anything at any time, and select multiple elements at once using
different indexes. Feedback

If you want to start thinking at a higher level, there’s a drawback: you
need to know the exact type of the container in order to use it. This might
not seem bad at first, but what if you start out using an ArrayList, and

Chapter 11: Collections of Objects 527

later on you discover that because of the features you need in the
container you actually need to use a Set instead? Or suppose you’d like to
write a piece of generic code that doesn’t know or care what type of
container it’s working with, so that it could be used on different types of
containers without rewriting that code? Feedback

The concept of an iterator (yet another design pattern) can be used to
achieve this abstraction. An iterator is an object whose job is to move
through a sequence of objects and select each object in that sequence
without the client programmer knowing or caring about the underlying
structure of that sequence. In addition, an iterator is usually what’s called
a “light-weight” object: one that’s cheap to create. For that reason, you’ll
often find seemingly strange constraints for iterators; for example, some
iterators can move in only one direction. Feedback

The Java Iterator is an example of an iterator with these kinds of
constraints. There’s not much you can do with one except: Feedback

1. Ask a container to hand you an Iterator using a method called
iterator(). This Iterator will be ready to return the first element
in the sequence on your first call to its next() method.

2. Get the next object in the sequence with next().

3. See if there are any more objects in the sequence with hasNext().

4. Remove the last element returned by the iterator with remove().

That’s all. It’s a simple implementation of an iterator, but still powerful
(and there’s a more sophisticated ListIterator for Lists). To see how it
works, let’s revisit the CatsAndDogs.java program from earlier in this
chapter. In the original version, the method get() was used to select each
element, but in the following modified version an Iterator is used: Feedback

//: c11:CatsAndDogs2.java
// Simple container with Iterator.
package c11;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class CatsAndDogs2 {
 private static Test monitor = new Test();

528 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) {
 List cats = new ArrayList();
 for(int i = 0; i < 7; i++)
 cats.add(new Cat(i));
 Iterator e = cats.iterator();
 while(e.hasNext())
 ((Cat)e.next()).print();
 }
} ///:~

You can see that the last few lines now use an Iterator to step through
the sequence instead of a for loop. With the Iterator, you don’t need to
worry about the number of elements in the container. That’s taken care of
for you by hasNext() and next(). Feedback

As another example, consider the creation of a general-purpose printing
method:

//: c11:Printer.java
// Using an Iterator.
import java.util.*;

public class Printer {
 static void printAll(Iterator e) {
 while(e.hasNext())
 System.out.println(e.next());
 }
} ///:~

Look closely at printAll(). Note that there’s no information about the
type of sequence. All you have is an Iterator, and that’s all you need to
know about the sequence: that you can get the next object, and that you
can know when you’re at the end. This idea of taking a container of
objects and passing through it to perform an operation on each one is
powerful, and will be seen throughout this book. Feedback

The example is even more generic, since it implicitly uses the
Object.toString() method. The println() method is overloaded for all
the primitive types as well as Object; in each case a String is
automatically produced by calling the appropriate toString() method.
Feedback

Chapter 11: Collections of Objects 529

Although it’s unnecessary, you can be more explicit using a cast, which
has the effect of calling toString():

System.out.println((String)e.next());

In general, however, you’ll want to do something more than call Object
methods, so you’ll run up against the type-casting issue again. You must
assume you’ve gotten an Iterator to a sequence of the particular type
you’re interested in, and cast the resulting objects to that type (getting a
run-time exception if you’re wrong). Feedback

We can test it by printing Hamsters:

//: c11:Hamster.java

public class Hamster {
 private int hamsterNumber;
 public Hamster(int hamsterNumber) {
 this.hamsterNumber = hamsterNumber;
 }
 public String toString() {
 return "This is Hamster #" + hamsterNumber;
 }
} ///:~

//: c11:HamsterMaze.java
// Using an Iterator.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class HamsterMaze {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 List list = new ArrayList();
 for(int i = 0; i < 3; i++)
 list.add(new Hamster(i));
 Printer.printAll(list.iterator());
 monitor.expect(new String[] {
 "This is Hamster #0",
 "This is Hamster #1",
 "This is Hamster #2"
 });
 }
} ///:~

530 Thinking in Java www.BruceEckel.com

You could write printAll() to accept a Collection object instead of an
Iterator, but the latter provides better decoupling. Feedback

Unintended recursion
Because (like every other class), the Java standard containers are
inherited from Object, they contain a toString() method. This has been
overridden so that they can produce a String representation of
themselves, including the objects they hold. Inside ArrayList, for
example, the toString() steps through the elements of the ArrayList
and calls toString() for each one. Suppose you’d like to print the address
of your class. It seems to make sense to simply refer to this (in particular,
C++ programmers are prone to this approach):

//: c11:InfiniteRecursion.java
// Accidental recursion.
// {RunByHand}
import java.util.*;

public class InfiniteRecursion {
 public String toString() {
 return " InfiniteRecursion address: " + this + "\n";
 }
 public static void main(String[] args) {
 List v = new ArrayList();
 for(int i = 0; i < 10; i++)
 v.add(new InfiniteRecursion());
 System.out.println(v);
 }
} ///:~

If you simply create an InfiniteRecursion object and then print it,
you’ll get an endless sequence of exceptions. This is also true if you place
the InfiniteRecursion objects in an ArrayList and print that
ArrayList as shown here. What’s happening is automatic type
conversion for Strings. When you say:

"InfiniteRecursion address: " + this

The compiler sees a String followed by a ‘+’ and something that’s not a
String, so it tries to convert this to a String. It does this conversion by
calling toString(), which produces a recursive call. Feedback

Chapter 11: Collections of Objects 531

If you really do want to print the address of the object in this case, the
solution is to call the Object toString() method, which does just that.
So instead of saying this, you’d say super.toString(). Feedback

Container taxonomy
Collections and Maps may be implemented in different ways, according
to your programming needs. It’s helpful to look at a diagram of the Java
containers (as of JDK 1.4):

Iterator Collection Map
Produces

ListIterator
SortedMap

Produces

List Set
Produces

AbstractMap

AbstractCollection

AbstractSetAbstractList

SortedSet

HashMap
TreeMap

Hashtable
(Legacy)

HashSet TreeSet
WeakHashMap

ArrayList AbstractSequentialList
Vector

(Legacy)

Stack
(Legacy) LinkedList

Collections

Arrays

Utilities

Comparable Comparator

LinkedHashMap

IdentityHashMap

LinkedHashSet

This diagram can be a bit overwhelming at first, but you’ll see that there
are really only three container components: Map, List, and Set, and only
two or three implementations of each one. The containers that you will

532 Thinking in Java www.BruceEckel.com

generally use most of the time have heavy black lines around them. When
you see this, the containers are not so daunting. FEEDBACK

The dotted boxes represent interfaces, the dashed boxes represent
abstract classes, and the solid boxes are regular (concrete) classes. The
dotted-line arrows indicate that a particular class is implementing an
interface (or in the case of an abstract class, partially implementing
that interface). The solid arrows show that a class can produce objects of
the class the arrow is pointing to. For example, any Collection can
produce an Iterator, while a List can produce a ListIterator (as well as
an ordinary Iterator, since List is inherited from Collection). Feedback

The interfaces that are concerned with holding objects are Collection,
List, Set, and Map. Ideally, you’ll write most of your code to talk to these
interfaces, and the only place where you’ll specify the precise type you’re
using is at the point of creation. So you can create a List like this: Feedback

List x = new LinkedList();

Of course, you can also decide to make x a LinkedList (instead of a
generic List) and carry the precise type information around with x. The
beauty (and the intent) of using the interface is that if you decide you
want to change your implementation, all you need to do is change it at the
point of creation, like this:

List x = new ArrayList();

The rest of your code can remain untouched (some of this genericity can
also be achieved with iterators). Feedback

In the class hierarchy, you can see a number of classes whose names begin
with “Abstract,” and these can seem a bit confusing at first. They are
simply tools that partially implement a particular interface. If you were
making your own Set, for example, you wouldn’t start with the Set
interface and implement all the methods, instead you’d inherit from
AbstractSet and do the minimal necessary work to make your new class.
However, the containers library contains enough functionality to satisfy
your needs virtually all the time. So for our purposes, you can ignore any
class that begins with “Abstract.” Feedback

Chapter 11: Collections of Objects 533

Therefore, when you look at the diagram, you’re really concerned with
only those interfaces at the top of the diagram and the concrete classes
(those with solid boxes around them). You’ll typically make an object of a
concrete class, upcast it to the corresponding interface, and then use the
interface throughout the rest of your code. In addition, you do not need
to consider the legacy elements when writing new code. Therefore, the
diagram can be greatly simplified to look like this:

Iterator Collection Map

ListIterator List Set
Produces

HashMap TreeMap

HashSet TreeSetArrayList LinkedList

ProducesProduces

Collections

Arrays

Utilities

Comparable Comparator

LinkedHashMap

LinkedHashSet

Now it only includes the interfaces and classes that you will encounter on
a regular basis, and also the elements that we will focus on in this chapter.
Note that the WeakHashMap and the JDK 1.4 IdentityHashMap are
not included on this diagram as they are special-purpose tools that you
will rarely use. Feedback

Here’s a simple example, which fills a Collection (represented here with
an ArrayList) with String objects, and then prints each element in the
Collection:

//: c11:SimpleCollection.java
// A simple example using Java 2 Collections.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class SimpleCollection {
 private static Test monitor = new Test();
 public static void main(String[] args) {

534 Thinking in Java www.BruceEckel.com

 // Upcast because we just want to
 // work with Collection features
 Collection c = new ArrayList();
 for(int i = 0; i < 10; i++)
 c.add(Integer.toString(i));
 Iterator it = c.iterator();
 while(it.hasNext())
 System.out.println(it.next());
 monitor.expect(new String[] {
 "0",
 "1",
 "2",
 "3",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9"
 });
 }
} ///:~

The first line in main() creates an ArrayList object and then upcasts it
to a Collection. Since this example uses only the Collection methods,
any object of a class inherited from Collection would work, but
ArrayList is the typical workhorse Collection. Feedback

The add() method, as its name suggests, puts a new element in the
Collection. However, the documentation carefully states that add()
“ensures that this Container contains the specified element.” This is to
allow for the meaning of Set, which adds the element only if it isn’t
already there. With an ArrayList, or any sort of List, add() always
means “put it in,” because Lists don’t care if there are duplicates. Feedback

All Collections can produce an Iterator via their iterator() method.
Here, an Iterator is created and used to traverse the Collection,
printing each element. Feedback

Chapter 11: Collections of Objects 535

Collection functionality
The following table shows everything you can do with a Collection (not
including the methods that automatically come through with Object),
and thus, everything you can do with a Set or a List. (List also has
additional functionality.) Maps are not inherited from Collection, and
will be treated separately.

boolean add(Object) Ensures that the container holds the
argument. Returns false if it doesn’t add
the argument. (This is an “optional”
method, described later in this chapter.)

boolean
addAll(Collection)

Adds all the elements in the argument.
Returns true if any elements were
added. (“Optional.”)

void clear() Removes all the elements in the
container. (“Optional.”)

boolean
contains(Object)

true if the container holds the
argument.

boolean
containsAll(Collection)

true if the container holds all the
elements in the argument.

boolean isEmpty() true if the container has no elements.

Iterator iterator() Returns an Iterator that you can use to
move through the elements in the
container.

boolean
remove(Object)

If the argument is in the container, one
instance of that element is removed.
Returns true if a removal occurred.
(“Optional.”)

boolean
removeAll(Collection)

Removes all the elements that are
contained in the argument. Returns
true if any removals occurred.
(“Optional.”)

boolean
retainAll(Collection)

Retains only elements that are
contained in the argument (an
“intersection” from set theory). Returns
true if any changes occurred.

536 Thinking in Java www.BruceEckel.com

(“Optional.”)

int size() Returns the number of elements in the
container.

Object[] toArray() Returns an array containing all the
elements in the container.

Object[]
toArray(Object[] a)

Returns an array containing all the
elements in the container, whose type is
that of the array a rather than plain
Object (you must cast the array to the
right type).

Notice that there’s no get() method for random-access element selection.
That’s because Collection also includes Set, which maintains its own
internal ordering (and thus makes random-access lookup meaningless).
Thus, if you want to examine the elements of a Collection you must use
an iterator.

The following example demonstrates all of these methods. Again, these
work with anything that implements Collection, but an ArrayList is
used as a kind of “least-common denominator”: Feedback

//: c11:Collection1.java
// Things you can do with all Collections.
import com.bruceeckel.simpletest.*;
import java.util.*;
import com.bruceeckel.util.*;

public class Collection1 {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Collection c = new ArrayList();
 Collections2.fill(c, Collections2.countries, 5);
 c.add("ten");
 c.add("eleven");
 System.out.println(c);
 // Make an array from the List:
 Object[] array = c.toArray();
 // Make a String array from the List:
 String[] str = (String[])c.toArray(new String[1]);
 // Find max and min elements; this means
 // different things depending on the way
 // the Comparable interface is implemented:

Chapter 11: Collections of Objects 537

 System.out.println("Collections.max(c) = " +
 Collections.max(c));
 System.out.println("Collections.min(c) = " +
 Collections.min(c));
 // Add a Collection to another Collection
 Collection c2 = new ArrayList();
 Collections2.fill(c2, Collections2.countries, 5);
 c.addAll(c2);
 System.out.println(c);
 c.remove(CountryCapitals.pairs[0][0]);
 System.out.println(c);
 c.remove(CountryCapitals.pairs[1][0]);
 System.out.println(c);
 // Remove all components that are
 // in the argument collection:
 c.removeAll(c2);
 System.out.println(c);
 c.addAll(c2);
 System.out.println(c);
 // Is an element in this Collection?
 String val = CountryCapitals.pairs[3][0];
 System.out.println("c.contains(" + val + ") = "
 + c.contains(val));
 // Is a Collection in this Collection?
 System.out.println(
 "c.containsAll(c2) = " + c.containsAll(c2));
 Collection c3 = ((List)c).subList(3, 5);
 // Keep all the elements that are in both
 // c2 and c3 (an intersection of sets):
 c2.retainAll(c3);
 System.out.println(c);
 // Throw away all the elements
 // in c2 that also appear in c3:
 c2.removeAll(c3);
 System.out.println("c.isEmpty() = " + c.isEmpty());
 c = new ArrayList();
 Collections2.fill(c, Collections2.countries, 5);
 System.out.println(c);
 c.clear(); // Remove all elements
 System.out.println("after c.clear():");
 System.out.println(c);
 monitor.expect(new String[] {
 "[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, " +
 "ten, eleven]",

538 Thinking in Java www.BruceEckel.com

 "Collections.max(c) = ten",
 "Collections.min(c) = ALGERIA",
 "[ALGERIA, ANGOLA, BENIN, BOTSWANA, BURKINA FASO, " +
 "ten, eleven, BURUNDI, CAMEROON, CAPE VERDE, " +
 "CENTRAL AFRICAN REPUBLIC, CHAD]",
 "[ANGOLA, BENIN, BOTSWANA, BURKINA FASO, ten, " +
 "eleven, BURUNDI, CAMEROON, CAPE VERDE, " +
 "CENTRAL AFRICAN REPUBLIC, CHAD]",
 "[BENIN, BOTSWANA, BURKINA FASO, ten, eleven, " +
 "BURUNDI, CAMEROON, CAPE VERDE, " +
 "CENTRAL AFRICAN REPUBLIC, CHAD]",
 "[BENIN, BOTSWANA, BURKINA FASO, ten, eleven]",
 "[BENIN, BOTSWANA, BURKINA FASO, ten, eleven, " +
 "BURUNDI, CAMEROON, CAPE VERDE, " +
 "CENTRAL AFRICAN REPUBLIC, CHAD]",
 "c.contains(BOTSWANA) = true",
 "c.containsAll(c2) = true",
 "[BENIN, BOTSWANA, BURKINA FASO, ten, eleven, " +
 "BURUNDI, CAMEROON, CAPE VERDE, " +
 "CENTRAL AFRICAN REPUBLIC, CHAD]",
 "c.isEmpty() = false",
 "[COMOROS, CONGO, DJIBOUTI, EGYPT, " +
 "EQUATORIAL GUINEA]",
 "after c.clear():",
 "[]"
 });
 }
} ///:~

ArrayLists are created containing different sets of data and upcast to
Collection objects, so it’s clear that nothing other than the Collection
interface is being used. main() uses simple exercises to show all of the
methods in Collection. Feedback

The following sections describe the various implementations of List, Set,
and Map and indicate in each case (with an asterisk) which one should be
your default choice. You’ll notice that the legacy classes Vector, Stack,
and Hashtable are not included because in all cases there are preferred
classes within the Java 2 Containers. Feedback

Chapter 11: Collections of Objects 539

List functionality
The basic List is quite simple to use, as you’ve seen so far with
ArrayList. Although most of the time you’ll just use add() to insert
objects, get() to get them out one at a time, and iterator() to get an
Iterator for the sequence, there’s also a set of other methods that can be
useful. Feedback

In addition, there are actually two types of List: the basic ArrayList,
which excels at randomly accessing elements, and the much more
powerful LinkedList (which is not designed for fast random access, but
has a much more general set of methods).

List
(interface)

Order is the most important feature of a List; it
promises to maintain elements in a particular
sequence. List adds a number of methods to
Collection that allow insertion and removal of
elements in the middle of a List. (This is
recommended only for a LinkedList.) A List will
produce a ListIterator, and using this you can
traverse the List in both directions, as well as insert
and remove elements in the middle of the List.

ArrayList* A List implemented with an array. Allows rapid
random access to elements, but is slow when
inserting and removing elements from the middle of
a list. ListIterator should be used only for back-
and-forth traversal of an ArrayList, but not for
inserting and removing elements, which is
expensive compared to LinkedList.

LinkedList Provides optimal sequential access, with
inexpensive insertions and deletions from the
middle of the List. Relatively slow for random
access. (Use ArrayList instead.) Also has
addFirst(), addLast(), getFirst(), getLast(),
removeFirst(), and removeLast() (which are
not defined in any interfaces or base classes) to
allow it to be used as a stack, a queue, and a deque.

The methods in the following example each cover a different group of
activities: things that every list can do (basicTest()), moving around

540 Thinking in Java www.BruceEckel.com

with an Iterator (iterMotion()) versus changing things with an
Iterator (iterManipulation()), seeing the effects of List manipulation
(testVisual()), and operations available only to LinkedLists. Feedback

//: c11:List1.java
// Things you can do with Lists.
import java.util.*;
import com.bruceeckel.util.*;

public class List1 {
 public static List fill(List a) {
 Collections2.countries.reset();
 Collections2.fill(a, Collections2.countries, 10);
 return a;
 }
 private static boolean b;
 private static Object o;
 private static int i;
 private static Iterator it;
 private static ListIterator lit;
 public static void basicTest(List a) {
 a.add(1, "x"); // Add at location 1
 a.add("x"); // Add at end
 // Add a collection:
 a.addAll(fill(new ArrayList()));
 // Add a collection starting at location 3:
 a.addAll(3, fill(new ArrayList()));
 b = a.contains("1"); // Is it in there?
 // Is the entire collection in there?
 b = a.containsAll(fill(new ArrayList()));
 // Lists allow random access, which is cheap
 // for ArrayList, expensive for LinkedList:
 o = a.get(1); // Get object at location 1
 i = a.indexOf("1"); // Tell index of object
 b = a.isEmpty(); // Any elements inside?
 it = a.iterator(); // Ordinary Iterator
 lit = a.listIterator(); // ListIterator
 lit = a.listIterator(3); // Start at loc 3
 i = a.lastIndexOf("1"); // Last match
 a.remove(1); // Remove location 1
 a.remove("3"); // Remove this object
 a.set(1, "y"); // Set location 1 to "y"
 // Keep everything that's in the argument
 // (the intersection of the two sets):

Chapter 11: Collections of Objects 541

 a.retainAll(fill(new ArrayList()));
 // Remove everything that's in the argument:
 a.removeAll(fill(new ArrayList()));
 i = a.size(); // How big is it?
 a.clear(); // Remove all elements
 }
 public static void iterMotion(List a) {
 ListIterator it = a.listIterator();
 b = it.hasNext();
 b = it.hasPrevious();
 o = it.next();
 i = it.nextIndex();
 o = it.previous();
 i = it.previousIndex();
 }
 public static void iterManipulation(List a) {
 ListIterator it = a.listIterator();
 it.add("47");
 // Must move to an element after add():
 it.next();
 // Remove the element that was just produced:
 it.remove();
 // Must move to an element after remove():
 it.next();
 // Change the element that was just produced:
 it.set("47");
 }
 public static void testVisual(List a) {
 System.out.println(a);
 List b = new ArrayList();
 fill(b);
 System.out.print("b = ");
 System.out.println(b);
 a.addAll(b);
 a.addAll(fill(new ArrayList()));
 System.out.println(a);
 // Insert, remove, and replace elements
 // using a ListIterator:
 ListIterator x = a.listIterator(a.size()/2);
 x.add("one");
 System.out.println(a);
 System.out.println(x.next());
 x.remove();
 System.out.println(x.next());

542 Thinking in Java www.BruceEckel.com

 x.set("47");
 System.out.println(a);
 // Traverse the list backwards:
 x = a.listIterator(a.size());
 while(x.hasPrevious())
 System.out.print(x.previous() + " ");
 System.out.println();
 System.out.println("testVisual finished");
 }
 // There are some things that only LinkedLists can do:
 public static void testLinkedList() {
 LinkedList ll = new LinkedList();
 fill(ll);
 System.out.println(ll);
 // Treat it like a stack, pushing:
 ll.addFirst("one");
 ll.addFirst("two");
 System.out.println(ll);
 // Like "peeking" at the top of a stack:
 System.out.println(ll.getFirst());
 // Like popping a stack:
 System.out.println(ll.removeFirst());
 System.out.println(ll.removeFirst());
 // Treat it like a queue, pulling elements
 // off the tail end:
 System.out.println(ll.removeLast());
 // With the above operations, it's a dequeue!
 System.out.println(ll);
 }
 public static void main(String[] args) {
 // Make and fill a new list each time:
 basicTest(fill(new LinkedList()));
 basicTest(fill(new ArrayList()));
 iterMotion(fill(new LinkedList()));
 iterMotion(fill(new ArrayList()));
 iterManipulation(fill(new LinkedList()));
 iterManipulation(fill(new ArrayList()));
 testVisual(fill(new LinkedList()));
 testLinkedList();
 }
} ///:~

In basicTest() and iterMotion() the calls are made in order to show
the proper syntax, and while the return value is captured, it is not used. In

Chapter 11: Collections of Objects 543

some cases, the return value isn’t captured at all. You should look up the
full usage of each of these methods in the JDK documentation from
java.sun.com before you use them. Feedback

Remember that a container is only a storage cabinet to hold objects. If
that cabinet solves all of your needs, it doesn’t really matter how it is
implemented (a basic concept with most types of objects). If you’re
working in a programming environment that has built-in overhead due to
other factors, then the cost difference between an ArrayList and a
LinkedList might not matter. You might need only one type of sequence.
You can even imagine the “perfect” container abstraction, which can
automatically change its underlying implementation according to the way
it is used. Feedback

Making a stack from a LinkedList
A stack is sometimes referred to as a “last-in, first-out” (LIFO) container.
That is, whatever you “push” on the stack last is the first item you can
“pop” out. Like all of the other containers in Java, what you push and pop
are Objects, so you must cast what you pop, unless you’re just using
Object behavior. Feedback

The LinkedList has methods that directly implement stack functionality,
so you can also just use a LinkedList rather than making a stack class.
However, a stack class can sometimes tell the story better: Feedback

//: c11:StackL.java
// Making a stack from a LinkedList.
import com.bruceeckel.simpletest.*;
import java.util.*;
import com.bruceeckel.util.*;

public class StackL {
 private static Test monitor = new Test();
 private LinkedList list = new LinkedList();
 public void push(Object v) { list.addFirst(v); }
 public Object top() { return list.getFirst(); }
 public Object pop() { return list.removeFirst(); }
 public static void main(String[] args) {
 StackL stack = new StackL();
 for(int i = 0; i < 10; i++)
 stack.push(Collections2.countries.next());

544 Thinking in Java www.BruceEckel.com

 System.out.println(stack.top());
 System.out.println(stack.top());
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 System.out.println(stack.pop());
 monitor.expect(new String[] {
 "CHAD",
 "CHAD",
 "CHAD",
 "CENTRAL AFRICAN REPUBLIC",
 "CAPE VERDE"
 });
 }
} ///:~

If you want only stack behavior, inheritance is inappropriate here because
it would produce a class with all the rest of the LinkedList methods
(you’ll see later that this very mistake was made by the Java 1.0 library
designers with Stack). Feedback

Making a queue from a LinkedList
A queue is a “first-in, first-out” (FIFO) container. That is, you put things
in at one end, and pull them out at the other. So the order in which you
put them in will be the same order that they come out. LinkedList has
methods to support queue behavior, so these can be used in a Queue
class: Feedback

//: c11:Queue.java
// Making a queue from a LinkedList.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class Queue {
 private static Test monitor = new Test();
 private LinkedList list = new LinkedList();
 public void put(Object v) { list.addFirst(v); }
 public Object get() { return list.removeLast(); }
 public boolean isEmpty() { return list.isEmpty(); }
 public static void main(String[] args) {
 Queue queue = new Queue();
 for(int i = 0; i < 10; i++)
 queue.put(Integer.toString(i));
 while(!queue.isEmpty())

Chapter 11: Collections of Objects 545

 System.out.println(queue.get());
 monitor.expect(new String[] {
 "0",
 "1",
 "2",
 "3",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9"
 });
 }
} ///:~

You can also easily create a deque (double-ended queue) from a
LinkedList. This is like a queue, but you can add and remove elements
from either end. Feedback

Set functionality
Set has exactly the same interface as Collection, so there isn’t any extra
functionality like there is with the two different Lists. Instead, the Set is
exactly a Collection, it just has different behavior. (This is the ideal use
of inheritance and polymorphism: to express different behavior.) A Set
refuses to hold more than one instance of each object value (what
constitutes the “value” of an object is more complex, as you shall see).

Set (interface) Each element that you add to the Set must be
unique; otherwise the Set doesn’t add the
duplicate element. Objects added to a Set
must define equals() to establish object
uniqueness. Set has exactly the same interface
as Collection. The Set interface does not
guarantee it will maintain its elements in any
particular order.

HashSet* For Sets where fast lookup time is important.
Objects must also define hashCode().

TreeSet An ordered Set backed by a tree. This way, you
can extract an ordered sequence from a Set.

546 Thinking in Java www.BruceEckel.com

LinkedHashSet
(JDK 1.4)

Has the lookup speed of a HashSet, but
maintains the order that you add the elements
(the insertion order), internally using a linked
list. Thus, when you iterate through the Set,
the results appear in insertion order.

The following example does not show everything you can do with a Set,
since the interface is the same as Collection, and so was exercised in the
previous example. Instead, this demonstrates the behavior that makes a
Set unique: Feedback

//: c11:Set1.java
// Things you can do with Sets.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class Set1 {
 private static Test monitor = new Test();
 static void fill(Set s) {
 s.addAll(Arrays.asList(
 "one two three four five six seven".split(" ")));
 }
 public static void test(Set s) {
 // Strip qualifiers from class name:
 System.out.println(
 s.getClass().getName().replaceAll("\\w+\\.", ""));
 fill(s); fill(s); fill(s);
 System.out.println(s); // No duplicates!
 // Add another set to this one:
 s.addAll(s);
 s.add("one");
 s.add("one");
 s.add("one");
 System.out.println(s);
 // Look something up:
 System.out.println("s.contains(\"one\"): " +
 s.contains("one"));
 }
 public static void main(String[] args) {
 test(new HashSet());
 test(new TreeSet());
 test(new LinkedHashSet());
 monitor.expect(new String[] {

Chapter 11: Collections of Objects 547

 "HashSet",
 "[one, two, five, four, three, seven, six]",
 "[one, two, five, four, three, seven, six]",
 "s.contains(\"one\"): true",
 "TreeSet",
 "[five, four, one, seven, six, three, two]",
 "[five, four, one, seven, six, three, two]",
 "s.contains(\"one\"): true",
 "LinkedHashSet",
 "[one, two, three, four, five, six, seven]",
 "[one, two, three, four, five, six, seven]",
 "s.contains(\"one\"): true"
 });
 }
} ///:~

Duplicate values are added to the Set, but when it is printed you’ll see the
Set has accepted only one instance of each value. Feedback

When you run this program you’ll notice that the order maintained by the
HashSet is different from TreeSet and LinkedHashSet, since each
has a different way of storing elements so they can be located later.
(TreeSet keeps elements sorted into a red-black tree data structure,
while HashSet uses a hashing function, which is designed specifically for
rapid lookups. LinkedHashSet uses hashing internally for lookup
speed, but appears to maintain elements in insertion order using a linked
list.) When creating your own types, be aware that a Set needs a way to
maintain a storage order, which means you must implement the
Comparable interface and define the compareTo() method. Here’s an
example: Feedback

//: c11:Set2.java
// Putting your own type in a Set.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class Set2 {
 private static Test monitor = new Test();
 public static Set fill(Set a, int size) {
 for(int i = 0; i < size; i++)
 a.add(new MyType(i));
 return a;
 }

548 Thinking in Java www.BruceEckel.com

 public static void test(Set a) {
 fill(a, 10);
 fill(a, 10); // Try to add duplicates
 fill(a, 10);
 a.addAll(fill(new TreeSet(), 10));
 System.out.println(a);
 }
 public static void main(String[] args) {
 test(new HashSet());
 test(new TreeSet());
 test(new LinkedHashSet());
 monitor.expect(new String[] {
 "[2 , 4 , 9 , 8 , 6 , 1 , 3 , 7 , 5 , 0]",
 "[9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0]",
 "[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]"
 });
 }
} ///:~

The form for the definitions for equals() and hashCode() will be
described later in this chapter. You must define an equals() in both
cases, but the hashCode() is absolutely necessary only if the class will
be placed in a HashSet (which is likely, since that should generally be
your first choice as a Set implementation). However, as a programming
style you should always override hashCode() when you override
equals(). This process will be fully detailed later in this chapter. Feedback

In the compareTo(), note that I did not use the “simple and obvious”
form return i-i2. Although this is a common programming error, it
would only work properly if i and i2 were “unsigned” ints (if Java had an
“unsigned” keyword, which it does not). It breaks for Java’s signed int,
which is not big enough to represent the difference of two signed ints. If i
is a large positive integer and j is a large negative integer, i-j will overflow
and return a negative value, which will not work. Feedback

SortedSet
If you have a SortedSet (of which TreeSet is the only one available), the
elements are guaranteed to be in sorted order which allows additional
functionality to be provided with these methods in the SortedSet
interface: Feedback

Chapter 11: Collections of Objects 549

Comparator comparator(): Produces the Comparator used for
this Set, or null for natural ordering.

Object first(): Produces the lowest element.

Object last(): Produces the highest element.

SortedSet subSet(fromElement, toElement): Produces a view
of this Set with elements from fromElement, inclusive, to
toElement, exclusive.

SortedSet headSet(toElement): Produces a view of this Set with
elements less than toElement.

SortedSet tailSet(fromElement): Produces a view of this Set
with elements greater than or equal to fromElement.

Here’s a simple demonstration:

//: c11:SortedSetDemo.java
// What you can do with a TreeSet.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class SortedSetDemo {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 SortedSet sortedSet = new TreeSet(Arrays.asList(
 "one two three four five six seven eight".split(" ")));
 System.out.println(sortedSet);
 Object
 low = sortedSet.first(),
 high = sortedSet.last();
 System.out.println(low);
 System.out.println(high);
 Iterator it = sortedSet.iterator();
 for(int i = 0; i <= 6; i++) {
 if(i == 3) low = it.next();
 if(i == 6) high = it.next();
 else it.next();
 }
 System.out.println(low);
 System.out.println(high);
 System.out.println(sortedSet.subSet(low, high));
 System.out.println(sortedSet.headSet(high));
 System.out.println(sortedSet.tailSet(low));
 monitor.expect(new String[] {

550 Thinking in Java www.BruceEckel.com

 "[eight, five, four, one, seven, six, three, two]",
 "eight",
 "two",
 "one",
 "two",
 "[one, seven, six, three]",
 "[eight, five, four, one, seven, six, three]",
 "[one, seven, six, three, two]"
 });
 }
} ///:~

Note that SortedSet means “sorted according to the comparison
function of the object,” not “insertion order.”

Map functionality
An ArrayList allows you to select from a sequence of objects using a
number, so in a sense it associates numbers to objects. But what if you’d
like to select from a sequence of objects using some other criterion? A
stack is an example: its selection criterion is “the last thing pushed on the
stack.” A powerful twist on this idea of “selecting from a sequence” is
alternately termed a map, a dictionary, or an associative array (you saw
a simple example of this in AssociativeArray.java in the previous
chapter). Conceptually, it seems like an ArrayList, but instead of looking
up objects using a number, you look them up using another object! This is
a key technique in programming. Feedback

The concept shows up in Java as the Map interface. The put(Object
key, Object value) method adds a value (the thing you want), and
associates it with a key (the thing you look it up with). get(Object key)
produces the value given the corresponding key. You can also test a Map
to see if it contains a key or a value with containsKey() and
containsValue(). Feedback

The standard Java library contains different types of Maps: HashMap,
TreeMap, LinkedHashMap, WeakHashMap and
IdentityHashMap. The all have the same basic Map interface, but they
differ in behaviors including efficiency, order in which the pairs are held

Chapter 11: Collections of Objects 551

and presented, how long the objects are held by the map, and how key
equality is determined. Feedback

A big issue with maps is performance. If you look at what must be done
for a get(), it seems pretty slow to search through (for example) an
ArrayList for the key. This is where HashMap speeds things up.
Instead of a slow search for the key, it uses a special value called a hash
code. The hash code is a way to take some information in the object in
question and turn it into a “relatively unique” int for that object. All Java
objects can produce a hash code, and hashCode() is a method in the
root class Object. A HashMap takes the hashCode() of the object and
uses it to quickly hunt for the key. This results in a dramatic performance
improvement8. Feedback

Map (interface) Maintains key-value associations (pairs), so
you can look up a value using a key.

HashMap* Implementation based on a hash table.
(Use this instead of Hashtable.) Provides
constant-time performance for inserting
and locating pairs. Performance can be
adjusted via constructors that allow you to
set the capacity and load factor of the hash
table.

LinkedHashMap
(JDK 1.4)

Like a HashMap, but when you iterate
through it you get the pairs in insertion
order, or in least-recently-used (LRU)
order. Only slightly slower than a
HashMap, except when iterating, where it
is faster due to the linked list used to
maintain the internal ordering.

TreeMap Implementation based on a red-black tree.
When you view the keys or the pairs, they

8 If these speedups still don’t meet your performance needs, you can further accelerate
table lookup by writing your own Map and customizing it to your particular types to avoid
delays due to casting to and from Objects. To reach even higher levels of performance,
speed enthusiasts can use Donald Knuth’s The Art of Computer Programming, Volume 3:
Sorting and Searching, Second Edition to replace overflow bucket lists with arrays that
have two additional benefits: they can be optimized for disk storage characteristics and
they can save most of the time of creating and garbage collecting individual records.

552 Thinking in Java www.BruceEckel.com

will be in sorted order (determined by
Comparable or Comparator, discussed
later). The point of a TreeMap is that you
get the results in sorted order. TreeMap is
the only Map with the subMap()
method, which allows you to return a
portion of the tree.

WeakHashMap A map of weak keys that allow objects
referred to by the map to be released;
designed to solve certain types of problems.
If no references outside the map are held to
a particular key, it may be garbage
collected.

IdentityHashMap
(JDK 1.4)

A hash map that uses == instead of
equals() to compare keys. Only for
solving special types of problems; not for
general use.

Hashing is the most commonly-used way to store elements in a map.
Sometimes you’ll need to know the details of how hashing works, so we’ll
look at that a little later.

The following example uses the Collections2.fill() method and the test
data sets that were previously defined: Feedback

//: c11:Map1.java
// Things you can do with Maps.
import java.util.*;
import com.bruceeckel.util.*;

public class Map1 {
 private static Collections2.StringPairGenerator geo =
 Collections2.geography;
 private static Collections2.RandStringPairGenerator
 rsp = Collections2.rsp;
 // Producing a Set of the keys:
 public static void printKeys(Map map) {
 System.out.print("Size = " + map.size() +", ");
 System.out.print("Keys: ");
 System.out.println(map.keySet());
 }
 public static void test(Map map) {

Chapter 11: Collections of Objects 553

 // Strip qualifiers from class name:
 System.out.println(
 map.getClass().getName().replaceAll("\\w+\\.", ""));
 Collections2.fill(map, geo, 25);
 // Map has 'Set' behavior for keys:
 Collections2.fill(map, geo.reset(), 25);
 printKeys(map);
 // Producing a Collection of the values:
 System.out.print("Values: ");
 System.out.println(map.values());
 System.out.println(map);
 String key = CountryCapitals.pairs[4][0];
 String value = CountryCapitals.pairs[4][1];
 System.out.println("map.containsKey(\"" + key +
 "\"): " + map.containsKey(key));
 System.out.println("map.get(\"" + key + "\"): "
 + map.get(key));
 System.out.println("map.containsValue(\""
 + value + "\"): " + map.containsValue(value));
 Map map2 = new TreeMap();
 Collections2.fill(map2, rsp, 25);
 map.putAll(map2);
 printKeys(map);
 key = map.keySet().iterator().next().toString();
 System.out.println("First key in map: " + key);
 map.remove(key);
 printKeys(map);
 map.clear();
 System.out.println("map.isEmpty(): " + map.isEmpty());
 Collections2.fill(map, geo.reset(), 25);
 // Operations on the Set change the Map:
 map.keySet().removeAll(map.keySet());
 System.out.println("map.isEmpty(): " + map.isEmpty());
 }
 public static void main(String[] args) {
 test(new HashMap());
 test(new TreeMap());
 test(new LinkedHashMap());
 test(new IdentityHashMap());
 test(new WeakHashMap());
 }
} ///:~

554 Thinking in Java www.BruceEckel.com

The printKeys() and printValues() methods are not only useful
utilities, they also demonstrate how to produce Collection views of a
Map. The keySet() method produces a Set backed by the keys in the
Map. Similar treatment is given to values(), which produces a
Collection containing all the values in the Map. (Note that keys must be
unique, while values may contain duplicates.) Since these Collections
are backed by the Map, any changes in a Collection will be reflected in
the associated Map. Feedback

The rest of the program provides simple examples of each Map operation,
and tests each type of Map. Feedback

As an example of the use of a HashMap, consider a program to check the
randomness of Java’s Random class. Ideally, it would produce a perfect
distribution of random numbers, but to test this you need to generate a
bunch of random numbers and count the ones that fall in the various
ranges. A HashMap is perfect for this, since it associates objects with
objects (in this case, the value object contains the number produced by
Math.random() along with the number of times that number appears):

//: c11:Statistics.java
// Simple demonstration of HashMap.
import java.util.*;

class Counter {
 int i = 1;
 public String toString() { return Integer.toString(i); }
}

public class Statistics {
 private static Random rand = new Random();
 public static void main(String[] args) {
 Map hm = new HashMap();
 for(int i = 0; i < 10000; i++) {
 // Produce a number between 0 and 20:
 Integer r = new Integer(rand.nextInt(20));
 if(hm.containsKey(r))
 ((Counter)hm.get(r)).i++;
 else
 hm.put(r, new Counter());
 }
 System.out.println(hm);

Chapter 11: Collections of Objects 555

 }
} ///:~

In main(), each time a random number is generated it is wrapped inside
an Integer object so that reference can be used with the HashMap. (You
can’t use a primitive with a container, only an object reference.) The
containsKey() method checks to see if this key is already in the
container. (That is, has the number been found already?) If so, the get()
method produces the associated value for the key, which in this case is a
Counter object. The value i inside the counter is incremented to indicate
that one more of this particular random number has been found. Feedback

If the key has not been found yet, the method put() will place a new key-
value pair into the HashMap. Since Counter automatically initializes its
variable i to one when it’s created, it indicates the first occurrence of this
particular random number. Feedback

To display the HashMap, it is simply printed. The HashMap
toString() method moves through all the key-value pairs and calls the
toString() for each one. The Integer.toString() is predefined, and
you can see the toString() for Counter. The output from one run (with
some line breaks added) is:

{15=529, 4=488, 19=518, 8=487, 11=501, 16=487, 18=507,
3=524, 7=474, 12=485, 17=493, 2=490, 13=540, 9=453, 6=512,
1=466, 14=522, 10=471, 5=522, 0=531}

You might wonder at the necessity of the class Counter, which seems like
it doesn’t even have the functionality of the wrapper class Integer. Why
not use int or Integer? Well, you can’t use an int because all of the
containers can hold only Object references. After seeing containers the
wrapper classes might begin to make a little more sense to you, since you
can’t put any of the primitive types in containers. However, the only thing
you can do with the Java wrappers is to initialize them to a particular
value and read that value. That is, there’s no way to change a value once a
wrapper object has been created. This makes the Integer wrapper
immediately useless to solve the problem, so we’re forced to create a new
class that does satisfy the need. Feedback

556 Thinking in Java www.BruceEckel.com

SortedMap
If you have a SortedMap (of which TreeMap is the only one available),
the keys are guaranteed to be in sorted order which allows additional
functionality to be provided with these methods in the SortedMap
interface: Feedback

Comparator comparator(): Produces the comparator used for
this Map, or null for natural ordering.

Object firstKey(): Produces the lowest key.

Object lastKey(): Produces the highest key.

SortedMap subMap(fromKey, toKey): Produces a view of this
Map with keys from fromKey, inclusive, to toKey, exclusive.

SortedMap headMap(toKey): Produces a view of this Map with
keys less than toKey.

SortedMap tailMap(fromKey): Produces a view of this Map with
keys greater than or equal to fromKey. Feedback

Here’s an example that’s similar to SortedSetDemo.java, showing this
additional behavior of TreeMaps:

//: c11:SimplePairGenerator.java
import com.bruceeckel.util.*;
//import java.util.*;

public class SimplePairGenerator implements MapGenerator {
 public Pair[] items = {
 new Pair("one", "A"), new Pair("two", "B"),
 new Pair("three", "C"), new Pair("four", "D"),
 new Pair("five", "E"), new Pair("six", "F"),
 new Pair("seven", "G"), new Pair("eight", "H"),
 new Pair("nine", "I"), new Pair("ten", "J")
 };
 private int index = -1;
 public Pair next() {
 index = (index + 1) % items.length;
 return items[index];
 }
 public static SimplePairGenerator gen =
 new SimplePairGenerator();
} ///:~

Chapter 11: Collections of Objects 557

//: c11:SortedMapDemo.java
// What you can do with a TreeMap.
import com.bruceeckel.simpletest.*;
import com.bruceeckel.util.*;
import java.util.*;

public class SortedMapDemo {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 TreeMap sortedMap = new TreeMap();
 Collections2.fill(
 sortedMap, SimplePairGenerator.gen, 10);
 System.out.println(sortedMap);
 Object
 low = sortedMap.firstKey(),
 high = sortedMap.lastKey();
 System.out.println(low);
 System.out.println(high);
 Iterator it = sortedMap.keySet().iterator();
 for(int i = 0; i <= 6; i++) {
 if(i == 3) low = it.next();
 if(i == 6) high = it.next();
 else it.next();
 }
 System.out.println(low);
 System.out.println(high);
 System.out.println(sortedMap.subMap(low, high));
 System.out.println(sortedMap.headMap(high));
 System.out.println(sortedMap.tailMap(low));
 monitor.expect(new String[] {
 "{eight=H, five=E, four=D, nine=I, one=A, seven=G," +
 " six=F, ten=J, three=C, two=B}",
 "eight",
 "two",
 "nine",
 "ten",
 "{nine=I, one=A, seven=G, six=F}",
 "{eight=H, five=E, four=D, nine=I, " +
 "one=A, seven=G, six=F}",
 "{nine=I, one=A, seven=G, six=F, " +
 "ten=J, three=C, two=B}"
 });
 }
} ///:~

558 Thinking in Java www.BruceEckel.com

Here, the pairs are stored by key-sorted order. Because there is a sense of
order in the TreeMap, the concept of “location” makes sense, so you can
have first and last elements and submaps. Feedback

LinkedHashMap
The LinkedHashMap hashes everything for speed, but also produces
the pairs in insertion order during a traversal (println() iterates through
the map, so you see the results of traversal). In addition, a
LinkedHashMap can be configured in the constructor to use a least-
recently used (LRU) algorithm based on accesses, so elements that
haven’t been accessed (and thus, are candidates for removal) appear at
the front of the list. This allows easy creation of programs that do periodic
cleanup in order to save space. Here’s a simple example showing both
features: Feedback

//: c11:LinkedHashMapDemo.java
// What you can do with a LinkedHashMap.
import com.bruceeckel.simpletest.*;
import com.bruceeckel.util.*;
import java.util.*;

public class LinkedHashMapDemo {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 LinkedHashMap linkedMap = new LinkedHashMap();
 Collections2.fill(
 linkedMap, SimplePairGenerator.gen, 10);
 System.out.println(linkedMap);
 // Least-recently used order:
 linkedMap = new LinkedHashMap(16, 0.75f, true);
 Collections2.fill(
 linkedMap, SimplePairGenerator.gen, 10);
 System.out.println(linkedMap);
 for(int i = 0; i < 7; i++) // Cause accesses:
 linkedMap.get(SimplePairGenerator.gen.items[i].key);
 System.out.println(linkedMap);
 linkedMap.get(SimplePairGenerator.gen.items[0].key);
 System.out.println(linkedMap);
 monitor.expect(new String[] {
 "{one=A, two=B, three=C, four=D, five=E, " +
 "six=F, seven=G, eight=H, nine=I, ten=J}",
 "{one=A, two=B, three=C, four=D, five=E, " +

Chapter 11: Collections of Objects 559

 "six=F, seven=G, eight=H, nine=I, ten=J}",
 "{eight=H, nine=I, ten=J, one=A, two=B, " +
 "three=C, four=D, five=E, six=F, seven=G}",
 "{eight=H, nine=I, ten=J, two=B, three=C, " +
 "four=D, five=E, six=F, seven=G, one=A}"
 });
 }
} ///:~

You can see from the output that the pairs are indeed traversed in
insertion order, even for the LRU version. However, after the first seven
items (only) are accessed, the last three items move to the front of the list.
Then, when “one” is accessed again, it moves to the back of the list. Feedback

Hashing and hash codes
In Statistics.java, a standard library class (Integer) was used as a key
for the HashMap. It worked because it has all the necessary wiring to
make it behave correctly as a key. But a common pitfall occurs with
HashMaps when you create your own classes to be used as keys. For
example, consider a weather predicting system that matches Groundhog
objects to Prediction objects. It seems fairly straightforward—you create
the two classes, and use Groundhog as the key and Prediction as the
value: Feedback

//: c11:Groundhog.java
// Looks plausible, but doesn't work as a HashMap key.

public class Groundhog {
 protected int number;
 public Groundhog(int n) { number = n; }
 public String toString() {
 return "Groundhog #" + number;
 }
} ///:~

//: c11:Prediction.java
// Predicting the weather with groundhogs.

public class Prediction {
 private boolean shadow = Math.random() > 0.5;
 public String toString() {
 if(shadow)

560 Thinking in Java www.BruceEckel.com

 return "Six more weeks of Winter!";
 else
 return "Early Spring!";
 }
} ///:~

//: c11:SpringDetector.java
// What will the weather be?
import com.bruceeckel.simpletest.*;
import java.util.*;
import java.lang.reflect.*;

public class SpringDetector {
 private static Test monitor = new Test();
 // Uses a Groundhog or class derived from Groundhog:
 public static void
 detectSpring(Class groundHogClass) throws Exception {
 Constructor ghog = groundHogClass.getConstructor(
 new Class[] {int.class});
 Map map = new HashMap();
 for(int i = 0; i < 10; i++)
 map.put(ghog.newInstance(
 new Object[]{ new Integer(i) }), new Prediction());
 System.out.println("map = " + map + "\n");
 Groundhog gh = (Groundhog)
 ghog.newInstance(new Object[]{ new Integer(3) });
 System.out.println("Looking up prediction for " + gh);
 if(map.containsKey(gh))
 System.out.println((Prediction)map.get(gh));
 else
 System.out.println("Key not found: " + gh);
 }
 public static void main(String[] args) throws Exception {
 detectSpring(Groundhog.class);
 monitor.expect(new String[] {
 "%% map = \\{(Groundhog #\\d=" +
 "(Early Spring!|Six more weeks of Winter!)" +
 "(,)?){10}\\}",
 "",
 "Looking up prediction for Groundhog #3",
 "Key not found: Groundhog #3"
 });
 }
} ///:~

Chapter 11: Collections of Objects 561

Each Groundhog is given an identity number, so you can look up a
Prediction in the HashMap by saying, “Give me the Prediction
associated with Groundhog number 3.” The Prediction class contains
a boolean that is initialized using Math.random(), and a toString()
that interprets the result for you. The detectSpring() method is created
using reflection, to instantiate and use the Class Groundhog or any
derived class. This will come in handy when we inherit a new type of
Groundhog to solve the problem demonstrated here. A HashMap is
filled with Groundhogs and their associated Predictions. The
HashMap is printed so that you can see it has been filled. Then a
Groundhog with an identity number of 3 is used as a key to look up the
prediction for Groundhog #3 (which you can see must be in the Map).
Feedback

It seems simple enough, but it doesn’t work. The problem is that
Groundhog is inherited from the common root class Object (which is
what happens if you don’t specify a base class, thus all classes are
ultimately inherited from Object). It is Object’s hashCode() method
that is used to generate the hash code for each object, and by default it
just uses the address of its object. Thus, the first instance of
Groundhog(3) does not produce a hash code equal to the hash code for
the second instance of Groundhog(3) that we tried to use as a lookup.
Feedback

You might think that all you need to do is write an appropriate override
for hashCode(). But it still won’t work until you’ve done one more
thing: override the equals() that is also part of Object. equals() is
used by the HashMap when trying to determine if your key is equal to
any of the keys in the table. Again, the default Object.equals() simply
compares object addresses, so one Groundhog(3) is not equal to
another Groundhog(3). Feedback

Thus, to use your own classes as keys in a HashMap, you must override
both hashCode() and equals(), as shown in the following solution to
the problem above:

//: c11:Groundhog2.java
// A class that's used as a key in a HashMap
// must override hashCode() and equals().

562 Thinking in Java www.BruceEckel.com

public class Groundhog2 extends Groundhog {
 public Groundhog2(int n) { super(n); }
 public int hashCode() { return number; }
 public boolean equals(Object o) {
 return (o instanceof Groundhog2)
 && (number == ((Groundhog2)o).number);
 }
} ///:~

//: c11:SpringDetector2.java
// A working key.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class SpringDetector2 {
 private static Test monitor = new Test();
 public static void main(String[] args) throws Exception {
 SpringDetector.detectSpring(Groundhog2.class);
 monitor.expect(new String[] {
 "%% map = \\{(Groundhog #\\d=" +
 "(Early Spring!|Six more weeks of Winter!)" +
 "(,)?){10}\\}",
 "",
 "Looking up prediction for Groundhog #3",
 "%% Early Spring!|Six more weeks of Winter!"
 });
 }
} ///:~

Groundhog2.hashCode() returns the groundhog number as a hash
value. In this example, the programmer is responsible for ensuring that
no two groundhogs exist with the same ID number. The hashCode() is
not required to return a unique identifier (something you’ll understand
better later in this chapter), but the equals() method must be able to
strictly determine whether two objects are equivalent. Here, equals() is
based on the groundhog number, so if two Groundhog2 objects exist as
keys in the HashMap with the same groundhog number, it will fail.
Feedback

Even though it appears that the equals() method is only checking to see
whether the argument is an instance of Groundhog2 (using the
instanceof keyword, which was explained in Chapter 10), the
instanceof actually quietly does a second sanity check, to see if the

Chapter 11: Collections of Objects 563

object is null, since instanceof produces false if the left-hand argument
is null. Assuming it’s the correct type and not null, the comparison is
based on the actual ghNumbers. You can see from the output that the
behavior is now correct. Feedback

When creating your own class to use in a HashSet, you must pay
attention to the same issues as when it is used as a key in a HashMap.
Feedback

Understanding hashCode()
The above example is only a start toward solving the problem correctly. It
shows that if you do not override hashCode() and equals() for your
key, the hashed data structure (HashSet, HashMap, LinkedHashSet
or LinkedHashMap) will not be able to deal with your key properly.
However, to get a good solution for the problem you need to understand
what’s going on inside the hashed data structure. Feedback

First, consider the motivation behind hashing: you want to look up an
object using another object. But you can accomplish this with a TreeSet
or TreeMap, too. It’s also possible to implement your own Map. To do
so, the Map.entrySet() method must be supplied to produce a set of
Map.Entry objects. MPair will be defined as the new type of
Map.Entry. In order for it to be placed in a TreeSet it must implement
equals() and be Comparable:

//: c11:MPair.java
// A new type of Map.Entry.
import java.util.*;

public class MPair implements Map.Entry, Comparable {
 private Object key, value;
 public MPair(Object k, Object v) {
 key = k;
 value = v;
 }
 public Object getKey() { return key; }
 public Object getValue() { return value; }
 public Object setValue(Object v) {
 Object result = value;
 value = v;
 return result;

564 Thinking in Java www.BruceEckel.com

 }
 public boolean equals(Object o) {
 return key.equals(((MPair)o).key);
 }
 public int compareTo(Object rv) {
 return ((Comparable)key).compareTo(((MPair)rv).key);
 }
} ///:~

Notice that the comparisons are only interested in the keys, so duplicate
values are perfectly acceptable. Feedback

The following example implements a Map using a pair of ArrayLists:
Feedback

//: c11:SlowMap.java
// A Map implemented with ArrayLists.
import com.bruceeckel.simpletest.*;
import java.util.*;
import com.bruceeckel.util.*;

public class SlowMap extends AbstractMap {
 private static Test monitor = new Test();
 private List
 keys = new ArrayList(),
 values = new ArrayList();
 public Object put(Object key, Object value) {
 Object result = get(key);
 if(!keys.contains(key)) {
 keys.add(key);
 values.add(value);
 } else
 values.set(keys.indexOf(key), value);
 return result;
 }
 public Object get(Object key) {
 if(!keys.contains(key))
 return null;
 return values.get(keys.indexOf(key));
 }
 public Set entrySet() {
 Set entries = new HashSet();
 Iterator
 ki = keys.iterator(),
 vi = values.iterator();

Chapter 11: Collections of Objects 565

 while(ki.hasNext())
 entries.add(new MPair(ki.next(), vi.next()));
 return entries;
 }
 public String toString() {
 StringBuffer s = new StringBuffer("{");
 Iterator
 ki = keys.iterator(),
 vi = values.iterator();
 while(ki.hasNext()) {
 s.append(ki.next() + "=" + vi.next());
 if(ki.hasNext()) s.append(", ");
 }
 s.append("}");
 return s.toString();
 }
 public static void main(String[] args) {
 SlowMap m = new SlowMap();
 Collections2.fill(m, Collections2.geography, 15);
 System.out.println(m);
 monitor.expect(new String[] {
 "{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo,"+
 " BOTSWANA=Gaberone, BURKINA FASO=Ouagadougou, " +
 "BURUNDI=Bujumbura, CAMEROON=Yaounde, " +
 "CAPE VERDE=Praia, CENTRAL AFRICAN REPUBLIC=Bangui,"+
 " CHAD=N'djamena, COMOROS=Moroni, " +
 "CONGO=Brazzaville, DJIBOUTI=Dijibouti, " +
 "EGYPT=Cairo, EQUATORIAL GUINEA=Malabo}"
 });
 }
} ///:~

The put() method simply places the keys and values in corresponding
ArrayLists. In main(), a SlowMap is loaded and then printed to show
that it works. Feedback

This shows that it’s not that hard to produce a new type of Map. But as
the name suggests, a SlowMap isn’t very fast, so you probably wouldn’t
use it if you had an alternative available. The problem is in the lookup of
the key: there is no order so a simple linear search is used, which is the
slowest way to look something up. Feedback

The whole point of hashing is speed: hashing allows the lookup to happen
quickly. Since the bottleneck is in the speed of the key lookup, one of the

566 Thinking in Java www.BruceEckel.com

solutions to the problem could be by keeping the keys sorted and then
using Collections.binarySearch() to perform the lookup (an exercise
at the end of this chapter will walk you through this process). Feedback

Hashing goes further by saying that all you want to do is to store the key
somewhere so that it can be quickly found. As you’ve seen in this chapter,
the fastest structure in which to store a group of elements is an array, so
that will be used for representing the key information (note carefully that
I said “key information,” and not the key itself). Also seen in this chapter
was the fact that an array, once allocated, cannot be resized, so we have a
problem: we want to be able to store any number of values in the Map,
but if the number of keys is fixed by the array size, how can this be? Feedback

The answer is that the array will not hold the keys. From the key object, a
number will be derived that will index into the array. This number is the
hash code, produced by the hashCode() method (in computer science
parlance, this is the hash function) defined in Object and presumably
overridden by your class. To solve the problem of the fixed-size array,
more than one key may produce the same index. That is, there may be
collisions. Because of this, it doesn’t matter how big the array is because
each key object will land somewhere in that array. Feedback

So the process of looking up a value starts by computing the hash code
and using it to index into the array. If you could guarantee that there were
no collisions (which could be possible if you have a fixed number of
values) then you’d have a perfect hashing function, but that’s a special
case. In all other cases, collisions are handled by external chaining: the
array points not directly to a value, but instead to a list of values. These
values are searched in a linear fashion using the equals() method. Of
course, this aspect of the search is much slower, but if the hash function is
good there will only be a few values in each slot. So instead of searching
through the entire list, you quickly jump to a slot where you have to
compare a few entries to find the value. This is much faster, which is why
the HashMap is so quick. Feedback

Knowing the basics of hashing, it’s possible to implement a simple hashed
Map:

//: c11:SimpleHashMap.java
// A demonstration hashed Map.

Chapter 11: Collections of Objects 567

import java.util.*;
import com.bruceeckel.util.*;

public class SimpleHashMap extends AbstractMap {
 // Choose a prime number for the hash table
 // size, to achieve a uniform distribution:
 private final static int SZ = 997;
 private LinkedList[] bucket = new LinkedList[SZ];
 public Object put(Object key, Object value) {
 Object result = null;
 int index = key.hashCode() % SZ;
 if(index < 0) index = -index;
 if(bucket[index] == null)
 bucket[index] = new LinkedList();
 LinkedList pairs = bucket[index];
 MPair pair = new MPair(key, value);
 ListIterator it = pairs.listIterator();
 boolean found = false;
 while(it.hasNext()) {
 Object iPair = it.next();
 if(iPair.equals(pair)) {
 result = ((MPair)iPair).getValue();
 it.set(pair); // Replace old with new
 found = true;
 break;
 }
 }
 if(!found)
 bucket[index].add(pair);
 return result;
 }
 public Object get(Object key) {
 int index = key.hashCode() % SZ;
 if(index < 0) index = -index;
 if(bucket[index] == null) return null;
 LinkedList pairs = bucket[index];
 MPair match = new MPair(key, null);
 ListIterator it = pairs.listIterator();
 while(it.hasNext()) {
 Object iPair = it.next();
 if(iPair.equals(match))
 return ((MPair)iPair).getValue();
 }
 return null;

568 Thinking in Java www.BruceEckel.com

 }
 public Set entrySet() {
 Set entries = new HashSet();
 for(int i = 0; i < bucket.length; i++) {
 if(bucket[i] == null) continue;
 Iterator it = bucket[i].iterator();
 while(it.hasNext())
 entries.add(it.next());
 }
 return entries;
 }
 public static void main(String[] args) {
 SimpleHashMap m = new SimpleHashMap();
 Collections2.fill(m, Collections2.geography, 25);
 System.out.println(m);
 }
} ///:~

Because the “slots” in a hash table are often referred to as buckets, the
array that represents the actual table is called bucket. To promote even
distribution, the number of buckets is typically a prime number9. Notice
that it is an array of LinkedList, which automatically provides for
collisions—each new item is simply added to the end of the list. Feedback

The return value of put() is null or, if the key was already in the list, the
old value associated with that key. The return value is result, which is
initialized to null, but if a key is discovered in the list then result is
assigned to that key. Feedback

For both put() and get(), the first thing that happens is that the
hashCode() is called for the key, and the result is forced to a positive
number. Then it is forced to fit into the bucket array using the modulus
operator and the size of the array. If that location is null, it means there
are no elements that hash to that location, so a new LinkedList is
created to hold the object that just did. However, the normal process is to

9 As it turns out, a prime number is not actually the ideal size for hash buckets, and recent
hashed implementations in Java uses a power of two size (after extensive testing). Division
or remainder is the slowest operation on a modern processor. With a power-of-two hash
table length, masking can be used instead of division. Since get() is by far the most
common operation, the % is a large part of the cost, and the power-of-two approach
elminates this (but may also affect some hashCode() methods).

Chapter 11: Collections of Objects 569

look through the list to see if there are duplicates, and if there are, the old
value is put into result and the new value replaces the old. The found
flag keeps track of whether an old key-value pair was found and, if not,
the new pair is appended to the end of the list. Feedback

In get(), you’ll see very similar code as that contained in put(), but
simpler. The index is calculated into the bucket array, and if a
LinkedList exists it is searched for a match. Feedback

entrySet() must find and traverse all the lists, adding them to the result
Set. Once this method has been created, the Map can be tested by filling
it with values and then printing them. Feedback

HashMap performance factors
To understand the issues, some terminology is necessary:

Capacity: The number of buckets in the table.

Initial capacity: The number of buckets when the table is created.
HashMap and HashSet: have constructors that allow you to specify
the initial capacity.

Size: The number of entries currently in the table.

Load factor: size/capacity. A load factor of 0 is an empty table, 0.5
is a half-full table, etc. A lightly-loaded table will have few collisions
and so is optimal for insertions and lookups (but will slow down the
process of traversing with an iterator). HashMap and HashSet have
constructors that allow you to specify the load factor, which means
that when this load factor is reached the container will automatically
increase the capacity (the number of buckets) by roughly doubling it,
and will redistribute the existing objects into the new set of buckets
(this is called rehashing). Feedback

The default load factor used by HashMap is 0.75 (it doesn’t rehash until
the table is ¾ full). This seems to be a good trade-off between time and
space costs. A higher load factor decreases the space required by the table
but increases the lookup cost, which is important because lookup is what
you do most of the time (including both get() and put()). Feedback

570 Thinking in Java www.BruceEckel.com

If you know that you’ll be storing many entries in a HashMap, creating it
with an appropriately large initial capacity will prevent the overhead of
automatic rehashing10. Feedback

Overriding hashCode()
Now that you understand what’s involved in the function of the
HashMap, the issues involved in writing a hashCode() will make more
sense. Feedback

First of all, you don’t have control of the creation of the actual value that’s
used to index into the array of buckets. That is dependent on the capacity
of the particular HashMap object, and that capacity changes depending
on how full the container is, and what the load factor is. The value
produced by your hashCode() will be further processed in order to
create the bucket index (in SimpleHashMap the calculation is just a
modulo by the size of the bucket array). Feedback

The most important factor in creating a hashCode() is that, regardless
of when hashCode() is called, it produces the same value for a
particular object every time it is called. If you end up with an object that
produces one hashCode() value when it is put() into a HashMap, and
another during a get(), you won’t be able to retrieve the objects. So if
your hashCode() depends on mutable data in the object the user must
be made aware that changing the data will effectively produce a different
key by generating a different hashCode(). Feedback

In addition, you will probably not want to generate a hashCode() that is
based on unique object information—in particular, the value of this
makes a bad hashCode() because then you can’t generate a new
identical key to the one used to put() the original key-value pair. This

10 In a private message, Joshua Bloch wrote: “… I believe that we erred by allowing
implementation details (such as hash table size and load factor) into our APIs. The client
should perhaps tell us the maximum expected size of a collection, and we should take it
from there. Clients can easily do more harm than good by choosing values for these
parameters. As an extreme example, consider Vector’s capacityIncrement. No one should
ever set this, and we shouldn’t have provided it. If you set it to any non-zero value, the
asymptotic cost of a sequence of appends goes from linear to quadratic. In other words, it
destroys your performance. Over time, we’re beginning to wise up about this sort of thing.
If you look at IdentityHashMap, you’ll see that it has no low-level tuning parameters.”

Chapter 11: Collections of Objects 571

was the problem that occurred in SpringDetector.java because the
default implementation of hashCode() does use the object address. So
you’ll want to use information in the object that identifies the object in a
meaningful way. Feedback

One example can be seen in the String class. Strings have the special
characteristic that if a program has several String objects that contain
identical character sequences, then those String objects all map to the
same memory (the mechanism for this is described in Appendix A). So it
makes sense that the hashCode() produced by two separate instances of
new String(“hello”) should be identical. You can see this in the
following program:

//: c11:StringHashCode.java
import com.bruceeckel.simpletest.*;

public class StringHashCode {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 System.out.println("Hello".hashCode());
 System.out.println("Hello".hashCode());
 monitor.expect(new String[] {
 "69609650",
 "69609650"
 });
 }
} ///:~

The hashCode() for String is clearly based on the contents of the
String. Feedback

So for a hashCode() to be effective, it must be fast and it must be
meaningful: that is, it must generate a value based on the contents of the
object. Remember that this value doesn’t have to be unique—you should
lean toward speed rather than uniqueness—but between hashCode()
and equals() the identity of the object must be completely resolved.
Feedback

Because the hashCode() is further processed before the bucket index is
produced, the range of values is not important; it just needs to generate
an int. Feedback

572 Thinking in Java www.BruceEckel.com

There’s one other factor: a good hashCode() should result in an even
distribution of values. If the values tend to cluster, then the HashMap or
HashSet will be more heavily loaded in some areas and will not be as fast
as it could be with an evenly distributed hashing function. Feedback

In Effective Java (Addison-Wesley 2001), Joshua Bloch gives a basic
recipe for genterating a decent hashCode():

1. Store some constant nonzero value, say 17, in an int variable called
result.

2. For each significant field f in your object (each field taken into account
by the equals(), that is), calculate an int hash code c for the field:

Field type Calculation

boolean c = (f ? 0 : 1)

byte, char, short, or
int

c = (int)f

long c = (int)(f ^ (f >>>32))

float c = Float.floatToIntBits(f);

double long l = Double.doubleToLongBits(f);
c = (int)(l ^ (l >>> 32))

Object, where
equals() calls

equals() for this field

c = f.hashCode()

Array Apply above rules to each element

3. Combine the hash code(s) computed above:
result = 37 * result + c;

4. Return result.

5. Look at the resulting hashCode() and make sure that equal
instances have equal hash codes.

Chapter 11: Collections of Objects 573

Here’s an example that follows these guidelines:

//: c11:CountedString.java
// Creating a good hashCode().
import com.bruceeckel.simpletest.*;
import java.util.*;

public class CountedString {
 private static Test monitor = new Test();
 private String s;
 private int id = 0;
 private static List created = new ArrayList();
 public CountedString(String str) {
 s = str;
 created.add(s);
 Iterator it = created.iterator();
 // Id is the total number of instances
 // of this string in use by CountedString:
 while(it.hasNext())
 if(it.next().equals(s))
 id++;
 }
 public String toString() {
 return "String: " + s + " id: " + id +
 " hashCode(): " + hashCode();
 }
 public int hashCode() {
 // Very simple approach:
 // return s.hashCode() * id;
 // Using Joshua Bloch's recipe:
 int result = 17;
 result = 37*result + s.hashCode();
 result = 37*result + id;
 return result;
 }
 public boolean equals(Object o) {
 return (o instanceof CountedString)
 && s.equals(((CountedString)o).s)
 && id == ((CountedString)o).id;
 }
 public static void main(String[] args) {
 Map map = new HashMap();
 CountedString[] cs = new CountedString[10];
 for(int i = 0; i < cs.length; i++) {
 cs[i] = new CountedString("hi");

574 Thinking in Java www.BruceEckel.com

 map.put(cs[i], new Integer(i));
 }
 System.out.println(map);
 for(int i = 0; i < cs.length; i++) {
 System.out.println("Looking up " + cs[i]);
 System.out.println(map.get(cs[i]));
 }
 monitor.expect(new String[] {
 "{String: hi id: 4 hashCode(): 146450=3," +
 " String: hi id: 10 hashCode(): 146456=9," +
 " String: hi id: 6 hashCode(): 146452=5," +
 " String: hi id: 1 hashCode(): 146447=0," +
 " String: hi id: 9 hashCode(): 146455=8," +
 " String: hi id: 8 hashCode(): 146454=7," +
 " String: hi id: 3 hashCode(): 146449=2," +
 " String: hi id: 5 hashCode(): 146451=4," +
 " String: hi id: 7 hashCode(): 146453=6," +
 " String: hi id: 2 hashCode(): 146448=1}",
 "Looking up String: hi id: 1 hashCode(): 146447",
 "0",
 "Looking up String: hi id: 2 hashCode(): 146448",
 "1",
 "Looking up String: hi id: 3 hashCode(): 146449",
 "2",
 "Looking up String: hi id: 4 hashCode(): 146450",
 "3",
 "Looking up String: hi id: 5 hashCode(): 146451",
 "4",
 "Looking up String: hi id: 6 hashCode(): 146452",
 "5",
 "Looking up String: hi id: 7 hashCode(): 146453",
 "6",
 "Looking up String: hi id: 8 hashCode(): 146454",
 "7",
 "Looking up String: hi id: 9 hashCode(): 146455",
 "8",
 "Looking up String: hi id: 10 hashCode(): 146456",
 "9"
 });
 }
} ///:~

CountedString includes a String and an id that represents the number
of CountedString objects that contain an identical String. The counting

Chapter 11: Collections of Objects 575

is accomplished in the constructor by iterating through the static
ArrayList where all the Strings are stored. Feedback

Both hashCode() and equals() produce results based on both fields; if
they were just based on the String alone or the id alone there would be
duplicate matches for distinct values. Feedback

In main(), a bunch of CountedString objects are created, using the
same String to show that the duplicates create unique values because of
the count id. The HashMap is displayed so that you can see how it is
stored internally (no discernible orders) and then each key is looked up
individually to demonstrate that the lookup mechanism is working
properly. Feedback

Writing a proper hashCode() and equals() for a new class can be
tricky. You can find tools to help you do this in Apache’s “Jakarta
Commons” project at jakarta.apache.org/commons, under “lang” (this
project also has many other potentially useful libraries, and appears to be
the Java community’s answer to the C++ community’s www.boost.org).

Holding references
The java.lang.ref library contains a set of classes that allow greater
flexibility in garbage collection. These classes are especially useful when
you have large objects that may cause memory exhaustion. There are
three classes inherited from the abstract class Reference:
SoftReference, WeakReference, and PhantomReference. Each of
these provides a different level of indirection for the garbage collector, if
the object in question is only reachable through one of these Reference
objects. Feedback

If an object is reachable it means that somewhere in your program the
object can be found. This could mean that you have an ordinary reference
on the stack that goes right to the object, but you might also have a
reference to an object that has a reference to the object in question; there
could be many intermediate links. If an object is reachable, the garbage
collector cannot release it because it’s still in use by your program. If an
object isn’t reachable, there’s no way for your program to use it so it’s safe
to garbage-collect that object. Feedback

576 Thinking in Java www.BruceEckel.com

You use Reference objects when you want to continue to hold onto a
reference to that object—you want to be able to reach that object—but you
also want to allow the garbage collector to release that object. Thus, you
have a way to go on using the object, but if memory exhaustion is
imminent you allow that object to be released. Feedback

You accomplish this by using a Reference object as an intermediary
between you and the ordinary reference, and there must be no ordinary
references to the object (ones that are not wrapped inside Reference
objects). If the garbage collector discovers that an object is reachable
through an ordinary reference, it will not release that object. Feedback

In the order SoftReference, WeakReference, and
PhantomReference, each one is “weaker” than the last, and
corresponds to a different level of reachability. Soft references are for
implementing memory-sensitive caches. Weak references are for
implementing “canonicalizing mappings”—where instances of objects can
be simultaneously used in multiple places in a program, to save storage—
that do not prevent their keys (or values) from being reclaimed. Phantom
references are for scheduling pre-mortem cleanup actions in a more
flexible way than is possible with the Java finalization mechanism. Feedback

With SoftReferences and WeakReferences, you have a choice about
whether to place them on a ReferenceQueue (the device used for
premortem cleanup actions), but a PhantomReference can only be
built on a ReferenceQueue. Here’s a simple demonstration: Feedback

//: c11:References.java
// Demonstrates Reference objects
import java.lang.ref.*;

class VeryBig {
 private static final int SZ = 10000;
 private double[] d = new double[SZ];
 private String ident;
 public VeryBig(String id) { ident = id; }
 public String toString() { return ident; }
 public void finalize() {
 System.out.println("Finalizing " + ident);
 }
}

Chapter 11: Collections of Objects 577

public class References {
 private static ReferenceQueue rq = new ReferenceQueue();
 public static void checkQueue() {
 Object inq = rq.poll();
 if(inq != null)
 System.out.println("In queue: " +
 (VeryBig)((Reference)inq).get());
 }
 public static void main(String[] args) {
 int size = 10;
 // Or, choose size via the command line:
 if(args.length > 0)
 size = Integer.parseInt(args[0]);
 SoftReference[] sa = new SoftReference[size];
 for(int i = 0; i < sa.length; i++) {
 sa[i] = new SoftReference(
 new VeryBig("Soft " + i), rq);
 System.out.println("Just created: " +
 (VeryBig)sa[i].get());
 checkQueue();
 }
 WeakReference[] wa = new WeakReference[size];
 for(int i = 0; i < wa.length; i++) {
 wa[i] = new WeakReference(
 new VeryBig("Weak " + i), rq);
 System.out.println("Just created: " +
 (VeryBig)wa[i].get());
 checkQueue();
 }
 SoftReference s =
 new SoftReference(new VeryBig("Soft"));
 WeakReference w =
 new WeakReference(new VeryBig("Weak"));
 System.gc();
 PhantomReference[] pa = new PhantomReference[size];
 for(int i = 0; i < pa.length; i++) {
 pa[i] = new PhantomReference(
 new VeryBig("Phantom " + i), rq);
 System.out.println("Just created: " +
 (VeryBig)pa[i].get());
 checkQueue();
 }
 }
} ///:~

578 Thinking in Java www.BruceEckel.com

When you run this program (you’ll want to pipe the output through a
“more” utility so that you can view the output in pages), you’ll see that the
objects are garbage-collected, even though you still have access to them
through the Reference object (to get the actual object reference, you use
get()). You’ll also see that the ReferenceQueue always produces a
Reference containing a null object. To make use of this, you can inherit
from the particular Reference class you’re interested in and add more
useful methods to the new type of Reference. Feedback

The WeakHashMap
The containers library has a special Map to hold weak references: the
WeakHashMap. This class is designed to make the creation of
canonicalized mappings easier. In such a mapping, you are saving storage
by making only one instance of a particular value. When the program
needs that value, it looks up the existing object in the mapping and uses
that (rather than creating one from scratch). The mapping may make the
values as part of its initialization, but it’s more likely that the values are
made on demand. Feedback

Since this is a storage-saving technique, it’s very convenient that the
WeakHashMap allows the garbage collector to automatically clean up
the keys and values. You don’t have to do anything special to the keys and
values you want to place in the WeakHashMap; these are automatically
wrapped in WeakReferences by the map. The trigger to allow cleanup is
if the key is no longer in use, as demonstrated here: Feedback

//: c11:CanonicalMapping.java
// Demonstrates WeakHashMap.
import java.util.*;
import java.lang.ref.*;

class Key {
 private String ident;
 public Key(String id) { ident = id; }
 public String toString() { return ident; }
 public int hashCode() { return ident.hashCode(); }
 public boolean equals(Object r) {
 return (r instanceof Key)
 && ident.equals(((Key)r).ident);
 }

Chapter 11: Collections of Objects 579

 public void finalize() {
 System.out.println("Finalizing Key "+ ident);
 }
}

class Value {
 private String ident;
 public Value(String id) { ident = id; }
 public String toString() { return ident; }
 public void finalize() {
 System.out.println("Finalizing Value " + ident);
 }
}

public class CanonicalMapping {
 public static void main(String[] args) {
 int size = 1000;
 // Or, choose size via the command line:
 if(args.length > 0)
 size = Integer.parseInt(args[0]);
 Key[] keys = new Key[size];
 WeakHashMap map = new WeakHashMap();
 for(int i = 0; i < size; i++) {
 Key k = new Key(Integer.toString(i));
 Value v = new Value(Integer.toString(i));
 if(i % 3 == 0)
 keys[i] = k; // Save as "real" references
 map.put(k, v);
 }
 System.gc();
 }
} ///:~

The Key class must have a hashCode() and an equals() since it is
being used as a key in a hashed data structure, as described previously in
this chapter. Feedback

When you run the program you’ll see that the garbage collector will skip
every third key, because an ordinary reference to that key has also been
placed in the keys array and thus those objects cannot be garbage-
collected. Feedback

580 Thinking in Java www.BruceEckel.com

Iterators revisited
We can now demonstrate the true power of the Iterator: the ability to
separate the operation of traversing a sequence from the underlying
structure of that sequence. The class PrintData (defined earlier in the
chapter) uses an Iterator to move through a sequence and call the
toString() method for every object. In the following example, two
different types of containers are created—an ArrayList and a
HashMap—and they are each filled with, respectively, Mouse and
Hamster objects. (These classes are defined earlier in this chapter.)
Because an Iterator hides the structure of the underlying container,
Printer.printAll() doesn’t know or care what kind of container the
Iterator comes from: Feedback

//: c11:Iterators2.java
// Revisiting Iterators.
import com.bruceeckel.simpletest.*;
import java.util.*;

public class Iterators2 {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 List list = new ArrayList();
 for(int i = 0; i < 5; i++)
 list.add(new Mouse(i));
 Map m = new HashMap();
 for(int i = 0; i < 5; i++)
 m.put(new Integer(i), new Hamster(i));
 System.out.println("List");
 Printer.printAll(list.iterator());
 System.out.println("Map");
 Printer.printAll(m.entrySet().iterator());
 monitor.expect(new String[] {
 "List",
 "This is Mouse #0",
 "This is Mouse #1",
 "This is Mouse #2",
 "This is Mouse #3",
 "This is Mouse #4",
 "Map",
 "4=This is Hamster #4",
 "3=This is Hamster #3",

Chapter 11: Collections of Objects 581

 "2=This is Hamster #2",
 "1=This is Hamster #1",
 "0=This is Hamster #0"
 }, Test.IGNORE_ORDER);
 }
} ///:~

For the HashMap, the entrySet() method produces a Set of
Map.entry objects, which contain both the key and the value for each
entry, so you see both of them printed. Feedback

Note that PrintData.print() takes advantage of the fact that the objects
in these containers are of class Object so the call toString() by
System.out.println() is automatic. It’s more likely that in your
problem, you must make the assumption that your Iterator is walking
through a container of some specific type. For example, you might assume
that everything in the container is a Shape with a draw() method. Then
you must downcast from the Object that Iterator.next() returns to
produce a Shape. Feedback

Choosing an
implementation

By now you should understand that there are really only three container
components: Map, List, and Set, but more than one implementation of
each interface. If you need to use the functionality offered by a particular
interface, how do you decide which implementation to use? Feedback

To understand the answer, you must be aware that each different
implementation has its own features, strengths, and weaknesses. For
example, you can see in the diagram that the “feature” of Hashtable,
Vector, and Stack is that they are legacy classes, so that old code doesn’t
break. On the other hand, it’s best if you don’t use those for new code.
Feedback

The distinction between the other containers often comes down to what
they are “backed by”; that is, the data structures that physically
implement your desired interface. This means that, for example,
ArrayList and LinkedList implement the List interface so the basic

582 Thinking in Java www.BruceEckel.com

operations are the same regardless of which one you use. However,
ArrayList is backed by an array, while the LinkedList is implemented
in the usual way for a doubly linked list, as individual objects each
containing data along with references to the previous and next elements
in the list. Because of this, if you want to do many insertions and removals
in the middle of a list, a LinkedList is the appropriate choice.
(LinkedList also has additional functionality that is established in
AbstractSequentialList.) If not, an ArrayList is typically faster. Feedback

As another example, a Set can be implemented as either a TreeSet, a
HashSet, or a LinkedHashSet. Each of these have different behaviors:
The HashSet is for typical use and provides raw speed on lookup. The
LinkedHashSet keeps pairs in insertion order, and a TreeSet is backed
by a TreeMap and is designed to produce a constantly sorted set. The
idea is that you can choose the implementation based on the behavior you
need. Most of the time, the HashSet is all that’s necessary, and should be
your default choice of Set. Feedback

Choosing between Lists
The most convincing way to see the differences between the
implementations of List is with a performance test. The following code
establishes an inner base class to use as a test framework, then creates an
array of anonymous inner classes, one for each different test. Each of
these inner classes is called by the test() method. This approach allows
you to easily add and remove new kinds of tests. Feedback

//: c11:ListPerformance.java
// Demonstrates performance differences in Lists.
// {Args: 500}
import java.util.*;
import com.bruceeckel.util.*;

public class ListPerformance {
 private static int reps = 10000;
 private static int quantity = reps / 10;
 private abstract static class Tester {
 private String name;
 Tester(String name) { this.name = name; }
 abstract void test(List a);
 }

Chapter 11: Collections of Objects 583

 private static Tester[] tests = {
 new Tester("get") {
 void test(List a) {
 for(int i = 0; i < reps; i++) {
 for(int j = 0; j < quantity; j++)
 a.get(j);
 }
 }
 },
 new Tester("iteration") {
 void test(List a) {
 for(int i = 0; i < reps; i++) {
 Iterator it = a.iterator();
 while(it.hasNext())
 it.next();
 }
 }
 },
 new Tester("insert") {
 void test(List a) {
 int half = a.size()/2;
 String s = "test";
 ListIterator it = a.listIterator(half);
 for(int i = 0; i < reps * 10; i++)
 it.add(s);
 }
 },
 new Tester("remove") {
 void test(List a) {
 ListIterator it = a.listIterator(3);
 while(it.hasNext()) {
 it.next();
 it.remove();
 }
 }
 },
 };
 public static void test(List a) {
 // Strip qualifiers from class name:
 System.out.println("Testing " +
 a.getClass().getName().replaceAll("\\w+\\.", ""));
 for(int i = 0; i < tests.length; i++) {
 Collections2.fill(a, Collections2.countries.reset(),
 quantity);

584 Thinking in Java www.BruceEckel.com

 System.out.print(tests[i].name);
 long t1 = System.currentTimeMillis();
 tests[i].test(a);
 long t2 = System.currentTimeMillis();
 System.out.println(": " + (t2 - t1));
 }
 }
 public static void testArrayAsList(int reps) {
 System.out.println("Testing array as List");
 // Can only do first two tests on an array:
 for(int i = 0; i < 2; i++) {
 String[] sa = new String[quantity];
 Arrays2.fill(sa, Collections2.countries.reset());
 List a = Arrays.asList(sa);
 System.out.print(tests[i].name);
 long t1 = System.currentTimeMillis();
 tests[i].test(a);
 long t2 = System.currentTimeMillis();
 System.out.println(": " + (t2 - t1));
 }
 }
 public static void main(String[] args) {
 // Choose a different number of
 // repetitions via the command line:
 if(args.length > 0)
 reps = Integer.parseInt(args[0]);
 System.out.println(reps + " repetitions");
 testArrayAsList(reps);
 test(new ArrayList());
 test(new LinkedList());
 test(new Vector());
 }
} ///:~

The inner class Tester is abstract, to provide a base class for the specific
tests. It contains a String to be printed when the test starts, and an
abstract method test() that does the work. All the different types of
tests are collected in one place, the array tests, which is initialized with
different anonymous inner classes that inherit from Tester. To add or
remove tests, simply add or remove an inner class definition from the
array, and everything else happens automatically. Feedback

To compare array access to container access (primarily against
ArrayList), a special test is created for arrays by wrapping one as a List

Chapter 11: Collections of Objects 585

using Arrays.asList(). Note that only the first two tests can be
performed in this case, because you cannot insert or remove elements
from an array. Feedback

The List that’s handed to test() is first filled with elements, then each
test in the tests array is timed. The results will vary from machine to
machine; they are intended to give only an order of magnitude
comparison between the performance of the different containers. Here is
a summary of one run: Feedback

Type Get Iteration Insert Remove

array 172 516 na na

ArrayList 281 1375 328 30484

LinkedList 5828 1047 109 16

Vector 422 1890 360 30781

As expected, arrays are faster than any container for random-access
lookups and iteration. You can see that random accesses (get()) are
cheap for ArrayLists and expensive for LinkedLists. (Oddly, iteration
is faster for a LinkedList than an ArrayList, which is a bit
counterintuitive.) On the other hand, insertions and removals from the
middle of a list are dramatically cheaper for a LinkedList than for an
ArrayList—especially removals. Vector is generally not as fast as
ArrayList, and it should be avoided; it’s only in the library for legacy
code support (the only reason it works in this program is because it was
adapted to be a List in Java 2). The best approach is probably to choose
an ArrayList as your default, and to change to a LinkedList if you
discover performance problems due to many insertions and removals
from the middle of the list. And of course, if you are working with a fixed-
sized group of elements, use an array. Feedback

Choosing between Sets
You can choose between a TreeSet, a HashSet, and a LinkedHashSet,
depending on the behavior you desire. The following test program gives
an indication of the performance trade-off between the implementations:
Feedback

//: c11:SetPerformance.java

586 Thinking in Java www.BruceEckel.com

// {Args: 500}
import java.util.*;
import com.bruceeckel.util.*;

public class SetPerformance {
 private static int reps = 50000;
 private abstract static class Tester {
 String name;
 Tester(String name) { this.name = name; }
 abstract void test(Set s, int size);
 }
 private static Tester[] tests = {
 new Tester("add") {
 void test(Set s, int size) {
 for(int i = 0; i < reps; i++) {
 s.clear();
 Collections2.fill(s,
 Collections2.countries.reset(),size);
 }
 }
 },
 new Tester("contains") {
 void test(Set s, int size) {
 for(int i = 0; i < reps; i++)
 for(int j = 0; j < size; j++)
 s.contains(Integer.toString(j));
 }
 },
 new Tester("iteration") {
 void test(Set s, int size) {
 for(int i = 0; i < reps * 10; i++) {
 Iterator it = s.iterator();
 while(it.hasNext())
 it.next();
 }
 }
 },
 };
 public static void test(Set s, int size) {
 // Strip qualifiers from class name:
 System.out.println("Testing " +
 s.getClass().getName().replaceAll("\\w+\\.", "") +
 " size " + size);
 Collections2.fill(s,

Chapter 11: Collections of Objects 587

 Collections2.countries.reset(), size);
 for(int i = 0; i < tests.length; i++) {
 System.out.print(tests[i].name);
 long t1 = System.currentTimeMillis();
 tests[i].test(s, size);
 long t2 = System.currentTimeMillis();
 System.out.println(": " +
 ((double)(t2 - t1)/(double)size));
 }
 }
 public static void main(String[] args) {
 // Choose a different number of
 // repetitions via the command line:
 if(args.length > 0)
 reps = Integer.parseInt(args[0]);
 System.out.println(reps + " repetitions");
 // Small:
 test(new TreeSet(), 10);
 test(new HashSet(), 10);
 test(new LinkedHashSet(), 10);
 // Medium:
 test(new TreeSet(), 100);
 test(new HashSet(), 100);
 test(new LinkedHashSet(), 100);
 // Large:
 test(new TreeSet(), 1000);
 test(new HashSet(), 1000);
 test(new LinkedHashSet(), 1000);
 }
} ///:~

The following table shows the results of one run. (Of course, this will be
different according to the computer and JVM you are using; you should
run the test yourself as well):

Type Test size Add Contains Iteration

 10 25.0 23.4 39.1

TreeSet 100 17.2 27.5 45.9

 1000 26.0 30.2 9.0

 10 18.7 17.2 64.1

HashSet 100 17.2 19.1 65.2

588 Thinking in Java www.BruceEckel.com

 1000 8.8 16.6 12.8

 10 20.3 18.7 64.1

LinkedHashSet 100 18.6 19.5 49.2

 1000 10.0 16.3 10.0

The performance of HashSet is generally superior to TreeSet for all
operations (but in particular addition and lookup, the two most important
operations). The only reason TreeSet exists is because it maintains its
elements in sorted order, so you only use it when you need a sorted Set.
Feedback

Note that LinkedHashSet is slightly more expensive for insertions than
HashSet; this is due to the extra cost of maintaining the linked list along
with the hashed container. However, traversal is cheaper with
LinkedHashSet because of the linked list. Feedback

Choosing between Maps
When choosing between implementations of Map, the size of the Map is
what most strongly affects performance, and the following test program
gives an indication of this trade-off: Feedback

//: c11:MapPerformance.java
// Demonstrates performance differences in Maps.
// {Args: 500}
import java.util.*;
import com.bruceeckel.util.*;

public class MapPerformance {
 private static int reps = 50000;
 private abstract static class Tester {
 String name;
 Tester(String name) { this.name = name; }
 abstract void test(Map m, int size);
 }
 private static Tester[] tests = {
 new Tester("put") {
 void test(Map m, int size) {
 for(int i = 0; i < reps; i++) {
 m.clear();
 Collections2.fill(m,

Chapter 11: Collections of Objects 589

 Collections2.geography.reset(), size);
 }
 }
 },
 new Tester("get") {
 void test(Map m, int size) {
 for(int i = 0; i < reps; i++)
 for(int j = 0; j < size; j++)
 m.get(Integer.toString(j));
 }
 },
 new Tester("iteration") {
 void test(Map m, int size) {
 for(int i = 0; i < reps * 10; i++) {
 Iterator it = m.entrySet().iterator();
 while(it.hasNext())
 it.next();
 }
 }
 },
 };
 public static void test(Map m, int size) {
 // Strip qualifiers from class name:
 System.out.println("Testing " +
 m.getClass().getName().replaceAll("\\w+\\.", "") +
 " size " + size);
 Collections2.fill(m,
 Collections2.geography.reset(), size);
 for(int i = 0; i < tests.length; i++) {
 System.out.print(tests[i].name);
 long t1 = System.currentTimeMillis();
 tests[i].test(m, size);
 long t2 = System.currentTimeMillis();
 System.out.println(": " +
 ((double)(t2 - t1)/(double)size));
 }
 }
 public static void main(String[] args) {
 // Choose a different number of
 // repetitions via the command line:
 if(args.length > 0)
 reps = Integer.parseInt(args[0]);
 System.out.println(reps + " repetitions");
 // Small:

590 Thinking in Java www.BruceEckel.com

 test(new TreeMap(), 10);
 test(new HashMap(), 10);
 test(new LinkedHashMap(), 10);
 test(new IdentityHashMap(), 10);
 test(new WeakHashMap(), 10);
 test(new Hashtable(), 10);
 // Medium:
 test(new TreeMap(), 100);
 test(new HashMap(), 100);
 test(new LinkedHashMap(), 100);
 test(new IdentityHashMap(), 100);
 test(new WeakHashMap(), 100);
 test(new Hashtable(), 100);
 // Large:
 test(new TreeMap(), 1000);
 test(new HashMap(), 1000);
 test(new LinkedHashMap(), 1000);
 test(new IdentityHashMap(), 1000);
 test(new WeakHashMap(), 1000);
 test(new Hashtable(), 1000);
 }
} ///:~

Because the size of the map is the issue, you’ll see that the timing tests
divide the time by the size to normalize each measurement. Here is one
set of results. (Yours will probably be different.)

Type Test
size

Put Get Iteration

 10 26.6 20.3 43.7

TreeMap 100 34.1 27.2 45.8

 1000 27.8 29.3 8.8

 10 21.9 18.8 60.9

HashMap 100 21.9 18.6 63.3

 1000 11.5 18.8 12.3

 10 23.4 18.8 59.4

LinkedHashMap 100 24.2 19.5 47.8

 1000 12.3 19.0 9.2

 10 20.3 25.0 71.9

Chapter 11: Collections of Objects 591

Type Test
size

Put Get Iteration

IdentityHashMap 100 19.7 25.9 56.7

 1000 13.1 24.3 10.9

 10 26.6 18.8 76.5

WeakHashMap 100 26.1 21.6 64.4

 1000 14.7 19.2 12.4

 10 18.8 18.7 65.7

Hashtable 100 19.4 20.9 55.3

 1000 13.1 19.9 10.8

As you might expect, Hashtable performance is roughly equivalent to
HashMap. (You can also see that HashMap is generally a bit faster.
HashMap is intended to replace Hashtable.) The TreeMap is
generally slower than the HashMap, so why would you use it? As a way
to create an ordered list. The behavior of a tree is such that it’s always in
order and doesn’t have to be specially sorted. Once you fill a TreeMap,
you can call keySet() to get a Set view of the keys, then toArray() to
produce an array of those keys. You can then use the static method
Arrays.binarySearch() (discussed later) to rapidly find objects in your
sorted array. Of course, you would probably only do this if, for some
reason, the behavior of a HashMap was unacceptable, since HashMap
is designed to rapidly find things. Also, you can easily create a HashMap
from a TreeMap with a single object creation In the end, when you’re
using a Map your first choice should be HashMap, and only if you need
a constantly sorted Map will you need TreeMap. Feedback

LinkedHashMap is slightly slower than HashMap because it
maintains the linked list in addition to the hashed data structure.
IdentityHashMap has different performance because it uses == rather
than equals() for comparisons. Feedback

592 Thinking in Java www.BruceEckel.com

Sorting and searching
Lists

Utilities to perform sorting and searching for Lists have the same names
and signatures as those for sorting arrays of objects, but are static
methods of Collections instead of Arrays. Here’s an example, modified
from ArraySearching.java:

//: c11:ListSortSearch.java
// Sorting and searching Lists with 'Collections.'
import com.bruceeckel.util.*;
import java.util.*;

public class ListSortSearch {
 public static void main(String[] args) {
 List list = new ArrayList();
 Collections2.fill(list, Collections2.capitals, 25);
 System.out.println(list + "\n");
 Collections.shuffle(list);
 System.out.println("After shuffling: "+list);
 Collections.sort(list);
 System.out.println(list + "\n");
 Object key = list.get(12);
 int index = Collections.binarySearch(list, key);
 System.out.println("Location of " + key +
 " is " + index + ", list.get(" +
 index + ") = " + list.get(index));
 AlphabeticComparator comp = new AlphabeticComparator();
 Collections.sort(list, comp);
 System.out.println(list + "\n");
 key = list.get(12);
 index = Collections.binarySearch(list, key, comp);
 System.out.println("Location of " + key +
 " is " + index + ", list.get(" +
 index + ") = " + list.get(index));
 }
} ///:~

The use of these methods is identical to the ones in Arrays, but you’re
using a List instead of an array. Just like searching and sorting with

Chapter 11: Collections of Objects 593

arrays, if you sort using a Comparator you must binarySearch()
using the same Comparator. Feedback

This program also demonstrates the shuffle() method in Collections,
which randomizes the order of a List. Feedback

Utilities
There are a number of other useful utilities in the Collections class:

max(Collection)
min(Collection)

Produces the maximum or
minimum element in the
argument using the natural
comparison method of the
objects in the Collection.

max(Collection, Comparator)
min(Collection, Comparator)

Produces the maximum or
minimum element in the
Collection using the
Comparator.

indexOfSubList(List source,
List target)

Produces starting index of the
first place where target appears
inside source.

lastIndexOfSubList(List
source, List target)

Produces starting index of the
last place where target appears
inside source.

replaceAll(List list,
Object oldVal, Object newVal)

Replace all oldVal with newVal.

reverse() Reverses all the elements in
place.

rotate(List list, int distance) Moves all elements forward by
distance, taking the ones off the
end and placing them at the
beginning.

copy(List dest, List src) Copies elements from src to
dest.

swap(List list, int i, int j) Swaps elements at locations i and
j in list. Probably faster than
what you’d write by hand.

594 Thinking in Java www.BruceEckel.com

fill(List list, Object o) Replaces all the elements of list
with o.

nCopies(int n, Object o) Returns an immutable List of
size n whose references all point
to o.

enumeration(Collection) Produces an old-style
Enumeration for the argument.

list(Enumeration e) Returns an ArrayList generated
using the Enumeration. For
converting from legacy code.

Note that min() and max() work with Collection objects, not with
Lists, so you don’t need to worry about whether the Collection should
be sorted or not. (As mentioned earlier, you do need to sort() a List or
an array before performing a binarySearch().) Feedback

//: c11:Utilities.java
// Simple demonstrations of the Collections utilities.
import com.bruceeckel.simpletest.*;
import java.util.*;
import com.bruceeckel.util.*;

public class Utilities {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 List list = Arrays.asList(
 "one Two three Four five six one".split(" "));
 System.out.println(list);
 System.out.println("max: " + Collections.max(list));
 System.out.println("min: " + Collections.min(list));
 AlphabeticComparator comp = new AlphabeticComparator();
 System.out.println("max w/ comparator: " +
 Collections.max(list, comp));
 System.out.println("min w/ comparator: " +
 Collections.min(list, comp));
 List sublist =
 Arrays.asList("Four five six".split(" "));
 System.out.println("indexOfSubList: " +
 Collections.indexOfSubList(list, sublist));
 System.out.println("lastIndexOfSubList: " +
 Collections.lastIndexOfSubList(list, sublist));
 Collections.replaceAll(list, "one", "Yo");

Chapter 11: Collections of Objects 595

 System.out.println("replaceAll: " + list);
 Collections.reverse(list);
 System.out.println("reverse: " + list);
 Collections.rotate(list, 3);
 System.out.println("rotate: " + list);
 List source =
 Arrays.asList("in the matrix".split(" "));
 Collections.copy(list, source);
 System.out.println("copy: " + list);
 Collections.swap(list, 0, list.size() - 1);
 System.out.println("swap: " + list);
 Collections.fill(list, "pop");
 System.out.println("fill: " + list);
 List dups = Collections.nCopies(3, "snap");
 System.out.println("dups: " + dups);
 // Getting an old-style Enumeration:
 Enumeration e = Collections.enumeration(dups);
 Vector v = new Vector();
 while(e.hasMoreElements())
 v.addElement(e.nextElement());
 // Converting an old-style Vector
 // to a List via an Enumeration:
 ArrayList arrayList = Collections.list(v.elements());
 System.out.println("arrayList: " + arrayList);
 monitor.expect(new String[] {
 "[one, Two, three, Four, five, six, one]",
 "max: three",
 "min: Four",
 "max w/ comparator: Two",
 "min w/ comparator: five",
 "indexOfSubList: 3",
 "lastIndexOfSubList: 3",
 "replaceAll: [Yo, Two, three, Four, five, six, Yo]",
 "reverse: [Yo, six, five, Four, three, Two, Yo]",
 "rotate: [three, Two, Yo, Yo, six, five, Four]",
 "copy: [in, the, matrix, Yo, six, five, Four]",
 "swap: [Four, the, matrix, Yo, six, five, in]",
 "fill: [pop, pop, pop, pop, pop, pop, pop]",
 "dups: [snap, snap, snap]",
 "arrayList: [snap, snap, snap]"
 });
 }
} ///:~

596 Thinking in Java www.BruceEckel.com

The output explains the behavior of each utility method. Note the
difference in min() and max() with the AlphabeticComparator
because of capitalization. Feedback

Making a Collection or Map
unmodifiable
Often it is convenient to create a read-only version of a Collection or
Map. The Collections class allows you to do this by passing the original
container into a method that hands back a read-only version. There are
four variations on this method, one each for Collection (if you can’t treat
a Collection as a more specific type), List, Set, and Map. This example
shows the proper way to build read-only versions of each:

//: c11:ReadOnly.java
// Using the Collections.unmodifiable methods.
import java.util.*;
import com.bruceeckel.util.*;

public class ReadOnly {
 private static Collections2.StringGenerator gen =
 Collections2.countries;
 public static void main(String[] args) {
 Collection c = new ArrayList();
 Collections2.fill(c, gen, 25); // Insert data
 c = Collections.unmodifiableCollection(c);
 System.out.println(c); // Reading is OK
 //! c.add("one"); // Can't change it

 List a = new ArrayList();
 Collections2.fill(a, gen.reset(), 25);
 a = Collections.unmodifiableList(a);
 ListIterator lit = a.listIterator();
 System.out.println(lit.next()); // Reading is OK
 //! lit.add("one"); // Can't change it

 Set s = new HashSet();
 Collections2.fill(s, gen.reset(), 25);
 s = Collections.unmodifiableSet(s);
 System.out.println(s); // Reading is OK
 //! s.add("one"); // Can't change it

Chapter 11: Collections of Objects 597

 Map m = new HashMap();
 Collections2.fill(m, Collections2.geography, 25);
 m = Collections.unmodifiableMap(m);
 System.out.println(m); // Reading is OK
 //! m.put("Ralph", "Howdy!");
 }
} ///:~

Calling the “unmodifiable” method for a particular type does not cause
compile-time checking, but once the transformation has occurred, any
calls to methods that modify the contents of a particular container will
produce an UnsupportedOperationException. Feedback

In each case, you must fill the container with meaningful data before you
make it read-only. Once it is loaded, the best approach is to replace the
existing reference with the reference that is produced by the
“unmodifiable” call. That way, you don’t run the risk of accidentally trying
to change the contents once you’ve made it unmodifiable. On the other
hand, this tool also allows you to keep a modifiable container as private
within a class and to return a read-only reference to that container from a
method call. So you can change it from within the class, but everyone else
can only read it. Feedback

Synchronizing a Collection or Map
The synchronized keyword is an important part of the subject of
multithreading, a more complicated topic that will not be introduced
until Chapter 13. Here, I shall note only that the Collections class
contains a way to automatically synchronize an entire container. The
syntax is similar to the “unmodifiable” methods:

//: c11:Synchronization.java
// Using the Collections.synchronized methods.
import java.util.*;

public class Synchronization {
 public static void main(String[] args) {
 Collection c =
 Collections.synchronizedCollection(new ArrayList());
 List list =
 Collections.synchronizedList(new ArrayList());
 Set s = Collections.synchronizedSet(new HashSet());

598 Thinking in Java www.BruceEckel.com

 Map m = Collections.synchronizedMap(new HashMap());
 }
} ///:~

In this case, you immediately pass the new container through the
appropriate “synchronized” method; that way there’s no chance of
accidentally exposing the unsynchronized version. Feedback

Fail fast
The Java containers also have a mechanism to prevent more than one
process from modifying the contents of a container. The problem occurs if
you’re iterating through a container and some other process steps in and
inserts, removes, or changes an object in that container. Maybe you’ve
already passed that object, maybe it’s ahead of you, maybe the size of the
container shrinks after you call size()—there are many scenarios for
disaster. The Java containers library incorporates a fail-fast mechanism
that looks for any changes to the container other than the ones your
process is personally responsible for. If it detects that someone else is
modifying the container, it immediately produces a
ConcurrentModificationException. This is the “fail-fast” aspect—it
doesn’t try to detect a problem later on using a more complex algorithm.
Feedback

It’s quite easy to see the fail-fast mechanism in operation—all you have to
do is create an iterator and then add something to the collection that the
iterator is pointing to, like this:

//: c11:FailFast.java
// Demonstrates the "fail fast" behavior.
// {ThrowsException}
import java.util.*;

public class FailFast {
 public static void main(String[] args) {
 Collection c = new ArrayList();
 Iterator it = c.iterator();
 c.add("An object");
 // Causes an exception:
 String s = (String)it.next();
 }
} ///:~

Chapter 11: Collections of Objects 599

The exception happens because something is placed in the container after
the iterator is acquired from the container. The possibility that two parts
of the program could be modifying the same container produces an
uncertain state, so the exception notifies you that you should change your
code—in this case, acquire the iterator after you have added all the
elements to the container. Feedback

Note that you cannot benefit from this kind of monitoring when you’re
accessing the elements of a List using get(). Feedback

Unsupported operations
It’s possible to turn an array into a List with the Arrays.asList()
method:

//: c11:Unsupported.java
// Sometimes methods defined in the
// Collection interfaces don't work!
// {ThrowsException}
import java.util.*;

public class Unsupported {
 static List a = Arrays.asList(
 "one two three four five six seven eight".split(" "));
 static List a2 = a.subList(3, 6);
 public static void main(String[] args) {
 System.out.println(a);
 System.out.println(a2);
 System.out.println("a.contains(" + a.get(0) + ") = " +
 a.contains(a.get(0)));
 System.out.println("a.containsAll(a2) = " +
 a.containsAll(a2));
 System.out.println("a.isEmpty() = " + a.isEmpty());
 System.out.println("a.indexOf(" + a.get(5) + ") = " +
 a.indexOf(a.get(5)));
 // Traverse backwards:
 ListIterator lit = a.listIterator(a.size());
 while(lit.hasPrevious())
 System.out.print(lit.previous() + " ");
 System.out.println();
 // Set the elements to different values:
 for(int i = 0; i < a.size(); i++)

600 Thinking in Java www.BruceEckel.com

 a.set(i, "47");
 System.out.println(a);
 // Compiles, but won't run:
 lit.add("X"); // Unsupported operation
 a.clear(); // Unsupported
 a.add("eleven"); // Unsupported
 a.addAll(a2); // Unsupported
 a.retainAll(a2); // Unsupported
 a.remove(a.get(0)); // Unsupported
 a.removeAll(a2); // Unsupported
 }
} ///:~

You’ll discover that only a portion of the Collection and List interfaces
are actually implemented. The rest of the methods cause the unwelcome
appearance of something called an
UnsupportedOperationException. The Collection interface—as
well as some of the other interfaces in the Java containers library—
contain “optional” methods, which might or might not be “supported” in
the concrete class that implements that interface. Calling an
unsupported method causes an UnsupportedOperationException to
indicate a programming error. Feedback

“What?!?” you say, incredulous. “The whole point of interfaces and base
classes is that they promise these methods will do something meaningful!
This breaks that promise—it says that not only will calling some methods
not perform a meaningful behavior, they will stop the program! Type
safety was just thrown out the window!” Feedback

It’s not quite that bad. With a Collection, List, Set, or Map, the
compiler still restricts you to calling only the methods in that interface,
so it’s not like Smalltalk (in which you can call any method for any object,
and find out only when you run the program whether your call does
anything). In addition, most methods that take a Collection as an
argument only read from that Collection—all the “read” methods of
Collection are not optional. Feedback

This approach prevents an explosion of interfaces in the design. Other
designs for container libraries always seem to end up with a confusing
plethora of interfaces to describe each of the variations on the main theme
and are thus difficult to learn. It’s not even possible to capture all of the

Chapter 11: Collections of Objects 601

special cases in interfaces, because someone can always invent a new
interface. The “unsupported operation” approach achieves an important
goal of the Java containers library: the containers are simple to learn and
use; unsupported operations are a special case that can be learned later.
For this approach to work, however: Feedback

1. The UnsupportedOperationException must be a rare event.
That is, for most classes all operations should work, and only in
special cases should an operation be unsupported. This is true in
the Java containers library, since the classes you’ll use 99 percent
of the time—ArrayList, LinkedList, HashSet, and HashMap,
as well as the other concrete implementations—support all of the
operations. The design does provide a “back door” if you want to
create a new Collection without providing meaningful definitions
for all the methods in the Collection interface, and yet still fit it
into the existing library. Feedback

2. When an operation is unsupported, there should be reasonable
likelihood that an UnsupportedOperationException will
appear at implementation time, rather than after you’ve shipped
the product to the customer. After all, it indicates a programming
error: you’ve used an implementation incorrectly. This point is less
certain, and is where the experimental nature of this design comes
into play. Only over time will we find out how well it works. Feedback

In the example above, Arrays.asList() produces a List that is backed
by a fixed-size array. Therefore it makes sense that the only supported
operations are the ones that don’t change the size of the array. If, on the
other hand, a new interface were required to express this different kind
of behavior (called, perhaps, “FixedSizeList”), it would throw open the
door to complexity and soon you wouldn’t know where to start when
trying to use the library. Feedback

Note that you can always pass the result of Arrays.asList() as a
constructor argument to a List or Set in order to create a regular
container that allows the use of all the methods. Feedback

The documentation for a method that takes a Collection, List, Set, or
Map as an argument should specify which of the optional methods must

602 Thinking in Java www.BruceEckel.com

be implemented. For example, sorting requires the set() and
Iterator.set() methods, but not add() and remove(). Feedback

Java 1.0/1.1 containers
Unfortunately, a lot of code was written using the Java 1.0/1.1 containers,
and even new code is sometimes written using these classes. So although
you should never use the old containers when writing new code, you’ll still
need to be aware of them. However, the old containers were quite limited,
so there’s not that much to say about them. (Since they are in the past, I
will try to refrain from overemphasizing some of the hideous design
decisions.) Feedback

Vector & Enumeration
The only self-expanding sequence in Java 1.0/1.1 was the Vector, and so
it saw a lot of use. Its flaws are too numerous to describe here (see the
first edition of this book, available as a free download from
www.BruceEckel.com). Basically, you can think of it as an ArrayList
with long, awkward method names. In the Java 2 container library,
Vector was adapted so that it could fit as a Collection and a List, so in
the following example the Collections2.fill() method is successfully
used. This turns out to be a bit perverse, as it may confuse some people
into thinking that Vector has gotten better, when it is actually included
only to support pre-Java 2 code. Feedback

The Java 1.0/1.1 version of the iterator chose to invent a new name,
“enumeration,” instead of using a term that everyone was already familiar
with. The Enumeration interface is smaller than Iterator, with only
two methods, and it uses longer method names: boolean
hasMoreElements() produces true if this enumeration contains more
elements, and Object nextElement() returns the next element of this
enumeration if there are any more (otherwise it throws an exception).
Feedback

Enumeration is only an interface, not an implementation, and even new
libraries sometimes still use the old Enumeration—which is unfortunate
but generally harmless. Even though you should always use Iterator

Chapter 11: Collections of Objects 603

when you can in your own code, you must be prepared for libraries that
want to hand you an Enumeration. Feedback

In addition, you can produce an Enumeration for any Collection by
using the Collections.enumeration() method, as seen in this
example:

//: c11:Enumerations.java
// Java 1.0/1.1 Vector and Enumeration.
import java.util.*;
import com.bruceeckel.util.*;

public class Enumerations {
 public static void main(String[] args) {
 Vector v = new Vector();
 Collections2.fill(v, Collections2.countries, 100);
 Enumeration e = v.elements();
 while(e.hasMoreElements())
 System.out.println(e.nextElement());
 // Produce an Enumeration from a Collection:
 e = Collections.enumeration(new ArrayList());
 }
} ///:~

The Java 1.0/1.1 Vector has only an addElement() method, but fill()
uses the add() method that was pasted on as Vector was turned into a
List. To produce an Enumeration, you call elements(), then you can
use it to perform a forward iteration. Feedback

The last line creates an ArrayList and uses enumeration() to adapt an
Enumeration from the ArrayList Iterator. Thus, if you have old code
that wants an Enumeration, you can still use the new containers. Feedback

Hashtable
As you’ve seen in the performance comparison in this chapter, the basic
Hashtable is very similar to the HashMap, even down to the method
names. There’s no reason to use Hashtable instead of HashMap in new
code. Feedback

604 Thinking in Java www.BruceEckel.com

Stack
The concept of the stack was introduced earlier, with the LinkedList.
What’s rather odd about the Java 1.0/1.1 Stack is that instead of using a
Vector as a building block, Stack is inherited from Vector. So it has all
of the characteristics and behaviors of a Vector plus some extra Stack
behaviors. It’s difficult to know whether the designers consciously thought
that this was an especially useful way of doing things, or whether it was
just a naïve design; in any event it was clearly not reviewed before it was
rushed into distribution, and so this bad design is still hanging around
(but you should never use it). Feedback

Here’s a simple demonstration of Stack that pushes each line from a
String array:

//: c11:Stacks.java
// Demonstration of Stack Class.
import com.bruceeckel.simpletest.*;
import java.util.*;
import c08.Month;

public class Stacks {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Stack stack = new Stack();
 for(int i = 0; i < Month.month.length; i++)
 stack.push(Month.month[i] + " ");
 System.out.println("stack = " + stack);
 // Treating a stack as a Vector:
 stack.addElement("The last line");
 System.out.println("element 5 = " +
 stack.elementAt(5));
 System.out.println("popping elements:");
 while(!stack.empty())
 System.out.println(stack.pop());
 monitor.expect(new String[] {
 "stack = [January , February , March , April , May "+
 ", June , July , August , September , October , " +
 "November , December]",
 "element 5 = June ",
 "popping elements:",
 "The last line",
 "December ",

Chapter 11: Collections of Objects 605

 "November ",
 "October ",
 "September ",
 "August ",
 "July ",
 "June ",
 "May ",
 "April ",
 "March ",
 "February ",
 "January "
 });
 }
} ///:~

Each line in the months array is inserted into the Stack with push(),
and later fetched from the top of the stack with a pop(). To make a point,
Vector operations are also performed on the Stack object. This is
possible because, by virtue of inheritance, a Stack is a Vector. Thus, all
operations that can be performed on a Vector can also be performed on a
Stack, such as elementAt(). Feedback

As mentioned earlier, you should use a LinkedList when you want stack
behavior. Feedback

BitSet
A BitSet is used if you want to efficiently store a lot of on-off information.
It’s efficient only from the standpoint of size; if you’re looking for efficient
access, it is slightly slower than using an array of some native type. Feedback

In addition, the minimum size of the BitSet is that of a long: 64 bits.
This implies that if you’re storing anything smaller, like 8 bits, a BitSet
will be wasteful; you’re better off creating your own class, or just an array,
to hold your flags if size is an issue. Feedback

A normal container expands as you add more elements, and the BitSet
does this as well. The following example shows how the BitSet works:

//: c11:Bits.java
// Demonstration of BitSet.
import java.util.*;

606 Thinking in Java www.BruceEckel.com

public class Bits {
 public static void printBitSet(BitSet b) {
 System.out.println("bits: " + b);
 String bbits = new String();
 for(int j = 0; j < b.size() ; j++)
 bbits += (b.get(j) ? "1" : "0");
 System.out.println("bit pattern: " + bbits);
 }
 public static void main(String[] args) {
 Random rand = new Random();
 // Take the LSB of nextInt():
 byte bt = (byte)rand.nextInt();
 BitSet bb = new BitSet();
 for(int i = 7; i >=0; i--)
 if(((1 << i) & bt) != 0)
 bb.set(i);
 else
 bb.clear(i);
 System.out.println("byte value: " + bt);
 printBitSet(bb);

 short st = (short)rand.nextInt();
 BitSet bs = new BitSet();
 for(int i = 15; i >=0; i--)
 if(((1 << i) & st) != 0)
 bs.set(i);
 else
 bs.clear(i);
 System.out.println("short value: " + st);
 printBitSet(bs);

 int it = rand.nextInt();
 BitSet bi = new BitSet();
 for(int i = 31; i >=0; i--)
 if(((1 << i) & it) != 0)
 bi.set(i);
 else
 bi.clear(i);
 System.out.println("int value: " + it);
 printBitSet(bi);

 // Test bitsets >= 64 bits:
 BitSet b127 = new BitSet();
 b127.set(127);

Chapter 11: Collections of Objects 607

 System.out.println("set bit 127: " + b127);
 BitSet b255 = new BitSet(65);
 b255.set(255);
 System.out.println("set bit 255: " + b255);
 BitSet b1023 = new BitSet(512);
 b1023.set(1023);
 b1023.set(1024);
 System.out.println("set bit 1023: " + b1023);
 }
} ///:~

The random number generator is used to create a random byte, short,
and int, and each one is transformed into a corresponding bit pattern in a
BitSet. This works fine because a BitSet is 64 bits, so none of these
cause it to increase in size. Then a BitSet of 512 bits is created. The
constructor allocates storage for twice that number of bits. However, you
can still set bit 1024 or greater. Feedback

Summary
To review the containers provided in the standard Java library: Feedback

1. An array associates numerical indices to objects. It holds objects of
a known type so that you don’t have to cast the result when you’re
looking up an object. It can be multidimensional, and it can hold
primitives. However, its size cannot be changed once you create it.
Feedback

2. A Collection holds single elements, while a Map holds associated
pairs. Feedback

3. Like an array, a List also associates numerical indices to objects—
you can think of arrays and Lists as ordered containers. The List
automatically resizes itself as you add more elements. But a List
can hold only Object references, so it won’t hold primitives and
you must always cast the result when you pull an Object reference
out of a container. Feedback

4. Use an ArrayList if you’re doing a lot of random accesses, and a
LinkedList if you will be doing a lot of insertions and removals in
the middle of the list. Feedback

608 Thinking in Java www.BruceEckel.com

5. The behavior of queues, deques, and stacks is provided via the
LinkedList. Feedback

6. A Map is a way to associate not numbers, but objects with other
objects. The design of a HashMap is focused on rapid access,
while a TreeMap keeps its keys in sorted order, and thus is not as
fast as a HashMap. A LinkedHashMap keeps its elements in
insertion order, but may also reorder them with its LRU algorithm.
Feedback

7. A Set only accepts one of each type of object. HashSets provide
maximally fast lookups, while TreeSets keep the elements in
sorted order. LinkedHashSets keep elements in insertion order.
Feedback

8. There’s no need to use the legacy classes Vector, Hashtable and
Stack in new code. Feedback

The containers are tools that you can use on a day-to-day basis to make
your programs simpler, more powerful, and more effective. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create an array of double and fill() it using
RandDoubleGenerator. Print the results. Feedback

2. Create a new class called Gerbil with an int gerbilNumber
that’s initialized in the constructor (similar to the Mouse example
in this chapter). Give it a method called hop() that prints out
which gerbil number this is, and that it’s hopping. Create an
ArrayList and add a bunch of Gerbil objects to the List. Now
use the get() method to move through the List and call hop()
for each Gerbil. Feedback

3. Modify Exercise 2 so you use an Iterator to move through the
List while calling hop(). Feedback

Chapter 11: Collections of Objects 609

4. Take the Gerbil class in Exercise 2 and put it into a Map instead,
associating the name of the Gerbil as a String (the key) for each
Gerbil (the value) you put in the table. Get an Iterator for the
keySet() and use it to move through the Map, looking up the
Gerbil for each key and printing out the key and telling the
gerbil to hop(). Feedback

5. Create a List (try both ArrayList and LinkedList) and fill it
using Collections2.countries. Sort the list and print it, then
apply Collections.shuffle() to the list repeatedly, printing it
each time so that you can see how the shuffle() method
randomizes the list differently each time. Feedback

6. Demonstrate that you can’t add anything but a Mouse to a
MouseList. Feedback

7. Modify MouseList.java so that it inherits from ArrayList
instead of using composition. Demonstrate the problem with this
approach. Feedback

8. Repair CatsAndDogs.java by creating a Cats container
(utilizing ArrayList) that will only accept and retrieve Cat
objects. Feedback

9. Fill a HashMap with key-value pairs. Print the results to show
ordering by hash code. Extract the pairs, sort by key, and place the
result into a LinkedHashMap. Show that the insertion order is
maintained.

10. Repeat the previous example with a HashSet and
LinkedHashSet.

11. Create a new type of container that uses a private ArrayList to
hold the objects. Using a Class reference, capture the type of the
first object you put in it, and then allow the user to insert objects
of only that type from then on. Feedback

12. Create a container that encapsulates an array of String, and that
only adds Strings and gets Strings, so that there are no casting
issues during use. If the internal array isn’t big enough for the next
add, your container should automatically resize it. In main(),

610 Thinking in Java www.BruceEckel.com

compare the performance of your container with an ArrayList
holding Strings. Feedback

13. Repeat Exercise 12 for a container of int, and compare the
performance to an ArrayList holding Integer objects. In your
performance comparison, include the process of incrementing
each object in the container. Feedback

14. Using the utilities in com.bruceeckel.util, create an array of
each primitive type and of String, then fill each array using an
appropriate generator, and print each array using the appropriate
print() method. Feedback

15. Create a generator that produces character names from your
favorite movies (you can use Snow White or Star Wars as a
fallback), and loops around to the beginning when it runs out of
names. Use the utilities in com.bruceeckel.util to fill an array,
an ArrayList, a LinkedList and both types of Set, then print
each container. Feedback

16. Create a class containing two String objects, and make it
Comparable so that the comparison only cares about the first
String. Fill an array and an ArrayList with objects of your class,
using the geography generator. Demonstrate that sorting works
properly. Now make a Comparator that only cares about the
second String and demonstrate that sorting works properly; also
perform a binary search using your Comparator. Feedback

17. Modify Exercise 16 so that an alphabetic sort is used. Feedback

18. Use Arrays2.RandStringGenerator to fill a TreeSet but using
alphabetic ordering. Print the TreeSet to verify the sort order.
Feedback

19. Create both an ArrayList and a LinkedList, and fill each using
the Collections2.capitals generator. Print each list using an
ordinary Iterator, then insert one list into the other using a
ListIterator, inserting at every other location. Now perform the
insertion starting at the end of the first list and moving backward.
Feedback

Chapter 11: Collections of Objects 611

20. Write a method that uses an Iterator to step through a
Collection and print the hashCode() of each object in the
container. Fill all the different types of Collections with objects
and apply your method to each container. Feedback

21. Repair the problem in InfiniteRecursion.java. Feedback

22. Create a class, then make an initialized array of objects of your
class. Fill a List from your array. Create a subset of your List
using subList(), and then remove this subset from your List
using removeAll(). Feedback

23. Change Exercise 6 in Chapter 7 to use an ArrayList to hold the
Rodents and an Iterator to move through the sequence of
Rodents. Remember that an ArrayList holds only Objects so
you must use a cast when accessing individual Rodents. Feedback

24. Following the Queue.java example, create a Deque class and
test it. Feedback

25. Use a TreeMap in Statistics.java. Now add code that tests the
performance difference between HashMap and TreeMap in that
program. Feedback

26. Produce a Map and a Set containing all the countries that begin
with ‘A.’ Feedback

27. Using Collections2.countries, fill a Set multiple times with the
same data and verify that the Set ends up with only one of each
instance. Try this with both kinds of Set. Feedback

28. Starting with Statistics.java, create a program that runs the test
repeatedly and looks to see if any one number tends to appear
more than the others in the results. Feedback

29. Rewrite Statistics.java using a HashSet of Counter objects
(you’ll have to modify Counter so that it will work in the
HashSet). Which approach seems better? Feedback

612 Thinking in Java www.BruceEckel.com

30. Fill a LinkedHashMap with String keys and objects of your
choice. Now extract the pairs, sort them based on the keys, and re-
insert them into the Map.

31. Modify the class in Exercise 16 so that the class will work with
HashSets and as a key in HashMaps. Feedback

32. Using SlowMap.java for inspiration, create a SlowSet. Feedback

33. Create a FastTraversalLinkedList that internally uses a
LinkedList for rapid insertions and removals, and an ArrayList
for rapid traversals and get() operations. Test it by modifying
ArrayPerformance.java.

34. Apply the tests in Map1.java to SlowMap to verify that it works.
Fix anything in SlowMap that doesn’t work correctly. Feedback

35. Implement the rest of the Map interface for SlowMap. Feedback

36. Modify MapPerformance.java to include tests of SlowMap.
Feedback

37. Modify SlowMap so that instead of two ArrayLists, it holds a
single ArrayList of MPair objects. Verify that the modified
version works correctly. Using MapPerformance.java, test the
speed of your new Map. Now change the put() method so that it
performs a sort() after each pair is entered, and modify get() to
use Collections.binarySearch() to look up the key. Compare
the performance of the new version with the old ones. Feedback

38. Add a char field to CountedString that is also initialized in the
constructor, and modify the hashCode() and equals() methods
to include the value of this char. Feedback

39. Modify SimpleHashMap so that it reports collisions, and test
this by adding the same data set twice so that you see collisions.
Feedback

40. Modify SimpleHashMap so that it reports the number of
“probes” necessary when collisions occur. That is, how many calls

Chapter 11: Collections of Objects 613

to next() must be made on the Iterators that walk the
LinkedLists looking for matches? Feedback

41. Implement the clear() and remove() methods for
SimpleHashMap. Feedback

42. Implement the rest of the Map interface for SimpleHashMap.
Feedback

43. Add a private rehash() method to SimpleHashMap that is
invoked when the load factor exceeds 0.75. During rehashing,
double the number of buckets, then search for the first prime
number greater than that to determine the new number of
buckets. Feedback

44. Following the example in SimpleHashMap.java, create and test
a SimpleHashSet. Feedback

45. Modify SimpleHashMap to use ArrayLists instead of
LinkedLists. Modify MapPerformance.java to compare the
performance of the two implementations. Feedback

46. Using the HTML documentation for the JDK (downloadable from
java.sun.com), look up the HashMap class. Create a HashMap,
fill it with elements, and determine the load factor. Test the lookup
speed with this map, then attempt to increase the speed by making
a new HashMap with a larger initial capacity and copying the old
map into the new one, running your lookup speed test again on the
new map. Feedback

47. In Chapter 8, locate the GreenhouseController.java example,
which consists of four files. In Controller.java, the class
Controller uses an ArrayList. Change the code to use a
LinkedList instead, and use an Iterator to cycle through the set
of events. Feedback

48. (Challenging). Write your own hashed map class, customized for a
particular key type: String for this example. Do not inherit it from
Map. Instead, duplicate the methods so that the put() and get()
methods specifically take String objects, not Objects, as keys.
Everything that involves keys should not use generic types, but

614 Thinking in Java www.BruceEckel.com

instead work with Strings, to avoid the cost of upcasting and
downcasting. Your goal is to make the fastest possible custom
implementation. Modify MapPerformance.java to test your
implementation vs. a HashMap. Feedback

49. (Challenging). Find the source code for List in the Java source
code library that comes with all Java distributions. Copy this code
and make a special version called intList that holds only ints.
Consider what it would take to make a special version of List for
all the primitive types. Now consider what happens if you want to
make a linked list class that works with all the primitive types.
Feedback

50. Modify c08:Month.java to make it implement the Comparable
interface. Feedback

51. Modify the hashCode() in CountedString.java by removing
the multiplication by id, and demonstrate that CountedString
still works as a key. What is the problem with this approach?
Feedback

 615

12: The Java
I/O System

Creating a good input/output (I/O) system is one of the
more difficult tasks for the language designer.

This is evidenced by the number of different approaches. The challenge
seems to be in covering all eventualities. Not only are there different
sources and sinks of I/O that you want to communicate with (files, the
console, network connections, etc.), but you need to talk to them in a wide
variety of ways (sequential, random-access, buffered, binary, character, by
lines, by words, etc.). Feedback

The Java library designers attacked this problem by creating lots of
classes. In fact, there are so many classes for Java’s I/O system that it can
be intimidating at first (ironically, the Java I/O design actually prevents
an explosion of classes). There was also a significant change in the I/O
library after Java 1.0, when the original byte-oriented library was
supplemented with char-oriented, Unicode-based I/O classes. In JDK
1.4, the nio classes (for “new I/O,” a name we’ll still be using years from
now) were added for improved performance and functionality. As a result
there are a fair number of classes to learn before you understand enough
of Java’s I/O picture that you can use it properly. In addition, it’s rather
important to understand the evolution history of the I/O library, even if
your first reaction is “don’t bother me with history, just show me how to
use it!” The problem is that without the historical perspective you will
rapidly become confused with some of the classes and when you should
and shouldn’t use them. Feedback

This chapter will give you an introduction to the variety of I/O classes in
the standard Java library and how to use them. Feedback

616 Thinking in Java www.BruceEckel.com

The File class
Before getting into the classes that actually read and write data to
streams, we’ll look at a utility provided with the library to assist you in
handling file directory issues. Feedback

The File class has a deceiving name—you might think it refers to a file,
but it doesn’t. It can represent either the name of a particular file or the
names of a set of files in a directory. If it’s a set of files, you can ask for
that set using the list() method, which returns an array of String. It
makes sense to return an array rather than one of the flexible container
classes because the number of elements is fixed, and if you want a
different directory listing you just create a different File object. In fact,
“FilePath” would have been a better name for the class. This section
shows an example of the use of this class, including the associated
FilenameFilter interface. Feedback

A directory lister
Suppose you’d like to see a directory listing. The File object can be listed
in two ways. If you call list() with no arguments, you’ll get the full list
that the File object contains. However, if you want a restricted list—for
example, if you want all of the files with an extension of .java—then you
use a “directory filter,” which is a class that tells how to select the File
objects for display. Feedback

Here’s the code for the example. Note that the result has been effortlessly
sorted (alphabetically) using the java.utils.Arrays.sort() method and
the AlphabeticComparator defined in Chapter 11:

//: c12:DirList.java
// Displays directory listing using regular expressions.
// {Args: "D.*\.java"}
import java.io.*;
import java.util.*;
import java.util.regex.*;
import com.bruceeckel.util.*;

public class DirList {
 public static void main(String[] args) {

Chapter 12: The Java I/O System 617

 File path = new File(".");
 String[] list;
 if(args.length == 0)
 list = path.list();
 else
 list = path.list(new DirFilter(args[0]));
 Arrays.sort(list, new AlphabeticComparator());
 for(int i = 0; i < list.length; i++)
 System.out.println(list[i]);
 }
}

class DirFilter implements FilenameFilter {
 private Pattern pattern;
 public DirFilter(String regex) {
 pattern = Pattern.compile(regex);
 }
 public boolean accept(File dir, String name) {
 // Strip path information, search for regex:
 return pattern.matcher(
 new File(name).getName()).matches();
 }
} ///:~

The DirFilter class “implements” the interface FilenameFilter. It’s
useful to see how simple the FilenameFilter interface is: Feedback

public interface FilenameFilter {
 boolean accept(File dir, String name);
}

It says all that this type of object does is provide a method called
accept(). The whole reason behind the creation of this class is to provide
the accept() method to the list() method so that list() can “call back”
accept() to determine which file names should be included in the list.
Thus, this structure is often referred to as a callback. More specifically,
this is an example of the Strategy Pattern, because list() implements
basic functionality, and you provide the Strategy in the form of a
FilenameFilter in order to complete the algorithm necessary for list()
to provide its service. Because list() takes a FilenameFilter object as
its argument, it means that you can pass an object of any class that
implements FilenameFilter to choose (even at run time) how the list()

618 Thinking in Java www.BruceEckel.com

method will behave. The purpose of a callback is to provide flexibility in
the behavior of code. Feedback

DirFilter shows that just because an interface contains only a set of
methods, you’re not restricted to writing only those methods. (You must
at least provide definitions for all the methods in an interface, however.)
In this case, the DirFilter constructor is also created. Feedback

The accept() method must accept a File object representing the
directory that a particular file is found in, and a String containing the
name of that file. You might choose to use or ignore either of these
arguments, but you will probably at least use the file name. Remember
that the list() method is calling accept() for each of the file names in
the directory object to see which one should be included—this is indicated
by the boolean result returned by accept(). Feedback

To make sure the element you’re working with is only the file name and
contains no path information, all you have to do is take the String object
and create a File object out of it, then call getName(), which strips away
all the path information (in a platform-independent way). Then accept()
uses a regular expression matcher object to see if the regular expression
regex matches the name of the file. Using accept(), the list() method
returns an array. Feedback

Anonymous inner classes
This example is ideal for rewriting using an anonymous inner class
(described in Chapter 8). As a first cut, a method filter() is created that
returns a reference to a FilenameFilter:

//: c12:DirList2.java
// Uses anonymous inner classes.
// {Args: "D.*\.java"}
import java.io.*;
import java.util.*;
import java.util.regex.*;
import com.bruceeckel.util.*;

public class DirList2 {
 public static FilenameFilter filter(final String regex) {
 // Creation of anonymous inner class:
 return new FilenameFilter() {

Chapter 12: The Java I/O System 619

 private Pattern pattern = Pattern.compile(regex);
 public boolean accept(File dir, String name) {
 return pattern.matcher(
 new File(name).getName()).matches();
 }
 }; // End of anonymous inner class
 }
 public static void main(String[] args) {
 File path = new File(".");
 String[] list;
 if(args.length == 0)
 list = path.list();
 else
 list = path.list(filter(args[0]));
 Arrays.sort(list, new AlphabeticComparator());
 for(int i = 0; i < list.length; i++)
 System.out.println(list[i]);
 }
} ///:~

Note that the argument to filter() must be final. This is required by the
anonymous inner class so that it can use an object from outside its scope.
Feedback

This design is an improvement because the FilenameFilter class is now
tightly bound to DirList2. However, you can take this approach one step
further and define the anonymous inner class as an argument to list(), in
which case it’s even smaller:

//: c12:DirList3.java
// Building the anonymous inner class "in-place."
// {Args: "D.*\.java"}
import java.io.*;
import java.util.*;
import java.util.regex.*;
import com.bruceeckel.util.*;

public class DirList3 {
 public static void main(final String[] args) {
 File path = new File(".");
 String[] list;
 if(args.length == 0)
 list = path.list();
 else

620 Thinking in Java www.BruceEckel.com

 list = path.list(new FilenameFilter() {
 private Pattern pattern = Pattern.compile(args[0]);
 public boolean accept(File dir, String name) {
 return pattern.matcher(
 new File(name).getName()).matches();
 }
 });
 Arrays.sort(list, new AlphabeticComparator());
 for(int i = 0; i < list.length; i++)
 System.out.println(list[i]);
 }
} ///:~

The argument to main() is now final, since the anonymous inner class
uses args[0] directly. Feedback

This shows you how anonymous inner classes allow the creation of
specific, one-off classes to solve problems. One benefit of this approach is
that it keeps the code that solves a particular problem isolated together in
one spot. On the other hand, it is not always as easy to read, so you must
use it judiciously. Feedback

Checking for and creating
directories
The File class is more than just a representation for an existing file or
directory. You can also use a File object to create a new directory or an
entire directory path if it doesn’t exist. You can also look at the
characteristics of files (size, last modification date, read/write), see
whether a File object represents a file or a directory, and delete a file.
This program shows some of the other methods available with the File
class (see the HTML documentation from java.sun.com for the full set):

//: c12:MakeDirectories.java
// Demonstrates the use of the File class to
// create directories and manipulate files.
// {Args: MakeDirectoriesTest}
import com.bruceeckel.simpletest.*;
import java.io.*;

public class MakeDirectories {
 private static Test monitor = new Test();

Chapter 12: The Java I/O System 621

 private static void usage() {
 System.err.println(
 "Usage:MakeDirectories path1 ...\n" +
 "Creates each path\n" +
 "Usage:MakeDirectories -d path1 ...\n" +
 "Deletes each path\n" +
 "Usage:MakeDirectories -r path1 path2\n" +
 "Renames from path1 to path2");
 System.exit(1);
 }
 private static void fileData(File f) {
 System.out.println(
 "Absolute path: " + f.getAbsolutePath() +
 "\n Can read: " + f.canRead() +
 "\n Can write: " + f.canWrite() +
 "\n getName: " + f.getName() +
 "\n getParent: " + f.getParent() +
 "\n getPath: " + f.getPath() +
 "\n length: " + f.length() +
 "\n lastModified: " + f.lastModified());
 if(f.isFile())
 System.out.println("It's a file");
 else if(f.isDirectory())
 System.out.println("It's a directory");
 }
 public static void main(String[] args) {
 if(args.length < 1) usage();
 if(args[0].equals("-r")) {
 if(args.length != 3) usage();
 File
 old = new File(args[1]),
 rname = new File(args[2]);
 old.renameTo(rname);
 fileData(old);
 fileData(rname);
 return; // Exit main
 }
 int count = 0;
 boolean del = false;
 if(args[0].equals("-d")) {
 count++;
 del = true;
 }
 count--;

622 Thinking in Java www.BruceEckel.com

 while(++count < args.length) {
 File f = new File(args[count]);
 if(f.exists()) {
 System.out.println(f + " exists");
 if(del) {
 System.out.println("deleting..." + f);
 f.delete();
 }
 }
 else { // Doesn't exist
 if(!del) {
 f.mkdirs();
 System.out.println("created " + f);
 }
 }
 fileData(f);
 }
 if(args.length == 1 &&
 args[0].equals("MakeDirectoriesTest"))
 monitor.expect(new String[] {
 "%% (MakeDirectoriesTest exists"+
 "|created MakeDirectoriesTest)",
 "%% Absolute path: "
 + "\\S+MakeDirectoriesTest",
 "%% Can read: (true|false)",
 "%% Can write: (true|false)",
 " getName: MakeDirectoriesTest",
 " getParent: null",
 " getPath: MakeDirectoriesTest",
 "%% length: \\d+",
 "%% lastModified: \\d+",
 "It's a directory"
 });
 }
} ///:~

In fileData() you can see various file investigation methods used to
display information about the file or directory path. Feedback

The first method that’s exercised by main() is renameTo(), which
allows you to rename (or move) a file to an entirely new path represented
by the argument, which is another File object. This also works with
directories of any length. Feedback

Chapter 12: The Java I/O System 623

If you experiment with the above program, you’ll find that you can make a
directory path of any complexity because mkdirs() will do all the work
for you. Feedback

Input and output
I/O libraries often use the abstraction of a stream, which represents any
data source or sink as an object capable of producing or receiving pieces
of data. The stream hides the details of what happens to the data inside
the actual I/O device. Feedback

The Java library classes for I/O are divided by input and output, as you
can see by looking at the class hierarchy in the JDK Documentation. By
inheritance, everything derived from the InputStream or Reader
classes have basic methods called read() for reading a single byte or
array of bytes. Likewise, everything derived from OutputStream or
Writer classes have basic methods called write() for writing a single
byte or array of bytes. However, you won’t generally use these methods;
they exist so that other classes can use them—these other classes provide
a more useful interface. Thus, you’ll rarely create your stream object by
using a single class, but instead will layer multiple objects together to
provide your desired functionality. The fact that you create more than one
object to create a single resulting stream is the primary reason that Java’s
stream library is confusing. Feedback

It’s helpful to categorize the classes by their functionality. In Java 1.0, the
library designers started by deciding that all classes that had anything to
do with input would be inherited from InputStream and all classes that
were associated with output would be inherited from OutputStream.
Feedback

Types of InputStream
InputStream’s job is to represent classes that produce input from
different sources. These sources can be:

1. An array of bytes.

2. A String object.

624 Thinking in Java www.BruceEckel.com

3. A file.

4. A “pipe,” which works like a physical pipe: you put things in one
end and they come out the other.

5. A sequence of other streams, so you can collect them together into
a single stream.

6. Other sources, such as an Internet connection. (This is covered in
Thinking in Enterprise Java.) Feedback

Each of these has an associated subclass of InputStream. In addition,
the FilterInputStream is also a type of InputStream, to provide a
base class for "decorator" classes that attach attributes or useful interfaces
to input streams. This is discussed later. Feedback

Table 12-1. Types of InputStream

Constructor Arguments Class Function

How to use it

The buffer from which to
extract the bytes.

ByteArray-
InputStream

Allows a buffer in
memory to be used
as an
InputStream As a source of data. Connect

it to a FilterInputStream
object to provide a useful
interface.

A String. The underlying
implementation actually
uses a StringBuffer.

StringBuffer-
InputStream

Converts a String
into an
InputStream

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.

File-
InputStream

For reading
information from
a file

A String representing the
file name, or a File or
FileDescriptor object.

Chapter 12: The Java I/O System 625

Constructor Arguments Class Function

How to use it

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.

PipedOutputStream Piped-
InputStream

Produces the data
that’s being
written to the
associated
PipedOutput-
Stream.
Implements the
“piping” concept.

As a source of data in
multithreading. Connect it
to a FilterInputStream
object to provide a useful
interface.

Two InputStream objects
or an Enumeration for a
container of InputStream
objects.

Sequence-
InputStream

Converts two or
more
InputStream
objects into a
single
InputStream.

As a source of data. Connect
it to a FilterInputStream
object to provide a useful
interface.

See Table 12-3. Filter-
InputStream

Abstract class
which is an
interface for
decorators that
provide useful
functionality to the
other
InputStream
classes. See Table
12-3.

See Table 12-3.

Types of OutputStream
This category includes the classes that decide where your output will go:
an array of bytes (no String, however; presumably you can create one
using the array of bytes), a file, or a “pipe.” Feedback

626 Thinking in Java www.BruceEckel.com

In addition, the FilterOutputStream provides a base class for
"decorator" classes that attach attributes or useful interfaces to output
streams. This is discussed later. Feedback

Table 12-2. Types of OutputStream

Constructor Arguments Class Function

How to use it

Optional initial size of the
buffer.

ByteArray-
OutputStream

Creates a buffer in
memory. All the
data that you send to
the stream is placed
in this buffer. To designate the destination

of your data. Connect it to a
FilterOutputStream
object to provide a useful
interface.

A String representing the
file name, or a File or
FileDescriptor object.

File-
OutputStream

For sending
information to a file.

To designate the destination
of your data. Connect it to a
FilterOutputStream
object to provide a useful
interface.

PipedInputStream Piped-
OutputStream

Any information you
write to this
automatically ends
up as input for the
associated
PipedInput-
Stream.
Implements the
“piping” concept.

To designate the destination
of your data for
multithreading. Connect it
to a FilterOutputStream
object to provide a useful
interface.

Filter-
OutputStream

Abstract class which
is an interface for
decorators that

See Table 12-4.

Chapter 12: The Java I/O System 627

Constructor Arguments Class Function

How to use it

decorators that
provide useful
functionality to the
other
OutputStream
classes. See Table
12-4.

See Table 12-4.

Adding attributes
and useful interfaces

The use of layered objects to dynamically and transparently add
responsibilities to individual objects is referred to as the Decorator
pattern. (Patterns1 are the subject of Thinking in Patterns with Java at
www.BruceEckel.com.) The decorator pattern specifies that all objects
that wrap around your initial object have the same interface. This makes
the basic use of the decorators transparent—you send the same message
to an object whether it’s been decorated or not. This is the reason for the
existence of the “filter” classes in the Java I/O library: the abstract “filter”
class is the base class for all the decorators. (A decorator must have the
same interface as the object it decorates, but the decorator can also extend
the interface, which occurs in several of the “filter” classes). Feedback

Decorators are often used when simple subclassing results in a large
number of classes in order to satisfy every possible combination that is
needed—so many classes that it becomes impractical. The Java I/O library
requires many different combinations of features, and this is the
justification for using the decorator pattern2. There is a drawback to the
decorator pattern, however. Decorators give you much more flexibility

1 Design Patterns, Erich Gamma et al., Addison-Wesley 1995.

2 It’s not clear that this was a good design decision, especially compared to the simplicity
of I/O libraries in other languages. But it’s the justification for the decision.

628 Thinking in Java www.BruceEckel.com

while you’re writing a program (since you can easily mix and match
attributes), but they add complexity to your code. The reason that the
Java I/O library is awkward to use is that you must create many classes—
the “core” I/O type plus all the decorators—in order to get the single I/O
object that you want. Feedback

The classes that provide the decorator interface to control a particular
InputStream or OutputStream are the FilterInputStream and
FilterOutputStream—which don’t have very intuitive names.
FilterInputStream and FilterOutputStream are derived from the
base classes of the I/O library, InputStream and OutputStream,
which is the key requirement of the decorator (so that it provides the
common interface to all the objects that are being decorated). Feedback

Reading from an InputStream
with FilterInputStream
The FilterInputStream classes accomplish two significantly different
things. DataInputStream allows you to read different types of primitive
data as well as String objects. (All the methods start with “read,” such as
readByte(), readFloat(), etc.) This, along with its companion
DataOutputStream, allows you to move primitive data from one place
to another via a stream. These “places” are determined by the classes in
Table 12-1. Feedback

The remaining classes modify the way an InputStream behaves
internally: whether it’s buffered or unbuffered, if it keeps track of the lines
it’s reading (allowing you to ask for line numbers or set the line number),
and whether you can push back a single character. The last two classes
look a lot like support for building a compiler (that is, they were probably
added to support the construction of the Java compiler), so you probably
won’t use them in general programming. Feedback

You’ll need to buffer your input almost every time, regardless of the I/O
device you’re connecting to, so it would have made more sense for the I/O
library to make a special case (or simply a method call) for unbuffered
input rather than buffered input. Feedback

Table 12-3. Types of FilterInputStream

Chapter 12: The Java I/O System 629

Constructor
Arguments

Class Function

How to use it

InputStream Data-
InputStream

Used in concert with
DataOutputStream,
so you can read
primitives (int, char,
long, etc.) from a
stream in a portable
fashion.

Contains a full
interface to allow you
to read primitive types.

InputStream, with
optional buffer size.

Buffered-
InputStream

Use this to prevent a
physical read every time
you want more data.
You’re saying “Use a
buffer.”

This doesn’t provide an
interface per se, just a
requirement that a
buffer be used. Attach
an interface object.

InputStream LineNumber-
InputStream

Keeps track of line
numbers in the input
stream; you can call
getLineNumber()
and setLineNumber(
int).

This just adds line
numbering, so you’ll
probably attach an
interface object.

InputStream Pushback-
InputStream

Has a one byte push-
back buffer so that you
can push back the last
character read.

Generally used in the
scanner for a compiler
and probably included
because the Java
compiler needed it. You
probably won’t use this.

630 Thinking in Java www.BruceEckel.com

Writing to an OutputStream
with FilterOutputStream
The complement to DataInputStream is DataOutputStream, which
formats each of the primitive types and String objects onto a stream in
such a way that any DataInputStream, on any machine, can read them.
All the methods start with “write,” such as writeByte(), writeFloat(),
etc. Feedback

The original intent of PrintStream was to print all of the primitive data
types and String objects in a viewable format. This is different from
DataOutputStream, whose goal is to put data elements on a stream in a
way that DataInputStream can portably reconstruct them. Feedback

The two important methods in PrintStream are print() and
println(), which are overloaded to print all the various types. The
difference between print() and println() is that the latter adds a
newline when it’s done. Feedback

PrintStream can be problematic because it traps all IOExceptions
(You must explicitly test the error status with checkError(), which
returns true if an error has occurred). Also, PrintStream doesn’t
internationalize properly and doesn’t handle line breaks in a platform
independent way (these problems are solved with PrintWriter,
described later). Feedback

BufferedOutputStream is a modifier and tells the stream to use
buffering so you don’t get a physical write every time you write to the
stream. You’ll probably always want to use this when doing output. Feedback

Table 12-4. Types of FilterOutputStream

Constructor
Arguments

Class Function

How to use it

Data-
OutputStream

Used in concert with
DataInputStream so
you can write

OutputStream

Chapter 12: The Java I/O System 631

Constructor
Arguments

Class Function

How to use it

primitives (int, char,
long, etc.) to a stream
in a portable fashion.

Contains full
interface to allow you
to write primitive
types.

OutputStream,
with optional
boolean indicating
that the buffer is
flushed with every
newline.

PrintStream For producing
formatted output.
While
DataOutputStream
handles the storage of
data, PrintStream
handles display. Should be the “final”

wrapping for your
OutputStream
object. You’ll
probably use this a
lot.

OutputStream,
with optional buffer
size.

Buffered-
OutputStream

Use this to prevent a
physical write every
time you send a piece
of data. You’re saying
“Use a buffer.” You can
call flush() to flush
the buffer.

This doesn’t provide
an interface per se,
just a requirement
that a buffer is used.
Attach an interface
object.

Readers & Writers
Java 1.1 made some significant modifications to the fundamental I/O
stream library. When you see the Reader and Writer classes your first
thought (like mine) might be that these were meant to replace the
InputStream and OutputStream classes. But that’s not the case.
Although some aspects of the original streams library are deprecated (if
you use them you will receive a warning from the compiler), the
InputStream and OutputStream classes still provide valuable

632 Thinking in Java www.BruceEckel.com

functionality in the form of byte-oriented I/O, while the Reader and
Writer classes provide Unicode-compliant, character-based I/O. In
addition: Feedback

1. Java 1.1 added new classes into the InputStream and
OutputStream hierarchy, so it’s obvious those hierarchies
weren’t being replaced. Feedback

2. There are times when you must use classes from the “byte”
hierarchy in combination with classes in the “character” hierarchy.
To accomplish this there are “adapter” classes:
InputStreamReader converts an InputStream to a Reader
and OutputStreamWriter converts an OutputStream to a
Writer. Feedback

The most important reason for the Reader and Writer hierarchies is for
internationalization. The old I/O stream hierarchy supports only 8-bit
byte streams and doesn’t handle the 16-bit Unicode characters well. Since
Unicode is used for internationalization (and Java’s native char is 16-bit
Unicode), the Reader and Writer hierarchies were added to support
Unicode in all I/O operations. In addition, the new libraries are designed
for faster operations than the old. Feedback

As is the practice in this book, I will attempt to provide an overview of the
classes, but assume that you will use the JDK documentation to determine
all the details, such as the exhaustive list of methods. Feedback

Sources and sinks of data
Almost all of the original Java I/O stream classes have corresponding
Reader and Writer classes to provide native Unicode manipulation.
However, there are some places where the byte-oriented InputStreams
and OutputStreams are the correct solution; in particular, the
java.util.zip libraries are byte-oriented rather than char-oriented. So
the most sensible approach to take is to try to use the Reader and
Writer classes whenever you can, and you’ll discover the situations when
you have to use the byte-oriented libraries because your code won’t
compile. Feedback

Chapter 12: The Java I/O System 633

Here is a table that shows the correspondence between the sources and
sinks of information (that is, where the data physically comes from or
goes to) in the two hierarchies.

Sources & Sinks:
Java 1.0 class

Corresponding Java 1.1 class

InputStream Reader
adapter:
InputStreamReader

OutputStream Writer
adapter:
OutputStreamWriter

FileInputStream FileReader

FileOutputStream FileWriter

StringBufferInputStream StringReader

(no corresponding class) StringWriter

ByteArrayInputStream CharArrayReader

ByteArrayOutputStream CharArrayWriter

PipedInputStream PipedReader

PipedOutputStream PipedWriter

In general, you’ll find that the interfaces for the two different hierarchies
are similar if not identical.

Modifying stream behavior
For InputStreams and OutputStreams, streams were adapted for
particular needs using “decorator” subclasses of FilterInputStream and
FilterOutputStream. The Reader and Writer class hierarchies
continue the use of this idea—but not exactly. Feedback

In the following table, the correspondence is a rougher approximation
than in the previous table. The difference is because of the class
organization: while BufferedOutputStream is a subclass of
FilterOutputStream, BufferedWriter is not a subclass of
FilterWriter (which, even though it is abstract, has no subclasses and
so appears to have been put in either as a placeholder or simply so you

634 Thinking in Java www.BruceEckel.com

wouldn’t wonder where it was). However, the interfaces to the classes are
quite a close match.

Filters:
Java 1.0 class

Corresponding Java 1.1 class

FilterInputStream FilterReader

FilterOutputStream FilterWriter (abstract class with
no subclasses)

BufferedInputStream BufferedReader
(also has readLine())

BufferedOutputStream BufferedWriter

DataInputStream Use DataInputStream
(Except when you need to use
readLine(), when you should use
a BufferedReader)

PrintStream PrintWriter

LineNumberInputStream
(deprecated)

LineNumberReader

StreamTokenizer StreamTokenizer
(use constructor that takes a
Reader instead)

PushBackInputStream PushBackReader

There’s one direction that’s quite clear: Whenever you want to use
readLine(), you shouldn’t do it with a DataInputStream (this is met
with a deprecation message at compile time), but instead use a
BufferedReader. Other than this, DataInputStream is still a
“preferred” member of the I/O library.

To make the transition to using a PrintWriter easier, it has constructors
that take any OutputStream object, as well as Writer objects. However,
PrintWriter has no more support for formatting than PrintStream
does; the interfaces are virtually the same. Feedback

The PrintWriter constructor also has an option to perform automatic
flushing, which happens after every println() if the constructor flag is
set. Feedback

Chapter 12: The Java I/O System 635

Unchanged Classes
Some classes were left unchanged between Java 1.0 and Java 1.1:

Java 1.0 classes without
corresponding Java 1.1 classes

DataOutputStream

File

RandomAccessFile

SequenceInputStream

DataOutputStream, in particular, is used without change, so for storing
and retrieving data in a transportable format you use the InputStream
and OutputStream hierarchies.

Off by itself:
RandomAccessFile

RandomAccessFile is used for files containing records of known size so
that you can move from one record to another using seek(), then read or
change the records. The records don’t have to be the same size; you just
have to be able to determine how big they are and where they are placed
in the file. Feedback

At first it’s a little bit hard to believe that RandomAccessFile is not part
of the InputStream or OutputStream hierarchy. However, it has no
association with those hierarchies other than that it happens to
implement the DataInput and DataOutput interfaces (which are also
implemented by DataInputStream and DataOutputStream). It
doesn’t even use any of the functionality of the existing InputStream or
OutputStream classes—it’s a completely separate class, written from
scratch, with all of its own (mostly native) methods. The reason for this
may be that RandomAccessFile has essentially different behavior than
the other I/O types, since you can move forward and backward within a
file. In any event, it stands alone, as a direct descendant of Object. Feedback

636 Thinking in Java www.BruceEckel.com

Essentially, a RandomAccessFile works like a DataInputStream
pasted together with a DataOutputStream, along with the methods
getFilePointer() to find out where you are in the file, seek() to move
to a new point in the file, and length() to determine the maximum size
of the file. In addition, the constructors require a second argument
(identical to fopen() in C) indicating whether you are just randomly
reading (“r”) or reading and writing (“rw”). There’s no support for write-
only files, which could suggest that RandomAccessFile might have
worked well if it were inherited from DataInputStream. Feedback

The seeking methods are available only in RandomAccessFile, which
works for files only. BufferedInputStream does allow you to mark()
a position (whose value is held in a single internal variable) and reset()
to that position, but this is limited and not very useful. Feedback

Most, if not all, of the RandomAccessFile functionality is superceded in
JDK 1.4 with the nio memory-mapped files, which will be described later
in this chapter.

Typical uses of I/O
streams

Although you can combine the I/O stream classes in many different ways,
you’ll probably just use a few combinations. The following example can be
used as a basic reference; it shows the creation and use of typical I/O
configurations. Note that each configuration begins with a commented
number and title that corresponds to the heading for the appropriate
explanation that follows in the text.

//: c12:IOStreamDemo.java
// Typical I/O stream configurations.
// {Clean: IODemo.out,Data.txt,rtest.dat}
import com.bruceeckel.simpletest.*;
import java.io.*;

public class IOStreamDemo {
 private static Test monitor = new Test();
 // Throw exceptions to console:
 public static void main(String[] args)

Chapter 12: The Java I/O System 637

 throws IOException {
 // 1. Reading input by lines:
 BufferedReader in = new BufferedReader(
 new FileReader("IOStreamDemo.java"));
 String s, s2 = new String();
 while((s = in.readLine())!= null)
 s2 += s + "\n";
 in.close();

 // 1b. Reading standard input:
 BufferedReader stdin = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter a line:");
 System.out.println(stdin.readLine());

 // 2. Input from memory
 StringReader in2 = new StringReader(s2);
 int c;
 while((c = in2.read()) != -1)
 System.out.print((char)c);

 // 3. Formatted memory input
 try {
 DataInputStream in3 = new DataInputStream(
 new ByteArrayInputStream(s2.getBytes()));
 while(true)
 System.out.print((char)in3.readByte());
 } catch(EOFException e) {
 System.err.println("End of stream");
 }

 // 4. File output
 try {
 BufferedReader in4 = new BufferedReader(
 new StringReader(s2));
 PrintWriter out1 = new PrintWriter(
 new BufferedWriter(new FileWriter("IODemo.out")));
 int lineCount = 1;
 while((s = in4.readLine()) != null)
 out1.println(lineCount++ + ": " + s);
 out1.close();
 } catch(EOFException e) {
 System.err.println("End of stream");
 }

638 Thinking in Java www.BruceEckel.com

 // 5. Storing & recovering data
 try {
 DataOutputStream out2 = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream("Data.txt")));
 out2.writeDouble(3.14159);
 out2.writeUTF("That was pi");
 out2.writeDouble(1.41413);
 out2.writeUTF("Square root of 2");
 out2.close();
 DataInputStream in5 = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("Data.txt")));
 // Must use DataInputStream for data:
 System.out.println(in5.readDouble());
 // Only readUTF() will recover the
 // Java-UTF String properly:
 System.out.println(in5.readUTF());
 // Read the following double and String:
 System.out.println(in5.readDouble());
 System.out.println(in5.readUTF());
 } catch(EOFException e) {
 throw new RuntimeException(e);
 }

 // 6. Reading/writing random access files
 RandomAccessFile rf =
 new RandomAccessFile("rtest.dat", "rw");
 for(int i = 0; i < 10; i++)
 rf.writeDouble(i*1.414);
 rf.close();
 rf = new RandomAccessFile("rtest.dat", "rw");
 rf.seek(5*8);
 rf.writeDouble(47.0001);
 rf.close();
 rf = new RandomAccessFile("rtest.dat", "r");
 for(int i = 0; i < 10; i++)
 System.out.println("Value " + i + ": " +
 rf.readDouble());
 rf.close();
 monitor.expect("IOStreamDemo.out");
 }
} ///:~

Chapter 12: The Java I/O System 639

Here are the descriptions for the numbered sections of the program:
Feedback

Input streams
Parts 1 through 4 demonstrate the creation and use of input streams. Part
4 also shows the simple use of an output stream.

1. Buffered input file
To open a file for character input, you use a FileInputReader with a
String or a File object as the file name. For speed, you’ll want that file to
be buffered so you give the resulting reference to the constructor for a
BufferedReader. Since BufferedReader also provides the
readLine() method, this is your final object and the interface you read
from. When you reach the end of the file, readLine() returns null so
that is used to break out of the while loop. Feedback

The String s2 is used to accumulate the entire contents of the file
(including newlines that must be added since readLine() strips them
off). s2 is then used in the later portions of this program. Finally, close()
is called to close the file. Technically, close() will be called when
finalize() runs, and this is supposed to happen (whether or not garbage
collection occurs) as the program exits. However, this has been
inconsistently implemented, so the only safe approach is to explicitly call
close() for files. Feedback

Section 1b shows how you can wrap System.in for reading console input.
System.in is an InputStream, and BufferedReader needs a Reader
argument, so InputStreamReader is brought in to perform the
adaptation. Feedback

2. Input from memory
This section takes the String s2 that now contains the entire contents of
the file and uses it to create a StringReader. Then read() is used to
read each character one at a time and send it out to the console. Note that
read() returns the next byte as an int and thus it must be cast to a char
to print properly. Feedback

640 Thinking in Java www.BruceEckel.com

3. Formatted memory input
To read “formatted” data, you use a DataInputStream, which is a byte-
oriented I/O class (rather than char oriented). Thus you must use all
InputStream classes rather than Reader classes. Of course, you can
read anything (such as a file) as bytes using InputStream classes, but
here a String is used. To convert the String to an array of bytes, which is
what is appropriate for a ByteArrayInputStream, String has a
getBytes() method to do the job. At that point, you have an appropriate
InputStream to hand to DataInputStream. Feedback

If you read the characters from a DataInputStream one byte at a time
using readByte(), any byte value is a legitimate result so the return
value cannot be used to detect the end of input. Instead, you can use the
available() method to find out how many more characters are available.
Here’s an example that shows how to read a file one byte at a time:

//: c12:TestEOF.java
// Testing for end of file while reading a byte at a time.
import java.io.*;

public class TestEOF {
 // Throw exceptions to console:
 public static void main(String[] args)
 throws IOException {
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("TestEOF.java")));
 while(in.available() != 0)
 System.out.print((char)in.readByte());
 }
} ///:~

Note that available() works differently depending on what sort of
medium you’re reading from; it’s literally “the number of bytes that can be
read without blocking.” With a file this means the whole file, but with a
different kind of stream this might not be true, so use it thoughtfully.
Feedback

You could also detect the end of input in cases like these by catching an
exception. However, the use of exceptions for control flow is considered a
misuse of that feature. Feedback

Chapter 12: The Java I/O System 641

4. File output
This example also shows how to write data to a file. First, a FileWriter is
created to connect to the file. You’ll virtually always want to buffer the
output by wrapping it in a BufferedWriter (try removing this wrapping
to see the impact on the performance—buffering tends to dramatically
increase performance of I/O operations). Then for the formatting it’s
turned into a PrintWriter. The data file created this way is readable as
an ordinary text file. Feedback

As the lines are written to the file, line numbers are added. Note that
LineNumberInputStream is not used, because it’s a silly class and you
don’t need it. As shown here, it’s trivial to keep track of your own line
numbers. Feedback

When the input stream is exhausted, readLine() returns null. You’ll see
an explicit close() for out1, because if you don’t call close() for all your
output files, you might discover that the buffers don’t get flushed so
they’re incomplete. Feedback

Output streams
The two primary kinds of output streams are separated by the way they
write data: one writes it for human consumption, and the other writes it
to be reacquired by a DataInputStream. The RandomAccessFile
stands alone, although its data format is compatible with the
DataInputStream and DataOutputStream. Feedback

5. Storing and recovering data
A PrintWriter formats data so that it’s readable by a human. However,
to output data for recovery by another stream, you use a
DataOutputStream to write the data and a DataInputStream to
recover the data. Of course, these streams could be anything, but here a
file is used, buffered for both reading and writing. DataOutputStream
and DataInputStream are byte-oriented and thus require the
InputStreams and OutputStreams. Feedback

If you use a DataOutputStream to write the data, then Java guarantees
that you can accurately recover the data using a DataInputStream—

642 Thinking in Java www.BruceEckel.com

regardless of what different platforms write and read the data. This is
incredibly valuable, as anyone knows who has spent time worrying about
platform-specific data issues. That problem vanishes if you have Java on
both platforms3. Feedback

When using a DataOutputStream, the only reliable way to write a
String so that it can be recovered by a DataInputStream is to use UTF-
8 encoding, accomplished above using writeUTF() and readUTF().
UTF-8 is a variation on Unicode, which stores all characters in 2 bytes. If
you’re working with ASCII or mostly ASCII characters (which only occupy
7 bits), this is a tremendous waste of space and/or bandwidth, so UTF-8
encodes ASCII characters in a single byte, and non-ASCII characters in
two or three bytes. In addition, the length of the string is stored in the first
two bytes. However, writeUTF() and readUTF() use a special
variation of UTF-8 for Java (which is completely described in the JDK
documentation for those methods) and so if you read a string written with
writeUTF() using a non-Java program, you must write special code in
order to read the string properly. Feedback

With writeUTF() and readUTF(), you can intermingle Strings and
other types of data using a DataOutputStream with the knowledge that
the Strings will be properly stored as Unicode, and will be easily
recoverable with a DataInputStream. Feedback

The writeDouble() stores the double number to the stream and the
complementary readDouble() recovers it (there are similar methods for
reading and writing the other types). But for any of the reading methods
to work correctly, you must know the exact placement of the data item in
the stream, since it would be equally possible to read the stored double
as a simple sequence of bytes, or as a char, etc. So you must either have a
fixed format for the data in the file or extra information must be stored in
the file that you parse to determine where the data is located. Note that
object serialization (described later in this chapter) may be an easier way
to store and retrieve complex data structures. Feedback

3 XML is another way to solve the problem of moving data across different computing
platforms, and does not depend on having Java on all platforms. JDK 1.4 contains XML
tools in javax.xml.* libraries. These are covered in Thinking in Enterprise Java, at
www.MindView.net.

Chapter 12: The Java I/O System 643

6. Reading and writing random access files
As previously noted, the RandomAccessFile is almost totally isolated
from the rest of the I/O hierarchy, save for the fact that it implements the
DataInput and DataOutput interfaces. So you cannot combine it with
any of the aspects of the InputStream and OutputStream subclasses.
Even though it might make sense to treat a ByteArrayInputStream as
a random access element, you can use RandomAccessFile to only open
a file. You must assume a RandomAccessFile is properly buffered since
you cannot add that. Feedback

The one option you have is in the second constructor argument: you can
open a RandomAccessFile to read (“r”) or read and write (“rw”).
Feedback

Using a RandomAccessFile is like using a combined
DataInputStream and DataOutputStream (because it implements
the equivalent interfaces). In addition, you can see that seek() is used to
move about in the file and change one of the values. Feedback

With the advent of new I/O in JDK 1.4, you may want to consider using
memory-mapped files instead of RandomAccessFile. Feedback

Piped streams
The PipedInputStream, PipedOutputStream, PipedReader and
PipedWriter have been mentioned only briefly in this chapter. This is
not to suggest that they aren’t useful, but their value is not apparent until
you begin to understand multithreading, since the piped streams are used
to communicate between threads. This is covered along with an example
in Chapter 13. Feedback

File reading & writing
utilities

A very common programming task is reading a file into memory,
modifying it, and then writing it out again. One of the problems with the
Java IO library is that it requires you to write quite a bit of code in order

644 Thinking in Java www.BruceEckel.com

to perform these common operations – there are no basic helper function
to do them for you. What’s worse, the decorators make it rather hard to
remember how to open files. Thus, it makes sense to add helper classes to
your library that will easily perform these basic tasks for you. Here’s one
that contains static methods to read and write text files as a single string.
In addition, you can create a TextFile class that holds the lines of the file
in an ArrayList (so you have all the ArrayList functionality available
while manipulating the file contents): Feedback

//: com:bruceeckel:util:TextFile.java
// Static functions for reading and writing text files as
// a single string, and treating a file as an ArrayList.
// {Clean: test.txt test2.txt}
package com.bruceeckel.util;
import java.io.*;
import java.util.*;

public class TextFile extends ArrayList {
 // Tools to read and write files as single strings:
 public static String
 read(String fileName) throws IOException {
 StringBuffer sb = new StringBuffer();
 BufferedReader in =
 new BufferedReader(new FileReader(fileName));
 String s;
 while((s = in.readLine()) != null) {
 sb.append(s);
 sb.append("\n");
 }
 in.close();
 return sb.toString();
 }
 public static void
 write(String fileName, String text) throws IOException {
 PrintWriter out = new PrintWriter(
 new BufferedWriter(new FileWriter(fileName)));
 out.print(text);
 out.close();
 }
 public TextFile(String fileName) throws IOException {
 super(Arrays.asList(read(fileName).split("\n")));
 }
 public void write(String fileName) throws IOException {

Chapter 12: The Java I/O System 645

 PrintWriter out = new PrintWriter(
 new BufferedWriter(new FileWriter(fileName)));
 for(int i = 0; i < size(); i++)
 out.println(get(i));
 out.close();
 }
 // Simple test:
 public static void main(String[] args) throws Exception {
 String file = read("TextFile.java");
 write("test.txt", file);
 TextFile text = new TextFile("test.txt");
 text.write("test2.txt");
 }
} ///:~

All methods simply pass IOExceptions out to the caller. read()
appends each line to a StringBuffer (for efficiency), followed by a
newline because that is stripped out during reading. Then it returns a
String containing the whole file. Write() opens and writes the text to
the file. Both methods remember to close() the file when they are done.
Feedback

The constructor uses the read() method to turn the file into a String,
then uses String.split() to divide the result into lines along newline
boundaries (if you use this class a lot, you may want to rewrite this
constructor to improve efficiency). Alas, there is no corresponding “join”
method, so the non-static write() method must write the lines out by
hand. Feedback

In main(), a basic test is performed to ensure that the methods work.
Although this is a small amount of code, using it can save a lot of time and
make your life easier, as you’ll see in some of the examples later in this
chapter. Feedback

Standard I/O
The term standard I/O refers to the Unix concept (which is reproduced in
some form in Windows and many other operating systems) of a single
stream of information that is used by a program. All the program’s input
can come from standard input, all its output can go to standard output,
and all of its error messages can be sent to standard error. The value of

646 Thinking in Java www.BruceEckel.com

standard I/O is that programs can easily be chained together and one
program’s standard output can become the standard input for another
program. This is a powerful tool. Feedback

Reading from standard input
Following the standard I/O model, Java has System.in, System.out,
and System.err. Throughout this book you’ve seen how to write to
standard output using System.out, which is already prewrapped as a
PrintStream object. System.err is likewise a PrintStream, but
System.in is a raw InputStream, with no wrapping. This means that
while you can use System.out and System.err right away, System.in
must be wrapped before you can read from it. Feedback

Typically, you’ll want to read input a line at a time using readLine(), so
you’ll want to wrap System.in in a BufferedReader. To do this, you
must convert System.in to a Reader using InputStreamReader.
Here’s an example that simply echoes each line that you type in:

//: c12:Echo.java
// How to read from standard input.
// {RunByHand}
import java.io.*;

public class Echo {
 public static void main(String[] args)
 throws IOException {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in));
 String s;
 while((s = in.readLine()) != null && s.length() != 0)
 System.out.println(s);
 // An empty line or Ctrl-Z terminates the program
 }
} ///:~

The reason for the exception specification is that readLine() can throw
an IOException. Note that System.in should usually be buffered, as
with most streams. Feedback

Chapter 12: The Java I/O System 647

Changing System.out to a
PrintWriter
System.out is a PrintStream, which is an OutputStream.
PrintWriter has a constructor that takes an OutputStream as an
argument. Thus, if you want you can convert System.out into a
PrintWriter using that constructor:

//: c12:ChangeSystemOut.java
// Turn System.out into a PrintWriter.
import com.bruceeckel.simpletest.*;
import java.io.*;

public class ChangeSystemOut {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 PrintWriter out = new PrintWriter(System.out, true);
 out.println("Hello, world");
 monitor.expect(new String[] {
 "Hello, world"
 });
 }
} ///:~

It’s important to use the two-argument version of the PrintWriter
constructor and to set the second argument to true in order to enable
automatic flushing, otherwise you may not see the output. Feedback

Redirecting standard I/O
The Java System class allows you to redirect the standard input, output,
and error I/O streams using simple static method calls:

setIn(InputStream)
setOut(PrintStream)
setErr(PrintStream) Feedback

Redirecting output is especially useful if you suddenly start creating a
large amount of output on your screen and it’s scrolling past faster than

648 Thinking in Java www.BruceEckel.com

you can read it4. Redirecting input is valuable for a command-line
program in which you want to test a particular user-input sequence
repeatedly. Here’s a simple example that shows the use of these methods:

//: c12:Redirecting.java
// Demonstrates standard I/O redirection.
import java.io.*;

public class Redirecting {
 // Throw exceptions to console:
 public static void main(String[] args)
 throws IOException {
 PrintStream console = System.out;
 BufferedInputStream in = new BufferedInputStream(
 new FileInputStream("Redirecting.java"));
 PrintStream out = new PrintStream(
 new BufferedOutputStream(
 new FileOutputStream("test.out")));
 System.setIn(in);
 System.setOut(out);
 System.setErr(out);
 BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));
 String s;
 while((s = br.readLine()) != null)
 System.out.println(s);
 out.close(); // Remember this!
 System.setOut(console);
 }
} ///:~

This program attaches standard input to a file, and redirects standard
output and standard error to another file. Feedback

I/O redirection manipulates streams of bytes, not streams of characters,
thus InputStreams and OutputStreams are used rather than
Readers and Writers. Feedback

4 Chapter 13 shows an even more convenient solution for this: a GUI program with a
scrolling text area.

Chapter 12: The Java I/O System 649

New I/O
The Java “new” I/O library, introduced in JDK 1.4 in the java.nio.*
packages, has one goal: speed. In fact, the “old” I/O packages have been
reimplemented using nio in order to take advantage of this speed
increase. The speed increase occurs in both file I/O, which is explored
here, and in network I/O, which is explained in Thinking in Enterprise
Java.

The speed comes by using structures which are closer to the operating
system’s way of performing I/O: channels and buffers. You could think of
it as a coal mine: the channel is the mine containing the seam of coal (the
data) and the buffer is the cart that you send into the mine. The cart
comes back out full of coal, and you get the coal from the cart. That is, you
don’t interact directly with the channel; you interact with the buffer and
send the buffer into the channel. The channel either pulls data from the
buffer, or puts data into the buffer.

//: c12:GetChannel.java
// Getting channels from streams
// {Clean: data.txt}
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class GetChannel {
 public static void main(String[] args) throws Exception {
 ByteBuffer buff = ByteBuffer.allocate(1024);
 // Write a file:
 FileChannel fc =
 new FileOutputStream("data.txt").getChannel();
 fc.write(ByteBuffer.wrap("Some text ".getBytes()));
 fc.close();
 // Add to the end of the file:
 fc =
 new RandomAccessFile("data.txt", "rw").getChannel();
 fc.position(fc.size()); // Move to the end
 fc.write(ByteBuffer.wrap("Some more".getBytes()));
 fc.close();
 // Read the file:

650 Thinking in Java www.BruceEckel.com

 fc = new FileInputStream("data.txt").getChannel();
 buff.clear();
 fc.read(buff);
 buff.flip();
 System.out.println(buff.asCharBuffer());
 }
} ///:~

//: c12:ChannelCopy.java
// Copying a file using channels and buffers
// {Args: ChannelCopy.java test.txt}
// {Clean: test.txt}
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class ChannelCopy {
 private static final int BSIZE = 1024;
 public static void main(String[] args) throws Exception {
 if(args.length != 2) {
 System.out.println("arguments: sourcefile destfile");
 System.exit(1);
 }
 FileChannel
 in = new FileInputStream(args[0]).getChannel(),
 out = new FileOutputStream(args[1]).getChannel();
 ByteBuffer buffer = ByteBuffer.allocate(BSIZE);
 while(in.read(buffer) != -1) {
 buffer.flip(); // Prepare for writing
 out.write(buffer);
 buffer.clear(); // Prepare for reading
 }
 }
} ///:~

//: c12:TransferTo.java
// Using transferTo() between channels
// {Args: TransferTo.java TransferTo.txt}
// {Clean: TransferTo.txt}
import java.io.*;
import java.nio.*;

Chapter 12: The Java I/O System 651

import java.nio.channels.*;

public class TransferTo {
 public static void main(String[] args) throws Exception {
 if(args.length != 2) {
 System.out.println("arguments: sourcefile destfile");
 System.exit(1);
 }
 FileChannel
 in = new FileInputStream(args[0]).getChannel(),
 out = new FileOutputStream(args[1]).getChannel();
 in.transferTo(0, in.size(), out);
 // Or:
 // out.transferFrom(in, 0, in.size());
 }
}

Compression
The Java I/O library contains classes to support reading and writing
streams in a compressed format. These are wrapped around existing I/O
classes to provide compression functionality. Feedback

These classes are not derived from the Reader and Writer classes, but
instead are part of the InputStream and OutputStream hierarchies.
This is because the compression library works with bytes, not characters.
However, you might sometimes be forced to mix the two types of streams.
(Remember that you can use InputStreamReader and
OutputStreamWriter to provide easy conversion between one type and
another.)

Compression class Function

CheckedInputStream GetCheckSum() produces checksum
for any InputStream (not just
decompression).

CheckedOutputStream GetCheckSum() produces checksum
for any OutputStream (not just
compression).

652 Thinking in Java www.BruceEckel.com

Compression class Function

DeflaterOutputStream Base class for compression classes.

ZipOutputStream A DeflaterOutputStream that
compresses data into the Zip file format.

GZIPOutputStream A DeflaterOutputStream that
compresses data into the GZIP file
format.

InflaterInputStream Base class for decompression classes.

ZipInputStream An InflaterInputStream that
decompresses data that has been stored
in the Zip file format.

GZIPInputStream An InflaterInputStream that
decompresses data that has been stored
in the GZIP file format.

Although there are many compression algorithms, Zip and GZIP are
possibly the most commonly used. Thus you can easily manipulate your
compressed data with the many tools available for reading and writing
these formats.

Simple compression with GZIP
The GZIP interface is simple and thus is probably more appropriate when
you have a single stream of data that you want to compress (rather than a
container of dissimilar pieces of data). Here’s an example that compresses
a single file:

//: c12:GZIPcompress.java
// {Args: GZIPcompress.java}
// {Clean: test.gz}
import com.bruceeckel.simpletest.*;
import java.io.*;
import java.util.zip.*;

public class GZIPcompress {
 private static Test monitor = new Test();
 // Throw exceptions to console:
 public static void main(String[] args)
 throws IOException {
 if(args.length == 0) {

Chapter 12: The Java I/O System 653

 System.out.println(
 "Usage: \nGZIPcompress file\n" +
 "\tUses GZIP compression to compress " +
 "the file to test.gz");
 System.exit(1);
 }
 BufferedReader in = new BufferedReader(
 new FileReader(args[0]));
 BufferedOutputStream out = new BufferedOutputStream(
 new GZIPOutputStream(
 new FileOutputStream("test.gz")));
 System.out.println("Writing file");
 int c;
 while((c = in.read()) != -1)
 out.write(c);
 in.close();
 out.close();
 System.out.println("Reading file");
 BufferedReader in2 = new BufferedReader(
 new InputStreamReader(new GZIPInputStream(
 new FileInputStream("test.gz"))));
 String s;
 while((s = in2.readLine()) != null)
 System.out.println(s);
 monitor.expect(new String[] {
 "Writing file",
 "Reading file"
 }, args[0]);
 }
} ///:~

The use of the compression classes is straightforward—you simply wrap
your output stream in a GZIPOutputStream or ZipOutputStream
and your input stream in a GZIPInputStream or ZipInputStream. All
else is ordinary I/O reading and writing. This is an example of mixing the
char-oriented streams with the byte-oriented streams: in uses the
Reader classes, whereas GZIPOutputStream’s constructor can accept
only an OutputStream object, not a Writer object. When the file is
opened, the GZIPInputStream is converted to a Reader. Feedback

654 Thinking in Java www.BruceEckel.com

Multifile storage with Zip
The library that supports the Zip format is much more extensive. With it
you can easily store multiple files, and there’s even a separate class to
make the process of reading a Zip file easy. The library uses the standard
Zip format so that it works seamlessly with all the tools currently
downloadable on the Internet. The following example has the same form
as the previous example, but it handles as many command-line arguments
as you want. In addition, it shows the use of the Checksum classes to
calculate and verify the checksum for the file. There are two Checksum
types: Adler32 (which is faster) and CRC32 (which is slower but slightly
more accurate). Feedback

//: c12:ZipCompress.java
// Uses Zip compression to compress any
// number of files given on the command line.
// {Args: ZipCompress.java}
// {Clean: test.zip}
import com.bruceeckel.simpletest.*;
import java.io.*;
import java.util.*;
import java.util.zip.*;

public class ZipCompress {
 private static Test monitor = new Test();
 // Throw exceptions to console:
 public static void main(String[] args)
 throws IOException {
 FileOutputStream f = new FileOutputStream("test.zip");
 CheckedOutputStream csum =
 new CheckedOutputStream(f, new Adler32());
 ZipOutputStream out =
 new ZipOutputStream(new BufferedOutputStream(csum));
 out.setComment("A test of Java Zipping");
 // No corresponding getComment(), though.
 for(int i = 0; i < args.length; i++) {
 System.out.println("Writing file " + args[i]);
 BufferedReader in =
 new BufferedReader(new FileReader(args[i]));
 out.putNextEntry(new ZipEntry(args[i]));
 int c;
 while((c = in.read()) != -1)
 out.write(c);

Chapter 12: The Java I/O System 655

 in.close();
 }
 out.close();
 // Checksum valid only after the file has been closed!
 System.out.println("Checksum: " +
 csum.getChecksum().getValue());
 // Now extract the files:
 System.out.println("Reading file");
 FileInputStream fi = new FileInputStream("test.zip");
 CheckedInputStream csumi =
 new CheckedInputStream(fi, new Adler32());
 ZipInputStream in2 =
 new ZipInputStream(new BufferedInputStream(csumi));
 ZipEntry ze;
 while((ze = in2.getNextEntry()) != null) {
 System.out.println("Reading file " + ze);
 int x;
 while((x = in2.read()) != -1)
 System.out.write(x);
 }
 if(args.length == 1)
 monitor.expect(new String[] {
 "Writing file " + args[0],
 "%% Checksum: \\d+",
 "Reading file",
 "Reading file " + args[0]}, args[0]);
 System.out.println("Checksum: " +
 csumi.getChecksum().getValue());
 in2.close();
 // Alternative way to open and read zip files:
 ZipFile zf = new ZipFile("test.zip");
 Enumeration e = zf.entries();
 while(e.hasMoreElements()) {
 ZipEntry ze2 = (ZipEntry)e.nextElement();
 System.out.println("File: " + ze2);
 // ... and extract the data as before
 }
 if(args.length == 1)
 monitor.expect(new String[] {
 "%% Checksum: \\d+",
 "File: " + args[0]
 });
 }
} ///:~

656 Thinking in Java www.BruceEckel.com

For each file to add to the archive, you must call putNextEntry() and
pass it a ZipEntry object. The ZipEntry object contains an extensive
interface that allows you to get and set all the data available on that
particular entry in your Zip file: name, compressed and uncompressed
sizes, date, CRC checksum, extra field data, comment, compression
method, and whether it’s a directory entry. However, even though the Zip
format has a way to set a password, this is not supported in Java’s Zip
library. And although CheckedInputStream and
CheckedOutputStream support both Adler32 and CRC32
checksums, the ZipEntry class supports only an interface for CRC. This
is a restriction of the underlying Zip format, but it might limit you from
using the faster Adler32. Feedback

To extract files, ZipInputStream has a getNextEntry() method that
returns the next ZipEntry if there is one. As a more succinct alternative,
you can read the file using a ZipFile object, which has a method
entries() to return an Enumeration to the ZipEntries. Feedback

In order to read the checksum you must somehow have access to the
associated Checksum object. Here, a reference to the
CheckedOutputStream and CheckedInputStream objects is
retained, but you could also just hold onto a reference to the Checksum
object. Feedback

A baffling method in Zip streams is setComment(). As shown above,
you can set a comment when you’re writing a file, but there’s no way to
recover the comment in the ZipInputStream. Comments appear to be
supported fully on an entry-by-entry basis only via ZipEntry. Feedback

Of course, you are not limited to files when using the GZIP or Zip
libraries—you can compress anything, including data to be sent through a
network connection. Feedback

Java ARchives (JARs)
The Zip format is also used in the JAR (Java ARchive) file format, which
is a way to collect a group of files into a single compressed file, just like
Zip. However, like everything else in Java, JAR files are cross-platform so
you don’t need to worry about platform issues. You can also include audio
and image files as well as class files. Feedback

Chapter 12: The Java I/O System 657

JAR files are particularly helpful when you deal with the Internet. Before
JAR files, your Web browser would have to make repeated requests of a
Web server in order to download all of the files that make up an applet. In
addition, each of these files was uncompressed. By combining all of the
files for a particular applet into a single JAR file, only one server request
is necessary and the transfer is faster because of compression. And each
entry in a JAR file can be digitally signed for security (see Chapter 14 for
an example of signing). Feedback

A JAR file consists of a single file containing a collection of zipped files
along with a “manifest” that describes them. (You can create your own
manifest file; otherwise the jar program will do it for you.) You can find
out more about JAR manifests in the JDK documentation. Feedback

The jar utility that comes with Sun’s JDK automatically compresses the
files of your choice. You invoke it on the command line: Feedback

jar [options] destination [manifest] inputfile(s)

The options are simply a collection of letters (no hyphen or any other
indicator is necessary). Unix/Linux users will note the similarity to the
tar options. These are:

c Creates a new or empty archive.

t Lists the table of contents.

x Extracts all files.

x file Extracts the named file.

f Says: “I’m going to give you the name of the file.” If you
don’t use this, jar assumes that its input will come from
standard input, or, if it is creating a file, its output will go
to standard output.

m Says that the first argument will be the name of the user-
created manifest file.

v Generates verbose output describing what jar is doing.

0 Only store the files; doesn’t compress the files (use to
create a JAR file that you can put in your classpath).

M Don’t automatically create a manifest file.

658 Thinking in Java www.BruceEckel.com

If a subdirectory is included in the files to be put into the JAR file, that
subdirectory is automatically added, including all of its subdirectories,
etc. Path information is also preserved.

Here are some typical ways to invoke jar:

jar cf myJarFile.jar *.class

This creates a JAR file called myJarFile.jar that contains all of the class
files in the current directory, along with an automatically generated
manifest file. Feedback

jar cmf myJarFile.jar myManifestFile.mf *.class

Like the previous example, but adding a user-created manifest file called
myManifestFile.mf. Feedback

jar tf myJarFile.jar

Produces a table of contents of the files in myJarFile.jar. Feedback

jar tvf myJarFile.jar

Adds the “verbose” flag to give more detailed information about the files
in myJarFile.jar. Feedback

jar cvf myApp.jar audio classes image

Assuming audio, classes, and image are subdirectories, this combines
all of the subdirectories into the file myApp.jar. The “verbose” flag is
also included to give extra feedback while the jar program is working.
Feedback

If you create a JAR file using the 0 (zero) option, that file can be placed in
your CLASSPATH:

CLASSPATH="lib1.jar;lib2.jar;"

Then Java can search lib1.jar and lib2.jar for class files. Feedback

The jar tool isn’t as useful as a zip utility. For example, you can’t add or
update files to an existing JAR file; you can create JAR files only from
scratch. Also, you can’t move files into a JAR file, erasing them as they are
moved. However, a JAR file created on one platform will be transparently

Chapter 12: The Java I/O System 659

readable by the jar tool on any other platform (a problem that sometimes
plagues zip utilities). Feedback

As you will see in Chapter 14, JAR files are also used to package
JavaBeans. Feedback

Object serialization
Java’s object serialization allows you to take any object that implements
the Serializable interface and turn it into a sequence of bytes that can
later be fully restored to regenerate the original object. This is even true
across a network, which means that the serialization mechanism
automatically compensates for differences in operating systems. That is,
you can create an object on a Windows machine, serialize it, and send it
across the network to a Unix machine where it will be correctly
reconstructed. You don’t have to worry about the data representations on
the different machines, the byte ordering, or any other details. Feedback

By itself, object serialization is interesting because it allows you to
implement lightweight persistence. Remember that persistence means an
object’s lifetime is not determined by whether a program is executing—the
object lives in between invocations of the program. By taking a
serializable object and writing it to disk, then restoring that object when
the program is reinvoked, you’re able to produce the effect of persistence.
The reason it’s called “lightweight” is that you can’t simply define an
object using some kind of “persistent” keyword and let the system take
care of the details (although this might happen in the future). Instead, you
must explicitly serialize and deserialize the objects in your program. If you
need a more serious persistence mechanism, consider Java JDO or a tool
like Hibernate (http://hibernate.sourceforge.net/). For details, see
Thinking in Enterprise Java, downloadable from www.BruceEckel.com.
Feedback

Object serialization was added to the language to support two major
features. Java’s remote method invocation (RMI) allows objects that live
on other machines to behave as if they live on your machine. When
sending messages to remote objects, object serialization is necessary to
transport the arguments and return values. RMI is discussed in Thinking
in Enterprise Java. Feedback

660 Thinking in Java www.BruceEckel.com

Object serialization is also necessary for JavaBeans, described in Chapter
14. When a Bean is used, its state information is generally configured at
design-time. This state information must be stored and later recovered
when the program is started; object serialization performs this task. Feedback

Serializing an object is quite simple, as long as the object implements the
Serializable interface (this is a tagging interface and has no methods).
When serialization was added to the language, many standard library
classes were changed to make them serializable, including all of the
wrappers for the primitive types, all of the container classes, and many
others. Even Class objects can be serialized. Feedback

To serialize an object, you create some sort of OutputStream object and
then wrap it inside an ObjectOutputStream object. At this point you
need only call writeObject() and your object is serialized and sent to
the OutputStream. To reverse the process, you wrap an InputStream
inside an ObjectInputStream and call readObject(). What comes
back is, as usual, a reference to an upcast Object, so you must downcast
to set things straight. Feedback

A particularly clever aspect of object serialization is that it not only saves
an image of your object but it also follows all the references contained in
your object and saves those objects, and follows all the references in each
of those objects, etc. This is sometimes referred to as the “web of objects”
that a single object can be connected to, and it includes arrays of
references to objects as well as member objects. If you had to maintain
your own object serialization scheme, maintaining the code to follow all
these links would be a bit mind-boggling. However, Java object
serialization seems to pull it off flawlessly, no doubt using an optimized
algorithm that traverses the web of objects. The following example tests
the serialization mechanism by making a “worm” of linked objects, each
of which has a link to the next segment in the worm as well as an array of
references to objects of a different class, Data:

//: c12:Worm.java
// Demonstrates object serialization.
// {Clean: worm.out}
import java.io.*;
import java.util.*;

Chapter 12: The Java I/O System 661

class Data implements Serializable {
 private int n;
 public Data(int n) { this.n = n; }
 public String toString() { return Integer.toString(n); }
}

public class Worm implements Serializable {
 private static Random rand = new Random();
 private Data[] d = {
 new Data(rand.nextInt(10)),
 new Data(rand.nextInt(10)),
 new Data(rand.nextInt(10))
 };
 private Worm next;
 private char c;
 // Value of i == number of segments
 public Worm(int i, char x) {
 System.out.println("Worm constructor: " + i);
 c = x;
 if(--i > 0)
 next = new Worm(i, (char)(x + 1));
 }
 public Worm() {
 System.out.println("Default constructor");
 }
 public String toString() {
 String s = ":" + c + "(";
 for(int i = 0; i < d.length; i++)
 s += d[i];
 s += ")";
 if(next != null)
 s += next;
 return s;
 }
 // Throw exceptions to console:
 public static void main(String[] args)
 throws ClassNotFoundException, IOException {
 Worm w = new Worm(6, 'a');
 System.out.println("w = " + w);
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("worm.out"));
 out.writeObject("Worm storage\n");
 out.writeObject(w);
 out.close(); // Also flushes output

662 Thinking in Java www.BruceEckel.com

 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("worm.out"));
 String s = (String)in.readObject();
 Worm w2 = (Worm)in.readObject();
 System.out.println(s + "w2 = " + w2);
 ByteArrayOutputStream bout =
 new ByteArrayOutputStream();
 ObjectOutputStream out2 = new ObjectOutputStream(bout);
 out2.writeObject("Worm storage\n");
 out2.writeObject(w);
 out2.flush();
 ObjectInputStream in2 = new ObjectInputStream(
 new ByteArrayInputStream(bout.toByteArray()));
 s = (String)in2.readObject();
 Worm w3 = (Worm)in2.readObject();
 System.out.println(s + "w3 = " + w3);
 }
} ///:~

To make things interesting, the array of Data objects inside Worm are
initialized with random numbers. (This way you don’t suspect the
compiler of keeping some kind of meta-information.) Each Worm
segment is labeled with a char that’s automatically generated in the
process of recursively generating the linked list of Worms. When you
create a Worm, you tell the constructor how long you want it to be. To
make the next reference it calls the Worm constructor with a length of
one less, etc. The final next reference is left as null, indicating the end of
the Worm. Feedback

The point of all this was to make something reasonably complex that
couldn’t easily be serialized. The act of serializing, however, is quite
simple. Once the ObjectOutputStream is created from some other
stream, writeObject() serializes the object. Notice the call to
writeObject() for a String, as well. You can also write all the primitive
data types using the same methods as DataOutputStream (they share
the same interface). Feedback

There are two separate code sections that look similar. The first writes
and reads a file and the second, for variety, writes and reads a
ByteArray. You can read and write an object using serialization to any
DataInputStream or DataOutputStream including, as you can see in
Thinking in Enterprise Java, a network. The output from one run was:

Chapter 12: The Java I/O System 663

Worm constructor: 6
Worm constructor: 5
Worm constructor: 4
Worm constructor: 3
Worm constructor: 2
Worm constructor: 1
w = :a(414):b(276):c(773):d(870):e(210):f(279)
Worm storage
w2 = :a(414):b(276):c(773):d(870):e(210):f(279)
Worm storage
w3 = :a(414):b(276):c(773):d(870):e(210):f(279)

You can see that the deserialized object really does contain all of the links
that were in the original object. Feedback

Note that no constructor, not even the default constructor, is called in the
process of deserializing a Serializable object. The entire object is
restored by recovering data from the InputStream. Feedback

Object serialization is byte-oriented, and thus uses the InputStream
and OutputStream hierarchies. Feedback

Finding the class
You might wonder what’s necessary for an object to be recovered from its
serialized state. For example, suppose you serialize an object and send it
as a file or through a network to another machine. Could a program on the
other machine reconstruct the object using only the contents of the file?
Feedback

The best way to answer this question is (as usual) by performing an
experiment. The following file goes in the subdirectory for this chapter:
Feedback

//: c12:Alien.java
// A serializable class.
import java.io.*;
public class Alien implements Serializable {} ///:~

The file that creates and serializes an Alien object goes in the same
directory: Feedback

//: c12:FreezeAlien.java
// Create a serialized output file.

664 Thinking in Java www.BruceEckel.com

// {Clean: X.file}
import java.io.*;

public class FreezeAlien {
 // Throw exceptions to console:
 public static void main(String[] args) throws Exception {
 ObjectOutput out = new ObjectOutputStream(
 new FileOutputStream("X.file"));
 Alien zorcon = new Alien();
 out.writeObject(zorcon);
 }
} ///:~

Rather than catching and handling exceptions, this program takes the
quick and dirty approach of passing the exceptions out of main(), so
they’ll be reported on the console. Feedback

Once the program is compiled and run, it produces a file called X.file in
the c12 directory. The following code is in a subdirectory called xfiles:
Feedback

//: c12:xfiles:ThawAlien.java
// Try to recover a serialized file without the
// class of object that's stored in that file.
// {ThrowsException}
import java.io.*;

public class ThawAlien {
 public static void main(String[] args) throws Exception {
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream(new File("..", "X.file")));
 Object mystery = in.readObject();
 System.out.println(mystery.getClass());
 }
} ///:~

Even opening the file and reading in the object mystery requires the
Class object for Alien—the Java Virtual Machine (JVM) cannot find
Alien.class (unless it happens to be in the Classpath, which it shouldn’t
be in this example). You’ll get a ClassNotFoundException. (Once
again, all evidence of alien life vanishes before proof of its existence can
be verified!) The JVM must be able to find the associated .class file.
Feedback

Chapter 12: The Java I/O System 665

Controlling serialization
As you can see, the default serialization mechanism is trivial to use. But
what if you have special needs? Perhaps you have special security issues
and you don’t want to serialize portions of your object, or perhaps it just
doesn’t make sense for one subobject to be serialized if that part needs to
be created anew when the object is recovered. Feedback

You can control the process of serialization by implementing the
Externalizable interface instead of the Serializable interface. The
Externalizable interface extends the Serializable interface and adds
two methods, writeExternal() and readExternal(), that are
automatically called for your object during serialization and
deserialization so that you can perform your special operations. Feedback

The following example shows simple implementations of the
Externalizable interface methods. Note that Blip1 and Blip2 are nearly
identical except for a subtle difference (see if you can discover it by
looking at the code):

//: c12:Blips.java
// Simple use of Externalizable & a pitfall.
// {Clean: Blips.out}
import com.bruceeckel.simpletest.*;
import java.io.*;
import java.util.*;

class Blip1 implements Externalizable {
 public Blip1() {
 System.out.println("Blip1 Constructor");
 }
 public void writeExternal(ObjectOutput out)
 throws IOException {
 System.out.println("Blip1.writeExternal");
 }
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 System.out.println("Blip1.readExternal");
 }
}

class Blip2 implements Externalizable {

666 Thinking in Java www.BruceEckel.com

 Blip2() {
 System.out.println("Blip2 Constructor");
 }
 public void writeExternal(ObjectOutput out)
 throws IOException {
 System.out.println("Blip2.writeExternal");
 }
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 System.out.println("Blip2.readExternal");
 }
}

public class Blips {
 private static Test monitor = new Test();
 // Throw exceptions to console:
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 System.out.println("Constructing objects:");
 Blip1 b1 = new Blip1();
 Blip2 b2 = new Blip2();
 ObjectOutputStream o = new ObjectOutputStream(
 new FileOutputStream("Blips.out"));
 System.out.println("Saving objects:");
 o.writeObject(b1);
 o.writeObject(b2);
 o.close();
 // Now get them back:
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("Blips.out"));
 System.out.println("Recovering b1:");
 b1 = (Blip1)in.readObject();
 // OOPS! Throws an exception:
//! System.out.println("Recovering b2:");
//! b2 = (Blip2)in.readObject();
 monitor.expect(new String[] {
 "Constructing objects:",
 "Blip1 Constructor",
 "Blip2 Constructor",
 "Saving objects:",
 "Blip1.writeExternal",
 "Blip2.writeExternal",
 "Recovering b1:",
 "Blip1 Constructor",

Chapter 12: The Java I/O System 667

 "Blip1.readExternal"
 });
 }
} ///:~

The output for this program is: Feedback

Constructing objects:
Blip1 Constructor
Blip2 Constructor
Saving objects:
Blip1.writeExternal
Blip2.writeExternal
Recovering b1:
Blip1 Constructor
Blip1.readExternal

The reason that the Blip2 object is not recovered is that trying to do so
causes an exception. Can you see the difference between Blip1 and
Blip2? The constructor for Blip1 is public, while the constructor for
Blip2 is not, and that causes the exception upon recovery. Try making
Blip2’s constructor public and removing the //! comments to see the
correct results. Feedback

When b1 is recovered, the Blip1 default constructor is called. This is
different from recovering a Serializable object, in which the object is
constructed entirely from its stored bits, with no constructor calls. With
an Externalizable object, all the normal default construction behavior
occurs (including the initializations at the point of field definition), and
then readExternal() is called. You need to be aware of this—in
particular, the fact that all the default construction always takes place—to
produce the correct behavior in your Externalizable objects. Feedback

Here’s an example that shows what you must do to fully store and retrieve
an Externalizable object: Feedback

//: c12:Blip3.java
// Reconstructing an externalizable object.
import com.bruceeckel.simpletest.*;
import java.io.*;
import java.util.*;

public class Blip3 implements Externalizable {

668 Thinking in Java www.BruceEckel.com

 private static Test monitor = new Test();
 private int i;
 private String s; // No initialization
 public Blip3() {
 System.out.println("Blip3 Constructor");
 // s, i not initialized
 }
 public Blip3(String x, int a) {
 System.out.println("Blip3(String x, int a)");
 s = x;
 i = a;
 // s & i initialized only in nondefault constructor.
 }
 public String toString() { return s + i; }
 public void writeExternal(ObjectOutput out)
 throws IOException {
 System.out.println("Blip3.writeExternal");
 // You must do this:
 out.writeObject(s);
 out.writeInt(i);
 }
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 System.out.println("Blip3.readExternal");
 // You must do this:
 s = (String)in.readObject();
 i = in.readInt();
 }
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 System.out.println("Constructing objects:");
 Blip3 b3 = new Blip3("A String ", 47);
 System.out.println(b3);
 ObjectOutputStream o = new ObjectOutputStream(
 new FileOutputStream("Blip3.out"));
 System.out.println("Saving object:");
 o.writeObject(b3);
 o.close();
 // Now get it back:
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("Blip3.out"));
 System.out.println("Recovering b3:");
 b3 = (Blip3)in.readObject();
 System.out.println(b3);

Chapter 12: The Java I/O System 669

 monitor.expect(new String[] {
 "Constructing objects:",
 "Blip3(String x, int a)",
 "A String 47",
 "Saving object:",
 "Blip3.writeExternal",
 "Recovering b3:",
 "Blip3 Constructor",
 "Blip3.readExternal",
 "A String 47"
 });
 }
} ///:~

The fields s and i are initialized only in the second constructor, but not in
the default constructor. This means that if you don’t initialize s and i in
readExternal(), s will be null and i will be zero (since the storage for
the object gets wiped to zero in the first step of object creation). If you
comment out the two lines of code following the phrases “You must do
this” and run the program, you’ll see that when the object is recovered, s
is null and i is zero. Feedback

If you are inheriting from an Externalizable object, you’ll typically call
the base-class versions of writeExternal() and readExternal() to
provide proper storage and retrieval of the base-class components. Feedback

So to make things work correctly you must not only write the important
data from the object during the writeExternal() method (there is no
default behavior that writes any of the member objects for an
Externalizable object), but you must also recover that data in the
readExternal() method. This can be a bit confusing at first because the
default construction behavior for an Externalizable object can make it
seem like some kind of storage and retrieval takes place automatically. It
does not. Feedback

The transient keyword
When you’re controlling serialization, there might be a particular
subobject that you don’t want Java’s serialization mechanism to
automatically save and restore. This is commonly the case if that
subobject represents sensitive information that you don’t want to
serialize, such as a password. Even if that information is private in the

670 Thinking in Java www.BruceEckel.com

object, once it’s serialized it’s possible for someone to access it by reading
a file or intercepting a network transmission. Feedback

One way to prevent sensitive parts of your object from being serialized is
to implement your class as Externalizable, as shown previously. Then
nothing is automatically serialized and you can explicitly serialize only the
necessary parts inside writeExternal(). Feedback

If you’re working with a Serializable object, however, all serialization
happens automatically. To control this, you can turn off serialization on a
field-by-field basis using the transient keyword, which says “Don’t
bother saving or restoring this—I’ll take care of it.” Feedback

For example, consider a Login object that keeps information about a
particular login session. Suppose that, once you verify the login, you want
to store the data, but without the password. The easiest way to do this is
by implementing Serializable and marking the password field as
transient. Here’s what it looks like:

//: c12:Logon.java
// Demonstrates the "transient" keyword.
// {Clean: Logon.out}
import java.io.*;
import java.util.*;

public class Logon implements Serializable {
 private Date date = new Date();
 private String username;
 private transient String password;
 public Logon(String name, String pwd) {
 username = name;
 password = pwd;
 }
 public String toString() {
 String pwd = (password == null) ? "(n/a)" : password;
 return "logon info: \n username: " + username +
 "\n date: " + date + "\n password: " + pwd;
 }
 public static void main(String[] args) throws Exception {
 Logon a = new Logon("Hulk", "myLittlePony");
 System.out.println("logon a = " + a);
 ObjectOutputStream o = new ObjectOutputStream(
 new FileOutputStream("Logon.out"));

Chapter 12: The Java I/O System 671

 o.writeObject(a);
 o.close();
 Thread.sleep(1000); // Delay for 1 second
 // Now get them back:
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("Logon.out"));
 System.out.println("Recovering object at "+new Date());
 a = (Logon)in.readObject();
 System.out.println("logon a = " + a);
 }
} ///:~

You can see that the date and username fields are ordinary (not
transient), and thus are automatically serialized. However, the
password is transient, and so is not stored to disk; also the
serialization mechanism makes no attempt to recover it. The output is:
Feedback

logon a = logon info:
 username: Hulk
 date: Mon Oct 21 12:10:13 MDT 2002
 password: myLittlePony
Recovering object at Mon Oct 21 12:10:14 MDT 2002
logon a = logon info:
 username: Hulk
 date: Mon Oct 21 12:10:13 MDT 2002
 password: (n/a)

When the object is recovered, the password field is null. Note that
toString() must check for a null value of password because if you try
to assemble a String object using the overloaded ‘+’ operator, and that
operator encounters a null reference, you’ll get a
NullPointerException. (Newer versions of Java might contain code to
avoid this problem.) Feedback

You can also see that the date field is stored to and recovered from disk
and not generated anew. Feedback

Since Externalizable objects do not store any of their fields by default,
the transient keyword is for use with Serializable objects only. Feedback

672 Thinking in Java www.BruceEckel.com

An alternative to Externalizable
If you’re not keen on implementing the Externalizable interface, there’s
another approach. You can implement the Serializable interface and
add (notice I say “add” and not “override” or “implement”) methods
called writeObject() and readObject() that will automatically be
called when the object is serialized and deserialized, respectively. That is,
if you provide these two methods they will be used instead of the default
serialization. Feedback

The methods must have these exact signatures:

private void writeObject(ObjectOutputStream stream)
throws IOException;

private void readObject(ObjectInputStream stream)
throws IOException, ClassNotFoundException

From a design standpoint, things get really weird here. First of all, you
might think that because these methods are not part of a base class or the
Serializable interface, they ought to be defined in their own interface(s).
But notice that they are defined as private, which means they are to be
called only by other members of this class. However, you don’t actually
call them from other members of this class, but instead the
writeObject() and readObject() methods of the
ObjectOutputStream and ObjectInputStream objects call your
object’s writeObject() and readObject() methods. (Notice my
tremendous restraint in not launching into a long diatribe about using the
same method names here. In a word: confusing.) You might wonder how
the ObjectOutputStream and ObjectInputStream objects have
access to private methods of your class. We can only assume that this is
part of the serialization magic. Feedback

In any event, anything defined in an interface is automatically public so
if writeObject() and readObject() must be private, then they can’t
be part of an interface. Since you must follow the signatures exactly, the
effect is the same as if you’re implementing an interface. Feedback

It would appear that when you call
ObjectOutputStream.writeObject(), the Serializable object that
you pass it to is interrogated (using reflection, no doubt) to see if it

Chapter 12: The Java I/O System 673

implements its own writeObject(). If so, the normal serialization
process is skipped and the writeObject() is called. The same sort of
situation exists for readObject(). Feedback

There’s one other twist. Inside your writeObject(), you can choose to
perform the default writeObject() action by calling
defaultWriteObject(). Likewise, inside readObject() you can call
defaultReadObject(). Here is a simple example that demonstrates how
you can control the storage and retrieval of a Serializable object:

//: c12:SerialCtl.java
// Controlling serialization by adding your own
// writeObject() and readObject() methods.
import com.bruceeckel.simpletest.*;
import java.io.*;

public class SerialCtl implements Serializable {
 private static Test monitor = new Test();
 private String a;
 private transient String b;
 public SerialCtl(String aa, String bb) {
 a = "Not Transient: " + aa;
 b = "Transient: " + bb;
 }
 public String toString() { return a + "\n" + b; }
 private void writeObject(ObjectOutputStream stream)
 throws IOException {
 stream.defaultWriteObject();
 stream.writeObject(b);
 }
 private void readObject(ObjectInputStream stream)
 throws IOException, ClassNotFoundException {
 stream.defaultReadObject();
 b = (String)stream.readObject();
 }
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 SerialCtl sc = new SerialCtl("Test1", "Test2");
 System.out.println("Before:\n" + sc);
 ByteArrayOutputStream buf= new ByteArrayOutputStream();
 ObjectOutputStream o = new ObjectOutputStream(buf);
 o.writeObject(sc);
 // Now get it back:
 ObjectInputStream in = new ObjectInputStream(

674 Thinking in Java www.BruceEckel.com

 new ByteArrayInputStream(buf.toByteArray()));
 SerialCtl sc2 = (SerialCtl)in.readObject();
 System.out.println("After:\n" + sc2);
 monitor.expect(new String[] {
 "Before:",
 "Not Transient: Test1",
 "Transient: Test2",
 "After:",
 "Not Transient: Test1",
 "Transient: Test2"
 });
 }
} ///:~

In this example, one String field is ordinary and the other is transient,
to prove that the non-transient field is saved by the
defaultWriteObject() method and the transient field is saved and
restored explicitly. The fields are initialized inside the constructor rather
than at the point of definition to prove that they are not being initialized
by some automatic mechanism during deserialization. Feedback

If you are going to use the default mechanism to write the non-transient
parts of your object, you must call defaultWriteObject() as the first
operation in writeObject() and defaultReadObject() as the first
operation in readObject(). These are strange method calls. It would
appear, for example, that you are calling defaultWriteObject() for an
ObjectOutputStream and passing it no arguments, and yet it somehow
turns around and knows the reference to your object and how to write all
the non-transient parts. Spooky. Feedback

The storage and retrieval of the transient objects uses more familiar
code. And yet, think about what happens here. In main(), a SerialCtl
object is created, and then it’s serialized to an ObjectOutputStream.
(Notice in this case that a buffer is used instead of a file—it’s all the same
to the ObjectOutputStream.) The serialization occurs in the line:

o.writeObject(sc);

The writeObject() method must be examining sc to see if it has its own
writeObject() method. (Not by checking the interface—there isn’t one—
or the class type, but by actually hunting for the method using reflection.)
If it does, it uses that. A similar approach holds true for readObject().

Chapter 12: The Java I/O System 675

Perhaps this was the only practical way that they could solve the problem,
but it’s certainly strange. Feedback

Versioning
It’s possible that you might want to change the version of a serializable
class (objects of the original class might be stored in a database, for
example). This is supported but you’ll probably do it only in special cases,
and it requires an extra depth of understanding that we will not attempt
to achieve here. The JDK documents downloadable from java.sun.com
cover this topic quite thoroughly. Feedback

You will also notice in the JDK documentation many comments that begin
with:

Warning: Serialized objects of this class will not be compatible with
future Swing releases. The current serialization support is
appropriate for short term storage or RMI between applications. …

This is because the versioning mechanism is too simple to work reliably in
all situations, especially with JavaBeans. They’re working on a correction
for the design, and that’s what the warning is about. Feedback

Using persistence
It’s quite appealing to use serialization technology to store some of the
state of your program so that you can easily restore the program to the
current state later. But before you can do this, some questions must be
answered. What happens if you serialize two objects that both have a
reference to a third object? When you restore those two objects from their
serialized state, do you get only one occurrence of the third object? What
if you serialize your two objects to separate files and deserialize them in
different parts of your code? Feedback

Here’s an example that shows the problem:

//: c12:MyWorld.java
import java.io.*;
import java.util.*;

class House implements Serializable {}

676 Thinking in Java www.BruceEckel.com

class Animal implements Serializable {
 private String name;
 private House preferredHouse;
 Animal(String nm, House h) {
 name = nm;
 preferredHouse = h;
 }
 public String toString() {
 return name + "[" + super.toString() +
 "], " + preferredHouse + "\n";
 }
}

public class MyWorld {
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 House house = new House();
 List animals = new ArrayList();
 animals.add(new Animal("Bosco the dog", house));
 animals.add(new Animal("Ralph the hamster", house));
 animals.add(new Animal("Fronk the cat", house));
 System.out.println("animals: " + animals);
 ByteArrayOutputStream buf1 =
 new ByteArrayOutputStream();
 ObjectOutputStream o1 = new ObjectOutputStream(buf1);
 o1.writeObject(animals);
 o1.writeObject(animals); // Write a 2nd set
 // Write to a different stream:
 ByteArrayOutputStream buf2 =
 new ByteArrayOutputStream();
 ObjectOutputStream o2 = new ObjectOutputStream(buf2);
 o2.writeObject(animals);
 // Now get them back:
 ObjectInputStream in1 = new ObjectInputStream(
 new ByteArrayInputStream(buf1.toByteArray()));
 ObjectInputStream in2 = new ObjectInputStream(
 new ByteArrayInputStream(buf2.toByteArray()));
 List
 animals1 = (List)in1.readObject(),
 animals2 = (List)in1.readObject(),
 animals3 = (List)in2.readObject();
 System.out.println("animals1: " + animals1);
 System.out.println("animals2: " + animals2);
 System.out.println("animals3: " + animals3);

Chapter 12: The Java I/O System 677

 }
} ///:~

One thing that’s interesting here is that it’s possible to use object
serialization to and from a byte array as a way of doing a “deep copy” of
any object that’s Serializable. (A deep copy means that you’re
duplicating the entire web of objects, rather than just the basic object and
its references.) Object copying is covered in depth in Appendix A. Feedback

Animal objects contain fields of type House. In main(), a List of these
Animals is created and it is serialized twice to one stream and then again
to a separate stream. When these are deserialized and printed, you see the
following results for one run (the objects will be in different memory
locations each run): Feedback

animals: [Bosco the dog[Animal@1cde100], House@16f0472
, Ralph the hamster[Animal@18d107f], House@16f0472
, Fronk the cat[Animal@360be0], House@16f0472
]
animals1: [Bosco the dog[Animal@e86da0], House@1754ad2
, Ralph the hamster[Animal@1833955], House@1754ad2
, Fronk the cat[Animal@291aff], House@1754ad2
]
animals2: [Bosco the dog[Animal@e86da0], House@1754ad2
, Ralph the hamster[Animal@1833955], House@1754ad2
, Fronk the cat[Animal@291aff], House@1754ad2
]
animals3: [Bosco the dog[Animal@ab95e6], House@fe64b9
, Ralph the hamster[Animal@186db54], House@fe64b9
, Fronk the cat[Animal@a97b0b], House@fe64b9
]

Of course you expect that the deserialized objects have different addresses
from their originals. But notice that in animals1 and animals2 the same
addresses appear, including the references to the House object that both
share. On the other hand, when animals3 is recovered the system has no
way of knowing that the objects in this other stream are aliases of the
objects in the first stream, so it makes a completely different web of
objects. Feedback

As long as you’re serializing everything to a single stream, you’ll be able to
recover the same web of objects that you wrote, with no accidental
duplication of objects. Of course, you can change the state of your objects

678 Thinking in Java www.BruceEckel.com

in between the time you write the first and the last, but that’s your
responsibility—the objects will be written in whatever state they are in
(and with whatever connections they have to other objects) at the time
you serialize them. Feedback

The safest thing to do if you want to save the state of a system is to
serialize as an “atomic” operation. If you serialize some things, do some
other work, and serialize some more, etc., then you will not be storing the
system safely. Instead, put all the objects that comprise the state of your
system in a single container and simply write that container out in one
operation. Then you can restore it with a single method call as well. Feedback

The following example is an imaginary computer-aided design (CAD)
system that demonstrates the approach. In addition, it throws in the issue
of static fields—if you look at the JDK documentation you’ll see that
Class is Serializable, so it should be easy to store the static fields by
simply serializing the Class object. That seems like a sensible approach,
anyway. Feedback

//: c12:CADState.java
// Saving and restoring the state of a pretend CAD system.
// {Clean: CADState.out}
//package c12;
import java.io.*;
import java.util.*;

abstract class Shape implements Serializable {
 public static final int RED = 1, BLUE = 2, GREEN = 3;
 private int xPos, yPos, dimension;
 private static Random r = new Random();
 private static int counter = 0;
 abstract public void setColor(int newColor);
 abstract public int getColor();
 public Shape(int xVal, int yVal, int dim) {
 xPos = xVal;
 yPos = yVal;
 dimension = dim;
 }
 public String toString() {
 return getClass() +
 "color[" + getColor() + "] xPos[" + xPos +
 "] yPos[" + yPos + "] dim[" + dimension + "]\n";
 }

Chapter 12: The Java I/O System 679

 public static Shape randomFactory() {
 int xVal = r.nextInt(100);
 int yVal = r.nextInt(100);
 int dim = r.nextInt(100);
 switch(counter++ % 3) {
 default:
 case 0: return new Circle(xVal, yVal, dim);
 case 1: return new Square(xVal, yVal, dim);
 case 2: return new Line(xVal, yVal, dim);
 }
 }
}

class Circle extends Shape {
 private static int color = RED;
 public Circle(int xVal, int yVal, int dim) {
 super(xVal, yVal, dim);
 }
 public void setColor(int newColor) { color = newColor; }
 public int getColor() { return color; }
}

class Square extends Shape {
 private static int color;
 public Square(int xVal, int yVal, int dim) {
 super(xVal, yVal, dim);
 color = RED;
 }
 public void setColor(int newColor) { color = newColor; }
 public int getColor() { return color; }
}

class Line extends Shape {
 private static int color = RED;
 public static void
 serializeStaticState(ObjectOutputStream os)
 throws IOException { os.writeInt(color); }
 public static void
 deserializeStaticState(ObjectInputStream os)
 throws IOException { color = os.readInt(); }
 public Line(int xVal, int yVal, int dim) {
 super(xVal, yVal, dim);
 }
 public void setColor(int newColor) { color = newColor; }

680 Thinking in Java www.BruceEckel.com

 public int getColor() { return color; }
}

public class CADState {
 public static void main(String[] args) throws Exception {
 List shapeTypes, shapes;
 if(args.length == 0) {
 shapeTypes = new ArrayList();
 shapes = new ArrayList();
 // Add references to the class objects:
 shapeTypes.add(Circle.class);
 shapeTypes.add(Square.class);
 shapeTypes.add(Line.class);
 // Make some shapes:
 for(int i = 0; i < 10; i++)
 shapes.add(Shape.randomFactory());
 // Set all the static colors to GREEN:
 for(int i = 0; i < 10; i++)
 ((Shape)shapes.get(i)).setColor(Shape.GREEN);
 // Save the state vector:
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("CADState.out"));
 out.writeObject(shapeTypes);
 Line.serializeStaticState(out);
 out.writeObject(shapes);
 } else { // There's a command-line argument
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream(args[0]));
 // Read in the same order they were written:
 shapeTypes = (List)in.readObject();
 Line.deserializeStaticState(in);
 shapes = (List)in.readObject();
 }
 // Display the shapes:
 System.out.println(shapes);
 }
} ///:~

The Shape class implements Serializable, so anything that is
inherited from Shape is automatically Serializable as well. Each Shape
contains data, and each derived Shape class contains a static field that
determines the color of all of those types of Shapes. (Placing a static
field in the base class would result in only one field, since static fields are
not duplicated in derived classes.) Methods in the base class can be

Chapter 12: The Java I/O System 681

overridden to set the color for the various types (static methods are not
dynamically bound, so these are normal methods). The
randomFactory() method creates a different Shape each time you call
it, using random values for the Shape data. Feedback

Circle and Square are straightforward extensions of Shape; the only
difference is that Circle initializes color at the point of definition and
Square initializes it in the constructor. We’ll leave the discussion of Line
for later. Feedback

In main(), one ArrayList is used to hold the Class objects and the
other to hold the shapes. If you don’t provide a command line argument
the shapeTypes ArrayList is created and the Class objects are added,
and then the shapes ArrayList is created and Shape objects are added.
Next, all the static color values are set to GREEN, and everything is
serialized to the file CADState.out. Feedback

If you provide a command line argument (presumably CADState.out),
that file is opened and used to restore the state of the program. In both
situations, the resulting ArrayList of Shapes is printed. The results
from one run are:

$ java CADState
[class Circlecolor[3] xPos[71] yPos[82] dim[44]
, class Squarecolor[3] xPos[98] yPos[21] dim[49]
, class Linecolor[3] xPos[16] yPos[80] dim[37]
, class Circlecolor[3] xPos[51] yPos[74] dim[7]
, class Squarecolor[3] xPos[7] yPos[78] dim[98]
, class Linecolor[3] xPos[38] yPos[79] dim[93]
, class Circlecolor[3] xPos[84] yPos[12] dim[62]
, class Squarecolor[3] xPos[16] yPos[51] dim[94]
, class Linecolor[3] xPos[51] yPos[0] dim[73]
, class Circlecolor[3] xPos[47] yPos[6] dim[49]
]

$ java CADState CADState.out
[class Circlecolor[1] xPos[71] yPos[82] dim[44]
, class Squarecolor[0] xPos[98] yPos[21] dim[49]
, class Linecolor[3] xPos[16] yPos[80] dim[37]
, class Circlecolor[1] xPos[51] yPos[74] dim[7]
, class Squarecolor[0] xPos[7] yPos[78] dim[98]
, class Linecolor[3] xPos[38] yPos[79] dim[93]

682 Thinking in Java www.BruceEckel.com

, class Circlecolor[1] xPos[84] yPos[12] dim[62]
, class Squarecolor[0] xPos[16] yPos[51] dim[94]
, class Linecolor[3] xPos[51] yPos[0] dim[73]
, class Circlecolor[1] xPos[47] yPos[6] dim[49]
]

You can see that the values of xPos, yPos, and dim were all stored and
recovered successfully, but there’s something wrong with the retrieval of
the static information. It’s all “3” going in, but it doesn’t come out that
way. Circles have a value of 1 (RED, which is the definition), and
Squares have a value of 0 (remember, they are initialized in the
constructor). It’s as if the statics didn’t get serialized at all! That’s right—
even though class Class is Serializable, it doesn’t do what you expect.
So if you want to serialize statics, you must do it yourself. Feedback

This is what the serializeStaticState() and deserializeStaticState()
static methods in Line are for. You can see that they are explicitly called
as part of the storage and retrieval process. (Note that the order of writing
to the serialize file and reading back from it must be maintained.) Thus to
make CADState.java run correctly you must: Feedback

1. Add a serializeStaticState() and deserializeStaticState() to
the shapes.

2. Remove the ArrayList shapeTypes and all code related to it.

3. Add calls to the new serialize and deserialize static methods in the
shapes. Feedback

Another issue you might have to think about is security, since serialization
also saves private data. If you have a security issue, those fields should
be marked as transient. But then you have to design a secure way to
store that information so that when you do a restore you can reset those
private variables. Feedback

Preferences
JDK 1.4 introduced the Preferences API, which is much closer to
persistence than object serialization because it automatically stores and
retrieves your information. However, its use is restricted to small and
limited data sets – you can only hold primitives and Strings, and the

Chapter 12: The Java I/O System 683

length of each stored String can’t be longer than 8K (not tiny, but you
don’t want to build anything serious with it, either). As the name suggests,
the Preferences API is designed to store and retrieve user preferences and
program configuration settings. Feedback

Preferences are key-value sets (like Maps) stored in a hierarchy of nodes.
Although the node hierarchy can be used to create complicated structures,
it’s typical to create a single node named after your class and store the
information there. Here’s a simple example: Feedback

//: c12:PreferencesDemo.java
import java.util.prefs.*;
import java.util.*;

public class PreferencesDemo {
 public static void main(String[] args) throws Exception {
 Preferences prefs = Preferences
 .userNodeForPackage(PreferencesDemo.class);
 prefs.put("Location", "Oz");
 prefs.put("Footwear", "Ruby Slippers");
 prefs.putInt("Companions", 4);
 prefs.putBoolean("Are there witches?", true);
 int usageCount = prefs.getInt("UsageCount", 0);
 usageCount++;
 prefs.putInt("UsageCount", usageCount);
 Iterator it = Arrays.asList(prefs.keys()).iterator();
 while(it.hasNext()) {
 String key = it.next().toString();
 System.out.println(key + ": "+ prefs.get(key, null));
 }
 // You must always provide a default value:
 System.out.println(
 "How many companions does Dorothy have? " +
 prefs.getInt("Companions", 0));
 }
} ///:~

Here, userNodeForPackage() is used, but you could also choose
systemNodeForPackage(); the choice is somewhat arbitrary, but the
idea is that “user” is for individual user preferences and “system” is for
general installation configuration. Since main() is static,
PreferencesDemo.class is used to identify the node, but inside a non-

684 Thinking in Java www.BruceEckel.com

static method you’ll usually use getClass(). You don’t need to use the
current class as the node identifier, but that’s the usual practice. Feedback

Once you create the node, it’s available for either loading or reading data.
This example loads the node with various types of items, and then gets the
keys(). These come back as a String[], which you might not expect if
you’re used to keys() in the collections library. Here, they’re converted to
a List which is used to produce an Iterator for printing the keys and
values. Notice the second argument to get(). This is the default value
which is produced if there isn’t any entry for that key value. While
iterating through a set of keys, you always know there’s an entry so using
null as the default is safe, but normally you’ll be fetching a named key, as
in: Feedback

prefs.getInt("Companions", 0));

In the normal case you’ll want to provide a reasonable default value. In
fact, a typical idiom is seen in the lines:

int usageCount = prefs.getInt("UsageCount", 0);
usageCount++;
prefs.putInt("UsageCount", usageCount);

This way, the first time you run the program the UsageCount will be
zero, but on subsequent invocations it will be nonzero. Feedback

When you run PreferencesDemo.java you’ll see that the UsageCount
does indeed increment every time you run the program, but where is the
data stored? There’s no local file that appears after the program is run the
first time. The Preferences API uses appropriate system resources to
accomplish its task, and these will vary depending on the OS. In Windows,
the registry is used (since it’s already a hierarchy of nodes with key-value
pairs). But the whole point is that the information is magically stored for
you so that you don’t have to worry about how it works from one system
to another. Feedback

There’s more to the preferences API than shown here. Consult the JDK
documentation, which is fairly understandable, for further details. Feedback

Chapter 12: The Java I/O System 685

Regular expressions
To finish this chapter, we’ll look at regular expressions, which were added
in JDK 1.4 but have been integral to Standard Unix utilities like sed &
awk, and languages like Python and Perl (some would argue that they are
predominant reason for Perl’s success). Technically these are string
manipulation tools (previously delegated to the String, StringBuffer, &
StringTokenizer classes in Java), but they are typically used in
conjunction with I/O so it’s not too far-fetched to include them here5.
Feedback

Regular expressions are powerful and flexible text processing tools. They
allow you to specify, programmatically, complex patterns of text that can
be discovered in an input string. Once you discover these patterns, you
can then react to them any way you want. Although the syntax of regular
expressions can be intimidating at first, they provide a compact and
dynamic language which can be employed to solve all sorts of string
processing, matching and selection, editing, and verification problems in
a completely general way. Feedback

Creating regular expressions
You can begin learning regular expressions with a useful subset of the
possible constructs. A complete list of constructs for building regular
expressions can be found in the JavaDocs for the Pattern class for
package java.util.regex. Feedback

Characters

B The specific character B

\xhh Character with hex value 0xhh

\uhhhh The Unicode character with hex representation
0xhhhh

\t Tab

5 A chapter dedicated to strings will have to wait until the 4th edition. Mike Shea
contributed to this section.

686 Thinking in Java www.BruceEckel.com

\n Newline

\r Carriage return

\f Formfeed

\e Escape

The power of regular expressions begins to appear when defining
character classes. Here are some typical ways to create character classes,
and some predefined classes: Feedback

Character Classes

. Represents any character

[abc] Any of the characters a, b, or c (same as
a|b|c)

[^abc] Any character except a, b, and c (negation)

[a-zA-Z] Any character a thru z or A thru Z (range)

[abc[hij]] Any of a,b,c,h,i,j (same as a|b|c|h|i|j)
(union)

[a-z&&[hij]] Either h, i, or j (intersection)

\s A whitespace character (space, tab,
newline, formfeed, carriage return)

\S A non-whitespace character ([^\s])

\d A numeric digit [0-9]

\D A non-digit [^0-9]

\w A word character [a-zA-Z_0-9]

\W A non-word character [^\w]

If you have any experience with regular expressions in other languages,
you’ll immediately notice a difference in the way backslashes are handled.
In other languages, “\\” means “I want to insert a plain old (literal)
backslash in the regular expression. Don’t give it any special meaning.” In
Java, “\\” means “I’m inserting a regular expression backslash, so the
following character has special meaning.” For example, if you want to
indicate one or more word characters, your regular expression string will
be “\\w+”. If you want to insert a literal backslash, you say “\\\\”.

Chapter 12: The Java I/O System 687

However, things like newlines and tabs just use a single backslash: “\n\t”.
Feedback

What’s shown here is only a sampling; you’ll want to have the
java.util.regex.Pattern JDK documentation page bookmarked or on
your “start” menu so you can easily access all the possible regular
expression patterns. Feedback

Logical Operators

XY X followed by Y

X|Y X or Y

(X) A capturing group. You can refer to the
ith captured group later in the expression
with \i

Boundary Matchers

^ Beginning of a line

$ End of a line

\b Word boundary

\B Non-word boundary

\G End of the previous match

As an example, each of the following represent valid regular expressions,
and all will successfully match the character sequence "Rudolph":

Rudolph
[rR]udolph
[rR][aeiou][a-z]ol.*
R.*

Quantifiers
A Quantifier describes the way that a pattern absorbs input text:

• Greedy: Quantifiers are greedy unless otherwise altered. A greedy
expression finds as many possible matches for the pattern as
possible. A typical cause of problems is assuming that your pattern

688 Thinking in Java www.BruceEckel.com

will only match the first possible group of characters, when it’s
actually greedy and will keep going. Feedback

• Reluctant: Specified with a question mark. Matches the minimum
necessary number of characters to satisfy the pattern. Also called
lazy, minimal matching, non-greedy or ungreedy. Feedback

• Possessive: Currently only available in Java (not in other
languages), and is more advanced so you probably won’t use it
right away. As a regular expression is applied to a string, it
generates many states so that it can backtrack if the match fails.
Possessive quantifiers do not keep those intermediate states,
preventing backtracking. They can be used to prevent the a regular
expression from running away and also to make it execute more
efficiently. Feedback

Greedy Reluctant Possessive Matches

X? X?? X?+ X, one or none

X* X*? X*+ X, zero or more

X+ X+? X++ X, one or more

X{n} X{n}? X{n}+ X, exactly n times

X{n,} X{n,}? X{n,}+ X, at least n times

X{n,m} X{n,m}? X{n,m}+ X, at least n but not more than m
times

You should be very aware that the expression ‘X’ will often need to be
surrounded in parentheses for it to work the way you desire. For example:

abc+

Might seem like it would match the sequence ‘abc’ one or more times, and
if you apply it to the input string ‘abcabcabc’ you will in fact get three
matches. However, the expression actually says “match ‘ab’ followed by
one or more occurrences of ‘c’.” To match the entire string ‘abc’ one or
more times, you must say:

Chapter 12: The Java I/O System 689

(abc)+

You can easily be fooled when using regular expressions – it’s a new
language, on top of Java. Feedback

CharSequence
JDK1.4 defines a new interface called CharSequence, which establishes
a definition of a character sequence, abstracted from the String or
StringBuffer classes:

interface CharSequence {
 charAt(int i);
 length();
 subSequence(int start, int end);
 toString();
}

The String, StringBuffer, and CharBuffer classes have been modified
implement this new CharSequence interface. Many regular expression
operations take CharSequence arguments. Feedback

Pattern and Matcher
As a first example, the following class can be used to test regular
expressions against an input string. The first argument is the input string
to match against, followed by one or more regular epressions to be
applied to the input. Under Unix/Linux, the regular expressions must be
quoted on the command line. Feedback

This program can be useful in testing regular expressions as you construct
them to see that they produce your intended matching behavior.

//: c12:TestRegularExpression.java
// Allows you to easly try out regular expressions.
// {Args: abcabcabcdefabc "abc+" "(abc)+" "(abc){2,}" }
import java.util.regex.*;

public class TestRegularExpression {
 public static void main(String[] args) {
 if(args.length < 2) {
 System.out.println("Usage:\n" +
 "java TestRegularExpression " +
 "characterSequence regularExpression+");

690 Thinking in Java www.BruceEckel.com

 System.exit(0);
 }
 System.out.println("Input: \"" + args[0] + "\"");
 for(int i = 1; i < args.length; i++) {
 System.out.println(
 "Regular expression: \"" + args[i] + "\"");
 Pattern p = Pattern.compile(args[i]);
 Matcher m = p.matcher(args[0]);
 while(m.find()) {
 System.out.println("Match \"" + m.group() +
 "\" at positions " +
 m.start() + "-" + (m.end() - 1));
 }
 }
 }
} ///:~

Regular expressions are implemented in Java through the Pattern and
Matcher classes in the package java.util.regex. A Pattern object
represents a compiled version of a regular expression. The static
compile() method compiles a regular expression string into a Pattern
object. As seen above, you can use the matcher() method and the input
string to produce a Matcher object from the compiled Pattern object.
Pattern also has a

static boolean matches(String regex, CharSequence input)

for quickly discerning if regex can be found in input, and a split()
method that produces an array of String that has been broken around
matches of the regex. Feedback

A Matcher object is generated by calling Pattern.matcher() with the
input string as an argument. The Matcher object is then used to access
the results, using methods to evaluate the success or failure of different
types of matches:

boolean matches()
boolean lookingAt()
boolean find()
boolean find(int start)

The matches() method is successful if the pattern matches the entire
input string, while lookingAt() is successful if the input string, starting
at the beginning, is a match to the pattern. Feedback

Chapter 12: The Java I/O System 691

find()
Matcher.find() can be used to discover multiple pattern matches in the
CharSequence to which it is applied. For example:

//: c12:FindDemo.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class FindDemo {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Matcher m = Pattern.compile("\\w+")
 .matcher("Evening is full of the linnet's wings");
 while(m.find())
 System.out.println(m.group());
 int i = 0;
 while(m.find(i)) {
 System.out.print(m.group() + " ");
 i++;
 }
 monitor.expect(new String[] {
 "Evening",
 "is",
 "full",
 "of",
 "the",
 "linnet",
 "s",
 "wings",
 "Evening vening ening ning ing ng g is is s full " +
 "full ull ll l of of f the the he e linnet linnet " +
 "innet nnet net et t s s wings wings ings ngs gs s "
 });
 }
} ///:~

The pattern “\\w+” indicates “one or more word characters,” so it will
simply split the input up into words. find() is like an iterator, moving
forward through the input string. However, the second version of find()
can be given an integer argument that tells it the character position for the
beginning of the search – this version resets the search position to the
value of the argument, as you can see from the output. Feedback

692 Thinking in Java www.BruceEckel.com

Groups
Groups are regular expressions set off by parentheses, which can be called
up later with their group number. Group zero indicates the whole
expression match, group one is the first parenthesized group, etc. Thus in

A(B(C))D

there are three groups: group 0 is ABCD, group 1 is BC, and group 2 is C.
Feedback

The Matcher object has methods to give you information about groups:

public int groupCount() returns the number of groups in this
matcher's pattern. Group zero is not included in this count.

public String group() returns group zero (the entire match) from the
previous match operation (find(), for example).

public String group(int i) returns the given group number during the
previous match operation. If the match was successful but the group
specified failed to match any part of the input string, then null is returned.

public int start(int group) returns the start index of the group found
in the previous match operation.

public int end(int group) returns the index of the last character, plus
one, of the group found in the previous match operation. Feedback

Here’s an example of regular expression groups:

//: c12:Groups.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;

public class Groups {
 private static Test monitor = new Test();
 static public final String poem =
 "Twas brillig, and the slithy toves\n" +
 "Did gyre and gimble in the wabe.\n" +
 "All mimsy were the borogoves,\n" +
 "And the mome raths outgrabe.\n\n" +
 "Beware the Jabberwock, my son,\n" +
 "The jaws that bite, the claws that catch.\n" +

Chapter 12: The Java I/O System 693

 "Beware the Jubjub bird, and shun\n" +
 "The frumious Bandersnatch.";
 public static void main(String[] args) {
 Matcher m =
 Pattern.compile("(?m)(\\S+)\\s+((\\S+)\\s+(\\S+))$")
 .matcher(poem);
 while(m.find()) {
 for(int j = 0; j <= m.groupCount(); j++)
 System.out.print("[" + m.group(j) + "]");
 System.out.println();
 }
 monitor.expect(new String[]{
 "[the slithy toves]" +
 "[the][slithy toves][slithy][toves]",
 "[in the wabe.][in][the wabe.][the][wabe.]",
 "[were the borogoves,]" +
 "[were][the borogoves,][the][borogoves,]",
 "[mome raths outgrabe.]" +
 "[mome][raths outgrabe.][raths][outgrabe.]",
 "[Jabberwock, my son,]" +
 "[Jabberwock,][my son,][my][son,]",
 "[claws that catch.]" +
 "[claws][that catch.][that][catch.]",
 "[bird, and shun][bird,][and shun][and][shun]",
 "[The frumious Bandersnatch.][The]" +
 "[frumious Bandersnatch.][frumious][Bandersnatch.]"
 });
 }
} ///:~

The poem is the first part of Lewis Carroll’s “Jabberwocky,” from Through
the Looking Glass. You can see that the regular expression pattern has a
number of parenthesized groups, consisting of any number of non-
whitespace characters (‘\S+’) followed by any number of whitespace
characters (‘\s+’). The goal is to capture the last three words on each line;
the end of a line is delimited by ‘$’. However, the normal behavior is to
match ‘$’ with the end of the entire input sequence, so we must explicitly
tell the regular expression to pay attention to newlines within the input.
This is accomplished with the ‘(?m)’ pattern flag at the beginning of the
sequence (pattern flags will be shown shortly). Feedback

694 Thinking in Java www.BruceEckel.com

start() and end()
Following a successful matching operation, start() returns the start
index of the previous match, and end() returns the the index of the last
character matched, plus one. Invoking either start() or end() following
an unsuccessful matching operation (or prior to a matching operation
being attempted) produces an IllegalStateException. The following
program also demonstrates matches() and lookingAt(): Feedback

//: c12:StartEnd.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;

public class StartEnd {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 String[] input = new String[] {
 "Java has regular expressions in 1.4",
 "regular expressions now expressing in Java",
 "Java represses oracular expressions"
 };
 Pattern
 p1 = Pattern.compile("re\\w*"),
 p2 = Pattern.compile("Java.*");
 for(int i = 0; i < input.length; i++) {
 System.out.println("input " + i + ": " + input[i]);
 Matcher
 m1 = p1.matcher(input[i]),
 m2 = p2.matcher(input[i]);
 while(m1.find())
 System.out.println("m1.find() '" + m1.group() +
 "' start = "+ m1.start() + " end = " + m1.end());
 while(m2.find())
 System.out.println("m2.find() '" + m2.group() +
 "' start = "+ m2.start() + " end = " + m2.end());
 if(m1.lookingAt()) // No reset() necessary
 System.out.println("m1.lookingAt() start = "
 + m1.start() + " end = " + m1.end());
 if(m2.lookingAt())
 System.out.println("m2.lookingAt() start = "
 + m2.start() + " end = " + m2.end());
 if(m1.matches()) // No reset() necessary
 System.out.println("m1.matches() start = "
 + m1.start() + " end = " + m1.end());

Chapter 12: The Java I/O System 695

 if(m2.matches())
 System.out.println("m2.matches() start = "
 + m2.start() + " end = " + m2.end());
 }
 monitor.expect(new String[] {
 "input 0: Java has regular expressions in 1.4",
 "m1.find() 'regular' start = 9 end = 16",
 "m1.find() 'ressions' start = 20 end = 28",
 "m2.find() 'Java has regular expressions in 1.4'" +
 " start = 0 end = 35",
 "m2.lookingAt() start = 0 end = 35",
 "m2.matches() start = 0 end = 35",
 "input 1: regular expressions now " +
 "expressing in Java",
 "m1.find() 'regular' start = 0 end = 7",
 "m1.find() 'ressions' start = 11 end = 19",
 "m1.find() 'ressing' start = 27 end = 34",
 "m2.find() 'Java' start = 38 end = 42",
 "m1.lookingAt() start = 0 end = 7",
 "input 2: Java represses oracular expressions",
 "m1.find() 'represses' start = 5 end = 14",
 "m1.find() 'ressions' start = 27 end = 35",
 "m2.find() 'Java represses oracular expressions' " +
 "start = 0 end = 35",
 "m2.lookingAt() start = 0 end = 35",
 "m2.matches() start = 0 end = 35"
 });
 }
} ///:~

Notice that find() will locate the regular expression anywhere in the
input, but lookingAt() and matches() only succeed if the regular
expression starts matching at the very beginning of the input. While
matches() only succeeds if the entire input matches the regular
expression, lookingAt()6 succeeds if only the first part of the input
matches. Feedback

6 I have no idea how they came up with this method name, or what it’s supposed to refer
to. But it’s reassuring to know that whoever comes up with nonintuitive method names is
still employed at Sun. And that their apparent policy of not reviewing code designs is still
in place. Sorry for the sarcasm, but this kind of thing gets tiresome after a few years.

696 Thinking in Java www.BruceEckel.com

Pattern flags
An alternative compile() method accepts flags that affect the behavior
of regular expression matching:

Pattern Pattern.compile(String regex, int flag)

where flag is drawn from among the following Pattern class constants:

Compile Flag Effect

Pattern.CANON_EQ Two characters will be considered to
match if, and only if, their full
canonical decompositions match.
The expression “a\u030A”, for
example, will match the string “?”
when this flag is specified. By
default, matching does not take
canonical equivalence into account.

Pattern.CASE_INSENSITIVE
(?i)

By default, case-insensitive
matching assumes that only
characters in the US-ASCII charset
are being matched. This flag allows
your pattern to match without
regard to case (upper or lower).
Unicode-aware case-insensitive
matching can be enabled by
specifying the UNICODE_CASE
flag in conjunction with this flag.

Pattern.COMMENTS
(?x)

In this mode, whitespace is ignored,
and embedded comments starting
with # are ignored until the end of a
line. Unix lines mode can also be
enabled via the embedded flag
expression.

Pattern.DOTALL
(?s)

In dotall mode, the expression ‘.’
matches any character, including a
line terminator. By default the ‘.’

Chapter 12: The Java I/O System 697

expression does not match line
terminators.

Pattern.MULTILINE
(?m)

In multiline mode the expressions
‘^’ and ‘$’ match the beginning and
ending of a line, respectively. ‘^’ also
matches the beginning of the input
string, and ‘$’ also matches the end
of the input string. By default these
expressions only match at the
beginning and the end of the entire
input string.

Pattern.UNICODE_CASE
(?u)

When this flag is specified then case-
insensitive matching, when enabled
by the CASE_INSENSITIVE flag,
is done in a manner consistent with
the Unicode Standard. By default,
case-insensitive matching assumes
that only characters in the US-ASCII
charset are being matched.

Pattern.UNIX_LINES
(?d)

In this mode, only the ‘\n’ line
terminator is recognized in the
behavior of ‘.’, ‘^’, and ‘$’.

Particularly useful among these flags are
Pattern.CASE_INSENSITIVE, Pattern.MULTILINE, and
Pattern.COMMENTS (which is helpful for clarity and/or
documentation). Note that the behavior of most of the flags can also be
obtained by inserting the parenthesized characters, shown in the table
beneath the flags, into your regular expression, preceding the place where
you want the mode to take effect. Feedback

You can combine the effect of these and other flags through an "OR" (‘|’)
operation:

//: c12:ReFlags.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;

698 Thinking in Java www.BruceEckel.com

public class ReFlags {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Pattern p = Pattern.compile("^java",
 Pattern.CASE_INSENSITIVE|Pattern.MULTILINE);
 Matcher m = p.matcher(
 "java has regex\nJava has regex\n" +
 "JAVA has pretty good regular expressions\n" +
 "Regular expressions are in Java");
 while(m.find())
 System.out.println(m.group());
 monitor.expect(new String[] {
 "java",
 "Java",
 "JAVA"
 });
 }
} ///:~

This creates a pattern which will match lines which start with "java",
"Java", "JAVA", etc. and attempt a match for each line within a multiline
set (matches starting at the beginning of the character sequence and
following each line terminator within the character sequence). Note that
the group() method only produces the matched portion. Feedback

split()
Splitting divides an input string into an array of String objects, delimited
by the regular expression.

String[] split(CharSequence charseq)
String[] split(CharSequence charseq, int limit)

This is a quick and handy way of breaking up input text over a common
boundary:

//: c12:SplitDemo.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class SplitDemo {
 private static Test monitor = new Test();

Chapter 12: The Java I/O System 699

 public static void main(String[] args) {
 String input =
 "This!!unusual use!!of exclamation!!points";
 System.out.println(Arrays.asList(
 Pattern.compile("!!").split(input)));
 // Only do the first three:
 System.out.println(Arrays.asList(
 Pattern.compile("!!").split(input, 3)));
 System.out.println(Arrays.asList(
 "Aha! String has a split() built in!".split(" ")));
 monitor.expect(new String[] {
 "[This, unusual use, of exclamation, points]",
 "[This, unusual use, of exclamation!!points]",
 "[Aha!, String, has, a, split(), built, in!]"
 });
 }
} ///:~

The second form of split() limits the number of splits that occur. Feedback

Notice that regular expressions are so valuable that some operations have
also been added to the String class, including split() (shown here),
matches(), replaceFirst(), and replaceAll(). These behave like
their Pattern and Matcher counterparts. Feedback

Replace operations
Regular expressions become especially useful when you begin replacing
text. Here are the available methods:

replaceFirst(String replacement) replaces the first matching part of
the input string with replacement. Feedback

replaceAll(String replacement) replaces every matching part of the
input string with replacement. Feedback

appendReplacement(Stringbuffer sbuf, String replacement)
performs a step-by-step replacements into sbuf, rather than replacing
only the first one or all of them, as in replaceFirst() and replaceAll(),
respectively. This is a very important method, because it allows you to call
methods and perform other processing in order to produce replacement
(replaceFirst() and replaceAll() are only able to put in fixed strings).

700 Thinking in Java www.BruceEckel.com

With this method, you can programmatically pick apart the groups and
create powerful replacements. Feedback

appendTail(StringBuffer sbuf, String replacement) is invoked
after one or more invocations of the appendReplacement() method in
order to copy the remainder of the input string. Feedback

Here’s an example which shows the use of all the replace operations. In
addition, the block of commented text at the beginning is extracted and
processed with regular expressions, for use as input in the rest of the
example:

//: c12:TheReplacements.java
import java.util.regex.*;
import java.io.*;
import com.bruceeckel.util.*;
import com.bruceeckel.simpletest.*;

/*! Here's a block of text to use as input to
 the regular expression matcher. Note that we'll
 first extract the block of text by looking for
 the special delimiters, then process the
 extracted block. !*/

public class TheReplacements {
 private static Test monitor = new Test();
 public static void main(String[] args) throws Exception {
 String s = TextFile.read("TheReplacements.java");
 // Match the specially-commented block of text above:
 Matcher mInput =
 Pattern.compile("/*!(.*)!*/", Pattern.DOTALL)
 .matcher(s);
 if(mInput.find())
 s = mInput.group(1); // Captured by parentheses
 // Replace two or more spaces with a single space:
 s = s.replaceAll(" {2,}", " ");
 // Replace one or more spaces at the beginning of each
 // line with no spaces. Must enable MULTILINE mode:
 s = s.replaceAll("(?m)^ +", "");
 System.out.println(s);
 s = s.replaceFirst("[aeiou]", "(VOWEL1)");
 StringBuffer sbuf = new StringBuffer();
 Pattern p = Pattern.compile("[aeiou]");
 Matcher m = p.matcher(s);

Chapter 12: The Java I/O System 701

 // Process the find information as you
 // perform the replacements:
 while(m.find())
 m.appendReplacement(sbuf, m.group().toUpperCase());
 // Put in the remainder of the text:
 m.appendTail(sbuf);
 System.out.println(sbuf);
 monitor.expect(new String[]{
 "Here's a block of text to use as input to",
 "the regular expression matcher. Note that we'll",
 "first extract the block of text by looking for",
 "the special delimiters, then process the",
 "extracted block. ",
 "H(VOWEL1)rE's A blOck Of tExt tO UsE As InpUt tO",
 "thE rEgUlAr ExprEssIOn mAtchEr. NOtE thAt wE'll",
 "fIrst ExtrAct thE blOck Of tExt by lOOkIng fOr",
 "thE spEcIAl dElImItErs, thEn prOcEss thE",
 "ExtrActEd blOck. "
 });
 }
} ///:~

The file is opened and read using the TextFile.read() method
introduced earlier in this chapter. mInput is created to match all the text
(notice the grouping parentheses) between ‘/*!’ and ‘!*/’. Then, more than
two spaces are reduced to a single space, and any space at the beginning
of each line is removed (in order to do this on all lines and not just the
beginning of the input, multiline mode must be enabled). These two
replacements are performed with the equivalent (but more convenient, in
this case) replaceAll() that’s part of String. Note that since each
replacement is only used once in the program, there’s no extra cost to
doing it this way rather than precompiling it as a Pattern. Feedback

replaceFirst() only performs the first replacement that it finds. In
addition, the replacement strings in replaceFirst() and replaceAll()
are just literals, so if you want to perform some processing on each
replacement they don’t help. In that case, you need to use
appendReplacement(), which allows you to write any amount of code
in the process of performing the replacement. In the above example, a
group() is selected and processed – in this example, setting the vowel
found by the regular expression to upper case – as the resulting sbuf is
being built. Normally, you would step through and perform all the

702 Thinking in Java www.BruceEckel.com

replacements and then call appendTail(), but if you wanted to simulate
replaceFirst() (or “replace n”) you would just do the replacement one
time and then call appendTail() to put the rest into sbuf. Feedback

appendReplacement() also allows you to refer to captured groups
directly in the replacement string by saying “$g” where ‘g’ is the group
number. However, this is for simpler processing and wouldn’t give you the
desired results in the above program. Feedback

reset()
An existing Matcher object can be applied to a new character sequence
Using the reset() methods:

//: c12:Resetting.java
import java.util.regex.*;
import java.io.*;
import com.bruceeckel.simpletest.*;

public class Resetting {
 private static Test monitor = new Test();
 public static void main(String[] args) throws Exception {
 Matcher m = Pattern.compile("[frb][aiu][gx]")
 .matcher("fix the rug with bags");
 while(m.find())
 System.out.println(m.group());
 m.reset("fix the rig with rags");
 while(m.find())
 System.out.println(m.group());
 monitor.expect(new String[]{
 "fix",
 "rug",
 "bag",
 "fix",
 "rig",
 "rag"
 });
 }
} ///:~

reset() without any arguments sets the Matcher to the beginning of the
current sequence. Feedback

Chapter 12: The Java I/O System 703

Regular expressions and Java I/O
Most of the examples so far have shown regular expressions applied to
static strings. The following example shows one way to apply regular
expressions to search for matches in a file. Inspired by Unix’s grep,
JGrep.java takes two arguments: a filename and the regular expression
that you want to match.The ouput shows each line where a match occurs
and the match position(s) within the line. Feedback

//: c12:JGrep.java
// A very simple version of the "grep" program.
// {Args: JGrep.java "\\b[Ssct]\\w+"}
import java.io.*;
import java.util.regex.*;
import java.util.*;
import com.bruceeckel.util.*;

public class JGrep {
 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println("Usage: java JGrep file regex");
 System.exit(0);
 }
 Pattern p = Pattern.compile(args[1]);
 // Iterate through the lines of the input file:
 ListIterator it = new TextFile(args[0]).listIterator();
 while(it.hasNext()) {
 Matcher m = p.matcher((String)it.next());
 while(m.find())
 System.out.println(it.nextIndex() + ": " +
 m.group() + ": " + m.start());
 }
 }
} ///:~

The file is opened as a TextFile object (these were introduced earlier in
this chapter). Since a TextFile contains the lines of the file in an
ArrayList, from that array a ListIterator is produced. The result is an
iterator that will allow you to move through the lines of the file (forward
and backward). Feedback

704 Thinking in Java www.BruceEckel.com

Each input line is used to produce a Matcher and the result is scanned
with find(). Note that the ListIterator.nextIndex() keeps track of the
line numbers. Feedback

The test arguments open the JGrep.java file to read as input, and search
for words starting with [Ssct]. Feedback

Is StringTokenizer needed?
The new capabilities provided with regular expressions might prompt you
to wonder whether the original StringTokenizer class is still necessary.
Before JDK 1.4, the way to split a string into parts was to “tokenize” it
with StringTokenizer. But now it’s much easier and more succinct to do
the same thing with regular expressions:

//: c12:ReplacingStringTokenizer.java
import java.util.regex.*;
import com.bruceeckel.simpletest.*;
import java.util.*;

public class ReplacingStringTokenizer {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 String input = "But I'm not dead yet! I feel happy!";
 StringTokenizer stoke = new StringTokenizer(input);
 while(stoke.hasMoreElements())
 System.out.println(stoke.nextToken());
 System.out.println(Arrays.asList(input.split(" ")));
 monitor.expect(new String[] {
 "But",
 "I'm",
 "not",
 "dead",
 "yet!",
 "I",
 "feel",
 "happy!",
 "[But, I'm, not, dead, yet!, I, feel, happy!]"
 });
 }
} ///:~

Chapter 12: The Java I/O System 705

With regular expressions you can also split a string into parts using more
complex patterns, something that’s much more difficult with
StringTokenizer. It seems safe to say that regular expressions replace
any tokenizing classes in earlier versions of Java. Feedback

You can learn much more about regular expressions in Mastering
Regular Expressions, 2nd Edition by Jeffrey E. F. Friedl (O’Reilly, 2002).
Feedback

Summary
The Java I/O stream library does satisfy the basic requirements: you can
perform reading and writing with the console, a file, a block of memory,
or even across the Internet. With inheritance, you can create new types of
input and output objects. And you can even add a simple extensibility to
the kinds of objects a stream will accept by redefining the toString()
method that’s automatically called when you pass an object to a method
that’s expecting a String (Java’s limited “automatic type conversion”).
Feedback

There are questions left unanswered by the documentation and design of
the I/O stream library. For example, it would have been nice if you could
say that you want an exception thrown if you try to overwrite a file when
opening it for output—some programming systems allow you to specify
that you want to open an output file, but only if it doesn’t already exist. In
Java, it appears that you are supposed to use a File object to determine
whether a file exists, because if you open it as a FileOutputStream or
FileWriter it will always get overwritten. Feedback

The I/O stream library brings up mixed feelings; it does much of the job
and it’s portable. But if you don’t already understand the decorator
pattern, the design is nonintuitive, so there’s extra overhead in learning
and teaching it. It’s also incomplete: for example, I shouldn’t have to write
utilities like TextFile, and there’s no support for the kind of output
formatting that virtually every other language’s I/O package supports.
Feedback

However, once you do understand the decorator pattern and begin using
the library in situations that require its flexibility, you can begin to benefit

706 Thinking in Java www.BruceEckel.com

from this design, at which point its cost in extra lines of code may not
bother you as much. Feedback

If you do not find what you’re looking for in this chapter (which has only
been an introduction, and is not meant to be comprehensive), you can
find in-depth coverage in Java I/O, by Elliotte Rusty Harold (O’Reilly,
1999). Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Open a text file so that you can read the file one line at a time.
Read each line as a String and place that String object into a
LinkedList. Print all of the lines in the LinkedList in reverse
order. Feedback

2. Modify Exercise 1 so that the name of the file you read is provided
as a command-line argument. Feedback

3. Modify Exercise 2 to also open a text file so you can write text into
it. Write the lines in the ArrayList, along with line numbers (do
not attempt to use the “LineNumber” classes), out to the file.
Feedback

4. Modify Exercise 2 to force all the lines in the ArrayList to upper
case and send the results to System.out. Feedback

5. Modify Exercise 2 to take additional command-line arguments of
words to find in the file. Print all lines in which any of the words
match. Feedback

6. Modify DirList.java so that the FilenameFilter actually opens
each file and accepts the file based on whether any of the trailing
arguments on the command line exist in that file. Feedback

7. Modify DirList.java to produce all the file names in the current
directory and subdirectories that satisfy the given regular
expression. Hint: use recursion to traverse the subdirectories.

Chapter 12: The Java I/O System 707

8. Create a class called SortedDirList with a constructor that takes
file path information and builds a sorted directory list from the
files at that path. Create two overloaded list() methods that will
either produce the whole list or a subset of the list based on an
argument. Add a size() method that takes a file name and
produces the size of that file. Feedback

9. Modify WordCount.java so that it produces an alphabetic sort
instead, using the tool from Chapter 11. Feedback

10. Modify WordCount.java so that it uses a class containing a
String and a count value to store each different word, and a Set
of these objects to maintain the list of words. Feedback

11. Modify IOStreamDemo.java so that it uses
LineNumberReader to keep track of the line count. Note that
it’s much easier to just keep track programmatically. Feedback

12. Starting with section 4 of IOStreamDemo.java, write a program
that compares the performance of writing to a file when using
buffered and unbuffered I/O. Feedback

13. Modify section 5 of IOStreamDemo.java to eliminate the spaces
in the line produced by the first call to in5.readUTF(). Feedback

14. Repair the program CADState.java as described in the text.
Feedback

15. In Blips.java, copy the file and rename it to BlipCheck.java
and rename the class Blip2 to BlipCheck (making it public and
removing the public scope from the class Blips in the process).
Remove the //! marks in the file and execute the program
including the offending lines. Next, comment out the default
constructor for BlipCheck. Run it and explain why it works. Note
that after compiling, you must execute the program with “java
Blips” because the main() method is still in class Blips. Feedback

16. In Blip3.java, comment out the two lines after the phrases “You
must do this:” and run the program. Explain the result and why it
differs from when the two lines are in the program. Feedback

708 Thinking in Java www.BruceEckel.com

17. (Intermediate) In Chapter 8, locate the
GreenhouseController.java example, which consists of four
files. GreenhouseController contains a hard-coded set of
events. Change the program so that it reads the events and their
relative times from a text file. (Challenging: Use a design patterns
factory method to build the events—see Thinking in Patterns with
Java at www.BruceEckel.com.) Feedback

18. For the phrase “Java now has regular expressions” evaluate
whether the following expressions will find a match:

^Java
\Breg.*
n.w\s+h(a|i)s
s?
s*
s+
s{4}
s{1.}
s{0,3}

19. Apply the regular expression

 (?i)((^[aeiou])|(\s+[aeiou]))\w+?[aeiou]\b

to

"Arline ate eight apples and one orange while Anita
hadn't any"

20. Modify JGrep.java to accept flags as arguments (e.g.
Pattern.CASE_INSENSITIVE, Pattern.MULTILINE)

21. Modify JGrep.java to use Java NIO memory-mapped files.

22. Modify JGrep.java to accept a directory name or a file name as
argument (if a directory is provided, search should include all files
in the directory). Hint: you can generate a list of filenames with:

String[] filenames = new File(".").list();

 709

13: Concurrency
Objects provide a way to divide a program into
independent sections. Often, you also need to turn a
program into separate, independently running subtasks.

Each of these independent subtasks is called a thread, and you program
as if each thread runs by itself and has the CPU to itself. Some underlying
mechanism is actually dividing up the CPU time for you, but in general,
you don’t have to think about it, which makes programming with multiple
threads a much easier task. Feedback

A process is a self-contained running program with its own address space.
A multitasking operating system is capable of running more than one
process (program) at a time, while making it look like each one is
chugging along on its own, by periodically switching the CPU from one
task to another. A thread is a single sequential flow of control within a
process. A single process can thus have multiple concurrently executing
threads. Feedback

There are many possible uses for multithreading, but in general, you’ll
have some part of your program tied to a particular event or resource, and
you don’t want that to hold up the rest of your program. So you create a
thread associated with that event or resource and let it run independently
of the main program. Feedback

Concurrent programming is like stepping into an entirely new world and
learning a new programming language, or at least a new set of language
concepts. With the appearance of thread support in most microcomputer
operating systems, extensions for threads have also been appearing in
programming languages or libraries. In all cases, thread programming:

1. Seems mysterious and requires a shift in the way you think about
programming

2. Looks similar to thread support in other languages, so when you
understand threads, you understand a common tongue.

710 Thinking in Java www.BruceEckel.com

And although support for threads can makes Java a more complicated
language, this isn’t entirely the fault of Java—threads are tricky. Feedback

Understanding concurrent programming is on the same order of difficulty
as understanding polymorphism. If you apply some effort, you can fathom
the basic mechanism, but it generally takes deep study and understanding
in order to develop a true grasp of the subject. The goal of this chapter is
to give you a solid foundation in the basics of concurrency, so that you can
understand the concepts and write reasonable multithreaded programs.
Be aware that you can easily become overconfident, so if you are writing
anything complex you will need to study dedicated books on the topic.
Feedback

Motivation
One of the most compelling reasons for concurrency is to produce a
responsive user interface. Consider a program that performs some CPU-
intensive operation and thus ends up ignoring user input and being
unresponsive. The basic problem is that the program needs to continue
performing its operations, and at the same time it needs to return control
to the user interface so that the program can respond to the user. If you
have a “quit” button, you don’t want to be forced to poll it in every piece of
code you write in your program, and yet you want the quit button to be
responsive, as if you were checking it regularly. Feedback

A conventional method cannot continue performing its operations and at
the same time return control to the rest of the program. In fact, this
sounds like an impossible thing to accomplish, as if the CPU must be in
two places at once, but this is precisely the illusion that concurrency
provides. Feedback

Concurrency can also be used to optimize throughput. For example, you
you might be able to do important work while you’re stuck waiting for
input to arrive on an I/O port. Without threading, the only reasonable
solution is polling the I/O port, which is awkward and can be difficult.
Feedback

If you have a multiprocessor machine, multiple threads may be
distributed across multiple processors, which can dramatically improve

Chapter 13: Concurrency 711

throughput. This is often the case with powerful multiprocessor web
servers, which can distribute large numbers of user requests across CPUs
in a program that allocates one thread per request. Feedback

One thing to keep in mind is that a program with many threads must be
able to run on a single-CPU machine. Therefore, it must also be possible
to write the same program without using any threads. However,
multithreading provides a very important organizational benefit, so that
the design of your program can be greatly simplified. Some types of
problems, such as simulation—a video game, for example—are very
difficult to solve without support for concurrency. Feedback

The threading model is a programming convenience to simplify juggling
several operations at the same time within a single program. With
threads, the CPU will pop around and give each thread some of its time.
Each thread has the consciousness of constantly having the CPU to itself,
but the CPU’s time is actually sliced between all the threads. The
exception to this is if your program is running on multiple CPUs, but one
of the great things about threading is that you are abstracted away from
this layer, so your code does not need to know whether it is actually
running on a single CPU or many. Thus, threads are a way to create
transparently scalable programs—if a program is running too slowly, it
can easily be made faster by adding CPUs to your computer. Multitasking
and multithreading tend to be the most reasonable ways to utilize
multiprocessor systems. Feedback

Threading can reduce computing efficiency somewhat in single CPU
machines, but the net improvement in program design, resource
balancing, and user convenience is often quite valuable. In general, by
being able to use threads you’re able to create a more loosely-coupled
design, since otherwise parts of your code would be forced to explicitly
pay attention to other tasks which would normally be handled by threads.
Feedback

Basic threads
The simplest way to create a thread is to inherit from java.lang.Thread,
which has all the wiring necessary to create and run threads. The most
important method for Thread is run(), which you must override to

712 Thinking in Java www.BruceEckel.com

make the thread do your bidding. Thus, run() is the code that will be
executed “simultaneously” with the other threads in a program. Feedback

The following example creates five threads, each with a unique
identification number generated with a static variable. The Thread’s
run() method is overridden to count down each time it passes through
its loop and to return when the count is zero (at the point when run()
returns, the thread is terminated by the threading mechanism). Feedback

//: c13:SimpleThread.java
// Very simple Threading example.
import com.bruceeckel.simpletest.*;

public class SimpleThread extends Thread {
 private static Test monitor = new Test();
 private int countDown = 5;
 private static int threadCount = 0;
 public SimpleThread() {
 super("" + ++threadCount); // Store the thread name
 start();
 }
 public String toString() {
 return "#" + getName() + ": " + countDown;
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 }
 }
 public static void main(String[] args) {
 for(int i = 0; i < 5; i++)
 new SimpleThread();
 monitor.expect(new String[] {
 "#1: 5",
 "#2: 5",
 "#3: 5",
 "#5: 5",
 "#1: 4",
 "#4: 5",
 "#2: 4",
 "#3: 4",
 "#5: 4",
 "#1: 3",

Chapter 13: Concurrency 713

 "#4: 4",
 "#2: 3",
 "#3: 3",
 "#5: 3",
 "#1: 2",
 "#4: 3",
 "#2: 2",
 "#3: 2",
 "#5: 2",
 "#1: 1",
 "#4: 2",
 "#2: 1",
 "#3: 1",
 "#5: 1",
 "#4: 1"
 }, Test.IGNORE_ORDER + Test.WAIT);
 }
} ///:~

The thread objects are given specific names by calling the appropriate
Thread constructor. This name is retrieved in toString() using
getName().

A Thread object’s run() method virtually always has some kind of loop
that continues until the thread is no longer necessary, so you must
establish the condition on which to break out of this loop (or, in the case
above, simply return from run()). Often, run() is cast in the form of
an infinite loop, which means that, barring some factor that causes run()
to terminate, it will continue forever (later in the chapter you’ll see how to
safely signal a thread to stop). Feedback

In main() you can see a number of threads being created and run. The
start() method in the Thread class performs special initialization for
the thread and then calls run(). So the steps are: the constructor is called
to build the object, it calls start() to configure the thread and the thread
execution mechanism calls run(). If you don’t call start() (which you
don’t have to do in the constructor, as you will see in subsequent
examples) the thread will never be started. Feedback

The output for one run of this program will be different from that of
another, because the thread scheduling mechanism is not deterministic.
In fact, you may see dramatic differences in the output of this simple

714 Thinking in Java www.BruceEckel.com

program between one version of the JDK and the next. For example, a
previous JDK didn’t time-slice very often, so thread 1 might loop to
extinction first, then thread 2 would go through all of its loops, etc. This
was virtually the same as calling a routine that would do all the loops at
once, except that starting up all those threads is more expensive. In JDK
1.4 you get something like the above output, which indicates better time-
slicing behavior by the scheduler—each thread seems to be getting regular
service. Generally these kinds of JDK behavioral changes have not been
mentioned by Sun, so you cannot plan on any consistent threading
behavior. The best approach is to be as conservative as possible while
writing threading code. Feedback

When main() creates the Thread objects it isn’t capturing the
references for any of them. With an ordinary object, this would make it
fair game for garbage collection, but not with a Thread. Each Thread
“registers” itself so there is actually a reference to it someplace and the
garbage collector can’t clean it up until the thread exits its run() and
dies. Feedback

Yeilding
If you know that you’ve accomplished what you need to in your run()
method, you can give a hint to the thread scheduling mechanism that
you’ve done enough and that some other thread might as well have the
CPU. This hint (and it is a hint—there’s no guarantee your
implementation will listen to it) takes the form of the yield() method.
Feedback

We can modify the above example by yielding after each loop:

//: c13:YieldingThread.java
// Suggesting when to switch threads with yield().
import com.bruceeckel.simpletest.*;

public class YieldingThread extends Thread {
 private static Test monitor = new Test();
 private int countDown = 5;
 private static int threadCount = 0;
 public YieldingThread() {
 super("" + ++threadCount);
 start();

Chapter 13: Concurrency 715

 }
 public String toString() {
 return "#" + getName() + ": " + countDown;
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 yield();
 }
 }
 public static void main(String[] args) {
 for(int i = 0; i < 5; i++)
 new YieldingThread();
 monitor.expect(new String[] {
 "#1: 5",
 "#2: 5",
 "#4: 5",
 "#5: 5",
 "#3: 5",
 "#1: 4",
 "#2: 4",
 "#4: 4",
 "#5: 4",
 "#3: 4",
 "#1: 3",
 "#2: 3",
 "#4: 3",
 "#5: 3",
 "#3: 3",
 "#1: 2",
 "#2: 2",
 "#4: 2",
 "#5: 2",
 "#3: 2",
 "#1: 1",
 "#2: 1",
 "#4: 1",
 "#5: 1",
 "#3: 1"
 }, Test.IGNORE_ORDER + Test.WAIT);
 }
} ///:~

716 Thinking in Java www.BruceEckel.com

By using yield(), the output is evened up quite a bit. But note that if the
output string is longer, you will see output that is roughly the same as it
was in SimpleThread.java (try it—change toString() to put out
longer and longer strings to see what happens). Since the scheduling
mechanism is preemptive, it decides to interrupt a thread and switch to
another whenever it wants, so if I/O (which is executed via the main()
thread) takes too long it gets interrupted before run() has a chance to
yield(). In general, yield() is useful only in rare situations and you can’t
rely on it to do any serious tuning of your application. Feedback

Sleeping
Another way you can control the behavior of your threads is by calling
sleep() to cease execution for a given number of milliseconds. If you
replace the call to yield() in the above example with a call to sleep(),
you get the following: Feedback

//: c13:SleepingThread.java
// Calling sleep() to wait for awhile.
import com.bruceeckel.simpletest.*;

public class SleepingThread extends Thread {
 private static Test monitor = new Test();
 private int countDown = 5;
 private static int threadCount = 0;
 public SleepingThread() {
 super("" + ++threadCount);
 start();
 }
 public String toString() {
 return "#" + getName() + ": " + countDown;
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 sleep(100);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }

Chapter 13: Concurrency 717

 public static void
 main(String[] args) throws InterruptedException {
 for(int i = 0; i < 5; i++)
 new SleepingThread().join();
 monitor.expect(new String[] {
 "#1: 5",
 "#1: 4",
 "#1: 3",
 "#1: 2",
 "#1: 1",
 "#2: 5",
 "#2: 4",
 "#2: 3",
 "#2: 2",
 "#2: 1",
 "#3: 5",
 "#3: 4",
 "#3: 3",
 "#3: 2",
 "#3: 1",
 "#4: 5",
 "#4: 4",
 "#4: 3",
 "#4: 2",
 "#4: 1",
 "#5: 5",
 "#5: 4",
 "#5: 3",
 "#5: 2",
 "#5: 1"
 });
 }
} ///:~

When you call sleep(), it must be placed inside a try block because it’s
possible for sleep() to be interrupted before it times out. This happens if
someone else has a reference to the thread and they call interrupt() on
the thread (interrupt() also affects the thread if wait() or join() has
been called for it, so those calls must be in a similar try block—you’ll
learn about those methods later). Usually, if you’re going to break out of a
suspended thread using interrupt() you will use wait() rather than
sleep(), so ending up inside of the catch clause is unlikely. Here, we

718 Thinking in Java www.BruceEckel.com

follow the maxim “don’t catch an exception unless you know what to do
with it” by re-throwing it as a RuntimeException. Feedback

You’ll notice that the output is deterministic – each thread counts down
before the next one starts. This is because join() (which you’ll learn
about shortly) is used on each thread, so that main() waits for the thread
to complete before continuing. If you did not use join(), you’d see that
the threads tend to run in any order, which means that sleep() is also
not a way for you to control the order of thread execution. It just stops the
execution of the thread for awhile. The only guarantee that you have is
that the thread will sleep at least 100 milliseconds, but it may take longer
before the thread resumes execution because the thread scheduler still
has to get back to it after the sleep interval expires. Feedback

If you must control the order of execution of threads, your best bet is not
to use threads at all but instead to write your own cooperative routines
which hand control to each other in a specified order. Feedback

Priority
The priority of a thread tells the scheduler how important this thread is.
Although the order that the CPU attends to an existing set of threads is
indeterminate, if there are a number of threads blocked and waiting to be
run, the scheduler will lean towards the one with the highest priority first.
However, this doesn’t mean that threads with lower priority don’t get run
(that is, you can’t get deadlocked because of priorities). Lower priority
threads just tend to run less often. Feedback

Here’s SimpleThread.java modified so that the priority levels are
demonstrated. The priorities are adjusting using Thread’s
setPriority() method.

//: c13:SimplePriorities.java
// Shows the use of thread priorities.
import com.bruceeckel.simpletest.*;

public class SimplePriorities extends Thread {
 private static Test monitor = new Test();
 private int countDown = 5;
 private volatile double d = 0; // No optimization
 public SimplePriorities(int priority) {

Chapter 13: Concurrency 719

 setPriority(priority);
 start();
 }
 public String toString() {
 return super.toString() + ": " + countDown;
 }
 public void run() {
 while(true) {
 // An expensive, interruptable operation:
 for(int i = 1; i < 100000; i++)
 d = d + (Math.PI + Math.E) / (double)i;
 System.out.println(this);
 if(--countDown == 0) return;
 }
 }
 public static void main(String[] args) {
 new SimplePriorities(Thread.MAX_PRIORITY);
 for(int i = 0; i < 5; i++)
 new SimplePriorities(Thread.MIN_PRIORITY);
 monitor.expect(new String[] {
 "Thread[Thread-1,10,main]: 5",
 "Thread[Thread-1,10,main]: 4",
 "Thread[Thread-1,10,main]: 3",
 "Thread[Thread-1,10,main]: 2",
 "Thread[Thread-1,10,main]: 1",
 "Thread[Thread-2,1,main]: 5",
 "Thread[Thread-2,1,main]: 4",
 "Thread[Thread-2,1,main]: 3",
 "Thread[Thread-2,1,main]: 2",
 "Thread[Thread-2,1,main]: 1",
 "Thread[Thread-3,1,main]: 5",
 "Thread[Thread-4,1,main]: 5",
 "Thread[Thread-5,1,main]: 5",
 "Thread[Thread-6,1,main]: 5",
 "Thread[Thread-3,1,main]: 4",
 "Thread[Thread-4,1,main]: 4",
 "Thread[Thread-5,1,main]: 4",
 "Thread[Thread-6,1,main]: 4",
 "Thread[Thread-3,1,main]: 3",
 "Thread[Thread-4,1,main]: 3",
 "Thread[Thread-5,1,main]: 3",
 "Thread[Thread-6,1,main]: 3",
 "Thread[Thread-3,1,main]: 2",
 "Thread[Thread-4,1,main]: 2",

720 Thinking in Java www.BruceEckel.com

 "Thread[Thread-5,1,main]: 2",
 "Thread[Thread-6,1,main]: 2",
 "Thread[Thread-4,1,main]: 1",
 "Thread[Thread-3,1,main]: 1",
 "Thread[Thread-6,1,main]: 1",
 "Thread[Thread-5,1,main]: 1"
 }, Test.IGNORE_ORDER + Test.WAIT);
 }
} ///:~

In this version, toString() is overridden to use Thread.toString(),
which prints the thread name (which you can set yourself via the
constructor; here it’s automatically generated as Thread-1, Thread-2,
etc.), the priority level, and the “thread group” that the thread belongs to.
Because the threads are self-identifying, there is no threadNumber in
this example. The overridden toString() also shows the countdown
value of the thread. Feedback

You can see that the priority level of thread #1 is at the highest level, and
all the rest of the threads are at the lowest level. Feedback

Inside run(), 100,000 repetitions of a rather expensive floating-point
calculation have been added, involving double addition and division. The
variable d has been made volatile to ensure that no optimization is
performed. Without this calculation, you don’t see the effect of setting the
priority levels (try it: comment out the for loop containing the double
calculations). With the calculation, you see that thread #1 is given a higher
preference by the thread scheduler (at least, this was the behavior on my
Windows 2000 machine). Even though printing to the console is also an
expensive behavior, you won’t see the priority levels that way because
console printing doesn’t get interrupted (otherwise the console display
would get garbled during threading), whereas the math calculation above
can be interrupted. The calculation takes long enough that the thread
scheduling mechanism jumps in and changes threads, and pays attention
to the priorities so that thread 1 gets preference. Feedback

You can also read the priority of an existing thread with getPriority()
and change it at any time (not just in the constructor, as above) with
setPriority().

Chapter 13: Concurrency 721

Although the JDK has 10 priority levels, this doesn’t map well to many
operating systems. For example, Windows 2000 has 7 priority levels
which are not fixed, so the mapping is indeterminate (although Sun’s
Solaris has 231 levels). The only portable approach is to stick to
MAX_PRIORITY, NORM_PRIORITY and MIN_PRIORITY when
you’re adjusting priority levels. Feedback

Daemon threads
A “daemon” thread is one that is supposed to provide a general service in
the background as long as the program is running, but is not part of the
essence of the program. Thus, when all of the non-daemon threads
complete, the program is terminated. Conversely, if there are any non-
daemon threads still running, the program doesn’t terminate. There is, for
instance, a non-daemon thread that runs main(). Feedback

//: c13:SimpleDaemons.java
// Daemon threads don't prevent the program from ending.

public class SimpleDaemons extends Thread {
 public SimpleDaemons() {
 setDaemon(true); // Must be called before start()
 start();
 }
 public void run() {
 while(true) {
 try {
 sleep(100);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 System.out.println(this);
 }
 }
 public static void main(String[] args) {
 for(int i = 0; i < 10; i++)
 new SimpleDaemons();
 }
} ///:~

You must set the thread to be a daemon by calling setDaemon() before
it is started. In run(), the thread is put to sleep for a little bit. Once the
threads are all started, the program terminates immediately, before any

722 Thinking in Java www.BruceEckel.com

threads can print themselves, because there are no non-daemon threads
(other than main()) holding the program open. Thus, the program
terminates without printing any output.

You can find out if a thread is a daemon by calling isDaemon(). If a
thread is a daemon, then any threads it creates will automatically be
daemons, as the following example demonstrates: Feedback

//: c13:Daemons.java
// Daemon threads spawn other daemon threads.
import java.io.*;
import com.bruceeckel.simpletest.*;

class Daemon extends Thread {
 private Thread[] t = new Thread[10];
 public Daemon() {
 setDaemon(true);
 start();
 }
 public void run() {
 for(int i = 0; i < t.length; i++)
 t[i] = new DaemonSpawn(i);
 for(int i = 0; i < t.length; i++)
 System.out.println("t[" + i + "].isDaemon() = "
 + t[i].isDaemon());
 while(true)
 yield();
 }
}

class DaemonSpawn extends Thread {
 public DaemonSpawn(int i) {
 start();
 System.out.println("DaemonSpawn " + i + " started");
 }
 public void run() {
 while(true)
 yield();
 }
}

public class Daemons {
 private static Test monitor = new Test();
 public static void main(String[] args) throws Exception {

Chapter 13: Concurrency 723

 Thread d = new Daemon();
 System.out.println("d.isDaemon() = " + d.isDaemon());
 // Allow the daemon threads to
 // finish their startup processes:
 Thread.sleep(1000);
 monitor.expect(new String[] {
 "d.isDaemon() = true",
 "DaemonSpawn 0 started",
 "DaemonSpawn 1 started",
 "DaemonSpawn 2 started",
 "DaemonSpawn 3 started",
 "DaemonSpawn 4 started",
 "DaemonSpawn 5 started",
 "DaemonSpawn 6 started",
 "DaemonSpawn 7 started",
 "DaemonSpawn 8 started",
 "DaemonSpawn 9 started",
 "t[0].isDaemon() = true",
 "t[1].isDaemon() = true",
 "t[2].isDaemon() = true",
 "t[3].isDaemon() = true",
 "t[4].isDaemon() = true",
 "t[5].isDaemon() = true",
 "t[6].isDaemon() = true",
 "t[7].isDaemon() = true",
 "t[8].isDaemon() = true",
 "t[9].isDaemon() = true"
 }, Test.IGNORE_ORDER + Test.WAIT);
 }
} ///:~

The Daemon thread sets its daemon flag to “true” and then spawns a
bunch of other threads—which do not set themselves to daemon mode—to
show that they are daemons anyway. Then it goes into an infinite loop
that calls yield() to give up control to the other processes. Feedback

There’s nothing to keep the program from terminating once main()
finishes its job, since there are nothing but daemon threads running. So
that you can see the results of starting all the daemon threads, the
main() thread is put to sleep for a second. Without this you see only
some of the results from the creation of the daemon threads. (Try
sleep() calls of various lengths to see this behavior.) Feedback

724 Thinking in Java www.BruceEckel.com

Joining a thread
One thread may call join() on another thread to wait for the second
thread to complete before proceeding. If a thread calls t.join() on
another thread t, then the calling thread is suspended until the target
thread t finishes (when t.isAlive() is false).

You may also call join() with a timeout argument (in either milliseconds
or milliseconds and nanoseconds) so that if the target thread doesn’t
finish in that period of time the call to join() returns anyway.

The call to join() may be aborted by calling interrupt() on the calling
thread, so a try-catch clause is required.

All of these operations are shown in the following example:

//: c13:Joining.java
// Understanding join().
import com.bruceeckel.simpletest.*;

class Sleeper extends Thread {
 private int duration;
 public Sleeper(String name, int sleepTime) {
 super(name);
 duration = sleepTime;
 start();
 }
 public void run() {
 try {
 sleep(duration);
 } catch (InterruptedException e) {
 System.out.println(getName() + " was interrupted. " +
 "isInterrupted(): " + isInterrupted());
 return;
 }
 System.out.println(getName() + " has awakened");
 }
}

class Joiner extends Thread {
 private Sleeper sleeper;
 public Joiner(String name, Sleeper sleeper) {
 super(name);
 this.sleeper = sleeper;

Chapter 13: Concurrency 725

 start();
 }
 public void run() {
 try {
 sleeper.join();
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 System.out.println(getName() + " join completed");
 }
}

public class Joining {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Sleeper
 sleepy = new Sleeper("Sleepy", 1500),
 grumpy = new Sleeper("Grumpy", 1500);
 Joiner
 dopey = new Joiner("Dopey", sleepy),
 doc = new Joiner("Doc", grumpy);
 grumpy.interrupt();
 monitor.expect(new String[] {
 "Grumpy was interrupted. isInterrupted(): false",
 "Doc join completed",
 "Sleepy has awakened",
 "Dopey join completed"
 }, Test.AT_LEAST + Test.WAIT);
 }
} ///:~

A Sleeper is a type of Thread that goes to sleep for a time specified in its
constructor. In run(), the call to sleep() may terminate when the time
expires, but it may also be interrupted. Inside the catch clause, the
interruption is reported, along with the value of isInterrupted(). When
another thread calls interrupt() on this thread, a flag is set to indicate
that the thread has been interrupted. However, this flag is cleared when
the exception is caught, so the result will always be false inside the catch
clause. The flag is used for other situations where a thread may examine
its interrupted state apart from the exception.

A Joiner is a thread that waits for a Sleeper to wake up by calling
join() on the Sleeper object. In main(), each Sleeper has a Joiner,

726 Thinking in Java www.BruceEckel.com

and you can see in the output that if the Sleeper is either interrupted or
if it ends normally, the Joiner completes in conjunction with the
Sleeper.

Coding variations
In the simple examples above, the thread objects are all inherited from
Thread. This makes sense because the objects are clearly only being
created as threads, and have no other behavior. However, your class may
already be inheriting from another class, in which case you can’t also
inherit from Thread (Java doesn’t support multiple inheritance). In this
case, you can use the alternative approach of implementing the
Runnable interface. Runnable specifies only that there be a run()
method implemented, and Thread also implements Runnable. Feedback

This example demonstrates the basics:

//: c13:RunnableThread.java
// SimpleThread using the Runnable interface.

public class RunnableThread implements Runnable {
 private int countDown = 5;
 public String toString() {
 return "#" + Thread.currentThread().getName() +
 ": " + countDown;
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 }
 }
 public static void main(String[] args) {
 for(int i = 1; i <= 5; i++)
 new Thread(new RunnableThread(), "" + i).start();
 // Output is like SimpleThread.java
 }
} ///:~

The only thing required by a Runnable class is a run() method, but if
you want do do anything else to the Thread object (such as getName()
in toString()) you must explicitly get a reference to it by calling

Chapter 13: Concurrency 727

Thread.currentThread(). This particular Thread constructor takes a
Runnable and a name for the thread.

When something has a Runnable interface, it simply means that it has a
run() method, but there’s nothing special about that—it doesn’t produce
any innate threading abilities, like those of a class inherited from
Thread. So to produce a thread from a Runnable object, you must
create a separate Thread object as shown above, handing the Runnable
object to the special Thread constructor. You can then call start() for
that thread, which performs the usual initialization and then calls run().
Feedback

The convenient aspect about the Runnable interface is that everything
belongs to the same class; that is, Runnable allows a mixin in
combination with a base class and other interfaces. If you need to access
something, you simply do it without going through a separate object.
However, inner classes have this same easy access to all the parts of an
outer class, so member access is not a compelling reason to use
Runnable as a mixin rather than an inner subclass of Thread. Feedback

When you use Runnable, you’re generally saying that you want to create
a process in a piece of code—implemented in the run() method—rather
than an object representing that process. This is a matter of some debate,
depending on whether you feel it makes more sense to represent a thread
as an object or as a completely different entity, a process1. If you choose to
think of it as a process, then you are freed from the object-oriented
imperative that “everything is an object.” This also means that there’s no
reason to make your whole class Runnable if you only want to start a
process to drive some part of your program. Because of this, it often
makes more sense to hide your threading code inside inside your class,
using an inner class, as shown here:

//: c13:ThreadVariations.java
// Creating threads with inner classes.
import com.bruceeckel.simpletest.*;

1 Runnable was in Java 1.0, while inner classes were not introduced until Java 1.1, which
may partially account for the existence of Runnable. Also, traditional multithreading
architectures focused on a function to be run rather than an object. My preference is
always to inherit from Thread if I can; it seems cleaner and more flexible to me.

728 Thinking in Java www.BruceEckel.com

// Using a named inner class:
class InnerThread1 {
 private int countDown = 5;
 private Inner inner;
 private class Inner extends Thread {
 Inner(String name) {
 super(name);
 start();
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 sleep(10);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public String toString() {
 return getName() + ": " + countDown;
 }
 }
 public InnerThread1(String name) {
 inner = new Inner(name);
 }
}

// Using an anonymous inner class:
class InnerThread2 {
 private int countDown = 5;
 private Thread t;
 public InnerThread2(String name) {
 t = new Thread(name) {
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 sleep(10);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);

Chapter 13: Concurrency 729

 }
 }
 }
 public String toString() {
 return getName() + ": " + countDown;
 }
 };
 t.start();
 }
}

// Using a named Runnable implementation:
class InnerRunnable1 {
 private int countDown = 5;
 private Inner inner;
 private class Inner implements Runnable {
 Thread t;
 Inner(String name) {
 t = new Thread(this, name);
 t.start();
 }
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public String toString() {
 return t.getName() + ": " + countDown;
 }
 }
 public InnerRunnable1(String name) {
 inner = new Inner(name);
 }
}

// Using an anonymous Runnable implementation:
class InnerRunnable2 {
 private int countDown = 5;

730 Thinking in Java www.BruceEckel.com

 private Thread t;
 public InnerRunnable2(String name) {
 t = new Thread(new Runnable() {
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 Thread.sleep(10);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public String toString() {
 return Thread.currentThread().getName() +
 ": " + countDown;
 }
 }, name);
 t.start();
 }
}

// A separate method to run some code as a thread:
class ThreadMethod {
 private int countDown = 5;
 private Thread t;
 private String name;
 public ThreadMethod(String name) { this.name = name; }
 public void runThread() {
 if(t == null) {
 t = new Thread(name) {
 public void run() {
 while(true) {
 System.out.println(this);
 if(--countDown == 0) return;
 try {
 sleep(10);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
 public String toString() {

Chapter 13: Concurrency 731

 return getName() + ": " + countDown;
 }
 };
 t.start();
 }
 }
}

public class ThreadVariations {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 new InnerThread1("InnerThread1");
 new InnerThread2("InnerThread2");
 new InnerRunnable1("InnerRunnable1");
 new InnerRunnable2("InnerRunnable2");
 new ThreadMethod("ThreadMethod").runThread();
 monitor.expect(new String[] {
 "InnerThread1: 5",
 "InnerThread2: 5",
 "InnerThread2: 4",
 "InnerRunnable1: 5",
 "InnerThread1: 4",
 "InnerRunnable2: 5",
 "ThreadMethod: 5",
 "InnerRunnable1: 4",
 "InnerThread2: 3",
 "InnerRunnable2: 4",
 "ThreadMethod: 4",
 "InnerThread1: 3",
 "InnerRunnable1: 3",
 "ThreadMethod: 3",
 "InnerThread1: 2",
 "InnerThread2: 2",
 "InnerRunnable2: 3",
 "InnerThread2: 1",
 "InnerRunnable2: 2",
 "InnerRunnable1: 2",
 "ThreadMethod: 2",
 "InnerThread1: 1",
 "InnerRunnable1: 1",
 "InnerRunnable2: 1",
 "ThreadMethod: 1"
 }, Test.IGNORE_ORDER + Test.WAIT);
 }

732 Thinking in Java www.BruceEckel.com

} ///:~

InnerThread1 creates a named inner class which extends Thread, and
makes an instance of this inner class inside the constructor. This makes
sense if the inner class has special capabilities (new methods) that you
need to access in other methods. However, most of the time the reason for
creating a thread is only to use the Thread capabilities, and so it’s not
necessary to created a named inner class. InnerThread2 shows the
alternative: an anonymous inner subclass of Thread is created inside the
constructor, and upcast to a Thread reference t. If other methods of the
class need to access t, they can do so through the Thread interface and
they don’t need to know the exact type of the object.

The third and fourth classes in the example repeat the first two classes,
but using the Runnable interface rather than the Thread class. This is
just to show that Runnable doesn’t buy you anything more in this
situation but is in fact slightly more complicated to code (and to read the
code). As a result, my inclination is to use Thread unless I’m somehow
compelled to use Runnable.

The ThreadMethod class shows the creation of a thread inside a
method. You call the method when you’re ready to run the thread, and the
method returns after the thread begins. If the thread is only performing
an auxiliary operation rather than being fundamental to the class, this is
probably a more useful/appropriate approach than starting a thread
inside the constructor of the class.

Creating responsive user interfaces
As stated earlier, one of the motivations for using threading is to create a
responsive user interface. Although we haven’t gotten to graphical user
interfaces yet in the book, you can see a simple example of a console-
based user interface. The following example has two versions, one which
gets stuck in a calculation and thus can never read console input, and a
second which puts the calculation inside a thread and thus can be
performing the calculation and listening for console input.

//: c13:ResponsiveUI.java
// User interface responsiveness.
import com.bruceeckel.simpletest.*;

Chapter 13: Concurrency 733

class UnresponsiveUI {
 private volatile double d = 1;
 public UnresponsiveUI() throws Exception {
 while(d > 0)
 d = d + (Math.PI + Math.E) / d;
 System.in.read(); // Never gets here
 }
}

public class ResponsiveUI extends Thread {
 private static Test monitor = new Test();
 private volatile static double d = 1;
 public ResponsiveUI() {
 setDaemon(true);
 start();
 }
 public void run() {
 while(true) {
 d = d + (Math.PI + Math.E) / d;
 }
 }
 public static void main(String[] args) throws Exception {
 //! new UnresponsiveUI(); // Must kill this process
 new ResponsiveUI();
 Thread.sleep(300);
 System.in.read(); // 'monitor' provides input
 System.out.println(d); // Shows progress
 }
} ///:~

UnresponsiveUI performs a calculation inside an infinite while loop,
so it can obviously never reach the console input line (the compiler is
fooled into believing the input line is reachable by the while conditional).
If you run the program with the line that creates an UnresponsiveUI
uncommented, you’ll have to kill the process to get out.

To make the program responsive, putting the calculation inside a run()
method allows it to be preempted, and when you press the “Enter” key
you’ll see that the calculation has indeed been running in the background
while waiting for your user input (for testing purposes, the console input
line is automatically provided to System.in.read() by the
com.bruceeckel.simpletest.Test object, which is explained in
Chapter 15).

734 Thinking in Java www.BruceEckel.com

Sharing limited resources
You can think of a single-threaded program as one lonely entity moving
around through your problem space and doing one thing at a time.
Because there’s only one entity, you never have to think about the
problem of two entities trying to use the same resource at the same time,
problems like two people trying to park in the same space, walk through a
door at the same time, or even talk at the same time. Feedback

With multithreading, things aren’t lonely anymore, but you now have the
possibility of two or more threads trying to use the same limited resource
at once. Colliding over a resource must be prevented or else you’ll have
two threads trying to access the same bank account at the same time,
print to the same printer, adjust the same valve, etc. Feedback

Improperly accessing resources
Consider the following example, where the class “guarantees” that it will
always deliver an even number when you call getValue(). However,
there’s a second thread named “Watcher” that is constantly calling
getValue() and checking to see if this value is truly even. This seems like
a needless activity, since looking at the code it appears obvious that the
value will indeed be even. But that’s where the surprise comes in. Here’s
the first version of the program: Feedback

//: c13:AlwaysEven.java
// Demonstrating thread collision over resources by
// reading an object in an unstable intermediate state.

public class AlwaysEven {
 private int i;
 public void next() { i++; i++; }
 public int getValue() { return i; }
 public static void main(String args[]) {
 final AlwaysEven ae = new AlwaysEven();
 new Thread("Watcher") {
 public void run() {
 while(true) {
 int val = ae.getValue();
 if(val % 2 != 0) {
 System.out.println(val);

Chapter 13: Concurrency 735

 System.exit(0);
 }
 }
 }
 }.start();
 while(true)
 ae.next();
 }
} ///:~

In main(), an AlwaysEven object is created—it must be final because
it is accessed inside the anonymous inner class defined as a Thread. If
the value read by the thread is not even, it prints it out (as proof that it has
caught the object in an unstable state) and then exits the program. Feedback

This example shows a fundamental problem with using threads. You
never know when a thread might be run. Imagine sitting at a table with a
fork, about to spear the last piece of food on your plate and as your fork
reaches for it, the food suddenly vanishes (because your thread was
suspended and another thread came in and stole the food). That’s the
problem that you’re dealing with when writing concurrent programs.
Feedback

Sometimes you don’t care if a resource is being accessed at the same time
you’re trying to use it (the food is on some other plate). But for
multithreading to work, you need some way to prevent two threads from
accessing the same resource, at least during critical periods. Feedback

Preventing this kind of collision is simply a matter of putting a lock on a
resource when one thread is using it. The first thread that accesses a
resource locks it, and then the other threads cannot access that resource
until it is unlocked, at which time another thread locks and uses it, etc. If
the front seat of the car is the limited resource, the child who shouts
“Dibs!” asserts the lock. Feedback

A resource testing framework
Before going on, let’s try to simplify things a bit by creating a little
framework for performing tests on these types of threading examples. We
can accomplish this by separating out the common code that might
appear across multiple examples. First, note that the “watcher” thread is

736 Thinking in Java www.BruceEckel.com

actually watching for a violated invariant in a particular object. That is,
the object is supposed to preserve rules about its internal state, and if you
can see the object, from outside, in an invalid intermediate state then the
invariant has been violated, from the standpoint of the client (this is not
to say that the object can never exist in the invalid intermediate state, just
that it should not be visible by the client in such a state). Thus, we want to
be able to detect that the invariant is violated, and also know what the
violation value is. To get both of these values from one method call, we
combine them in a tagging interface which only exists to provide a
meaningful name in the code: Feedback

//: c13:InvariantState.java
// Messenger carrying invariant data
public interface InvariantState {} ///:~

In this scheme, the information about success or failure is encoded in the
class name and type, to make the result more readable. The class
indicating success is: Feedback

//: c13:InvariantOK.java
// Indicates that the invariant test succeeded
public class InvariantOK implements InvariantState {} ///:~

To indicate failure, the InvariantFailure object will carry an object with
information about what caused the failure, typically so that it can be
displayed: Feedback

//: c13:InvariantFailure.java
// Indicates that the invariant test failed

public class InvariantFailure implements InvariantState {
 public Object value;
 public InvariantFailure(Object value) {
 this.value = value;
 }
} ///:~

Now we can define an interface that must be implemented by any class
that wishes to have its invariance tested: Feedback

//: c13:Invariant.java
public interface Invariant {
 InvariantState invariant();
} ///:~

Chapter 13: Concurrency 737

Before creating the generic “watcher” thread, note that some of the
examples in this chapter will not behave as expected on all platforms.
Many of the examples here attempt to show violations of single-threaded
behavior when multiple threads are present, and this may not always
happen2. Alternatively, an example may attempt to show that the
violation does not occur by attempting (and failing) to demonstrate the
violation. In these cases we’ll need a way to stop the program after a few
seconds. The following class does this by subclassing the standard library
Timer class: Feedback

//: c13:Timeout.java
// Set a time limit on the execution of a program
import java.util.*;

public class Timeout extends Timer {
 public Timeout(int delay, final String msg) {
 super(true); // Daemon thread
 schedule(new TimerTask() {
 public void run() {
 System.out.println(msg);
 System.exit(0);
 }
 }, delay);
 }
} ///:~

The delay is in milliseconds, and the message will be printed if the
timeout expires. Note that by calling super(true), this is created as a
daemon thread so that if your program completes in some other way this
thread will not prevent it from exiting. The Timer.schedule() method
is given a TimerTask subclass (created here as an anonymous inner
class) whose run() is executed after the second schedule() argument
delay (in milliseconds) runs out. Using Timer is generally simpler and
clearer than writing the code directly with an explicit sleep(). In

2 Some examples were developed on a dual-processor Win2K machine which would
immediately show collisions. However, the same example run on single-processor
machines might run for extended periods without demonstrating a collision—this is the
kind of scary behavior that makes multithreading difficult. You can imagine developing on
a single-processor machine and thinking that your code is thread safe, then discovering
breakages as soon as it’s moved to a multiprocessor machine.

738 Thinking in Java www.BruceEckel.com

addition, Timer is designed to scale to large numbers of concurrently
scheduled tasks (in the thousands), so it can be a very useful tool. Feedback

Now we can use the Invariant interface and the Timeout class in the
InvariantWatcher thread:

//: c13:InvariantWatcher.java
// Repeatedly checks to ensure invariant is not violated

public class InvariantWatcher extends Thread {
 private Invariant invariant;
 public InvariantWatcher(Invariant invariant) {
 this.invariant = invariant;
 setDaemon(true);
 start();
 }
 // Stop everything after awhile:
 public
 InvariantWatcher(Invariant invariant, final int timeOut){
 this(invariant);
 new Timeout(timeOut,
 "Timed out without violating invariant");
 }
 public void run() {
 while(true) {
 InvariantState state = invariant.invariant();
 if(state instanceof InvariantFailure) {
 System.out.println("Invariant violated: "
 + ((InvariantFailure)state).value);
 System.exit(0);
 }
 }
 }
} ///:~

The constructor captures a reference to the Invariant object to be tested,
and starts the thread. The second constructor calls the first constructor,
then creates a Timeout which stops everything after a desired delay—this
is used in situations where the program may not exit by violating an
invariant. In run(), the current InvariantState is captured and tested,
and if it fails then the value is printed. Note that we cannot throw an
exception inside this thread because that would only terminate the thread,
not the program. Feedback

Chapter 13: Concurrency 739

Now AlwaysEven.java can be rewritten using the above framework:

//: c13:EvenGenerator.java
// AlwaysEven.java using the invariance tester

public class EvenGenerator implements Invariant {
 private int i;
 public void next() { i++; i++; }
 public int getValue() { return i; }
 public InvariantState invariant() {
 int val = i; // Capture it in case it changes
 if(val % 2 == 0)
 return new InvariantOK();
 else
 return new InvariantFailure(new Integer(val));
 }
 public static void main(String args[]) {
 EvenGenerator gen = new EvenGenerator();
 new InvariantWatcher(gen);
 while(true)
 gen.next();
 }
} ///:~

When defining the invariant() method, you must capture all the values
of interest into local variables. This way, you can return the actual value
you have tested, not one that may have been changed (by another thread)
in the meantime. Feedback

In this case, the problem is not that the object goes through a state that
violates invariance, but that methods can be called by threads while the
object is in that intermediate unstable state. Feedback

Colliding over resources
The worst thing that happens with EvenGenerator is that a client
thread might see it in an unstable intermediate state. The object’s internal
consistency is maintained, however, and it eventually becomes visible in a
good state. But if two threads are actually modifying an object, the
contention over shared resources is much worse, because the object can
be put into an incorrect state. Feedback

740 Thinking in Java www.BruceEckel.com

Consider the simple concept of a semaphore, which is a flag object used
for communication between threads. If the semaphore’s value is zero,
then whatever it is monitoring is available, but if the value is nonzero then
the monitored entity is unavailable, and the thread must wait for it. When
it’s available, the thread increments the semaphore and then goes ahead
and uses the monitored entity. Because incrementing and decrementing
are atomic operations (that is, they cannot be interrupted), the
semaphore keeps two threads from using the same entity at the same
time. Feedback

If the semaphore is going to properly guard the entity that it is
monitoring, then it must never get into an unstable state. Here’s a simple
version of the semaphore idea:

//: c13:Semaphore.java
// A simple threading flag

public class Semaphore implements Invariant {
 private volatile int semaphore = 0;
 public boolean available() { return semaphore == 0; }
 public void acquire() { ++semaphore; }
 public void release() { --semaphore; }
 public InvariantState invariant() {
 int val = semaphore;
 if(val == 0 || val == 1)
 return new InvariantOK();
 else
 return new InvariantFailure(new Integer(val));
 }
} ///:~

The core part of the class is straightforward, consisting of available(),
acquire(), and release(). Since a thread should check for availability
before acquiring, the value of semaphore should never be other than
one or zero, and this is tested by invariant(). Feedback

But look what happens when Semaphore is tested for thread
consistency:

//: c13:SemaphoreTester.java
// Colliding over shared resources

public class SemaphoreTester extends Thread {

Chapter 13: Concurrency 741

 private volatile Semaphore semaphore;
 public SemaphoreTester(Semaphore semaphore) {
 this.semaphore = semaphore;
 setDaemon(true);
 start();
 }
 public void run() {
 while(true)
 if(semaphore.available()) {
 yield(); // Makes it fail faster
 semaphore.acquire();
 yield();
 semaphore.release();
 yield();
 }
 }
 public static void main(String args[]) throws Exception {
 Semaphore sem = new Semaphore();
 new SemaphoreTester(sem);
 new SemaphoreTester(sem);
 new InvariantWatcher(sem).join();
 }
} ///:~

The SemaphoreTester creates a thread that continuously tests to see if
a Semaphore object is available, and if so acquires and releases it. Note
that the semaphore field is volatile to make sure that the compiler
doesn’t optimize away any reads of that value. Feedback

In main(), two SemaphoreTester threads are created, and you’ll see
that in short order the invariant is violated. This happens because one
thread might get a true result from calling available(), but by the time
that thread calls acquire(), the other thread may have already called
acquire() and incremented the semaphore field. The
InvariantWatcher may see the field with too high a value, or possibly
see it after both threads have called release() and decremented it to a
negative value. Note that InvariantWatcher join()s with the main
thread to keep the program running until there is a failure. Feedback

On my machine, I discovered that the inclusion of yield() caused failure
to occur much faster, but this will vary with operating systems and JVM
implementations. You should experiment with taking the yield()

742 Thinking in Java www.BruceEckel.com

statements out—the failure might take a very long time to occur, which
demonstrates how difficult it can be to detect a flaw in your program
when you’re writing multithreaded code. Feedback

This class emphasizes the risk of concurrent programming: if a class this
simple can produce problems, you can never trust any assumptions about
concurrency. Feedback

Resolving shared resource
contention
To solve the problem of thread collision, virtually all multithreading
schemes serialize access to shared resources. This means that only one
thread at a time is allowed to access the shared resource. This is ordinarily
accomplished by putting a locked clause around a piece of code, so that
only one thread at a time may pass through that piece of code. Since this
locked clause produces mutual exclusion, a common name for such a
mechanism is mutex. Feedback

Consider the bathroom in your house—multiple people (threads) may
each want to have exclusive use of the bathroom (the shared resource). To
access the bathroom, a person knocks on the door to see if it’s available. If
so, they enter and lock the door. Any other thread that wants to use the
bathroom is “blocked” from using it, so that thread waits at the door until
the bathroom is available. Feedback

The analogy breaks down a bit when the bathroom is released and it
comes time to give access to another thread. There isn’t actually a line of
people and we don’t know for sure who gets the bathroom next, because
the thread scheduler isn’t deterministic that way. Instead, it’s as if there is
a group of blocked threads milling about in front of the bathroom, and
when the thread that has locked the bathroom unlocks it and emerges, the
one that happens to be nearest the door at the moment goes in. As noted
earlier, suggestions can be made to the thread scheduler via yield() and
setPriority(), but these suggestions may not have much of an effect
depending on your platform and JVM implementation. Feedback

Java has built-in support to prevent collisions over resources in the form
of the synchronized keyword. This works much like the Semaphore

Chapter 13: Concurrency 743

class was supposed to: when a thread wishes to execute a piece of code
guarded by the synchronized keyword, it checks to see if the semaphore
is available, then acquires it, executes the code, and releases it. However,
synchronized is built into the language so it’s guaranteed to always
work, unlike the Semaphore class. Feedback

The shared resource is typically just a piece of memory in the form of an
object, but may also be a file or I/O port or something like a printer. To
control access to a shared resource, you first put it inside an object. Then
any method that accesses that resource can be made synchronized. This
means that if a thread is inside one of the synchronized methods, all
other threads are blocked from entering any of the synchronized
methods of the class until the first thread returns from its call. Feedback

Since you typically make the data elements of a class private and access
that memory only through methods, you can prevent collisions by making
methods synchronized. Here is how you declare synchronized
methods: Feedback

synchronized void f() { /* ... */ }
synchronized void g(){ /* ... */ }

Each object contains a single lock (also referred to as a monitor) that is
automatically part of the object (you don’t have to write any special code).
When you call any synchronized method, that object is locked and no
other synchronized method of that object can be called until the first
one finishes and releases the lock. In the example above, if f() is called
for an object, g() cannot be called for the same object until f() is
completed and releases the lock. Thus, there is a single lock that is shared
by all the synchronized methods of a particular object, and this lock
prevents common memory from being written by more than one thread at
a time. Feedback

One thread may acquire an object’s lock multiple times. This happens if
one method calls a second method on the same object, which in turn calls
another method on the same object, etc. The JVM keeps track of the
number of times the object has been locked. If the object is unlocked, it
has a count of zero. As a thread acquires the lock for the first time, the
count goes to one. Each time the thread acquires a lock on the same
object, the count is incremented. Naturally, multiple lock acquisition is

744 Thinking in Java www.BruceEckel.com

only allowed for the thread that acquired the lock in the first place. Each
time the thread leaves a synchronized method, the count is
decremented, until the count goes to zero, releasing the lock entirely for
use by other threads. Feedback

There’s also a single lock per class (as part of the Class object for the
class), so that synchronized static methods can lock each other out
from simultaneous access of static data on a class-wide basis. Feedback

Synchronizing the EvenGenerator
By adding synchronized to EvenGenerator.java, we can prevent the
undesirable thread access:

//: c13:SynchronizedEvenGenerator.java
// Using "synchronized" to prevent thread collisions

public
class SynchronizedEvenGenerator implements Invariant {
 private int i;
 public synchronized void next() { i++; i++; }
 public synchronized int getValue() { return i; }
 // Not synchronized so it can run at
 // any time and thus be a genuine test:
 public InvariantState invariant() {
 int val = getValue();
 if(val % 2 == 0)
 return new InvariantOK();
 else
 return new InvariantFailure(new Integer(val));
 }
 public static void main(String args[]) {
 SynchronizedEvenGenerator gen =
 new SynchronizedEvenGenerator();
 new InvariantWatcher(gen, 4000); // 4-second timeout
 while(true)
 gen.next();
 }
} ///:~

You’ll notice that both next() and getValue() are synchronized. If
you synchronize only one of the methods, then the other is free to ignore
the object lock and can be called with impunity. This is an important

Chapter 13: Concurrency 745

point: Every method that accesses a critical shared resource must be
synchronized or it won’t work right. On the other hand,
InvariantState is not synchronized because it is doing the testing and
we want it to be called at any time, so that it produces a true test of the
object. Feedback

Atomic operations
A common piece of lore often repeated in Java threading discussions is
that “atomic operations do not need to be synchronized.” An atomic
operation is one that cannot be interrupted by the thread scheduler—if
the operation begins, then it will run to completion before the possibility
of a context switch (switching execution to another thread). Feedback

The atomic operations commonly mentioned in this lore include simple
assignment and returning a value when the variable in question is a
primitive type that is not a long or a double. The latter types are
excluded because they are larger than the rest of the types, and the JVM is
thus not required to perform reads and assignments as single atomic
operations (a JVM may choose to do so, anyway, but there’s no
guarantee). However, you do get atomicity if you use the volatile
keyword with long or double. Feedback

If you were to blindly apply the idea of atomicity to
SynchronizedEvenGenerator.java, you would notice that

 public synchronized int getValue() { return i; }

fits the description. But try removing synchronized and the test will fail,
because even though return i is indeed an atomic operation, removing
synchronized allows the value to be read while the object is in an
unstable intermediate state. You must genuinely understand what you’re
doing before you try to apply optimizations like this. There are no easily-
applicable rules that work. Feedback

As a second example, consider something even simpler: a class that
produces serial numbers3. Each time nextSerialNumber() is called, it
must return a unique value to the caller:

3 Inspired by Joshua Bloch’s Effective Java, Addison-Wesley 2001, page 190.

746 Thinking in Java www.BruceEckel.com

//: c13:SerialNumberGenerator.java

public class SerialNumberGenerator {
 private static volatile int serialNumber = 0;
 public static int nextSerialNumber() {
 return serialNumber++;
 }
} ///:~

SerialNumberGenerator is about as simple a class as you can imagine,
and if you’re coming from C++ or some other low-level background, you
would expect the increment to be an atomic operation, because increment
is usually implemented as a microprocessor instruction. However, in the
JVM an increment is not atomic and involves both a read and a write, so
there’s room for threading problems even in such a simple operation.
Feedback

The serialNumber field is volatile because it is possible for each thread
to have a local stack and maintain copies of some variables there. If you
define a variable as volatile, it tells the compiler not to do any
optimizations that would remove reads and writes that keep the field in
exact synchronization with the local data in the threads. Feedback

To test this, we need a set which doesn’t run out of memory, in case it
takes a long time to detect a problem. The CircularSet shown here
reuses the memory used to store ints, with the assumption that by the
time you wrap around, the possibility of a collision with the overwritten
values is minimal. The add() and contains() methods are
synchronized to prevent thread collisions: Feedback

//: c13:SerialNumberChecker.java
// Operations that may seem safe are not,
// when threads are present.

// Reuses storage so we don't run out of memory:
class CircularSet {
 private int[] array;
 private int len;
 private int index = 0;
 public CircularSet(int size) {
 array = new int[size];
 len = size;
 // Initialize to a value not produced

Chapter 13: Concurrency 747

 // by the SerialNumberGenerator:
 for(int i = 0; i < size; i++)
 array[i] = -1;
 }
 public synchronized void add(int i) {
 array[index] = i;
 // Wrap index and write over old elements:
 index = ++index % len;
 }
 public synchronized boolean contains(int val) {
 for(int i = 0; i < len; i++)
 if(array[i] == val) return true;
 return false;
 }
}

public class SerialNumberChecker {
 private static CircularSet serials =
 new CircularSet(1000);
 static class SerialChecker extends Thread {
 SerialChecker() { start(); }
 public void run() {
 while(true) {
 int serial =
 SerialNumberGenerator.nextSerialNumber();
 if(serials.contains(serial)) {
 System.out.println("Duplicate: " + serial);
 System.exit(0);
 }
 serials.add(serial);
 }
 }
 }
 public static void main(String args[]) {
 for(int i = 0; i < 10; i++)
 new SerialChecker();
 // Stop after 4 seconds:
 new Timeout(4000, "No duplicates detected");
 }
} ///:~

SerialNumberChecker contains a static CircularSet which contains
all the serial numbers that have been extracted, and a nested Thread that
gets serial numbers and ensures that they are unique. By creating multiple

748 Thinking in Java www.BruceEckel.com

threads to contend over serial numbers, you’ll discover that the threads
get a duplicate serial number reasonably soon (note that this program
may not indicate a collision on your machine, but it has successfully
detected collisions on a multiprocessor machine). To solve the problem,
add the synchronized keyword to nextSerialNumber(). Feedback

The atomic operations that are supposed to be safe are reading and
assignment of primitives. However, as seen in EvenGenerator.java, it’s
still easily possible to use an atomic operation that accesses your object
while it’s in an unstable intermediate state, and so you cannot make any
assumptions. On top of this, the atomic operations are not guaranteed to
work with long and double (although some JVM implementations do
guarantee atomicity for long and double operations, you won’t be
writing portable code if you depend on this). Feedback

It’s safest to use the following guidelines:

1. If you need to synchronize one method in a class, synchronize all
of them. It’s often difficult to tell for sure if a method will be
negatively affected if you leave synchronization out. Feedback

2. Be extremely careful when removing synchronization from
methods. The typical reason to do this is for performance, but in
JDK 1.3 and 1.4 the overhead of synchronized has been greatly
reduced. In addition, you should only do this after using a profiler
to determine that synchronized is indeed the bottleneck. Feedback

Fixing Semaphore
Now consider Semaphore.java. It would seem that we should be able to
repair this by synchronizing the three class methods, like this:

//: c13:SynchronizedSemaphore.java
// Colliding over shared resources

public class SynchronizedSemaphore extends Semaphore {
 private volatile int semaphore = 0;
 public synchronized boolean available() {
 return semaphore == 0;
 }
 public synchronized void acquire() { ++semaphore; }
 public synchronized void release() { --semaphore; }

Chapter 13: Concurrency 749

 public InvariantState invariant() {
 int val = semaphore;
 if(val == 0 || val == 1)
 return new InvariantOK();
 else
 return new InvariantFailure(new Integer(val));
 }
 public static void main(String args[]) throws Exception {
 SynchronizedSemaphore sem =new SynchronizedSemaphore();
 new SemaphoreTester(sem);
 new SemaphoreTester(sem);
 new InvariantWatcher(sem).join();
 }
} ///:~

This looks rather odd at first—SynchronizedSemaphore is inherited
from Semaphore, and yet all the overridden methods are
synchronized, while the base-class versions aren’t. Java doesn’t allow
you to change the method signature during overriding, and yet doesn’t
complain about this. That’s because the synchronized keyword is not
part of the method signature, so you can add it in and it doesn’t limit
overriding. Feedback

The reason for inheriting from Semaphore is to reuse the
SemaphoreTester class. When you run the program you’ll see that it
still causes an InvariantFailure. Feedback

Why does this fail? By the time a thread detects that the Semaphore is
available because available() returns true, it has released the lock on
the object. Another thread can dash in and increment the semaphore
value before the first thread does. The first thread still assumes the
Semaphore object is available and so goes ahead and blindly enters the
acquire() method, putting the object into an unstable state. This is just
one more lesson about rule zero of concurrent programming: never make
any assumptions. Feedback

The only solution to this problem is to make the test for availability and
the acquisition a single atomic operation—which is exactly what the
synchronized keyword provides in conjunction with the lock on an
object. That is, Java’s lock and synchronized keyword is a built-in
semaphore mechanism, so you don’t need to create your own. Feedback

750 Thinking in Java www.BruceEckel.com

Critical sections
Sometimes you only want to prevent multiple thread access to part of the
code inside a method instead of the entire method. The section of code
you want to isolate this way is called a critical section and is also created
using the synchronized keyword. Here, synchronized is used to
specify the object whose lock is being used to synchronize the enclosed
code: Feedback

synchronized(syncObject) {
 // This code can be accessed
 // by only one thread at a time
}

This is also called a synchronized block; before it can be entered, the lock
must be acquired on syncObject. If some other thread already has this
lock, then the critical section cannot be entered until the lock is given up.
Feedback

The following example compares both approaches to synchronization by
showing how the time available for other threads to access an object is
significantly increased by using a synchronized block instead of
synchronizing an entire method. In addition, it shows how an unprotected
class can be used in a multithreaded situation if it is controlled and
protected by another class: Feedback

//: c13:CriticalSection.java
// Synchronizing blocks instead of entire methods. Also
// demonstrates protection of a non-thread-safe class
// with a thread-safe one.
import java.util.*;

class Pair { // Not thread-safe
 private int x, y;
 public Pair(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public Pair() { this(0, 0); }
 public int getX() { return x; }
 public int getY() { return y; }
 public void incrementX() { x++; }
 public void incrementY() { y++; }

Chapter 13: Concurrency 751

 public String toString() {
 return "x: " + x + ", y: " + y;
 }
 public class PairValuesNotEqualException
 extends RuntimeException {
 public PairValuesNotEqualException() {
 super("Pair values not equal: " + Pair.this);
 }
 }
 // Arbitrary invariant -- both variables must be equal:
 public void checkState() {
 if(x != y)
 throw new PairValuesNotEqualException();
 }
}

// Protect a Pair inside a thread-safe class:
abstract class PairManager {
 protected Pair p = new Pair();
 private List storage = new ArrayList();
 public synchronized Pair getPair() {
 // Make a copy to keep the original safe:
 return new Pair(p.getX(), p.getY());
 }
 protected void store() { storage.add(getPair()); }
 // A "template method":
 public abstract void doTask();
}

// Synchronize the entire method:
class PairManager1 extends PairManager {
 public synchronized void doTask() {
 p.incrementX();
 p.incrementY();
 store();
 }
}

// Use a critical section:
class PairManager2 extends PairManager {
 public void doTask() {
 synchronized(this) {
 p.incrementX();
 p.incrementY();

752 Thinking in Java www.BruceEckel.com

 }
 store();
 }
}

class PairManipulator extends Thread {
 private PairManager pm;
 private int checkCounter = 0;
 private class PairChecker extends Thread {
 PairChecker() { start(); }
 public void run() {
 while(true) {
 checkCounter++;
 pm.getPair().checkState();
 }
 }
 }
 public PairManipulator(PairManager pm) {
 this.pm = pm;
 start();
 new PairChecker();
 }
 public void run() {
 while(true) {
 pm.doTask();
 }
 }
 public String toString() {
 return "Pair: " + pm.getPair() +
 " checkCounter = " + checkCounter;
 }
}

public class CriticalSection {
 public static void main(String[] args) {
 // Test the two different approaches:
 final PairManipulator
 pm1 = new PairManipulator(new PairManager1()),
 pm2 = new PairManipulator(new PairManager2());
 new Timer(true).schedule(new TimerTask() {
 public void run() {
 System.out.println("pm1: " + pm1);
 System.out.println("pm2: " + pm2);
 System.exit(0);

Chapter 13: Concurrency 753

 }
 }, 500); // run() after 500 milliseconds
 }
} ///:~

As noted, Pair is not thread-safe because its invariant (admittedly
arbitrary) requires that both variables maintain the same values. In
addition, as seen earlier in this chapter, the increment operations are not
thread-safe and since none of the methods are synchronized you can’t
trust a Pair object to stay uncorrupted in a threaded program. Feedback

The PairManager class holds a Pair object and controls all access to it.
Note that the only public methods are getPair(), which is
synchronized, and the abstract doTask(). Synchronization for this
method will be handled when it is implemented. Feedback

The structure of PairManager, where some of the functionality is
implemented in the base class with one or more abstract methods
defined in derived classes, is called a Template Method in Design
Patterns parlance4. Design patterns allow you to enclapsulate change in
your code—here, the part that is changing is the template method
doTask(). In PairManager1 the entire doTask() is synchronized,
while in PairManager2 only part of doTask() is synchronized, using
a synchronized block. Note that the synchronized keywords is not
part of the method signature and thus may be added during overriding.
Feedback

PairManager2 is observing, in effect, that store() is a protected
method and thus is not available to the general client, but only to
subclasses. Thus, it doesn’t necessarily need to be guarded inside a
synchronized method, and is instead placed outside of the
synchronized block. Feedback

A synchronized block must be given an object to synchronize upon, and
usually the most sensible object to use is just the current object that the
method is being called for: synchronized(this), which is the approach
taken in PairManager2. That way, when the lock is acquired for the

4 See Design Patterns, by Gamma et. al., Addison-Wesley 1995.

754 Thinking in Java www.BruceEckel.com

synchronized block, other synchronized methods in the object cannot be
called. So the effect is of simply reducing the scope of synchronization.
Feedback

Sometimes this isn’t what you want, in which case you can create a
separate object and synchronize on that. The following example
demonstrates that two threads can enter an object when the methods in
that object synchronize on different locks: Feedback

//: c13:SyncObject.java
// Synchronizing on another object
import com.bruceeckel.simpletest.*;

class DualSynch {
 private Object syncObject = new Object();
 public synchronized void f() {
 System.out.println("Inside f()");
 // Doesn't release lock:
 try {
 Thread.sleep(500);
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 System.out.println("Leaving f()");
 }
 public void g() {
 synchronized(syncObject) {
 System.out.println("Inside g()");
 try {
 Thread.sleep(500);
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 System.out.println("Leaving g()");
 }
 }
}

public class SyncObject {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 final DualSynch ds = new DualSynch();
 new Thread() {
 public void run() {

Chapter 13: Concurrency 755

 ds.f();
 }
 }.start();
 ds.g();
 monitor.expect(new String[] {
 "Inside g()",
 "Inside f()",
 "Leaving g()",
 "Leaving f()"
 }, Test.WAIT + Test.IGNORE_ORDER);
 }
} ///:~

The DualSync method f() synchronizes on this (by synchronizing the
entire method) and g() has a synchronized block that synchronizes on
synchObject. Thus, the two synchronizations are independent. This is
demonstrated in main() by creating a Thread that calls f(). The
main() thread is used to call g(). You can see from the output that both
methods are running at the same time, so neither one is blocked by the
synchronization of the other. Feedback

Returning to CriticalSection.java, PairManipulator is created to test
the two different types of PairManager by running doTask() in one
thread and an instance of the inner class PairChecker in the other. To
trace how often it is able to run the test, PairChecker increments
checkCounter every time it is successful. In main(), to
PairManipulator objects are created and allowed to run for awhile.
When the Timer runs out, it executes its run() method which displays
the results of each PairManipulator and exits. When you run the
program you should see something like this: Feedback

pm1: Pair: x: 58892, y: 58892 checkCounter = 44974
pm2: Pair: x: 73153, y: 73153 checkCounter = 100535

Although you will probably see a lot of variation from one run to the next,
in general you will see that PairManager1.doTask() does not allow the
PairChecker nearly as much access as PairManager2.doTask(),
which has the synchronized block and thus provides more unlocked time.
This is typically the reason that you want to use a synchronized block
instead of synchronizing the whole method—to allow other threads more
access (as long as it is safe to do so). Feedback

756 Thinking in Java www.BruceEckel.com

Of course, all synchronization depends on programmer diligence: every
piece of code that can access a shared resource must be wrapped in an
appropriate synchronized block. Feedback

Thread states
A thread can be in any one of four states:

1. New: The thread object has been created but it hasn’t been started
yet so it cannot run. Feedback

2. Runnable: This means that a thread can be run when the time-
slicing mechanism has CPU cycles available for the thread. Thus,
the thread might or might not be running at any moment, but
there’s nothing to prevent it from being run if the scheduler can
arrange it; it’s not dead or blocked. Feedback

3. Dead: The normal way for a thread to die is by returning from its
run() method. Before it was deprecated in Java 2, you could also
call stop(), but this could easily put your program into an
unstable state. There’s also a destroy() method (which has never
been implemented, and probably never will be, so it’s effectively
deprecated). You’ll learn about an alternative way to code a stop()
equivalent later in the chapter. Feedback

4. Blocked: The thread could be run but there’s something that
prevents it. While a thread is in the blocked state the scheduler will
simply skip over it and not give it any CPU time. Until a thread
reenters the runnable state it won’t perform any operations. Feedback

Becoming blocked
When a thread is blocked, there’s some reason that it cannot continue
running. A thread can become blocked for the following reasons: Feedback

1. You’ve put the thread to sleep by calling sleep(milliseconds), in
which case it will not be run for the specified time. Feedback

2. You’ve suspended the execution of the thread with wait(). It will
not become runnable again until the thread gets the notify() or

Chapter 13: Concurrency 757

notifyAll() message. We’ll examine these in the next section.
Feedback

3. The thread is waiting for some I/O to complete. Feedback

4. The thread is trying to call a synchronized method on another
object, and that object’s lock is not available. Feedback

In old code, you may also see suspend() and resume() used to block
and unblock threads, but these are deprecated in Java 2 (because they are
deadlock-prone), and so will not be examined in this book. Feedback

Cooperation between
threads

The next step after understanding that threads can collide with each
other, and how you keep them from colliding, is to learn how to make
threads cooperate with each other. The key to doing this is handshaking
between threads, which is safely implemented using the Object methods
wait() and notify(). Feedback

Wait and notify
It’s important to understand that sleep() does not release the lock when
it is called. On the other hand, the method wait() does release the lock,
which means that other synchronized methods in the thread object can
be called during a wait(). When a thread enters a call to wait() inside a
method, that thread’s execution is suspended and the lock on that object
is released. Feedback

There are two forms of wait(). The first takes an argument in
milliseconds that has the same meaning as in sleep(): “pause for this
period of time.” The difference is that in wait():

1. The object lock is released during the wait().

2. You can come out of the wait() due to a notify() or
notifyAll(), as well as having the clock run out. Feedback

758 Thinking in Java www.BruceEckel.com

The second form of wait() takes no arguments; this version is more
commonly used. This wait() continues indefinitely until the thread
receives a notify() or notifyAll(). Feedback

One fairly unique aspect of wait(), notify() and notifyAll() is that
these methods are part of the base class Object and not part of Thread,
as is sleep(). Although this seems a bit strange at first—to have
something that’s exclusively for threading as part of the universal base
class—it’s essential because they manipulate the lock that’s also part of
every object. As a result, you can put a wait() inside any synchronized
method, regardless of whether that class extends Thread or implements
Runnable. In fact, the only place you can call wait(), notify() or
notifyAll() is within a synchronized method or block (sleep() can be
called within non-synchronized methods since it doesn’t manipulate
the lock). If you call any of these within a method that’s not
synchronized, the program will compile, but when you run it you’ll get
an IllegalMonitorStateException with the somewhat nonintuitive
message “current thread not owner.” This message means that the thread
calling wait(), notify() or notifyAll() must “own” (acquire) the lock
for the object before it can call any of these methods. Feedback

You can ask another object to perform an operation that manipulates its
own lock. To do this, you must first capture that object’s lock. For
example, if you want to notify() an object x, you must do so inside a
synchronized block that acquires the lock for x: Feedback

synchronized(x) {
 x.notify();
}

wait() is typically used when you’re waiting for some condition to
change which is under the control of forces outside of the current method
(typically, this condition will be changed by another thread). You don’t
want to idly wait, testing the condition inside your thread—this is called a
“busy wait” and it’s a very bad use of CPU cycles. So wait() allows you to
put the thread to sleep while waiting for the world to change, and only
when a notify() or notifyAll() occurs does the thread wake up and
check for changes. Thus, wait() provides a way to synchronize activities
between threads. Feedback

Chapter 13: Concurrency 759

As an example, consider a restaurant which has one chef and one
waitperson. The waitperson must wait for the chef to prepare a meal.
When the chef has a meal ready, the chef notifies the waitperson, who
then gets the meal and goes back to waiting. This is an excellent example
of thread cooperation: the chef represents the producer, and the
waitperson represents the consumer. Here is the story modeled in code:
Feedback

//: c13:Restaurant.java
// The producer-consumer approach to thread cooperation.
import com.bruceeckel.simpletest.*;

class Order {
 private static int i = 0;
 private int count = i++;
 public Order() {
 if(count == 10) {
 System.out.println("Out of food, closing");
 System.exit(0);
 }
 }
 public String toString() { return "Order " + count; }
}

class WaitPerson extends Thread {
 private Restaurant restaurant;
 public WaitPerson(Restaurant r) {
 restaurant = r;
 start();
 }
 public void run() {
 while(true) {
 while(restaurant.order == null)
 synchronized(this) {
 try {
 wait();
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 System.out.println(
 "Waitperson got " + restaurant.order);
 restaurant.order = null;
 }

760 Thinking in Java www.BruceEckel.com

 }
}

class Chef extends Thread {
 private Restaurant restaurant;
 private WaitPerson waitPerson;
 public Chef(Restaurant r, WaitPerson w) {
 restaurant = r;
 waitPerson = w;
 start();
 }
 public void run() {
 while(true) {
 if(restaurant.order == null) {
 restaurant.order = new Order();
 System.out.print("Order up! ");
 synchronized(waitPerson) {
 waitPerson.notify();
 }
 }
 try {
 sleep(100);
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

public class Restaurant {
 private static Test monitor = new Test();
 Order order; // Package access
 public static void main(String args[]) {
 Restaurant restaurant = new Restaurant();
 WaitPerson waitPerson = new WaitPerson(restaurant);
 Chef chef = new Chef(restaurant, waitPerson);
 monitor.expect(new String[] {
 "Order up! Waitperson got Order 0",
 "Order up! Waitperson got Order 1",
 "Order up! Waitperson got Order 2",
 "Order up! Waitperson got Order 3",
 "Order up! Waitperson got Order 4",
 "Order up! Waitperson got Order 5",
 "Order up! Waitperson got Order 6",

Chapter 13: Concurrency 761

 "Order up! Waitperson got Order 7",
 "Order up! Waitperson got Order 8",
 "Order up! Waitperson got Order 9",
 "Out of food, closing"
 }, Test.WAIT);
 }
} ///:~

Order is a simple self-counting class, but notice that it also includes a
way to terminate the program: on order 10, System.exit() is called.
Feedback

A WaitPerson must know what Restaurant they are working for
because they must fetch the order from the restaurant’s “order window”
restaurant.order. In run(), the WaitPerson goes into wait() mode,
stopping that thread until it is woken up with a notify() from the Chef.
Since this is a very simple program we know that only one thread will be
waiting on the WaitPerson’s lock—the WaitPerson thread itself. For
this reason it’s safe to call notify(). In more complex situations, multiple
threads may be waiting on a particular object lock, and so you don’t know
which thread should be awakened. The solutions is to call notifyAll(),
which wakes up all the threads waiting on that lock. Each thread must
then decide whether the notification is relevant. Feedback

Notice that the wait() is wrapped in a while() statement that is testing
for the same thing that is being waited for. This seems a bit strange at
first—if you’re waiting for an order, once you wake up the order must be
available, right? The problem is that in a multithreading application some
other thread might swoop in and grab the order while the WaitPerson is
waking up. The only safe approach is to always use the following idiom
for a wait(): Feedback

while(conditionIsNotMet)
 wait();

This guarantees that the condition will be met before you get out of the
wait loop, and if you have either been notified of something that doesn’t
concern the condition (as can happen with notifyAll()), or the condition
changes before you get fully out of the wait loop, you are guaranteed to go
back into waiting. Feedback

762 Thinking in Java www.BruceEckel.com

A Chef object must know what restaurant he or she is working for (so the
Orders can be placed in restaurant.order) and the WaitPerson who
is picking up the meals, so that WaitPerson can be notified when an
order is ready. In this simplified example, the Chef is generating the
Order objects, then notifying the WaitPerson that an order is ready.
Feedback

Observe that the call to notify() must first capture the lock on
waitPerson. The call to wait() in WaitPerson.run() automatically
releases the lock, so this is possible. Because the lock must be owned in
order to call notify(), it’s guaranteed that two threads trying to call
notify() on one object won’t step on each other’s toes. Feedback

The above example only has a single spot for one thread to store an object
so that another thread can later use that object. However, in a typical
producer-consumer implementation, you use a first-in, first-out queue in
order to store the objects being produced and consumed. See the exercises
at the end of the chapter to learn more about this. Feedback

Using Pipes for I/O between
threads
It’s often useful for threads to communicate with each other using I/O.
Threading libraries may provide support for inter-thread I/O in the form
of pipes. These exist in the Java I/O library as the classes PipedWriter
(which allows a thread to write into a pipe) and PipedReader (which
allows a different thread to read from the same pipe). This can be thought
of as a variation of the producer-consumer problem, where the pipe is the
canned solution. Feedback

Here’s a simple example where two threads use a pipe to communicate:

//: c13:PipedIO.java
// Using pipes for inter-thread I/O
import java.io.*;
import java.util.*;

class Sender extends Thread {
 private Random rand = new Random();
 private PipedWriter out = new PipedWriter();

Chapter 13: Concurrency 763

 public PipedWriter getPipedWriter() { return out; }
 public void run() {
 while(true) {
 for(char c = 'A'; c <= 'z'; c++) {
 try {
 out.write(c);
 sleep(rand.nextInt(500));
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 }
 }
}

class Receiver extends Thread {
 private PipedReader in;
 public Receiver(Sender sender) throws IOException {
 in = new PipedReader(sender.getPipedWriter());
 }
 public void run() {
 try {
 while(true) {
 // Blocks until characters are there:
 System.out.println("Read: " + (char)in.read());
 }
 } catch(IOException e) {
 throw new RuntimeException(e);
 }
 }
}

public class PipedIO {
 public static void main(String[] args) throws Exception {
 Sender sender = new Sender();
 Receiver receiver = new Receiver(sender);
 sender.start();
 receiver.start();
 new Timeout(4000, "Terminated");
 }
} ///:~

Sender and Receiver represent threads that are performing some tasks
and need to communicate with each other. Sender creates a

764 Thinking in Java www.BruceEckel.com

PipedWriter, which is a standalone object, but inside Reciever the
creation of PipedReader must be associated with a PipedWriter in the
constructor. The Sender puts data into the Writer and sleeps for a
random amount of time. However, Receiver has no sleep() or wait().
But when it does a read() it automatically blocks when there is no more
data. You get the effect of a producer-consumer, but no wait() loop is
necessary. Feedback

Notice that the sender and receiver are started in main(), after the
objects are completely constructed. If you don’t start completely
constructed objects, the pipe can produce inconsistent behavior on
different platforms. Feedback

More sophisticated cooperation
Only the most basic cooperation approach (producer-consumer, usually
implemented with wait() and notify()/notifyAll()) has been
introduced in this section. This will solve most kinds of thread
cooperation problems, but there are numerous more sophisticated
approaches that are described in more advanced texts (in particular, Lea,
noted at the end of this chapter). Feedback

Deadlock
Because threads can become blocked and because objects can have
synchronized methods that prevent threads from accessing that object
until the synchronization lock is released, it’s possible for one thread to
get stuck waiting for another thread, which in turn waits for another
thread, etc., until the chain leads back to a thread waiting on the first one.
You get a continuous loop of threads waiting on each other and no one
can move. This is called deadlock. Feedback

If you try running a program and it deadlocks right away, you
immediately know you have a problem and you can track it down. The
real problem is when your program seems to be working fine but has the
hidden potential to deadlock. In this case you may get no indication that
deadlocking is a possibility, so it will be latent in your program until it
unexpectedly happens to a customer (and you probably won’t be able to

Chapter 13: Concurrency 765

easily reproduce it). Thus, preventing deadlock by careful program design
is a critical part of developing concurrent programs. Feedback

Let’s look at the classic demonstration of deadlock, invented by Dijkstra:
the dining philosophers problem. The basic description specifies five
philosophers (but the example shown here will allow any number). These
philosophers spend part of their time thinking, and part of their time
eating. While they are thinking, they don’t need any shared resources but
when they are eating, they sit at a table with a limited number of utensils.
In the original problem description, the utensils are forks and two forks
are required to get spaghetti from a bowl in the middle of the table, but it
seems to make more sense to say that the utensils are chopsticks—clearly
each philosopher will require two chopsticks in order to eat. Feedback

A difficulty is introduced into the problem: as philosophers, they have
very little money, so they can only afford five chopsticks. These are spaced
around the table between them. When a philosopher wants to eat, he or
she must get the chopstick to the left and the one to the right. If the
philosopher on either side is using the desired chopstick, then our
philosopher must wait. Feedback

Note that the reason this problem is interesting is because it demonstrates
that a program can appear to run correctly but actually be deadlock prone.
To show this, the command-line arguments allow you to adjust the
number of philosophers and a factor to affect the amount of time each
philosopher spends thinking. If you have lots of philosophers and/or they
spend a lot of time thinking, you may never see the deadlock, even though
it remains a possibility. The default command-line arguments tend to
make it deadlock fairly quickly: Feedback

//: c13:DiningPhilosophers.java
// Demonstrates how deadlock can be hidden in a program.
// {Args: 5 0 deadlock 4}
import java.util.*;

class Chopstick {
 private static int counter = 0;
 private int number = counter++;
 public String toString() {
 return "Chopstick " + number;
 }

766 Thinking in Java www.BruceEckel.com

}

class Philosopher extends Thread {
 private static Random rand = new Random();
 private static int counter = 0;
 private int number = counter++;
 private Chopstick leftChopstick;
 private Chopstick rightChopstick;
 static int ponder = 0; // Package access
 public Philosopher(Chopstick left, Chopstick right) {
 leftChopstick = left;
 rightChopstick = right;
 start();
 }
 public void think() {
 System.out.println(this + " thinking");
 if(ponder > 0)
 try {
 sleep(rand.nextInt(ponder));
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 public void eat() {
 synchronized(leftChopstick) {
 System.out.println(this + " has "
 + this.leftChopstick + " Waiting for "
 + this.rightChopstick);
 synchronized(rightChopstick) {
 System.out.println(this + " eating");
 }
 }
 }
 public String toString() {
 return "Philosopher " + number;
 }
 public void run() {
 while(true) {
 think();
 eat();
 }
 }
}

Chapter 13: Concurrency 767

public class DiningPhilosophers {
 public static void main(String[] args) {
 if(args.length < 3) {
 System.err.println("usage:\n" +
 "java DiningPhilosophers numberOfPhilosophers " +
 "ponderFactor deadlock timeout\n" +
 "A nonzero ponderFactor will generate a random " +
 "sleep time during think().\n" +
 "If deadlock is not the string " +
 "'deadlock', the program will not deadlock.\n" +
 "A nonzero timeout will stop the program after " +
 "that number of seconds.");
 System.exit(1);
 }
 Philosopher philosopher[] =
 new Philosopher[Integer.parseInt(args[0])];
 Philosopher.ponder = Integer.parseInt(args[1]);
 Chopstick
 left = new Chopstick(),
 right = new Chopstick(),
 first = left;
 int i = 0;
 while(i < philosopher.length - 1) {
 philosopher[i++] =
 new Philosopher(left, right);
 left = right;
 right = new Chopstick();
 }
 if(args[2].equals("deadlock"))
 philosopher[i] = new Philosopher(left, first);
 else // Swapping values prevents deadlock:
 philosopher[i] = new Philosopher(first, left);
 // Optionally break out of program:
 if(args.length >= 4) {
 int delay = Integer.parseInt(args[3]);
 if(delay != 0)
 new Timeout(delay * 1000, "Timed out");
 }
 }
} ///:~

Both Chopstick and Philosopher use an auto-incremented static
counter to give each element an identification number. Each
Philosopher is given a reference to a left and right Chopstick object;

768 Thinking in Java www.BruceEckel.com

these are the untensils that must be picked up before that Philosopher
can eat. Feedback

The static field ponder indicates whether the philosophers will spend
any time thinking. If the value is nonzero, then it will be used to randomly
generate a sleep time inside think(). This way you can show that if your
threads (Philosophers) are spending more time on other tasks (thinking)
then they have a much lower probability of requiring the shared resources
(chopsticks) and thus you can convince yourself that the program is
deadlock free, even though it isn’t. Feedback

Inside eat(), a Philosopher acquires their left chopstick by
synchronizing on it. If the chopstick is unavailable, then the philosopher
blocks while waiting. When the left chopstick is acquired, the right one is
acquired the same way. After eating, the right chopstick is released, then
the left. Feedback

In run(), each Philosopher just thinks and eats continuously. Feedback

The main() method requires at least three arguments, and prints a usage
message if these are not present. The third argument can be the string
“deadlock,” in which case the deadlocking version of the program is used.
Any other string will cause the non-deadlocking version to be used. The
last (optional) argument is a timeout factor, which will abort the program
after that number of seconds (whether it’s deadlocked or not). The
timeout is necessary for the program to be run automatically as part of the
book code testing process. Feedback

After the array of Philosopher is created and the ponder value is set, two
Chopstick objects are created, and the first one is also stored in the first
variable, for use later. Every reference in the array except the last one is
initialized by creating a new Philosopher object and handing it the left
and right chopsticks. After each initialization, the left chopstick is moved
to the right and the right is given a new Chopstick object to be used for
the next Philosopher. Feedback

In the deadlocking version, the last Philosopher is given the left
chopstick, and the first chopstick that was stored earlier. That’s because
the last Philosopher is sitting right next to the very first one and they
both share that first chopstick. With this arrangement, it’s possible at

Chapter 13: Concurrency 769

some point for all the philosophers to be trying to eat and waiting on the
philosopher next to them to put down their chopstick, and the program
will deadlock. Feedback

Try experimenting with different command-line values to see how the
program behaves, and in particular all the ways that the program can
appear to be executing without deadlock. Feedback

To repair the problem, you must understand that deadlock can occur if
four conditions are simultaneously met: Feedback

1. Mutual exclusion: at least one resource used by the threads must
not be shareable. In this case, a chopstick can only be used by one
philosopher at a time. Feedback

2. At least one process must be holding a resource and waiting to
acquire a resource currently held by another process. That is, for
deadlock to occur a philosopher must be holding one chopstick
and waiting for the other one. Feedback

3. A resource cannot be preemptively taken away from a process. All
processes must only release resources as a normal event. Our
philosophers are polite and they don’t grab chopsticks from other
philosophers. Feedback

4. A circular wait must happen, whereby a process waits on a
resource held by another process, which in turn is waiting on a
resource held by another process, etc., until one of the processes is
waiting on a resource held by the first process, thus gridlocking
everything. In this example, the circular wait happens because
each philosopher tries to get the left chopstick first, and then the
right. In the code above, the deadlock is broken by swapping the
initialization order in the constructor for the last philosopher,
causing that last philosopher to actually get the right chopstick
first, then the left. Feedback

Since all of these conditions must be met in order to cause deadlock, you
only need to stop one of them from occurring in order to prevent
deadlock. In this program, the easiest way to prevent deadlock is to break
condition four. This condition happens because each philosopher is trying
to pick up their chopsticks in a particular sequence—first left, then right.

770 Thinking in Java www.BruceEckel.com

Because of that, it’s possible to get into a situation where each of them is
holding their left chopstick and waiting to get the right one, causing the
circular wait condition. However, if the last philosopher is initialized to
try to get the right chopstick first, and then the left, then that philosopher
will never prevent the philosopher on the immediate left from picking up
their right chopstick, and so the circular wait is prevented. This is only
one solution to the problem, but you could also solve it by preventing one
of the other conditions (see more advanced threading books for more
details). Feedback

There is no Java language support to help prevent deadlock; it’s up to you
to avoid it by careful design. These are not comforting words to the person
who’s trying to debug a deadlocking program. Feedback

The proper way to stop
One change that was introduced in Java 2 to reduce the possibility of
deadlock is the deprecation of the Thread class’ stop(), suspend(),
and resume() methods. Feedback

The reason that the stop() method is deprecated is because it doesn’t
release the locks that the thread has acquired, and if the objects are in an
inconsistent state (“damaged”) other threads can view and modify them in
that state. The resulting problems can be subtle and difficult to detect.
Instead of using stop(), you should use a flag to tell the thread when to
terminate itself by exiting its run() method. Here’s a simple example:
Feedback

//: c13:Stopping.java
// The safe way to stop a thread.
import java.util.*;

class CanStop extends Thread {
 // Must be volatile:
 private volatile boolean stop = false;
 private int counter = 0;
 public void run() {
 while(!stop && counter < 10000) {
 System.out.println(counter++);
 }
 if(stop)

Chapter 13: Concurrency 771

 System.out.println("Detected stop");
 }
 public void requestStop() { stop = true; }
}

public class Stopping {
 public static void main(String[] args) {
 final CanStop stoppable = new CanStop();
 stoppable.start();
 new Timer(true).schedule(new TimerTask() {
 public void run() {
 System.out.println("Requesting stop");
 stoppable.requestStop();
 }
 }, 500); // run() after 500 milliseconds
 }
} ///:~

The flag stop must be volatile so that the run() method is sure to see it
(otherwise the value may be cached locally). The “job” of this thread is to
print out 10,000 numbers, so it is finished whenever counter >= 10000
or someone requests a stop. Note that requestStop() is not
synchronized because stop is both boolean (changing it to true is an
atomic operation) and volatile. Feedback

In main(), a CanStop object is started, then a Timer is set up to call
requestStop() after ½ second. The constructor for Timer is passed the
argument true to make it a daemon thread, so that it doesn’t prevent the
program from terminating. Feedback

Interrupting a blocked
thread

There are times when a thread blocks—such as when it is waiting for
input—and it cannot poll a flag as it does in the previous example. In
these cases, you can use the Thread.interrupt() method to break out of
the blocked code: Feedback

//: c13:Interrupt.java
// Using interrupt() to break out of a blocked thread.

772 Thinking in Java www.BruceEckel.com

import java.util.*;

class Blocked extends Thread {
 public Blocked() {
 System.out.println("Starting Blocked");
 start();
 }
 public void run() {
 try {
 synchronized(this) {
 wait(); // Blocks
 }
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("Exiting run()");
 }
}

public class Interrupt {
 static Blocked blocked = new Blocked();
 public static void main(String[] args) {
 new Timer(true).schedule(new TimerTask() {
 public void run() {
 System.out.println("Preparing to interrupt");
 blocked.interrupt();
 blocked = null; // to release it
 }
 }, 2000); // run() after 2000 milliseconds
 }
} ///:~

The wait() inside Blocked.run() produces the blocked thread. When
the Timer runs out, the object’s interrupt() method is called. Then the
blocked reference is set to null so the garbage collector will clean it up
(not necessary here, but important in a long-running program). Feedback

Chapter 13: Concurrency 773

Thread groups
A Thread Group holds a collection of threads. The value of thread groups
can be summed up by a quote from Joshua Bloch5, the software architect
at Sun who fixed and greatly improved the Java collections library in JDK
1.2: Feedback

“Thread groups are best viewed as an unsuccessful experiment, and
you may simply ignore their existence.”

If you’ve spent time and energy trying to figure out the value of thread
groups (as I have), you may wonder why there was not some more official
announcement from Sun on the topic, sooner than this (the same
question could be asked about any number of other changes that have
happened to Java over the years). The Nobel Laureate economist Joseph
Stiglitz has a philosophy of life which would seem to apply here6. It’s
called The Theory of Escalating Commitment: Feedback

"The cost of continuing mistakes is borne by others, while the cost of
admitting mistakes is borne by yourself."

There is one tiny remaining use for thread groups. If a thread in the group
throws an uncaught exception, ThreadGroup.uncaughtException()
is invoked, which prints a stack trace to the standard error stream. If you
want to modify this behavior, you must override this method. Feedback

Summary
It is vital to learn when to use concurrency and when to avoid it. The main
reasons to use it is to manage a number of tasks whose intermingling will
make more efficient use of the computer (including the ability to
transparently distribute the tasks across multiple CPUs), allow better code
organization, or be more convenient for the user. The classic example of

5 Effective Java, by Joshua Bloch, Addison-Wesley 2001, page 211.

6 And in a number of other places throughout the experience of Java. Well, why stop
there?—I’ve consulted on more than a few projects where this has applied.

774 Thinking in Java www.BruceEckel.com

resource balancing is using the CPU during I/O waits. The classic example
of user convenience is monitoring a “stop” button during long downloads.
Feedback

An additional advantage to threads is that they provide “light” execution
context switches (on the order of 100 instructions) rather than “heavy”
process context switches (thousands of instructions). Since all threads in a
given process share the same memory space, a light context switch
changes only program execution and local variables. A process change –
the heavy context switch—must exchange the full memory space. Feedback

The main drawbacks to multithreading are:

1. Slowdown while waiting for shared resources.

2. Additional CPU overhead required to manage threads.

3. Unrewarded complexity from poor design decisions.

4. Pathologies including starving, racing, and deadlock and livelock.

5. Inconsistencies across platforms. For instance, while developing
some of the examples for this book I discovered race conditions
that quickly appeared on some computers which wouldn’t appear
on others. If you developed a program on the latter, you might get
badly surprised when you distribute it.

One of the biggest difficulties with threads occurs because more than one
thread might be sharing a resource—such as the memory in an object—
and you must make sure that multiple threads don’t try to read and
change that resource at the same time. This requires judicious use of the
synchronized keyword, which is an essential tool but must be
understood thoroughly because it can quietly introduce deadlock
situations. Feedback

In addition, there’s a certain art to the application of threads. Java is
designed to allow you to create as many objects as you need to solve your
problem—at least in theory. (Creating millions of objects for an
engineering finite-element analysis, for example, might not be practical in
Java.) However, it seems that there is an upper bound to the number of
threads you’ll want to create, because at some number, threads seem to

Chapter 13: Concurrency 775

become balky. This critical point can be hard to detect, and will often
depend on the OS and JVM; it could be less than a hundred or in the
thousands. As you often create only a handful of threads to solve a
problem, this is typically not much of a limit, yet in a more general design
it becomes a constraint. Feedback

A significant nonintuitive issue in threading is that, because of thread
scheduling, you can typically make your applications run faster by
inserting calls to yield() or even sleep() inside run()’s main loop. This
definitely makes it feel like an art, in particular when the longer delays
seem to speed up performance. The reason this happens is that shorter
delays can cause the end-of-sleep() scheduler interrupt to happen before
the running thread is ready to go to sleep, forcing the scheduler to stop it
and restart it later so it can finish what it was doing and then go to sleep.
The extra context switches can end up slowing things down, and the use of
yield() or sleep() may prevent the extra switches. It takes extra
thought to realize how messy things can get. Feedback

For more advanced discussions of threading, see Concurrent
Programming in Java, 2nd Edition, by Doug Lea, Addison-Wesley, 2000.
Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Inherit a class from Thread and override the run() method.
Inside run(), print a message, and then call sleep(). Repeat this
three times, then return from run(). Put a start-up message in
the constructor and override finalize() to print a shut-down
message. Make a separate thread class that calls System.gc()
and System.runFinalization() inside run(), printing a
message as it does so. Make several thread objects of both types
and run them to see what happens. Feedback

2. Change Daemons.java so that main() has a sleep() instead of
a readLine(). Experiment with different sleep times to see what
happens. Feedback

776 Thinking in Java www.BruceEckel.com

3. In Chapter 8, locate the GreenhouseController.java example,
which consists of four files. In Event.java, the class Event is
based on watching the time. Change Event so that it is a Thread,
and change the rest of the design so that it works with this new
Thread-based Event. Feedback

4. Modify the previous exercise so that the java.util.Timer class is
used to run the system. Feedback

5. Modify SimpleThread.java so that all the threads are daemon
threads, and verify that the program ends as soon as main() is
able to exit. Feedback

6. Demonstrate that java.util.Timer scales to large numbers by
creating a program that generates many Timer objects which
perform some simple task when the timeout completes (if you
want to get fancy you can jump forward to the “Windows and
Applets” chapter and use the Timer objects to draw pixels on the
screen, but printing to the console is sufficient).

7. Demonstrate that a synchronized method in a class can call a
second synchronized method in the same class, which can then
call a third synchronized method in the same class. Create a
separate Thread object that invokes the first synchronized
method.

8. Create two Thread subclasses, one with a run() that starts up
and then calls wait(). The other class’ run() should capture the
reference of the first Thread object. Its run() should call
notifyAll() for the first thread after some number of seconds
have passed, so the first thread can print a message. Feedback

9. Create an example of a “busy wait.” One thread sleeps for awhile
and then sets a flag to true. The second thread watches that flag
inside a while loop (this is the “busy wait”) and when the flag
becomes true, sets it back to false and reports the change to the
console. Note how much wasted time the program spends inside
the “busy wait,” and create a second version of the program that
uses wait() instead of the “busy wait.”

Chapter 13: Concurrency 777

10. Modify Restaurant.java to use notifyAll() and observe any
difference in behavior.

11. Modify Restaurant.java so that there are multiple
WaitPersons, and indicate which one gets each Order. Note
that you must use notifyAll() instead of notify() in this case.

12. Modify Restaurant.java so that multiple WaitPersons
generate order requests to multiple Chefs, who produce orders
and notify the WaitPerson that generated the request. You’ll
need to use queues for both incoming order requests and outgoing
orders.

13. Modify the previous exercise to add Customer objects which are
also threads. The Customers will place order requests with
WaitPersons, who give the requests to the Chefs, who fulfill the
orders and notify the appropriate WaitPerson, who gives it to
the appropriate Customer.

14. Modify PipedIO.java so that Sender reads and sends lines from
a text file.

15. Change DiningPhilosophers.java so that the philosophers just
pick the next available chopstick (when a philosopher is done with
their chopsticks, they drop them into a bin. When a philosopher
wants to eat, they take the next two available chopsticks from the
bin). Does this eliminate the possibility of deadlock? Can you re-
introduce deadlock by simply reducing the number of available
chopsticks?

16. Inherit a class from java.util.Timer and implement the
requestStop() method as in Stopping.java.

17. Modify SimpleThread.java so that all threads receive an
interrupt() before they are completed.

18. Solve the flow-control problem. The sender must not overflow the
receiver’s buffer, which can happen if the sender is faster than the
receiver. If the receiver is faster than sender, then it must not read
the same data more than once. Produce flow control using wait()
and notify(). Consider the above scenarios and also the case

778 Thinking in Java www.BruceEckel.com

where you are not aware of the relative speeds of the sender and
receiver.

 779

14: Creating
Windows
& Applets

A fundamental design guideline is “make simple things
easy, and difficult things possible.” 1

The original design goal of the graphical user interface (GUI) library in
Java 1.0 was to allow the programmer to build a GUI that looks good on
all platforms. That goal was not achieved. Instead, the Java 1.0 Abstract
Window Toolkit (AWT) produced a GUI that looked equally mediocre on
all systems. In addition, it was restrictive: you could use only four fonts
and you couldn’t access any of the more sophisticated GUI elements that
exist in your operating system. The Java 1.0 AWT programming model is
also awkward and non-object-oriented. A student in one of my seminars
(who had been at Sun during the creation of Java) explained why: the
original AWT had been conceptualized, designed, and implemented in a
month. Certainly a marvel of productivity, and also an object lesson in
why design is important. Feedback

The situation improved with the Java 1.1 AWT event model, which takes a
much clearer, object-oriented approach, along with the addition of
JavaBeans, a component programming model that is oriented toward the
easy creation of visual programming environments. Java 2 (JDK 1.2)
finished the transformation away from the old Java 1.0 AWT by
essentially replacing everything with the Java Foundation Classes (JFC),
the GUI portion of which is called “Swing.” These are a rich set of easy-to-

1 A variation on this is called “the principle of least astonishment,” which essentially says:
“don’t surprise the user.”

780 Thinking in Java www.BruceEckel.com

use, easy-to-understand JavaBeans that can be dragged and dropped (as
well as hand programmed) to create a GUI that you can (finally) be
satisfied with. The “revision 3” rule of the software industry (a product
isn’t good until revision 3) seems to hold true with programming
languages as well. Feedback

This chapter does not cover anything but the modern, Java 2 Swing
library, and makes the reasonable assumption that Swing is the final
destination GUI library for Java2. If for some reason you need to use the
original “old” AWT (because you’re supporting old code or you have
browser limitations), you can find that introduction in the first edition of
this book, downloadable at www.BruceEckel.com (also included on the
CD ROM bound with this book). Feedback

Early in this chapter, you’ll see how things are different when you want to
create an applet vs. a regular application using Swing, and how to create
programs that are both applets and applications so they can be run either
inside a browser or from the command line. Almost all the GUI examples
in this book will be executable as both applets and applications. Feedback

Please be aware that this is not a comprehensive glossary of either all the
Swing components, or all the methods for the described classes. What you
see here is intended to be simple. The Swing library is vast, and the goal of
this chapter is only to get you started with the essentials and comfortable
with the concepts. If you need to do more, then Swing can probably give
you what you want if you’re willing to do the research. Feedback

I assume here that you have downloaded and installed the JDK library
documents in HTML format from java.sun.com and will browse the
javax.swing classes in that documentation to see the full details and
methods of the Swing library. Because of the simplicity of the Swing
design, this will often be enough information to solve your problem. There
are numerous (rather thick) books dedicated solely to Swing and you’ll
want to go to those if you need more depth, or if you want to modify the
default Swing behavior. Feedback

2 Note that IBM created a new open-source GUI library for their Eclipse editor
(www.Eclipse.org), which you may want to consider as an alternative to Swing.

Chapter 14: Creating Windows & Applets 781

As you learn about Swing you’ll discover: Feedback

1. Swing is a much better programming model than you’ve probably
seen in other languages and development environments.
JavaBeans (which will be introduced toward the end of this
chapter) is the framework for that library. Feedback

2. “GUI builders” (visual programming environments) are a de
rigueur aspect of a complete Java development environment.
JavaBeans and Swing allow the GUI builder to write code for you as
you place components onto forms using graphical tools. This not
only rapidly speeds development during GUI building, but it allows
for greater experimentation and thus the ability to try out more
designs and presumably come up with a better one. Feedback

3. The simplicity and well-designed nature of Swing means that even
if you do use a GUI builder rather than coding by hand, the
resulting code will still be comprehensible—this solves a big
problem with GUI builders from the past, which could easily
generate unreadable code. Feedback

Swing contains all the components that you expect to see in a modern UI,
everything from buttons that contain pictures to trees and tables. It’s a big
library, but it’s designed to have appropriate complexity for the task at
hand—if something is simple, you don’t have to write much code but as
you try to do more complex things, your code becomes proportionally
more complex. This means an easy entry point, but you’ve got the power if
you need it. Feedback

Much of what you’ll like about Swing could be called “orthogonality of
use.” That is, once you pick up the general ideas about the library you can
apply them everywhere. Primarily because of the standard naming
conventions, much of the time that I was writing these examples I could
guess at the method names and get it right the first time, without looking
anything up. This is certainly the hallmark of a good library design. In
addition, you can generally plug components into other components and
things will work correctly. Feedback

For speed, all the components are “lightweight,” and Swing is written
entirely in Java for portability. Feedback

782 Thinking in Java www.BruceEckel.com

Keyboard navigation is automatic—you can run a Swing application
without using the mouse, and this doesn’t require any extra
programming. Scrolling support is effortless—you simply wrap your
component in a JScrollPane as you add it to your form. Features such as
tool tips typically require a single line of code to use. Feedback

Swing also supports a rather radical feature called “pluggable look and
feel,” which means that the appearance of the UI can be dynamically
changed to suit the expectations of users working under different
platforms and operating systems. It’s even possible (albeit difficult) to
invent your own look and feel. Feedback

The basic applet
Java has the ability to create applets, which are little programs that run
inside a Web browser. Because they must be safe, applets are limited in
what they can accomplish. However, applets are a powerful tool that
support client-side programming, a major issue for the Web. Feedback

Applet restrictions
Programming within an applet is so restrictive that it’s often referred to as
being “inside the sandbox,” since you always have someone—that is, the
Java run-time security system—watching over you. Feedback

However, you can also step outside the sandbox and write regular
applications rather than applets, in which case you can access the other
features of your OS. We’ve been writing regular applications all along in
this book, but they’ve been console applications without any graphical
components. Swing can be used to build GUI interfaces for regular
applications. Feedback

You can generally answer the question of what an applet is able to do by
looking at what it is supposed to do: extend the functionality of a Web
page in a browser. Since, as a Net surfer, you never really know if a Web
page is from a friendly place or not, you want any code that it runs to be
safe. So the biggest restrictions you’ll notice are probably: Feedback

1. An applet can’t touch the local disk. This means writing or reading,
since you wouldn’t want an applet to read and transmit private

Chapter 14: Creating Windows & Applets 783

information over the Internet without your permission. Writing is
prevented, of course, since that would be an open invitation to a
virus. Java offers digital signing for applets. Many applet
restrictions are relaxed when you choose to allow signed applets
(those signed by a trusted source) to have access to your machine.
You’ll see an example later in this chapter, as well as an example of
Java Web Start, a way to safely send applications to a client over
the Internet. Feedback

2. Applets can take longer to display, since you must download the
whole thing every time, including a separate server hit for each
different class. Your browser can cache the applet, but there are no
guarantees. Because of this, you should always package your
applets in a JAR (Java ARchive) file that combines all the applet
components (including other .class files as well as images and
sounds) together into a single compressed file that can be
downloaded in a single server transaction. “Digital signing” is
available for each individual entry in the JAR file. Feedback

Applet advantages
If you can live within the restrictions, applets have definite advantages,
especially when building client/server or other networked applications:
Feedback

1. There is no installation issue. An applet has true platform
independence (including the ability to easily play audio files, etc.)
so you don’t need to make any changes in your code for different
platforms nor does anyone have to perform any installation
“tweaking.” In fact, installation is automatic every time the user
loads a Web page that contains applets, so updates happen silently
and automatically. In traditional client/server systems, building
and installing a new version of the client software is often a
nightmare. Feedback

2. You don’t have to worry about bad code causing damage to
someone’s system, because of the security built into the core Java
language and applet structure. This, along with the previous point,
makes Java useful for so-called intranet client/server applications
that live only within a company or restricted arena of operation

784 Thinking in Java www.BruceEckel.com

where the user environment (Web browser and add-ins) can be
specified and/or controlled. Feedback

Because applets are automatically integrated with HTML, you have a
built-in platform-independent documentation system to support the
applet. It’s an interesting twist, since we’re used to having the
documentation part of the program rather than vice versa. Feedback

Application frameworks
Libraries are often grouped according to their functionality. Some
libraries, for example, are used as is, off the shelf. The standard Java
library String and ArrayList classes are examples of these. Other
libraries are designed specifically as building blocks to create other
classes. A certain category of library is the application framework, whose
goal is to help you build applications by providing a class or set of classes
that produces the basic behavior that you need in every application of a
particular type. Then, to customize the behavior to your own needs, you
inherit from the application class and override the methods of interest.
The application framework’s default control mechanism will call your
overridden methods at the appropriate time. An application framework is
a good example of “separating the things that change from the things that
stay the same,” since it attempts to localize all the unique parts of a
program in the overridden methods3. Feedback

Applets are built using an application framework. You inherit from class
JApplet and override the appropriate methods. There are a few methods
that control the creation and execution of an applet on a Web page:

Method Operation

init() Automatically called to perform first-time initialization
of the applet, including component layout. You’ll always
override this method.

start() Called every time the applet moves into sight on the
Web browser to allow the applet to start up its normal

3 Application frameworks are an example of the design pattern called the Template
Method.

Chapter 14: Creating Windows & Applets 785

Method Operation

operations (especially those that are shut off by
stop()). Also called after init().

stop() Called every time the applet moves out of sight on the
Web browser to allow the applet to shut off expensive
operations. Also called right before destroy().

destroy() Called when the applet is being unloaded from the page
to perform final release of resources when the applet is
no longer used

With this information you are ready to create a simple applet:

//: c14:Applet1.java
// Very simple applet.
import javax.swing.*;
import java.awt.*;

public class Applet1 extends JApplet {
 public void init() {
 getContentPane().add(new JLabel("Applet!"));
 }
} ///:~

Note that applets are not required to have a main(). That’s all wired into
the application framework; you put any startup code in init(). Feedback

In this program, the only activity is putting a text label on the applet, via
the JLabel class (the old AWT appropriated the name Label as well as
other names of components, so you will often see a leading “J” used with
Swing components). The constructor for this class takes a String and
uses it to create the label. In the above program this label is placed on the
form. Feedback

The init() method is responsible for putting all the components on the
form using the add() method. You might think that you ought to be able
to simply call add() by itself, and in fact that’s the way it used to be in the
old AWT. However, Swing requires you to add all components to the
“content pane” of a form, and so you must call getContentPane() as
part of the add() process. Feedback

786 Thinking in Java www.BruceEckel.com

Running applets inside a Web
browser
To run this program you must place it inside a Web page and view that
page inside your Java-enabled Web browser. To place an applet inside a
Web page you put a special tag inside the HTML source for that Web
page4 to tell the page how to load and run the applet. Feedback

This process used to be very simple, when Java itself was simple and
everyone was on the same bandwagon and incorporated the same Java
support inside their Web browsers. Then you might have been able to get
away with a very simple bit of HTML inside your Web page, like this:

<applet code=Applet1 width=100 height=50>
</applet>

Then along came the browser and language wars, and we (programmers
and end users alike) lost. After awhile, Sun realized that we could no
longer expect browsers to support the correct flavor of Java, and the only
solution was to provide some kind of add-on that would conform to a
browser’s extension mechanism. By using the extension mechanism
(which a browser vendor cannot disable—in an attempt to gain
competitive advantage—without breaking all the third-party extensions),
Sun guarantees that Java cannot be shut out of the Web browser by an
antagonistic vendor. Feedback

With Internet Explorer, the extension mechanism is the ActiveX control,
and with Netscape it is the plug-in. In your HTML code, you must provide
tags to support both, but you can automatically generate the necessary
tags with the HTMLconverter tool that comes with the JDK download.
Here’s what the simplest resulting HTML page looks like for Applet1
after running HTMLconverter on the above applet tag:

<!--"CONVERTED_APPLET"-->
<!-- HTML CONVERTER -->
<OBJECT

4 It is assumed that the reader is familiar with the basics of HTML. It’s not too hard to
figure out, and there are lots of books and resources.

Chapter 14: Creating Windows & Applets 787

 classid = "clsid:CAFEEFAC-0014-0001-0000-ABCDEFFEDCBA"
 codebase =
"http://java.sun.com/products/plugin/autodl/jinstall-1_4_1-
windows-i586.cab#Version=1,4,1,0"
 WIDTH = 100 HEIGHT = 50 >
 <PARAM NAME = CODE VALUE = Applet1 >
 <PARAM NAME = "type" VALUE = "application/x-java-
applet;jpi-version=1.4.1">
 <PARAM NAME = "scriptable" VALUE = "false">
 <COMMENT>
 <EMBED
 type = "application/x-java-applet;jpi-
version=1.4.1"
 CODE = Applet1
 WIDTH = 100
 HEIGHT = 50
 scriptable = false
 pluginspage =
"http://java.sun.com/products/plugin/index.html#download">
 <NOEMBED>
 </NOEMBED>
 </EMBED>
 </COMMENT>
</OBJECT>
<!--
<APPLET CODE = Applet1 WIDTH = 100 HEIGHT = 50>
</APPLET>
-->
<!--"END_CONVERTED_APPLET"-->

Some of these lines were too long and had to be wrapped to fit on the
page. The code in this book’s source code (on the book’s CD ROM, and
downloadable from www.BruceEckel.com) will work without having to
worry about correcting line wraps. Feedback

The code value gives the name of the .class file where the applet resides.
The width and height specify the initial size of the applet (in pixels, as
before). There are other items you can place within the applet tag: a place
to find other .class files on the Internet (codebase), alignment
information (align), a special identifier that makes it possible for applets
to communicate with each other (name), and applet parameters to
provide information that the applet can retrieve. Parameters are in the
form:

788 Thinking in Java www.BruceEckel.com

<param name="identifier" value = "information">

and there can be as many as you want. Feedback

The source code package for this book (freely downloadable at
www.BruceEckel.com) provides an HTML page for each of the applets in
this book, and thus many examples of the applet tag, all driven from the
index.html file corresponding to this chapter’s source code. You can find
a full and current description of the details of placing applets in Web
pages at java.sun.com. Feedback

Using Appletviewer
Sun’s JDK contains a tool called the Appletviewer that picks the
<applet> tags out of the HTML file and runs the applets without
displaying the surrounding HTML text. Because the Appletviewer ignores
everything but APPLET tags, you can put those tags in the Java source file
as comments:

// <applet code=MyApplet width=200 height=100></applet>

This way, you can run “appletviewer MyApplet.java” and you don’t
need to create tiny HTML files to run tests. For example, you can add the
commented HTML tags to Applet1.java:

//: c14:Applet1b.java
// Embedding the applet tag for Appletviewer.
// <applet code=Applet1b width=100 height=50></applet>
import javax.swing.*;
import java.awt.*;

public class Applet1b extends JApplet {
 public void init() {
 getContentPane().add(new JLabel("Applet!"));
 }
} ///:~

Now you can invoke the applet with the command

appletviewer Applet1b.java

In this book, this form will be used for easy testing of applets. Shortly,
you’ll see another coding approach which will allow you to execute applets
from the command line without the Appletviewer. Feedback

Chapter 14: Creating Windows & Applets 789

Testing applets
You can perform a simple test without any network connection by starting
up your Web browser and opening the HTML file containing the applet
tag. As the HTML file is loaded, the browser will discover the applet tag
and go hunt for the .class file specified by the code value. Of course, it
looks at the CLASSPATH to find out where to hunt, and if your .class file
isn’t in the CLASSPATH then it will give an error message on the status
line of the browser to the effect that it couldn’t find that .class file. Feedback

When you want to try this out on your Web site things are a little more
complicated. First of all, you must have a Web site, which for most people
means a third-party Internet Service Provider (ISP) at a remote location.
Since the applet is just a file or set of files, the ISP does not have to
provide any special support for Java. You must also have a way to move
the HTML files and the .class files from your site to the correct directory
on the ISP machine. This is typically done with a File Transfer Protocol
(FTP) program, of which there are many different types available for free
or as shareware. So it would seem that all you need to do is move the files
to the ISP machine with FTP, then connect to the site and HTML file
using your browser; if the applet comes up and works, then everything
checks out, right? Feedback

Here’s where you can get fooled. If the browser on the client machine
cannot locate the .class file on the server, it will hunt through the
CLASSPATH on your local machine. Thus, the applet might not be
loading properly from the server, but to you it looks fine during your
testing process because the browser finds it on your machine. When
someone else connects, however, his or her browser can’t find it. So when
you’re testing, make sure you erase the relevant .class files (or .jar file)
on your local machine to verify that they exist in the proper location on
the server. Feedback

One of the most insidious places where this happened to me is when I
innocently placed an applet inside a package. After uploading the HTML
file and applet, it turned out that the server path to the applet was
confused because of the package name. However, my browser found it in
the local CLASSPATH. So I was the only one who could properly load the
applet. It’s important to specify the full class name including the package

790 Thinking in Java www.BruceEckel.com

in the CODE parameter of your applet tag. In many published applet
examples, the applet is not put inside a package, but it’s generally best to
use packages in production code. Feedback

Running applets from the
command line

There are times when you’d like to make a windowed program do
something else other than sit on a Web page. Perhaps you’d also like it to
do some of the things a “regular” application can do but still have the
vaunted instant portability provided by Java. In previous chapters in this
book we’ve made command-line applications, but in some operating
environments (the Macintosh, for example) there isn’t a command line.
So for any number of reasons you’d like to build a windowed, non-applet
program using Java. This is certainly a reasonable desire. Feedback

The Swing library allows you to make an application that preserves the
look and feel of the underlying operating environment. If you want to
build windowed applications, it makes sense to do so5 only if you can use
the latest version of Java and associated tools so you can deliver
applications that won’t confound your users. If for some reason you’re
forced to use an older version of Java, think hard before committing to
building a significant windowed application. Feedback

Often you’ll want to be able to create a class that can be invoked as either
a window or an applet. This is especially convenient when you’re testing
the applets, since it’s typically much faster and easier to run the resulting
applet-application from the command line than it is to start up a Web
browser or the Appletviewer. Feedback

To create an applet that can be run from the console command line, you
simply add a main() to your applet that builds an instance of the applet

5 In my opinion. And after you learn about Swing, you won’t want to waste your time on
the pre-Swing stuff.

Chapter 14: Creating Windows & Applets 791

inside a JFrame6. As a simple example, let’s look at Applet1b.java
modified to work as both an application and an applet:

//: c14:Applet1c.java
// An application and an applet.
// <applet code=Applet1c width=100 height=50></applet>
import javax.swing.*;
import java.awt.*;

public class Applet1c extends JApplet {
 public void init() {
 getContentPane().add(new JLabel("Applet!"));
 }
 // A main() for the application:
 public static void main(String[] args) {
 JApplet applet = new Applet1c();
 JFrame frame = new JFrame("Applet1c");
 // To close the application:
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(applet);
 frame.setSize(100,50);
 applet.init();
 applet.start();
 frame.setVisible(true);
 }
} ///:~

main() is the only element added to the applet, and the rest of the applet
is untouched. The applet is created and added to a JFrame so that it can
be displayed. Feedback

You can see that in main(), the applet is explicitly initialized and started
since in this case the browser isn’t available to do it for you. Of course,
this doesn’t provide the full behavior of the browser, which also calls
stop() and destroy(), but for most situations it’s acceptable. If it’s a
problem, you can force the calls yourself.7 Feedback

6 As described earlier, “Frame” was already taken by the AWT, so Swing uses JFrame.

7 This will make sense after you’ve read further in this chapter. First, make the reference
JApplet a static member of the class (instead of a local variable of main()), and then
call applet.stop() and applet.destroy() inside
WindowAdapter.windowClosing() before you call System.exit().

792 Thinking in Java www.BruceEckel.com

Notice the last line:

frame.setVisible(true);

Without this, you won’t see anything on the screen. Feedback

A display framework
Although the code that turns programs into both applets and applications
produces valuable results, if used everywhere it becomes distracting and
wastes paper. Instead, the following display framework will be used for
the Swing examples in the rest of this book:

//: com:bruceeckel:swing:Console.java
// Tool for running Swing demos from the
// console, both applets and JFrames.
package com.bruceeckel.swing;
import javax.swing.*;
import java.awt.event.*;

public class Console {
 // Create a title string from the class name:
 public static String title(Object o) {
 String t = o.getClass().toString();
 // Remove the word "class":
 if(t.indexOf("class") != -1)
 t = t.substring(6);
 return t;
 }
 public static void
 run(JFrame frame, int width, int height) {
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(width, height);
 frame.setVisible(true);
 }
 public static void
 run(JApplet applet, int width, int height) {
 JFrame frame = new JFrame(title(applet));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(applet);
 frame.setSize(width, height);
 applet.init();
 applet.start();
 frame.setVisible(true);

Chapter 14: Creating Windows & Applets 793

 }
 public static void
 run(JPanel panel, int width, int height) {
 JFrame frame = new JFrame(title(panel));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(panel);
 frame.setSize(width, height);
 frame.setVisible(true);
 }
} ///:~

This is a tool you may want to use yourself, so it’s placed in the library
com.bruceeckel.swing. The Console class consists entirely of static
methods. The first is used to extract the class name (using RTTI) from any
object and to remove the word “class,” which is typically prepended by
getClass(). This uses the String methods indexOf() to determine
whether the word “class” is there, and substring() to produce the new
string without “class” or the trailing space. This name is used to label the
window that is displayed by the run() methods. Feedback

setDefaultCloseOperation() causes a JFrame to exit a program
when that JFrame is closed. The default behavior is to do nothing, so if
you don’t call setDefaultCloseOperation() or write the equivalent
code for your JFrame, the application won’t close. Feedback

The run() method is overloaded to work with JApplets, JPanels, and
JFrames. Note that only if it’s a JApplet are init() and start() called.
Feedback

Now any applet can be run from the console by creating a main()
containing a line like this:

Console.run(new MyClass(), 500, 300);

in which the last two arguments are the display width and height. Here’s
Applet1c.java modified to use Console:

//: c14:Applet1d.java
// Console runs applets from the command line.
// <applet code=Applet1d width=100 height=50></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

794 Thinking in Java www.BruceEckel.com

public class Applet1d extends JApplet {
 public void init() {
 getContentPane().add(new JLabel("Applet!"));
 }
 public static void main(String[] args) {
 Console.run(new Applet1d(), 100, 50);
 }
} ///:~

This allows the elimination of repeated code while providing the greatest
flexibility in running the examples. Feedback

Making a button
Making a button is quite simple: you just call the JButton constructor
with the label you want on the button. You’ll see later that you can do
fancier things, like putting graphic images on buttons. Feedback

Usually you’ll want to create a field for the button inside your class so that
you can refer to it later. Feedback

The JButton is a component—its own little window—that will
automatically get repainted as part of an update. This means that you
don’t explicitly paint a button or any other kind of control; you simply
place them on the form and let them automatically take care of painting
themselves. So to place a button on a form, you do it inside init():

//: c14:Button1.java
// Putting buttons on an applet.
// <applet code=Button1 width=200 height=50></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Button1 extends JApplet {
 private JButton
 b1 = new JButton("Button 1"),
 b2 = new JButton("Button 2");
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b1);

Chapter 14: Creating Windows & Applets 795

 cp.add(b2);
 }
 public static void main(String[] args) {
 Console.run(new Button1(), 200, 50);
 }
} ///:~

Something new has been added here: before any elements are placed on
the content pane, it is given a new “layout manager,” of type
FlowLayout. The layout manager is the way that the pane implicitly
decides where to place the control on the form. The normal behavior of an
applet is to use the BorderLayout, but that won’t work here because (as
you will learn later in this chapter when controlling the layout of a form is
examined in more detail) it defaults to covering each control entirely with
every new one that is added. However, FlowLayout causes the controls
to flow evenly onto the form, left to right and top to bottom. Feedback

Capturing an event
You’ll notice that if you compile and run the applet above, nothing
happens when you press the buttons. This is where you must step in and
write some code to determine what will happen. The basis of event-driven
programming, which comprises a lot of what a GUI is about, is tying
events to code that responds to those events. Feedback

The way that this is accomplished in Swing is by cleanly separating the
interface (the graphical components) and the implementation (the code
that you want to run when an event happens to a component). Each Swing
component can report all the events that might happen to it, and it can
report each kind of event individually. So if you’re not interested in, for
example, whether the mouse is being moved over your button, you don’t
register your interest in that event. It’s a very straightforward and elegant
way to handle event-driven programming, and once you understand the
basic concepts you can easily use Swing components that you haven’t seen
before—in fact, this model extends to anything that can be classified as a
JavaBean (discussed later in the chapter). Feedback

At first, we will just focus on the main event of interest for the
components being used. In the case of a JButton, this “event of interest”
is that the button is pressed. To register your interest in when a button is

796 Thinking in Java www.BruceEckel.com

pressed, you call the JButton’s addActionListener() method. This
method expects an argument that is an object that implements the
ActionListener interface, which contains a single method called
actionPerformed(). So all you have to do to attach code to a JButton
is to implement the ActionListener interface in a class, and register an
object of that class with the JButton via addActionListener(). The
method will be called when the button is pressed (this is normally referred
to as a callback). Feedback

But what should the result of pressing that button be? We’d like to see
something change on the screen, so a new Swing component will be
introduced: the JTextField. This is a place where text can be typed, or in
this case, inserted by the program. Although there are a number of ways
to create a JTextField, the simplest is just to tell the constructor how
wide you want that field to be. Once the JTextField is placed on the
form, you can modify its contents by using the setText() method (there
are many other methods in JTextField, but you must look these up in
the HTML documentation for the JDK from java.sun.com). Here is what
it looks like:

//: c14:Button2.java
// Responding to button presses.
// <applet code=Button2 width=200 height=75></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Button2 extends JApplet {
 private JButton
 b1 = new JButton("Button 1"),
 b2 = new JButton("Button 2");
 private JTextField txt = new JTextField(10);
 class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String name = ((JButton)e.getSource()).getText();
 txt.setText(name);
 }
 }
 private ButtonListener bl = new ButtonListener();
 public void init() {
 b1.addActionListener(bl);

Chapter 14: Creating Windows & Applets 797

 b2.addActionListener(bl);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b1);
 cp.add(b2);
 cp.add(txt);
 }
 public static void main(String[] args) {
 Console.run(new Button2(), 200, 75);
 }
} ///:~

Creating a JTextField and placing it on the canvas takes the same steps
as for JButtons, or for any Swing component. The difference in the above
program is in the creation of the aforementioned ActionListener class
ButtonListener. The argument to actionPerformed() is of type
ActionEvent, which contains all the information about the event and
where it came from. In this case, I wanted to describe the button that was
pressed: getSource() produces the object where the event originated,
and I assumed (with a cast) that the object is a JButton. getText()
returns the text that’s on the button, and this is placed in the JTextField
to prove that the code was actually called when the button was pressed.
Feedback

In init(), addActionListener() is used to register the
ButtonListener object with both the buttons. Feedback

It is often more convenient to code the ActionListener as an
anonymous inner class, especially since you tend to only use a single
instance of each listener class. Button2.java can be modified to use an
anonymous inner class as follows: Feedback

//: c14:Button2b.java
// Using anonymous inner classes.
// <applet code=Button2b width=200 height=75></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Button2b extends JApplet {
 private JButton
 b1 = new JButton("Button 1"),

798 Thinking in Java www.BruceEckel.com

 b2 = new JButton("Button 2");
 private JTextField txt = new JTextField(10);
 private ActionListener bl = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String name = ((JButton)e.getSource()).getText();
 txt.setText(name);
 }
 };
 public void init() {
 b1.addActionListener(bl);
 b2.addActionListener(bl);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b1);
 cp.add(b2);
 cp.add(txt);
 }
 public static void main(String[] args) {
 Console.run(new Button2b(), 200, 75);
 }
} ///:~

The approach of using an anonymous inner class will be preferred (when
possible) for the examples in this book. Feedback

Text areas
A JTextArea is like a JTextField except that it can have multiple lines
and has more functionality. A particularly useful method is append();
with this you can easily pour output into the JTextArea, thus making a
Swing program an improvement (since you can scroll backward) over
what has been accomplished thus far using command-line programs that
print to standard output. As an example, the following program fills a
JTextArea with the output from the geography generator in Chapter
11:

//: c14:TextArea.java
// Using the JTextArea control.
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.util.*;

Chapter 14: Creating Windows & Applets 799

import com.bruceeckel.swing.*;
import com.bruceeckel.util.*;

public class TextArea extends JFrame {
 private JButton
 b = new JButton("Add Data"),
 c = new JButton("Clear Data");
 private JTextArea t = new JTextArea(20, 40);
 private Map m = new HashMap();
 public TextArea() {
 // Use up all the data:
 Collections2.fill(m, Collections2.geography,
 CountryCapitals.pairs.length);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Iterator it = m.entrySet().iterator();
 while(it.hasNext()) {
 Map.Entry me = (Map.Entry)(it.next());
 t.append(me.getKey() + ": "+ me.getValue()+"\n");
 }
 }
 });
 c.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t.setText("");
 }
 });
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(new JScrollPane(t));
 cp.add(b);
 cp.add(c);
 }
 public static void main(String[] args) {
 Console.run(new TextArea(), 475, 425);
 }
} ///:~

This is a JFrame rather than a JApplet because it reads from the local
disk, and therefore cannot be run as an applet in an HTML page. Feedback

In init(), the Map is filled with all the countries and their capitals. Note
that for both buttons the ActionListener is created and added without
defining an intermediate variable, since you never need to refer to that

800 Thinking in Java www.BruceEckel.com

listener again during the program. The “Add Data” button formats and
appends all the data, while the “Clear Data” button uses setText() to
remove all the text from the JTextArea. Feedback

As the JTextArea is added to the applet, it is wrapped in a
JScrollPane, to control scrolling when too much text is placed on the
screen. That’s all you must do in order to produce full scrolling
capabilities. Having tried to figure out how to do the equivalent in some
other GUI programming environments, I am very impressed with the
simplicity and good design of components like JScrollPane. Feedback

Controlling layout
The way that you place components on a form in Java is probably
different from any other GUI system you’ve used. First, it’s all code; there
are no “resources” that control placement of components. Second, the way
components are placed on a form is controlled not by absolute positioning
but by a “layout manager” that decides how the components lie based on
the order that you add() them. The size, shape, and placement of
components will be remarkably different from one layout manager to
another. In addition, the layout managers adapt to the dimensions of your
applet or application window, so if the window dimension is changed, the
size, shape, and placement of the components can change in response.
Feedback

JApplet, JFrame JWindow, and JDialog can all produce a
Container with getContentPane() that can contain and display
Components. In Container, there’s a method called setLayout() that
allows you to choose a different layout manager. Other classes, such as
JPanel, contain and display components directly and so you also set the
layout manager directly, without using the content pane. Feedback

In this section we’ll explore the various layout managers by placing
buttons in them (since that’s the simplest thing to do). There won’t be any
capturing of button events since these examples are just intended to show
how the buttons are laid out. Feedback

Chapter 14: Creating Windows & Applets 801

BorderLayout
Applets use a default layout scheme: the BorderLayout (a number of
the previous example have changed the layout manager to FlowLayout).
Without any other instruction, this takes whatever you add() to it and
places it in the center, stretching the object all the way out to the edges.
Feedback

However, there’s more to the BorderLayout. This layout manager has
the concept of four border regions and a center area. When you add
something to a panel that’s using a BorderLayout you can use the
overloaded add() method that takes a constant value as its first
argument. This value can be any of the following:

BorderLayout. NORTH Top

BorderLayout. SOUTH Bottom

BorderLayout. EAST Right

BorderLayout. WEST Left

BorderLayout.CENTER Fill the middle, up to the other
components or to the edges

If you don’t specify an area to place the object, it defaults to CENTER.
Feedback

Here’s a simple example. The default layout is used, since JApplet
defaults to BorderLayout:

//: c14:BorderLayout1.java
// Demonstrates BorderLayout.
//<applet code=BorderLayout1 width=300 height=250></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class BorderLayout1 extends JApplet {
 public void init() {
 Container cp = getContentPane();
 cp.add(BorderLayout.NORTH, new JButton("North"));
 cp.add(BorderLayout.SOUTH, new JButton("South"));
 cp.add(BorderLayout.EAST, new JButton("East"));
 cp.add(BorderLayout.WEST, new JButton("West"));

802 Thinking in Java www.BruceEckel.com

 cp.add(BorderLayout.CENTER, new JButton("Center"));
 }
 public static void main(String[] args) {
 Console.run(new BorderLayout1(), 300, 250);
 }
} ///:~

For every placement but CENTER, the element that you add is
compressed to fit in the smallest amount of space along one dimension
while it is stretched to the maximum along the other dimension.
CENTER, however, spreads out in both dimensions to occupy the
middle. Feedback

FlowLayout
This simply “flows” the components onto the form, from left to right until
the top space is full, then moves down a row and continues flowing. Feedback

Here’s an example that sets the layout manager to FlowLayout and then
places buttons on the form. You’ll notice that with FlowLayout the
components take on their “natural” size. A JButton, for example, will be
the size of its string. Feedback

//: c14:FlowLayout1.java
// Demonstrates FlowLayout.
// <applet code=FlowLayout1 width=300 height=250></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class FlowLayout1 extends JApplet {
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 for(int i = 0; i < 20; i++)
 cp.add(new JButton("Button " + i));
 }
 public static void main(String[] args) {
 Console.run(new FlowLayout1(), 300, 250);
 }
} ///:~

All components will be compacted to their smallest size in a
FlowLayout, so you might get a little bit of surprising behavior. For

Chapter 14: Creating Windows & Applets 803

example, because a JLabel will be the size of its string, attempting to
right-justify its text yields an unchanged display when using
FlowLayout. Feedback

GridLayout
A GridLayout allows you to build a table of components, and as you add
them they are placed left-to-right and top-to-bottom in the grid. In the
constructor you specify the number of rows and columns that you need
and these are laid out in equal proportions. Feedback

//: c14:GridLayout1.java
// Demonstrates GridLayout.
// <applet code=GridLayout1 width=300 height=250></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class GridLayout1 extends JApplet {
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(7,3));
 for(int i = 0; i < 20; i++)
 cp.add(new JButton("Button " + i));
 }
 public static void main(String[] args) {
 Console.run(new GridLayout1(), 300, 250);
 }
} ///:~

In this case there are 21 slots but only 20 buttons. The last slot is left
empty because no “balancing” goes on with a GridLayout. Feedback

GridBagLayout
The GridBagLayout provides you with tremendous control in deciding
exactly how the regions of your window will lay themselves out and
reformat themselves when the window is resized. However, it’s also the
most complicated layout manager, and quite difficult to understand. It is
intended primarily for automatic code generation by a GUI builder (GUI
builders might use GridBagLayout instead of absolute placement). If
your design is so complicated that you feel you need to use

804 Thinking in Java www.BruceEckel.com

GridBagLayout, then you should be using a GUI builder tool to
generate that design. If you feel you must know the intricate details, I’ll
refer you to Core Java 2, Volume 1 by Horstmann & Cornell (Prentice
Hall, 2001), or a dedicated Swing book, as a starting point. Feedback

Absolute positioning
It is also possible to set the absolute position of the graphical components
in this way:

1. Set a null layout manager for your Container: setLayout(null).
Feedback

2. Call setBounds() or reshape() (depending on the language
version) for each component, passing a bounding rectangle in pixel
coordinates. You can do this in the constructor, or in paint(),
depending on what you want to achieve. Feedback

Some GUI builders use this approach extensively, but this is usually not
the best way to generate code. Feedback

BoxLayout
Because people had so much trouble understanding and working with
GridBagLayout, Swing also includes BoxLayout, which gives you
many of the benefits of GridBagLayout without the complexity, so you
can often use it when you need to do hand-coded layouts (again, if your
design becomes too complex, use a GUI builder that generates layouts for
you). BoxLayout allows you to control the placement of components
either vertically or horizontally, and to control the space between the
components using something called “struts and glue.” First, let’s see how
to use the BoxLayout directly, in the same way that the other layout
managers have been demonstrated:

//: c14:BoxLayout1.java
// Vertical and horizontal BoxLayouts.
// <applet code=BoxLayout1 width=450 height=200></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

Chapter 14: Creating Windows & Applets 805

public class BoxLayout1 extends JApplet {
 public void init() {
 JPanel jpv = new JPanel();
 jpv.setLayout(new BoxLayout(jpv, BoxLayout.Y_AXIS));
 for(int i = 0; i < 5; i++)
 jpv.add(new JButton("jpv " + i));
 JPanel jph = new JPanel();
 jph.setLayout(new BoxLayout(jph, BoxLayout.X_AXIS));
 for(int i = 0; i < 5; i++)
 jph.add(new JButton("jph " + i));
 Container cp = getContentPane();
 cp.add(BorderLayout.EAST, jpv);
 cp.add(BorderLayout.SOUTH, jph);
 }
 public static void main(String[] args) {
 Console.run(new BoxLayout1(), 450, 200);
 }
} ///:~

The constructor for BoxLayout is a bit different than the other layout
managers—you provide the Container that is to be controlled by the
BoxLayout as the first argument, and the direction of the layout as the
second argument. Feedback

To simplify matters, there’s a special container called Box that uses
BoxLayout as its native manager. The following example lays out
components horizontally and vertically using Box, which has two static
methods to create boxes with vertical and horizontal alignment:

//: c14:Box1.java
// Vertical and horizontal BoxLayouts.
// <applet code=Box1 width=450 height=200></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Box1 extends JApplet {
 public void init() {
 Box bv = Box.createVerticalBox();
 for(int i = 0; i < 5; i++)
 bv.add(new JButton("bv " + i));
 Box bh = Box.createHorizontalBox();
 for(int i = 0; i < 5; i++)
 bh.add(new JButton("bh " + i));

806 Thinking in Java www.BruceEckel.com

 Container cp = getContentPane();
 cp.add(BorderLayout.EAST, bv);
 cp.add(BorderLayout.SOUTH, bh);
 }
 public static void main(String[] args) {
 Console.run(new Box1(), 450, 200);
 }
} ///:~

Once you have a Box, you pass it as a second argument when adding
components to the content pane. Feedback

Struts add space between components, measured in pixels. To use a strut,
you simply add it in between the addition of the components that you
want spaced apart:

//: c14:Box2.java
// Adding struts.
// <applet code=Box2 width=450 height=300></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Box2 extends JApplet {
 public void init() {
 Box bv = Box.createVerticalBox();
 for(int i = 0; i < 5; i++) {
 bv.add(new JButton("bv " + i));
 bv.add(Box.createVerticalStrut(i*10));
 }
 Box bh = Box.createHorizontalBox();
 for(int i = 0; i < 5; i++) {
 bh.add(new JButton("bh " + i));
 bh.add(Box.createHorizontalStrut(i*10));
 }
 Container cp = getContentPane();
 cp.add(BorderLayout.EAST, bv);
 cp.add(BorderLayout.SOUTH, bh);
 }
 public static void main(String[] args) {
 Console.run(new Box2(), 450, 300);
 }
} ///:~

Chapter 14: Creating Windows & Applets 807

Struts separate components by a fixed amount, but glue is the opposite: it
separates components by as much as possible. Thus it’s more of a “spring”
than “glue” (and the design on which this was based was called “springs
and struts” so the choice of the term is a bit mysterious). Feedback

//: c14:Box3.java
// Using Glue.
// <applet code=Box3 width=450 height=300></applet>
import javax.swing.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class Box3 extends JApplet {
 public void init() {
 Box bv = Box.createVerticalBox();
 bv.add(new JLabel("Hello"));
 bv.add(Box.createVerticalGlue());
 bv.add(new JLabel("Applet"));
 bv.add(Box.createVerticalGlue());
 bv.add(new JLabel("World"));
 Box bh = Box.createHorizontalBox();
 bh.add(new JLabel("Hello"));
 bh.add(Box.createHorizontalGlue());
 bh.add(new JLabel("Applet"));
 bh.add(Box.createHorizontalGlue());
 bh.add(new JLabel("World"));
 bv.add(Box.createVerticalGlue());
 bv.add(bh);
 bv.add(Box.createVerticalGlue());
 getContentPane().add(bv);
 }
 public static void main(String[] args) {
 Console.run(new Box3(), 450, 300);
 }
} ///:~

A strut works in one direction, but a rigid area fixes the spacing between
components in both directions:

//: c14:Box4.java
// Rigid areas are like pairs of struts.
// <applet code=Box4 width=450 height=300></applet>
import javax.swing.*;
import java.awt.*;

808 Thinking in Java www.BruceEckel.com

import com.bruceeckel.swing.*;

public class Box4 extends JApplet {
 public void init() {
 Box bv = Box.createVerticalBox();
 bv.add(new JButton("Top"));
 bv.add(Box.createRigidArea(new Dimension(120, 90)));
 bv.add(new JButton("Bottom"));
 Box bh = Box.createHorizontalBox();
 bh.add(new JButton("Left"));
 bh.add(Box.createRigidArea(new Dimension(160, 80)));
 bh.add(new JButton("Right"));
 bv.add(bh);
 getContentPane().add(bv);
 }
 public static void main(String[] args) {
 Console.run(new Box4(), 450, 300);
 }
} ///:~

You should be aware that rigid areas are a bit controversial. Since they use
absolute values, some people feel that they cause more trouble than they
are worth. Feedback

The best approach?
Swing is powerful; it can get a lot done with a few lines of code. The
examples shown in this book are reasonably simple, and for learning
purposes it makes sense to write them by hand. You can actually
accomplish quite a bit by combining simple layouts. At some point,
however, it stops making sense to hand-code GUI forms—it becomes too
complicated and is not a good use of your programming time. The Java
and Swing designers oriented the language and libraries to support GUI
building tools, which have been created for the express purpose of making
your programming experience easier. As long as you understand what’s
going on with layouts and how to deal with the events (described next),
it’s not particularly important that you actually know the details of how to
lay out components by hand—let the appropriate tool do that for you
(Java is, after all, designed to increase programmer productivity). Feedback

Chapter 14: Creating Windows & Applets 809

The Swing event model
In the Swing event model a component can initiate (“fire”) an event. Each
type of event is represented by a distinct class. When an event is fired, it is
received by one or more “listeners,” which act on that event. Thus, the
source of an event and the place where the event is handled can be
separate. Since you typically use Swing components as they are, but need
to write code that is called when the components receive an event, this is
an excellent example of the separation of interface and implementation.
Feedback

Each event listener is an object of a class that implements a particular
type of listener interface. So as a programmer, all you do is create a
listener object and register it with the component that’s firing the event.
This registration is performed by calling an addXXXListener() method
in the event-firing component, in which “XXX” represents the type of
event listened for. You can easily know what types of events can be
handled by noticing the names of the “addListener” methods, and if you
try to listen for the wrong events you’ll discover your mistake at compile
time. You’ll see later in the chapter that JavaBeans also use the names of
the “addListener” methods to determine what events a Bean can handle.
Feedback

All of your event logic, then, will go inside a listener class. When you
create a listener class, the sole restriction is that it must implement the
appropriate interface. You can create a global listener class, but this is a
situation in which inner classes tend to be quite useful, not only because
they provide a logical grouping of your listener classes inside the UI or
business logic classes they are serving, but because (as you shall see later)
the fact that an inner class object keeps a reference to its parent object
provides a nice way to call across class and subsystem boundaries. Feedback

All the examples so far in this chapter have been using the Swing event
model, but the remainder of this section will fill out the details of that
model. Feedback

810 Thinking in Java www.BruceEckel.com

Event and listener types
All Swing components include addXXXListener() and
removeXXXListener() methods so that the appropriate types of
listeners can be added and removed from each component. You’ll notice
that the “XXX” in each case also represents the argument for the method,
for example: addMyListener(MyListener m). The following table
includes the basic associated events, listeners, and methods, along with
the basic components that support those particular events by providing
the addXXXListener() and removeXXXListener() methods. You
should keep in mind that the event model is designed to be extensible, so
you may encounter other events and listener types that are not covered in
this table.Feedback

Event, listener interface and
add- and remove-methods

Components supporting this
event

ActionEvent
ActionListener
addActionListener()
removeActionListener()

JButton, JList, JTextField,
JMenuItem and its derivatives
including JCheckBoxMenuItem,
JMenu, and JpopupMenu.

AdjustmentEvent
AdjustmentListener
addAdjustmentListener()
removeAdjustmentListener()

JScrollbar
and anything you create that
implements the Adjustable
interface.

ComponentEvent
ComponentListener
addComponentListener()
removeComponentListener()

*Component and its derivatives,
including JButton, JCheckBox,
JComboBox, Container, JPanel,
JApplet, JScrollPane, Window,
JDialog, JFileDialog, JFrame,
JLabel, JList, JScrollbar,
JTextArea, and JTextField.

ContainerEvent
ContainerListener
addContainerListener()
removeContainerListener()

Container and its derivatives,
including JPanel, JApplet,
JScrollPane, Window, JDialog,
JFileDialog, and JFrame.

FocusEvent
FocusListener
addFocusListener()
removeFocusListener()

Component and derivatives*.

KeyEvent
KeyListener

Component and derivatives*.

Chapter 14: Creating Windows & Applets 811

Event, listener interface and
add- and remove-methods

Components supporting this
event

addKeyListener()
removeKeyListener()

MouseEvent (for both clicks and
motion)
MouseListener
addMouseListener()
removeMouseListener()

Component and derivatives*.

MouseEvent8 (for both clicks and
motion)
MouseMotionListener
addMouseMotionListener()
removeMouseMotionListener()

Component and derivatives*.

WindowEvent
WindowListener
addWindowListener()
removeWindowListener()

Window and its derivatives,
including JDialog, JFileDialog,
and JFrame.

ItemEvent
ItemListener
addItemListener()
removeItemListener()

JCheckBox,
JCheckBoxMenuItem,
JComboBox, JList, and anything
that implements the
ItemSelectable interface.

TextEvent
TextListener
addTextListener()
removeTextListener()

Anything derived from
JTextComponent, including
JTextArea and JTextField.

You can see that each type of component supports only certain types of
events. It turns out to be rather difficult to look up all the events
supported by each component. A simpler approach is to modify the
ShowMethods.java program from Chapter 10 so that it displays all the
event listeners supported by any Swing component that you enter. Feedback

Chapter 10 introduced reflection and used that feature to look up methods
for a particular class—either the entire list of methods or a subset of those
whose names match a keyword that you provide. The magic of reflection

8 There is no MouseMotionEvent even though it seems like there ought to be. Clicking
and motion is combined into MouseEvent, so this second appearance of MouseEvent
in the table is not an error.

812 Thinking in Java www.BruceEckel.com

is that it can automatically show you all the methods for a class without
forcing you to walk up the inheritance hierarchy, examining the base
classes at each level. Thus, it provides a valuable timesaving tool for
programming: because the names of most Java methods are made nicely
verbose and descriptive, you can search for the method names that
contain a particular word of interest. When you find what you think you’re
looking for, check the JDK documentation. Feedback

However, by Chapter 10 you hadn’t seen Swing, so the tool in that chapter
was developed as a command-line application. Here is the more useful
GUI version, specialized to look for the “addListener” methods in Swing
components:

//: c14:ShowAddListeners.java
// Display the "addXXXListener" methods of any Swing class.
// <applet code=ShowAddListeners
// width=500 height=400></applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.reflect.*;
import java.util.regex.*;
import com.bruceeckel.swing.*;

public class ShowAddListeners extends JApplet {
 private JTextField name = new JTextField(25);
 private JTextArea results = new JTextArea(40, 65);
 private static Pattern addListener =
 Pattern.compile("(add\\w+?Listener\\(.*?\\))");
 private static Pattern qualifier =
 Pattern.compile("\\w+\\.");
 class NameL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String nm = name.getText().trim();
 if(nm.length() == 0) {
 results.setText("No match");
 return;
 }
 Class klass;
 try {
 klass = Class.forName("javax.swing." + nm);
 } catch(ClassNotFoundException ex) {

Chapter 14: Creating Windows & Applets 813

 results.setText("No match");
 return;
 }
 Method[] methods = klass.getMethods();
 results.setText("");
 for(int i = 0; i < methods.length; i++) {
 Matcher matcher =
 addListener.matcher(methods[i].toString());
 if(matcher.find())
 results.append(qualifier.matcher(
 matcher.group(1)).replaceAll("") + "\n");
 }
 }
 }
 public void init() {
 NameL nameListener = new NameL();
 name.addActionListener(nameListener);
 JPanel top = new JPanel();
 top.add(new JLabel("Swing class name (press ENTER):"));
 top.add(name);
 Container cp = getContentPane();
 cp.add(BorderLayout.NORTH, top);
 cp.add(new JScrollPane(results));
 // Initial data and test:
 name.setText("JTextArea");
 nameListener.actionPerformed(
 new ActionEvent("", 0 ,""));
 }
 public static void main(String[] args) {
 Console.run(new ShowAddListeners(), 500,400);
 }
} ///:~

You enter the Swing class name that you want to look up in the name
JTextField. The results are extracted using regular expressions, and
displayed in a JTextArea. Feedback

You’ll notice that there are no buttons or other components to indicate
that you want the search to begin. That’s because the JTextField is
monitored by an ActionListener. Whenever you make a change and
press ENTER, the list is immediately updated. If the text field isn’t empty,
it is used inside Class.forName() to try to look up the class. If the name
is incorrect, Class.forName() will fail, which means that it throws an

814 Thinking in Java www.BruceEckel.com

exception. This is trapped and the JTextArea is set to “No match.” But if
you type in a correct name (capitalization counts), Class.forName() is
successful and getMethods() will return an array of Method objects.
Feedback

Two regular expressions are used here. The first, addListener, looks for
“add” followed by any word characters, followed by “Listener” and the
argument list in parentheses. Notice that this whole regular expression is
surrounded by non-escaped parentheses, which means it will be
accessible as a regular expression “group” when it matches. Inside
NameL.ActionPerformed(), a Matcher is created by passing each
Method object to the Pattern.matcher() method. When find() is
called for this Matcher object, it returns true only if a match occurs, and
in that case you can select the first matching parenthesized group by
calling group(1). This string still contains qualifiers, so to strip them off
the qualifier Pattern object is used just as it was in
c09:ShowMethods.java. Feedback

At the end of init(), an initial value is placed in name and the action
event is run, to provide a test with initial data.

This program is a convenient way to investigate the capabilities of a Swing
component. Once you know which events a particular component
supports, you don’t need to look anything up to react to that event. You
simply:

1. Take the name of the event class and remove the word “Event.”
Add the word “Listener” to what remains. This is the listener
interface you must implement in your inner class. Feedback

2. Implement the interface above and write out the methods for the
events you want to capture. For example, you might be looking for
mouse movements, so you write code for the mouseMoved()
method of the MouseMotionListener interface. (You must
implement the other methods, of course, but there’s often a
shortcut for that which you’ll see soon.) Feedback

3. Create an object of the listener class in Step 2. Register it with your
component with the method produced by prefixing “add” to your

Chapter 14: Creating Windows & Applets 815

listener name. For example, addMouseMotionListener().
Feedback

Here are some of the listener interfaces:

Listener interface
w/ adapter

Methods in interface

ActionListener actionPerformed(ActionEvent)

AdjustmentListener adjustmentValueChanged(
 AdjustmentEvent)

ComponentListener
ComponentAdapter

componentHidden(ComponentEvent)
componentShown(ComponentEvent)
componentMoved(ComponentEvent)
componentResized(ComponentEvent)

ContainerListener
ContainerAdapter

componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

FocusListener
FocusAdapter

focusGained(FocusEvent)
focusLost(FocusEvent)

KeyListener
KeyAdapter

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener
MouseAdapter

mouseClicked(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed(MouseEvent)
mouseReleased(MouseEvent)

MouseMotionListener
MouseMotionAdapter

mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

WindowListener
WindowAdapter

windowOpened(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)
windowIconified(WindowEvent)
windowDeiconified(WindowEvent)

ItemListener itemStateChanged(ItemEvent)

816 Thinking in Java www.BruceEckel.com

This is not an exhaustive listing, partly because the event model allows
you to create your own event types and associated listeners. Thus, you’ll
regularly come across libraries that have invented their own events, and
the knowledge gained in this chapter will allow you to figure out how to
use these events. Feedback

Using listener adapters for simplicity
In the table above, you can see that some listener interfaces have only one
method. These are trivial to implement since you’ll implement them only
when you want to write that particular method. However, the listener
interfaces that have multiple methods can be less pleasant to use. For
example, if you want to capture a mouse click (that isn’t already captured
for you, for example by a button), then you need to write a method for
mouseClicked(). But since MouseListener is an interface, you must
implement all of the other methods even if they don’t do anything. This
can be annoying. Feedback

To solve the problem, some (but not all) of the listener interfaces that
have more than one method are provided with adapters, the names of
which you can see in the table above. Each adapter provides default empty
methods for each of the interface methods. Then all you need to do is
inherit from the adapter and override only the methods you need to
change. For example, the typical MouseListener you’ll use looks like
this:

class MyMouseListener extends MouseAdapter {
 public void mouseClicked(MouseEvent e) {
 // Respond to mouse click...
 }
}

The whole point of the adapters is to make the creation of listener classes
easy. Feedback

There is a downside to adapters, however, in the form of a pitfall. Suppose
you write a MouseAdapter like the one above:

class MyMouseListener extends MouseAdapter {
 public void MouseClicked(MouseEvent e) {
 // Respond to mouse click...
 }

Chapter 14: Creating Windows & Applets 817

}

This doesn’t work, but it will drive you crazy trying to figure out why,
since everything will compile and run fine—except that your method
won’t be called for a mouse click. Can you see the problem? It’s in the
name of the method: MouseClicked() instead of mouseClicked (). A
simple slip in capitalization results in the addition of a completely new
method. However, this is not the method that’s called when the window is
closing, so you don’t get the desired results. Despite the inconvenience, an
interface will guarantee that the methods are properly implemented.
Feedback

Tracking multiple events
To prove to yourself that these events are in fact being fired, and as an
interesting experiment, it’s worth creating an applet that tracks extra
behavior in a JButton (in addition to whether it’s been pressed). This
example also shows you how to inherit your own button object because
that’s what is used as the target of all the events of interest. To do so, you
can just inherit from JButton9. Feedback

The MyButton class is an inner class of TrackEvent, so MyButton can
reach into the parent window and manipulate its text fields, which is
what’s necessary to be able to write the status information into the fields
of the parent. Of course this is a limited solution, since MyButton can be
used only in conjunction with TrackEvent. This kind of code is
sometimes called “highly coupled”:

//: c14:TrackEvent.java
// Show events as they happen.
// <applet code=TrackEvent width=700 height=500></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

9 In Java 1.0/1.1 you could not usefully inherit from the button object. This was only one of
numerous fundamental design flaws.

818 Thinking in Java www.BruceEckel.com

public class TrackEvent extends JApplet {
 private HashMap h = new HashMap();
 private String[] event = {
 "focusGained", "focusLost", "keyPressed",
 "keyReleased", "keyTyped", "mouseClicked",
 "mouseEntered", "mouseExited", "mousePressed",
 "mouseReleased", "mouseDragged", "mouseMoved"
 };
 private MyButton
 b1 = new MyButton(Color.BLUE, "test1"),
 b2 = new MyButton(Color.RED, "test2");
 class MyButton extends JButton {
 void report(String field, String msg) {
 ((JTextField)h.get(field)).setText(msg);
 }
 FocusListener fl = new FocusListener() {
 public void focusGained(FocusEvent e) {
 report("focusGained", e.paramString());
 }
 public void focusLost(FocusEvent e) {
 report("focusLost", e.paramString());
 }
 };
 KeyListener kl = new KeyListener() {
 public void keyPressed(KeyEvent e) {
 report("keyPressed", e.paramString());
 }
 public void keyReleased(KeyEvent e) {
 report("keyReleased", e.paramString());
 }
 public void keyTyped(KeyEvent e) {
 report("keyTyped", e.paramString());
 }
 };
 MouseListener ml = new MouseListener() {
 public void mouseClicked(MouseEvent e) {
 report("mouseClicked", e.paramString());
 }
 public void mouseEntered(MouseEvent e) {
 report("mouseEntered", e.paramString());
 }
 public void mouseExited(MouseEvent e) {
 report("mouseExited", e.paramString());
 }

Chapter 14: Creating Windows & Applets 819

 public void mousePressed(MouseEvent e) {
 report("mousePressed", e.paramString());
 }
 public void mouseReleased(MouseEvent e) {
 report("mouseReleased", e.paramString());
 }
 };
 MouseMotionListener mml = new MouseMotionListener() {
 public void mouseDragged(MouseEvent e) {
 report("mouseDragged", e.paramString());
 }
 public void mouseMoved(MouseEvent e) {
 report("mouseMoved", e.paramString());
 }
 };
 public MyButton(Color color, String label) {
 super(label);
 setBackground(color);
 addFocusListener(fl);
 addKeyListener(kl);
 addMouseListener(ml);
 addMouseMotionListener(mml);
 }
 }
 public void init() {
 Container c = getContentPane();
 c.setLayout(new GridLayout(event.length+1,2));
 for(int i = 0; i < event.length; i++) {
 JTextField t = new JTextField();
 t.setEditable(false);
 c.add(new JLabel(event[i], JLabel.RIGHT));
 c.add(t);
 h.put(event[i], t);
 }
 c.add(b1);
 c.add(b2);
 }
 public static void main(String[] args) {
 Console.run(new TrackEvent(), 700, 500);
 }
} ///:~

820 Thinking in Java www.BruceEckel.com

In the MyButton constructor, the button’s color is set with a call to
SetBackground(). The listeners are all installed with simple method
calls. Feedback

The TrackEvent class contains a HashMap to hold the strings
representing the type of event and JTextFields where information about
that event is held. Of course, these could have been created statically
rather than putting them in a HashMap, but I think you’ll agree that it’s
a lot easier to use and change. In particular, if you need to add or remove
a new type of event in TrackEvent, you simply add or remove a string in
the event array—everything else happens automatically. Feedback

When report() is called it is given the name of the event and the
parameter string from the event. It uses the HashMap h in the outer
class to look up the actual JTextField associated with that event name,
and then places the parameter string into that field. Feedback

This example is fun to play with since you can really see what’s going on
with the events in your program. Feedback

A catalog of Swing
components

Now that you understand layout managers and the event model, you’re
ready to see how Swing components can be used. This section is a
nonexhaustive tour of the Swing components and features that you’ll
probably use most of the time. Each example is intended to be reasonably
small so that you can easily lift the code and use it in your own programs.
Feedback

Keep in mind:

1. You can easily see what each of these examples looks like while
running by viewing the HTML pages in the downloadable source
code for this chapter (www.BruceEckel.com). Feedback

2. The JDK documentation from java.sun.com contains all of the
Swing classes and methods (only a few are shown here). Feedback

Chapter 14: Creating Windows & Applets 821

3. Because of the naming convention used for Swing events, it’s fairly
easy to guess how to write and install a handler for a particular type
of event. Use the lookup program ShowAddListeners.java from
earlier in this chapter to aid in your investigation of a particular
component. Feedback

4. When things start to get complicated you should graduate to a GUI
builder. Feedback

Buttons
Swing includes a number of different types of buttons. All buttons, check
boxes, radio buttons, and even menu items are inherited from
AbstractButton (which, since menu items are included, would probably
have been better named “AbstractSelector” or something equally general).
You’ll see the use of menu items shortly, but the following example shows
the various types of buttons available: Feedback

//: c14:Buttons.java
// Various Swing buttons.
// <applet code=Buttons width=350 height=100></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.plaf.basic.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class Buttons extends JApplet {
 private JButton jb = new JButton("JButton");
 private BasicArrowButton
 up = new BasicArrowButton(BasicArrowButton.NORTH),
 down = new BasicArrowButton(BasicArrowButton.SOUTH),
 right = new BasicArrowButton(BasicArrowButton.EAST),
 left = new BasicArrowButton(BasicArrowButton.WEST);
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(jb);
 cp.add(new JToggleButton("JToggleButton"));
 cp.add(new JCheckBox("JCheckBox"));
 cp.add(new JRadioButton("JRadioButton"));
 JPanel jp = new JPanel();

822 Thinking in Java www.BruceEckel.com

 jp.setBorder(new TitledBorder("Directions"));
 jp.add(up);
 jp.add(down);
 jp.add(left);
 jp.add(right);
 cp.add(jp);
 }
 public static void main(String[] args) {
 Console.run(new Buttons(), 350, 100);
 }
} ///:~

This begins with the BasicArrowButton from
javax.swing.plaf.basic, then continues with the various specific types
of buttons. When you run the example, you’ll see that the toggle button
holds its last position, in or out. But the check boxes and radio buttons
behave identically to each other, just clicking on or off (they are inherited
from JToggleButton). Feedback

Button groups
If you want radio buttons to behave in an “exclusive or” fashion, you must
add them to a “button group.” But, as the example below demonstrates,
any AbstractButton can be added to a ButtonGroup. Feedback

To avoid repeating a lot of code, this example uses reflection to generate
the groups of different types of buttons. This is seen in makeBPanel(),
which creates a button group and a JPanel. The second argument to
makeBPanel() is an array of String. For each String, a button of the
class represented by the first argument is added to the JPanel:

//: c14:ButtonGroups.java
// Uses reflection to create groups
// of different types of AbstractButton.
// <applet code=ButtonGroups width=500 height=300></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.lang.reflect.*;
import com.bruceeckel.swing.*;

public class ButtonGroups extends JApplet {

Chapter 14: Creating Windows & Applets 823

 private static String[] ids = {
 "June", "Ward", "Beaver",
 "Wally", "Eddie", "Lumpy",
 };
 static JPanel makeBPanel(Class klass, String[] ids) {
 ButtonGroup bg = new ButtonGroup();
 JPanel jp = new JPanel();
 String title = klass.getName();
 title = title.substring(title.lastIndexOf('.') + 1);
 jp.setBorder(new TitledBorder(title));
 for(int i = 0; i < ids.length; i++) {
 AbstractButton ab = new JButton("failed");
 try {
 // Get the dynamic constructor method
 // that takes a String argument:
 Constructor ctor =
 klass.getConstructor(new Class[]{String.class});
 // Create a new object:
 ab = (AbstractButton)
 ctor.newInstance(new Object[] { ids[i] });
 } catch(Exception ex) {
 System.err.println("can't create " + klass);
 }
 bg.add(ab);
 jp.add(ab);
 }
 return jp;
 }
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(makeBPanel(JButton.class, ids));
 cp.add(makeBPanel(JToggleButton.class, ids));
 cp.add(makeBPanel(JCheckBox.class, ids));
 cp.add(makeBPanel(JRadioButton.class, ids));
 }
 public static void main(String[] args) {
 Console.run(new ButtonGroups(), 500, 300);
 }
} ///:~

The title for the border is taken from the name of the class, stripping off
all the path information. The AbstractButton is initialized to a
JButton that has the label “Failed” so if you ignore the exception

824 Thinking in Java www.BruceEckel.com

message, you’ll still see the problem on screen. The getConstructor()
method produces a Constructor object that takes the array of arguments
of the types in the Class array passed to getConstructor(). Then all
you do is call newInstance(), passing it an array of Object containing
your actual arguments—in this case, just the String from the ids array.
Feedback

This adds a little complexity to what is a simple process. To get “exclusive
or” behavior with buttons, you create a button group and add each button
for which you want that behavior to the group. When you run the
program, you’ll see that all the buttons except JButton exhibit this
“exclusive or” behavior. Feedback

Icons
You can use an Icon inside a JLabel or anything that inherits from
AbstractButton (including JButton, JCheckBox, JRadioButton,
and the different kinds of JMenuItem). Using Icons with JLabels is
quite straightforward (you’ll see an example later). The following example
explores all the additional ways you can use Icons with buttons and their
descendants. Feedback

You can use any gif files you want, but the ones used in this example are
part of this book’s code distribution, available at www.BruceEckel.com.
To open a file and bring in the image, simply create an ImageIcon and
hand it the file name. From then on, you can use the resulting Icon in
your program. Feedback

//: c14:Faces.java
// Icon behavior in Jbuttons.
// <applet code="Faces" width="400" height="100"></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import com.bruceeckel.swing.*;

public class Faces extends JApplet {
 private static Icon[] faces;
 private JButton jb, jb2 = new JButton("Disable");
 private boolean mad = false;
 public void init() {

Chapter 14: Creating Windows & Applets 825

 faces = new Icon[] {
 new ImageIcon(getClass().getResource("./Face0.gif")),
 new ImageIcon(getClass().getResource("./Face1.gif")),
 new ImageIcon(getClass().getResource("./Face2.gif")),
 new ImageIcon(getClass().getResource("./Face3.gif")),
 new ImageIcon(getClass().getResource("./Face4.gif")),
 };
 jb = new JButton("JButton", faces[3]);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 jb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if(mad) {
 jb.setIcon(faces[3]);
 mad = false;
 } else {
 jb.setIcon(faces[0]);
 mad = true;
 }
 jb.setVerticalAlignment(JButton.TOP);
 jb.setHorizontalAlignment(JButton.LEFT);
 }
 });
 jb.setRolloverEnabled(true);
 jb.setRolloverIcon(faces[1]);
 jb.setPressedIcon(faces[2]);
 jb.setDisabledIcon(faces[4]);
 jb.setToolTipText("Yow!");
 cp.add(jb);
 jb2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if(jb.isEnabled()) {
 jb.setEnabled(false);
 jb2.setText("Enable");
 } else {
 jb.setEnabled(true);
 jb2.setText("Disable");
 }
 }
 });
 cp.add(jb2);
 }
 public static void main(String[] args) {
 Console.run(new Faces(), 400, 200);

826 Thinking in Java www.BruceEckel.com

 }
} ///:~

An Icon can be used as an argument for many different Swing component
constructors, but you can also use setIcon() to add or change an Icon.
This example also shows how a JButton (or any AbstractButton) can
set the various different sorts of icons that appear when things happen to
that button: when it’s pressed, disabled, or “rolled over” (the mouse
moves over it without clicking). You’ll see that this gives the button a nice
animated feel. Feedback

Tool tips
The previous example added a “tool tip” to the button. Almost all of the
classes that you’ll be using to create your user interfaces are derived from
JComponent, which contains a method called
setToolTipText(String). So, for virtually anything you place on your
form, all you need to do is say (for an object jc of any JComponent-
derived class):

jc.setToolTipText("My tip");

and when the mouse stays over that JComponent for a predetermined
period of time, a tiny box containing your text will pop up next to the
mouse. Feedback

Text fields
This example shows the extra behavior that JTextFields are capable of:

//: c14:TextFields.java
// Text fields and Java events.
// <applet code=TextFields width=375 height=125></applet>
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class TextFields extends JApplet {
 private JButton
 b1 = new JButton("Get Text"),

Chapter 14: Creating Windows & Applets 827

 b2 = new JButton("Set Text");
 private JTextField
 t1 = new JTextField(30),
 t2 = new JTextField(30),
 t3 = new JTextField(30);
 private String s = new String();
 private UpperCaseDocument ucd = new UpperCaseDocument();
 public void init() {
 t1.setDocument(ucd);
 ucd.addDocumentListener(new T1());
 b1.addActionListener(new B1());
 b2.addActionListener(new B2());
 DocumentListener dl = new T1();
 t1.addActionListener(new T1A());
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b1);
 cp.add(b2);
 cp.add(t1);
 cp.add(t2);
 cp.add(t3);
 }
 class T1 implements DocumentListener {
 public void changedUpdate(DocumentEvent e) {}
 public void insertUpdate(DocumentEvent e) {
 t2.setText(t1.getText());
 t3.setText("Text: "+ t1.getText());
 }
 public void removeUpdate(DocumentEvent e) {
 t2.setText(t1.getText());
 }
 }
 class T1A implements ActionListener {
 private int count = 0;
 public void actionPerformed(ActionEvent e) {
 t3.setText("t1 Action Event " + count++);
 }
 }
 class B1 implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 if(t1.getSelectedText() == null)
 s = t1.getText();
 else
 s = t1.getSelectedText();

828 Thinking in Java www.BruceEckel.com

 t1.setEditable(true);
 }
 }
 class B2 implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 ucd.setUpperCase(false);
 t1.setText("Inserted by Button 2: " + s);
 ucd.setUpperCase(true);
 t1.setEditable(false);
 }
 }
 public static void main(String[] args) {
 Console.run(new TextFields(), 375, 125);
 }
}

class UpperCaseDocument extends PlainDocument {
 private boolean upperCase = true;
 public void setUpperCase(boolean flag) {
 upperCase = flag;
 }
 public void
 insertString(int offset, String str, AttributeSet attSet)
 throws BadLocationException {
 if(upperCase) str = str.toUpperCase();
 super.insertString(offset, str, attSet);
 }
} ///:~

The JTextField t3 is included as a place to report when the action
listener for the JTextField t1 is fired. You’ll see that the action listener
for a JTextField is fired only when you press the “enter” key. Feedback

The JTextField t1 has several listeners attached to it. The T1 listener is a
DocumentListener that responds to any change in the “document” (the
contents of the JTextField, in this case). It automatically copies all text
from t1 into t2. In addition, t1’s document is set to a derived class of
PlainDocument, called UpperCaseDocument, which forces all
characters to uppercase. It automatically detects backspaces and performs
the deletion, adjusting the caret and handling everything as you would
expect. Feedback

Chapter 14: Creating Windows & Applets 829

Borders
JComponent contains a method called setBorder(), which allows you
to place various interesting borders on any visible component. The
following example demonstrates a number of the different borders that
are available, using a method called showBorder() that creates a
JPanel and puts on the border in each case. Also, it uses RTTI to find the
name of the border that you’re using (stripping off all the path
information), then puts that name in a JLabel in the middle of the panel:

//: c14:Borders.java
// Different Swing borders.
// <applet code=Borders width=500 height=300></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class Borders extends JApplet {
 static JPanel showBorder(Border b) {
 JPanel jp = new JPanel();
 jp.setLayout(new BorderLayout());
 String nm = b.getClass().toString();
 nm = nm.substring(nm.lastIndexOf('.') + 1);
 jp.add(new JLabel(nm, JLabel.CENTER),
 BorderLayout.CENTER);
 jp.setBorder(b);
 return jp;
 }
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(2,4));
 cp.add(showBorder(new TitledBorder("Title")));
 cp.add(showBorder(new EtchedBorder()));
 cp.add(showBorder(new LineBorder(Color.BLUE)));
 cp.add(showBorder(
 new MatteBorder(5,5,30,30,Color.GREEN)));
 cp.add(showBorder(
 new BevelBorder(BevelBorder.RAISED)));
 cp.add(showBorder(
 new SoftBevelBorder(BevelBorder.LOWERED)));
 cp.add(showBorder(new CompoundBorder(

830 Thinking in Java www.BruceEckel.com

 new EtchedBorder(),
 new LineBorder(Color.RED))));
 }
 public static void main(String[] args) {
 Console.run(new Borders(), 500, 300);
 }
} ///:~

You can also create your own borders and put them inside buttons, labels,
etc.—anything derived from JComponent. Feedback

JScrollPanes
Most of the time you’ll just want to let a JScrollPane do it’s job, but you
can also control which scroll bars are allowed—vertical, horizontal, both,
or neither:

//: c14:JScrollPanes.java
// Controlling the scrollbars in a JScrollPane.
// <applet code=JScrollPanes width=300 height=725></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class JScrollPanes extends JApplet {
 private JButton
 b1 = new JButton("Text Area 1"),
 b2 = new JButton("Text Area 2"),
 b3 = new JButton("Replace Text"),
 b4 = new JButton("Insert Text");
 private JTextArea
 t1 = new JTextArea("t1", 1, 20),
 t2 = new JTextArea("t2", 4, 20),
 t3 = new JTextArea("t3", 1, 20),
 t4 = new JTextArea("t4", 10, 10),
 t5 = new JTextArea("t5", 4, 20),
 t6 = new JTextArea("t6", 10, 10);
 private JScrollPane
 sp3 = new JScrollPane(t3,
 JScrollPane.VERTICAL_SCROLLBAR_NEVER,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER),
 sp4 = new JScrollPane(t4,

Chapter 14: Creating Windows & Applets 831

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER),
 sp5 = new JScrollPane(t5,
 JScrollPane.VERTICAL_SCROLLBAR_NEVER,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS),
 sp6 = new JScrollPane(t6,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
 class B1L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t5.append(t1.getText() + "\n");
 }
 }
 class B2L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t2.setText("Inserted by Button 2");
 t2.append(": " + t1.getText());
 t5.append(t2.getText() + "\n");
 }
 }
 class B3L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String s = " Replacement ";
 t2.replaceRange(s, 3, 3 + s.length());
 }
 }
 class B4L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t2.insert(" Inserted ", 10);
 }
 }
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 // Create Borders for components:
 Border brd = BorderFactory.createMatteBorder(
 1, 1, 1, 1, Color.BLACK);
 t1.setBorder(brd);
 t2.setBorder(brd);
 sp3.setBorder(brd);
 sp4.setBorder(brd);
 sp5.setBorder(brd);
 sp6.setBorder(brd);
 // Initialize listeners and add components:

832 Thinking in Java www.BruceEckel.com

 b1.addActionListener(new B1L());
 cp.add(b1);
 cp.add(t1);
 b2.addActionListener(new B2L());
 cp.add(b2);
 cp.add(t2);
 b3.addActionListener(new B3L());
 cp.add(b3);
 b4.addActionListener(new B4L());
 cp.add(b4);
 cp.add(sp3);
 cp.add(sp4);
 cp.add(sp5);
 cp.add(sp6);
 }
 public static void main(String[] args) {
 Console.run(new JScrollPanes(), 300, 725);
 }
} ///:~

Using different arguments in the JScrollPane constructor controls the
scrollbars that are available. This example also dresses things up a bit
using borders. Feedback

A mini-editor
The JTextPane control provides a great deal of support for editing,
without much effort. The following example makes very simple use of this
component, ignoring the bulk of the functionality of the class:

//: c14:TextPane.java
// The JTextPane control is a little editor.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;
import com.bruceeckel.util.*;

public class TextPane extends JFrame {
 private JButton b = new JButton("Add Text");
 private JTextPane tp = new JTextPane();
 private static Generator sg =
 new Arrays2.RandStringGenerator(7);
 public TextPane() {

Chapter 14: Creating Windows & Applets 833

 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 for(int i = 1; i < 10; i++)
 tp.setText(tp.getText() + sg.next() + "\n");
 }
 });
 Container cp = getContentPane();
 cp.add(new JScrollPane(tp));
 cp.add(BorderLayout.SOUTH, b);
 }
 public static void main(String[] args) {
 Console.run(new TextPane(), 475, 425);
 }
} ///:~

The button just adds randomly generated text. The intent of the
JTextPane is to allow text to be edited in place, so you will see that there
is no append() method. In this case (admittedly, a poor use of the
capabilities of JTextPane), the text must be captured, modified, and
placed back into the pane using setText(). Feedback

As mentioned before, the default layout behavior of an applet is to use the
BorderLayout. If you add something to the pane without specifying any
details, it just fills the center of the pane out to the edges. However, if you
specify one of the surrounding regions (NORTH, SOUTH, EAST, or
WEST) as is done here, the component will fit itself into that region—in
this case, the button will nest down at the bottom of the screen. Feedback

Notice the built-in features of JTextPane, such as automatic line
wrapping. There are lots of other features that you can look up using the
JDK documentation. Feedback

Check boxes
A check box provides a way to make a single on/off choice It consists of a
tiny box and a label. The box typically holds a little “x” (or some other
indication that it is set) or is empty, depending on whether that item was
selected. Feedback

You’ll normally create a JCheckBox using a constructor that takes the
label as an argument. You can get and set the state, and also get and set

834 Thinking in Java www.BruceEckel.com

the label if you want to read or change it after the JCheckBox has been
created. Feedback

Whenever a JCheckBox is set or cleared, an event occurs, which you can
capture the same way you do a button, by using an ActionListener. The
following example uses a JTextArea to enumerate all the check boxes
that have been checked:

//: c14:CheckBoxes.java
// Using JCheckBoxes.
// <applet code=CheckBoxes width=200 height=200></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class CheckBoxes extends JApplet {
 private JTextArea t = new JTextArea(6, 15);
 private JCheckBox
 cb1 = new JCheckBox("Check Box 1"),
 cb2 = new JCheckBox("Check Box 2"),
 cb3 = new JCheckBox("Check Box 3");
 public void init() {
 cb1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 trace("1", cb1);
 }
 });
 cb2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 trace("2", cb2);
 }
 });
 cb3.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 trace("3", cb3);
 }
 });
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(new JScrollPane(t));
 cp.add(cb1);
 cp.add(cb2);
 cp.add(cb3);

Chapter 14: Creating Windows & Applets 835

 }
 private void trace(String b, JCheckBox cb) {
 if(cb.isSelected())
 t.append("Box " + b + " Set\n");
 else
 t.append("Box " + b + " Cleared\n");
 }
 public static void main(String[] args) {
 Console.run(new CheckBoxes(), 200, 200);
 }
} ///:~

The trace() method sends the name of the selected JCheckBox and its
current state to the JTextArea using append(), so you’ll see a
cumulative list of the checkboxes that were selected and what their state
is. Feedback

Radio buttons
The concept of a radio button in GUI programming comes from pre-
electronic car radios with mechanical buttons: when you push one in, any
other button that was pressed pops out. Thus, it allows you to force a
single choice among many. Feedback

All you need to do to set up an associated group of JRadioButtons is to
add them to a ButtonGroup (you can have any number of
ButtonGroups on a form). One of the buttons can optionally have its
starting state set to true (using the second argument in the constructor).
If you try to set more than one radio button to true then only the final
one set will be true. Feedback

Here’s a simple example of the use of radio buttons. Note that you capture
radio button events like all others:

//: c14:RadioButtons.java
// Using JRadioButtons.
// <applet code=RadioButtons width=200 height=100></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class RadioButtons extends JApplet {

836 Thinking in Java www.BruceEckel.com

 private JTextField t = new JTextField(15);
 private ButtonGroup g = new ButtonGroup();
 private JRadioButton
 rb1 = new JRadioButton("one", false),
 rb2 = new JRadioButton("two", false),
 rb3 = new JRadioButton("three", false);
 private ActionListener al = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t.setText("Radio button " +
 ((JRadioButton)e.getSource()).getText());
 }
 };
 public void init() {
 rb1.addActionListener(al);
 rb2.addActionListener(al);
 rb3.addActionListener(al);
 g.add(rb1); g.add(rb2); g.add(rb3);
 t.setEditable(false);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(t);
 cp.add(rb1);
 cp.add(rb2);
 cp.add(rb3);
 }
 public static void main(String[] args) {
 Console.run(new RadioButtons(), 200, 100);
 }
} ///:~

To display the state, a text field is used. This field is set to noneditable
because it’s used only to display data, not to collect it. Thus it is an
alternative to using a JLabel. Feedback

Combo boxes (drop-down lists)
Like a group of radio buttons, a drop-down list is a way to force the user
to select only one element from a group of possibilities. However, it’s a
more compact way to accomplish this, and it’s easier to change the
elements of the list without surprising the user. (You can change radio
buttons dynamically, but that tends to be visibly jarring). Feedback

Chapter 14: Creating Windows & Applets 837

By default, JComboBox box is not like the combo box in Windows,
which lets you select from a list or type in your own selection. To produce
this behavior you must call setEditable(). With a JComboBox box you
choose one and only one element from the list. In the following example,
the JComboBox box starts with a certain number of entries and then
new entries are added to the box when a button is pressed. Feedback

//: c14:ComboBoxes.java
// Using drop-down lists.
// <applet code=ComboBoxes width=200 height=125></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class ComboBoxes extends JApplet {
 private String[] description = {
 "Ebullient", "Obtuse", "Recalcitrant", "Brilliant",
 "Somnescent", "Timorous", "Florid", "Putrescent"
 };
 private JTextField t = new JTextField(15);
 private JComboBox c = new JComboBox();
 private JButton b = new JButton("Add items");
 private int count = 0;
 public void init() {
 for(int i = 0; i < 4; i++)
 c.addItem(description[count++]);
 t.setEditable(false);
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if(count < description.length)
 c.addItem(description[count++]);
 }
 });
 c.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t.setText("index: "+ c.getSelectedIndex() + " " +
 ((JComboBox)e.getSource()).getSelectedItem());
 }
 });
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(t);
 cp.add(c);

838 Thinking in Java www.BruceEckel.com

 cp.add(b);
 }
 public static void main(String[] args) {
 Console.run(new ComboBoxes(), 200, 125);
 }
} ///:~

The JTextField displays the “selected index,” which is the sequence
number of the currently selected element, as well as the text of the
selected item in the combo box. Feedback

List boxes
List boxes are significantly different from JComboBox boxes, and not
just in appearance. While a JComboBox box drops down when you
activate it, a JList occupies some fixed number of lines on a screen all the
time and doesn’t change. If you want to see the items in a list, you simply
call getSelectedValues(), which produces an array of String of the
items that have been selected. Feedback

A JList allows multiple selection: if you control-click on more than one
item (holding down the “control” key while performing additional mouse
clicks) the original item stays highlighted and you can select as many as
you want. If you select an item, then shift-click on another item, all the
items in the span between the two are selected. To remove an item from a
group you can control-click it. Feedback

//: c14:List.java
// <applet code=List width=250 height=375></applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class List extends JApplet {
 private String[] flavors = {
 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",
 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",
 "Praline Cream", "Mud Pie"
 };
 private DefaultListModel lItems=new DefaultListModel();

Chapter 14: Creating Windows & Applets 839

 private JList lst = new JList(lItems);
 private JTextArea t =
 new JTextArea(flavors.length, 20);
 private JButton b = new JButton("Add Item");
 private ActionListener bl = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 if(count < flavors.length) {
 lItems.add(0, flavors[count++]);
 } else {
 // Disable, since there are no more
 // flavors left to be added to the List
 b.setEnabled(false);
 }
 }
 };
 private ListSelectionListener ll =
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 if(e.getValueIsAdjusting()) return;
 t.setText("");
 Object[] items=lst.getSelectedValues();
 for(int i = 0; i < items.length; i++)
 t.append(items[i] + "\n");
 }
 };
 private int count = 0;
 public void init() {
 Container cp = getContentPane();
 t.setEditable(false);
 cp.setLayout(new FlowLayout());
 // Create Borders for components:
 Border brd = BorderFactory.createMatteBorder(
 1, 1, 2, 2, Color.BLACK);
 lst.setBorder(brd);
 t.setBorder(brd);
 // Add the first four items to the List
 for(int i = 0; i < 4; i++)
 lItems.addElement(flavors[count++]);
 // Add items to the Content Pane for Display
 cp.add(t);
 cp.add(lst);
 cp.add(b);
 // Register event listeners
 lst.addListSelectionListener(ll);

840 Thinking in Java www.BruceEckel.com

 b.addActionListener(bl);
 }
 public static void main(String[] args) {
 Console.run(new List(), 250, 375);
 }
} ///:~

You can see that borders have also been added to the lists. Feedback

If you just want to put an array of Strings into a JList, there’s a much
simpler solution: you pass the array to the JList constructor, and it builds
the list automatically. The only reason for using the “list model” in the
above example is so that the list could be manipulated during the
execution of the program. Feedback

JLists do not automatically provide direct support for scrolling. Of
course, all you need to do is wrap the JList in a JScrollPane and the
details are automatically managed for you. Feedback

Tabbed panes
The JTabbedPane allows you to create a “tabbed dialog,” which has file-
folder tabs running across one edge, and all you have to do is press a tab
to bring forward a different dialog.

//: c14:TabbedPane1.java
// Demonstrates the Tabbed Pane.
// <applet code=TabbedPane1 width=350 height=200></applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class TabbedPane1 extends JApplet {
 private String[] flavors = {
 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",
 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",
 "Praline Cream", "Mud Pie"
 };
 private JTabbedPane tabs = new JTabbedPane();
 private JTextField txt = new JTextField(20);
 public void init() {
 for(int i = 0; i < flavors.length; i++)
 tabs.addTab(flavors[i],

Chapter 14: Creating Windows & Applets 841

 new JButton("Tabbed pane " + i));
 tabs.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 txt.setText("Tab selected: " +
 tabs.getSelectedIndex());
 }
 });
 Container cp = getContentPane();
 cp.add(BorderLayout.SOUTH, txt);
 cp.add(tabs);
 }
 public static void main(String[] args) {
 Console.run(new TabbedPane1(), 350, 200);
 }
} ///:~

In Java, the use of some sort of “tabbed panel” mechanism is quite
important because in applet programming the use of pop-up dialogs is
discouraged by automatically adding a little warning to any dialog that
pops up out of an applet. Feedback

When you run the program you’ll see that the JTabbedPane
automatically stacks the tabs if there are too many of them to fit on one
row. You can see this by resizing the window when you run the program
from the console command line. Feedback

Message boxes
Windowing environments commonly contain a standard set of message
boxes that allow you to quickly post information to the user or to capture
information from the user. In Swing, these message boxes are contained
in JOptionPane. You have many different possibilities (some quite
sophisticated), but the ones you’ll most commonly use are probably the
message dialog and confirmation dialog, invoked using the static
JOptionPane.showMessageDialog() and JOptionPane.
showConfirmDialog(). The following example shows a subset of the
message boxes available with JOptionPane:

//: c14:MessageBoxes.java
// Demonstrates JoptionPane.
// <applet code=MessageBoxes width=200 height=150></applet>
import javax.swing.*;

842 Thinking in Java www.BruceEckel.com

import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class MessageBoxes extends JApplet {
 private JButton[] b = {
 new JButton("Alert"), new JButton("Yes/No"),
 new JButton("Color"), new JButton("Input"),
 new JButton("3 Vals")
 };
 private JTextField txt = new JTextField(15);
 private ActionListener al = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String id = ((JButton)e.getSource()).getText();
 if(id.equals("Alert"))
 JOptionPane.showMessageDialog(null,
 "There's a bug on you!", "Hey!",
 JOptionPane.ERROR_MESSAGE);
 else if(id.equals("Yes/No"))
 JOptionPane.showConfirmDialog(null,
 "or no", "choose yes",
 JOptionPane.YES_NO_OPTION);
 else if(id.equals("Color")) {
 Object[] options = { "Red", "Green" };
 int sel = JOptionPane.showOptionDialog(
 null, "Choose a Color!", "Warning",
 JOptionPane.DEFAULT_OPTION,
 JOptionPane.WARNING_MESSAGE, null,
 options, options[0]);
 if(sel != JOptionPane.CLOSED_OPTION)
 txt.setText("Color Selected: " + options[sel]);
 } else if(id.equals("Input")) {
 String val = JOptionPane.showInputDialog(
 "How many fingers do you see?");
 txt.setText(val);
 } else if(id.equals("3 Vals")) {
 Object[] selections = {"First", "Second", "Third"};
 Object val = JOptionPane.showInputDialog(
 null, "Choose one", "Input",
 JOptionPane.INFORMATION_MESSAGE,
 null, selections, selections[0]);
 if(val != null)
 txt.setText(val.toString());
 }

Chapter 14: Creating Windows & Applets 843

 }
 };
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 for(int i = 0; i < b.length; i++) {
 b[i].addActionListener(al);
 cp.add(b[i]);
 }
 cp.add(txt);
 }
 public static void main(String[] args) {
 Console.run(new MessageBoxes(), 200, 200);
 }
} ///:~

To be able to write a single ActionListener, I’ve used the somewhat
risky approach of checking the String labels on the buttons. The problem
with this is that it’s easy to get the label a little bit wrong, typically in
capitalization, and this bug can be hard to spot. Feedback

Note that showOptionDialog() and showInputDialog() provide
return objects that contain the value entered by the user. Feedback

Menus
Each component capable of holding a menu, including JApplet,
JFrame, JDialog, and their descendants, has a setJMenuBar()
method that accepts a JMenuBar (you can have only one JMenuBar on
a particular component). You add JMenus to the JMenuBar, and
JMenuItems to the JMenus. Each JMenuItem can have an
ActionListener attached to it, to be fired when that menu item is
selected. Feedback

Unlike a system that uses resources, with Java and Swing you must hand
assemble all the menus in source code. Here is a very simple menu
example:

//: c14:SimpleMenus.java
// <applet code=SimpleMenus width=200 height=75></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;

844 Thinking in Java www.BruceEckel.com

import com.bruceeckel.swing.*;

public class SimpleMenus extends JApplet {
 private JTextField t = new JTextField(15);
 private ActionListener al = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t.setText(((JMenuItem)e.getSource()).getText());
 }
 };
 private JMenu[] menus = {
 new JMenu("Winken"), new JMenu("Blinken"),
 new JMenu("Nod")
 };
 private JMenuItem[] items = {
 new JMenuItem("Fee"), new JMenuItem("Fi"),
 new JMenuItem("Fo"), new JMenuItem("Zip"),
 new JMenuItem("Zap"), new JMenuItem("Zot"),
 new JMenuItem("Olly"), new JMenuItem("Oxen"),
 new JMenuItem("Free")
 };
 public void init() {
 for(int i = 0; i < items.length; i++) {
 items[i].addActionListener(al);
 menus[i%3].add(items[i]);
 }
 JMenuBar mb = new JMenuBar();
 for(int i = 0; i < menus.length; i++)
 mb.add(menus[i]);
 setJMenuBar(mb);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(t);
 }
 public static void main(String[] args) {
 Console.run(new SimpleMenus(), 200, 75);
 }
} ///:~

The use of the modulus operator in “i%3” distributes the menu items
among the three JMenus. Each JMenuItem must have an
ActionListener attached to it; here, the same ActionListener is used
everywhere but you’ll usually need an individual one for each
JMenuItem. Feedback

Chapter 14: Creating Windows & Applets 845

JMenuItem inherits AbstractButton, so it has some buttonlike
behaviors. By itself, it provides an item that can be placed on a drop-down
menu. There are also three types inherited from JMenuItem: JMenu to
hold other JMenuItems (so you can have cascading menus),
JCheckBoxMenuItem, which produces a checkmark to indicate
whether that menu item is selected, and JRadioButtonMenuItem,
which contains a radio button. Feedback

As a more sophisticated example, here are the ice cream flavors again,
used to create menus. This example also shows cascading menus,
keyboard mnemonics, JCheckBoxMenuItems, and the way you can
dynamically change menus:

//: c14:Menus.java
// Submenus, checkbox menu items, swapping menus,
// mnemonics (shortcuts) and action commands.
// <applet code=Menus width=300 height=100></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class Menus extends JApplet {
 private String[] flavors = {
 "Chocolate", "Strawberry", "Vanilla Fudge Swirl",
 "Mint Chip", "Mocha Almond Fudge", "Rum Raisin",
 "Praline Cream", "Mud Pie"
 };
 private JTextField t = new JTextField("No flavor", 30);
 private JMenuBar mb1 = new JMenuBar();
 private JMenu
 f = new JMenu("File"),
 m = new JMenu("Flavors"),
 s = new JMenu("Safety");
 // Alternative approach:
 private JCheckBoxMenuItem[] safety = {
 new JCheckBoxMenuItem("Guard"),
 new JCheckBoxMenuItem("Hide")
 };
 private JMenuItem[] file = { new JMenuItem("Open") };
 // A second menu bar to swap to:
 private JMenuBar mb2 = new JMenuBar();
 private JMenu fooBar = new JMenu("fooBar");

846 Thinking in Java www.BruceEckel.com

 private JMenuItem[] other = {
 // Adding a menu shortcut (mnemonic) is very
 // simple, but only JMenuItems can have them
 // in their constructors:
 new JMenuItem("Foo", KeyEvent.VK_F),
 new JMenuItem("Bar", KeyEvent.VK_A),
 // No shortcut:
 new JMenuItem("Baz"),
 };
 private JButton b = new JButton("Swap Menus");
 class BL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JMenuBar m = getJMenuBar();
 setJMenuBar(m == mb1 ? mb2 : mb1);
 validate(); // Refresh the frame
 }
 }
 class ML implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JMenuItem target = (JMenuItem)e.getSource();
 String actionCommand = target.getActionCommand();
 if(actionCommand.equals("Open")) {
 String s = t.getText();
 boolean chosen = false;
 for(int i = 0; i < flavors.length; i++)
 if(s.equals(flavors[i])) chosen = true;
 if(!chosen)
 t.setText("Choose a flavor first!");
 else
 t.setText("Opening "+ s +". Mmm, mm!");
 }
 }
 }
 class FL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JMenuItem target = (JMenuItem)e.getSource();
 t.setText(target.getText());
 }
 }
 // Alternatively, you can create a different
 // class for each different MenuItem. Then you
 // Don't have to figure out which one it is:
 class FooL implements ActionListener {
 public void actionPerformed(ActionEvent e) {

Chapter 14: Creating Windows & Applets 847

 t.setText("Foo selected");
 }
 }
 class BarL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t.setText("Bar selected");
 }
 }
 class BazL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t.setText("Baz selected");
 }
 }
 class CMIL implements ItemListener {
 public void itemStateChanged(ItemEvent e) {
 JCheckBoxMenuItem target =
 (JCheckBoxMenuItem)e.getSource();
 String actionCommand = target.getActionCommand();
 if(actionCommand.equals("Guard"))
 t.setText("Guard the Ice Cream! " +
 "Guarding is " + target.getState());
 else if(actionCommand.equals("Hide"))
 t.setText("Hide the Ice Cream! " +
 "Is it hidden? " + target.getState());
 }
 }
 public void init() {
 ML ml = new ML();
 CMIL cmil = new CMIL();
 safety[0].setActionCommand("Guard");
 safety[0].setMnemonic(KeyEvent.VK_G);
 safety[0].addItemListener(cmil);
 safety[1].setActionCommand("Hide");
 safety[1].setMnemonic(KeyEvent.VK_H);
 safety[1].addItemListener(cmil);
 other[0].addActionListener(new FooL());
 other[1].addActionListener(new BarL());
 other[2].addActionListener(new BazL());
 FL fl = new FL();
 for(int i = 0; i < flavors.length; i++) {
 JMenuItem mi = new JMenuItem(flavors[i]);
 mi.addActionListener(fl);
 m.add(mi);
 // Add separators at intervals:

848 Thinking in Java www.BruceEckel.com

 if((i+1) % 3 == 0)
 m.addSeparator();
 }
 for(int i = 0; i < safety.length; i++)
 s.add(safety[i]);
 s.setMnemonic(KeyEvent.VK_A);
 f.add(s);
 f.setMnemonic(KeyEvent.VK_F);
 for(int i = 0; i < file.length; i++) {
 file[i].addActionListener(fl);
 f.add(file[i]);
 }
 mb1.add(f);
 mb1.add(m);
 setJMenuBar(mb1);
 t.setEditable(false);
 Container cp = getContentPane();
 cp.add(t, BorderLayout.CENTER);
 // Set up the system for swapping menus:
 b.addActionListener(new BL());
 b.setMnemonic(KeyEvent.VK_S);
 cp.add(b, BorderLayout.NORTH);
 for(int i = 0; i < other.length; i++)
 fooBar.add(other[i]);
 fooBar.setMnemonic(KeyEvent.VK_B);
 mb2.add(fooBar);
 }
 public static void main(String[] args) {
 Console.run(new Menus(), 300, 100);
 }
} ///:~

In this program I placed the menu items into arrays and then stepped
through each array calling add() for each JMenuItem. This makes
adding or subtracting a menu item somewhat less tedious. Feedback

This program creates not one but two JMenuBars to demonstrate that
menu bars can be actively swapped while the program is running. You can
see how a JMenuBar is made up of JMenus, and each JMenu is made
up of JMenuItems, JCheckBoxMenuItems, or even other JMenus
(which produce submenus). When a JMenuBar is assembled it can be
installed into the current program with the setJMenuBar() method.
Note that when the button is pressed, it checks to see which menu is

Chapter 14: Creating Windows & Applets 849

currently installed by calling getJMenuBar(), then it puts the other
menu bar in its place. Feedback

When testing for “Open,” notice that spelling and capitalization are
critical, but Java signals no error if there is no match with “Open.” This
kind of string comparison is a source of programming errors. Feedback

The checking and unchecking of the menu items is taken care of
automatically. The code handling the JCheckBoxMenuItems shows
two different ways to determine what was checked: string matching
(which, as mentioned above, isn’t a very safe approach although you’ll see
it used) and matching on the event target object. As shown, the
getState() method can be used to reveal the state. You can also change
the state of a JCheckBoxMenuItem with setState(). Feedback

The events for menus are a bit inconsistent and can lead to confusion:
JMenuItems use ActionListeners, but JCheckboxMenuItems use
ItemListeners. The JMenu objects can also support ActionListeners,
but that’s not usually helpful. In general, you’ll attach listeners to each
JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem,
but the example shows ItemListeners and ActionListeners attached
to the various menu components. Feedback

Swing supports mnemonics, or “keyboard shortcuts,” so you can select
anything derived from AbstractButton (button, menu item, etc.) using
the keyboard instead of the mouse. These are quite simple: for
JMenuItem you can use the overloaded constructor that takes as a
second argument the identifier for the key. However, most
AbstractButtons do not have constructors like this so the more general
way to solve the problem is to use the setMnemonic() method. The
example above adds mnemonics to the button and some of the menu
items; shortcut indicators automatically appear on the components.
Feedback

You can also see the use of setActionCommand(). This seems a bit
strange because in each case the “action command” is exactly the same as
the label on the menu component. Why not just use the label instead of
this alternative string? The problem is internationalization. If you retarget
this program to another language, you want to change only the label in the
menu, and not change the code (which would no doubt introduce new

850 Thinking in Java www.BruceEckel.com

errors). So to make this easy for code that checks the text string associated
with a menu component, the “action command” can be immutable while
the menu label can change. All the code works with the “action
command,” so it’s unaffected by changes to the menu labels. Note that in
this program, not all the menu components are examined for their action
commands, so those that aren’t don’t have their action command set.
Feedback

The bulk of the work happens in the listeners. BL performs the
JMenuBar swapping. In ML, the “figure out who rang” approach is
taken by getting the source of the ActionEvent and casting it to a
JMenuItem, then getting the action command string to pass it through a
cascaded if statement. Feedback

The FL listener is simple even though it’s handling all the different flavors
in the flavor menu. This approach is useful if you have enough simplicity
in your logic, but in general, you’ll want to take the approach used with
FooL, BarL, and BazL, in which they are each attached to only a single
menu component so no extra detection logic is necessary and you know
exactly who called the listener. Even with the profusion of classes
generated this way, the code inside tends to be smaller and the process is
more foolproof. Feedback

You can see that menu code quickly gets long-winded and messy. This is
another case where the use of a GUI builder is the appropriate solution. A
good tool will also handle the maintenance of the menus. Feedback

Pop-up menus
The most straightforward way to implement a JPopupMenu is to create
an inner class that extends MouseAdapter, then add an object of that
inner class to each component that you want to produce pop-up behavior:

//: c14:Popup.java
// Creating popup menus with Swing.
// <applet code=Popup width=300 height=200></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

Chapter 14: Creating Windows & Applets 851

public class Popup extends JApplet {
 private JPopupMenu popup = new JPopupMenu();
 private JTextField t = new JTextField(10);
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(t);
 ActionListener al = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t.setText(((JMenuItem)e.getSource()).getText());
 }
 };
 JMenuItem m = new JMenuItem("Hither");
 m.addActionListener(al);
 popup.add(m);
 m = new JMenuItem("Yon");
 m.addActionListener(al);
 popup.add(m);
 m = new JMenuItem("Afar");
 m.addActionListener(al);
 popup.add(m);
 popup.addSeparator();
 m = new JMenuItem("Stay Here");
 m.addActionListener(al);
 popup.add(m);
 PopupListener pl = new PopupListener();
 addMouseListener(pl);
 t.addMouseListener(pl);
 }
 class PopupListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 maybeShowPopup(e);
 }
 public void mouseReleased(MouseEvent e) {
 maybeShowPopup(e);
 }
 private void maybeShowPopup(MouseEvent e) {
 if(e.isPopupTrigger())
 popup.show(((JApplet)e.getComponent())
 .getContentPane(), e.getX(), e.getY());
 }
 }
 public static void main(String[] args) {
 Console.run(new Popup(), 300, 200);

852 Thinking in Java www.BruceEckel.com

 }
} ///:~

The same ActionListener is added to each JMenuItem, so that it
fetches the text from the menu label and inserts it into the JTextField.
Feedback

Drawing
In a good GUI framework, drawing should be reasonably easy—and it is,
in the Swing library. The problem with any drawing example is that the
calculations that determine where things go are typically a lot more
complicated that the calls to the drawing routines, and these calculations
are often mixed together with the drawing calls so it can seem that the
interface is more complicated than it actually is. Feedback

For simplicity, consider the problem of representing data on the screen—
here, the data will be provided by the built-in Math.sin() method which
is a mathematical sine function. To make things a little more interesting,
and to further demonstrate how easy it is to use Swing components, a
slider will be placed at the bottom of the form to dynamically control the
number of sine wave cycles that are displayed. In addition, if you resize
the window, you’ll see that the sine wave refits itself to the new window
size. Feedback

Although any JComponent may be painted and thus used as a canvas, if
you just want a straightforward drawing surface you will typically inherit
from a JPanel. The only method you need to override is
paintComponent(), which is called whenever that component must be
repainted (you normally don’t need to worry about this, as the decision is
managed by Swing). When it is called, Swing passes a Graphics object to
the method, and you can then use this object to draw or paint on the
surface. Feedback

In the following example, all the intelligence concerning painting is in the
SineDraw class; the SineWave class simply configures the program
and the slider control. Inside SineDraw, the setCycles() method
provides a hook to allow another object—the slider control, in this case—
to control the number of cycles.

//: c14:SineWave.java

Chapter 14: Creating Windows & Applets 853

// Drawing with Swing, using a JSlider.
// <applet code=SineWave width=700 height=400></applet>
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

class SineDraw extends JPanel {
 private static final int SCALEFACTOR = 200;
 private int cycles;
 private int points;
 private double[] sines;
 private int[] pts;
 public SineDraw() { setCycles(5); }
 public void setCycles(int newCycles) {
 cycles = newCycles;
 points = SCALEFACTOR * cycles * 2;
 sines = new double[points];
 for(int i = 0; i < points; i++) {
 double radians = (Math.PI/SCALEFACTOR) * i;
 sines[i] = Math.sin(radians);
 }
 repaint();
 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int maxWidth = getWidth();
 double hstep = (double)maxWidth/(double)points;
 int maxHeight = getHeight();
 pts = new int[points];
 for(int i = 0; i < points; i++)
 pts[i] =
 (int)(sines[i] * maxHeight/2 * .95 + maxHeight/2);
 g.setColor(Color.RED);
 for(int i = 1; i < points; i++) {
 int x1 = (int)((i - 1) * hstep);
 int x2 = (int)(i * hstep);
 int y1 = pts[i-1];
 int y2 = pts[i];
 g.drawLine(x1, y1, x2, y2);
 }
 }
}

854 Thinking in Java www.BruceEckel.com

public class SineWave extends JApplet {
 private SineDraw sines = new SineDraw();
 private JSlider adjustCycles = new JSlider(1, 30, 5);
 public void init() {
 Container cp = getContentPane();
 cp.add(sines);
 adjustCycles.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 sines.setCycles(
 ((JSlider)e.getSource()).getValue());
 }
 });
 cp.add(BorderLayout.SOUTH, adjustCycles);
 }
 public static void main(String[] args) {
 Console.run(new SineWave(), 700, 400);
 }
} ///:~

All of the fields and arrays are used in the calculation of the sine wave
points: cycles indicates the number of complete sine waves desired,
points contains the total number of points that will be graphed, sines
contains the sine function values, and pts contains the y-coordinates of
the points that will be drawn on the JPanel. The setCycles() method
creates the arrays according to the number of points needed and fills the
sines array with numbers. By calling repaint() , setCycles() forces
paintComponent() to be called so the rest of the calculation and
redraw will take place. Feedback

The first thing you must do when you override paintComponent() is to
call the base-class version of the method. Then you are free to do
whatever you like; normally, this means using the Graphics methods
that you can find in the documentation for java.awt.Graphics (in the
JDK documentation from java.sun.com) to draw and paint pixels onto the
JPanel. Here, you can see that almost all the code is involved in
performing the calculations; the only two method calls that actually
manipulate the screen are setColor() and drawLine(). You will
probably have a similar experience when creating your own program that
displays graphical data—you’ll spend most of your time figuring out what
it is you want to draw, but the actual drawing process will be quite simple.
Feedback

Chapter 14: Creating Windows & Applets 855

When I created this program, the bulk of my time was spent in getting the
sine wave to display. Once I did that, I thought it would be nice to be able
to dynamically change the number of cycles. My programming
experiences when trying to do such things in other languages made me a
bit reluctant to try this, but it turned out to be the easiest part of the
project. I created a JSlider (the arguments are the left-most value of the
JSlider, the right-most value, and the starting value, respectively, but
there are other constructors as well) and dropped it into the JApplet.
Then I looked at the JDK documentation and noticed that the only
listener was the addChangeListener, which was triggered whenever the
slider was changed enough for it to produce a different value. The only
method for this was the obviously named stateChanged(), which
provided a ChangeEvent object so that I could look backward to the
source of the change and find the new value. By calling the sines object’s
setCycles(), the new value was incorporated and the JPanel redrawn.
Feedback

In general, you will find that most of your Swing problems can be solved
by following a similar process, and you’ll find that it’s generally quite
simple, even if you haven’t used a particular component before. Feedback

If your problem is more complex, there are other more sophisticated
alternatives for drawing, including third-party JavaBeans components
and the Java 2D API. These solutions are beyond the scope of this book,
but you should look them up if your drawing code becomes too onerous.
Feedback

Dialog Boxes
A dialog box is a window that pops up out of another window. Its purpose
is to deal with some specific issue without cluttering the original window
with those details. Dialog boxes are heavily used in windowed
programming environments, but less frequently used in applets. Feedback

To create a dialog box, you inherit from JDialog, which is just another
kind of Window, like a JFrame. A JDialog has a layout manager
(which defaults to BorderLayout) and you add event listeners to deal
with events. One significant difference when the dialog window is closed
is that you don’t want to shut down the application. Instead, you release

856 Thinking in Java www.BruceEckel.com

the resources used by the dialog’s window by calling dispose(). Here’s a
very simple example:

//: c14:Dialogs.java
// Creating and using Dialog Boxes.
// <applet code=Dialogs width=125 height=75></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

class MyDialog extends JDialog {
 public MyDialog(JFrame parent) {
 super(parent, "My dialog", true);
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(new JLabel("Here is my dialog"));
 JButton ok = new JButton("OK");
 ok.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 dispose(); // Closes the dialog
 }
 });
 cp.add(ok);
 setSize(150,125);
 }
}

public class Dialogs extends JApplet {
 private JButton b1 = new JButton("Dialog Box");
 private MyDialog dlg = new MyDialog(null);
 public void init() {
 b1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 dlg.show();
 }
 });
 getContentPane().add(b1);
 }
 public static void main(String[] args) {
 Console.run(new Dialogs(), 125, 75);
 }
} ///:~

Chapter 14: Creating Windows & Applets 857

Once the JDialog is created, the show() method must be called to
display and activate it. For the dialog to close, it must call dispose().
Feedback

You’ll see that anything that pops up out of an applet, including dialog
boxes, is “untrusted.” That is, you get a warning in the window that’s been
popped up. This is because, in concept, it would be possible to fool the
user into thinking that they’re dealing with a regular native application
and to get them to type in their credit card number, which then goes
across the Web. An applet is always attached to a Web page and visible
within your Web browser, while a dialog box is detached—so theoretically,
it’s possible. As a result it is not so common to see an applet that uses a
dialog box. Feedback

The following example is more complex; the dialog box is made up of a
grid (using GridLayout) of a special kind of button that is defined here
as class ToeButton. This button draws a frame around itself and,
depending on its state, a blank, an “x,” or an “o” in the middle. It starts
out blank, and then depending on whose turn it is, changes to an “x” or an
“o.” However, it will also flip back and forth between “x” and “o” when you
click on the button. (This makes the tic-tac-toe concept only slightly more
annoying than it already is.) In addition, the dialog box can be set up for
any number of rows and columns by changing numbers in the main
application window.

//: c14:TicTacToe.java
// Dialog boxes and creating your own components.
// <applet code=TicTacToe width=200 height=100></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class TicTacToe extends JApplet {
 private JTextField
 rows = new JTextField("3"),
 cols = new JTextField("3");
 private static final int BLANK = 0, XX = 1, OO = 2;
 class ToeDialog extends JDialog {
 private int turn = XX; // Start with x's turn
 ToeDialog(int cellsWide, int cellsHigh) {
 setTitle("The game itself");

858 Thinking in Java www.BruceEckel.com

 Container cp = getContentPane();
 cp.setLayout(new GridLayout(cellsWide, cellsHigh));
 for(int i = 0; i < cellsWide * cellsHigh; i++)
 cp.add(new ToeButton());
 setSize(cellsWide * 50, cellsHigh * 50);
 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
 }
 class ToeButton extends JPanel {
 private int state = BLANK;
 public ToeButton() { addMouseListener(new ML()); }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int
 x1 = 0, y1 = 0,
 x2 = getSize().width - 1,
 y2 = getSize().height - 1;
 g.drawRect(x1, y1, x2, y2);
 x1 = x2/4;
 y1 = y2/4;
 int wide = x2/2, high = y2/2;
 if(state == XX) {
 g.drawLine(x1, y1, x1 + wide, y1 + high);
 g.drawLine(x1, y1 + high, x1 + wide, y1);
 }
 if(state == OO)
 g.drawOval(x1, y1, x1 + wide/2, y1 + high/2);
 }
 class ML extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 if(state == BLANK) {
 state = turn;
 turn = (turn == XX ? OO : XX);
 }
 else
 state = (state == XX ? OO : XX);
 repaint();
 }
 }
 }
 }
 class BL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JDialog d = new ToeDialog(
 Integer.parseInt(rows.getText()),

Chapter 14: Creating Windows & Applets 859

 Integer.parseInt(cols.getText()));
 d.setVisible(true);
 }
 }
 public void init() {
 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2,2));
 p.add(new JLabel("Rows", JLabel.CENTER));
 p.add(rows);
 p.add(new JLabel("Columns", JLabel.CENTER));
 p.add(cols);
 Container cp = getContentPane();
 cp.add(p, BorderLayout.NORTH);
 JButton b = new JButton("go");
 b.addActionListener(new BL());
 cp.add(b, BorderLayout.SOUTH);
 }
 public static void main(String[] args) {
 Console.run(new TicTacToe(), 200, 100);
 }
} ///:~

Because statics can only be at the outer level of the class, inner classes
cannot have static data or nested classes. Feedback

The paintComponent() method draws the square around the panel,
and the “x” or the “o.” This is full of tedious calculations, but it’s
straightforward. Feedback

A mouse click is captured by the MouseListener, which first checks to
see if the panel has anything written on it. If not, the parent window is
queried to find out whose turn it is which establishes the state of the
ToeButton. Via the inner class mechanism, the ToeButton then
reaches back into the parent and changes the turn. If the button is already
displaying an “x” or an “o” then that is flopped. You can see in these
calculations the convenient use of the ternary if-else described in Chapter
3. After a state change, the ToeButton is repainted. Feedback

The constructor for ToeDialog is quite simple: it adds into a
GridLayout as many buttons as you request, then resizes it for 50 pixels
on a side for each button. Feedback

860 Thinking in Java www.BruceEckel.com

TicTacToe sets up the whole application by creating the JTextFields
(for inputting the rows and columns of the button grid) and the “go”
button with its ActionListener. When the button is pressed, the data in
the JTextFields must be fetched, and, since they are in String form,
turned into ints using the static Integer.parseInt() method. Feedback

File dialogs
Some operating systems have a number of special built-in dialog boxes to
handle the selection of things such as fonts, colors, printers, and the like.
Virtually all graphical operating systems support the opening and saving
of files, and so Java’s JFileChooser encapsulates these for easy use.
Feedback

The following application exercises two forms of JFileChooser dialogs,
one for opening and one for saving. Most of the code should by now be
familiar, and all the interesting activities happen in the action listeners for
the two different button clicks:

//: c14:FileChooserTest.java
// Demonstration of File dialog boxes.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class FileChooserTest extends JFrame {
 private JTextField
 filename = new JTextField(),
 dir = new JTextField();
 private JButton
 open = new JButton("Open"),
 save = new JButton("Save");
 public FileChooserTest() {
 JPanel p = new JPanel();
 open.addActionListener(new OpenL());
 p.add(open);
 save.addActionListener(new SaveL());
 p.add(save);
 Container cp = getContentPane();
 cp.add(p, BorderLayout.SOUTH);
 dir.setEditable(false);
 filename.setEditable(false);

Chapter 14: Creating Windows & Applets 861

 p = new JPanel();
 p.setLayout(new GridLayout(2,1));
 p.add(filename);
 p.add(dir);
 cp.add(p, BorderLayout.NORTH);
 }
 class OpenL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JFileChooser c = new JFileChooser();
 // Demonstrate "Open" dialog:
 int rVal = c.showOpenDialog(FileChooserTest.this);
 if(rVal == JFileChooser.APPROVE_OPTION) {
 filename.setText(c.getSelectedFile().getName());
 dir.setText(c.getCurrentDirectory().toString());
 }
 if(rVal == JFileChooser.CANCEL_OPTION) {
 filename.setText("You pressed cancel");
 dir.setText("");
 }
 }
 }
 class SaveL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JFileChooser c = new JFileChooser();
 // Demonstrate "Save" dialog:
 int rVal = c.showSaveDialog(FileChooserTest.this);
 if(rVal == JFileChooser.APPROVE_OPTION) {
 filename.setText(c.getSelectedFile().getName());
 dir.setText(c.getCurrentDirectory().toString());
 }
 if(rVal == JFileChooser.CANCEL_OPTION) {
 filename.setText("You pressed cancel");
 dir.setText("");
 }
 }
 }
 public static void main(String[] args) {
 Console.run(new FileChooserTest(), 250, 110);
 }
} ///:~

Note that there are many variations you can apply to JFileChooser,
including filters to narrow the file names that you will allow. Feedback

862 Thinking in Java www.BruceEckel.com

For an “open file” dialog, you call showOpenDialog(), and for a “save
file” dialog you call showSaveDialog(). These commands don’t return
until the dialog is closed. The JFileChooser object still exists, so you can
read data from it. The methods getSelectedFile() and
getCurrentDirectory() are two ways you can interrogate the results of
the operation. If these return null it means the user canceled out of the
dialog. Feedback

HTML on Swing components
Any component that can take text can also take HTML text, which it will
reformat according to HTML rules. This means you can very easily add
fancy text to a Swing component. For example:

//: c14:HTMLButton.java
// Putting HTML text on Swing components.
// <applet code=HTMLButton width=250 height=500></applet>
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import com.bruceeckel.swing.*;

public class HTMLButton extends JApplet {
 private JButton b = new JButton(
 "<html>" +
 "<center>Hello!
<i>Press me now!");
 public void init() {
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getContentPane().add(new JLabel("<html>" +
 "<i>Kapow!"));
 // Force a re-layout to include the new label:
 validate();
 }
 });
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(b);
 }
 public static void main(String[] args) {
 Console.run(new HTMLButton(), 200, 500);
 }
} ///:~

Chapter 14: Creating Windows & Applets 863

You must start the text with “<html>,” and then you can use normal
HTML tags. Note that you are not forced to include the normal closing
tags. Feedback

The ActionListener adds a new JLabel to the form, which also contains
HTML text. However, this label is not added during init() so you must
call the container’s validate() method in order to force a re-layout of the
components (and thus the display of the new label). Feedback

You can also use HTML text for JTabbedPane, JMenuItem,
JToolTip, JRadioButton and JCheckBox. Feedback

Sliders and progress bars
A slider (which has already been used in SineWave.java) allows the user
to input data by moving a point back and forth, which is intuitive in some
situations (volume controls, for example). A progress bar displays data in
a relative fashion from “full” to “empty” so the user gets a perspective. My
favorite example for these is to simply hook the slider to the progress bar
so when you move the slider the progress bar changes accordingly:

//: c14:Progress.java
// Using progress bars and sliders.
// <applet code=Progress width=300 height=200></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.event.*;
import javax.swing.border.*;
import com.bruceeckel.swing.*;

public class Progress extends JApplet {
 private JProgressBar pb = new JProgressBar();
 private JSlider sb =
 new JSlider(JSlider.HORIZONTAL, 0, 100, 60);
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(2,1));
 cp.add(pb);
 sb.setValue(0);
 sb.setPaintTicks(true);
 sb.setMajorTickSpacing(20);

864 Thinking in Java www.BruceEckel.com

 sb.setMinorTickSpacing(5);
 sb.setBorder(new TitledBorder("Slide Me"));
 pb.setModel(sb.getModel()); // Share model
 cp.add(sb);
 }
 public static void main(String[] args) {
 Console.run(new Progress(), 300, 200);
 }
} ///:~

The key to hooking the two components together is in sharing their
model, in the line: Feedback

pb.setModel(sb.getModel());

Of course, you could also control the two using a listener, but this is more
straightforward for simple situations.

The JProgressBar is fairly straightforward, but the JSlider has a lot of
options, such as the orientation and major and minor tick marks. Notice
how straightforward it is to add a titled border. Feedback

Trees
Using a JTree can be as simple as saying:

add(new JTree(new Object[] {"this", "that", "other"}));

This displays a primitive tree. The API for trees is vast, however—certainly
one of the largest in Swing. It appears that you can do just about anything
with trees, but more sophisticated tasks might require quite a bit of
research and experimentation. Feedback

Fortunately, there is a middle ground provided in the library: the
“default” tree components, which generally do what you need. So most of
the time you can use these components, and only in special cases will you
need to delve in and understand trees more deeply. Feedback

The following example uses the “default” tree components to display a
tree in an applet. When you press the button, a new subtree is added
under the currently selected node (if no node is selected, the root node is
used): Feedback

//: c14:Trees.java

Chapter 14: Creating Windows & Applets 865

// Simple Swing tree. Trees can be vastly more complex.
// <applet code=Trees width=250 height=250></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.tree.*;
import com.bruceeckel.swing.*;

// Takes an array of Strings and makes the first
// element a node and the rest leaves:
class Branch {
 private DefaultMutableTreeNode r;
 public Branch(String[] data) {
 r = new DefaultMutableTreeNode(data[0]);
 for(int i = 1; i < data.length; i++)
 r.add(new DefaultMutableTreeNode(data[i]));
 }
 public DefaultMutableTreeNode node() { return r; }
}

public class Trees extends JApplet {
 private String[][] data = {
 { "Colors", "Red", "Blue", "Green" },
 { "Flavors", "Tart", "Sweet", "Bland" },
 { "Length", "Short", "Medium", "Long" },
 { "Volume", "High", "Medium", "Low" },
 { "Temperature", "High", "Medium", "Low" },
 { "Intensity", "High", "Medium", "Low" },
 };
 private static int i = 0;
 private DefaultMutableTreeNode root, child, chosen;
 private JTree tree;
 private DefaultTreeModel model;
 public void init() {
 Container cp = getContentPane();
 root = new DefaultMutableTreeNode("root");
 tree = new JTree(root);
 // Add it and make it take care of scrolling:
 cp.add(new JScrollPane(tree), BorderLayout.CENTER);
 // Capture the tree's model:
 model =(DefaultTreeModel)tree.getModel();
 JButton test = new JButton("Press me");
 test.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

866 Thinking in Java www.BruceEckel.com

 if(i < data.length) {
 child = new Branch(data[i++]).node();
 // What's the last one you clicked?
 chosen = (DefaultMutableTreeNode)
 tree.getLastSelectedPathComponent();
 if(chosen == null)
 chosen = root;
 // The model will create the appropriate event.
 // In response, the tree will update itself:
 model.insertNodeInto(child, chosen, 0);
 // Puts the new node on the chosen node.
 }
 }
 });
 // Change the button's colors:
 test.setBackground(Color.BLUE);
 test.setForeground(Color.WHITE);
 JPanel p = new JPanel();
 p.add(test);
 cp.add(p, BorderLayout.SOUTH);
 }
 public static void main(String[] args) {
 Console.run(new Trees(), 250, 250);
 }
} ///:~

The first class, Branch, is a tool to take an array of String and build a
DefaultMutableTreeNode with the first String as the root and the
rest of the Strings in the array as leaves. Then node() can be called to
produce the root of this “branch.” Feedback

The Trees class contains a two-dimensional array of Strings from which
Branches can be made and a static int i to count through this array.
The DefaultMutableTreeNode objects hold the nodes, but the physical
representation on screen is controlled by the JTree and its associated
model, the DefaultTreeModel. Note that when the JTree is added to
the applet, it is wrapped in a JScrollPane—this is all it takes to provide
automatic scrolling. Feedback

The JTree is controlled through its model. When you make a change to
the model, the model generates an event that causes the JTree to
perform any necessary updates to the visible representation of the tree. In
init(), the model is captured by calling getModel(). When the button is

Chapter 14: Creating Windows & Applets 867

pressed, a new “branch” is created. Then the currently selected
component is found (or the root is used if nothing is selected) and the
model’s insertNodeInto() method does all the work of changing the
tree and causing it to be updated. Feedback

An example like the one above may give you what you need in a tree.
However, trees have the power to do just about anything you can
imagine—everywhere you see the word “default” in the example above,
you can substitute your own class to get different behavior. But beware:
almost all of these classes have a large interface, so you could spend a lot
of time struggling to understand the intricacies of trees. Despite this, it’s a
good design and the alternatives are usually much worse. Feedback

Tables
Like trees, tables in Swing are vast and powerful. They are primarily
intended to be the popular “grid” interface to databases via Java Database
Connectivity (JDBC, discussed in Thinking in Enterprise Java) and thus
they have a tremendous amount of flexibility, which you pay for in
complexity. There’s easily enough here to allow the creation of a full-
blown spreadsheet application, and could probably justify an entire book.
However, it is also possible to create a relatively simple JTable if you
understand the basics. Feedback

The JTable controls how the data is displayed, but the TableModel
controls the data itself. So to create a JTable you’ll typically create a
TableModel first. You can fully implement the TableModel interface,
but it’s simpler to inherit from the helper class AbstractTableModel:

//: c14:JTableDemo.java
// Simple demonstration of JTable.
// <applet code=Table width=350 height=200></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.table.*;
import javax.swing.event.*;
import com.bruceeckel.swing.*;

public class JTableDemo extends JApplet {
 private JTextArea txt = new JTextArea(4, 20);

868 Thinking in Java www.BruceEckel.com

 // The TableModel controls all the data:
 class DataModel extends AbstractTableModel {
 Object[][] data = {
 {"one", "two", "three", "four"},
 {"five", "six", "seven", "eight"},
 {"nine", "ten", "eleven", "twelve"},
 };
 // Prints data when table changes:
 class TML implements TableModelListener {
 public void tableChanged(TableModelEvent e) {
 txt.setText(""); // Clear it
 for(int i = 0; i < data.length; i++) {
 for(int j = 0; j < data[0].length; j++)
 txt.append(data[i][j] + " ");
 txt.append("\n");
 }
 }
 }
 public DataModel() { addTableModelListener(new TML());}
 public int getColumnCount() { return data[0].length; }
 public int getRowCount() { return data.length; }
 public Object getValueAt(int row, int col) {
 return data[row][col];
 }
 public void setValueAt(Object val, int row, int col) {
 data[row][col] = val;
 // Indicate the change has happened:
 fireTableDataChanged();
 }
 public boolean isCellEditable(int row, int col) {
 return true;
 }
 }
 public void init() {
 Container cp = getContentPane();
 JTable table = new JTable(new DataModel());
 cp.add(new JScrollPane(table));
 cp.add(BorderLayout.SOUTH, txt);
 }
 public static void main(String[] args) {
 Console.run(new JTableDemo(), 350, 200);
 }
} ///:~

Chapter 14: Creating Windows & Applets 869

DataModel contains an array of data, but you could also get the data
from some other source such as a database. The constructor adds a
TableModelListener that prints the array every time the table is
changed. The rest of the methods follow the Beans naming convention
(using “get” and “set” methods, which will be described later in this
chapter), and are used by JTable when it wants to present the
information in DataModel. AbstractTableModel provides default
methods for setValueAt() and isCellEditable() that prevent changes
to the data, so if you want to be able to edit the data, you must override
these methods. Feedback

Once you have a TableModel, you only need to hand it to the JTable
constructor. All the details of displaying, editing, and updating will be
taken care of for you. This example also puts the JTable in a
JScrollPane. Feedback

Selecting Look & Feel
“Pluggable Look & Feel” allows your program to emulate the look and feel
of various operating environments. You can even do all sorts of fancy
things like dynamically changing the look and feel while the program is
executing. However, you generally just want to do one of two things,
either select the “cross platform” look and feel (which is Swing’s “metal”),
or select the look and feel for the system you are currently on, so your
Java program looks like it was created specifically for that system (this is
almost certainly the best choice in most cases, to avoid confounding the
user). The code to select either of these behaviors is quite simple—but you
must execute it before you create any visual components, because the
components will be made based on the current look and feel and will not
be changed just because you happen to change the look and feel midway
during the program (that process is more complicated and uncommon,
and is relegated to Swing-specific books). Feedback

Actually, if you want to use the cross-platform (“metal”) look and feel that
is characteristic of Swing programs, you don’t have to do anything—it’s
the default. But if you want instead to use the current operating
environment’s look and feel, you just insert the following code, typically at
the beginning of your main() but at least before any components are
added:

870 Thinking in Java www.BruceEckel.com

try {
 UIManager.setLookAndFeel(UIManager.
 getSystemLookAndFeelClassName());
} catch(Exception e) {
 throw new RuntimeException(e);
}

You don’t need anything in the catch clause because the UIManager
will default to the cross-platform look and feel if your attempts to set up
any of the alternatives fail. However, during debugging the exception can
be quite useful so you may at least want see some results via the catch
clause. Feedback

Here is a program that takes a command-line argument to select a look
and feel, and shows how several different components look under the
chosen look and feel:

//: c14:LookAndFeel.java
// Selecting different looks & feels.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class LookAndFeel extends JFrame {
 private String[] choices = {
 "eeny","meeny","Minnie","Mickey","Moe","Larry","Curly"
 };
 private Component[] samples = {
 new JButton("JButton"),
 new JTextField("JTextField"),
 new JLabel("JLabel"),
 new JCheckBox("JCheckBox"),
 new JRadioButton("Radio"),
 new JComboBox(choices),
 new JList(choices),
 };
 public LookAndFeel() {
 super("Look And Feel");
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 for(int i = 0; i < samples.length; i++)
 cp.add(samples[i]);

Chapter 14: Creating Windows & Applets 871

 }
 private static void usageError() {
 System.out.println(
 "Usage:LookAndFeel [cross|system|motif]");
 System.exit(1);
 }
 public static void main(String[] args) {
 if(args.length == 0) usageError();
 if(args[0].equals("cross")) {
 try {
 UIManager.setLookAndFeel(UIManager.
 getCrossPlatformLookAndFeelClassName());
 } catch(Exception e) {
 e.printStackTrace();
 }
 } else if(args[0].equals("system")) {
 try {
 UIManager.setLookAndFeel(UIManager.
 getSystemLookAndFeelClassName());
 } catch(Exception e) {
 e.printStackTrace();
 }
 } else if(args[0].equals("motif")) {
 try {
 UIManager.setLookAndFeel("com.sun.java."+
 "swing.plaf.motif.MotifLookAndFeel");
 } catch(Exception e) {
 e.printStackTrace();
 }
 } else usageError();
 // Note the look & feel must be set before
 // any components are created.
 Console.run(new LookAndFeel(), 300, 200);
 }
} ///:~

You can see that one option is to explicitly specify a string for a look and
feel, as seen with MotifLookAndFeel. However, that one and the
default “metal” look and feel are the only ones that can legally be used on
any platform; even though there are strings for Windows and Macintosh
look and feels, those can only be used on their respective platforms (these
are produced when you call getSystemLookAndFeelClassName()
and you’re on that particular platform). Feedback

872 Thinking in Java www.BruceEckel.com

It is also possible to create a custom look and feel package, for example, if
you are building a framework for a company that wants a distinctive
appearance. This is a big job and is far beyond the scope of this book (in
fact, you’ll discover it is beyond the scope of many dedicated Swing
books!). Feedback

The clipboard
The JFC supports limited operations with the system clipboard (in the
java.awt.datatransfer package). You can copy String objects to the
clipboard as text, and you can paste text from the clipboard into String
objects. Of course, the clipboard is designed to hold any type of data, but
how this data is represented on the clipboard is up to the program doing
the cutting and pasting. The Java clipboard API provides for extensibility
through the concept of a “flavor.” When data comes off the clipboard, it
has an associated set of flavors that it can be converted to (for example, a
graph might be represented as a string of numbers or as an image) and
you can see if that particular clipboard data supports the flavor you’re
interested in. Feedback

The following program is a simple demonstration of cut, copy, and paste
with String data in a JTextArea. One thing you’ll notice is that the
keyboard sequences you normally use for cutting, copying, and pasting
also work. But if you look at any JTextField or JTextArea in any other
program you’ll find that they also automatically support the clipboard key
sequences. This example simply adds programmatic control of the
clipboard, and you could use these techniques if you want to capture
clipboard text into something other than a JTextComponent.

//: c14:CutAndPaste.java
// Using the clipboard.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.datatransfer.*;
import com.bruceeckel.swing.*;

public class CutAndPaste extends JFrame {
 private JMenuBar mb = new JMenuBar();
 private JMenu edit = new JMenu("Edit");
 private JMenuItem

Chapter 14: Creating Windows & Applets 873

 cut = new JMenuItem("Cut"),
 copy = new JMenuItem("Copy"),
 paste = new JMenuItem("Paste");
 private JTextArea text = new JTextArea(20, 20);
 private Clipboard clipbd =
 getToolkit().getSystemClipboard();
 public CutAndPaste() {
 cut.addActionListener(new CutL());
 copy.addActionListener(new CopyL());
 paste.addActionListener(new PasteL());
 edit.add(cut);
 edit.add(copy);
 edit.add(paste);
 mb.add(edit);
 setJMenuBar(mb);
 getContentPane().add(text);
 }
 class CopyL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String selection = text.getSelectedText();
 if(selection == null)
 return;
 StringSelection clipString =
 new StringSelection(selection);
 clipbd.setContents(clipString,clipString);
 }
 }
 class CutL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String selection = text.getSelectedText();
 if(selection == null)
 return;
 StringSelection clipString =
 new StringSelection(selection);
 clipbd.setContents(clipString, clipString);
 text.replaceRange("", text.getSelectionStart(),
 text.getSelectionEnd());
 }
 }
 class PasteL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 Transferable clipData =
 clipbd.getContents(CutAndPaste.this);
 try {

874 Thinking in Java www.BruceEckel.com

 String clipString = (String)clipData.
 getTransferData(DataFlavor.stringFlavor);
 text.replaceRange(clipString,
 text.getSelectionStart(),text.getSelectionEnd());
 } catch(Exception ex) {
 System.err.println("Not String flavor");
 }
 }
 }
 public static void main(String[] args) {
 Console.run(new CutAndPaste(), 300, 200);
 }
} ///:~

The creation and addition of the menu and JTextArea should by now
seem a pedestrian activity. What’s different is the creation of the
Clipboard field clipbd, which is done through the Toolkit. Feedback

All the action takes place in the listeners. The CopyL and CutL listeners
are the same except for the last line of CutL, which erases the line that’s
been copied. The special two lines are the creation of a StringSelection
object from the String and the call to setContents() with this
StringSelection. That’s all there is to putting a String on the clipboard.
Feedback

In PasteL, data is pulled off the clipboard using getContents(). What
comes back is a fairly anonymous Transferable object, and you don’t
really know what it contains. One way to find out is to call
getTransferDataFlavors(), which returns an array of DataFlavor
objects indicating which flavors are supported by this particular object.
You can also ask it directly with isDataFlavorSupported(), passing in
the flavor you’re interested in. Here, however, the bold approach is taken:
getTransferData() is called assuming that the contents supports the
String flavor, and if it doesn’t the problem is sorted out in the exception
handler. Feedback

In the future you can expect more data flavors to be supported.

Chapter 14: Creating Windows & Applets 875

Packaging an applet into a
JAR file

An important use of the JAR utility is to optimize applet loading. In Java
1.0, people tended to try to cram all their code into a single applet class so
the client would need only a single server hit to download the applet code.
Not only did this result in messy, hard to read (and maintain) programs,
but the .class file was still uncompressed so downloading wasn’t as fast
as it could have been. Feedback

JAR files solve the problem by compressing all of your .class files into a
single file that is downloaded by the browser. Now you can create the
right design without worrying about how many .class files it will
generate, and the user will get a much faster download time. Feedback

Consider TicTacToe.java. It looks like a single class, but in fact it
contains five inner classes, so that’s six in all. Once you’ve compiled the
program, you package it into a JAR file with the line:

jar cf TicTacToe.jar *.class

This assumes that the only .class files in the current directory are the
ones from TicTacToe.java (otherwise you’ll get extra baggage). Feedback

Now you can create an HTML page with the new archive tag to indicate
the name of the JAR file. Here is the basic applet tag:

<head><title>TicTacToe Example Applet
</title></head>
<body>
<applet code=TicTacToe.class
 archive=TicTacToe.jar
 width=200 height=100>
</applet>
</body>

You’ll need to run this file through the HTMLconverter application that
comes with the JDK in order to get it to work.Feedback

876 Thinking in Java www.BruceEckel.com

Signing applets
10Because of the sandbox security model, unsigned applets are prevented
from performing certain tasks on the client, like writing to a file or
connecting to a local network. A signed applet verifies to the user that the
person who claims to have created the applet actually did, and that the
contents of the jar file have not been tampered with since that file left the
server. Without this minimum guarantee, the applet will not be allowed to
do anything that could damage a person’s machine or violate their
privacy. This is a restriction which is vital for the safe use of applets
through the Internet, but which also makes applets relatively powerless.
Feedback

Since the release of the Java Plugin, the process of signing applets has
become simpler and more standardized, and applets have become a more
viable means of deploying your application. Signing an applet has become
a reasonably straightforward process, using standard Java tools. Feedback

Prior to the plugin, you had to sign a .jar file with the Netscape tools for a
Netscape client, a .cab file with the Microsoft tools for an Internet
Explorer client, and create an applet tag in the HTML file for both
platforms. The user would then have to install a certificate on the browser
so that the applet would be trusted. Feedback

The plugin not only provides a standard approach to applet signing and
deployment, it also provides the end user with a better experience by
making certificate installation automatic. Feedback

Consider an applet which wants to have access to the client’s file system
and read and write some files. This is very similar to
FileChooserTest.java, but because this is an applet, it will only be able
to open the Swing JFileChooser dialog if it is running from a signed jar
file. Otherwise, the showOpenDialog() method will throw a
SecurityException. Feedback

//: c14:signedapplet:FileAccessApplet.java

10 This section and the next were created by Jeremy Meyer.

Chapter 14: Creating Windows & Applets 877

// Demonstration of File dialog boxes.
package c14.signedapplet;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import com.bruceeckel.swing.*;

public class FileAccessApplet extends JApplet {
 private JTextField
 filename = new JTextField(),
 dir = new JTextField();
 private JButton
 open = new JButton("Open"),
 save = new JButton("Save");
 private JEditorPane ep = new JEditorPane();
 private JScrollPane jsp = new JScrollPane();
 private File file;
 public void init() {
 JPanel p = new JPanel();
 open.addActionListener(new OpenL());
 p.add(open);
 save.addActionListener(new SaveL());
 p.add(save);
 Container cp = getContentPane();
 jsp.getViewport().add(ep);
 cp.add(jsp, BorderLayout.CENTER);
 cp.add(p, BorderLayout.SOUTH);
 dir.setEditable(false);
 save.setEnabled(false);
 ep.setContentType("text/html");
 filename.setEditable(false);
 p = new JPanel();
 p.setLayout(new GridLayout(2, 1));
 p.add(filename);
 p.add(dir);
 cp.add(p, BorderLayout.NORTH);
 }
 class OpenL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JFileChooser c = new JFileChooser();
 c.setFileFilter(new TextFileFilter());
 // Demonstrate "Open" dialog:
 int rVal = c.showOpenDialog(FileAccessApplet.this);

878 Thinking in Java www.BruceEckel.com

 if(rVal == JFileChooser.APPROVE_OPTION) {
 file = c.getSelectedFile();
 filename.setText(file.getName());
 dir.setText(c.getCurrentDirectory().toString());
 try {
 System.out.println("Url is " + file.toURL());
 ep.setPage(file.toURL());
 // ep.repaint();
 } catch (IOException ioe) {
 throw new RuntimeException(ioe);
 }
 }
 if(rVal == JFileChooser.CANCEL_OPTION) {
 filename.setText("You pressed cancel");
 dir.setText("");
 } else {
 save.setEnabled(true);
 }
 }
 }
 class SaveL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JFileChooser c = new JFileChooser(file);
 c.setSelectedFile(file);
 // Demonstrate "Save" dialog:
 int rVal = c.showSaveDialog(FileAccessApplet.this);
 if(rVal == JFileChooser.APPROVE_OPTION) {
 filename.setText(c.getSelectedFile().getName());
 dir.setText(c.getCurrentDirectory().toString());
 try {
 FileWriter fw = new FileWriter(file);
 ep.write(fw);
 } catch (IOException ioe) {
 throw new RuntimeException(ioe);
 }
 }
 if(rVal == JFileChooser.CANCEL_OPTION) {
 filename.setText("You pressed cancel");
 dir.setText("");
 }
 }
 }
 public class TextFileFilter extends
 javax.swing.filechooser.FileFilter {

Chapter 14: Creating Windows & Applets 879

 public boolean accept(File f) {
 return f.getName().endsWith(".txt")
 || f.isDirectory();
 }
 public String getDescription() {
 return "Text Files (*.txt)";
 }
 }
 public static void main(String[] args) {
 Console.run(new FileAccessApplet(), 500, 500);
 }
} ///:~

It appears to be an ordinary applet. However, as it stands, it would not be
allowed to open and close files on a client’s system. To make this run as a
signed applet you need to put it into a jar file (see the section on the jar
utility, earlier in this chapter) and sign the jar file. Feedback

Once you have a jar file, you will need a certificate or a key to sign it with.
If you were a large corporation you would apply to a signing authority like
Verisign or Thawte, and they would issue you a certificate. This would
cost money and require regular renewal. You can also easily make a self-
signed certificate for testing purposes using the standard Java keytool.
Feedback

If you have your Java “bin” directory in your executable path, you can
type:

keytool –genkey –alias <keyname> -keystore <url>

Where keyname is the alias name that you want to give the key, say
“mykeyname” and url is the location of the file which stores your keys.
This is usually in a file called cacerts which is in the jre/lib/security
directory, so specify that file. Feedback

You will now be prompted for the password. Unless you have changed the
default, this will be “changeit” (a hint to do just that). Next you will be
asked for your name, the organizational unit, the organization, city, state
and country. This information is stored in the certificate. Lastly you will
be asked for a password for that key. If you are really security conscious
you can give it a separate password, but the default password is the same
as the keystore itself, and is usually adequate. The above information can

880 Thinking in Java www.BruceEckel.com

be specified on the command line from within a build tool such as Ant.
Feedback

If you invoke the keytool utility with no parameters at the command
prompt it will give you a list of its numerous options. You might like to
use the –valid option, for example, which enables you to specify how
many days the key will be valid for. Feedback

To confirm that your key is now in the cacerts file, type:

 keytool –list –keystore <url>

and enter the password as before. Your key may be hidden among the
other keys already in your certificate files. Feedback

Your new certificate is self signed and thus not actually trusted by a
signing authority. If you use this certificate to sign a jar file, the end user
will get a warning, and a strong recommendation not to use your software.
You and your users will have to tolerate this until you are prepared to pay
for a trusted certificate for commercial purposes. Feedback

To sign your jar file, use the standard Java jarsigner tool as follows:

jarsigner –keystore <url> <jarfile> <keyname>

Where url is the location of your cacerts file, jarfile is the name of your
jar file, and keyname is the alias that you gave to your key. You will
again be prompted for the password. Feedback

You now have a jar file which can be identified as being signed with your
key, and which can guarantee that it has not been tampered with (i.e. no
files have been changed, added or removed) since you signed it. Feedback

All you have to do now is make sure that the applet tag in your HTML file
has an “archive” element, which specifies the name of your jar file. Feedback

The applet tag is somewhat more complicated for the plugin, but if you
create a simple tag like:

<APPLET
 CODE=package.AppletSubclass.class
 ARCHIVE = myjar.jar
 WIDTH=300
 HEIGHT=200>

Chapter 14: Creating Windows & Applets 881

</APPLET>

and run the HTMLConverter tool on it (this is packaged with the freely-
downloadable JDK), it will create the correct applet tag for you. Feedback

Now, when your applet is downloaded by a client, they will be informed
that a signed applet is being loaded, and given the option of trusting the
signer. As previously mentioned, your test certificate doesn’t have a very
high degree of trust, and the user will get a warning to this effect. If they
opt to trust your applet, it will have full access to their system and behave
as if it were an ordinary application. Feedback

The source code for this book, downloadable from
www.BruceEckel.com, contains complete working configuration files
and an ant build script to properly compile and build this project. Feedback

JNLP and Java Web Start
Signed applets are powerful, and can effectively take the place of an
application, but they must run inside a web browser. This requires the
extra overhead of the browser running on the client machine, and also
means that the user interface of the applet is limited, and often visually
confusing. The web browser has its own set of menus and toolbars, which
will appear above the applet. Feedback

The Java Network Launch Protocol (JNLP), solves the problem without
sacrificing the advantages of applets. With a JNLP application, you can
download and install a standalone Java application onto the client’s
machine. This can be run from the command prompt, a desktop icon, or
the application manager that is installed with your JNLP implementation.
The application can even be run from the website from which it was
originally downloaded. Feedback

A JNLP application can dynamically download resources from the
Internet at run time, and the version can be automatically checked (if the
user is connected to the Internet) . This means that it has all of the
advantages of an applet, together with the advantages of standalone
applications. Feedback

882 Thinking in Java www.BruceEckel.com

Like applets, JNLP applications need to be treated with some caution by
the client’s system. A JNLP application is web-based and easy to
download, so it might be malevolent. Because of this, JNLP applications
are subject to the same sandbox security restrictions as applets. Like
applets, they can be deployed in signed jar files, giving the user the option
to trust the signer. Unlike applets, if they are deployed in an unsigned jar
file they can still request access to certain resources of the client’s system
by means of services in the JNLP API (the user must approve the requests
during program execution). Feedback

Because JNLP describes a protocol, not an implementation, you will need
an implementation in order to use it. Java Web Start, or JAWS, is Sun’s
freely available, official reference implementation. All you need to do is
download and install it, and if you are using it for development, make sure
that the jar files are in your classpath. If you are deploying your JNLP
application from a webserver, you have to ensure that your server
recognizes the MIME type application/x-java-jnlp-file. If you are using a
recent version of the Tomcat webserver
(http://jakarta.apache.org/tomcat) this will already be configured.
Consult the user guide for your particular server. Feedback

Creating a JNLP application is not difficult. You create a standard
application which is archived in a jar file, and then you provide a launch
file, which is a simple XML file which gives the client all the information it
needs to download and install your application. If you choose not to sign
your jar file, then you must make use of the services supplied by the JNLP
API for each type of resource you want access to on the users machine.
Feedback

Here is a variation of the example using the JFileChooser dialog, but
this time using the JNLP services to open it, so that the class can be
deployed as a JNLP application in an unsigned jar file. Feedback

//: c14:jnlp:JnlpFileChooser.java
// Opening files on a local machine with JNLP.
// {Depends: javaws.jar}
package c14.jnlp;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

Chapter 14: Creating Windows & Applets 883

import javax.jnlp.*;

public class JnlpFileChooser extends JFrame {
 private JTextField filename = new JTextField();
 private JButton
 open = new JButton("Open"),
 save = new JButton("Save");
 private JEditorPane ep = new JEditorPane();
 private JScrollPane jsp = new JScrollPane();
 private FileContents fileContents;
 public JnlpFileChooser() {
 JPanel p = new JPanel();
 open.addActionListener(new OpenL());
 p.add(open);
 save.addActionListener(new SaveL());
 p.add(save);
 Container cp = getContentPane();
 jsp.getViewport().add(ep);
 cp.add(jsp, BorderLayout.CENTER);
 cp.add(p, BorderLayout.SOUTH);
 filename.setEditable(false);
 p = new JPanel();
 p.setLayout(new GridLayout(2,1));
 p.add(filename);
 cp.add(p, BorderLayout.NORTH);
 ep.setContentType("text");
 save.setEnabled(false);
 }
 class OpenL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 FileOpenService fs = null;
 try {
 fs = (FileOpenService)ServiceManager.lookup(
 "javax.jnlp.FileOpenService");
 } catch(UnavailableServiceException use) {
 throw new RuntimeException(use);
 }
 if(fs != null) {
 try {
 fileContents = fs.openFileDialog(".",
 new String[]{"txt", "*"});
 if(fileContents == null)
 return;
 filename.setText(fileContents.getName());

884 Thinking in Java www.BruceEckel.com

 ep.read(fileContents.getInputStream(), null);
 } catch (Exception exc) {
 throw new RuntimeException (exc);
 }
 }
 save.setEnabled(true);
 }
 }
 class SaveL implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 FileSaveService fs = null;
 try {
 fs = (FileSaveService)ServiceManager.lookup(
 "javax.jnlp.FileSaveService");
 } catch(UnavailableServiceException use) {
 throw new RuntimeException(use);
 }
 if(fs!=null) {
 try {
 fileContents = fs.saveFileDialog(".",
 new String[]{"txt"},
 new ByteArrayInputStream(
 ep.getText().getBytes()),
 fileContents.getName());
 if(fileContents == null)
 return;
 filename.setText(fileContents.getName());
 } catch (Exception exc) {
 throw new RuntimeException (exc);
 }
 }
 }
 }
 public static void main(String[] args) {
 JnlpFileChooser fc = new JnlpFileChooser();
 fc.setSize(400, 300);
 fc.setVisible(true);
 }
} ///:~

Note that the FileOpenService and the FileCloseService classes are
imported from the javax.jnlp package and that nowhere in the code is
the JFileChooser dialog box referred to directly. The two services used
here must be requested using the ServiceManager.lookup() method

Chapter 14: Creating Windows & Applets 885

and the resources on the client system can only be accessed via the objects
returned from this method. In this case, the files on the client’s file system
are being written to and read from using the FileContent interface,
provided by the JNLP. Any attempt to access the resources directly by
using, say, a File or a FileReader object would cause a
SecurityException to be thrown in the same way that it would if you
tried to use them from an unsigned applet. If you want to use these classes
and not be restricted to the JNLP service interfaces, you must sign the jar
file (see the previous section on signing jar files). Feedback

Now that we have a runnable class that makes use of the JNLP services,
all that is needed is for the class to be put into a jar file, and a launch file
to be written. Here is an appropriate launch file for the example above.
Feedback

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec = “1.0+”
 codebase="file://C:\TIJ3code\c14\jnlp"
 href="filechooser.jnlp">
 <information>
 <title>FileChooser demo application</title>
 <vendor>Mindview Inc.</vendor>
 <description>
 Jnlp File choose Application
 </description>
 <description kind="short">
 A demonstration of opening, reading and
 writing a text file
 </description>
 <icon href="images/tijicon.gif"/>
 <offline-allowed/>
 </information>
 <resources>
 <j2se version="1.3+"/>
 <jar href="jnlpfilechooser.jar" download="eager"/>
 </resources>
 <application-desc
 main-class="c14.jnlp.JnlpFileChooser"/>
</jnlp>

This launch file needs to be saved as a .jnlp file, in this case,
filechooser.jnlp, in the same directory as the jar file. Feedback

886 Thinking in Java www.BruceEckel.com

As you can see, it is an XML file, with one <jnlp> tag. This has a few
subelements, which are mostly self-explanatory. Feedback

The spec attribute of the jnlp element tells the client system what
version of the JNLP the application can be run with. The codebase
attribute points to the directory where this launch file and the resources
can be found. Typically it would be an HTTP URL pointing to webserver,
but in this case it points to a directory on the local machine, which is a
good means of testing the application. The href attribute must specify the
name of this file. Feedback

The information tag has various subelements that provide information
about the application. These are used by the Java Web Start
administrative console or equivalent, which installs the jnlp application
and allows the user to run it from the command line, make short cuts and
so on. Feedback

The resources tag serves a similar purpose as the applet tag in an HTML
file. The j2se subelement specifies the version of the j2se that is needed to
run the application, and the jar subelement specifies the jar file in which
the class is archived. The jar element has an attribute download, which
can have the values “eager” or “lazy” which tell the JNLP implementation
whether or not the entire archive needs to be downloaded before the
application can be run. Feedback

The application-desc attribute tells the JNLP implementation which
class is the executable class, or entry point to the jar file. Feedback

Another useful subelement of the jnlp tag is the security tag, not shown
here. Here’s what a security tag looks like:

<security>
 <all-permissions/>
<security/>

You use the security tag when your application is deployed in a signed jar
file. It is not needed in the example above because the local resources are
all accessed via the JNLP services. Feedback

There are a few other tags available, the details of which can be found in
the specification

Chapter 14: Creating Windows & Applets 887

http://java.sun.com/products/javawebstart/download-spec.html.
Feedback

Now that the .jnlp is written, you will need to add a hypertext link to it in
an HTML page. This will be its download page. You might have a complex
layout with a detailed introduction to your application but as long as you
have something like:

click here

in your html file, then you will be able to initiate the installation of the
JNLP application by clicking on the link. Once you have downloaded the
application once, you will be able to configure it using the administrative
console. If you are using Java Web Start on Windows, then you will be
prompted to make a short cut to your application the second time you use
it. This behavior is configurable. Feedback

The source code for this book, downloadable from
www.BruceEckel.com, contains complete working configuration files
and an ant build script to properly compile and build this project. Feedback

Only two of the JNLP services are covered here, but there are 7 services in
the current release. Each is designed for a specific task like printing,
cutting and pasting to the clipboard. An in depth discussion of them is
beyond the scope of this chapter. Feedback

Programming techniques
Because GUI programming in Java has been an evolving technology with
some very significant changes between Java 1.0/1.1 and the Swing library
in Java 2, there have been some old programming idioms that have
seeped through to examples that you might see given for Swing. In
addition, Swing allows you to program in more and better ways than were
allowed by the old models. In this section, some of these issues will be
demonstrated by introducing and examining some programming idioms.
Feedback

888 Thinking in Java www.BruceEckel.com

Binding events dynamically
One of the benefits of the Swing event model is flexibility. You can add
and remove event behavior with single method calls. The following
example demonstrates this:

//: c14:DynamicEvents.java
// You can change event behavior dynamically.
// Also shows multiple actions for an event.
// <applet code=DynamicEvents
// width=250 height=400></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class DynamicEvents extends JApplet {
 private java.util.List list = new ArrayList();
 private int i = 0;
 private JButton
 b1 = new JButton("Button1"),
 b2 = new JButton("Button2");
 private JTextArea txt = new JTextArea();
 class B implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 txt.append("A button was pressed\n");
 }
 }
 class CountListener implements ActionListener {
 private int index;
 public CountListener(int i) { index = i; }
 public void actionPerformed(ActionEvent e) {
 txt.append("Counted Listener " + index + "\n");
 }
 }
 class B1 implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 txt.append("Button 1 pressed\n");
 ActionListener a = new CountListener(i++);
 list.add(a);
 b2.addActionListener(a);
 }
 }

Chapter 14: Creating Windows & Applets 889

 class B2 implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 txt.append("Button2 pressed\n");
 int end = list.size() - 1;
 if(end >= 0) {
 b2.removeActionListener(
 (ActionListener)list.get(end));
 list.remove(end);
 }
 }
 }
 public void init() {
 Container cp = getContentPane();
 b1.addActionListener(new B());
 b1.addActionListener(new B1());
 b2.addActionListener(new B());
 b2.addActionListener(new B2());
 JPanel p = new JPanel();
 p.add(b1);
 p.add(b2);
 cp.add(BorderLayout.NORTH, p);
 cp.add(new JScrollPane(txt));
 }
 public static void main(String[] args) {
 Console.run(new DynamicEvents(), 250, 400);
 }
} ///:~

The new twists in this example are: Feedback

1. There is more than one listener attached to each Button. Usually,
components handle events as multicast, meaning that you can
register many listeners for a single event. In the special
components in which an event is handled as unicast, you’ll get a
TooManyListenersException. Feedback

2. During the execution of the program, listeners are dynamically
added and removed from the Button b2. Adding is accomplished
in the way you’ve seen before, but each component also has a
removeXXXListener() method to remove each type of listener.
Feedback

890 Thinking in Java www.BruceEckel.com

This kind of flexibility provides much greater power in your
programming. Feedback

You should notice that event listeners are not guaranteed to be called in
the order they are added (although most implementations do in fact work
that way). Feedback

Separating business logic
from UI logic
In general you’ll want to design your classes so that each one does “only
one thing.” This is particularly important when user-interface code is
concerned, since it’s easy to tie up “what you’re doing” with “how you’re
displaying it.” This kind of coupling prevents code reuse. It’s much more
desirable to separate your “business logic” from the GUI. This way, you
can not only reuse the business logic more easily, it’s also easier to reuse
the GUI. Feedback

Another issue is multitiered systems, where the “business objects” reside
on a completely separate machine. This central location of the business
rules allows changes to be instantly effective for all new transactions, and
is thus a compelling way to set up a system. However, these business
objects can be used in many different applications and so should not be
tied to any particular mode of display. They should just perform the
business operations and nothing more11. Feedback

The following example shows how easy it is to separate the business logic
from the GUI code:

//: c14:Separation.java
// Separating GUI logic and business objects.
// <applet code=Separation width=250 height=150></applet>
import javax.swing.*;
import java.awt.*;
import javax.swing.event.*;
import java.awt.event.*;

11 This concept is more fully explored in Thinking in Enterprise Java, at
www.BruceEckel.com.

Chapter 14: Creating Windows & Applets 891

import java.applet.*;
import com.bruceeckel.swing.*;

class BusinessLogic {
 private int modifier;
 public BusinessLogic(int mod) { modifier = mod; }
 public void setModifier(int mod) { modifier = mod; }
 public int getModifier() { return modifier; }
 // Some business operations:
 public int calculation1(int arg){ return arg * modifier;}
 public int calculation2(int arg){ return arg + modifier;}
}

public class Separation extends JApplet {
 private JTextField
 t = new JTextField(15),
 mod = new JTextField(15);
 private JButton
 calc1 = new JButton("Calculation 1"),
 calc2 = new JButton("Calculation 2");
 private BusinessLogic bl = new BusinessLogic(2);
 public static int getValue(JTextField tf) {
 try {
 return Integer.parseInt(tf.getText());
 } catch(NumberFormatException e) {
 return 0;
 }
 }
 class Calc1L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t.setText(Integer.toString(
 bl.calculation1(getValue(t))));
 }
 }
 class Calc2L implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 t.setText(Integer.toString(
 bl.calculation2(getValue(t))));
 }
 }
 // If you want something to happen whenever
 // a JTextField changes, add this listener:
 class ModL implements DocumentListener {
 public void changedUpdate(DocumentEvent e) {}

892 Thinking in Java www.BruceEckel.com

 public void insertUpdate(DocumentEvent e) {
 bl.setModifier(getValue(mod));
 }
 public void removeUpdate(DocumentEvent e) {
 bl.setModifier(getValue(mod));
 }
 }
 public void init() {
 Container cp = getContentPane();
 cp.setLayout(new FlowLayout());
 cp.add(t);
 calc1.addActionListener(new Calc1L());
 calc2.addActionListener(new Calc2L());
 JPanel p1 = new JPanel();
 p1.add(calc1);
 p1.add(calc2);
 cp.add(p1);
 mod.getDocument().addDocumentListener(new ModL());
 JPanel p2 = new JPanel();
 p2.add(new JLabel("Modifier:"));
 p2.add(mod);
 cp.add(p2);
 }
 public static void main(String[] args) {
 Console.run(new Separation(), 250, 100);
 }
} ///:~

You can see that BusinessLogic is a straightforward class that performs
its operations without even a hint that it might be used in a GUI
environment. It just does its job. Feedback

Separation keeps track of all the UI details, and it talks to
BusinessLogic only through its public interface. All the operations are
centered around getting information back and forth through the UI and
the BusinessLogic object. So Separation, in turn, just does its job.
Since Separation knows only that it’s talking to a BusinessLogic
object (that is, it isn’t highly coupled), it could be massaged into talking to
other types of objects without much trouble. Feedback

Thinking in terms of separating UI from business logic also makes life
easier when you’re adapting legacy code to work with Java. Feedback

Chapter 14: Creating Windows & Applets 893

A canonical form
Inner classes, the Swing event model, and the fact that the old AWT event
model is still supported, along with new library features that rely on old-
style programming, has added a new element of confusion to the code
design process. Now there are even more different ways for people to
write unpleasant code. Feedback

Except in extenuating circumstances you can always use the simplest and
clearest approach: listener classes (typically written as inner classes) to
solve your event-handling needs. This is the form used in most of the
examples in this chapter. Feedback

By following this model you should be able to reduce the statements in
your programs that say: “I wonder what caused this event.” Each piece of
code is concerned with doing, not type-checking. This is the best way to
write your code; not only is it easier to conceptualize, but much easier to
read and maintain. Feedback

Concurrency & Swing
It is easy to forget that you are using threads when you program with
Swing. The fact that you don’t have to explicitly create a Thread object
means that threading issues can catch you by surprise. Typically when you
write a Swing program, or any GUI application with a windowed display,
the majority of the application is event driven, and nothing really happens
until the user generates and event by clicking on a GUI component with
the mouse, or striking a key. Feedback

Just remember that there is a Swing event dispatching thread, which is
always there, handling all the Swing events in turn. This needs to be
considered if you want to guarantee that your application won’t suffer
from deadlocking or race conditions. Feedback

This section looks at a couple of issues worth noting when working with
threads under Swing. Feedback

894 Thinking in Java www.BruceEckel.com

Runnable revisited
In Chapter 13, I suggested that you think carefully before making a class
as an implementation of Runnable. Of course, if you must inherit from a
class and you want to add threading behavior to the class, Runnable is
the correct solution. The following example exploits this by making a
Runnable JPanel class that paints different colors on itself. This
application is set up to take values from the command line to determine
how big the grid of colors is and how long to sleep() between color
changes. By playing with these values you’ll discover some interesting and
possibly inexplicable features of threads: Feedback

//: c14:ColorBoxes.java
// Using the Runnable interface.
// <applet code=ColorBoxes width=500 height=400>
// <param name=grid value="12">
// <param name=pause value="50"></applet>
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

class CBox extends JPanel implements Runnable {
 private Thread t;
 private int pause;
 private static final Color[] colors = {
 Color.BLACK, Color.BLUE, Color.CYAN,
 Color.DARK_GRAY, Color.GRAY, Color.GREEN,
 Color.LIGHT_GRAY, Color.MAGENTA,
 Color.ORANGE, Color.PINK, Color.RED,
 Color.WHITE, Color.YELLOW
 };
 private static Random rand = new Random();
 private static final Color newColor() {
 return colors[rand.nextInt(colors.length)];
 }
 private Color cColor = newColor();
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(cColor);
 Dimension s = getSize();
 g.fillRect(0, 0, s.width, s.height);

Chapter 14: Creating Windows & Applets 895

 }
 public CBox(int pause) {
 this.pause = pause;
 t = new Thread(this);
 t.start();
 }
 public void run() {
 while(true) {
 cColor = newColor();
 repaint();
 try {
 t.sleep(pause);
 } catch(InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

public class ColorBoxes extends JApplet {
 private boolean isApplet = true;
 private int grid = 12;
 private int pause = 50;
 public void init() {
 // Get parameters from Web page:
 if(isApplet) {
 String gsize = getParameter("grid");
 if(gsize != null)
 grid = Integer.parseInt(gsize);
 String pse = getParameter("pause");
 if(pse != null)
 pause = Integer.parseInt(pse);
 }
 Container cp = getContentPane();
 cp.setLayout(new GridLayout(grid, grid));
 for(int i = 0; i < grid * grid; i++)
 cp.add(new CBox(pause));
 }
 public static void main(String[] args) {
 ColorBoxes applet = new ColorBoxes();
 applet.isApplet = false;
 if(args.length > 0)
 applet.grid = Integer.parseInt(args[0]);
 if(args.length > 1)

896 Thinking in Java www.BruceEckel.com

 applet.pause = Integer.parseInt(args[1]);
 Console.run(applet, 500, 400);
 }
} ///:~

ColorBoxes is the usual applet/application with an init() that sets up
the GUI. This configures a GridLayout so that it has grid cells in each
dimension. Then it adds the appropriate number of CBox objects to fill
the grid, passing the pause value to each one. In main() you can see
how pause and grid have default values that can be changed if you pass
in command-line arguments, or by using applet parameters. Feedback

CBox is where all the work takes place. This is inherited from JPanel
and it implements the Runnable interface so that each JPanel can also
be a Thread. Remember that when you implement Runnable, you don’t
make a Thread object, just a class that has a run() method. Thus, you
must explicitly create a Thread object and hand the Runnable object to
the constructor, then call start() (this happens in the constructor). In
CBox this thread is called t. Feedback

Notice the array colors, which is an enumeration of all the colors in class
Color. This is used in newColor() to produce a randomly selected
color. The current cell color is cColor. Feedback

paintComponent() is quite simple—it just sets the color to cColor and
fills the entire JPanel with that color. Feedback

In run(), you see the infinite loop that sets the cColor to a new random
color and then calls repaint() to show it. Then the thread goes to
sleep() for the amount of time specified on the command line. Feedback

Precisely because this design is flexible and threading is tied to each
JPanel element, you can experiment by making as many threads as you
want. (In reality, there is a restriction imposed by the number of threads
your JVM can comfortably handle.) Feedback

This program also makes an interesting benchmark, since it can and has
shown dramatic performance and behavioral differences between one
JVM threading implementation and another. Feedback

Chapter 14: Creating Windows & Applets 897

Managing concurrency
12When you make changes to any Swing component properties from the
main method of your class or in a separate thread, be aware that the
event dispatching thread might be vying for the same resources. Feedback

The following program shows how you can get an unexpected result by
not paying attention to the event dispatching thread:

//: c14:EventThreadFrame.java
// Race Conditions using Swing Components.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.Console;

public class EventThreadFrame extends JFrame {
 private JTextField statusField =
 new JTextField("Initial Value");
 public EventThreadFrame() {
 Container cp = getContentPane();
 cp.add(statusField, BorderLayout.NORTH);
 addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent e) {
 try { // Simulate initialization overhead
 Thread.sleep(2000);
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 }
 statusField.setText("Initialization complete");
 }
 });
 }
 public static void main (String[] args) {
 EventThreadFrame etf = new EventThreadFrame();
 Console.run(etf, 150, 60);
 etf.statusField.setText("Application ready");
 System.out.println("Done");
 }
} ///:~

12 This section was created by Jeremy Meyer.

898 Thinking in Java www.BruceEckel.com

It is easy to see what is supposed to happen. In the main method, a new
EventThreadFrame class is created and run using the Console.run()
method. After the frame has been created and run, the value of the text
field is set to “Application ready,” and then, just before exiting main(),
“Done” is sent to the console. Feedback

When the frame is created, the text field is constructed with the value
“Initial Value” in the constructor of the frame, and an event listener is
added which listens for the opening of the window. This event will be
received by the JFrame as soon as the setVisible(true) method has
been called (by Console.run()) and is the right place to do any
initialization that affects the view of the window. In this example, a call to
sleep() simulates some initialization code that might take a couple of
seconds. After this is done, the value of the text box is set to “Initialization
complete.” Feedback

You would expect that the text field would display “Initial Value” followed
by “Initialization complete” and then “Application Ready.” Next the word
“Done” should appear on the command prompt. What really happens is
that the setText() method on the TextField is called by the main thread
before the EventThreadFrame has had a chance to process its events.
This means that the string “Application ready” might actually appear
before “Initialization complete.” In reality things might not even appear in
this order. Depending on the speed of your system, the Swing event
dispatching thread may already be busy handling the windowOpened
event and so you won’t see the text field value until after that event, but by
then the text will have been changed to “Initialization Complete.” Since
the text field was set to this value last, the message “Application ready” is
lost. To makes things worse, the word “Done” appears on the command
prompt before anything else happens at all! Feedback

This undesirable and somewhat unpredictable effect is caused by the
simple fact that there are two threads which need some sort of
synchronization. It shows that you can sometimes get into trouble with
threads and Swing. To solve this problem you must ensure that Swing
component properties are only ever updated by the event dispatch thread.
Feedback

Chapter 14: Creating Windows & Applets 899

This is easier than it sounds, using one of Swing’s two mechanisms
SwingUtilities.invokeLater() and
SwingUtilities.invokeandWait(). They do most of the work, which
means that you don’t have to do too much complicated synchronization or
thread programming. Feedback

They both take runnable objects as parameters, and drive the run() with
the Swing event processing thread, after it has processed any pending
events in the queue. Feedback

//: c14:InvokeLaterFrame.java
// Eliminating race Conditions using Swing Components.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.Console;

public class InvokeLaterFrame extends JFrame {
 private JTextField statusField =
 new JTextField("Initial Value");
 public InvokeLaterFrame() {
 Container cp = getContentPane();
 cp.add(statusField, BorderLayout.NORTH);
 addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent e) {
 try { // Simulate initialization overhead
 Thread.sleep(2000);
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 }
 statusField.setText("Initialization complete");
 }
 });
 }
 public static void main(String[] args) {
 final InvokeLaterFrame ilf = new InvokeLaterFrame();
 Console.run(ilf, 150, 60);
 // Use invokeAndWait() to synchronize output to prompt:
 // SwingUtilities.invokeAndWait(new Runnable() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ilf.statusField.setText("Application ready");
 }
 });

900 Thinking in Java www.BruceEckel.com

 System.out.println("Done");
 }
} ///:~

A Runnable anonymous inner class is passed to
SwingUtilities.invokeLater() which calls the setText() method of
the text field. This queues the runnable object as an event so that it is the
event dispatching thread which calls the setText() method after first
processing any pending events. This means that the windowOpening
event will be processed before the text field displays “Application ready,”
which is the intended result. Feedback

invokeLater() is an asynchronous call so it returns straight away. This
can be useful because it doesn’t block, so your code runs smoothly.
However, it doesn’t solve the problem with the “Done” string, which is
still printed to the command prompt before anything else happens. Feedback

The solution to this problem is to use invokeAndWait() instead of
invokeLater() to set the text field value to “Application Ready.” This
method is synchronous, which means that it will block until the event has
been processed before returning. The System.out.println(“Done”)
statement will only be reached after the text field value has been set, and
so it will be the last statement to be executed. This gives us completely
predictable and correct behavior. Feedback

Using invokeAndWait() provides one of the necessary conditions for
deadlock, so make sure that you are careful about controlling shared
resources if you are using invokeAndWait(), especially if you are
calling it from more than one thread. Feedback

You will probably use invokeLater() more often than
invokeAndWait(), but remember that any time after initialization if
you set the properties of a Swing component, it should be done using one
of these methods. Feedback

Chapter 14: Creating Windows & Applets 901

Visual programming
and JavaBeans

So far in this book you’ve seen how valuable Java is for creating reusable
pieces of code. The “most reusable” unit of code has been the class, since
it comprises a cohesive unit of characteristics (fields) and behaviors
(methods) that can be reused either directly via composition or through
inheritance. Feedback

Inheritance and polymorphism are essential parts of object-oriented
programming, but in the majority of cases when you’re putting together
an application, what you really want is components that do exactly what
you need. You’d like to drop these parts into your design like the chips an
electronic engineer puts on a circuit board. It seems, too, that there
should be some way to accelerate this “modular assembly” style of
programming. Feedback

“Visual programming” first became successful—very successful—with
Microsoft’s Visual Basic (VB), followed by a second-generation design in
Borland’s Delphi (the primary inspiration for the JavaBeans design). With
these programming tools the components are represented visually, which
makes sense since they usually display some kind of visual component
such as a button or a text field. The visual representation, in fact, is often
exactly the way the component will look in the running program. So part
of the process of visual programming involves dragging a component
from a palette and dropping it onto your form. The application builder
tool writes code as you do this, and that code will cause the component to
be created in the running program. Feedback

Simply dropping the component onto a form is usually not enough to
complete the program. Often, you must change the characteristics of a
component, such as its color, the text that’s on it, the database it’s
connected to, etc. Characteristics that can be modified at design time are
referred to as properties. You can manipulate the properties of your
component inside the application builder tool, and when you create the
program this configuration data is saved so that it can be rejuvenated
when the program is started. Feedback

902 Thinking in Java www.BruceEckel.com

By now you’re probably used to the idea that an object is more than
characteristics; it’s also a set of behaviors. At design-time, the behaviors
of a visual component are partially represented by events, meaning
“Here’s something that can happen to the component.” Ordinarily, you
decide what you want to happen when an event occurs by tying code to
that event. Feedback

Here’s the critical part: the application builder tool uses reflection to
dynamically interrogate the component and find out which properties and
events the component supports. Once it knows what they are, it can
display the properties and allow you to change them (saving the state
when you build the program), and also display the events. In general, you
do something like double-clicking on an event and the application builder
tool creates a code body and ties it to that particular event. All you have to
do at that point is write the code that executes when the event occurs.
Feedback

All this adds up to a lot of work that’s done for you by the application
builder tool. As a result you can focus on what the program looks like and
what it is supposed to do, and rely on the application builder tool to
manage the connection details for you. The reason that visual
programming tools have been so successful is that they dramatically
speed up the process of building an application—certainly the user
interface, but often other portions of the application as well. Feedback

What is a JavaBean?
After the dust settles, then, a component is really just a block of code,
typically embodied in a class. The key issue is the ability for the
application builder tool to discover the properties and events for that
component. To create a VB component, the programmer had to write a
fairly complicated piece of code following certain conventions to expose
the properties and events. Delphi was a second-generation visual
programming tool and the language was actively designed around visual
programming so it was much easier to create a visual component.
However, Java has brought the creation of visual components to its most
advanced state with JavaBeans, because a Bean is just a class. You don’t
have to write any extra code or use special language extensions in order to
make something a Bean. The only thing you need to do, in fact, is slightly

Chapter 14: Creating Windows & Applets 903

modify the way that you name your methods. It is the method name that
tells the application builder tool whether this is a property, an event, or
just an ordinary method. Feedback

In the JDK documentation, this naming convention is mistakenly termed
a “design pattern.” This is unfortunate, since design patterns (see
Thinking in Patterns with Java at www.BruceEckel.com) are challenging
enough without this sort of confusion. It’s not a design pattern, it’s just a
naming convention and it’s fairly simple:

1. For a property named xxx, you typically create two methods:
getXxx() and setXxx(). Note that the first letter after “get” or
“set” is automatically lowercased to produce the property name.
The type produced by the “get” method is the same as the type of
the argument to the “set” method. The name of the property and
the type for the “get” and “set” are not related. Feedback

2. For a boolean property, you can use the “get” and “set” approach
above, but you can also use “is” instead of “get.” Feedback

3. Ordinary methods of the Bean don’t conform to the above naming
convention, but they’re public. Feedback

4. For events, you use the Swing “listener” approach. It’s exactly the
same as you’ve been seeing:
addBounceListener(BounceListener) and
removeBounceListener(BounceListener) to handle a
BounceEvent. Most of the time the built-in events and listeners
will satisfy your needs, but you can also create your own events and
listener interfaces. Feedback

Point 1 above answers a question about something you might have noticed
when looking at older code vs. newer code: a number of method names
have had small, apparently meaningless name changes. Now you can see
that most of those changes had to do with adapting to the “get” and “set”
naming conventions in order to make that particular component into a
JavaBean. Feedback

We can use these guidelines to create a simple Bean:

//: frogbean:Frog.java

904 Thinking in Java www.BruceEckel.com

// A trivial JavaBean.
package frogbean;
import java.awt.*;
import java.awt.event.*;

class Spots {}

public class Frog {
 private int jumps;
 private Color color;
 private Spots spots;
 private boolean jmpr;
 public int getJumps() { return jumps; }
 public void setJumps(int newJumps) {
 jumps = newJumps;
 }
 public Color getColor() { return color; }
 public void setColor(Color newColor) {
 color = newColor;
 }
 public Spots getSpots() { return spots; }
 public void setSpots(Spots newSpots) {
 spots = newSpots;
 }
 public boolean isJumper() { return jmpr; }
 public void setJumper(boolean j) { jmpr = j; }
 public void addActionListener(ActionListener l) {
 //...
 }
 public void removeActionListener(ActionListener l) {
 // ...
 }
 public void addKeyListener(KeyListener l) {
 // ...
 }
 public void removeKeyListener(KeyListener l) {
 // ...
 }
 // An "ordinary" public method:
 public void croak() {
 System.out.println("Ribbet!");
 }
} ///:~

Chapter 14: Creating Windows & Applets 905

First, you can see that it’s just a class. Usually, all your fields will be
private, and accessible only through methods. Following the naming
convention, the properties are jumps, color, spots, and jumper (notice
the case change of the first letter in the property name). Although the
name of the internal identifier is the same as the name of the property in
the first three cases, in jumper you can see that the property name does
not force you to use any particular identifier for internal variables (or,
indeed, to even have any internal variables for that property). Feedback

The events this Bean handles are ActionEvent and KeyEvent, based on
the naming of the “add” and “remove” methods for the associated listener.
Finally, you can see that the ordinary method croak() is still part of the
Bean simply because it’s a public method, not because it conforms to any
naming scheme. Feedback

Extracting BeanInfo
with the Introspector
One of the most critical parts of the JavaBean scheme occurs when you
drag a Bean off a palette and plop it onto a form. The application builder
tool must be able to create the Bean (which it can do if there’s a default
constructor) and then, without access to the Bean’s source code, extract
all the necessary information to create the property sheet and event
handlers. Feedback

Part of the solution is already evident from Chapter 10: Java reflection
discovers all the methods of an unknown class. This is perfect for solving
the JavaBean problem without requiring you to use any extra language
keywords like those required in other visual programming languages. In
fact, one of the prime reasons that reflection was added to Java was to
support JavaBeans (although reflection also supports object serialization
and remote method invocation). So you might expect that the creator of
the application builder tool would have to reflect each Bean and hunt
through its methods to find the properties and events for that Bean. Feedback

This is certainly possible, but the Java designers wanted to provide a
standard tool, not only to make Beans simpler to use but also to provide a
standard gateway to the creation of more complex Beans. This tool is the
Introspector class, and the most important method in this class is

906 Thinking in Java www.BruceEckel.com

static getBeanInfo(). You pass a Class reference to this method and it
fully interrogates that class and returns a BeanInfo object that you can
then dissect to find properties, methods, and events. Feedback

Usually you won’t care about any of this—you’ll probably get most of your
Beans off the shelf from vendors, and you don’t need to know all the
magic that’s going on underneath. You’ll simply drag your Beans onto
your form, then configure their properties and write handlers for the
events you’re interested in. However, it’s an interesting and educational
exercise to use the Introspector to display information about a Bean, so
here’s a tool that does it:

//: c14:BeanDumper.java
// Introspecting a Bean.
import java.beans.*;
import java.lang.reflect.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import com.bruceeckel.swing.*;

public class BeanDumper extends JFrame {
 private JTextField query = new JTextField(20);
 private JTextArea results = new JTextArea();
 public void print(String s) { results.append(s + "\n"); }
 public void dump(Class bean) {
 results.setText("");
 BeanInfo bi = null;
 try {
 bi = Introspector.getBeanInfo(bean, Object.class);
 } catch(IntrospectionException e) {
 print("Couldn't introspect " + bean.getName());
 return;
 }
 PropertyDescriptor[] properties =
 bi.getPropertyDescriptors();
 for(int i = 0; i < properties.length; i++) {
 Class p = properties[i].getPropertyType();
 if(p == null) continue;
 print("Property type:\n " + p.getName() +
 "Property name:\n " + properties[i].getName());
 Method readMethod = properties[i].getReadMethod();
 if(readMethod != null)

Chapter 14: Creating Windows & Applets 907

 print("Read method:\n " + readMethod);
 Method writeMethod = properties[i].getWriteMethod();
 if(writeMethod != null)
 print("Write method:\n " + writeMethod);
 print("====================");
 }
 print("Public methods:");
 MethodDescriptor[] methods = bi.getMethodDescriptors();
 for(int i = 0; i < methods.length; i++)
 print(methods[i].getMethod().toString());
 print("======================");
 print("Event support:");
 EventSetDescriptor[] events =
 bi.getEventSetDescriptors();
 for(int i = 0; i < events.length; i++) {
 print("Listener type:\n " +
 events[i].getListenerType().getName());
 Method[] lm = events[i].getListenerMethods();
 for(int j = 0; j < lm.length; j++)
 print("Listener method:\n " + lm[j].getName());
 MethodDescriptor[] lmd =
 events[i].getListenerMethodDescriptors();
 for(int j = 0; j < lmd.length; j++)
 print("Method descriptor:\n "
 + lmd[j].getMethod());
 Method addListener= events[i].getAddListenerMethod();
 print("Add Listener Method:\n " + addListener);
 Method removeListener =
 events[i].getRemoveListenerMethod();
 print("Remove Listener Method:\n "+ removeListener);
 print("====================");
 }
 }
 class Dumper implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 String name = query.getText();
 Class c = null;
 try {
 c = Class.forName(name);
 } catch(ClassNotFoundException ex) {
 results.setText("Couldn't find " + name);
 return;
 }
 dump(c);

908 Thinking in Java www.BruceEckel.com

 }
 }
 public BeanDumper() {
 Container cp = getContentPane();
 JPanel p = new JPanel();
 p.setLayout(new FlowLayout());
 p.add(new JLabel("Qualified bean name:"));
 p.add(query);
 cp.add(BorderLayout.NORTH, p);
 cp.add(new JScrollPane(results));
 Dumper dmpr = new Dumper();
 query.addActionListener(dmpr);
 query.setText("frogbean.Frog");
 // Force evaluation
 dmpr.actionPerformed(new ActionEvent(dmpr, 0, ""));
 }
 public static void main(String[] args) {
 Console.run(new BeanDumper(), 600, 500);
 }
} ///:~

BeanDumper.dump() is the method that does all the work. First it
tries to create a BeanInfo object, and if successful calls the methods of
BeanInfo that produce information about properties, methods, and
events. In Introspector.getBeanInfo(), you’ll see there is a second
argument. This tells the Introspector where to stop in the inheritance
hierarchy. Here, it stops before it parses all the methods from Object,
since we’re not interested in seeing those. Feedback

For properties, getPropertyDescriptors() returns an array of
PropertyDescriptors. For each PropertyDescriptor you can call
getPropertyType() to find the class of object that is passed in and out
via the property methods. Then, for each property you can get its
pseudonym (extracted from the method names) with getName(), the
method for reading with getReadMethod(), and the method for writing
with getWriteMethod(). These last two methods return a Method
object that can actually be used to invoke the corresponding method on
the object (this is part of reflection). Feedback

For the public methods (including the property methods),
getMethodDescriptors() returns an array of MethodDescriptors.

Chapter 14: Creating Windows & Applets 909

For each one you can get the associated Method object and print its
name. Feedback

For the events, getEventSetDescriptors() returns an array of (what
else?) EventSetDescriptors. Each of these can be queried to find out
the class of the listener, the methods of that listener class, and the add-
and remove-listener methods. The BeanDumper program prints out all
of this information. Feedback

Upon startup, the program forces the evaluation of frogbean.Frog. The
output, after removing extra details that are unnecessary here, is:

class name: Frog
Property type:
 Color
Property name:
 color
Read method:
 public Color getColor()
Write method:
 public void setColor(Color)
====================
Property type:
 Spots
Property name:
 spots
Read method:
 public Spots getSpots()
Write method:
 public void setSpots(Spots)
====================
Property type:
 boolean
Property name:
 jumper
Read method:
 public boolean isJumper()
Write method:
 public void setJumper(boolean)
====================
Property type:
 int
Property name:
 jumps

910 Thinking in Java www.BruceEckel.com

Read method:
 public int getJumps()
Write method:
 public void setJumps(int)
====================
Public methods:
public void setJumps(int)
public void croak()
public void removeActionListener(ActionListener)
public void addActionListener(ActionListener)
public int getJumps()
public void setColor(Color)
public void setSpots(Spots)
public void setJumper(boolean)
public boolean isJumper()
public void addKeyListener(KeyListener)
public Color getColor()
public void removeKeyListener(KeyListener)
public Spots getSpots()
======================
Event support:
Listener type:
 KeyListener
Listener method:
 keyTyped
Listener method:
 keyPressed
Listener method:
 keyReleased
Method descriptor:
 public void keyTyped(KeyEvent)
Method descriptor:
 public void keyPressed(KeyEvent)
Method descriptor:
 public void keyReleased(KeyEvent)
Add Listener Method:
 public void addKeyListener(KeyListener)
Remove Listener Method:
 public void removeKeyListener(KeyListener)
====================
Listener type:
 ActionListener
Listener method:
 actionPerformed

Chapter 14: Creating Windows & Applets 911

Method descriptor:
 public void actionPerformed(ActionEvent)
Add Listener Method:
 public void addActionListener(ActionListener)
Remove Listener Method:
 public void removeActionListener(ActionListener)
====================

This reveals most of what the Introspector sees as it produces a
BeanInfo object from your Bean. You can see that the type of the
property and its name are independent. Notice the lowercasing of the
property name. (The only time this doesn’t occur is when the property
name begins with more than one capital letter in a row.) And remember
that the method names you’re seeing here (such as the read and write
methods) are actually produced from a Method object that can be used
to invoke the associated method on the object. Feedback

The public method list includes the methods that are not associated with
a property or event, such as croak(), as well as those that are. These are
all the methods that you can call programmatically for a Bean, and the
application builder tool can choose to list all of these while you’re making
method calls, to ease your task. Feedback

Finally, you can see that the events are fully parsed out into the listener,
its methods, and the add- and remove-listener methods. Basically, once
you have the BeanInfo, you can find out everything of importance for
the Bean. You can also call the methods for that Bean, even though you
don’t have any other information except the object (again, a feature of
reflection). Feedback

A more sophisticated Bean
This next example is slightly more sophisticated, albeit frivolous. It’s a
JPanel that draws a little circle around the mouse whenever the mouse is
moved. When you press the mouse, the word “Bang!” appears in the
middle of the screen, and an action listener is fired. Feedback

The properties you can change are the size of the circle as well as the
color, size, and text of the word that is displayed when you press the
mouse. A BangBean also has its own addActionListener() and
removeActionListener() so you can attach your own listener that will

912 Thinking in Java www.BruceEckel.com

be fired when the user clicks on the BangBean. You should be able to
recognize the property and event support:

//: bangbean:BangBean.java
// A graphical Bean.
package bangbean;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class
BangBean extends JPanel implements Serializable {
 private int xm, ym;
 private int cSize = 20; // Circle size
 private String text = "Bang!";
 private int fontSize = 48;
 private Color tColor = Color.RED;
 private ActionListener actionListener;
 public BangBean() {
 addMouseListener(new ML());
 addMouseMotionListener(new MML());
 }
 public int getCircleSize() { return cSize; }
 public void setCircleSize(int newSize) {
 cSize = newSize;
 }
 public String getBangText() { return text; }
 public void setBangText(String newText) {
 text = newText;
 }
 public int getFontSize() { return fontSize; }
 public void setFontSize(int newSize) {
 fontSize = newSize;
 }
 public Color getTextColor() { return tColor; }
 public void setTextColor(Color newColor) {
 tColor = newColor;
 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(Color.BLACK);

Chapter 14: Creating Windows & Applets 913

 g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize);
 }
 // This is a unicast listener, which is
 // the simplest form of listener management:
 public void addActionListener(ActionListener l)
 throws TooManyListenersException {
 if(actionListener != null)
 throw new TooManyListenersException();
 actionListener = l;
 }
 public void removeActionListener(ActionListener l) {
 actionListener = null;
 }
 class ML extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 Graphics g = getGraphics();
 g.setColor(tColor);
 g.setFont(
 new Font("TimesRoman", Font.BOLD, fontSize));
 int width = g.getFontMetrics().stringWidth(text);
 g.drawString(text, (getSize().width - width) /2,
 getSize().height/2);
 g.dispose();
 // Call the listener's method:
 if(actionListener != null)
 actionListener.actionPerformed(
 new ActionEvent(BangBean.this,
 ActionEvent.ACTION_PERFORMED, null));
 }
 }
 class MML extends MouseMotionAdapter {
 public void mouseMoved(MouseEvent e) {
 xm = e.getX();
 ym = e.getY();
 repaint();
 }
 }
 public Dimension getPreferredSize() {
 return new Dimension(200, 200);
 }
} ///:~

The first thing you’ll notice is that BangBean implements the
Serializable interface. This means that the application builder tool can

914 Thinking in Java www.BruceEckel.com

“pickle” all the information for the BangBean using serialization after
the program designer has adjusted the values of the properties. When the
Bean is created as part of the running application, these “pickled”
properties are restored so that you get exactly what you designed. Feedback

You can see that all the fields are private, which is what you’ll usually do
with a Bean—allow access only through methods, usually using the
“property” scheme. Feedback

When you look at the signature for addActionListener(), you’ll see
that it can throw a TooManyListenersException. This indicates that it
is unicast, which means it notifies only one listener when the event
occurs. Ordinarily, you’ll use multicast events so that many listeners can
be notified of an event. However, that runs into threading issues, so it will
be revisited under the heading “JavaBeans and synchronization” later in
this chapter. In the meantime, a unicast event sidesteps the problem.
Feedback

When you click the mouse, the text is put in the middle of the BangBean,
and if the actionListener field is not null, its actionPerformed() is
called, creating a new ActionEvent object in the process. Whenever the
mouse is moved, its new coordinates are captured and the canvas is
repainted (erasing any text that’s on the canvas, as you’ll see). Feedback

Here is the BangBeanTest class to test the Bean:

//: c14:BangBeanTest.java
import bangbean.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import com.bruceeckel.swing.*;

public class BangBeanTest extends JFrame {
 private JTextField txt = new JTextField(20);
 // During testing, report actions:
 class BBL implements ActionListener {
 private int count = 0;
 public void actionPerformed(ActionEvent e) {
 txt.setText("BangBean action "+ count++);
 }

Chapter 14: Creating Windows & Applets 915

 }
 public BangBeanTest() {
 BangBean bb = new BangBean();
 try {
 bb.addActionListener(new BBL());
 } catch(TooManyListenersException e) {
 txt.setText("Too many listeners");
 }
 Container cp = getContentPane();
 cp.add(bb);
 cp.add(BorderLayout.SOUTH, txt);
 }
 public static void main(String[] args) {
 Console.run(new BangBeanTest(), 400, 500);
 }
} ///:~

When a Bean is in a development environment, this class will not be used,
but it’s helpful to provide a rapid testing method for each of your Beans.
BangBeanTest places a BangBean within the applet, attaching a
simple ActionListener to the BangBean to print an event count to the
JTextField whenever an ActionEvent occurs. Usually, of course, the
application builder tool would create most of the code that uses the Bean.
Feedback

When you run the BangBean through BeanDumper or put the
BangBean inside a Bean-enabled development environment, you’ll
notice that there are many more properties and actions than are evident
from the above code. That’s because BangBean is inherited from
JPanel, and JPanel is also Bean, so you’re seeing its properties and
events as well. Feedback

JavaBeans and synchronization
Whenever you create a Bean, you must assume that it will run in a
multithreaded environment. This means that:

1. Whenever possible, all the public methods of a Bean should be
synchronized. Of course, this incurs the synchronized run-
time overhead (which has been significantly reduced in recent
versions of the JDK). If that’s a problem, methods that will not
cause problems in critical sections can be left un-synchronized,

916 Thinking in Java www.BruceEckel.com

but keep in mind that this is not always obvious. Methods that
qualify tend to be small (such as getCircleSize() in the following
example) and/or “atomic,” that is, the method call executes in such
a short amount of code that the object cannot be changed during
execution. Making such methods un-synchronized might not
have a significant effect on the execution speed of your program.
You might as well make all public methods of a Bean
synchronized and remove the synchronized keyword only
when you know for sure that it’s necessary and that it makes a
difference. Feedback

2. When firing a multicast event to a bunch of listeners interested in
that event, you must assume that listeners might be added or
removed while moving through the list. Feedback

The first point is fairly easy to deal with, but the second point requires a
little more thought. The previous version of BangBean.java ducked out
of the multithreading question by ignoring the synchronized keyword
and making the event unicast. Here is a modified version that works in a
multithreaded environment and uses multicasting for events:

//: c14:BangBean2.java
// You should write your Beans this way so they
// can run in a multithreaded environment.
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import com.bruceeckel.swing.*;

public class BangBean2 extends JPanel
implements Serializable {
 private int xm, ym;
 private int cSize = 20; // Circle size
 private String text = "Bang!";
 private int fontSize = 48;
 private Color tColor = Color.RED;
 private ArrayList actionListeners = new ArrayList();
 public BangBean2() {
 addMouseListener(new ML());
 addMouseMotionListener(new MM());

Chapter 14: Creating Windows & Applets 917

 }
 public synchronized int getCircleSize() { return cSize; }
 public synchronized void setCircleSize(int newSize) {
 cSize = newSize;
 }
 public synchronized String getBangText() { return text; }
 public synchronized void setBangText(String newText) {
 text = newText;
 }
 public synchronized int getFontSize(){ return fontSize; }
 public synchronized void setFontSize(int newSize) {
 fontSize = newSize;
 }
 public synchronized Color getTextColor(){ return tColor;}
 public synchronized void setTextColor(Color newColor) {
 tColor = newColor;
 }
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(Color.BLACK);
 g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize);
 }
 // This is a multicast listener, which is more typically
 // used than the unicast approach taken in BangBean.java:
 public synchronized void
 addActionListener(ActionListener l) {
 actionListeners.add(l);
 }
 public synchronized void
 removeActionListener(ActionListener l) {
 actionListeners.remove(l);
 }
 // Notice this isn't synchronized:
 public void notifyListeners() {
 ActionEvent a = new ActionEvent(BangBean2.this,
 ActionEvent.ACTION_PERFORMED, null);
 ArrayList lv = null;
 // Make a shallow copy of the List in case
 // someone adds a listener while we're
 // calling listeners:
 synchronized(this) {
 lv = (ArrayList)actionListeners.clone();
 }
 // Call all the listener methods:

918 Thinking in Java www.BruceEckel.com

 for(int i = 0; i < lv.size(); i++)
 ((ActionListener)lv.get(i)).actionPerformed(a);
 }
 class ML extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 Graphics g = getGraphics();
 g.setColor(tColor);
 g.setFont(
 new Font("TimesRoman", Font.BOLD, fontSize));
 int width = g.getFontMetrics().stringWidth(text);
 g.drawString(text, (getSize().width - width) /2,
 getSize().height/2);
 g.dispose();
 notifyListeners();
 }
 }
 class MM extends MouseMotionAdapter {
 public void mouseMoved(MouseEvent e) {
 xm = e.getX();
 ym = e.getY();
 repaint();
 }
 }
 public static void main(String[] args) {
 BangBean2 bb = new BangBean2();
 bb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("ActionEvent" + e);
 }
 });
 bb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("BangBean2 action");
 }
 });
 bb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("More action");
 }
 });
 Console.run(bb, 300, 300);
 }
} ///:~

Chapter 14: Creating Windows & Applets 919

Adding synchronized to the methods is an easy change. However,
notice in addActionListener() and removeActionListener() that
the ActionListeners are now added to and removed from an
ArrayList, so you can have as many as you want. Feedback

You can see that the method notifyListeners() is not synchronized.
It can be called from more than one thread at a time. It’s also possible for
addActionListener() or removeActionListener() to be called in
the middle of a call to notifyListeners(), which is a problem since it
traverses the ArrayList actionListeners. To alleviate the problem, the
ArrayList is cloned inside a synchronized clause and the clone is
traversed (see Appendix A for details of cloning). This way the original
ArrayList can be manipulated without impact on notifyListeners().
Feedback

The paintComponent() method is also not synchronized. Deciding
whether to synchronize overridden methods is not as clear as when you’re
just adding your own methods. In this example it turns out that paint()
seems to work OK whether it’s synchronized or not. But the issues you
must consider are:

1. Does the method modify the state of “critical” variables within the
object? To discover whether the variables are “critical” you must
determine whether they will be read or set by other threads in the
program. (In this case, the reading or setting is virtually always
accomplished via synchronized methods, so you can just
examine those.) In the case of paint(), no modification takes
place. Feedback

2. Does the method depend on the state of these “critical” variables?
If a synchronized method modifies a variable that your method
uses, then you might very well want to make your method
synchronized as well. Based on this, you might observe that
cSize is changed by synchronized methods and therefore
paint() should be synchronized. Here, however, you can ask
“What’s the worst thing that will happen if cSize is changed during
a paint()?” When you see that it’s nothing too bad, and a
transient effect at that, you can decide to leave paint() un-

920 Thinking in Java www.BruceEckel.com

synchronized to prevent the extra overhead from the
synchronized method call. Feedback

3. A third clue is to notice whether the base-class version of paint()
is synchronized, which it isn’t. This isn’t an airtight argument,
just a clue. In this case, for example, a field that is changed via
synchronized methods (that is cSize) has been mixed into the
paint() formula and might have changed the situation. Notice,
however, that synchronized doesn’t inherit—that is, if a method
is synchronized in the base class then it is not automatically
synchronized in the derived class overridden version. Feedback

The test code in main() has been modified from that seen in
BangBeanTest to demonstrate the multicast ability of BangBean2 by
adding extra listeners. Feedback

Packaging a Bean
Before you can bring a JavaBean into a Bean-enabled visual builder tool,
it must be put into the standard Bean container, which is a JAR file that
includes all the Bean classes as well as a “manifest” file that says “This is a
Bean.” A manifest file is simply a text file that follows a particular form.
For the BangBean, the manifest file looks like this:

Manifest-Version: 1.0

Name: bangbean/BangBean.class
Java-Bean: True

The first line indicates the version of the manifest scheme, which until
further notice from Sun is 1.0. The second line (empty lines are ignored)
names the BangBean.class file, and the third says, “It’s a Bean.”
Without the third line, the program builder tool will not recognize the
class as a Bean. Feedback

The only tricky part is that you must make sure that you get the proper
path in the “Name:” field. If you look back at BangBean.java, you’ll see
it’s in package bangbean (and thus in a subdirectory called “bangbean”
that’s off of the classpath), and the name in the manifest file must include
this package information. In addition, you must place the manifest file in
the directory above the root of your package path, which in this case

Chapter 14: Creating Windows & Applets 921

means placing the file in the directory above the “bangbean” subdirectory.
Then you must invoke jar from the same directory as the manifest file, as
follows:

jar cfm BangBean.jar BangBean.mf bangbean

This assumes that you want the resulting JAR file to be named
BangBean.jar and that you’ve put the manifest in a file called
BangBean.mf. Feedback

You might wonder “What about all the other classes that were generated
when I compiled BangBean.java?” Well, they all ended up inside the
bangbean subdirectory, and you’ll see that the last argument for the
above jar command line is the bangbean subdirectory. When you give
jar the name of a subdirectory, it packages that entire subdirectory into
the jar file (including, in this case, the original BangBean.java source-
code file—you might not choose to include the source with your own
Beans). In addition, if you turn around and unpack the JAR file you’ve
just created, you’ll discover that your manifest file isn’t inside, but that jar
has created its own manifest file (based partly on yours) called
MANIFEST.MF and placed it inside the subdirectory META-INF (for
“meta-information”). If you open this manifest file you’ll also notice that
digital signature information has been added by jar for each file, of the
form:

Digest-Algorithms: SHA MD5
SHA-Digest: pDpEAG9NaeCx8aFtqPI4udSX/O0=
MD5-Digest: O4NcS1hE3Smnzlp2hj6qeg==

In general, you don’t need to worry about any of this, and if you make
changes you can just modify your original manifest file and reinvoke jar
to create a new JAR file for your Bean. You can also add other Beans to
the JAR file simply by adding their information to your manifest. Feedback

One thing to notice is that you’ll probably want to put each Bean in its
own subdirectory, since when you create a JAR file you hand the jar
utility the name of a subdirectory and it puts everything in that
subdirectory into the JAR file. You can see that both Frog and
BangBean are in their own subdirectories. Feedback

922 Thinking in Java www.BruceEckel.com

Once you have your Bean properly inside a JAR file you can bring it into a
Beans-enabled program-builder environment. The way you do this varies
from one tool to the next, but Sun provides a freely available test bed for
JavaBeans in their “Bean Builder.” (Download from
java.sun.com/beans.) You place a Bean into the Bean Builder by simply
copying the JAR file into the correct subdirectory. Feedback

More complex Bean support
You can see how remarkably simple it is to make a Bean, but you aren’t
limited to what you’ve seen here. The JavaBeans architecture provides a
simple point of entry but can also scale to more complex situations. These
situations are beyond the scope of this book, but they will be briefly
introduced here. You can find more details at java.sun.com/beans. Feedback

One place where you can add sophistication is with properties. The
examples above have shown only single properties, but it’s also possible to
represent multiple properties in an array. This is called an indexed
property. You simply provide the appropriate methods (again following a
naming convention for the method names) and the Introspector
recognizes an indexed property so your application builder tool can
respond appropriately. Feedback

Properties can be bound, which means that they will notify other objects
via a PropertyChangeEvent. The other objects can then choose to
change themselves based on the change to the Bean. Feedback

Properties can be constrained, which means that other objects can veto a
change to that property if it is unacceptable. The other objects are notified
using a PropertyChangeEvent, and they can throw a
PropertyVetoException to prevent the change from happening and to
restore the old values. Feedback

You can also change the way your Bean is represented at design time:
Feedback

1. You can provide a custom property sheet for your particular Bean.
The ordinary property sheet will be used for all other Beans, but
yours is automatically invoked when your Bean is selected. Feedback

Chapter 14: Creating Windows & Applets 923

2. You can create a custom editor for a particular property, so the
ordinary property sheet is used, but when your special property is
being edited, your editor will automatically be invoked. Feedback

3. You can provide a custom BeanInfo class for your Bean that
produces information that’s different from the default created by
the Introspector. Feedback

4. It’s also possible to turn “expert” mode on and off in all
FeatureDescriptors to distinguish between basic features and
more complicated ones. Feedback

More to Beans
There are a number of books about JavaBeans; for example, JavaBeans
by Elliotte Rusty Harold (IDG, 1998). Feedback

Summary
Of all the libraries in Java, the GUI library has seen the most dramatic
changes from Java 1.0 to Java 2. The Java 1.0 AWT was roundly criticized
as being one of the worst designs seen, and while it would allow you to
create portable programs, the resulting GUI was “equally mediocre on all
platforms.” It was also limiting, awkward, and unpleasant to use
compared with the native application development tools available on a
particular platform. Feedback

When Java 1.1 introduced the new event model and JavaBeans, the stage
was set—now it was possible to create GUI components that could be
easily dragged and dropped inside visual application builder tools. In
addition, the design of the event model and JavaBeans clearly shows
strong consideration for ease of programming and maintainable code
(something that was not evident in the 1.0 AWT). But it wasn’t until the
JFC/Swing classes appeared that the job was finished. With the Swing
components, cross-platform GUI programming can be a civilized
experience. Feedback

Actually, the only thing that’s missing is the application builder tool, and
this is where the real revolution lies. Microsoft’s Visual Basic and Visual
C++ require Microsoft’s application builder tools, as does Borland’s

924 Thinking in Java www.BruceEckel.com

Delphi and C++ Builder. If you want the application builder tool to get
better, you have to cross your fingers and hope the vendor will give you
what you want. But Java is an open environment, and so not only does it
allow for competing application builder environments, it encourages
them. And for these tools to be taken seriously, they must support
JavaBeans. This means a leveled playing field: if a better application
builder tool comes along, you’re not tied to the one you’ve been using—
you can pick up and move to the new one and increase your productivity.
This kind of competitive environment for GUI application builder tools
has not been seen before, and the resulting marketplace can generate only
positive results for the productivity of the programmer. Feedback

This chapter was meant only to give you an introduction to the power of
Swing and to get you started so you could see how relatively simple it is to
feel your way through the libraries. What you’ve seen so far will probably
suffice for a good portion of your UI design needs. However, there’s a lot
more to Swing—it’s intended to be a fully powered UI design tool kit.
There’s probably a way to accomplish just about everything you can
imagine. Feedback

If you don’t see what you need here, delve into the JDK documentation
from Sun and search the Web, and if that’s not enough then find a
dedicated Swing book—a good place to start is The JFC Swing Tutorial,
by Walrath & Campione (Addison Wesley, 1999). Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Create an applet/application using the Console class as shown in
this chapter. Include a text field and three buttons. When you
press each button, make some different text appear in the text
field. Feedback

2. Add a check box to the applet created in Exercise 1, capture the
event, and insert different text into the text field. Feedback

3. Create an applet/application using Console. In the JDK
documentation from java.sun.com, find the JPasswordField

Chapter 14: Creating Windows & Applets 925

and add this to the program. If the user types in the correct
password, use Joptionpane to provide a success message to the
user. Feedback

4. Create an applet/application using Console, and add all the
Swing components that have an addActionListener() method.
(Look these up in the JDK documentation from java.sun.com.
Hint: use the index.) Capture their events and display an
appropriate message for each inside a text field. Feedback

5. Create an applet/application using Console, with a JButton and
a JTextField. Write and attach the appropriate listener so that if
the button has the focus, characters typed into it will appear in the
JTextField. Feedback

6. Create an applet/application using Console. Add to the main
frame all the components described in this chapter, including
menus and a dialog box. Feedback

7. Modify TextFields.java so that the characters in t2 retain the
original case that they were typed in, instead of automatically
being forced to upper case. Feedback

8. Locate and download one or more of the free GUI builder
development environments available on the Internet, or buy a
commercial product. Discover what is necessary to add
BangBean to this environment and to use it. Feedback

9. Add Frog.class to the manifest file as shown in this chapter and
run jar to create a JAR file containing both Frog and BangBean.
Now either download and install the Bean Builder from Sun or use
your own Beans-enabled program builder tool and add the JAR
file to your environment so you can test the two Beans. Feedback

10. Create your own JavaBean called Valve that contains two
properties: a boolean called “on” and an int called “level.” Create
a manifest file, use jar to package your Bean, then load it into the
Bean Builder or into a Beans-enabled program builder tool so that
you can test it. Feedback

926 Thinking in Java www.BruceEckel.com

11. Modify MessageBoxes.java so that it has an individual
ActionListener for each button (instead of matching the button
text). Feedback

12. Monitor a new type of event in TrackEvent.java by adding the
new event handling code. You’ll need to discover on your own the
type of event that you want to monitor. Feedback

13. Inherit a new type of button from JButton. Each time you press
this button, it should change its color to a randomly-selected
value. See ColorBoxes.java for an example of how to generate a
random color value. Feedback

14. Modify TextPane.java to use a JTextArea instead of a
JTextPane. Feedback

15. Modify Menus.java to use radio buttons instead of check boxes
on the menus. Feedback

16. Simplify List.java by passing the array to the constructor and
eliminating the dynamic addition of elements to the list. Feedback

17. Modify SineWave.java to turn SineDraw into a JavaBean by
adding “getter” and “setter” methods. Feedback

18. Remember the “sketching box” toy with two knobs, one that
controls the vertical movement of the drawing point, and one that
controls the horizontal movement? Create one of those, using
SineWave.java to get you started. Instead of knobs, use sliders.
Add a button that will erase the entire sketch. Feedback

19. Starting with SineWave.java, create a program (an
applet/application using the Console class) that draws an
animated sine wave that appears to scroll past the viewing window
like an oscilloscope, driving the animation with a Thread. The
speed of the animation should be controlled with a
java.swing.JSlider control. Feedback

20. Modify Exercise 19 so that multiple sine wave panels are created
within the application. The number of sine wave panels should be
controlled by HTML tags or command-line parameters. Feedback

Chapter 14: Creating Windows & Applets 927

21. Modify Exercise 19 so that the java.swing.Timer class is used to
drive the animation. Note the difference between this and
java.util.Timer. Feedback

22. Create an “asymptotic progress indicator” that gets slower and
slower as it approaches the finish point. Add random erratic
behavior so it will periodically look like it’s starting to speed up.
Feedback

23. Modify Progress.java so that it does not share models, but
instead uses a listener to connect the slider and progress bar.
Feedback

24. Follow the instructions in the section titled “Packaging an applet
into a JAR file” to place TicTacToe.java into a JAR file. Create
an HTML page with the simple version of the applet tag along with
the archive specification to use the JAR file. Run
HTMLconverter on file to produce a working HTML file. Feedback

25. Create an applet/application using Console. This should have
three sliders, one each for the red, green, and blue values in
java.awt.Color. The rest of the form should be a JPanel that
displays the color determined by the three sliders. Also include
non-editable text fields that show the current RGB values. Feedback

26. In the JDK documentation for javax.swing, look up the
JColorChooser. Write a program with a button that brings up
the color chooser as a dialog. Feedback

27. Almost every Swing component is derived from Component,
which has a setCursor() method. Look this up in the JDK
documentation. Create an applet and change the cursor to one of
the stock cursors in the Cursor class. Feedback

28. Starting with ShowAddListeners.java, create a program with
the full functionality of c10:ShowMethods.java. Feedback

29. Turn c12:TestRegularExpression.java into an interactive
Swing program that allows you to put an input string in one
TextArea and a regular expression in a TextField. The results
should be displayed in a second TextArea.

928 Thinking in Java www.BruceEckel.com

30. Modify InvokeLaterFrame.java to use invokeAndWait().

 929

15: Discovering
problems

Before C was tamed into ANSI C, we had a little joke: “my
code compiles, so it should run!” (Ha ha!).

This was funny only if you understood C, because at that time the C
compiler would accept just about anything—C was truly a “portable
assembly language,” created to see if it was possible to develop a portable
operating system (Unix) that could be moved from one machine
architecture to another without rewriting it from scratch in the new
machine’s assembly language. So C was actually created as a side effect of
building Unix, and not as a general-purpose programming language.
Feedback

Because C was targeted at programmers who wrote operating systems in
assembly language, it was implicitly assumed that those programmers
knew what they were doing and didn’t need safety nets. For example,
assembly-language programmers didn’t need the compiler to check
argument types and usage, and if they decided to use a data type in a
different way than it was originally intended, they certainly must have
good reason to do so, and the compiler didn’t get in the way. Thus, getting
your pre-ANSI C program to compile was only the first step in the long
process of developing a bug-free program. Feedback

The development of ANSI C along with stronger rules about what the
compiler would accept came after lots of people used C for projects other
than writing operating systems, and after the appearance of C++ which
greatly improved your chances of having a program run decently once it
compiled. Much of this improvement came through strong static type
checking: “strong,” because the compiler prevented you from abusing the
type, “static” because ANSI C and C++ perform type checking at compile
time. Feedback

930 Thinking in Java www.BruceEckel.com

To many people (myself included), the improvement was so dramatic that
it appeared that strong static type checking was the answer to a large
portion of our problems. Indeed, one of the motivations for Java was that
C++’s type checking wasn’t strong enough (primarily because C++ had to
be backward-compatible with C, and so was chained to its limitations).
Thus Java has gone even further to take advantage of the benefits of type
checking, and since Java has language-checking mechanisms that exist at
run time (C++ doesn’t; what’s left at run time is basically assembly
language—very fast, but with no self-awareness) it isn’t restricted to only
static type checking1. Feedback

It seems, however, that language-checking mechanisms can take us only
so far in our quest to develop a correctly-working program. C++ gave us
programs that worked a lot sooner than C programs, but often still had
problems like memory leaks and subtle, buried bugs. Java went a long
way towards solving those problems, and yet it’s still quite possible to
write a Java program containing nasty bugs. In addition (despite the
amazing performance claims always touted by the flaks at Sun) all the
safety nets in Java added additional overhead, so sometimes we run into
the challenge of getting our Java programs to run fast enough for a
particular need (although it’s usually more important to have a working
program than one that runs at a particular speed). Feedback

This chapter presents tools to solve the problems that the compiler
doesn’t. In a sense, we are admitting that the compiler can only take us so
far in the creation of robust programs, and so we are moving beyond the
compiler and creating a build system and code that know more about
what a program is and isn’t supposed to do. Feedback

1 It is primarily oriented to static checking, however. There is an alternative system, called
latent typing or dynamic typing or weak typing, in which the type of an object is still
enforced, but it is enforced at run time, when the type is used, rather than at compile time.
Writing code in such a language—Python (http://www.python.org) is an excellent
example—gives the programmer much more flexibility and requires far less verbiage to
satisfy the compiler, and yet still guarantees that objects are used properly. However, to a
programmer convinced that strong, static type checking is the only sensible solution,
latent typing is anathema and serious flame wars have resulted from comparisons between
the two approaches. As someone who is always in pursuit of greater productivity, I have
found the value of latent typing to be very compelling. In addition, the ability to think
about the issues of latent typing help you, I believe, to solve problems that are difficult to
think about in strong, statically typed languages.

Chapter 15: Discovering problems 931

One of the biggest steps forward is the incorporation of automated unit
testing. This means writing tests and incorporating those tests into a build
system that compiles your code and runs the tests every single time, as if
the tests were part of the compilation process (you’ll soon start relying
upon them as if they are). For this book, a custom testing system was
developed to ensure the correctness of the program output (and to display
the output directly in the code listing), but the defacto standard JUnit
testing system will also be used when appropriate. To make sure that
testing is automatic, tests are run as part of the build process using Ant,
an open-source tool that has also become a defacto standard in Java
development, and CVS, another open-source tool that maintains a
repository containing all your source code for a particular project. Feedback

JDK 1.4 introduced an assertion mechanism to aid in the verification of
code at run time. One of the more compelling uses of assertions is Design
by Contract (DBC), a formalized way to describe the correctness of a
class. In conjunction with automated testing, DBC can be a powerful tool.
Feedback

Sometimes unit testing isn’t enough, and you need to track down
problems in a program that runs, but doesn’t run right. In JDK 1.4, the
logging API was introduced to allow you to easily report information
about your program. This is a significant improvement over adding and
removing println() statements in order to track down a problem, and
this section will go into enough detail to give you a thorough grounding in
this API. This chapter also provides an introduction to debugging,
showing the information a typical debugger can provide to aid you in the
discovery of subtle problems. Finally, you’ll learn about profiling and how
to discover the bottlenecks that cause your program to run too slowly.
Feedback

Unit Testing
A recent realization in programming practice is the dramatic value of unit
testing. This is the process of building integrated tests into all the code
that you create, and running those tests every time you do a build. That
way, the build process can check for more than just syntax errors, since
you teach it how to check for semantic errors as well. C-style

932 Thinking in Java www.BruceEckel.com

programming languages, and C++ in particular, have typically valued
performance over programming safety. The reason that developing
programs in Java is so much faster than in C++ (roughly twice as fast, by
most accounts) is because of Java’s safety net: features like garbage
collection and improved type checking. By integrating unit testing into
your build process, you can extend this safety net, resulting in faster
development. You can also be bolder in the changes that you make, more
easily refactor your code when you discover design or implementation
flaws, and in general produce a better product, faster. Feedback

The effect of unit testing on development is so significant that it is used
throughout this book, not only to validate the code in the book but also to
display the expected output. My own experience with unit testing began
when I realized that, to guarantee the correctness of code in a book, every
program in that book must be automatically extracted and organized into
a source tree, along with an appropriate build system. The build system
used in this book is Ant (described later in this chapter), and after you
install it you can just type ant to build all the code for the book. The effect
of the automatic extraction and compilation process on the code quality of
the book was so immediate and dramatic that it soon became (in my
mind) a requisite for any programming book—how can you trust code that
you didn’t compile? I also discovered that if I wanted to make sweeping
changes, I could do so using search-and-replace throughout the book or
just by bashing the code around. I knew that if I introduced a flaw, the
code extractor and the build system would flush it out. Feedback

As programs became more complex, however, I also found that there was
a serious hole in my system. Being able to successfully compile programs
is clearly an important first step, and for a published book it seems a fairly
revolutionary one—usually due to the pressures of publishing, it’s quite
typical to randomly open a programming book and discover a coding flaw.
However, I kept getting messages from readers reporting semantic
problems in my code. These problems could only be discovered by
running the code. Naturally, I understood this and took some early
faltering steps towards implementing a system that would perform
automatic execution tests, but I had succumbed to publishing schedules,
all the while knowing that there was definitely something wrong with my

Chapter 15: Discovering problems 933

process and that it would come back to bite me in the form of
embarrassing bug reports (in the open source world2, embarrassment is
one of the prime motivating factors towards increasing the quality of one’s
code!). Feedback

The other problem was that I was lacking a structure for the testing
system. Eventually, I started hearing about unit testing and JUnit, which
provided a basis for a testing structure. I found the initial versions of
JUnit to be intolerable because they required the programmer to write too
much code in order to create even the simplest test suite. More recent
versions have significantly reduced this required code by using reflection,
and so are much more satisfactory. Feedback

I needed to solve another problem, however, and that was to validate the
output of a program, and to show the validated output in the book. I had
gotten regular complaints that I didn’t show enough program output in
the book. My attitude was that the reader should be running the programs
while reading the book, and many readers did just that and benefited
from it. A hidden reason for that attitude, however, was that I didn’t have
a way to test that the output shown in the book was correct. From
experience, I knew that over time, something would happen so that the
output was no longer correct (or, I wouldn’t get it right in the first place).
The simple testing framework shown here not only captures the console
output of the program—and most programs in this book produce console
output—but it also compares it to the expected output which is printed in
the book as part of the source-code listing, so readers can see what the
output will be and also know that this output has been verified by the
build process, and that they can verify it themselves. Feedback

I wanted to see if the test system could be even easier and simpler to use,
applying the Extreme Programming principle of “do the simplest thing
that could possibly work” as a starting point, and then evolving the system
as usage demands (In addition, I wanted to try to reduce the amount of
test code, in an attempt to fit more functionality in less code for screen

2 Although the electronic version of this book is freely available, it is not open source.

934 Thinking in Java www.BruceEckel.com

presentations). The result3 is the simple testing framework described
next. Feedback

A Simple Testing Framework
The primary goal of this framework4 is to verify the output of the
examples in the book. You have already seen lines such as

private static Test monitor = new Test();

at the beginning of most classes that contain a main() method. The task
of the monitor object is to intercept and save a copy of standard output
and standard error into a text file. This file is then used to verify the
output of an example program, by comparing the contents of the file to
the expected output. Feedback

We start by defining the exceptions that will be thrown by this test system.
The general-purpose exception for the library is the base class for the
others. Note that it extends RuntimeException so that checked
exceptions are not involved:

//: com:bruceeckel:simpletest:SimpleTestException.java
package com.bruceeckel.simpletest;

public class SimpleTestException extends RuntimeException {
 public SimpleTestException(String msg) {
 super(msg);
 }
} ///:~

A basic test is to verify that the number of lines sent to the console by the
program is the same as the expected number of lines:

//: com:bruceeckel:simpletest:NumOfLinesException.java
package com.bruceeckel.simpletest;

public class NumOfLinesException

3 The first try, anyway. I find that the process of building something for the first time
eventually produces insights and new ideas.

4 Inspired by Python’s doctest module.

Chapter 15: Discovering problems 935

extends SimpleTestException {
 public NumOfLinesException(int exp, int out) {
 super("Number of lines of output and "
 + "expected output did not match.\n" +
 "expected: <" + exp + ">\n" +
 "output: <" + out + "> lines)");
 }
} ///:~

Or, the number of lines might be correct, but one or more lines might not
match:

//: com:bruceeckel:simpletest:LineMismatchException.java
package com.bruceeckel.simpletest;
import java.io.PrintStream;

public class LineMismatchException
 extends SimpleTestException {
 public LineMismatchException(
 int lineNum, String expected, String output) {
 super("line " + lineNum +
 " of output did not match expected output\n" +
 "expected: <" + expected + ">\n" +
 "output: <" + output + ">");
 }
} ///:~

This test system works by intercepting the console output using the
TestStream class to replace the standard console output and console
error:

//: com:bruceeckel:simpletest:TestStream.java
// Simple utility for testing program output. Intercepts
// System.out to print both to the console and a buffer.
package com.bruceeckel.simpletest;
import java.io.*;
import java.util.*;
import java.util.regex.*;

public class TestStream extends PrintStream {
 protected int numOfLines;
 private PrintStream
 console = System.out,
 err = System.err,
 fout;

936 Thinking in Java www.BruceEckel.com

 // To store lines sent to System.out or err
 private InputStream stdin;
 private String className;
 public TestStream(String className) {
 super(System.out, true); // Autoflush
 System.setOut(this);
 System.setErr(this);
 stdin = System.in; // Save to restore in dispose()
 // Replace the default version with one that
 // automatically produces input on demand:
 System.setIn(new BufferedInputStream(new InputStream(){
 char[] input = ("test\n").toCharArray();
 int index = 0;
 public int read() {
 return
 (int)input[index = (index + 1) % input.length];
 }
 }));
 this.className = className;
 openOutputFile();
 }
 // public PrintStream getConsole() { return console; }
 public void dispose() {
 System.setOut(console);
 System.setErr(err);
 System.setIn(stdin);
 }
 // This will write over an old Output.txt file:
 public void openOutputFile() {
 try {
 fout = new PrintStream(new FileOutputStream(
 new File(className + "Output.txt")));
 } catch (FileNotFoundException e) {
 throw new RuntimeException(e);
 }
 }
 // Override all possible print/println methods to send
 // intercepted console output to both the console and
 // the Output.txt file:
 public void print(boolean x) {
 console.print(x);
 fout.print(x);
 }
 public void println(boolean x) {

Chapter 15: Discovering problems 937

 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(char x) {
 console.print(x);
 fout.print(x);
 }
 public void println(char x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(int x) {
 console.print(x);
 fout.print(x);
 }
 public void println(int x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(long x) {
 console.print(x);
 fout.print(x);
 }
 public void println(long x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(float x) {
 console.print(x);
 fout.print(x);
 }
 public void println(float x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(double x) {
 console.print(x);
 fout.print(x);
 }

938 Thinking in Java www.BruceEckel.com

 public void println(double x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(char[] x) {
 console.print(x);
 fout.print(x);
 }
 public void println(char[] x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(String x) {
 console.print(x);
 fout.print(x);
 }
 public void println(String x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void print(Object x) {
 console.print(x);
 fout.print(x);
 }
 public void println(Object x) {
 numOfLines++;
 console.println(x);
 fout.println(x);
 }
 public void println() {
 if(false) console.print("println");
 numOfLines++;
 console.println();
 fout.println();
 }
 public void
 write(byte[] buffer, int offset, int length) {
 console.write(buffer, offset, length);
 fout.write(buffer, offset, length);
 }
 public void write(int b) {

Chapter 15: Discovering problems 939

 console.write(b);
 fout.write(b);
 }
} ///:~

The constructor for TestStream, after calling the constructor for the
base class, first saves references to standard output and standard error,
and then redirects both streams to the TestStream object. The static
methods setOut() and setErr() both take a PrintStream argument.
System.out and System.err references are unplugged from their
normal object and instead are plugged into the TestStream object, so
TestStream must also be a PrintStream (or equivalently, something
inherited from PrintStream). The original standard output
PrintStream reference is captured in the console reference inside
TestStream, and every time console output is intercepted, it is sent to
the original console as well as to an output file. The dispose() method is
used to set standard I/O references back to their original objects when
TestStream is finished with them.Feedback

For automatic testing of examples that require user input from the
console, the constructor redirects calls to standard input. The current
standard input is stored in a reference so that dispose() can restore it to
its original state. Using System.setIn(), an anonymous inner class is set
to handle any requests for input by the program under test. The read()
method of this inner class produces the letters “test” followed by a
newline. Feedback

TestStream overrides a variety of PrintStream print() and
println() methods for each type. Each of these methods writes both to
the “standard” output and to an output file. The expect() method can
then be used to test whether output produced by a program matches the
expected output provided as argument to expect(). Feedback

These tools are used in the Test class:

//: com:bruceeckel:simpletest:Test.java
// Simple utility for testing program output. Intercepts
// System.out to print both to the console and a buffer.
package com.bruceeckel.simpletest;
import java.io.*;
import java.util.*;

940 Thinking in Java www.BruceEckel.com

import java.util.regex.*;

public class Test {
 // Bit-shifted so they can be added together:
 public static final int
 EXACT = 1 << 0, // Lines must match exactly
 AT_LEAST = 1 << 1, // Must be at least these lines
 IGNORE_ORDER = 1 << 2, // Ignore line order
 WAIT = 1 << 3; // Delay until all lines are output
 private String className;
 private TestStream testStream;
 public Test() {
 // Discover the name of the class this
 // object was created within:
 className =
 new Throwable().getStackTrace()[1].getClassName();
 testStream = new TestStream(className);
 }
 public static List fileToList(String fname) {
 ArrayList list = new ArrayList();
 try {
 BufferedReader in =
 new BufferedReader(new FileReader(fname));
 try {
 String line;
 while((line = in.readLine()) != null) {
 if(fname.endsWith(".txt"))
 list.add(line);
 else
 list.add(new TestExpression(line));
 }
 } finally {
 in.close();
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 return list;
 }
 public static List arrayToList(Object[] array) {
 List l = new ArrayList();
 for(int i = 0; i < array.length; i++) {
 if(array[i] instanceof TestExpression) {
 TestExpression re = (TestExpression)array[i];

Chapter 15: Discovering problems 941

 for(int j = 0; j < re.getNumber(); j++)
 l.add(re);
 } else {
 l.add(new TestExpression(array[i].toString()));
 }
 }
 return l;
 }
 public void expect(Object[] exp, int flags) {
 if((flags & WAIT) != 0)
 while(testStream.numOfLines < exp.length) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
 }
 List output = fileToList(className + "Output.txt");
 if((flags & IGNORE_ORDER) == IGNORE_ORDER)
 OutputVerifier.verifyIgnoreOrder(output, exp);
 else if((flags & AT_LEAST) == AT_LEAST)
 OutputVerifier.verifyAtLeast(output,
 arrayToList(exp));
 else
 OutputVerifier.verify(output, arrayToList(exp));
 // Clean up the output file - see c06:Detergent.java
 testStream.openOutputFile();
 }
 public void expect(Object[] expected) {
 expect(expected, EXACT);
 }
 public void expect(Object[] expectFirst,
 String fname, int flags) {
 List expected = fileToList(fname);
 for(int i = 0; i < expectFirst.length; i++)
 expected.add(i, expectFirst[i]);
 expect(expected.toArray(), flags);
 }
 public void expect(Object[] expectFirst, String fname) {
 expect(expectFirst, fname, EXACT);
 }
 public void expect(String fname) {
 expect(new Object[] {}, fname, EXACT);
 }

942 Thinking in Java www.BruceEckel.com

} ///:~

There are several overloaded versions of expect() provided for
convenience (so the client programmer can, for example, provide the
name of the file containing the expected output instead of an array of
expected output lines). These overloaded methods all call the main
expect() method, which takes as arguments an array of Objects
containing expected output lines and an int containing various flags.
Flags are implemented using bit shifting, with each bit corresponding to a
particular flag as defined at the beginning of Test.java. Feedback

The expect() method first inspects the flags argument to see if it should
delay processing to allow a slow program to catch up. It then calls a static
method fileToList(), which converts the contents of the output file
produced by a program into a List. The fileToList() method also wraps
each String object in an OutputLine object; the reason for this will
become clear. Finally, the expect() method calls the appropriate
verify() method based on the flags argument. Feedback

There are three verifiers: verify(), verifyIgnoreOrder(), and
verifyAtLeast(), corresponding to EXACT, IGNORE_ORDER, and
AT_LEAST modes, respectively:

//: com:bruceeckel:simpletest:OutputVerifier.java
package com.bruceeckel.simpletest;
import java.util.*;
import java.io.PrintStream;

public class OutputVerifier {
 private static void verifyLength(
 int output, int expected, int compare) {
 if((compare == Test.EXACT && expected != output)
 || (compare == Test.AT_LEAST && output < expected))
 throw new NumOfLinesException(expected, output);
 }
 public static void verify(List output, List expected) {
 verifyLength(output.size(),expected.size(),Test.EXACT);
 if(!expected.equals(output)) {
 //find the line of mismatch
 ListIterator it1 = expected.listIterator();
 ListIterator it2 = output.listIterator();
 while(it1.hasNext()
 && it2.hasNext()

Chapter 15: Discovering problems 943

 && it1.next().equals(it2.next()));
 throw new LineMismatchException(
 it1.nextIndex(), it1.previous().toString(),
 it2.previous().toString());
 }
 }
 public static void
 verifyIgnoreOrder(List output, Object[] expected) {
 verifyLength(expected.length,output.size(),Test.EXACT);
 if(!(expected instanceof String[]))
 throw new RuntimeException(
 "IGNORE_ORDER only works with String objects");
 String[] out = new String[output.size()];
 Iterator it = output.iterator();
 for(int i = 0; i < out.length; i++)
 out[i] = it.next().toString();
 Arrays.sort(out);
 Arrays.sort(expected);
 int i =0;
 if(!Arrays.equals(expected, out)) {
 while(expected[i].equals(out[i])) {i++;}
 throw new SimpleTestException(
 ((String) out[i]).compareTo(expected[i]) < 0
 ? "output: <" + out[i] + ">"
 : "expected: <" + expected[i] + ">");
 }
 }
 public static void
 verifyAtLeast(List output, List expected) {
 verifyLength(output.size(), expected.size(),
 Test.AT_LEAST);
 if(!output.containsAll(expected)) {
 ListIterator it = expected.listIterator();
 while(output.contains(it.next())) {}
 throw new SimpleTestException(
 "expected: <" + it.previous().toString() + ">");
 }
 }
} ///:~

The “verify” methods test whether the output produced by a program
matches the expected output as specified by the particular mode. If this is
not the case, the “verify” methods raise an exception that aborts the build
process. Feedback

944 Thinking in Java www.BruceEckel.com

Each of the “verify” methods uses verifyLength() to test the number of
lines of output. EXACT mode requires that both output and expected
output arrays be the same size, and that each output line is equal to the
corresponding line in the expected output array. IGNORE_ORDER still
requires that both arrays be the same size, but the actual order of
appearance of the lines is disregarded (the two output arrays must be
permutations of one another). IGNORE_ORDER mode is used to test
threading examples where, due to non-deterministic scheduling of
threads by the JVM, it is possible that the sequence of output lines
produced by a program cannot be predicted. AT_LEAST mode does not
require the two arrays to be the same size, but each line of expected
output must be contained in the actual output produced by a program,
regardless of order. This feature is particularly useful for testing program
examples which contain output lines that may or may not be printed, as is
the case with most of the examples dealing with garbage collection. Notice
that the three modes are canonical; that is, if a test passes in
IGNORE_ORDER mode, then it will also pass in AT_LEAST mode,
and if it passes in EXACT mode, it will also pass in the other two modes.
Feedback

Notice how simple the implementation of the “verify” methods is.
verify(), for example, simply calls the equals() method provided by the
List class, and verifyAtLeast() calls List.containsAll(). Remember
that the two output Lists can contain both OutputLine or
RegularExpression objects. The reason for wrapping the simple
String object in OutputLines should now become clear: this approach
allows us to override the equals() method, which is necessary in order to
take advantage of the Java Collections API. Feedback

Objects in the expect() array can be either Strings or
TestExpressions, which can encapsulate a regular expression
(described in Chapter 14), which is useful for testing examples that
produce random output. The TestExpression class encapsulates a
String representing a particular regular expression. Feedback

//: com:bruceeckel:simpletest:TestExpression.java
// Regular expression for testing program output lines
package com.bruceeckel.simpletest;
import java.util.regex.*;

Chapter 15: Discovering problems 945

public class TestExpression implements Comparable {
 private Pattern p;
 private String expression;
 private boolean isRegEx;
 // Default to only one instance of this expression:
 private int duplicates = 1;
 public TestExpression(String s) {
 this.expression = s;
 if(expression.startsWith("%% ")) {
 this.isRegEx = true;
 expression = expression.substring(3);
 this.p = Pattern.compile(expression);
 }
 }
 // For duplicate instances:
 public TestExpression(String s, int duplicates) {
 this(s);
 this.duplicates = duplicates;
 }
 public String toString() {
 if(isRegEx) return p.pattern();
 return expression;
 }
 public boolean equals(Object obj) {
 if(this == obj) return true;
 if(isRegEx) return (compareTo(obj) == 0);
 return expression.equals(obj.toString());
 }
 public int compareTo(Object obj) {
 if((isRegEx) && (p.matcher(obj.toString()).matches()))
 return 0;
 return
 expression.compareTo(obj.toString());
 }
 public int getNumber() { return duplicates; }
 public String getExpression() { return expression;}
 public boolean isRegEx() { return isRegEx; }
} ///:~

TestExpression can distinguish regular expression patterns from
String literals. The second constructor allows multiple identical
expression lines to be wrapped in a single object for convenience. Feedback

946 Thinking in Java www.BruceEckel.com

This test system has been reasonably useful, and the exercise of creating it
and putting it into use has been invaluable. However, in the end I’m not
that pleased with it and have ideas that will probably be implemented in
the next edition of the book (or possibly sooner). Feedback

JUnit
Although the testing framework just described allows you to simply and
easily verify program output, in some cases you may want to perform
more extensive functionality testing on a program. JUnit, available at
http://www.junit.org, is a quickly emerging standard for writing
repeatable tests for Java programs, and provides both simple and
complex testing. Feedback

The original JUnit was presumably based on JDK 1.0 and thus could not
make use of Java’s reflection facilities. As a result, writing unit tests with
the old JUnit was a rather busy and wordy activity, and I found the design
to be unpleasant. Because of this, I wrote my own unit testing framework
for Java5, going to the other extreme and “doing the simplest thing that
could possibly work6.” Since then, JUnit has been modified and uses
reflection to greatly simplify the process of writing unit test code.
Although you still have the option of writing code the “old” way with test
suites and all the other complex details, I believe that in the great majority
of cases you can follow the simple approach shown here (and make your
life more pleasant). Feedback

In the simplest approach to using JUnit, you put all your tests in a
subclass of TestCase. Each test must be public, take no arguments,
return void, and have a method name beginning with the word “test.”
JUnit’s reflection will identify these methods as individual tests, and set
up and run them one at a time, taking measures to avoid side effects
between the tests. Feedback

5 Originally placed in Thinking in Patterns with Java at www.BruceEckel.com. However,
with the addition of the reflection approach in JUnit, my framework doesn’t make much
sense anymore and will probably be removed.

6 A key phrase from Extreme Programming (XP). Ironically, one of the JUnit authors
(Kent Beck) is also the author of Extreme Programming Explained (Addison-Wesley
2000) and a main proponent of XP.

Chapter 15: Discovering problems 947

Traditionally, the setUp() method creates and initializes a common set
of objects which will be used in all the tests; however, you can also just put
all such initialization in the constructor for the test class. JUnit creates an
object for each test to ensure there will be no side effects between test
runs. However, all the objects for all the tests are created at once (rather
than creating the object right before the test) so the only difference
between using setUp() and the constructor is that setUp() is called
directly before the test. In most situations this will not be an issue, and
you can use the constructor approach for simplicity. Feedback

If you need to perform any cleanup after each test (if you modify any
statics which need to be restored, open files that need to be closed, open
network connections, etc.), you write a tearDown() method. This is also
optional. Feedback

The following example uses this simple approach to create JUnit tests that
exercise the standard Java ArrayList class. To trace how JUnit creates
and cleans up its test objects, CountedList is inherited from ArrayList
and tracking information is added: Feedback

//: c15:JUnitDemo.java
// Simple use of JUnit to test ArrayList
// {Depends: junit.jar}
import java.util.*;
import junit.framework.*;

// So we can see the list objects being created,
// and keep track of when they are cleaned up:
class CountedList extends ArrayList {
 private static int counter = 0;
 private int id = counter++;
 public CountedList() {
 System.out.println("CountedList #" + id);
 }
 public int getId() { return id; }
}

public class JUnitDemo extends TestCase {
 private static com.bruceeckel.simpletest.Test monitor =
 new com.bruceeckel.simpletest.Test();
 private CountedList list = new CountedList();
 // You can use the constructor instead of setUp():

948 Thinking in Java www.BruceEckel.com

 public JUnitDemo(String name) {
 super(name);
 for(int i = 0; i < 3; i++)
 list.add("" + i);
 }
 // Thus, setUp() is optional, but is run right
 // before the test:
 protected void setUp() {
 System.out.println("Set up for " + list.getId());
 }
 // tearDown() is also optional, and is called after
 // each test. setUp() and tearDown() can be either
 // protected or public:
 public void tearDown() {
 System.out.println("Tearing down " + list.getId());
 }
 // All tests have method names beginning with "test":
 public void testInsert() {
 System.out.println("Running testInsert()");
 assertEquals(list.size(), 3);
 list.add(1, "Insert");
 assertEquals(list.size(), 4);
 assertEquals(list.get(1), "Insert");
 }
 public void testReplace() {
 System.out.println("Running testReplace()");
 assertEquals(list.size(), 3);
 list.set(1, "Replace");
 assertEquals(list.size(), 3);
 assertEquals(list.get(1), "Replace");
 }
 // A "helper" method to reduce code duplication. As long
 // as the name doesn't start with "test," it will not
 // be automatically executed by JUnit.
 private void compare(ArrayList lst, String[] strs) {
 Object[] array = lst.toArray();
 assertTrue("Arrays not the same length",
 array.length == strs.length);
 for(int i = 0; i < array.length; i++)
 assertEquals(strs[i], (String)array[i]);
 }
 public void testOrder() {
 System.out.println("Running testOrder()");
 compare(list, new String[] { "0", "1", "2" });

Chapter 15: Discovering problems 949

 }
 public void testRemove() {
 System.out.println("Running testRemove()");
 assertEquals(list.size(), 3);
 list.remove(1);
 assertEquals(list.size(), 2);
 compare(list, new String[] { "0", "2" });
 }
 public void testAddAll() {
 System.out.println("Running testAddAll()");
 list.addAll(Arrays.asList(new Object[] {
 "An", "African", "Swallow"}));
 assertEquals(list.size(), 6);
 compare(list, new String[] { "0", "1", "2",
 "An", "African", "Swallow" });
 }
 public static void main(String[] args) {
 // Invoke JUnit on the class:
 junit.textui.TestRunner.run(JUnitDemo.class);
 monitor.expect(new String[] {
 "CountedList #0",
 "CountedList #1",
 "CountedList #2",
 "CountedList #3",
 "CountedList #4",
 // '.' indicates the beginning of each test:
 ".Set up for 0",
 "Running testInsert()",
 "Tearing down 0",
 ".Set up for 1",
 "Running testReplace()",
 "Tearing down 1",
 ".Set up for 2",
 "Running testOrder()",
 "Tearing down 2",
 ".Set up for 3",
 "Running testRemove()",
 "Tearing down 3",
 ".Set up for 4",
 "Running testAddAll()",
 "Tearing down 4",
 "",
 "%% Time: .*",
 "",

950 Thinking in Java www.BruceEckel.com

 "OK (5 tests)",
 "",
 });
 }
} ///:~

To set up unit testing, you must only import junit.framework.* and
extend TestCase, as JUnitDemo does. In addition, you must create a
constructor that takes a String argument and passes it to its super
constructor. Feedback

For each test, a new JUnitDemo object will be created, and thus all the
non-static members will also be created. This means a new
CountedList object (list) will be created and initialized for each test,
since it is a field of JUnitDemo. In addition, the constructor will be
called for each test, so list will be initialized with the strings “0”, “1” and
“2” before each test is run. Feedback

To observe the behavior of setUp() and tearDown(), these methods
are created to display information about the test that’s being initialized or
cleaned up. Note that the base-class methods are protected, so the
overridden methods may be either protected or public. Feedback

testInsert() and testReplace() demonstrate typical test methods,
since they follow the required signature and naming convention. JUnit
discovers these methods using reflection and runs each one as a test.
Inside the methods, you perform any desired operations, and use JUnit
assertion methods (all which start with the name “assert”) to verify the
correctness of your tests (the full range of “assert” statements can be
found in the JUnit Javadocs for junit.framework.Assert). If the
assertion fails, the expression and values that caused the failure will be
displayed. This is usually enough, but you can also use the overloaded
version of each of the JUnit assertion statements and include a String
that will be printed if the assertion fails. Feedback

The assertion statements are not required; you can also just run the test
without assertions and consider it a success if no exceptions are thrown.
Feedback

The compare() method is an example of a “helper” method that is not
executed by JUnit but instead is used by other tests in the class. As long as

Chapter 15: Discovering problems 951

the method name doesn’t begin with “test,” JUnit doesn’t run it or expect
it to have a particular signature. Here, compare() is private to
emphasize that it is only used within the test class, but it could also be
public. The remaining test methods eliminate duplicate code by
refactoring it into the compare() method. Feedback

To execute the JUnit tests, the static method TestRunner.run() is
invoked in main(). This method is handed the class that contains the
collection of tests, and it automatically sets up and runs all the tests. From
the expect() output, you can see that all the objects needed to run all the
tests are created first, in a batch—this is where the construction happens7.
Before each test, the setUp() method is called. Then the test is run,
followed by the tearDown() method. JUnit demarcates each test with a
‘.’. Feedback

Although you can probably survive easily by only using the simplest
approach to JUnit as shown above, JUnit was originally designed with a
plethora of complicated structures. If you are curious, you can easily learn
more about them, as the JUnit download from www.JUnit.org comes
with documentation and tutorials. Feedback

Improving reliability with
assertions

Assertions, which you’ve seen used in earlier examples in this book, were
added to the JDK 1.4 version of Java in order to aid programmers in
improving the reliability of their programs. Properly used, assertions can
add to program robustness by verifying that certain conditions are
satisfied during the execution of your program. For example, suppose you
have a numerical field in an object that represents the month on the
Julian calendar. You know that this value must always be in the range 1-
12, and an assertion can be used to check this and report an error if it

7 Bill Venners and I have discussed this at some length, and we haven’t been able to figure
out why it is done this way rather than creating each object right before the test is run. It is
likely that it is simply an artifact of the way JUnit was originally implemented.

952 Thinking in Java www.BruceEckel.com

somehow falls outside of that range. If you’re inside a method, you can
check the validity of an argument with an assertion. These are important
tests to make sure that your program is correct, but they cannot be
performed by compile-time checking, and they do not fall into the
purview of unit testing. In this section, we’ll look at the mechanics of the
assertion mechanism, and the way that you can use assertions to partially
implement the design by contract concept. Feedback

Assertion syntax
Since you can simulate the effect of assertions using other programming
constructs, it can be argued that the whole point of adding assertions to
Java is that they are easy to write. Assertion statements come in two
forms: Feedback

assert boolean-expression;
assert boolean-expression: information-expression;

Both of these statements say “I assert that the boolean-expression will
produce a true value.” If this is not the case, the assertion will produce an
AssertionError exception. This is a Throwable subclass, and as such
doesn’t require an exception specification. Feedback

Unfortunately, the first form of assertion does not produce any
information containing the boolean-expression in the exception produced
by a failed assertion (in contrast with most other language’s assertion
mechanisms). Here’s an example showing the use of the first form: Feedback

//: c15:Assert1.java
// Non-informative style of assert
// Compile with: javac -source 1.4 Assert1.java
// {JVMArgs: -ea} // Must run with -ea
// {ThrowsException}

public class Assert1 {
 public static void main(String[] args) {
 assert false;
 }
} ///:~

Chapter 15: Discovering problems 953

Assertions are turned off in JDK 1.4 by default (this is annoying, but the
designers managed to convince themselves it was a good idea). To prevent
compile-time errors you must compile with the flag: Feedback

-source 1.4

If you don’t use this flag you’ll get a chatty message saying that assert is a
keyword in JDK 1.4 and cannot be used as an identifier anymore. Feedback

If you just run the program the way you normally do, without any special
assertion flags, nothing will happen. You must enable assertions when you
run the program. The easiest way to do this is with the -ea flag, but you
can also spell it out: -enableassertions. This will run the program and
execute any assertion statements, so you’ll get: Feedback

Exception in thread "main" java.lang.AssertionError
 at Assert1.main(Assert1.java:8)

You can see that the output doesn’t contain much in the way of useful
information. On the other hand, if you use the information-expression,
you’ll produce a helpful message when the assertion fails. Feedback

To use the second form, you provide an information-expression which will
be displayed as part of the exception stack trace. This information-
expression can produce any data type at all. However, the most useful
information-expression will typically be a string with text that is useful to
the programmer. Here’s an example: Feedback

//: c15:Assert2.java
// Assert with an informative message
// {JVMArgs: -ea}
// {ThrowsException}

public class Assert2 {
 public static void main(String[] args) {
 assert false: "Here's a message saying what happened";
 }
} ///:~

Now the output is:

Exception in thread "main" java.lang.AssertionError: Here's
a message saying what happened
 at Assert2.main(Assert2.java:6)

954 Thinking in Java www.BruceEckel.com

Although what you see above is just a simple String object, the
information-expression can produce any kind of object, so you will
typically construct a more complex string containing, for example, the
value(s) of objects that were involved with the failed assertion. Feedback

Because the only way to see useful information from a failed assertion is
to use the information-expression, that is the form that is always used in
this book, and the first form will be considered to be a poor choice. Feedback

You can also decide to turn assertions on and off based on class name or
package name (that is, you can enable or disable assertions in an entire
package). You can find the details in the JDK 1.4 documentation on
assertions. This can be useful if you have a large project instrumented
with assertions and you want to turn some of them off. However, logging
or debugging (both described later in this chapter) are probably better
tools for capturing that kind of information. This book will just turn on all
assertions when necessary, and so we will ignore the fine-grained control
of assertions. Feedback

There’s one other way you can control assertions: programmatically, by
hooking into the ClassLoader object. JDK 1.4 added several new
methods to ClassLoader that allow the dynamic enabling and disabling
of assertions, including setDefaultAssertionStatus(), which sets the
assertion status for all the classes loaded afterwards. So you might think
you could almost silently turn on all assertions like this: Feedback

//: c15:LoaderAssertions.java
// Using the class loader to enable assertions
// Compile with: javac -source 1.4 LoaderAssertions.java
// {ThrowsException}

public class LoaderAssertions {
 public static void main(String[] args) {
 ClassLoader.getSystemClassLoader()
 .setDefaultAssertionStatus(true);
 new Loaded().go();
 }
}

class Loaded {
 public void go() {

Chapter 15: Discovering problems 955

 assert false: "Loaded.go()";
 }
} ///:~

Although this does eliminate the need to use the -ea flag on the command
line when the Java program is run, it’s not a complete solution because
you must still compile everything with the -source 1.4 flag. It may be just
as straightforward to enable assertions using command-line arguments;
when delivering a standalone product you probably have to set up an
execution script for the user to start the program with, anyway, in order to
configure other startup parameters. Feedback

It does make sense, however, to decide that you want to require assertions
to be enabled when the program is run. You can accomplish this with the
following static clause, placed in the main class of your system: Feedback

static {
 boolean assertionsEnabled = false;
 // Note intentional side effect of assignment:
 assert assertionsEnabled = true;
 if (!assertionsEnabled)
 throw new RuntimeException("Assertions disabled");
}

If assertions are enabled, then the assert statement will be executed and
assertionsEnabled will be set to true. The assertion will never fail,
because the return value of the assignment is the assigned value. If
assertions are not enabled the the assert statement will not be executed
and assertionsEnabled will remain false, resulting in the exception.
Feedback

Using Assertions for Design by
Contract
Design by Contract (DBC) is a concept developed by Bertrand Meyer8,
creator of the Eiffel programming language, to help in the creation of
robust programs by guaranteeing that objects follow certain rules that

8 Design by contract is described in detail in Chapter 11 of Object-Oriented Software
Construction, 2nd Edition, by Bertrand Meyer, Prentice Hall 1997.

956 Thinking in Java www.BruceEckel.com

cannot be verified by compile-time type checking. These rules are
determined by the nature of the problem that is being solved, which is
outside the scope of what the compiler can know about and test. Feedback

Although assertions are do not directly implement DBC (as does the Eiffel
language), they can be used to create an informal style of DBC
programming. Feedback

The fundamental idea of Design by Contract is that a clearly-specified
contract exists between the supplier of a service and the consumer or
client of that service. In object-oriented programming, services are
usually supplied by objects, and the boundary of the object—the division
between the supplier and consumer—is the interface of the object’s class.
When a client calls a particular public method, they are expecting certain
behavior from that call: a state change in the object, and a predictable
return value. Meyer’s thesis is that: Feedback

1. This behavior can be clearly specified, as if it were a contract.

2. This behavior can be guaranteed by implementing certain runtime
checks, which he calls preconditions, postconditions and
invariants.

Whether or not you agree that point #1 is always true, it does appear to be
true for enough situations to make DBC an interesting approach (I believe
that, like any solution, there are boundaries to its usefulness. But if you
know these boundaries, you know when to try to apply it). In particular, a
very valuable part of the design process is the expression of the DBC
constraints for a particular class—if you are unable to specify the
constraints, you probably don’t know enough about what you’re trying to
build. Feedback

Check instructions
Before going into in-depth DBC facilities, consider the simplest use for
assertions, which Meyer calls the check instruction. A check instruction
expresses your convinction that a particular property will be satisfied at
this point in your code. The idea of the check instruction is to express
non-obvious conclusions in code, not only to verify the test but as
documentation to future readers of the code. Feedback

Chapter 15: Discovering problems 957

For example, in a chemistry process you may be titrating one clear liquid
into another and when you reach a certain point everything turns blue.
This is not obvious from the color of the two liquids; it is part of a complex
reaction. A useful check instruction at the completion of the titration
process would assert that the resulting liquid is blue. Feedback

Another example is the Thread.holdsLock() method introduced in
JDK 1.4. This is used for complex threading situations (such as iterating
through a collection in a thread-safe way) where you must rely on the
client programmer or another class in your system using the library
properly, rather than on the synchronized keyword alone. To ensure
that the code is properly following the dictates of your library design, you
can assert that the current thread does indeed hold the lock: Feedback

assert Thread.holdsLock(this); // lock-status assertion

Check instructions are a valuable addition to your code. Since assertions
can be disabled, check instructions should be used whenever you have
non-obvious knowledge about the state of your object or program. Feedback

Preconditions
A precondition is a test to make sure that the client (the code calling this
method) has fulfilled their part of the contract. This almost always means
checking the arguments at the very beginning of a method call (before you
do anything else in that method), to make sure that those arguments are
appropriate for use in the method. Since you never know what a client is
going to hand you, precondition checks are always a good idea. Feedback

Postconditions
A postcondition test checks the results of what you did in the method.
This code is placed at the end of the method call, before the return
statement, if there is one. For long, complex methods where the result of
the calculations should be verified before returning them (that is, in
situations where for some reason you cannot always trust the results),
postcondition checks are essential, but any time you can describe
constraints on the result of the method it’s wise to express those
constraints in code, as a postcondition. In Java these are coded as
assertions, but the assertion statements will vary from one method to
another. Feedback

958 Thinking in Java www.BruceEckel.com

Invariants
An invariant gives guarantees about the state of the object that will be
maintained between method calls. However, it doesn’t restrain a method
from temporarily diverging from those guarantees during the execution of
the method. It just says that the state information of the object will always
obey these rules: Feedback

1. Upon entry to the method.

2. Before leaving the method.

In addition, the invariant is a guarantee about the state of the object after
construction. Feedback

According to the above description, an effective invariant would be
defined as a method, probably named invariant(), which would be
invoked after construction, and at the beginning and end of each method.
The method could be invoked as:

assert invariant();

This way, if you chose to disable assertions for performance reasons, there
would be no overhead at all. Feedback

Relaxing DBC
Although he emphasizes the importance of being able to express
preconditions, postconditions and invariants, and the value of using these
during development, Meyer admits that it is not always practical to
include all DBC code in a shipping product. You may relax DBC checking
based on the amount of trust you can place in the code at a particular
point. Here is the order of relaxation, from safest to least safe: Feedback

1. The invariant check at the beginning of each method may be
disabled first, since the invariant check at the end of each method
will guarantee that the object’s state will be valid at the beginning
of every method call. That is, you can generally trust that the state
of the object will not change between method calls. This one is
such a safe assumption that you might choose to write code with
invariant checks only at the end. Feedback

Chapter 15: Discovering problems 959

2. The postcondition check may be disabled next, if you have
reasonable unit testing that verifies that your methods are
returning appropriate values. Since the invariant check is
watching the state of the object, the postcondition check is only
validating the results of the calculation during the method, and
therefore may be discarded in favor of unit testing. The unit
testing will not be as safe as a run-time postcondition check, but it
may be enough, especially if you have enough confidence in the
code. Feedback

3. The invariant check at the end of a method call may be disabled if
you have enough certainty that the method body does not put the
object into an invalid state. It may be possible to verify this with
white-box unit testing (that is, unit tests that have access to private
fields, so they may validate the object state). Thus, although it may
not be quite as robust as calls to invariant(), it is possible to
“migrate” the invariant checking from run-time tests to build-time
tests (via unit testing), just as with postconditions. Feedback

4. Finally, as a last resort you may disable precondition checks. This
is the least safe and least advisable thing to do, because although
you know and have control over your own code, you have no
control over what arguments the client may pass to a method.
However, in a situation where (A) performance is desperately
needed and profiling has pointed at precondition checks as a
bottleneck and (B) you have some kind of reasonable assurance
that the client will not violate preconditions (as in the case where
you’ve written the client code yourself) it may be acceptable to
disable precondition checks. Feedback

In no situation above should you actually remove the code that performs
the checks described above as you disable the checks. If a bug is
discovered, you want to be able to easily turn on all of the checks so that
you can rapidly discover the problem. Feedback

960 Thinking in Java www.BruceEckel.com

Example: DBC + white-box unit
testing

The following example demonstrates the potency of combining concepts
from design by contract with unit testing. It shows a small first-in, first-
out (FIFO) queue class which is implemented as a “circular” array—that
is, an array that is used in a circular fashion. When the end of the array is
reached, the class wraps back around to the beginning. Feedback

We can make a number of contractual definitions for this queue:

1. Precondition (for a put()): null elements are not allowed to be
added to the queue.

2. Precondition (for a put()): it is illegal to put elements into a full
queue.

3. Precondition (for a get()): it is illegal to try to get elements from
an empty queue.

4. Postcondition (for a get()): null elements cannot be produced
from the array.

5. Invariant: the region in the array that contains objects cannot
contain any null elements.

6. Invariant: the region in the array that doesn’t contain objects must
have only null values.

Here is one way you could implement these rules, using explicit method
calls for each type of DBC element: Feedback

//: c15:Queue.java
// Demonstration of Design by Contract (DBC) combined
// with white-box unit testing.
// {Depends: junit.jar}
import junit.framework.*;
import java.util.*;

public class Queue {
 private Object[] data;
 private int

Chapter 15: Discovering problems 961

 in = 0, // Next available storage space
 out = 0; // Next gettable object
 // Has it wrapped around the circular queue?
 private boolean wrapped = false;
 public static class
 QueueException extends RuntimeException {
 public QueueException(String why) { super(why); }
 }
 public Queue(int size) {
 data = new Object[size];
 assert invariant(); // Must be true after construction
 }
 public boolean empty() {
 return !wrapped && in == out;
 }
 public boolean full() {
 return wrapped && in == out;
 }
 public void put(Object item) {
 precondition(item != null, "put() null item");
 precondition(!full(), "put() into full Queue");
 assert invariant();
 data[in++] = item;
 if(in >= data.length) {
 in = 0;
 wrapped = true;
 }
 assert invariant();
 }
 public Object get() {
 precondition(!empty(), "get() from empty Queue");
 assert invariant();
 Object returnVal = data[out];
 data[out] = null;
 out++;
 if(out >= data.length) {
 out = 0;
 wrapped = false;
 }
 assert postcondition(
 returnVal != null, "Null item in Queue");
 assert invariant();
 return returnVal;
 }

962 Thinking in Java www.BruceEckel.com

 // Design-by-contract support methods:
 private static void
 precondition(boolean cond, String msg) {
 if(!cond) throw new QueueException(msg);
 }
 private static boolean
 postcondition(boolean cond, String msg) {
 if(!cond) throw new QueueException(msg);
 return true;
 }
 private boolean invariant() {
 // Guarantee that no null values are in the
 // region of 'data' that holds objects:
 for(int i = out; i != in; i = (i + 1) % data.length)
 if(data[i] == null)
 throw new QueueException("null in queue");
 // Guarantee that only null values are outside the
 // region of 'data' that holds objects:
 if(full()) return true;
 for(int i = in; i != out; i = (i + 1) % data.length)
 if(data[i] != null)
 throw new QueueException(
 "non-null outside of queue range: " + dump());
 return true;
 }
 private String dump() {
 return "in = " + in +
 ", out = " + out +
 ", full() = " + full() +
 ", empty() = " + empty() +
 ", queue = " + Arrays.asList(data);
 }
 // JUnit testing.
 // As an inner class, this has access to privates:
 public static class WhiteBoxTest extends TestCase {
 private Queue queue = new Queue(10);
 private int i = 0;
 public WhiteBoxTest(String name) {
 super(name);
 while(i < 5) // Preload with some data
 queue.put("" + i++);
 }
 // Support methods:
 private void showFullness() {

Chapter 15: Discovering problems 963

 assertTrue(queue.full());
 assertFalse(queue.empty());
 // Dump is private, white-box testing allows access:
 System.out.println(queue.dump());
 }
 private void showEmptiness() {
 assertFalse(queue.full());
 assertTrue(queue.empty());
 System.out.println(queue.dump());
 }
 public void testFull() {
 System.out.println("testFull");
 System.out.println(queue.dump());
 System.out.println(queue.get());
 System.out.println(queue.get());
 while(!queue.full())
 queue.put("" + i++);
 String msg = "";
 try {
 queue.put("");
 } catch(QueueException e) {
 msg = e.getMessage();
 System.out.println(msg);
 }
 assertEquals(msg, "put() into full Queue");
 showFullness();
 }
 public void testEmpty() {
 System.out.println("testEmpty");
 while(!queue.empty())
 System.out.println(queue.get());
 String msg = "";
 try {
 queue.get();
 } catch(QueueException e) {
 msg = e.getMessage();
 System.out.println(msg);
 }
 assertEquals(msg, "get() from empty Queue");
 showEmptiness();
 }
 public void testNullPut() {
 System.out.println("testNullPut");
 String msg = "";

964 Thinking in Java www.BruceEckel.com

 try {
 queue.put(null);
 } catch(QueueException e) {
 msg = e.getMessage();
 System.out.println(msg);
 }
 assertEquals(msg, "put() null item");
 }
 public void testCircularity() {
 System.out.println("testCircularity");
 while(!queue.full())
 queue.put("" + i++);
 showFullness();
 // White-box testing accesses private field:
 assertTrue(queue.wrapped);
 while(!queue.empty())
 System.out.println(queue.get());
 showEmptiness();
 while(!queue.full())
 queue.put("" + i++);
 showFullness();
 while(!queue.empty())
 System.out.println(queue.get());
 showEmptiness();
 }
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(Queue.WhiteBoxTest.class);
 }
} ///:~

The in counter indicates the place in the array where the next object will
go in, and the out counter indicates where the next object will come from.
The wrapped flag shows that in has gone “around the circle” and is now
coming up from behind out. When in and out coincide, the queue is
empty (if wrapped is false) or full (if wrapped is true). Feedback

You can see that the put() and get() methods call the methods
precondition(), postcondition() and invariant(), which are
private methods defined further down in the class. precondition()
and postcondition() are helper methods designed to clarify the code.
Note that precondition() returns void, because it is not used with
assert. As previously noted, you’ll generally want to keep preconditions

Chapter 15: Discovering problems 965

in your code; however, by wrapping them in a precondition() method
call you have better options if you are reduced to the dire move of turning
them off. Feedback

postcondition() and invariant() return a Boolean value so that they
can be used in assert statements. Then, if assertions are disabled for
performance reasons, there will be no method calls at all. Feedback

invariant() performs internal validity checks on the object. You can see
that this is an expensive operation to do at both the beginning and ending
of every method call, as Meyer suggests. However, it’s very valuable to
have clearly represented in code, and it helped me get the implementation
to be correct. In addition, if you make any changes to the implementation
the invariant() will ensure that you haven’t broken the code. But you
can see that it would be fairly trivial to move the invariant tests from the
method calls into the unit test code. If your unit tests are reasonably
thorough then you can have a reasonable level of confidence that the
invariants will be respected. Feedback

Notice that the dump() helper method returns a string containing all the
data, rather than printing the data directly. This approach allows many
more options as to how the information can be used. Feedback

The TestCase subclass WhiteBoxTest is created as an inner class so
that it has access to the private elements of Queue and is thus able to
validate the underlying implementation, not just the behavior of the class
as in a white box test. The constructor adds some data so that the Queue
is partially full for each test. The support methods showFullness() and
showEmptiness() are meant to be called to verify that the Queue is
full or empty, respectively. Each of the four test methods ensures that a
different aspect of the Queue operation functions correctly. Feedback

Note that by combining design by contract with unit testing, you not only
get the best of both worlds, but you also have a migration path—you can
move DBC tests to unit tests rather than simply disabling them, so you
still have some level of testing. Feedback

966 Thinking in Java www.BruceEckel.com

Building with Ant
I began my career writing programs in assembly-language which
controlled real-time devices. These programs usually fit into a single file,
so when I was introduced to the make utility I wasn’t too excited, because
the most complex thing I had ever needed to do was run an assembler or a
C compiler on a few files of code. Back then, building a project wasn’t the
difficult part of my task, and it wasn’t too cumbersome to run everything
by hand. Feedback

Time passed, and two events occurred. First, I started to create more
complex projects comprising many more files. Keeping track of which files
needed compliation became more than I was able (or wanted) to think
about. Second, because of this complexity I began to realize that no matter
how simple the build process might be, if you do something more than a
couple of times you begin to get sloppy, and parts of the process start to
fall through the cracks. Feedback

Automate everything
I came to realize that for a system to be built in a robust and reliable
fashion, I needed to automate everything that goes into the build process.
This requires some concentration up front, just like writing a program
requires concentration, but the payoff is that you solve the problems once,
and then you rely on your build configuration to take care of the details
from then on. It’s a variation of the fundamental programming principle
of abstraction: we raise ourselves up from the grinding details by hiding
those details inside a process, and giving that process a name. For many
years, the name of that process was make. Feedback

The make utility appeared along with C as a tool to create the Unix
operating system. make’s primary function is to compare the date of two
files and to perform some operation that will bring those two files up to
date with each other. The relationships between all the files in your
projects and the rules necessary to bring them up to date (the rule is
usually running the C/C++ compiler on a source file) are contained in a
makefile. The programmer creates a makefile containing the description
of how to build the system. When you want to bring the system up to date,

Chapter 15: Discovering problems 967

you simply type make at the command line. To this day, installing
Unix/Linux programs consists of unpacking them and typing make
commands. Feedback

Problems with make
The concept of make is clearly a good idea, and this idea proliferated to
produce many versions of make. C and C++ compiler vendors typically
included their own variation of make along with their compiler—these
variations often took liberties with what people considered to be the
standard makefile rules, and so the resulting makefiles wouldn’t run with
each other. The problem was finally solved (as has often been the case) by
a make that was, and still is, superior to all the other makes, and is also
free so there’s no resistance to using it9: GNU make. This tool has a
significantly better feature set than the other versions of make, and is
available on all platforms. Feedback

In the previous two editions of Thinking in Java, I used makefiles to build
all the code in the book’s source-code tree. I automatically generated
these makefiles—one in each directory, and a master makefile in the root
directory that would call the rest—using a tool that I originally wrote for
Thinking in C++, in C++ (in about 2 weeks) and later rewrote in Python
(in about half a day) called MakeBuilder.py10. It worked for both
Windows and Linux/Unix, but I had to write extra code to make this
happen, and I never tried it on the Macintosh. Therein lies the first
problem with make: you can get it to work on multiple platforms, but it’s
not inherently cross-platform. So for a language that’s supposed to be
“write once, run anywhere” (that is, Java), you can spend a lot of effort
getting the same behavior in the build system if you use make. Feedback

9 Except by the occasional company which, for reasons beyond comprehension, is still
convinced that closed-source tools are somehow better or have superior tech support. The
only situations where I’ve seen this to be true are when tools have a very small user base,
but even then it would be safer to hire consultants to modify open-source tools, and thus
leverage prior work and guarantee that the work you pay for won’t become unavailable to
you (and also make it more likely that you’ll find other consultants already up to speed on
the program).

10 This is not available on the web site because it’s too customized to be generally useful.

968 Thinking in Java www.BruceEckel.com

The rest of the problems with make can probably be summarized by
saying that it is like a lot of tools developed for Unix: the person creating
the tool couldn’t resist the temptation to create their own language syntax,
and as a result Unix is filled with tools that are all remarkably different,
and equally incomprehensible. That is to say, the make syntax is quite
difficult to understand in its entirety—I’ve been learning it for years—and
has lots of annoying things like its insistence on tabs instead of spaces.
Feedback

All that said, note that I still find GNU make indispensable for many of
the projects I create. Feedback

Ant: the defacto standard
All of these issues with make irritated a Java programmer named James
Duncan Davidson enough to cause him to create ant as an open-source
tool that migrated to the Apache project at http://jakarta.apache.org/ant.
This site contains the full download including the ant executable and
documentation. Ant has grown and improved until it is now generally
accepted as the defacto standard build tool for Java projects. Feedback

To make ant cross-platform, the format for the project description files is
XML (covered in Thinking in Enterprise Java). Instead of a makefile, you
create a buildfile, which is named by default build.xml (this allows you
to just say ‘ant’ on the command line. If you name your buildfile
something else you have to specify that name with a command-line flag).
Feedback

The only rigid requirement for your buildfile is that it be a valid XML file.
Ant compensates for platform-specific issues like end-of-line characters
and directory path separators. You can use tabs or spaces in the buildfile
as you prefer. In addition, the syntax and tag names used in buildfiles
result in readable, understandable (and thus, maintainable) code. Feedback

On top of all this, ant is designed to be extensible, with a standard
interface that allows you to write your own tasks, if the ones that come
with ant aren’t enough (however, they usually are, and the arsenal is
regularly expanding). Feedback

Chapter 15: Discovering problems 969

Unlike make, the learning curve for ant is reasonably gentle. You don’t
need to know that much in order to create a buildfile that compiles Java
code in a directory. Here’s a very basic build.xml file, for example, from
chapter 2 of this book: Feedback

<?xml version="1.0"?>

<project name="Thinking in Java (c02)"
 default="c02.run" basedir=".">
 <!-- build all classes in this directory -->
 <target name="c02.build">
 <javac
 srcdir="${basedir}"
 classpath="${basedir}/.."
 source="1.4"
 />
 </target>

 <!-- run all classes in this directory -->
 <target name="c02.run" depends="c02.build">
 <antcall target="HelloDate.run"/>
 </target>

 <target name="HelloDate.run">
 <java
 taskname="HelloDate"
 classname="HelloDate"
 classpath="${basedir};${basedir}/.."
 fork="true"
 failonerror="true"
 />
 </target>

 <!-- delete all class files -->
 <target name="clean">
 <delete>
 <fileset dir="${basedir}" includes="**/*.class"/>
 <fileset dir="${basedir}" includes="**/*Output.txt"/>
 </delete>
 <echo message="clean successful"/>
 </target>

</project>

970 Thinking in Java www.BruceEckel.com

The first line states that this file conforms to version 1.0 of XML. XML
looks a lot like HTML (notice the comment syntax is identical), except
that you can make up your own tag names and the format must strictly
conform to XML rules. For example, an opening tag like <project must
either end within the tag at its closing angle brace with a slash: /> or have
a matching closing tag like you see at the end of the file: </project>.
Within a tag you can have attributes, but the attribute values must be
surrounded in quotes. XML allows free formatting, but indentation like
you see above is typical. Feedback

Each buildfile can manage a single project, described by its <project>
tag. The project has an optional name attribute which is used when
displaying information about the build. The default attribute is required,
and refers to the target that is built when you just type ant at the
command line, without giving a specific target name. basedir is a
directory reference that can be used in other places in the buildfile. Feedback

A target has dependencies and tasks. The dependencies say “which other
targets must be built before this target can be built?” You’ll notice that the
default target to build is c02.run, and the c02.run target says that it
in turn depends on c02.build. Thus, the c02.build target must be
executed before c02.run can be executed. Partitioning the buildfile this
way not only makes it easier to understand, it also allows you choose what
you want to do via the ant command line: if you say ‘ant c02.build,’
then it will only compile the code, but if you say ‘ant co2.run’ (or,
because of the default target, just ‘ant’), then it will first make sure things
have been built, and then run the examples. Feedback

So, for the project to be successful, targets c02.build and c02.run must
first succeed, in that order. c02.build contains a single task, which is a
command that actually does the work of bringing things up to date. This
task runs the javac compiler on all the Java files in this current base
directory—notice the ${} syntax used to produce the value of a
previously-defined variable, and that the orientation of slashes in
directory paths is not important, since ant compensates depending on the
operating system you run it on. The classpath attribute gives a directory
list to add to ant’s classpath, and source specifies the compiler to use
(this is actually only noticed by JDK 1.4 and beyond). Note that the Java
compiler is responsible for sorting out the dependencies between the

Chapter 15: Discovering problems 971

classes themselves, so you don’t have to explicitly state inter-file
dependencies like you must with make and C/C++ (this saves a lot of
effort). Feedback

To run the programs in the directory (which, in this case, is only the single
program HelloDate), this buildfile uses a task named antcall. This task
does a recursive invocation of ant on another target, which in this case
just uses java to execute the program. Note that the java task has a
taskname attribute—this attribute is actually available for all tasks, and
is used when ant outputs logging information. Feedback

As you might expect, the java tag also has options to establish the class
name to be executed, and the classpath. In addition, the

fork="true"
failonerror="true"

attributes tell ant to fork off a new process to run this program, and to fail
the ant build if the program fails. You can look up all the different tasks
and their attributes in the documentation that comes with the ant
download. Feedback

The last target is one that’s typically found in every buildfile—it allows you
to say ant clean and delete all the files that have been created in order to
perform this build. Whenever you create a buildfile, you should be careful
to include a clean target, because you’re the person who typically knows
the most about what can be deleted and what should be preserved. Feedback

The clean target introduces some new syntax. You can delete single items
with the one-line version of this task, like this:

<delete file="${basedir}/HelloDate.class"/>

The multi-line version of the task allows you to specify a fileset, which is a
more complex description of a set of files and may specify files to include
and exclude using wildcards. The above filesets to delete include all files
in this directory and all subdirectories that have a .class extension, and
all files in the current subdirectory that end with Output.txt. Feedback

The above buildfile is fairly simple; within this book’s source code tree
(which is on the CD ROM and downloadable from www.BruceEckel.com)
you’ll find more complex buildfiles. Also, ant is capable of doing much

972 Thinking in Java www.BruceEckel.com

more that what we use for this book—for the full details of its capabilities,
see the documentation that comes with the ant installation. Feedback

Ant extensions
Ant comes with an extension API, so that you can create your own tasks
by writing them in Java. You can find full details in the official ant
documentation, and in the published books on ant. Feedback

As an alternative, you can simply write a Java program and call it from
ant—this way you don’t have to learn the extension API. For example, to
compile the code in this book we need to verify that the version of Java
that the user is running is JDK 1.4 or greater, so we just created the
following program: Feedback

//: com:bruceeckel:tools:CheckVersion.java
// {RunByHand}
package com.bruceeckel.tools;

public class CheckVersion {
 public static void main(String[] args) {
 String version = System.getProperty("java.version");
 char minor = version.charAt(2);
 char point = version.charAt(4);
 if(minor < '4' || point < '1')
 throw new RuntimeException("JDK 1.4.1 or higher " +
 "is required to run the examples in this book.");
 System.out.println("JDK version "+ version + " found");
 }
} ///:~

This simply uses System.getProperty() to discover the java version,
and throws an exception if it isn’t at least 1.4. When ant sees the
exception it will halt. Now you can include the following in any buildfile
where you want to check the version number: Feedback

 <java
 taskname="CheckVersion"
 classname="com.bruceeckel.tools.CheckVersion"
 classpath="${basedir}"
 fork="true"
 failonerror="true"
 />

Chapter 15: Discovering problems 973

If you use this approach to adding tools, you can write them and test them
quickly, and if it’s justified you can invest the extra effort and write an ant
extension. Feedback

Version control with CVS
The revision control system is a class of tool that has been developed over
many years to help manage large team programming projects. It has also
turned out to be fundamental to the success of virtually all open-source
projects, because open-source teams are almost always distributed
globally via the Internet. So even if there are only two people working on a
project, they benefit from using a revision control system. Feedback

The defacto standard revision control system for open-source projects is
called CVS, available at http://www.cvshome.org. Because it is open-
source and because so many people know how to use it, CVS is also a
common choice for closed projects. Some projects even use CVS as a way
to distribute the system. CVS has the usual benefits of a popular open-
source project: the code has been thoroughly reviewed, it’s available for
your review and modification, and if any new flaws are discovered they
are corrected very rapidly. Feedback

CVS keeps your code in a repository on a server. This server may be on a
local area network, but it is typically available on the Internet so that
people on the team can get updates without being at a particular location.
To connect to CVS, you must have an assigned user name and password,
so there’s a reasonable level of security; for more security you can use the
ssh protocol (although these are Linux tools, they are readily available in
Windows using Cygwin—see http://www.cygwin.com). Some graphical
development environments (like the free Eclipse editor; see
http://www.eclipse.org) provide excellent integration with CVS. Feedback

Once the repository is initialized by your system administrator, team
members may get a copy of the code tree by checking it out. For example,
once your machine is logged into the appropriate CVS server (details of
which are left out here) you can perform the initial checkout with a
command like this: Feedback

cvs –z5 co TIJ3code

974 Thinking in Java www.BruceEckel.com

This will connect with the CVS server and negotiate the checkout (‘co’) of
the code repository called TIJ3code. The ‘-z5’ argument tells the CVS
programs at both ends to communicate using a gzip compression level of
5, in order to speed up the transfer over the network. Feedback

Once this command is completed, you’ll have a copy of the code
repository on your local machine. In addition, you’ll see that each
directory in the repository has an additional subdirectory named CVS.
This is where all the CVS information about the files in that directory are
stored. Feedback

Now that you have your own copy of the CVS repository, you can make
changes to the files in order to develop the project. Typically these
changes include corrections and feature additions, along with test code
and modified buildfiles necessary to compile and run the tests. You’ll find
that it’s very unpopular to check in code that doesn’t successfully run all
its tests, because then everyone else on the team will get the broken code
(and thus fail their builds). Feedback

When you’ve made your improvements and you’re ready to check them in,
you must go through a two-step process which is the crux of CVS code
synchronization. First, you update your local repository to synchronize it
with the main CVS repository by moving into the root of your local code
repository and running this command: Feedback

cvs update –dP

At this point, you aren’t required to log in because the CVS subdirectory
keeps the login information for the remote repository, and the remote
repository keeps signature information about your machine as a double
check to verify your identity. Feedback

The ‘-dP’ flag is optional. ‘-d’ tells CVS to create any new directories on
your local machine that might have been added to the main repository
and ‘-P’ tells CVS to prune off any directories on your local machine that
have been emptied on the main repository. Niether of these things
happens by default. Feedback

The main activity of update, however, is quite interesting. You should
actually run update on a regular basis, not just before you do a checkin,
because it synchronizes your local repository with the main repository. If

Chapter 15: Discovering problems 975

it finds any files in the main repository that are newer than files on your
local repository, it brings the changes onto your local machine. However,
it doesn’t just copy the files, but instead it does a line-by-line comparison
of the files, and patches the changes from the main repository into your
local version. If you’ve made some changes to a file and someone else has
made changes to the same file, CVS will patch the changes together as
long as the changes don’t happen to the same lines of code (CVS matches
the contents of the lines, and not just the line numbers, so even if line
numbers change it will be able to synchronize properly). Thus, you can be
working on the same file as someone else, and when you do an update
any changes the other person has committed to the main repository will
be merged with your changes. Feedback

Of course, it’s possible that two people might make changes to the same
lines of the same file. This is an accident due to lack of communication—
normally you’ll tell each other what you’re working on so as not to tread
on each other’s code (also, if files are so big that it makes sense for two
different people are working on different parts of the same file, you might
consider breaking the big files up into smaller files, for easier project
management). If this happens, CVS simply notes the collision and forces
you to resolve it by fixing the lines of code that collide. Feedback

Note that no files from your machine are moved into the main repository
during an update. The update only brings changed files from the main
repository onto your machine, and patches in any modifications you’ve
made. So how do your modifications get into the main repository? This is
the second step—the commit. Feedback

When you type

cvs commit

CVS will start up your default editor and ask you to write a description of
your modification. This description will be entered into the repository so
that others will know what’s been changed. After that, your modified files
will be placed into the main repository so they are available to everyone
else, the next time they do an update. Feedback

CVS has other capabilities, but checking out, updating and committing are
what you’ll be doing most of the time. For detailed information about

976 Thinking in Java www.BruceEckel.com

CVS, books are available, and the main CVS web site has full
documentation: http://www.cvshome.org. In addition, you can search on
the Internet using Google or other search engines; there are some very
nice condensed introductions to CVS which can get you started without
bogging you down with too many details (the “Gentoo Linux CVS
Tutorial” by Daniel Robbins is particularly straightforward). Feedback

Daily builds
By incorporating compiling and testing into your buildfiles, you can follow
the practice of performing daily builds, advocated by the Extreme
Programming folks and others. Regardless of the number of features that
you currently have implemented, you always keep your system in a state
that it can be successfully built, so that if someone performs a checkout
and runs ant, the buildfile will perform all the compilations and run all
the tests without failing. Feedback

This is a powerful technique. It means that you always have, as a baseline,
a system that compiles and passes all its tests. At any time, you can always
see what the true state of the development process is by examining the
features that are actually implemented in the running system. One of the
timesavers of this approach is that no one has to waste time coming up
with a report explaining what is going on with the system—anyone can see
for themselves by checking out a current build and running the program.
Feedback

Running builds daily, or more often, also ensures that if someone
(accidentally, we presume) checks in changes that cause tests to fail, you’ll
know about it in short order, before those bugs have a chance to
propagate further problems in the system. Ant even has a task that will
send email, because many teams set up their buildfile as a cron11 job to
automatically run daily, or even several times a day, and send email if it
fails. There is also an open-source tool that automatically performs builds
and provides a web page to show the project status; see
http://cruisecontrol.sourceforge.net. Feedback

11 Cron is a program that was developed under Unix to run programs at specified times.
However, it is also available in free versions under Windows, and as a Windows NT/2000
service: http://www.kalab.com/freeware/cron/cron.htm.

Chapter 15: Discovering problems 977

Logging
Logging is the process of reporting information about a running program.
In a program which is debugged, this information can be ordinary status
data which describes the progress of the program (for example, if you
have an installation program you may log the steps taken during
installation—the directories where you stored files, startup values for the
program, etc.). Feedback

Logging is also very useful during debugging. Without logging, you might
try to decipher the behavior of a program by inserting println()
statements. Many examples in this book use that very technique, and in
the absence of a debugger (a topic that will be introduced shortly) it’s
about all you have. However, once you decide the program is working
properly, you’ll probably take the println() statements out. Then if you
run into more bugs, you may need to put them back in. It’s much nicer if
you can put in some kind of output statements, which will only be used
when necessary.Feedback

Prior to the availability of the logging API in JDK1.4, programmers would
often use a technique that relies on the fact that the Java compiler will
optimize away code that will never be called. If debug is a static final
boolean and you say:Feedback

if(debug) {
 System.out.println("Debug info");
}

then when debug is false, the compiler will completely remove the code
within the braces (thus the code doesn’t cause any run-time overhead at
all when it isn’t used). Using this technique you can place trace code
throughout your program and easily turn it on and off. One drawback to
the technique, however, is that you must recompile your code in order to
turn your trace statements on and off, whereas it’s generally more
convenient to be able to turn on the trace without recompiling the
program by using a configuration file that you can change to modify the
logging properties.Feedback

The logging API in JDK1.4 provides a more sophisticated facility to report
information about your program, with almost the same efficiency of the

978 Thinking in Java www.BruceEckel.com

above technique. For very simple informational logging, you can do
something like this:Feedback

//: c15:InfoLogging.java
import com.bruceeckel.simpletest.*;
import java.util.logging.*;
import java.io.*;

public class InfoLogging {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("InfoLogging");
 public static void main(String[] args) {
 logger.info("Logging an INFO-level message");
 monitor.expect(new String[] {
 "%% .* InfoLogging main",
 "INFO: Logging an INFO-level message"
 });
 }
} ///:~

The output during one run is:

Jul 7, 2002 6:59:46 PM InfoLogging main
INFO: Logging an INFO-level message

Notice that the logging system has detected the class name and method
name from which the log message originated. It’s not guaranteed that
these names will be correct, so you shouldn’t rely on their accuracy. If you
want to ensure that the proper class name and method are printed, you
can use a more complex method to log the message, like this:Feedback

//: c15:InfoLogging2.java
// Guaranteeing proper class and method names
import com.bruceeckel.simpletest.*;
import java.util.logging.*;
import java.io.*;

public class InfoLogging2 {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("InfoLogging2");
 public static void main(String[] args) {
 logger.logp(Level.INFO, "InfoLogging2", "main",
 "Logging an INFO-level message");

Chapter 15: Discovering problems 979

 monitor.expect(new String[] {
 "%% .* InfoLogging2 main",
 "INFO: Logging an INFO-level message"
 });
 }
} ///:~

The logp() method takes arguments of the logging level (you’ll learn
about this next), the class name and method name, and the logging string.
You can see that it’s much simpler to just rely on the automatic approach
if the class and method names reported during logging are not
critical.Feedback

Logging Levels
The logging API provides multiple levels of reporting and the ability to
change to a different level during program execution. Thus, you can
dynamically set the logging level to any of the following states: Feedback

Level Effect Numeric Value

OFF No logging messages
reported

Integer.MAX_VALUE

SEVERE Only logging messages
with the level SEVERE
will be reported

1000

WARNING Logging messages with
levels of WARNING
and SEVERE will be
reported

900

INFO Logging messages with
levels of INFO and
above are reported

800

CONFIG Logging messages with
levels of CONFIG and
above are reported

700

980 Thinking in Java www.BruceEckel.com

FINE Logging messages with
levels of FINE and
above are reported

500

FINER Logging messages with
levels of FINER and
above are reported

400

FINEST Logging messages with
levels of FINEST and
above are reported.

300

ALL All logging messages
reported

Integer.MIN_VALUE

You can even inherit from java.util.Logging.Level (which has
protected constructors) and define your own level. This could, for
example, have a value of less than 300 so the level is less than FINEST.
Then logging messages at your new level would not appear when the level
is FINEST. Feedback

You can see the effect of trying out the different levels of logging in the
following example:Feedback

//: c15:LoggingLevels.java
import com.bruceeckel.simpletest.*;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.logging.Handler;
import java.util.logging.LogManager;

public class LoggingLevels {
 private static Test monitor = new Test();
 private static Logger
 lgr = Logger.getLogger("com"),
 lgr2 = Logger.getLogger("com.bruceeckel"),
 util = Logger.getLogger("com.bruceeckel.util"),
 test = Logger.getLogger("com.bruceeckel.test"),
 rand = Logger.getLogger("random");
 private static void logMessages() {
 lgr.info("com : info");
 lgr2.info("com.bruceeckel : info");

Chapter 15: Discovering problems 981

 util.info("util : info");
 test.severe("test : severe");
 rand.info("random : info");
 }
 public static void main(String[] args) {
 lgr.setLevel(Level.SEVERE);
 System.out.println("com level: SEVERE");
 logMessages();
 util.setLevel(Level.FINEST);
 test.setLevel(Level.FINEST);
 rand.setLevel(Level.FINEST);
 System.out.println("individual loggers set to FINEST");
 logMessages();
 lgr.setLevel(Level.SEVERE);
 System.out.println("com level: SEVERE");
 logMessages();
 monitor.expect("LoggingLevels.out");
 }
} ///:~

The first few lines of main() are necessary because the default level of
logging messages that will be reported is INFO and greater (more severe).
If you do not change this then the messages of level CONFIG and below
will not be reported (try taking out the lines to see this happen).Feedback

You can have multiple logger objects in your program, and these loggers
are organized into a hierarchical tree, which can be programmatically
associated with the package namespace. Child loggers keep track of their
immediate parent and by default pass the logging records up to the
parent.Feedback

The “root” logger object is always created by default, and is the base of the
tree of logger objects. You get a reference to the root logger by calling the
static method Logger.getLogger(""). Notice that it takes an empty
string, rather than no arguments.Feedback

Each Logger object can have one or more Handler objects associated
with it. Each Handler object provides a strategy12 for publishing the

12 A pluggable algorithm. Strategies allow you to easily change one part of a solution while
leaving the rest unchanged. They are often used (as in this case) as ways to allow the client
programmer to provide a portion of the code needed to solve a particular problem. For
more details, see Thinking in Patterns with Java at www.BruceEckel.com.

982 Thinking in Java www.BruceEckel.com

logging information, which is contained in LogRecord objects. To create
a new type of Handler, you simply inherit from the Handler class and
override the publish() method (along with flush() and close(), to
deal with any streams you may use in the Handler).Feedback

The root logger always has one associated handler by default, which sends
output to the console. In order to access the handlers, you call
getHandlers() on the Logger object. In the above code, we know that
there’s only one handler so we don’t technically need to iterate through
the list, but it’s safer to do so in general because someone else may have
added other handlers to the root logger. The default level of each handler
is INFO, so in order to see all the messages we set the level to ALL
(which is the same as FINEST).Feedback

The levels array allows easy testing of all the Level values. The logger is
set to each value and all the different logging levels are attempted. In the
output you can see that only messages at the currently selected logging
level, and those messages which are more severe, are reported.Feedback

LogRecords
A LogRecord is an example of a Messenger object13, whose job is simply
to carry information from one place to another. All the methods in the
LogRecord are getters and setters. Here’s an example that dumps all the
information stored in a LogRecord using the getter methods:Feedback

//: c15:PrintableLogRecord.java
// Override LogRecord toString()
import com.bruceeckel.simpletest.*;
import java.util.ResourceBundle;
import java.util.logging.*;

public class PrintableLogRecord extends LogRecord {
 private static Test monitor = new Test();
 public PrintableLogRecord(Level level, String str) {
 super(level, str);
 }
 public String toString() {

13 A term coined by Bill Venners. This may or may not be a design pattern.

Chapter 15: Discovering problems 983

 String result = "Level<" + getLevel() + ">\n"
 + "LoggerName<" + getLoggerName() + ">\n"
 + "Message<" + getMessage() + ">\n"
 + "CurrentMillis<" + getMillis() + ">\n"
 + "Params";
 Object objParams[] = getParameters();
 if(objParams == null)
 result += "<null>\n";
 else
 for(int i = 0; i < objParams.length; i++)
 result += " Param # <" + i + " value " +
 objParams[i].toString() + ">\n";
 result += "ResourceBundle<" + getResourceBundle()
 + ">\nResourceBundleName<" + getResourceBundleName()
 + ">\nSequenceNumber<" + getSequenceNumber()
 + ">\nSourceClassName<" + getSourceClassName()
 + ">\nSourceMethodName<" + getSourceMethodName()
 + ">\nThread Id<" + getThreadID()
 + ">\nThrown<" + getThrown() + ">";
 return result;
 }
 public static void main(String[] args) {
 PrintableLogRecord logRecord = new PrintableLogRecord(
 Level.FINEST, "Simple Log Record");
 System.out.println(logRecord);
 monitor.expect(new String[] {
 "Level<FINEST>",
 "LoggerName<null>",
 "Message<Simple Log Record>",
 "%% CurrentMillis<.+>",
 "Params<null>",
 "ResourceBundle<null>",
 "ResourceBundleName<null>",
 "SequenceNumber<0>",
 "SourceClassName<null>",
 "SourceMethodName<null>",
 "Thread Id<10>",
 "Thrown<null>"
 });
 }
} ///:~

984 Thinking in Java www.BruceEckel.com

PrintableLogRecord is a simple extension of LogRecord that
overrides toString() to call all the getter methods available in
LogRecord.Feedback

Handlers
As noted above, you can easily create your own handler by inheriting from
Handler and defining publish() to perform your desired operations.
However, there are predefined handlers which will probably satisfy your
needs without doing any extra work:Feedback

StreamHandler Writes formatted records to an
OutputStream

ConsoleHandler Writes formatted records to System.err
FileHandler Writes formatted log records either to a

single file, or to a set of rotating log files
SocketHandler Writes formatted log records to remote TCP

ports
MemoryHandler Buffers log records in memory

For example, you often want to store logging output to a file. The
FileHandler makes this easy:Feedback

//: c15:LogToFile.java
// {Clean: LogToFile.xml,LogToFile.xml.lck}
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class LogToFile {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("LogToFile");
 public static void main(String[] args) throws Exception {
 logger.addHandler(new FileHandler("LogToFile.xml"));
 logger.info("A message logged to the file");
 monitor.expect(new String[] {
 "%% .* LogToFile main",
 "INFO: A message logged to the file"
 });
 }
} ///:~

Chapter 15: Discovering problems 985

When you run this program, you’ll notice two things. First, even though
we’re sending output to a file, you’ll still see console output. That’s
because each message is converted to a LogRecord, which is first used
by the local logger object, which passes it to its own handlers. At this
point the LogRecord is passed to the parent object, which has its own
handlers. This process continues until the root logger is reached. The root
logger comes with a default ConsoleHandler, so the message appears
on the screen as well as appearing in the log file (you can turn off this
behavior by calling setUseParentHandlers(false)).Feedback

The second thing you’ll notice is that the contents of the log file is in XML
format, which will look something like this:Feedback

<?xml version="1.0" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
 <date>2002-07-08T12:18:17</date>
 <millis>1026152297750</millis>
 <sequence>0</sequence>
 <logger>LogToFile</logger>
 <level>INFO</level>
 <class>LogToFile</class>
 <method>main</method>
 <thread>10</thread>
 <message>A message logged to the file</message>
</record>
</log>

The default output format for a FileHandler is XML. If you want to
change the format, you must attach a different Formatter object to the
handler. Here, a SimpleFormatter is used for the file in order to output
as plain text format:Feedback

//: c15:LogToFile2.java
// {Clean: LogToFile2.txt,LogToFile2.txt.lck}
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class LogToFile2 {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("LogToFile2");

986 Thinking in Java www.BruceEckel.com

 public static void main(String[] args) throws Exception {
 FileHandler logFile= new FileHandler("LogToFile2.txt");
 logFile.setFormatter(new SimpleFormatter());
 logger.addHandler(logFile);
 logger.info("A message logged to the file");
 monitor.expect(new String[] {
 "%% .* LogToFile2 main",
 "INFO: A message logged to the file"
 });
 }
} ///:~

The LogToFile2.txt file will look like this:Feedback

Jul 8, 2002 12:35:17 PM LogToFile2 main
INFO: A message logged to the file

Multiple Handlers
You can register multiple handlers with each Logger object. When a
logging request comes to the Logger, it notifies all the handlers that have
been registered with it14, as long as the logging level for the Logger is
greater than or equal to that of the logging request. Each handler, in turn,
has its own logging level; if the level of the LogRecord is greater than or
equal to the level of the handler, then that handler publishes the
record.Feedback

Here’s an example that adds a FileHandler and a ConsoleHandler to
the Logger object:Feedback

//: c15:MultipleHandlers.java
// {Clean: MultipleHandlers.xml,MultipleHandlers.xml.lck}
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class MultipleHandlers {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("MultipleHandlers");
 public static void main(String[] args) throws Exception {
 FileHandler logFile =

14 This is the Observer design pattern (ibid).

Chapter 15: Discovering problems 987

 new FileHandler("MultipleHandlers.xml");
 logger.addHandler(logFile);
 logger.addHandler(new ConsoleHandler());
 logger.warning("Output to multiple handlers");
 monitor.expect(new String[] {
 "%% .* MultipleHandlers main",
 "WARNING: Output to multiple handlers",
 "%% .* MultipleHandlers main",
 "WARNING: Output to multiple handlers"
 });
 }
} ///:~

When you run the program, you’ll notice that the console output occurs
twice—that’s because the root logger’s default behavior is still enabled. If
you want to turn this off, make a call to
setUseParentHandlers(false):

//: c15:MultipleHandlers2.java
// {Clean: MultipleHandlers2.xml,MultipleHandlers2.xml.lck}
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class MultipleHandlers2 {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("MultipleHandlers2");
 public static void main(String[] args) throws Exception {
 FileHandler logFile =
 new FileHandler("MultipleHandlers2.xml");
 logger.addHandler(logFile);
 logger.addHandler(new ConsoleHandler());
 logger.setUseParentHandlers(false);
 logger.warning("Output to multiple handlers");
 monitor.expect(new String[] {
 "%% .* MultipleHandlers2 main",
 "WARNING: Output to multiple handlers"
 });
 }
} ///:~

Now you’ll see only one console message. Feedback

988 Thinking in Java www.BruceEckel.com

Writing your own Handlers
You can easily write custom handlers by inheriting from the Handler
class. To do this, you must not only implement the publish() method
(which performs the actual reporting) but also flush() and close(),
which ensure that the stream that is used for reporting is properly cleaned
up. Here’s an example that stores information from the LogRecord into
another object (a List of String). At the end of the program, the object is
printed to the console:Feedback

//: c15:CustomHandler.java
// How to write custom handler
import com.bruceeckel.simpletest.*;
import java.util.logging.*;
import java.util.*;

public class CustomHandler {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("CustomHandler");
 private static List strHolder = new ArrayList();
 public static void main(String[] args) {
 logger.addHandler(new Handler() {
 public void publish(LogRecord logRecord) {
 strHolder.add(logRecord.getLevel() + ":");
 strHolder.add(logRecord.getSourceClassName()+":");
 strHolder.add(logRecord.getSourceMethodName()+":");
 strHolder.add("<" + logRecord.getMessage() + ">");
 strHolder.add("\n");
 }
 public void flush() {}
 public void close() {}
 });
 logger.warning("Logging Warning");
 logger.info("Logging Info");
 System.out.print(strHolder);
 monitor.expect(new String[] {
 "%% .* CustomHandler main",
 "WARNING: Logging Warning",
 "%% .* CustomHandler main",
 "INFO: Logging Info",
 "[WARNING:, CustomHandler:, main:, " +
 "<Logging Warning>, ",
 ", INFO:, CustomHandler:, main:, <Logging Info>, ",

Chapter 15: Discovering problems 989

 "]"
 });
 }
} ///:~

The console output comes from the root logger. When the ArrayList is
printed you can see that only selected information has been captured into
the object.Feedback

Filters
When you write the code to send a logging message to a Logger object,
you often decide at the time you’re writing the code what level the logging
message should be (the logging API certainly allows you to devise more
complex systems wherein the level of the message can be determined
dynamically, but this is less common in practice). The Logger object has
a level that can be set so that it can decide what level of message to accept;
all others will be ignored. This can be thought of as a basic filtering
functionality, and it’s often all you need.Feedback

Sometimes, however, you need more sophisticated filtering, so that you
can decide whether to accept or reject a message based on something
more than just the current level. To accomplish this you can write custom
Filter objects. Filter is an interface that has a single method, boolean
isLoggable(LogRecord record), which decides whether or not this
particular LogRecord is interesting enough to report.Feedback

Once you create a Filter, you register it with either a Logger or a
Handler using the setFilter() method. For example, suppose you’d like
to only log reports about Ducks:Feedback

//: c15:SimpleFilter.java
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class SimpleFilter {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("SimpleFilter");
 static class Duck {};
 static class Wombat {};
 static void sendLogMessages() {

990 Thinking in Java www.BruceEckel.com

 logger.log(Level.WARNING,
 "A duck in the house!", new Duck());
 logger.log(Level.WARNING,
 "A Wombat at large!", new Wombat());
 }
 public static void main(String[] args) {
 sendLogMessages();
 logger.setFilter(new Filter() {
 public boolean isLoggable(LogRecord record) {
 Object[] params = record.getParameters();
 if(params == null)
 return true; // No parameters
 if(record.getParameters()[0] instanceof Duck)
 return true; // Only log Ducks
 return false;
 }
 });
 logger.info("After setting filter..");
 sendLogMessages();
 monitor.expect(new String[] {
 "%% .* SimpleFilter sendLogMessages",
 "WARNING: A duck in the house!",
 "%% .* SimpleFilter sendLogMessages",
 "WARNING: A Wombat at large!",
 "%% .* SimpleFilter main",
 "INFO: After setting filter..",
 "%% .* SimpleFilter sendLogMessages",
 "WARNING: A duck in the house!"
 });
 }
} ///:~

Before setting the Filter, messages about Ducks and Wombats are
reported. The Filter is created as an anonymous inner class which looks
at the LogRecord parameter to see if a Duck was passed as an extra
argument to the log() method—if so, it returns true to indicate that the
message should be processed.Feedback

Notice that the signature of getParameters() says that it will return an
Object[]. However, if no additional arguments have been passed to the
log() method, getParameters() will return null (in violation of its
signature—this is a bad programming practice). So instead of assuming
that an array is returned (as promised) and checking to see if it is of zero

Chapter 15: Discovering problems 991

length, we must check for null. If you don’t do this correctly, then the call
to logger.info() will cause an exception to be thrown.Feedback

Formatters
A Formatter is a way to insert a formatting operation into a Handler’s
processing steps. If you register a Formatter object with a Handler,
then before the LogRecord is published by the Handler, it is first sent
to the Formatter. After formatting, the LogRecord is returned to the
Handler, which then publishes it. Feedback

To write a custom Formatter, extend the Formatter class and override
format(LogRecord record). Then, register the Formatter with the
Handler using the setFormatter() call, as seen here: Feedback

//: c15:SimpleFormatterExample.java
import com.bruceeckel.simpletest.*;
import java.util.logging.*;
import java.util.*;

public class SimpleFormatterExample {
 private static Test monitor = new Test();
 private static Logger logger =
 Logger.getLogger("SimpleFormatterExample");
 private static void logMessages() {
 logger.info("Line One");
 logger.info("Line Two");
 }
 public static void main(String[] args) {
 logger.setUseParentHandlers(false);
 Handler conHdlr = new ConsoleHandler();
 conHdlr.setFormatter(new Formatter() {
 public String format(LogRecord record) {
 return record.getLevel() + " : "
 + record.getSourceClassName() + " -:- "
 + record.getSourceMethodName() + " -:- "
 + record.getMessage() + "\n";
 }
 });
 logger.addHandler(conHdlr);
 logMessages();
 monitor.expect(new String[] {
 "INFO : SimpleFormatterExample -:- logMessages "

992 Thinking in Java www.BruceEckel.com

 + "-:- Line One",
 "INFO : SimpleFormatterExample -:- logMessages "
 + "-:- Line Two"
 });
 }
} ///:~

Remember that a logger like myLogger has a default handler that it gets
from the parent logger (the root logger, in this case). Here, we are turning
off the default handler by calling setUseParentHandlers(false), and
then adding in a console handler to use instead. The new Formatter is
created as an anonymous inner class in the setFormatter() statement.
The overridden format() statement simply extracts some of the
information from the LogRecord and formats it into a string. Feedback

Example: Sending email to report
log messages
You can actually have one of your logging handlers send you an email, so
that you can be automatically notified of important problems. The
following example uses the JavaMail API to develop a Mail User Agent to
send an email. Feedback

The JavaMail API is a set of classes that interface to the underlying
mailing protocol (IMAP, POP, SMTP). You can devise a notification
mechanism on some exceptional condition in the running code by
registering an additional Handler to send an email. Feedback

//: c15:EmailLogger.java
// {RunByHand} Must be connected to the Internet
// {Depends: mail.jar,activation.jar}
import java.util.logging.*;
import java.io.*;
import java.util.Properties;
import javax.mail.*;
import javax.mail.internet.*;

public class EmailLogger {
 private static Logger logger =
 Logger.getLogger("EmailLogger");
 public static void main(String[] args) throws Exception {
 logger.setUseParentHandlers(false);

Chapter 15: Discovering problems 993

 Handler conHdlr = new ConsoleHandler();
 conHdlr.setFormatter(new Formatter() {
 public String format(LogRecord record) {
 return record.getLevel() + " : "
 + record.getSourceClassName() + ":"
 + record.getSourceMethodName() + ":"
 + record.getMessage() + "\n";
 }
 });
 logger.addHandler(conHdlr);
 logger.addHandler(
 new FileHandler("EmailLoggerOutput.xml"));
 logger.addHandler(new MailingHandler());
 logger.log(Level.INFO,
 "Testing Multiple Handlers", "SendMailTrue");
 }
}

// A handler that sends mail messages
class MailingHandler extends Handler {
 public void publish(LogRecord record) {
 Object[] params = record.getParameters();
 if(params == null) return;
 // Send mail only if the parameter is true
 if(params[0].equals("SendMailTrue")) {
 new MailInfo("bruce@theunixman.com",
 new String[] { "bruce@theunixman.com" },
 "smtp.theunixman.com", "Test Subject",
 "Test Content").sendMail();
 }
 }
 public void close() {}
 public void flush() {}
}

class MailInfo {
 private String fromAddr;
 private String[] toAddr;
 private String serverAddr;
 private String subject;
 private String message;
 public MailInfo(String from, String[] to,
 String server, String subject, String message) {
 fromAddr = from;

994 Thinking in Java www.BruceEckel.com

 toAddr = to;
 serverAddr = server;
 this.subject = subject;
 this.message = message;
 }
 public void sendMail() {
 try {
 Properties prop = new Properties();
 prop.put("mail.smtp.host", serverAddr);
 Session session =
 Session.getDefaultInstance(prop, null);
 session.setDebug(true);
 // Create a message
 Message mimeMsg = new MimeMessage(session);
 // Set the from and to address
 Address addressFrom = new InternetAddress(fromAddr);
 mimeMsg.setFrom(addressFrom);
 Address[] to = new InternetAddress[toAddr.length];
 for(int i = 0; i < toAddr.length; i++)
 to[i] = new InternetAddress(toAddr[i]);
 mimeMsg.setRecipients(Message.RecipientType.TO,to);
 mimeMsg.setSubject(subject);
 mimeMsg.setText(message);
 Transport.send(mimeMsg);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
} ///:~

MailingHandler is one of the Handlers registered with the logger. To
send an email, the MailingHandler uses the MailInfo object. When a
logging message is sent with an additional parameter of
“SendMailTrue” the MailingHandler sends an email. Feedback

The MailInfo object contains the necessary state information such as the
to address, from address and the subject information required to send an
email. This state information is provided to the MailInfo object through
the constructor when it is instantiated. Feedback

To send an email you must first establish a Session with the Simple Mail
Transfer Protocol (SMTP) server. This is done by passing the address of
the server inside a Properties object, in a property named

Chapter 15: Discovering problems 995

mail.smtp.host. You establish a session by calling
Session.getDefaultInstance(), passing it the Properties object as
the first argument. The second argument is an instance of
Authenticator that may be used for authenticating the user. Passing a
null value for the Authenticator argument specifies no authentication.
If the debugging flag in the Properties object is set, information
regarding the communication between the SMTP server and the program
will be printed. Feedback

MimeMessage is an abstraction of an Internet email message that
extends the class Message. It constructs a message that complies with
the MIME (Multipurpose Internet Mail Extensions) format. A
MimeMessage is constructed by passing it an instance of Session. You
may set the from and to addresses by creating an instance of
InternetAddress class (a subclass of Address). You send the message
using the static call Transport.send() from the abstract
classTransport. An implementation of Transport uses a specific
protocol (generally SMTP) to communicate with the server to send the
message. Feedback

Controlling Logging Levels through
Namespaces
Although not mandatory, it’s advisable to give a logger the name of the
class in which it is used. This allows you to manipulate the logging level of
groups of loggers that reside in the same package hierarchy, at the
granularlity of the directory package structure. For example, you can
modify all the logging levels of all the packages in com, or just the ones in
com.bruceeckel, or just the ones in com.bruceeckel.util, as shown in
the following example: Feedback

//: c15:LoggingLevelManipulation.java
import com.bruceeckel.simpletest.*;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.logging.Handler;
import java.util.logging.LogManager;

public class LoggingLevelManipulation {
 private static Test monitor = new Test();

996 Thinking in Java www.BruceEckel.com

 private static Logger
 lgr = Logger.getLogger("com"),
 lgr2 = Logger.getLogger("com.bruceeckel"),
 util = Logger.getLogger("com.bruceeckel.util"),
 test = Logger.getLogger("com.bruceeckel.test"),
 rand = Logger.getLogger("random");
 static void printLogMessages(Logger logger) {
 logger.finest(logger.getName() + " Finest");
 logger.finer(logger.getName() + " Finer");
 logger.fine(logger.getName() + " Fine");
 logger.config(logger.getName() + " Config");
 logger.info(logger.getName() + " Info");
 logger.warning(logger.getName() + " Warning");
 logger.severe(logger.getName() + " Severe");
 }
 static void logMessages() {
 printLogMessages(lgr);
 printLogMessages(lgr2);
 printLogMessages(util);
 printLogMessages(test);
 printLogMessages(rand);
 }
 static void printLevels() {
 System.out.println(" -- printing levels -- "
 + lgr.getName() + " : " + lgr.getLevel()
 + " " + lgr2.getName() + " : " + lgr2.getLevel()
 + " " + util.getName() + " : " + util.getLevel()
 + " " + test.getName() + " : " + test.getLevel()
 + " " + rand.getName() + " : " + rand.getLevel());
 }
 public static void main(String[] args) {
 printLevels();
 lgr.setLevel(Level.SEVERE);
 printLevels();
 System.out.println("com level: SEVERE");
 logMessages();
 util.setLevel(Level.FINEST);
 test.setLevel(Level.FINEST);
 rand.setLevel(Level.FINEST);
 printLevels();
 System.out.println(
 "individual loggers set to FINEST");
 logMessages();
 lgr.setLevel(Level.FINEST);

Chapter 15: Discovering problems 997

 printLevels();
 System.out.println("com level: FINEST");
 logMessages();
 monitor.expect("LoggingLevelManipulation.out");
 }
} ///:~

As you can see in the above code, if you pass getLogger() a string
representing a namespace, the resulting Logger will control the severity
levels of that namespace—that is, all the packages within that namespace
will be affected by changes to the severity level of the logger. Feedback

Each Logger keeps a track of its existing ancestor Logger. If a child
logger already has a logging level set, then that level is used instead of the
parent's logging level. Changing the logging level of the parent does not
affect the logging level of the child once the child has its own logging level.
Feedback

Although the level of individual loggers is set to FINEST, only messages
with a logging level equal to or more severe than INFO are printed since
we are using the ConsoleHandler of the root logger, which is at INFO.
Feedback

Because it isn’t in the same namespace, the logging level of random
remains unaffected when the logging level of the logger com or
com.bruceeckel is changed.Feedback

Logging Practices for Large
Projects
At first glance, the Java logging API can seem rather over-engineered for
most programming problems. The extra features and abilities don’t come
in handy until you start building larger projects. In this section we’ll look
at these features and recommended ways to use them. If you’re only using
logging on smaller projects you probably won’t need to use these features.
Feedback

Configuration files
The file below shows how you can configure loggers in a project by using a
properties file:

998 Thinking in Java www.BruceEckel.com

//:! c15:log.prop
Configuration File ####
Global Params
Handlers installed for the root logger
handlers= java.util.logging.ConsoleHandler
java.util.logging.FileHandler
Level for root logger – is used by any logger
that does not have its level set
.level= FINEST
Initialization class – the public default constructor
of this class is called by the Logging framework
config = ConfigureLogging

Configure FileHandler
Logging file name - %u specifies unique
java.util.logging.FileHandler.pattern = java%g.log
Write 100000 bytes before rotating this file
java.util.logging.FileHandler.limit = 100000
Number of rotating files to be used
java.util.logging.FileHandler.count = 3
Formatter to be used with this FileHandler
java.util.logging.FileHandler.formatter =
java.util.logging.SimpleFormatter

Configure ConsoleHandler
java.util.logging.ConsoleHandler.level = FINEST
java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

Set Logger Levels #
com.level=SEVERE
com.bruceeckel.level = FINEST
com.bruceeckel.util.level = INFO
com.bruceeckel.test.level = FINER
random.level= SEVERE
///:~

The configuration file allows you to associate handlers with the root
logger. The property handlers specify the comma-separated list of
handlers you wish to register with the root logger. Here, we register the
FileHandler and the ConsoleHandler with the root logger. The .level
property species the default level for the logger. This level is used by all
the loggers that are children of the root logger and do not have their own
level specified. You should note that while we were not using the

Chapter 15: Discovering problems 999

properties file, the default logging level of the root logger was INFO. This
is because, in absence of a custom configuration file, the virtual machine
uses the configuration from the JAVA_HOME\jre\lib\logging.properties
file. Feedback

Rotating log files
The configuration file above generates rotating log files, which are used to
prevent any log file from becoming too large. By setting the
FileHandler.limit value you give the maximum number of bytes
allowed in one log file before the next one begins to fill.
FileHandler.count determines the number of rotating log files to use;
the configuration file above specifies three files. If all three files are filled
to their maximum, then the first file begins to fill again, overwriting the
old contents. Feedback

Alternatively, all the output can be put in a single file by giving a
FileHandler.count value of one. (FileHandler parameters are
explained in detail in the JDK documentation). Feedback

In order for the program below to use the configuration file shown above,
you must specify the parameter java.util.logging.config.file on the
command line: Feedback

java -Djava.util.logging.config.file=log.prop
ConfigureLogging

 The configuration file can only modify the root logger. If you want to add
filters and handlers for other loggers, you must write the code to do it
inside a Java file, as noted in the constructor: Feedback

//: c15:ConfigureLogging.java
// {JVMArgs: -Djava.util.logging.config.file=log.prop}
// {Clean: java0.log,java0.log.lck}
import com.bruceeckel.simpletest.*;
import java.util.logging.*;

public class ConfigureLogging {
 private static Test monitor = new Test();
 static Logger lgr = Logger.getLogger("com"),
 lgr2 = Logger.getLogger("com.bruceeckel"),
 util = Logger.getLogger("com.bruceeckel.util"),
 test = Logger.getLogger("com.bruceeckel.test"),

1000 Thinking in Java www.BruceEckel.com

 rand = Logger.getLogger("random");
 public ConfigureLogging() {
 /* Set Additional formatters, Filters and Handlers for
 the loggers here. You cannot specify the Handlers
 for loggers except the root logger from the
 configuration file. */
 }
 public static void main(String[] args) {
 sendLogMessages(lgr);
 sendLogMessages(lgr2);
 sendLogMessages(util);
 sendLogMessages(test);
 sendLogMessages(rand);
 monitor.expect("ConfigureLogging.out");
 }
 private static void sendLogMessages(Logger logger) {
 System.out.println(" Logger Name : "
 + logger.getName() + " Level: " + logger.getLevel());
 logger.finest("Finest");
 logger.finer("Finer");
 logger.fine("Fine");
 logger.config("Config");
 logger.info("Info");
 logger.warning("Warning");
 logger.severe("Severe");
 }
} ///:~

The configuration will result in the output being sent to the files named
java0.log, java1.log, and java2.log in the directory from which this
program is executed.Feedback

Suggested practices
Although it’s not mandatory, you should generally consider using a logger
for each class, following the standard of setting the logger name to be the
same as the fully qualified name of the class. As shown earlier, this allows
for finer-grained control of logging because of the ability to turn logging
on and off based on namespaces. Feedback

If you don’t set the logging level for individual classes in that package,
then the individual classes default to the logging level set for the package

Chapter 15: Discovering problems 1001

(assuming you name the loggers according to their package and class).
Feedback

If you control the logging level in a configuration file instead of changing
it dynamically in your code, then you can modify logging levels without
recompiling your code. Recompilation is not always an option when the
system is deployed; often only the class files are shipped to the destination
environment. Feedback

Sometimes there is a requirement to execute some code to perform
initialization activities such as adding Handlers, Filters and
Formatters to loggers. This can be achieved by setting the config
property in the properties file. You can have multiple classes whose
initialization can be done using the config property. These classes should
be specified using space-delimited values like this: Feedback

config = ConfigureLogging1 ConfigureLogging2 Bar Baz

Classes specified in this fashion will have their default constructors
invoked. Feedback

Summary
Although this has been a fairly thorough introduction to the logging API,
it doesn’t include everything. For instance, we haven’t talked about the
LogManager or details of the various built-in handlers such as
MemoryHandler, FileHandler, ConsoleHandler, etc. You should
go to the JDK documentation for further details.Feedback

Debugging
Although judicious use of System.out statements or logging information
can produce valuable insight into the behavior of a program15, for difficult
problems this approach becomes cumbersome and time-consuming. In
addition, you may need to peek more deeply into the program than print
statements will allow. For this, you need a debugger. Feedback

15 I learned C++ primarily by printing information, since at the time I was learning there
were no debuggers available.

1002 Thinking in Java www.BruceEckel.com

In addition to more quickly and easily displaying information that you
could produce with print statements, a debugger will also set breakpoints
and then stop the program when it reaches those breakpoints. A debugger
can also display the state of the program at any instant, view the values of
variables that you’re interested in, step through the program line by line,
connect to a remotely running program, and more. Especially when you
start building larger systems (where bugs can easily become buried), it
pays to become familiar with debuggers. Feedback

Debugging with JDB
The Java Debugger (JDB) is a command line debugger that ships with
the JDK. JDB is at least conceptually a descendant of the Gnu Debugger
(GDB, which was inspired by the original Unix DB), in terms of the
instructions for debugging and its command line interface. JDB is useful
for learning about debugging and performing simpler debugging tasks,
and it’s helpful to know that it’s always available wherever the JDK is
installed. However, for larger projects you’ll probably want to use a
graphical debugger, described later. Feedback

Suppose you’ve written the following program:

//: c15:SimpleDebugging.java
// {ThrowsException}
public class SimpleDebugging {
 private static void foo1() {
 System.out.println("In foo1");
 foo2();
 }
 private static void foo2() {
 System.out.println("In foo2");
 foo3();
 }
 private static void foo3() {
 System.out.println("In foo3");
 int j = 1;
 j--;
 int i = 5 / j;
 }
 public static void main(String[] args) {
 foo1();
 }

Chapter 15: Discovering problems 1003

} ///:~

If you look at foo3(), the problem is obvious—you’re dividing by zero.
But suppose this code is buried in a large program (as is implied here by
the sequence of calls) and you don’t know where to start looking for the
problem. As it turns out, the exception that will be thrown will give
enough information for you to locate the problem (this is just one of the
great things about exceptions). But let’s just suppose that the problem is
more difficult than that, and that you need to drill into it more deeply and
get more information than what an exception provides. Feedback

To run JDB, you must tells the compiler to generate debugging
information by compiling SimpleDebugging.java with the –g flag.
Then you start debugging the program with the command line:

jdb SimpleDebugging

This brings up JDB and gives you a command prompt. You can view the
list of available JDB commands by typing a ‘?’ at the prompt. Feedback

Here’s an interactive debugging trace that shows how to chase down a
problem:

Initializing jdb ...
> catch Exception

The > indicates JDB is waiting for a command, and the commands typed
in by the user are shown in bold. The command catch Exception causes
a breakpoint to be set at any point where an exception is thrown
(however, the debugger will stop anyway, even if you don’t explicitly give
this comment—exceptions appear to be default breakpoints in JDB).
Feedback

Deferring exception catch Exception.
It will be set after the class is loaded.
> run

Now the program will run till the next breakpoint, which in this case is
where the exception occurs. Here’s the result of the above run command:

run SimpleDebugging
>
VM Started: In foo1
In foo2

1004 Thinking in Java www.BruceEckel.com

In foo3
Exception occurred: java.lang.ArithmeticException
(uncaught)"thread=main", SimpleDebugging.foo3(), line=18
bci=15
18 int i = 5 / j;

The program runs till line 18 where the exception generated, but jdb does
not exit when it hits the exception. The debugger also displays the line of
code that caused the exception. You can list the point where the execution
stopped in the program source by the list command as shown below.
Feedback

main[1] list
14 private static void foo3() {
15 System.out.println("In foo3");
16 int j = 1;
17 j--;
18 => int i = 5 / j;
19 }
20
21 public static void main(String[] args) {
22 foo1();
23 }

The pointer (“=>”) in the above listing shows the current point from
where the execution will resume. You could resume the execution by the
cont (continue) command. But doing that will make JDB exit at the
exception, printing the stack trace. Feedback

The locals command dumps the value of all the local variables:

main[1] locals
Method arguments:
Local variables:
j = 0

You can see the value of j=0 is what caused the exception. Feedback

The wherei command prints the stack frames pushed in the method
stack of the current thread:

main[1] wherei
[1] SimpleDebugging.foo3 (SimpleDebugging.java:18), pc = 15
[2] SimpleDebugging.foo2 (SimpleDebugging.java:11), pc = 8
[3] SimpleDebugging.foo1 (SimpleDebugging.java:6), pc = 8

Chapter 15: Discovering problems 1005

[4] SimpleDebugging.main (SimpleDebugging.java:22), pc = 0

Each line in the above trace after wherei represents a method call and
the point where the call will return (which is shown by the value of the
program counter pc). Here the calling sequence was main(), foo1(),
foo2() and foo3(). You can pop the stack frame pushed when the call
was made to foo3() with the pop command: Feedback

main[1] pop
main[1] wherei
[1] SimpleDebugging.foo2 (SimpleDebugging.java:11), pc = 8
[2] SimpleDebugging.foo1 (SimpleDebugging.java:6), pc = 8
[3] SimpleDebugging.main (SimpleDebugging.java:22), pc = 0

You can make the JDB step through the call to foo3() again with the
reenter command:

main[1] reenter
>
Step completed: "thread=main", SimpleDebugging.foo3(),
line=15 bci=0
15 System.out.println("In foo3");

The list command shows us that the execution begins at the start of
foo3():

main[1] list
11 foo3();
12 }
13
14 private static void foo3() {
15 => System.out.println("In foo3");
16 int j = 1;
17 j--;
18 int i = 5 / j;
19 }
20

JDB also allows you to modify the value of the local variables. The divide
by zero that was caused by executing this piece of code the last time can
be avoided by changing the value of j. You can do this directly in the
debugger, so that you can continue debugging the program without going
back and changing the source file. Before you set the value of j, you will
have to execute through line 25 since that is where j is declared. Feedback

1006 Thinking in Java www.BruceEckel.com

main[1] step
> In foo3

Step completed: "thread=main", SimpleDebugging.foo3(),
line=16 bci=8
16 int j = 1;

main[1] step
>
Step completed: "thread=main", SimpleDebugging.foo3(),
line=17 bci=10
17 j--;

main[1] list
13
14 private static void foo3() {
15 System.out.println("In foo3");
16 int j = 1;
17 => j--;
18 int i = 5 / j;
19 }
20
21 public static void main(String[] args) {
22 foo1();

At this point j is defined and you can set its value so that the exception
can be avoided.

main[1] set j=6
 j=6 = 6
main[1] next
>
Step completed: "thread=main", SimpleDebugging.foo3(),
line=18 bci=13
18 int i = 5 / j;
main[1] next
>
Step completed: "thread=main", SimpleDebugging.foo3(),
line=19 bci=17
19 }
main[1] next
>
Step completed: "thread=main", SimpleDebugging.foo2(),
line=12 bci=11
12 }

Chapter 15: Discovering problems 1007

main[1] list
8
9 private static void foo2() {
10 System.out.println("In foo2");
11 foo3();
12 => }
13
14 private static void foo3() {
15 System.out.println("In foo3");
16 int j = 1;
17 j--;
main[1] next
>
Step completed: "thread=main", SimpleDebugging.foo1(),
line=7 bci=11
7 }
main[1] list
3 public class SimpleDebugging {
4 private static void foo1() {
5 System.out.println("In foo1");
6 foo2();
7 => }
8
9 private static void foo2() {
10 System.out.println("In foo2");
11 foo3();
12 }
main[1] next
>
Step completed: "thread=main", SimpleDebugging.main(),
line=23 bci=3
23 }

main[1] list
19 }
20
21 public static void main(String[] args) {
22 foo1();
23 => }
24 } ///:~
main[1] next
>
The application exited

1008 Thinking in Java www.BruceEckel.com

next executes a line at a time. You can see that the exception is avoided
and we can continue stepping through the program. list is used to show
the position in the program from where execution will proceed. Feedback

Graphical debuggers
Using a command line debugger like JDB can be inconvenient. You must
use explicit commands to do things like looking at the state of the
variables (locals, dump), listing the point of execution in the source code
(list), finding out the threads in the system(threads), setting breakpoints
(stop in, stop at) etc. A graphical debugger allows you to do all these
things with a few clicks and also view the latest details of program being
debugged without using explicit commands. Feedback

Thus, although you may want to get started by experimenting with JDB,
you’ll probably find it much more productive to learn to use a graphical
debugger in order to quickly track down your bugs. During the
development of this edition of this book, we began using IBM’s Eclipse
editor and development environment, which contains a very good
graphical debugger for Java. Eclipse is very well designed and
implemented, and you can download it for free from www.Eclipse.org
(this is a free tool, not a demo or shareware. Thanks to IBM for investing
the money, time and effort to make this available to everyone). Feedback

Other free development tools have graphical debuggers as well, such as
Sun’s Netbeans and the free version of Borland’s JBuilder. Feedback

Profiling and optimizing
“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.”—Donald Knuth

Although you should always keep the above quote in mind, especially
when you are sliding down the slipperly slope of premature optimization,
sometimes there comes a time when you need to decide where your
program is spending all its time, and to see if you can improve the
performance of those sections. Feedback

A profiler assists in this process by gathering information that allows us to
see what parts of the program consume memory, and what methods

Chapter 15: Discovering problems 1009

consume maximum time. Some profilers even allow you to disable the
garbage collector to help determine patterns of memory allocation. Feedback

A profiler can also be a useful tool in detecting threading deadlock in your
program. Feedback

Tracking memory consumption
Here is the kind of help a profiler can give you about how memory is used
in your program:

• Number of object allocations for a specific type.

• Places where the object allocation is taking place.

• Methods involved in allocation of instances of this class.

• Discovering loitering objects: objects that are allocated, not used,
and not garbage collected. These keep increasing the size of the
JVM heap and represent memory leaks, which can cause an out of
memory error or excessive overhead on the garbage collector.

• Inferring the excessive allocation of temporary objects that
increase the work of the garbage collector and hence reduce the
performance of the application.

• Failure to release instances added to collection and not removed
(this is a special case of loitering objects). Feedback

Tracking CPU usage
Profilers also keep track of how much time the CPU spends in various
parts of your code. They can tell you:

• The number of times a method was invoked.

• The percentage of CPU time utilized by each method. If this
method calls other methods, the profiler can tell you the amount
of time was spent in these other methods.

• Total absolute time spent by each method, including the time it
waits for I/O, locks, etc. This time depends on the available
resources of the system.

1010 Thinking in Java www.BruceEckel.com

This way you can decide what sections of your code need optimizing.
Feedback

Coverage testing
Coverage Testing shows you the lines of code in your program that were
not executed during the test. This is not always so useful as the other
profiling features, but it may help draw your attention to code that is not
used and might therefore be a candidate for removal or refactoring. Feedback

To get coverage testing information for SimpleDebugging.java, you
use the command:

java –Xrunjcov:type=M SimpleDebugging

As an experiment, try putting lines of code that will not be executed into
SimpleDebugging.java (you’ll have to be somewhat clever about this
since the compiler can detect unreachable lines of code). Feedback

JVM Profiling Interface
The profiler agent communicates the events it is interested in to the JVM.
The JVM profiling interface supports the following events:

• Enter and exit a method
• Allocate, move, and free an object
• Create and delete a heap arena
• Begin and end a garbage collection cycle
• Allocate and free a JNI global reference
• Allocate and free a JNI weak global reference
• Load and unload a compiled method
• Start and end a thread
• class file data ready for instrumentation
• Load and unload a class
• For a Java monitor under contention: wait to enter , entered, and

exit
• For a raw monitor under contention: wait to enter, entered, and

exit
• For an uncontended Java monitor: wait and waited
• Monitor Dump
• Heap Dump

Chapter 15: Discovering problems 1011

• Object Dump
• Request to dump or reset profiling data
• Java virtual machine initialization and shutdown

While profiling, the JVM sends these events to the profiler agent, which
then transfers the desired information to the profiler front end, which can
be a process running on another machine, if desired. Feedback

Using HPROF
In this example you can see how to run the profiler that ships with the
JDK. Although the information produced by this profiler is in the
somewhat crude form of text files rather than a graphical representation
which is typical of most of the commercial profilers, it still provides
valuable help in determining the characteristics of your program. Feedback

You run the profiler by passing an extra argument to the JVM when you
invoke the program. This argument must be in the form of a single string,
without any spaces after the commas, like this (although it should be on a
single line, it has wrapped in the book): Feedback

java –
Xrunhprof:heap=sites,cpu=samples,depth=10,monitor=y,thread=y
,doe=y ListPerformance

• The heap=sites tells the profiler to write information about
memory utilization on the heap, indicating where it was allocated.

• cpu=samples tells the profiler to do statistical sampling to
determine cpu use.

• depth=10 indicates the depth of the trace for a thread that should
be reported.

• thread=y tells the profiler to identify the threads in the stack
traces

• doe=y tells the profiler to produce dump of profiling data on exit.

The listing below does not have the entire file but some traces of the file
produced by HPROF. This file is created in the current directory and is
named java.hprof.txt. Feedback

1012 Thinking in Java www.BruceEckel.com

The top section of this file describes the details of the sections contained
in the file. The data produced by the profiler is in different sections e.g.
TRACE represents a trace section in the file. You will see a lot of TRACE
sections each numbered so that they can be referenced later. The file also
has a SITES section that shows the sites of memory allocation. The section
has several rows, sorted by the number of bytes that are allocated and are
being referenced—the live bytes. The memory is listed in bytes. The
column self represents the percentage of memory taken up by this site, the
next column, accum, represents the cumulative memory percentage. The
live bytes and live objects columns represent the number of live bytes at
this site and the number of objects that were created that consumes these
bytes. The allocated bytes and objects represent the total number of
objects and bytes that are instantiated including the ones that are being
used and the ones that are not being used. The difference in the number
of bytes listed in allocated and live represent the bytes that can be garbage
collected. The trace column actually references a TRACE in the file. The
first row references trace 668 is shown below. The name represents the
class whose instance was created. Feedback

SITES BEGIN (ordered by live bytes) Thu Jul 18 11:23:06 2002

 percent live alloc'ed stack class

 rank self accum bytes objs bytes objs trace name

 1 59.10% 59.10% 573488 3 573488 3 668 java.lang.Object

 2 7.41% 66.50% 71880 543 72624 559 1 [C

 3 7.39% 73.89% 71728 3 82000 10 649 java.lang.Object

 4 5.14% 79.03% 49896 232 49896 232 1 [B

 5 2.53% 81.57% 24592 310 24592 310 1 [S

TRACE 668: (thread=1)

 java.util.Vector.ensureCapacityHelper(Vector.java:222)

 java.util.Vector.insertElementAt(Vector.java:564)

 java.util.Vector.add(Vector.java:779)

 java.util.AbstractList$ListItr.add(AbstractList.java:495)

 ListPerformance$3.test(ListPerformance.java:40)

 ListPerformance.test(ListPerformance.java:63)

 ListPerformance.main(ListPerformance.java:93)

The trace above shows the sequence of execution that does the memory
allocation. Going through the trace as indicated by the line numbers you
will find that there are two allocations that happen on this path. Object
allocations take place on line number 222 of Vector.java

Chapter 15: Discovering problems 1013

(elementData = new Object[newCapacity];). This helps you infer
what part of the program uses up a big chunk of memory (59.10 %). Note
the [C shown above in SITE 1 represents the primitive type char. This is
the internal representation of the JVM for the primitive types. Feedback

Thread performance
To determine the CPU utilization you can look up the CPU SAMPLES
section. Below is a part of trace from this section. Feedback

SITES END

CPU SAMPLES BEGIN (total = 514) Thu Jul 18 11:23:06 2002

rank self accum count trace method

 1 28.21% 28.21% 145 662 java.util.AbstractList.iterator

 2 12.06% 40.27% 62 589 java.util.AbstractList.iterator

 3 10.12% 50.39% 52 632 java.util.LinkedList.listIterator

 4 7.00% 57.39% 36 231 java.io.FileInputStream.open

 5 5.64% 63.04% 29 605 ListPerformance$4.test

 6 3.70% 66.73% 19 636 java.util.LinkedList.addBefore

The organization of this listing is similar to the organization of the SITES
listings. The rows are sorted on basis of CPU utilization with the row on
the top having the maximum CPU utilization as indicated in the self
column. The accum column lists the cumulative CPU utilization. The
count field specifies the number of times this trace was active. The next
two columns respectively specify the trace number and the method that
took this time. Consider the first row of the CPU SAMPLES section shown
above. 28.12% of total CPU time was utilized in the method
java.util.AbstractList.iterator() and it was called 145 times. The
details of this call can be found out by looking at the trace number 662
which is listed below. Feedback

TRACE 662: (thread=1)

 java.util.AbstractList.iterator(AbstractList.java:332)

 ListPerformance$2.test(ListPerformance.java:28)

 ListPerformance.test(ListPerformance.java:63)

 ListPerformance.main(ListPerformance.java:93)

This trace helps you trace what caused a call to this method. You can infer
that iterating through a list takes all that time. Feedback

1014 Thinking in Java www.BruceEckel.com

The above technique is too basic and the information presented is in a
primitive form. For large projects it is more desirable to have the
information represented in graphical form. Graphic display of profiling
results is provided by a number of profilers and is beyond the scope of this
book. Feedback

Optimization guidelines
• Avoid sacrificing code readability for performance. Feedback

• Performance should not be considered in isolation. The amount of
effort required versus the advantage gained should be
appropriately weighted. Feedback

• Performance is a concern in big projects. Generally not required
for small projects. Feedback

• Getting a program to work should be a higher priority than delving
into the performance of the program. Once you have a working
program you can use the profiler to make it more efficient. This
does not mean performance should be ignored during the initial
design/development process. Infact performance consideration
should start right from the design phase but it is important not to
get carried away by performance to an extent that it affects the
quality of code in terms of its readability, and the effort expended
in gaining the performance advantage. Feedback

• Do not make assumptions about where the bottlenecks are. Run a
profiler to get the data. Feedback

• Being aware of the lifetime of the objects created, and verifying
that using a profiler helps to better design the program and
manage performance. Feedback

• Reuse objects wherever possible. This saves all the work of
creation and destruction of an object by the garbage collector. It’s
a tradeoff since the cost needs to be paid in terms of memory used.
Care should be exercised for reusing objects since an object that is
a subject to reuse may have reference to other objects that are only
useful for a specific instance. Whenever the object is reused, all the

Chapter 15: Discovering problems 1015

objects it holds a reference to should be either the ones that are
getting reused or should be set to null. Feedback

• Whenever possible try to explicitly discard an instance that is
already used and will no longer be used by setting it to null. This
helps the garbage collector to collect the memory associated with
this object earlier than waiting for it to go out of scope of a
method. Feedback

• The size of the program that you are trying to optimize matters.
Performance optimization is desirable only when the size of the
project is large, it runs for a long time and the program is required
to run fast—for example, a user waiting for a response. Feedback

• Since exceptions are costly it will help the performance to use
exceptions only where necessary. Feedback

• If possible, avoid writing to the console. This involves slow
operations like string manipulation and I/O. Feedback

• If the methods and classes are declared as final, it allows the JIT to
optimize the code by removing run-time type identification thus
making it more efficient. Feedback

• static final variables can be optimized by the JVM to improve
program speed. Program constants should thus be declared as
static and final. Feedback

Doclets
Although it might be a bit surprising to think of a tool that was developed
for documentation support as something that helps you track down
problems in your programs, doclets can be surprisingly useful. Because a
doclet hooks into the Javadoc parser, it has information available to that
parser. With this, you can programmatically examine the class names,
field names and method signatures in your code and thus flag potential
problems. Feedback

The process of producing the JDK documentation from the Java source
files involves the parsing of the source file and the formatting of this

1016 Thinking in Java www.BruceEckel.com

parsed file using the standard doclet. You can write a custom doclet to
customize the formatting of your javadoc comments. However, doclets
allow you to do far more than just formatting the comment since a doclet
has available much of the information about the source file that’s being
parsed. Feedback

You can extract information about all the members of the class: fields,
constructors, methods, and the comments associated with each of the
members (alas, the method code body is not available). Details about the
members are encapsulated inside special objects, which contain
information about the properties of the member (private, static, final
etc.). This information can be helpful in detecting poorly-written code,
such as member variables that should be private but are public, method
parameters without comments, and identifiers that do not follow naming
conventions. Feedback

Javadoc may not catch all compilation errors. It will spot syntax errors
such as an unmatched brace but it may not catch semantic errors. The
safest approach is to run the Java compiler on your code before
attempting to use a doclet-based tool. Feedback

The parsing mechanism provided by javadoc parses the entire source file
and stores it in memory, in an object of class RootDoc. The entry point
for the doclet submitted to javadoc is start(RootDoc doc). It is
comparable to a normal Java program’s main(String[] args). You may
traverse through the RootDoc object and extract the necessary
information. The following example shows how to write a simple doclet—
it just prints out all the members of each class that was parsed: Feedback

//: c15:PrintMembersDoclet.java
// Doclet that prints out all members of the class.
import com.sun.javadoc.*;

public class PrintMembersDoclet {
 public static boolean start(RootDoc root) {
 ClassDoc[] classes = root.classes();
 processClasses(classes);
 return true;
 }
 private static void processClasses(ClassDoc[] classes) {
 for(int i = 0; i < classes.length; i++) {

Chapter 15: Discovering problems 1017

 processOneClass(classes[i]);
 }
 }
 private static void processOneClass(ClassDoc cls) {
 FieldDoc fd[] = cls.fields();
 for(int i = 0; i < fd.length; i++)
 processDocElement(fd[i]);
 ConstructorDoc cons[] = cls.constructors();
 for(int i = 0; i < cons.length; i++)
 processDocElement(cons[i]);
 MethodDoc md[] = cls.methods();
 for(int i = 0; i < md.length; i++)
 processDocElement(md[i]);
 }
 private static void processDocElement(Doc dc) {
 MemberDoc md = (MemberDoc)dc;
 System.out.print(md.modifiers());
 System.out.print(" " + md.name());
 if(md.isMethod())
 System.out.println("()");
 else if(md.isConstructor())
 System.out.println();
 }
} ///:~

You can use the above doclet to print the members like this:

javadoc -doclet PrintMembersDoclet –private PrintMembersDoclet

This invokes javadoc on the last argument in the command, which means
it will parse the PrintMembersDoclet.java file. The -doclet option
tells javadoc to use the custom doclet PrintMembersDoclet. The -
private tag instructs javadoc to also print private members (the default
is to only print protected and public members). Feedback

RootDoc contains a collection of ClassDoc that hold all the information
about the class. Classes such as MethodDoc, FieldDoc and
ConstructorDoc contain information regarding methods, fields and
constructors, respectively. The method processOneClass() extracts the
list of these members and prints them. Feedback

You can also create taglets, which allow you to implement custom
Javadoc tags. The JDK documentation presents an example that
implements a @todo tag, which displays its text in yellow in the resulting

1018 Thinking in Java www.BruceEckel.com

Javadoc output. Search for “taglet” in the JDK documentation for more
details. Feedback

Summary
This chapter introduced what I’ve come to realize may be the most
essential issue in programming, superceding language syntax and design
issues: how do you make sure your code is correct, and keep it that way?

Recent experience has shown that the most useful and practical tool to
date is unit testing, which may be combined very effectively with design
by contract. There are other types of tests as well, such as conformance
testing to verify that your use cases/user stories have all been
implemented. But for some reason we have in the past relegated testing to
be done later by someone else. Extreme programming insists that the unit
tests be written before the code—you create the test framework for the
class, and then the class itself (on one or two occasions I’ve successfully
done this, but I’m generally pleased if testing appears somewhere during
the initial coding process). There remains resistance to testing, usually by
those who haven’t tried it and believe they can write good code without
testing. But the more experience I have, the more I repeat to myself:

If it’s not tested, it’s broken.

This a worthwhile mantra, especially when you’re thinking about cutting
corners. The more of your own bugs you discover, the more attached you
grow to the security of built-in tests.

Build systems (in particular, Ant) and revision control (CVS) were also
introduced in this chapter because they provide structure for your project
and its tests. To me, the primary goal of Extreme Programming is
velocity—the ability to rapidly move your project forward (but in a
reliable fashion), and to quickly refactor it when you realize that it can be
improved. Velocity requires a support structure to give you confidence
that things won’t fall through the cracks when you start making big
changes to your project. This iscludes a reliable repository, which allows
you to roll back to any previous version, and an automatic build system
that, once configured, guarantees that the project can be compiled and
tested in a single step.

Chapter 15: Discovering problems 1019

Once you have reason to believe your program is healthy, logging provides
a way to monitor its pulse, and even (as shown in this chapter) to
automatically email you if something starts to go wrong. When it does,
debugging and profiling help you track down bugs and performance
issues.

Perhaps it’s the nature of computer programming to want a single, clear,
concrete answer. After all, we work with ones and zeros, which do not
have fuzzy boundaries (they actually do, but the electronic engineers have
gone to great lengths to give us the model we want). When it comes to
solutions, it’s great to believe that there’s one answer. But I’ve found that
there are boundaries to any technique, and understanding where those
boundaries are is far more powerful than any single approach can be,
because it allows you to use a method where it’s greatest strength lies, and
to combine it with other approaches where it isn’t so strong. For example,
in this chapter design by contract was presented in combination with
white-box unit testing, and as I was creating the example I discovered that
the two working in concert were much more useful than either one alone.

I have found this idea to be true in more than just the issue of discovering
problems, but also in building systems in the first place. For example,
using a single programming language or tool to solve your problem is
attractive from the standpoint of consistency, but I’ve often found that I
can solve certain problems much more quickly and effectively by using the
Python programming language instead of Java, to the general benefit of
the project. You may also discover that ant works in some places, and in
other make is more useful. Or, if your clients are on Windows platforms, it
may make more sense to make the radical decision of using Delphi or
Visual Basic to develop client-side programs more rapidly than you could
in Java. The important thing is to keep an open mind, and remember that
you are trying to achieve results, not necessarily use a certain tool or
technique. This can be difficult, but if you remember that the project
failure rate is quite high and your chances of success are proportionally
low, you may think twice about considering solutions that may be more
productive. One of my favorite phrases from Extreme Programming (and
one I find that I violate often for usually silly reasons) is “do the simplest
thing that could possibly work.” Most of the time, the simplest and most
expedient approach, if you can discover it, is the best one.

1020 Thinking in Java www.BruceEckel.com

Exercises
1. Create a class containing a static clause that throws an exception

if assertions are not enabled. Demonstrate that this test works
correctly.

2. Modify the above example to use the approach in
LoaderAssertions.java to turn on assertions instead of
throwing an exception. Demonstrate that this works correctly.

3. In LoggingLevels.java, comment out the code that sets the
severity level of the root logger handlers and verify that messages
of level CONFIG and below are not reported. Feedback

4. Inherit from java.util.Logging.Level and define your own level,
with a value less than FINEST. Modify LoggingLevels.java to
use your new level and show that messages at your level will not
appear when the logging level is FINEST.

5. Associate a FileHandler with the root logger. Feedback

6. Modify the FileHandler so that it formats output to a simple text
file. Feedback

7. Modify MultipleHandlers.java so that it generates output in
plain text format instead of XML. Feedback

8. Modify LoggingLevels.java to set different logging levels for the
handlers associated with the root logger. Feedback

9. Write a simple program that sets the root logger logging level
based on a command-line argument. Feedback

10. Write an example using Formatters and Handlers to output a log
file as HTML. Feedback

11. Write an example using Handlers and Filters to log messages with
any severity level over INFO in one file and any severity level
including and below INFO in other file. The files should be written
in simple text. Feedback

Chapter 15: Discovering problems 1021

12. Modify log.prop to add an additional initialization class that
initializes a custom Formatter for the logger com. Feedback

13. Run JDB on SimpleDebugging.java, but do not give the
command catch Exception. Show that it still catches the
exception.

14. Add an uninitialized reference to SimpleDebugging.java (you’ll
have to do it in a way that the compiler doesn’t catch the error!)
and use JDB to track down the problem.

15. Perform the experiment described in the “Coverage Testing”
section.

16. Create a doclet that displays identifiers which might not follow the
Java naming convention by checking how capital letters are used
for those identifiers.

 1023

16: Analysis and
design

The object-oriented paradigm is a new and different way
of thinking about programming.

Many people have trouble at first knowing how to approach an OOP
project. Now that you understand the concept of an object, and as you
learn to think more in an object-oriented style, you can begin to create
“good” designs that take advantage of all the benefits that OOP has to
offer. This chapter introduces the ideas of analysis, design, and some ways
to approach the problems of developing good object-oriented programs in
a reasonable amount of time. Feedback

Methodology
A methodology (sometimes simply called a method) is a set of processes
and heuristics used to break down the complexity of a programming
problem. Many OOP methodologies have been formulated since the dawn
of object-oriented programming. This section will give you a feel for what
you’re trying to accomplish when using a methodology. Feedback

Especially in OOP, methodology is a field of many experiments, so it is
important to understand what problem the methodology is trying to solve
before you consider adopting one. This is particularly true with Java, in
which the programming language is intended to reduce the complexity
(compared to C) involved in expressing a program. This may in fact
alleviate the need for ever-more-complex methodologies. Instead, simple
methodologies may suffice in Java for a much larger class of problems
than you could handle using simple methodologies with procedural
languages. Feedback

It’s also important to realize that the term “methodology” is often too
grand and promises too much. Whatever you do now when you design

1024 Thinking in Java www.BruceEckel.com

and write a program is a methodology. It may be your own methodology,
and you may not be conscious of doing it, but it is a process you go
through as you create. If it is an effective process, it may need only a small
tune-up to work with Java. If you are not satisfied with your productivity
and the way your programs turn out, you may want to consider adopting a
formal methodology, or choosing pieces from among the many formal
methodologies. Feedback

While you’re going through the development process, the most important
issue is this: Don’t get lost. It’s easy to do. Most of the analysis and design
methodologies are intended to solve the largest of problems. Remember
that most projects don’t fit into that category, so you can usually have
successful analysis and design with a relatively small subset of what a
methodology recommends1. But some sort of process, no matter how
small or limited, will generally get you on your way in a much better
fashion than simply beginning to code. Feedback

It’s also easy to get stuck, to fall into “analysis paralysis,” where you feel
like you can’t move forward because you haven’t nailed down every little
detail at the current stage. Remember, no matter how much analysis you
do, there are some things about a system that won’t reveal themselves
until design time, and more things that won’t reveal themselves until
you’re coding, or not even until a program is up and running. Because of
this, it’s crucial to move fairly quickly through analysis and design, and to
implement a test of the proposed system. Feedback

This point is worth emphasizing. Because of the history we’ve had with
procedural languages, it is commendable that a team will want to proceed
carefully and understand every minute detail before moving to design and
implementation. Certainly, when creating a Database Management
System (DBMS), it pays to understand a customer’s needs thoroughly. But
a DBMS is in a class of problems that is very well-posed and well-
understood; in many such programs, the database structure is the
problem to be tackled. The class of programming problem discussed in

1 An excellent example of this is UML Distilled, 2nd edition, by Martin Fowler (Addison-
Wesley 2000), which reduces the sometimes-overwhelming UML process to a manageable
subset.

Chapter 16: Analysis & Design 1025

this chapter is of the “wild-card” (my term) variety, in which the solution
isn’t simply re-forming a well-known solution, but instead involves one or
more “wild-card factors”—elements for which there is no well-understood
previous solution, and for which research is necessary2. Attempting to
thoroughly analyze a wild-card problem before moving into design and
implementation results in analysis paralysis because you don’t have
enough information to solve this kind of problem during the analysis
phase. Solving such a problem requires iteration through the whole cycle,
and that requires risk-taking behavior (which makes sense, because you’re
trying to do something new and the potential rewards are higher). It may
seem like the risk is compounded by “rushing” into a preliminary
implementation, but it can instead reduce the risk in a wild-card project
because you’re finding out early whether a particular approach to the
problem is viable. Product development is risk management. Feedback

It’s often proposed that you “build one to throw away.” With OOP, you
may still throw part of it away, but because code is encapsulated into
classes, during the first pass you will inevitably produce some useful class
designs and develop some worthwhile ideas about the system design that
do not need to be thrown away. Thus, the first rapid pass at a problem not
only produces critical information for the next analysis, design, and
implementation pass, it also creates a code foundation. Feedback

That said, if you’re looking at a methodology that contains tremendous
detail and suggests many steps and documents, it’s still difficult to know
when to stop. Keep in mind what you’re trying to discover: Feedback

5. What are the objects? (How do you partition your project into its
component parts?)

6. What are their interfaces? (What messages do you need to send to
each object?)

If you come up with nothing more than the objects and their interfaces,
then you can write a program. For various reasons you might need more

2 My rule of thumb for estimating such projects: If there’s more than one wild card, don’t
even try to plan how long it’s going to take or how much it will cost until you’ve created a
working prototype. There are too many degrees of freedom.

1026 Thinking in Java www.BruceEckel.com

descriptions and documents than this, but you can’t get away with any
less. Feedback

The process can be undertaken in five phases, and a Phase 0 that is just
the initial commitment to using some kind of structure. Feedback

Phase 0: Make a plan
You must first decide what steps you’re going to have in your process. It
sounds simple (in fact, all of this sounds simple), and yet people often
don’t make this decision before they start coding. If your plan is “let’s
jump in and start coding,” fine. (Sometimes that’s appropriate when you
have a well-understood problem.) At least agree that this is the plan.
Feedback

You might also decide at this phase that some additional process structure
is necessary, but not the whole nine yards. Understandably, some
programmers like to work in “vacation mode,” in which no structure is
imposed on the process of developing their work; “It will be done when
it’s done.” This can be appealing for a while, but I’ve found that having a
few milestones along the way helps to focus and galvanize your efforts
around those milestones instead of being stuck with the single goal of
“finish the project.” In addition, it divides the project into more bite-sized
pieces and makes it seem less threatening (plus the milestones offer more
opportunities for celebration). Feedback

When I began to study story structure (so that I will someday write a
novel) I was initially resistant to the idea of structure, feeling that I wrote
best when I simply let it flow onto the page. But I later realized that when
I write about computers the structure is clear enough to me that I don’t
have to think about it very much. I still structure my work, albeit only
semi-consciously in my head. Even if you think that your plan is to just
start coding, you still somehow go through the subsequent phases while
asking and answering certain questions. Feedback

The mission statement
Any system you build, no matter how complicated, has a fundamental
purpose—the business that it’s in, the basic need that it satisfies. If you

Chapter 16: Analysis & Design 1027

can look past the user interface, the hardware- or system-specific details,
the coding algorithms and the efficiency problems, you will eventually
find the core of its being—simple and straightforward. Like the so-called
high concept from a Hollywood movie, you can describe it in one or two
sentences. This pure description is the starting point. Feedback

The high concept is quite important because it sets the tone for your
project; it’s a mission statement. You won’t necessarily get it right the first
time (you may be in a later phase of the project before it becomes
completely clear), but keep trying until it feels right. For example, in an
air-traffic control system you may start out with a high concept focused on
the system that you’re building: “The tower program keeps track of the
aircraft.” But consider what happens when you shrink the system to a very
small airfield; perhaps there’s only a human controller, or none at all. A
more useful model won’t concern the solution you’re creating as much as
it describes the problem: “Aircraft arrive, unload, service and reload, then
depart.” Feedback

Phase 1: What are we
making?

In the previous generation of program design (called procedural design),
this is called “creating the requirements analysis and system
specification.” These, of course, were places to get lost; intimidatingly
named documents that could become big projects in their own right. Their
intention was good, however. The requirements analysis says “Make a list
of the guidelines we will use to know when the job is done and the
customer is satisfied3.” The system specification says “Here’s a description
of what the program will do (not how) to satisfy the requirements.” The
requirements analysis is really a contract between you and the customer
(even if the customer works within your company, or is some other object
or system). The system specification is a top-level exploration into the
problem and in some sense a discovery of whether it can be done and how

3 An excellent resource for requirements analysis is Exploring Requirements: Quality
Before Design, by Gause & Weinberg (Dorset House 1989).

1028 Thinking in Java www.BruceEckel.com

long it will take. Since both of these will require consensus among people
(and because they will usually change over time), I think it’s best to keep
them as bare as possible—ideally, to lists and basic diagrams—to save
time (this is in line with Extreme Programming, which advocates very
minimal documentation, albeit for small to medium sized projects). You
might have other constraints that require you to expand them into bigger
documents, but by keeping the initial document small and concise, it can
be created in a few sessions of group brainstorming with a leader who
dynamically creates the description. This not only solicits input from
everyone, it also fosters initial buy-in and agreement by everyone on the
team. Perhaps most importantly, it can kick off a project with a lot of
enthusiasm. Feedback

It’s necessary to stay focused on the heart of what you’re trying to
accomplish in this phase: determine what the system is supposed to do.
The most valuable tool for this is a collection of what are called “use
cases,” or in Extreme Programming, “user stories.” Use cases identify key
features in the system that will reveal some of the fundamental classes
you’ll be using. These are essentially descriptive answers to questions
like4: Feedback

• “Who will use this system?”

• “What can those actors do with the system?”

• “How does this actor do that with this system?”

• “How else might this work if someone else were doing this, or if
the same actor had a different objective?” (to reveal variations)

• “What problems might happen while doing this with the system?”
(to reveal exceptions)

If you are designing a bank auto-teller, for example, the use case for a
particular aspect of the functionality of the system is able to describe what
the auto-teller does in every possible situation. Each of these “situations”
is referred to as a scenario, and a use case can be considered a collection
of scenarios. You can think of a scenario as a question that starts with:
“What does the system do if…?” For example, “What does the auto-teller

4 Thanks for help from James H Jarrett.

Chapter 16: Analysis & Design 1029

do if a customer has just deposited a check within the last 24 hours, and
there’s not enough in the account without the check having cleared to
provide a desired withdrawal?” Feedback

Use case diagrams are intentionally simple to prevent you from getting
bogged down in system implementation details prematurely:

Customer

Uses

Transfer
Between
Accounts

Teller

Bank

Make
Withdrawal

Get Account
Balance

Make
Deposit

ATM

Each stick person represents an “actor,” which is typically a human or
some other kind of free agent. (These can even be other computer
systems, as is the case with “ATM.”) The box represents the boundary of
your system. The ellipses represent the use cases, which are descriptions
of valuable work that can be performed with the system. The lines
between the actors and the use cases represent the interactions. Feedback

It doesn’t matter how the system is actually implemented, as long as it
looks like this to the user. Feedback

A use case does not need to be terribly complex, even if the underlying
system is complex. It is only intended to show the system as it appears to
the user. For example: Feedback

1030 Thinking in Java www.BruceEckel.com

Gardener

Maintain
Growing

Temperature

Greenhouse

The use cases produce the requirements specifications by determining all
the interactions that the user may have with the system. You try to
discover a full set of use cases for your system, and once you’ve done that
you have the core of what the system is supposed to do. The nice thing
about focusing on use cases is that they always bring you back to the
essentials and keep you from drifting off into issues that aren’t critical for
getting the job done. That is, if you have a full set of use cases, you can
describe your system and move on to the next phase. You probably won’t
get it all figured out perfectly on the first try, but that’s OK. Everything
will reveal itself in time, and if you demand a perfect system specification
at this point you’ll get stuck. Feedback

If you do get stuck, you can kick-start this phase by using a rough
approximation tool: describe the system in a few paragraphs and then
look for nouns and verbs. The nouns can suggest actors, context of the use
case (e.g., “lobby”), or artifacts manipulated in the use case. Verbs can
suggest interactions between actors and use cases, and specify steps
within the use case. You’ll also discover that nouns and verbs produce
objects and messages during the design phase (and note that use cases
describe interactions between subsystems, so the “noun and verb”
technique can be used only as a brainstorming tool as it does not generate
use cases) 5. Feedback

The boundary between a use case and an actor can point out the existence
of a user interface, but it does not define such a user interface. For a
process of defining and creating user interfaces, see Software for Use by

5 More information on use cases can be found in Use Case Driven Object Modeling with
UML by Rosenberg (Addison-Wesley 1999) . A good overview of user stories is found in
Planning Extreme Programming, by Beck & Fowler (Addison-Wesley 2001).

Chapter 16: Analysis & Design 1031

Larry Constantine and Lucy Lockwood, (Addison-Wesley Longman, 1999)
or go to www.ForUse.com. Feedback

Although it’s a black art, at this point some kind of basic scheduling is
important. You now have an overview of what you’re building, so you’ll
probably be able to get some idea of how long it will take. A lot of factors
come into play here. If you estimate a long schedule then the company
might decide not to build it (and thus use their resources on something
more reasonable—that’s a good thing). Or a manager might have already
decided how long the project should take and will try to influence your
estimate. But it’s best to have an honest schedule from the beginning and
deal with the tough decisions early. There have been a lot of attempts to
come up with accurate scheduling techniques (much like techniques to
predict the stock market), but probably the best approach is to rely on
your experience and intuition. Get a gut feeling for how long it will really
take, then double that and add 10 percent. Your gut feeling is probably
correct; you can get something working in that time. The “doubling” will
turn that into something decent, and the 10 percent will deal with the
final polishing and details6. However you want to explain it, and
regardless of the moans and manipulations that happen when you reveal
such a schedule, it just seems to work out that way7. Feedback

Phase 2: How will we build
it?

In this phase you must come up with a design that describes what the
classes look like and how they will interact. An excellent technique in

6 My personal take on this has changed lately. Doubling and adding 10 percent will give
you a reasonably accurate estimate (assuming there are not too many wild-card factors),
but you still have to work quite diligently to finish in that time. If you want time to really
make it elegant and to enjoy yourself in the process, the correct multiplier is more like
three or four times, I believe. See PeopleWare, by DeMarco & Lister (Dorset House 1999)
for studies of the effect of schedule estimates on productivity and a debunking of
“Parkinson’s Law.”

7 Planning Extreme Programming (ibid.) has some valuable insights on planning and
time estimation.

1032 Thinking in Java www.BruceEckel.com

determining classes and interactions is the Class-Responsibility-
Collaboration (CRC) card. Part of the value of this tool is that it’s so low-
tech: you start out with a set of blank 3 x 5 cards, and you write on them.
Each card represents a single class, and on the card you write: Feedback

7. The name of the class. It’s important that this name capture the
essence of what the class does, so that it makes sense at a glance.
Feedback

8. The “responsibilities” of the class: what it should do. This can
typically be summarized by just stating the names of the methods
(since those names should be descriptive in a good design), but it
does not preclude other notes. If you need to seed the process, look
at the problem from a lazy programmer’s standpoint: What objects
would you like to magically appear to solve your problem? Feedback

9. The “collaborations” of the class: what other classes does it interact
with? “Interact” is an intentionally broad term; it could mean
aggregation or simply that some other object exists that will
perform services for an object of the class. Collaborations should
also consider the audience for this class. For example, if you create
a class Firecracker, who is going to observe it, a Chemist or a
Spectator? The former will want to know what chemicals go into
the construction, and the latter will respond to the colors and
shapes released when it explodes. Feedback

You may feel like the cards should be bigger because of all the information
you’d like to get on them. However, they are intentionally small, not only
to keep your classes small but also to keep you from getting into too much
detail too early. If you can’t fit all you need to know about a class on a
small card, then the class is too complex (either you’re getting too
detailed, or you should create more than one class). The ideal class should
be understood at a glance. The idea of CRC cards is to assist you in
coming up with a first cut of the design so that you can get the big picture
and then refine your design. Feedback

One of the great benefits of CRC cards is in communication. It’s best done
in real time, in a group, without computers. Each person takes
responsibility for several classes (which at first have no names or other
information). You run a live simulation by solving one scenario at a time,

Chapter 16: Analysis & Design 1033

deciding which messages are sent to the various objects to satisfy each
scenario. As you go through this process, you discover the classes that you
need along with their responsibilities and collaborations, and you fill out
the cards as you do this. When you’ve moved through all the use cases,
you should have a fairly complete first cut of your design. Feedback

Before I began using CRC cards, the most successful consulting
experiences I had when coming up with an initial design involved
standing in front of a team—who hadn’t built an OOP project before—and
drawing objects on a whiteboard. We talked about how the objects should
communicate with each other, and erased some of them and replaced
them with other objects. Effectively, I was managing all the “CRC cards”
on the whiteboard. The team (who knew what the project was supposed to
do) actually created the design; they “owned” the design rather than
having it given to them. All I was doing was guiding the process by asking
the right questions, trying out the assumptions, and taking the feedback
from the team to modify those assumptions. The true beauty of the
process was that the team learned how to do object-oriented design not by
reviewing abstract examples, but by working on the one design that was
most interesting to them at that moment: theirs. Feedback

Once you’ve come up with a set of CRC cards, you may want to create a
more formal description of your design using UML8. You don’t need to
use UML, but it can be helpful, especially if you want to put up a diagram
on the wall for everyone to ponder, which is a good idea (there is a
plethora of UML diagramming tools available). An alternative to UML is a
textual description of the objects and their interfaces, or, depending on
your programming language, the code itself9. Feedback

UML also provides an additional diagramming notation for describing the
dynamic model of your system. This is helpful in situations in which the
state transitions of a system or subsystem are dominant enough that they
need their own diagrams (such as in a control system). You may also need

8 For starters, I recommend the aforementioned UML Distilled, 2nd edition.

9 Python (www.Python.org) is often used as “executable pseudocode.”

1034 Thinking in Java www.BruceEckel.com

to describe the data structures, for systems or subsystems in which data is
a dominant factor (such as a database). Feedback

You’ll know you’re done with Phase 2 when you have described the objects
and their interfaces. Well, most of them—there are usually a few that slip
through the cracks and don’t make themselves known until Phase 3. But
that’s OK. What’s important is that you eventually discover all of your
objects. It’s nice to discover them early in the process, but OOP provides
enough structure so that it’s not so bad if you discover them later. In fact,
the design of an object tends to happen in five stages, throughout the
process of program development. Feedback

Five stages of object design
The design life of an object is not limited to the time when you’re writing
the program. Instead, the design of an object appears over a sequence of
stages. It’s helpful to have this perspective because you stop expecting
perfection right away; instead, you realize that the understanding of what
an object does and what it should look like happens over time. This view
also applies to the design of various types of programs; the pattern for a
particular type of program emerges through struggling again and again
with that problem (This is chronicled in the book Thinking in Patterns
with Java at www.BruceEckel.com). Objects, too, have their patterns that
emerge through understanding, use, and reuse. Feedback

1. Object discovery. This stage occurs during the initial analysis of a
program. Objects may be discovered by looking for external factors and
boundaries, duplication of elements in the system, and the smallest
conceptual units. Some objects are obvious if you already have a set of
class libraries. Commonality between classes suggesting base classes and
inheritance may appear right away, or later in the design process. Feedback

2. Object assembly. As you’re building an object you’ll discover the
need for new members that didn’t appear during discovery. The internal
needs of the object may require other classes to support it. Feedback

3. System construction. Once again, more requirements for an
object may appear at this later stage. As you learn, you evolve your
objects. The need for communication and interconnection with other
objects in the system may change the needs of your classes or require new

Chapter 16: Analysis & Design 1035

classes. For example, you may discover the need for facilitator or helper
classes, such as a linked list, that contain little or no state information and
simply help other classes function. Feedback

4. System extension. As you add new features to a system you may
discover that your previous design doesn’t support easy system extension.
With this new information, you can restructure parts of the system,
possibly adding new classes or class hierarchies. This is also a good time
to consider taking features out of a project. Feedback

5. Object reuse. This is the real stress test for a class. If someone tries
to reuse the class in an entirely new situation, they’ll probably discover
some shortcomings. As you change it to adapt to more new programs, the
general principles of the class will become clearer, until you have a truly
reusable type. However, don’t expect most objects from a system design to
be reusable—it is perfectly acceptable for the bulk of your objects to be
system-specific. Reusable types tend to be less common, and they must
solve more general problems in order to be reusable. Feedback

Guidelines for object development
These stages suggest some guidelines when thinking about developing
your classes: Feedback

1. Let a specific problem generate a class, then let the class grow and
mature during the solution of other problems. Feedback

2. Remember, discovering the classes you need (and their interfaces)
is the majority of the system design. If you already had those
classes, this would be an easy project. Feedback

3. Don’t force yourself to know everything at the beginning. Learn as
you go. This will happen anyway. Feedback

4. Start programming. Get something working so you can prove or
disprove your design. Don’t fear that you’ll end up with procedural-
style spaghetti code—classes partition the problem and help control
anarchy and entropy. Bad classes do not break good classes. Feedback

5. Always keep it simple. Little clean objects with obvious utility are
better than big complicated interfaces. When decision points come

1036 Thinking in Java www.BruceEckel.com

up, use an Ockham’s Razor10 approach: Consider the choices and
select the one that is simplest, because simple classes are almost
always best. Start small and simple, and you can expand the class
interface when you understand it better. It’s easy to add methods,
but as time goes on, it’s difficult to remove methods from a class.
Feedback

Phase 3: Build the core
This is the initial conversion from the rough design into a compiling and
executing body of code that can be tested, and especially that will prove or
disprove your architecture. This is not a one-pass process, but rather the
beginning of a series of steps that will iteratively build the system, as
you’ll see in Phase 4. Feedback

Your goal is to find the core of your system architecture that needs to be
implemented in order to generate a running system, no matter how
incomplete that system is in this initial pass. You’re creating a framework
that you can build on with further iterations. You’re also performing the
first of many system integrations and tests, and giving the stakeholders
feedback about what their system will look like and how it is progressing.
Ideally, you are exposing some of the critical risks. You’ll probably
discover changes and improvements that can be made to your original
architecture—things you would not have learned without implementing
the system. Feedback

Part of building the system is the reality check that you get from testing
against your requirements analysis and system specification (in whatever
form they exist). Make sure that your tests verify the requirements and
use cases. When the core of the system is stable, you’re ready to move on
and add more functionality. Feedback

10 “What can be done with fewer … is done in vain with more … the mind should not
multiply things without necessity.” William of Ockham, 1290-1349.

Chapter 16: Analysis & Design 1037

Phase 4: Iterate the use
cases

Once the core framework is running, each feature set you add is a small
project in itself. You add a feature set during an iteration, a reasonably
short period of development. Feedback

How big is an iteration? Ideally, each iteration lasts one to three weeks
(this can vary based on the implementation language). At the end of that
period, you have an integrated, tested system with more functionality
than it had before. But what’s particularly interesting is the basis for the
iteration: a single use case. Each use case is a package of related
functionality that you build into the system all at once, during one
iteration. Not only does this give you a better idea of what the scope of a
use case should be, but it also gives more validation to the idea of a use
case, since the concept isn’t discarded after analysis and design, but
instead it is a fundamental unit of development throughout the software-
building process. Feedback

You stop iterating when you achieve target functionality or an external
deadline arrives and the customer can be satisfied with the current
version. (Remember, software is a subscription business.) Because the
process is iterative, you have many opportunities to ship a product rather
than having a single endpoint; open-source projects work exclusively in
an iterative, high-feedback environment, which is precisely what makes
them successful. Feedback

An iterative development process is valuable for many reasons. You can
reveal and resolve critical risks early, the customers have ample
opportunity to change their minds, programmer satisfaction is higher,
and the project can be steered with more precision. But an additional
important benefit is the feedback to the stakeholders, who can see by the
current state of the product exactly where everything lies. This may
reduce or eliminate the need for mind-numbing status meetings and
increase the confidence and support from the stakeholders. Feedback

1038 Thinking in Java www.BruceEckel.com

Phase 5: Evolution
This is the point in the development cycle that has traditionally been
called “maintenance,” a catch-all term that can mean everything from
“getting it to work the way it was really supposed to in the first place” to
“adding features that the customer forgot to mention” to the more
traditional “fixing the bugs that show up” and “adding new features as the
need arises.” So many misconceptions have been applied to the term
“maintenance” that it has taken on a slightly deceiving quality, partly
because it suggests that you’ve actually built a pristine program and all
you need to do is change parts, oil it, and keep it from rusting. Perhaps
there’s a better term to describe what’s going on. Feedback

I’ll use the term evolution11. That is, “You won’t get it right the first time,
so give yourself the latitude to learn and to go back and make changes.”
You might need to make a lot of changes as you learn and understand the
problem more deeply. The elegance you’ll produce if you evolve until you
get it right will pay off, both in the short and the long term. Evolution is
where your program goes from good to great, and where those issues that
you didn’t really understand in the first pass become clear. It’s also where
your classes can evolve from single-project usage to reusable resources.
Feedback

What it means to “get it right” isn’t just that the program works according
to the requirements and the use cases. It also means that the internal
structure of the code makes sense to you, and feels like it fits together
well, with no awkward syntax, oversized objects, or ungainly exposed bits
of code. In addition, you must have some sense that the program
structure will survive the changes that it will inevitably go through during
its lifetime, and that those changes can be made easily and cleanly. This is
no small feat. You must not only understand what you’re building, but
also how the program will evolve (what I call the vector of change).
Fortunately, object-oriented programming languages are particularly

11 At least one aspect of evolution is covered in Martin Fowler’s book Refactoring:
improving the design of existing code (Addison-Wesley 1999), which uses Java examples
exclusively.

Chapter 16: Analysis & Design 1039

adept at supporting this kind of continuing modification—the boundaries
created by the objects are what tend to keep the structure from breaking
down. They also allow you to make changes—ones that would seem
drastic in a procedural program—without causing earthquakes
throughout your code. In fact, support for evolution might be the most
important benefit of OOP. Feedback

With evolution, you create something that at least approximates what you
think you’re building, and then you kick the tires, compare it to your
requirements, and see where it falls short. Then you can go back and fix it
by redesigning and reimplementing the portions of the program that
didn’t work right12. You might actually need to solve the problem, or an
aspect of the problem, several times before you hit on the right solution.
(A study of Design Patterns is usually helpful here. You can find
information in Thinking in Patterns with Java at www.BruceEckel.com.)
Feedback

Evolution also occurs when you build a system, see that it matches your
requirements, and then discover it wasn’t actually what you wanted.
When you see the system in operation, you may find that you really
wanted to solve a different problem. If you think this kind of evolution is
going to happen, then you owe it to yourself to build your first version as
quickly as possible so you can find out if it is indeed what you want. Feedback

Perhaps the most important thing to remember is that by default—by
definition, really—if you modify a class, its super- and subclasses will still
function. You need not fear modification (especially if you have a built-in
set of unit tests to verify the correctness of your modifications).
Modification won’t necessarily break the program, and any change in the
outcome will be limited to subclasses and/or specific collaborators of the
class you change. Feedback

12 This is something like “rapid prototyping,” where you were supposed to build a quick-
and-dirty version so that you could learn about the system, and then throw away your
prototype and build it right. The trouble with rapid prototyping is that people didn’t throw
away the prototype, but instead built upon it. Combined with the lack of structure in
procedural programming, this often leads to messy systems that are expensive to
maintain.

1040 Thinking in Java www.BruceEckel.com

Plans pay off
Of course you wouldn’t build a house without a lot of carefully drawn
plans. If you build a deck or a dog house your plans won’t be so elaborate,
but you’ll probably still start with some kind of sketches to guide you on
your way. Software development has gone to extremes. For a long time,
people didn’t have much structure in their development, but then big
projects began failing. In reaction, we ended up with methodologies that
had an intimidating amount of structure and detail, primarily intended
for those big projects. These methodologies were too scary to use—it
looked like you’d spend all your time writing documents and no time
programming. (This was often the case.) I hope that what I’ve shown you
here suggests a middle path—a sliding scale. Use an approach that fits
your needs (and your personality). No matter how minimal you choose to
make it, some kind of plan will make a big improvement in your project as
opposed to no plan at all. Remember that, by most estimates, over 50
percent of projects fail (some estimates go up to 70 percent!). Feedback

By following a plan—preferably one that is simple and brief—and coming
up with design structure before coding, you’ll discover that things fall
together far more easily than if you dive in and start hacking. You’ll also
realize a great deal of satisfaction. It’s my experience that coming up with
an elegant solution is deeply satisfying at an entirely different level; it
feels closer to art than technology. And elegance always pays off; it’s not a
frivolous pursuit. Not only does it give you a program that’s easier to build
and debug, but it’s also easier to understand and maintain, and that’s
where the financial value lies. Feedback

Extreme programming
I have studied analysis and design techniques, on and off, since I was in
graduate school. The concept of Extreme Programming (XP) is the most
radical, and delightful, that I’ve seen. You can find it chronicled in
Extreme Programming Explained by Kent Beck (Addison-Wesley, 2000)
and on the Web at www.xprogramming.com. Addison-Wesley also
seems to come out with a new book in the XP series every month or two;
the goal seems to be to convince everyone to convert using sheer weight of

Chapter 16: Analysis & Design 1041

books (generally, however, these books are small and pleasant to read).
Feedback

XP is both a philosophy about programming work and a set of guidelines
to do it. Some of these guidelines are reflected in other recent
methodologies, but the two most important and distinct contributions, in
my opinion, are “write tests first” and “pair programming.” Although he
argues strongly for the whole process, Beck points out that if you adopt
only these two practices you’ll greatly improve your productivity and
reliability. Feedback

Write tests first
Testing has traditionally been relegated to the last part of a project, after
you’ve “gotten everything working, but just to be sure.” It’s implicitly had
a low priority, and people who specialize in it have not been given a lot of
status and have often even been cordoned off in a basement, away from
the “real programmers.” Test teams have responded in kind, going so far
as to wear black clothing and cackling with glee whenever they break
something (to be honest, I’ve had this feeling myself when breaking
compilers). Feedback

XP completely revolutionizes the concept of testing by giving it equal (or
even greater) priority than the code. In fact, you write the tests before you
write the code that will be tested, and the tests stay with the code forever.
The tests must be executed successfully every time you do a build of the
project (which is often, sometimes more than once a day). Feedback

Writing tests first has two extremely important effects. Feedback

First, it forces a clear definition of the interface of a class. I’ve often
suggested that people “imagine the perfect class to solve a particular
problem” as a tool when trying to design the system. The XP testing
strategy goes further than that—it specifies exactly what the class must
look like, to the consumer of that class, and exactly how the class must
behave. In no uncertain terms. You can write all the prose, or create all
the diagrams you want, describing how a class should behave and what it
looks like, but nothing is as real as a set of tests. The former is a wish list,
but the tests are a contract that is enforced by the compiler and the test

1042 Thinking in Java www.BruceEckel.com

framework. It’s hard to imagine a more concrete description of a class
than the tests. Feedback

While creating the tests, you are forced to completely think out the class
and will often discover needed functionality that might be missed during
the thought experiments of UML diagrams, CRC cards, use cases, etc.
Feedback

The second important effect of writing the tests first comes from running
the tests every time you do a build of your software. This activity gives you
the other half of the testing that’s performed by the compiler. If you look
at the evolution of programming languages from this perspective, you’ll
see that the real improvements in the technology have actually revolved
around testing. Assembly language checked only for syntax, but C
imposed some semantic restrictions, and these prevented you from
making certain types of mistakes. OOP languages impose even more
semantic restrictions, which if you think about it are actually forms of
testing. “Is this data type being used properly?” and “Is this method being
called properly?” are the kinds of tests that are being performed by the
compiler or run-time system. We’ve seen the results of having these tests
built into the language: people have been able to write more complex
systems, and get them to work, with much less time and effort. I’ve
puzzled over why this is, but now I realize it’s the tests: you do something
wrong, and the safety net of the built-in tests tells you there’s a problem
and points you to where it is. Feedback

But the built-in testing afforded by the design of the language can only go
so far. At some point, you must step in and add the rest of the tests that
produce a full suite (in cooperation with the compiler and run-time
system) that verifies all of your program. And, just like having a compiler
watching over your shoulder, wouldn’t you want these tests helping you
right from the beginning? That’s why you write them first, and run them
automatically with every build of your system. Your tests become an
extension of the safety net provided by the language. Feedback

One of the things that I’ve discovered about the use of more and more
powerful programming languages is that I am emboldened to try more
brazen experiments, because I know that the language will keep me from
wasting my time chasing bugs. The XP test scheme does the same thing

Chapter 16: Analysis & Design 1043

for your entire project. Because you know your tests will always catch any
problems that you introduce (and you regularly add any new tests as you
think of them), you can make big changes when you need to without
worrying that you’ll throw the whole project into complete disarray. This
is incredibly powerful. Feedback

In this third edition of this book, I realized that testing was so important
that it must also be applied to the examples in the book itself. With the
help of the Crested Butte Summer 2002 Interns, we developed the testing
system that you will see used throughout this book. The code and
description is in Chapter 15. This system has increased the robustness of
the code examples in this book immeasurably. Feedback

Pair programming
Pair programming goes against the rugged individualism that we’ve been
indoctrinated into from the beginning, through school (where we succeed
or fail on our own, and working with our neighbors is considered
“cheating”), and media, especially Hollywood movies in which the hero is
usually fighting against mindless conformity13. Programmers, too, are
considered paragons of individuality—“cowboy coders” as Larry
Constantine likes to say. And yet XP, which is itself battling against
conventional thinking, says that code should be written with two people
per workstation. And that this should be done in an area with a group of
workstations, without the barriers that the facilities-design people are so
fond of. In fact, Beck says that the first task of converting to XP is to arrive
with screwdrivers and Allen wrenches and take apart everything that gets
in the way.14 (This will require a manager who can deflect the ire of the
facilities department.) Feedback

13 Although this may be a more American perspective, the stories of Hollywood reach
everywhere.

14 Including (especially) the PA system. I once worked in a company that insisted on
broadcasting every phone call that arrived for every executive, and it constantly
interrupted our productivity (but the managers couldn’t begin to conceive of stifling such
an important service as the PA). Finally, when no one was looking I started snipping
speaker wires.

1044 Thinking in Java www.BruceEckel.com

The value of pair programming is that one person is actually doing the
coding while the other is thinking about it. The thinker keeps the big
picture in mind—not only the picture of the problem at hand, but the
guidelines of XP. If two people are working, it’s less likely that one of
them will get away with saying, “I don’t want to write the tests first,” for
example. And if the coder gets stuck, they can swap places. If both of them
get stuck, their musings may be overheard by someone else in the work
area who can contribute. Working in pairs keeps things flowing and on
track. Probably more important, it makes programming a lot more social
and fun. Feedback

I’ve begun using pair programming during the exercise periods in some of
my seminars and it seems to significantly improve everyone’s experience.
Feedback

Strategies for transition
If you buy into OOP, your next question is probably, “How can I get my
manager/colleagues/department/peers to start using objects?” Think
about how you—one independent programmer—would go about learning
to use a new language and a new programming paradigm. You’ve done it
before. First comes education and examples; then comes a trial project to
give you a feel for the basics without doing anything too confusing. Then
comes a “real world” project that actually does something useful.
Throughout your first projects you continue your education by reading,
asking questions of experts, and trading hints with friends. This is the
approach many experienced programmers suggest for the switch to Java.
Switching an entire company will of course introduce certain group
dynamics, but it will help at each step to remember how one person would
do it. Feedback

Guidelines
Here are some guidelines to consider when making the transition to OOP
and Java: Feedback

Chapter 16: Analysis & Design 1045

1. Training
The first step is some form of education. Remember the company’s
investment in code, and try not to throw everything into disarray for six to
nine months while everyone puzzles over unfamiliar features. Pick a small
group for indoctrination, preferably one composed of people who are
curious, work well together, and can function as their own support
network while they’re learning Java. Feedback

An alternative approach is the education of all company levels at once,
including overview courses for strategic managers as well as design and
programming courses for project builders. This is especially good for
smaller companies making fundamental shifts in the way they do things,
or at the division level of larger companies. Because the cost is higher,
however, some may choose to start with project-level training, do a pilot
project (possibly with an outside mentor), and let the project team
become the teachers for the rest of the company. Feedback

2. Low-risk project
Try a low-risk project first and allow for mistakes. Once you’ve gained
some experience, you can either seed other projects from members of this
first team or use the team members as an OOP technical support staff.
This first project may not work right the first time, so it should not be
mission-critical for the company. It should be simple, self-contained, and
instructive; this means that it should involve creating classes that will be
meaningful to the other programmers in the company when they get their
turn to learn Java. Feedback

3. Model from success
Seek out examples of good object-oriented design before starting from
scratch. There’s a good probability that someone has solved your problem
already, and if they haven’t solved it exactly you can probably apply what
you’ve learned about abstraction to modify an existing design to fit your
needs. This is the general concept of design patterns, covered in Thinking
in Patterns with Java at www.BruceEckel.com. Feedback

1046 Thinking in Java www.BruceEckel.com

4. Use existing class libraries
An important economic motivation for switching to OOP is the easy use of
existing code in the form of class libraries (in particular, the Standard
Java libraries, which are covered throughout this book). The shortest
application development cycle will result when you can create and use
objects from off-the-shelf libraries. However, some new programmers
don’t understand this, are unaware of existing class libraries, or, through
fascination with the language, desire to write classes that may already
exist. Your success with OOP and Java will be optimized if you make an
effort to seek out and reuse other people’s code early in the transition
process. Feedback

5. Don’t rewrite existing code in Java
It is not usually the best use of your time to take existing, functional code
and rewrite it in Java. (If you must turn it into objects, you can interface
to the C or C++ code using the Java Native Interface or XML) There are
incremental benefits, especially if the code is slated for reuse. But chances
are you aren’t going to see the dramatic increases in productivity that you
hope for in your first few projects unless that project is a new one. Java
and OOP shine best when taking a project from concept to reality. Feedback

Management obstacles
If you’re a manager, your job is to acquire resources for your team, to
overcome barriers to your team’s success, and in general to try to provide
the most productive and enjoyable environment so your team is most
likely to perform those miracles that are always being asked of you.
Moving to Java falls in all three of these categories, and it would be
wonderful if it didn’t cost you anything as well. Although moving to Java
may be cheaper—depending on your constraints—than the OOP
alternatives for a team of C programmers (and probably for programmers
in other procedural languages), it isn’t free, and there are obstacles you
should be aware of before trying to sell the move to Java within your
company and embarking on the move itself. Feedback

Chapter 16: Analysis & Design 1047

Startup costs
The cost of moving to Java is more than just the acquisition of Java
compilers (the Sun Java compiler is free, so this is hardly an obstacle).
Your medium- and long-term costs will be minimized if you invest in
training (and possibly mentoring for your first project) and also if you
identify and purchase class libraries that solve your problem rather than
trying to build those libraries yourself. These are hard-money costs that
must be factored into a realistic proposal. In addition, there are the
hidden costs in loss of productivity while learning a new language and
possibly a new programming environment. Training and mentoring can
certainly minimize these, but team members must overcome their own
struggles to understand the new technology. During this process they will
make more mistakes (this is a feature, because acknowledged mistakes
are the fastest path to learning) and be less productive. Even then, with
some types of programming problems, the right classes, and the right
development environment, it’s possible to be more productive while
you’re learning Java (even considering that you’re making more mistakes
and writing fewer lines of code per day) than if you’d stayed with C. Feedback

Performance issues
A common question is, “Doesn’t OOP automatically make my programs a
lot bigger and slower?” The answer is, “It depends.” The extra safety
features in Java have traditionally extracted a performance penalty over a
language like C++. Technologies such as “hotspot” and compilation
technologies have improved the speed significantly in most cases, and
efforts continue toward higher performance. Feedback

When your focus is on rapid prototyping, you can throw together
components as fast as possible while ignoring efficiency issues. If you’re
using any third-party libraries, these are usually already optimized by
their vendors; in any case it’s not an issue while you’re in rapid-
development mode. When you have a system that you like, if it’s small and
fast enough, then you’re done. If not, you begin tuning with a profiler,
looking first for speedups that can be done by rewriting small portions of
code. If that doesn’t help, you look for modifications that can be made in
the underlying implementation so no code that uses a particular class
needs to be changed. Only if nothing else solves the problem do you need

1048 Thinking in Java www.BruceEckel.com

to change the design. If performance is so critical in that portion of the
design, it must be part of the primary design criteria. You have the benefit
of finding this out early using rapid development.

Chapter 15 introduces profilers, which can help you discover bottlenecks
in your system so you can optimize that portion of your code (with the
hotspot technologies, Sun no longer recommends using native methods
for performance optimization). Optimization tools are also available.
Feedback

Common design errors
When starting your team into OOP and Java, programmers will typically
go through a series of common design errors. This often happens due to
insufficient feedback from experts during the design and implementation
of early projects, because no experts have been developed within the
company, and because there may be resistance to retaining consultants.
It’s easy to feel that you understand OOP too early in the cycle and go off
on a bad tangent. Something that’s obvious to someone experienced with
the language may be a subject of great internal debate for a novice. Much
of this trauma can be skipped by using an experienced outside expert for
training and mentoring. Feedback

Summary
This chapter was only intended to give you concepts of OOP
methodologies, and the kinds of issues you will encounter when moving
your own company to OOP and Java. More about Object design can be
learned at the MindView seminar “Designing Objects and Systems” (see
“Seminars” at www.MindView.net).

 1049

A: Passing &
Returning
Objects

By now you should be reasonably comfortable with the
idea that when you’re “passing” an object, you’re actually
passing a reference.

In many programming languages you can use that language’s “regular”
way to pass objects around, and most of the time everything works fine.
But it always seems that there comes a point at which you must do
something irregular and suddenly things get a bit more complicated (or in
the case of C++, quite complicated). Java is no exception, and it’s
important that you understand exactly what’s happening as you pass
objects around and manipulate them. This appendix will provide that
insight. Feedback

Another way to pose the question of this appendix, if you’re coming from
a programming language so equipped, is “Does Java have pointers?”
Some have claimed that pointers are hard and dangerous and therefore
bad, and since Java is all goodness and light and will lift your earthly
programming burdens, it cannot possibly contain such things. However,
it’s more accurate to say that Java has pointers; indeed, every object
identifier in Java (except for primitives) is one of these pointers, but their
use is restricted and guarded not only by the compiler but by the run-time
system. Or to put it another way, Java has pointers, but no pointer
arithmetic. These are what I’ve been calling “references,” and you can
think of them as “safety pointers,” not unlike the safety scissors of
elementary school—they aren’t sharp, so you cannot hurt yourself without
great effort, but they can sometimes be slow and tedious. Feedback

1050 Thinking in Java www.BruceEckel.com

Passing references around
When you pass a reference into a method, you’re still pointing to the same
object. A simple experiment demonstrates this:

//: appendixa:PassReferences.java
// Passing references around.
import com.bruceeckel.simpletest.*;

public class PassReferences {
 private static Test monitor = new Test();
 public static void f(PassReferences h) {
 System.out.println("h inside f(): " + h);
 }
 public static void main(String[] args) {
 PassReferences p = new PassReferences();
 System.out.println("p inside main(): " + p);
 f(p);
 monitor.expect(new String[] {
 "%% p inside main\\(\\): PassReferences@[a-z0-9]+",
 "%% h inside f\\(\\): PassReferences@[a-z0-9]+"
 });
 }
} ///:~

The method toString() is automatically invoked in the print statements,
and PassReferences inherits directly from Object with no redefinition
of toString(). Thus, Object’s version of toString() is used, which
prints out the class of the object followed by the address where that object
is located (not the reference, but the actual object storage). The output
looks like this: Feedback

p inside main(): PassReferences@ad3ba4
h inside f(): PassReferences@ad3ba4

You can see that both p and h refer to the same object. This is far more
efficient than duplicating a new PassReferences object just so that you
can send an argument to a method. But it brings up an important issue.
Feedback

Appendix A: Passing & Returning Objects 1051

Aliasing
Aliasing means that more than one reference is tied to the same object, as
in the above example. The problem with aliasing occurs when someone
writes to that object. If the owners of the other references aren’t expecting
that object to change, they’ll be surprised. This can be demonstrated with
a simple example: Feedback

//: appendixa:Alias1.java
// Aliasing two references to one object.
import com.bruceeckel.simpletest.*;

public class Alias1 {
 private static Test monitor = new Test();
 private int i;
 public Alias1(int ii) { i = ii; }
 public static void main(String[] args) {
 Alias1 x = new Alias1(7);
 Alias1 y = x; // Assign the reference
 System.out.println("x: " + x.i);
 System.out.println("y: " + y.i);
 System.out.println("Incrementing x");
 x.i++;
 System.out.println("x: " + x.i);
 System.out.println("y: " + y.i);
 monitor.expect(new String[] {
 "x: 7",
 "y: 7",
 "Incrementing x",
 "x: 8",
 "y: 8"
 });
 }
} ///:~

In the line:

Alias1 y = x; // Assign the reference

a new Alias1 reference is created, but instead of being assigned to a fresh
object created with new, it’s assigned to an existing reference. So the
contents of reference x, which is the address of the object x is pointing to,
is assigned to y, and thus both x and y are attached to the same object. So
when x’s i is incremented in the statement: Feedback

1052 Thinking in Java www.BruceEckel.com

x.i++;

y’s i will be affected as well. This can be seen in the output:

x: 7
y: 7
Incrementing x
x: 8
y: 8

One good solution in this case is to simply not do it: don’t consciously
alias more than one reference to an object at the same scope. Your code
will be much easier to understand and debug. However, when you’re
passing a reference in as an argument—which is the way Java is supposed
to work—you automatically alias because the local reference that’s created
can modify the “outside object” (the object that was created outside the
scope of the method). Here’s an example: Feedback

//: appendixa:Alias2.java
// Method calls implicitly alias their arguments.
import com.bruceeckel.simpletest.*;

public class Alias2 {
 private static Test monitor = new Test();
 private int i;
 public Alias2(int ii) { i = ii; }
 public static void f(Alias2 reference) { reference.i++; }
 public static void main(String[] args) {
 Alias2 x = new Alias2(7);
 System.out.println("x: " + x.i);
 System.out.println("Calling f(x)");
 f(x);
 System.out.println("x: " + x.i);
 monitor.expect(new String[] {
 "x: 7",
 "Calling f(x)",
 "x: 8"
 });
 }
} ///:~

The method is changing its argument, the outside object. When this kind
of situation arises, you must decide whether it makes sense, whether the
user expects it, and whether it’s going to cause problems. Feedback

Appendix A: Passing & Returning Objects 1053

In general, you call a method in order to produce a return value and/or a
change of state in the object that the method is called for. It’s much less
common to call a method in order to manipulate its arguments; this is
referred to as “calling a method for its side effects.” Thus, when you create
a method that modifies its arguments, the user must be clearly instructed
and warned about the use of that method and its potential surprises.
Because of the confusion and pitfalls, it’s much better to avoid changing
the argument. Feedback

If you need to modify an argument during a method call and you don’t
intend to modify the outside argument, then you should protect that
argument by making a copy inside your method. That’s the subject of
much of this appendix. Feedback

Making local copies
To review: All argument passing in Java is performed by passing
references. That is, when you pass “an object,” you’re really passing only a
reference to an object that lives outside the method, so if you perform any
modifications with that reference, you modify the outside object. In
addition: Feedback

• Aliasing happens automatically during argument passing.

• There are no local objects, only local references.

• References have scopes, objects do not.

• Object lifetime is never an issue in Java.

• There is no language support (e.g., “const”) to prevent objects
from being modified and stop the negative effects of aliasing. You
can’t simply use the final keyword in the argument list; that
simply prevents you from rebinding the reference to a different
object.

If you’re only reading information from an object and not modifying it,
passing a reference is the most efficient form of argument passing. This is
nice; the default way of doing things is also the most efficient. However,
sometimes it’s necessary to be able to treat the object as if it were “local”

1054 Thinking in Java www.BruceEckel.com

so that changes you make affect only a local copy and do not modify the
outside object. Many programming languages support the ability to
automatically make a local copy of the outside object, inside the method1.
Java does not, but it allows you to produce this effect. Feedback

Pass by value
This brings up the terminology issue, which always seems good for an
argument. The term is “pass by value,” and the meaning depends on how
you perceive the operation of the program. The general meaning is that
you get a local copy of whatever you’re passing, but the real question is
how you think about what you’re passing. When it comes to the meaning
of “pass by value,” there are two fairly distinct camps:Feedback

1. Java passes everything by value. When you’re passing primitives
into a method, you get a distinct copy of the primitive. When you’re
passing a reference into a method, you get a copy of the reference.
Ergo, everything is pass-by-value. Of course, the assumption is that
you’re always thinking (and caring) that references are being
passed, but it seems like the Java design has gone a long way
toward allowing you to ignore (most of the time) that you’re
working with a reference. That is, it seems to allow you to think of
the reference as “the object,” since it implicitly dereferences it
whenever you make a method call. Feedback

2. Java passes primitives by value (no argument there), but objects
are passed by reference. This is the world view that the reference is
an alias for the object, so you don’t think about passing references,
but instead say “I’m passing the object.” Since you don’t get a local
copy of the object when you pass it into a method, objects are
clearly not passed by value. There appears to be some support for
this view within Sun, since at one time, one of the “reserved but not
implemented” keywords was byvalue (This will probably never be
implemented). Feedback

1 In C, which generally handles small bits of data, the default is pass-by-value. C++ had to
follow this form, but with objects pass-by-value isn’t usually the most efficient way. In
addition, coding classes to support pass-by-value in C++ is a big headache.

Appendix A: Passing & Returning Objects 1055

Having given both camps a good airing, and after saying “It depends on
how you think of a reference,” I will attempt to sidestep the issue. In the
end, it isn’t that important—what is important is that you understand that
passing a reference allows the caller’s object to be changed unexpectedly.
Feedback

Cloning objects
The most likely reason for making a local copy of an object is if you’re
going to modify that object and you don’t want to modify the caller’s
object. If you decide that you want to make a local copy, one approach is
to use the clone() method to perform the operation. This is a method
that’s defined as protected in the base class Object, and which you must
override as public in any derived classes that you want to clone. For
example, the standard library class ArrayList overrides clone(), so we
can call clone() for ArrayList: Feedback

//: appendixa:Cloning.java
// The clone() operation works for only a few
// items in the standard Java library.
import com.bruceeckel.simpletest.*;
import java.util.*;

class Int {
 private int i;
 public Int(int ii) { i = ii; }
 public void increment() { i++; }
 public String toString() { return Integer.toString(i); }
}

public class Cloning {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 ArrayList v = new ArrayList();
 for(int i = 0; i < 10; i++)
 v.add(new Int(i));
 System.out.println("v: " + v);
 ArrayList v2 = (ArrayList)v.clone();
 // Increment all v2's elements:
 for(Iterator e = v2.iterator();
 e.hasNext();)
 ((Int)e.next()).increment();
 // See if it changed v's elements:

1056 Thinking in Java www.BruceEckel.com

 System.out.println("v: " + v);
 monitor.expect(new String[] {
 "v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]",
 "v: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]"
 });
 }
} ///:~

The clone() method produces an Object, which must then be recast to
the proper type. This example shows how ArrayList’s clone() method
does not automatically try to clone each of the objects that the ArrayList
contains—the old ArrayList and the cloned ArrayList are aliased to the
same objects. This is often called a shallow copy, since it’s copying only
the “surface” portion of an object. The actual object consists of this
“surface,” plus all the objects that the references are pointing to, plus all
the objects those objects are pointing to, etc. This is often referred to as
the “web of objects.” Copying the entire mess is called a deep copy. Feedback

You can see the effect of the shallow copy in the output, where the actions
performed on v2 affect v:

v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
v: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Not trying to clone() the objects contained in the ArrayList is probably
a fair assumption because there’s no guarantee that those objects are
cloneable2. Feedback

Adding cloneability to a class
Even though the clone method is defined in the base-of-all-classes
Object, cloning is not automatically available in every class3. This would

2 This is not the dictionary spelling of the word, but it’s what is used in the Java library, so
I’ve used it here, too, in some hopes of reducing confusion.

3 You can apparently create a simple counter-example to this statement, like this:

public class Cloneit implements Cloneable {

 public static void main (String[] args)

 throws CloneNotSupportedException {

 Cloneit a = new Cloneit();

 Cloneit b = (Cloneit)a.clone();

Appendix A: Passing & Returning Objects 1057

seem to be counterintuitive to the idea that base-class methods are always
available in derived classes. Cloning in Java does indeed go against this
idea; if you want it to exist for a class, you must specifically add code to
make cloning work. Feedback

Using a trick with protected
To prevent default cloneability in every class you create, the clone()
method is protected in the base class Object. Not only does this mean
that it’s not available by default to the client programmer who is simply
using the class (not subclassing it), but it also means that you cannot call
clone() via a reference to the base class. (Although that might seem to be
useful in some situations, such as to polymorphically clone a bunch of
Objects.) It is, in effect, a way to give you, at compile time, the
information that your object is not cloneable—and oddly enough most
classes in the standard Java library are not cloneable. Thus, if you say:

 Integer x = new Integer(1);
 x = x.clone();

You will get, at compile time, an error message that says clone() is not
accessible (since Integer doesn’t override it and it defaults to the
protected version). Feedback

If, however, you’re in a method of a class derived from Object (as all
classes are), then you have permission to call Object.clone() because
it’s protected and you’re an inheritor. The base class clone() has useful
functionality—it performs the actual bitwise duplication of the derived-
class object, thus acting as the common cloning operation. However, you
then need to make your clone operation public for it to be accessible. So,
two key issues when you clone are: Feedback

• Call super.clone()

• Make your clone public

 }

}
However, this only works because main() is a method of Cloneit and thus has
permission to call the protected base-class method clone(). If you call it from a
different class, it won’t compile.

1058 Thinking in Java www.BruceEckel.com

You’ll probably want to override clone() in any further derived classes,
otherwise your (now public) clone() will be used, and that might not do
the right thing (although, since Object.clone() makes a copy of the
actual object, it might). The protected trick works only once—the first
time you inherit from a class that has no cloneability and you want to
make a class that’s cloneable. In any classes inherited from your class the
clone() method is available since it’s not possible in Java to reduce the
access of a method during derivation. That is, once a class is cloneable,
everything derived from it is cloneable unless you use provided
mechanisms (described later) to “turn off” cloning. Feedback

Implementing the Cloneable interface
There’s one more thing you need to do to complete the cloneability of an
object: implement the Cloneable interface. This interface is a bit
strange, because it’s empty!

interface Cloneable {}

The reason for implementing this empty interface is obviously not
because you are going to upcast to Cloneable and call one of its methods.
The use of interface in this way is called a tagging interface because it
acts as a kind of flag, wired into the type of the class. Feedback

There are two reasons for the existence of the Cloneable interface.
First, you might have an upcast reference to a base type and not know
whether it’s possible to clone that object. In this case, you can use the
instanceof keyword (described in Chapter 10) to find out whether the
reference is connected to an object that can be cloned: Feedback

if(myReference instanceof Cloneable) // ...

The second reason is that mixed into this design for cloneability was the
thought that maybe you didn’t want all types of objects to be cloneable. So
Object.clone() verifies that a class implements the Cloneable
interface. If not, it throws a CloneNotSupportedException exception.
So in general, you’re forced to implement Cloneable as part of support
for cloning. Feedback

Appendix A: Passing & Returning Objects 1059

Successful cloning
Once you understand the details of implementing the clone() method,
you’re able to create classes that can be easily duplicated to provide a local
copy:

//: appendixa:LocalCopy.java
// Creating local copies with clone().
import com.bruceeckel.simpletest.*;
import java.util.*;

class MyObject implements Cloneable {
 private int n;
 public MyObject(int n) { this.n = n; }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 System.err.println("MyObject can't clone");
 }
 return o;
 }
 public int getValue() { return n; }
 public void setValue(int n) { this.n = n; }
 public void increment() { n++; }
 public String toString() { return Integer.toString(n); }
}

public class LocalCopy {
 private static Test monitor = new Test();
 public static MyObject g(MyObject v) {
 // Passing a reference, modifies outside object:
 v.increment();
 return v;
 }
 public static MyObject f(MyObject v) {
 v = (MyObject)v.clone(); // Local copy
 v.increment();
 return v;
 }
 public static void main(String[] args) {
 MyObject a = new MyObject(11);
 MyObject b = g(a);

1060 Thinking in Java www.BruceEckel.com

 // Reference equivalence, not object equivalence:
 System.out.println("a == b: " + (a == b) +
 "\na = " + a + "\nb = " + b);
 MyObject c = new MyObject(47);
 MyObject d = f(c);
 System.out.println("c == d: " + (c == d) +
 "\nc = " + c + "\nd = " + d);
 monitor.expect(new String[] {
 "a == b: true",
 "a = 12",
 "b = 12",
 "c == d: false",
 "c = 47",
 "d = 48"
 });
 }
} ///:~

First of all, for clone() to be accessible you must make it public.
Second, for the initial part of your clone() operation you should call the
base-class version of clone(). The clone() that’s being called here is the
one that’s predefined inside Object, and you can call it because it’s
protected and thereby accessible in derived classes. Feedback

Object.clone() figures out how big the object is, creates enough
memory for a new one, and copies all the bits from the old to the new.
This is called a bitwise copy, and is typically what you’d expect a clone()
method to do. But before Object.clone() performs its operations, it first
checks to see if a class is Cloneable—that is, whether it implements the
Cloneable interface. If it doesn’t, Object.clone() throws a
CloneNotSupportedException to indicate that you can’t clone it.
Thus, you’ve got to surround your call to super.clone() with a try
block, to catch an exception that should never happen (because you’ve
implemented the Cloneable interface). Feedback

In LocalCopy, the two methods g() and f() demonstrate the difference
between the two approaches for argument passing. g() shows passing by
reference in which it modifies the outside object and returns a reference
to that outside object, while f() clones the argument, thereby decoupling
it and leaving the original object alone. It can then proceed to do whatever
it wants, and even to return a reference to this new object without any ill

Appendix A: Passing & Returning Objects 1061

effects to the original. Notice the somewhat curious-looking statement:
Feedback

v = (MyObject)v.clone();

This is where the local copy is created. To prevent confusion by such a
statement, remember that this rather strange coding idiom is perfectly
feasible in Java because every object identifier is actually a reference. So
the reference v is used to clone() a copy of what it refers to, and this
returns a reference to the base type Object (because it’s defined that way
in Object.clone()) that must then be cast to the proper type. Feedback

In main(), the difference between the effects of the two different
argument-passing approaches is tested. It’s important to notice that the
equivalence tests in Java do not look inside the objects being compared to
see if their values are the same. The == and != operators are simply
comparing the references. If the addresses inside the references are the
same, the references are pointing to the same object and are therefore
“equal.” So what the operators are really testing is whether the references
are aliased to the same object! Feedback

The effect of Object.clone()
What actually happens when Object.clone() is called that makes it so
essential to call super.clone() when you override clone() in your
class? The clone() method in the root class is responsible for creating
the correct amount of storage and making the bitwise copy of the bits
from the original object into the new object’s storage. That is, it doesn’t
just make storage and copy an Object—it actually figures out the size of
the real object (not just the base-class object, but the derived object)
that’s being copied and duplicates that. Since all this is happening from
the code in the clone() method defined in the root class (that has no idea
what’s being inherited from it), you can guess that the process involves
RTTI to determine the actual object that’s being cloned. This way, the
clone() method can create the proper amount of storage and do the
correct bitcopy for that type. Feedback

Whatever you do, the first part of the cloning process should normally be
a call to super.clone(). This establishes the groundwork for the cloning

1062 Thinking in Java www.BruceEckel.com

operation by making an exact duplicate. At this point you can perform
other operations necessary to complete the cloning. Feedback

To know for sure what those other operations are, you need to understand
exactly what Object.clone() buys you. In particular, does it
automatically clone the destination of all the references? The following
example tests this:

//: appendixa:Snake.java
// Tests cloning to see if destination
// of references are also cloned.
import com.bruceeckel.simpletest.*;

public class Snake implements Cloneable {
 private static Test monitor = new Test();
 private Snake next;
 private char c;
 // Value of i == number of segments
 public Snake(int i, char x) {
 c = x;
 if(--i > 0)
 next = new Snake(i, (char)(x + 1));
 }
 public void increment() {
 c++;
 if(next != null)
 next.increment();
 }
 public String toString() {
 String s = ":" + c;
 if(next != null)
 s += next.toString();
 return s;
 }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 System.err.println("Snake can't clone");
 }
 return o;
 }
 public static void main(String[] args) {

Appendix A: Passing & Returning Objects 1063

 Snake s = new Snake(5, 'a');
 System.out.println("s = " + s);
 Snake s2 = (Snake)s.clone();
 System.out.println("s2 = " + s2);
 s.increment();
 System.out.println("after s.increment, s2 = " + s2);
 monitor.expect(new String[] {
 "s = :a:b:c:d:e",
 "s2 = :a:b:c:d:e",
 "after s.increment, s2 = :a:c:d:e:f"
 });
 }
} ///:~

A Snake is made up of a bunch of segments, each of type Snake. Thus,
it’s a singly linked list. The segments are created recursively,
decrementing the first constructor argument for each segment until zero
is reached. To give each segment a unique tag, the second argument, a
char, is incremented for each recursive constructor call. Feedback

The increment() method recursively increments each tag so you can see
the change, and the toString() recursively prints each tag. From the
output, you can see that only the first segment is duplicated by
Object.clone(), therefore it does a shallow copy. If you want the whole
snake to be duplicated—a deep copy—you must perform the additional
operations inside your overridden clone(). Feedback

You’ll typically call super.clone() in any class derived from a cloneable
class to make sure that all of the base-class operations (including
Object.clone()) take place. This is followed by an explicit call to
clone() for every reference in your object; otherwise those references
will be aliased to those of the original object. It’s analogous to the way
constructors are called—base-class constructor first, then the next-derived
constructor, and so on to the most-derived constructor. The difference is
that clone() is not a constructor, so there’s nothing to make it happen
automatically. You must make sure to do it yourself. Feedback

Cloning a composed object
There’s a problem you’ll encounter when trying to deep-copy a composed
object. You must assume that the clone() method in the member objects

1064 Thinking in Java www.BruceEckel.com

will in turn perform a deep copy on their references, and so on. This is
quite a commitment. It effectively means that for a deep copy to work you
must either control all of the code in all of the classes, or at least have
enough knowledge about all of the classes involved in the deep copy to
know that they are performing their own deep copy correctly. Feedback

This example shows what you must do to accomplish a deep copy when
dealing with a composed object:

//: appendixa:DeepCopy.java
// Cloning a composed object.
// {Depends: junit.jar}
import junit.framework.*;

class DepthReading implements Cloneable {
 private double depth;
 public DepthReading(double depth) { this.depth = depth; }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 e.printStackTrace();
 }
 return o;
 }
 public double getDepth() { return depth; }
 public void setDepth(double depth){ this.depth = depth; }
 public String toString() { return String.valueOf(depth);}
}

class TemperatureReading implements Cloneable {
 private long time;
 private double temperature;
 public TemperatureReading(double temperature) {
 time = System.currentTimeMillis();
 this.temperature = temperature;
 }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 e.printStackTrace();

Appendix A: Passing & Returning Objects 1065

 }
 return o;
 }
 public double getTemperature() { return temperature; }
 public void setTemperature(double temperature) {
 this.temperature = temperature;
 }
 public String toString() {
 return String.valueOf(temperature);
 }
}

class OceanReading implements Cloneable {
 private DepthReading depth;
 private TemperatureReading temperature;
 public OceanReading(double tdata, double ddata) {
 temperature = new TemperatureReading(tdata);
 depth = new DepthReading(ddata);
 }
 public Object clone() {
 OceanReading o = null;
 try {
 o = (OceanReading)super.clone();
 } catch(CloneNotSupportedException e) {
 e.printStackTrace();
 }
 // Must clone references:
 o.depth = (DepthReading)o.depth.clone();
 o.temperature =
 (TemperatureReading)o.temperature.clone();
 return o; // Upcasts back to Object
 }
 public TemperatureReading getTemperatureReading() {
 return temperature;
 }
 public void setTemperatureReading(TemperatureReading tr){
 temperature = tr;
 }
 public DepthReading getDepthReading() { return depth; }
 public void setDepthReading(DepthReading dr) {
 this.depth = dr;
 }
 public String toString() {
 return "temperature: " + temperature +

1066 Thinking in Java www.BruceEckel.com

 ", depth: " + depth;
 }
}

public class DeepCopy extends TestCase {
 public DeepCopy(String name) { super(name); }
 public void testClone() {
 OceanReading reading = new OceanReading(33.9, 100.5);
 // Now clone it:
 OceanReading clone = (OceanReading)reading.clone();
 TemperatureReading tr = clone.getTemperatureReading();
 tr.setTemperature(tr.getTemperature() + 1);
 clone.setTemperatureReading(tr);
 DepthReading dr = clone.getDepthReading();
 dr.setDepth(dr.getDepth() + 1);
 clone.setDepthReading(dr);
 assertEquals(reading.toString(),
 "temperature: 33.9, depth: 100.5");
 assertEquals(clone.toString(),
 "temperature: 34.9, depth: 101.5");
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(DeepCopy.class);
 }
} ///:~

DepthReading and TemperatureReading are quite similar; they
both contain only primitives. Therefore, the clone() method can be quite
simple: it calls super.clone() and returns the result. Note that the
clone() code for both classes is identical. Feedback

OceanReading is composed of DepthReading and
TemperatureReading objects and so, to produce a deep copy, its
clone() must clone the references inside OceanReading. To
accomplish this, the result of super.clone() must be cast to an
OceanReading object (so you can access the depth and temperature
references). Feedback

A deep copy with ArrayList
Let’s revisit Cloning.java from earlier in this appendix. This time the
Int2 class is cloneable, so the ArrayList can be deep copied:

Appendix A: Passing & Returning Objects 1067

//: appendixa:AddingClone.java
// You must go through a few gyrations
// to add cloning to your own class.
import com.bruceeckel.simpletest.*;
import java.util.*;

class Int2 implements Cloneable {
 private int i;
 public Int2(int ii) { i = ii; }
 public void increment() { i++; }
 public String toString() { return Integer.toString(i); }
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 System.err.println("Int2 can't clone");
 }
 return o;
 }
}

// Inheritance doesn't remove cloneability:
class Int3 extends Int2 {
 private int j; // Automatically duplicated
 public Int3(int i) { super(i); }
}

public class AddingClone {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 Int2 x = new Int2(10);
 Int2 x2 = (Int2)x.clone();
 x2.increment();
 System.out.println("x = " + x + ", x2 = " + x2);
 // Anything inherited is also cloneable:
 Int3 x3 = new Int3(7);
 x3 = (Int3)x3.clone();
 ArrayList v = new ArrayList();
 for(int i = 0; i < 10; i++)
 v.add(new Int2(i));
 System.out.println("v: " + v);
 ArrayList v2 = (ArrayList)v.clone();
 // Now clone each element:

1068 Thinking in Java www.BruceEckel.com

 for(int i = 0; i < v.size(); i++)
 v2.set(i, ((Int2)v2.get(i)).clone());
 // Increment all v2's elements:
 for(Iterator e = v2.iterator(); e.hasNext();)
 ((Int2)e.next()).increment();
 System.out.println("v2: " + v2);
 // See if it changed v's elements:
 System.out.println("v: " + v);
 monitor.expect(new String[] {
 "x = 10, x2 = 11",
 "v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]",
 "v2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]",
 "v: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"
 });
 }
} ///:~

Int3 is inherited from Int2 and a new primitive member int j is added.
You might think that you’d need to override clone() again to make sure j
is copied, but that’s not the case. When Int2’s clone() is called as Int3’s
clone(), it calls Object.clone(), which determines that it’s working
with an Int3 and duplicates all the bits in the Int3. As long as you don’t
add references that need to be cloned, the one call to Object.clone()
performs all of the necessary duplication, regardless of how far down in
the hierarchy clone() is defined. Feedback

You can see what’s necessary in order to do a deep copy of an ArrayList:
after the ArrayList is cloned, you have to step through and clone each
one of the objects pointed to by the ArrayList. You’d have to do
something similar to this to do a deep copy of a HashMap. Feedback

The remainder of the example shows that the cloning did happen by
showing that, once an object is cloned, you can change it and the original
object is left untouched. Feedback

Deep copy via serialization
When you consider Java’s object serialization (introduced in Chapter 12),
you might observe that an object that’s serialized and then deserialized is,
in effect, cloned. Feedback

Appendix A: Passing & Returning Objects 1069

So why not use serialization to perform deep copying? Here’s an example
that compares the two approaches by timing them:

//: appendixa:Compete.java
import java.io.*;

class Thing1 implements Serializable {}
class Thing2 implements Serializable {
 Thing1 o1 = new Thing1();
}

class Thing3 implements Cloneable {
 public Object clone() {
 Object o = null;
 try {
 o = super.clone();
 } catch(CloneNotSupportedException e) {
 System.err.println("Thing3 can't clone");
 }
 return o;
 }
}

class Thing4 implements Cloneable {
 private Thing3 o3 = new Thing3();
 public Object clone() {
 Thing4 o = null;
 try {
 o = (Thing4)super.clone();
 } catch(CloneNotSupportedException e) {
 System.err.println("Thing4 can't clone");
 }
 // Clone the field, too:
 o.o3 = (Thing3)o3.clone();
 return o;
 }
}

public class Compete {
 public static final int SIZE = 25000;
 public static void main(String[] args) throws Exception {
 Thing2[] a = new Thing2[SIZE];
 for(int i = 0; i < a.length; i++)
 a[i] = new Thing2();

1070 Thinking in Java www.BruceEckel.com

 Thing4[] b = new Thing4[SIZE];
 for(int i = 0; i < b.length; i++)
 b[i] = new Thing4();
 long t1 = System.currentTimeMillis();
 ByteArrayOutputStream buf= new ByteArrayOutputStream();
 ObjectOutputStream o = new ObjectOutputStream(buf);
 for(int i = 0; i < a.length; i++)
 o.writeObject(a[i]);
 // Now get copies:
 ObjectInputStream in = new ObjectInputStream(
 new ByteArrayInputStream(buf.toByteArray()));
 Thing2[] c = new Thing2[SIZE];
 for(int i = 0; i < c.length; i++)
 c[i] = (Thing2)in.readObject();
 long t2 = System.currentTimeMillis();
 System.out.println("Duplication via serialization: " +
 (t2 - t1) + " Milliseconds");
 // Now try cloning:
 t1 = System.currentTimeMillis();
 Thing4[] d = new Thing4[SIZE];
 for(int i = 0; i < d.length; i++)
 d[i] = (Thing4)b[i].clone();
 t2 = System.currentTimeMillis();
 System.out.println("Duplication via cloning: " +
 (t2 - t1) + " Milliseconds");
 }
} ///:~

Thing2 and Thing4 contain member objects so that there’s some deep
copying going on. It’s interesting to notice that while Serializable classes
are easy to set up, there’s much more work going on to duplicate them.
Cloning involves a lot of work to set up the class, but the actual
duplication of objects is relatively simple. The results are interesting. Here
is the output from three different runs:

Duplication via serialization: 547 Milliseconds
Duplication via cloning: 110 Milliseconds

Duplication via serialization: 547 Milliseconds
Duplication via cloning: 109 Milliseconds

Duplication via serialization: 547 Milliseconds
Duplication via cloning: 125 Milliseconds

Appendix A: Passing & Returning Objects 1071

In earlier versions of the JDK, the time required for serialization was
much longer than that of cloning (roughly 15 times slower), and the
serialization time tended to vary a lot. More recent versions of the JDK
have sped up serialization and apparently made the time more consistent,
as well. Here, it’s approximately four times slower, which brings it into
the realm of reasonability for use as a cloning alternative. Feedback

Adding cloneability
further down a hierarchy
If you create a new class, its base class defaults to Object, which defaults
to noncloneability (as you’ll see in the next section). As long as you don’t
explicitly add cloneability, you won’t get it. But you can add it in at any
layer and it will then be cloneable from that layer downward, like this:

//: appendixa:HorrorFlick.java
// You can insert Cloneability at any level of inheritance.
package appendixa;
import java.util.*;

class Person {}
class Hero extends Person {}
class Scientist extends Person implements Cloneable {
 public Object clone() {
 try {
 return super.clone();
 } catch(CloneNotSupportedException e) {
 // This should never happen: It's Cloneable already!
 throw new RuntimeException(e);
 }
 }
}
class MadScientist extends Scientist {}

public class HorrorFlick {
 public static void main(String[] args) {
 Person p = new Person();
 Hero h = new Hero();
 Scientist s = new Scientist();
 MadScientist m = new MadScientist();
 //! p = (Person)p.clone(); // Compile error
 //! h = (Hero)h.clone(); // Compile error

1072 Thinking in Java www.BruceEckel.com

 s = (Scientist)s.clone();
 m = (MadScientist)m.clone();
 }
} ///:~

Before cloneability was added in the hierarchy, the compiler stopped you
from trying to clone things. When cloneability is added in Scientist, then
Scientist and all its descendants are cloneable. Feedback

Why this strange design?
If all this seems to be a strange scheme, that’s because it is. You might
wonder why it worked out this way. What is the meaning behind this
design? Feedback

Originally, Java was designed as a language to control hardware boxes,
and definitely not with the Internet in mind. In a general-purpose
language like this, it makes sense that the programmer be able to clone
any object. Thus, clone() was placed in the root class Object, but it was
a public method so you could always clone any object. This seemed to be
the most flexible approach, and after all, what could it hurt? Feedback

Well, when Java was seen as the ultimate Internet programming
language, things changed. Suddenly, there are security issues, and of
course, these issues are dealt with using objects, and you don’t necessarily
want anyone to be able to clone your security objects. So what you’re
seeing is a lot of patches applied on the original simple and
straightforward scheme: clone() is now protected in Object. You must
override it and implement Cloneable and deal with the exceptions.
Feedback

It’s worth noting that you must implement the Cloneable interface only
if you’re going to call Object’s clone(), method, since that method
checks at run time to make sure that your class implements Cloneable.
But for consistency (and since Cloneable is empty anyway) you should
implement it. Feedback

Appendix A: Passing & Returning Objects 1073

Controlling cloneability
You might suggest that, to remove cloneability, the clone() method
should simply be made private, but this won’t work since you cannot
take a base-class method and make it less accessible in a derived class.
And yet, it’s necessary to be able to control whether an object can be
cloned. There are a number of attitudes you can take to this for your
classes:

1. Indifference. You don’t do anything about cloning, which means
that your class can’t be cloned but a class that inherits from you can
add cloning if it wants. This works only if the default
Object.clone() will do something reasonable with all the fields in
your class. Feedback

2. Support clone(). Follow the standard practice of implementing
Cloneable and overriding clone(). In the overridden clone(),
you call super.clone() and catch all exceptions (so your
overridden clone() doesn’t throw any exceptions). Feedback

3. Support cloning conditionally. If your class holds references to
other objects that might or might not be cloneable (a container
class, for example), your clone() can try to clone all of the objects
for which you have references, and if they throw exceptions just
pass those exceptions out to the programmer. For example,
consider a special sort of ArrayList that tries to clone all the
objects it holds. When you write such an ArrayList, you don’t
know what sort of objects the client programmer might put into
your ArrayList, so you don’t know whether they can be cloned.
Feedback

4. Don’t implement Cloneable but override clone() as protected,
producing the correct copying behavior for any fields. This way,
anyone inheriting from this class can override clone() and call
super.clone() to produce the correct copying behavior. Note that
your implementation can and should invoke super.clone() even
though that method expects a Cloneable object (it will throw an
exception otherwise), because no one will directly invoke it on an

1074 Thinking in Java www.BruceEckel.com

object of your type. It will get invoked only through a derived class,
which, if it is to work successfully, implements Cloneable. Feedback

5. Try to prevent cloning by not implementing Cloneable and
overriding clone() to throw an exception. This is successful only if
any class derived from this calls super.clone() in its redefinition
of clone(). Otherwise, a programmer may be able to get around it.
Feedback

6. Prevent cloning by making your class final. If clone() has not
been overridden by any of your ancestor classes, then it can’t be. If
it has, then override it again and throw
CloneNotSupportedException. Making the class final is the
only way to guarantee that cloning is prevented. In addition, when
dealing with security objects or other situations in which you want
to control the number of objects created you should make all
constructors private and provide one or more special methods for
creating objects. That way, these methods can restrict the number
of objects created and the conditions in which they’re created. (A
particular case of this is the singleton pattern shown in Thinking in
Patterns with Java at www.BruceEckel.com.) Feedback

Here’s an example that shows the various ways cloning can be
implemented and then, later in the hierarchy, “turned off”: Feedback

//: appendixa:CheckCloneable.java
// Checking to see if a reference can be cloned.
import com.bruceeckel.simpletest.*;

// Can't clone this because it doesn't override clone():
class Ordinary {}

// Overrides clone, but doesn't implement Cloneable:
class WrongClone extends Ordinary {
 public Object clone() throws CloneNotSupportedException {
 return super.clone(); // Throws exception
 }
}

// Does all the right things for cloning:
class IsCloneable extends Ordinary implements Cloneable {
 public Object clone() throws CloneNotSupportedException {

Appendix A: Passing & Returning Objects 1075

 return super.clone();
 }
}

// Turn off cloning by throwing the exception:
class NoMore extends IsCloneable {
 public Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
 }
}

class TryMore extends NoMore {
 public Object clone() throws CloneNotSupportedException {
 // Calls NoMore.clone(), throws exception:
 return super.clone();
 }
}

class BackOn extends NoMore {
 private BackOn duplicate(BackOn b) {
 // Somehow make a copy of b and return that copy.
 // This is a dummy copy, just to make the point:
 return new BackOn();
 }
 public Object clone() {
 // Doesn't call NoMore.clone():
 return duplicate(this);
 }
}

// You can't inherit from this, so you can't override
// the clone method as you can in BackOn:
final class ReallyNoMore extends NoMore {}

public class CheckCloneable {
 private static Test monitor = new Test();
 public static Ordinary tryToClone(Ordinary ord) {
 String id = ord.getClass().getName();
 System.out.println("Attempting " + id);
 Ordinary x = null;
 if(ord instanceof Cloneable) {
 try {
 x = (Ordinary)((IsCloneable)ord).clone();
 System.out.println("Cloned " + id);

1076 Thinking in Java www.BruceEckel.com

 } catch(CloneNotSupportedException e) {
 System.err.println("Could not clone "+id);
 }
 } else {
 System.out.println("Doesn't implement Cloneable");
 }
 return x;
 }
 public static void main(String[] args) {
 // Upcasting:
 Ordinary[] ord = {
 new IsCloneable(),
 new WrongClone(),
 new NoMore(),
 new TryMore(),
 new BackOn(),
 new ReallyNoMore(),
 };
 Ordinary x = new Ordinary();
 // This won't compile; clone() is protected in Object:
 //! x = (Ordinary)x.clone();
 // Checks first to see if a class implements Cloneable:
 for(int i = 0; i < ord.length; i++)
 tryToClone(ord[i]);
 monitor.expect(new String[] {
 "Attempting IsCloneable",
 "Cloned IsCloneable",
 "Attempting WrongClone",
 "Doesn't implement Cloneable",
 "Attempting NoMore",
 "Could not clone NoMore",
 "Attempting TryMore",
 "Could not clone TryMore",
 "Attempting BackOn",
 "Cloned BackOn",
 "Attempting ReallyNoMore",
 "Could not clone ReallyNoMore"
 });
 }
} ///:~

The first class, Ordinary, represents the kinds of classes we’ve seen
throughout this book: no support for cloning, but as it turns out, no
prevention of cloning either. But if you have a reference to an Ordinary

Appendix A: Passing & Returning Objects 1077

object that might have been upcast from a more derived class, you can’t
tell if it can be cloned or not. Feedback

The class WrongClone shows an incorrect way to implement cloning. It
does override Object.clone() and makes that method public, but it
doesn’t implement Cloneable, so when super.clone() is called (which
results in a call to Object.clone()), CloneNotSupportedException
is thrown so the cloning doesn’t work. Feedback

IsCloneable performs all the right actions for cloning: clone() is
overridden and Cloneable is implemented. However, this clone()
method and several others that follow in this example do not catch
CloneNotSupportedException, but instead pass it through to the
caller, who must then put a try-catch block around it. In your own
clone() methods you will typically catch
CloneNotSupportedException inside clone() rather than passing it
through. As you’ll see, in this example it’s more informative to pass the
exceptions through. Feedback

Class NoMore attempts to “turn off” cloning in the way that the Java
designers intended: in the derived class clone(), you throw
CloneNotSupportedException. The clone() method in class
TryMore properly calls super.clone(), and this resolves to
NoMore.clone(), which throws an exception and prevents cloning.
Feedback

But what if the programmer doesn’t follow the “proper” path of calling
super.clone() inside the overridden clone() method? In BackOn,
you can see how this can happen. This class uses a separate method
duplicate() to make a copy of the current object and calls this method
inside clone() instead of calling super.clone(). The exception is never
thrown and the new class is cloneable. You can’t rely on throwing an
exception to prevent making a cloneable class. The only sure-fire solution
is shown in ReallyNoMore, which is final and thus cannot be inherited.
That means if clone() throws an exception in the final class, it cannot
be modified with inheritance and the prevention of cloning is assured.
(You cannot explicitly call Object.clone() from a class that has an
arbitrary level of inheritance; you are limited to calling super.clone(),
which has access to only the direct base class.) Thus, if you make any

1078 Thinking in Java www.BruceEckel.com

objects that involve security issues, you’ll want to make those classes
final. Feedback

The first method you see in class CheckCloneable is tryToClone(),
which takes any Ordinary object and checks to see whether it’s cloneable
with instanceof. If so, it casts the object to an IsCloneable, calls
clone() and casts the result back to Ordinary, catching any exceptions
that are thrown. Notice the use of run-time type identification (see
Chapter 10) to print the class name so you can see what’s happening.
Feedback

In main(), different types of Ordinary objects are created and upcast to
Ordinary in the array definition. The first two lines of code after that
create a plain Ordinary object and try to clone it. However, this code will
not compile because clone() is a protected method in Object. The
remainder of the code steps through the array and tries to clone each
object, reporting the success or failure of each. Feedback

So to summarize, if you want a class to be cloneable: Feedback

1. Implement the Cloneable interface.

2. Override clone().

3. Call super.clone() inside your clone().

4. Capture exceptions inside your clone().

This will produce the most convenient effects. Feedback

The copy constructor
Cloning can seem to be a complicated process to set up. It might seem like
there should be an alternative. One approach is to use serialization, as
shown earlier. Another approach that might occur to you (especially if
you’re a C++ programmer) is to make a special constructor whose job it is
to duplicate an object. In C++, this is called the copy constructor. At first,
this seems like the obvious solution, but in fact it doesn’t work. Here’s an
example:

//: appendixa:CopyConstructor.java
// A constructor for copying an object of the same

Appendix A: Passing & Returning Objects 1079

// type, as an attempt to create a local copy.
import com.bruceeckel.simpletest.*;
import java.lang.reflect.*;

class FruitQualities {
 private int weight;
 private int color;
 private int firmness;
 private int ripeness;
 private int smell;
 // etc.
 public FruitQualities() { // Default constructor
 // Do something meaningful...
 }
 // Other constructors:
 // ...
 // Copy constructor:
 public FruitQualities(FruitQualities f) {
 weight = f.weight;
 color = f.color;
 firmness = f.firmness;
 ripeness = f.ripeness;
 smell = f.smell;
 // etc.
 }
}

class Seed {
 // Members...
 public Seed() { /* Default constructor */ }
 public Seed(Seed s) { /* Copy constructor */ }
}

class Fruit {
 private FruitQualities fq;
 private int seeds;
 private Seed[] s;
 public Fruit(FruitQualities q, int seedCount) {
 fq = q;
 seeds = seedCount;
 s = new Seed[seeds];
 for(int i = 0; i < seeds; i++)
 s[i] = new Seed();
 }

1080 Thinking in Java www.BruceEckel.com

 // Other constructors:
 // ...
 // Copy constructor:
 public Fruit(Fruit f) {
 fq = new FruitQualities(f.fq);
 seeds = f.seeds;
 s = new Seed[seeds];
 // Call all Seed copy-constructors:
 for(int i = 0; i < seeds; i++)
 s[i] = new Seed(f.s[i]);
 // Other copy-construction activities...
 }
 // To allow derived constructors (or other
 // methods) to put in different qualities:
 protected void addQualities(FruitQualities q) {
 fq = q;
 }
 protected FruitQualities getQualities() {
 return fq;
 }
}

class Tomato extends Fruit {
 public Tomato() {
 super(new FruitQualities(), 100);
 }
 public Tomato(Tomato t) { // Copy-constructor
 super(t); // Upcast for base copy-constructor
 // Other copy-construction activities...
 }
}

class ZebraQualities extends FruitQualities {
 private int stripedness;
 public ZebraQualities() { // Default constructor
 super();
 // do something meaningful...
 }
 public ZebraQualities(ZebraQualities z) {
 super(z);
 stripedness = z.stripedness;
 }
}

Appendix A: Passing & Returning Objects 1081

class GreenZebra extends Tomato {
 public GreenZebra() {
 addQualities(new ZebraQualities());
 }
 public GreenZebra(GreenZebra g) {
 super(g); // Calls Tomato(Tomato)
 // Restore the right qualities:
 addQualities(new ZebraQualities());
 }
 public void evaluate() {
 ZebraQualities zq = (ZebraQualities)getQualities();
 // Do something with the qualities
 // ...
 }
}

public class CopyConstructor {
 private static Test monitor = new Test();
 public static void ripen(Tomato t) {
 // Use the "copy constructor":
 t = new Tomato(t);
 System.out.println("In ripen, t is a " +
 t.getClass().getName());
 }
 public static void slice(Fruit f) {
 f = new Fruit(f); // Hmmm... will this work?
 System.out.println("In slice, f is a " +
 f.getClass().getName());
 }
 public static void ripen2(Tomato t) {
 try {
 Class c = t.getClass();
 // Use the "copy constructor":
 Constructor ct = c.getConstructor(new Class[] { c });
 Object obj = ct.newInstance(new Object[] { t });
 System.out.println("In ripen2, t is a " +
 obj.getClass().getName());
 }
 catch(Exception e) { System.out.println(e); }
 }
 public static void slice2(Fruit f) {
 try {
 Class c = f.getClass();
 Constructor ct = c.getConstructor(new Class[] { c });

1082 Thinking in Java www.BruceEckel.com

 Object obj = ct.newInstance(new Object[] { f });
 System.out.println("In slice2, f is a " +
 obj.getClass().getName());
 }
 catch(Exception e) { System.out.println(e); }
 }
 public static void main(String[] args) {
 Tomato tomato = new Tomato();
 ripen(tomato); // OK
 slice(tomato); // OOPS!
 ripen2(tomato); // OK
 slice2(tomato); // OK
 GreenZebra g = new GreenZebra();
 ripen(g); // OOPS!
 slice(g); // OOPS!
 ripen2(g); // OK
 slice2(g); // OK
 g.evaluate();
 monitor.expect(new String[] {
 "In ripen, t is a Tomato",
 "In slice, f is a Fruit",
 "In ripen2, t is a Tomato",
 "In slice2, f is a Tomato",
 "In ripen, t is a Tomato",
 "In slice, f is a Fruit",
 "In ripen2, t is a GreenZebra",
 "In slice2, f is a GreenZebra"
 });
 }
} ///:~

This seems a bit strange at first. Sure, fruit has qualities, but why not just
put fields representing those qualities directly into the Fruit class? There
are two potential reasons. The first is that you might want to easily insert
or change the qualities. Note that Fruit has a protected
addQualities() method to allow derived classes to do this. (You might
think the logical thing to do is to have a protected constructor in Fruit
that takes a FruitQualities argument, but constructors don’t inherit so it
wouldn’t be available in second or greater level classes.) By making the
fruit qualities into a separate class and using composition, you have
greater flexibility, including the ability to change the qualities midway
through the lifetime of a particular Fruit object. Feedback

Appendix A: Passing & Returning Objects 1083

The second reason for making FruitQualities a separate object is in case
you want to add new qualities or to change the behavior via inheritance
and polymorphism. Note that for GreenZebra (which really is a type of
tomato—I’ve grown them and they’re fabulous), the constructor calls
addQualities() and passes it a ZebraQualities object, which is
derived from FruitQualities so it can be attached to the FruitQualities
reference in the base class. Of course, when GreenZebra uses the
FruitQualities it must downcast it to the correct type (as seen in
evaluate()), but it always knows that type is ZebraQualities. Feedback

You’ll also see that there’s a Seed class, and that Fruit (which by
definition carries its own seeds)4 contains an array of Seeds. Feedback

Finally, notice that each class has a copy constructor, and that each copy
constructor must take care to call the copy constructors for the base class
and member objects to produce a deep copy. The copy constructor is
tested inside the class CopyConstructor. The method ripen() takes a
Tomato argument and performs copy-construction on it in order to
duplicate the object: Feedback

t = new Tomato(t);

while slice() takes a more generic Fruit object and also duplicates it:

f = new Fruit(f);

These are tested with different kinds of Fruit in main(). From the
output, you can see the problem. After the copy-construction that
happens to the Tomato inside slice(), the result is no longer a Tomato
object, but just a Fruit. It has lost all of its tomato-ness. Further, when
you take a GreenZebra, both ripen() and slice() turn it into a
Tomato and a Fruit, respectively. Thus, unfortunately, the copy
constructor scheme is no good to us in Java when attempting to make a
local copy of an object. Feedback

4 Except for the poor avocado, which has been reclassified to simply “fat.”

1084 Thinking in Java www.BruceEckel.com

Why does it work in C++ and not Java?
The copy constructor is a fundamental part of C++, since it automatically
makes a local copy of an object. Yet the example above proves that it does
not work for Java. Why? In Java everything that we manipulate is a
reference, while in C++ you can have reference-like entities and you can
also pass around the objects directly. That’s what the C++ copy
constructor is for: when you want to take an object and pass it in by value,
thus duplicating the object. So it works fine in C++, but you should keep
in mind that this scheme fails in Java, so don’t use it. Feedback

Read-only classes
While the local copy produced by clone() gives the desired results in the
appropriate cases, it is an example of forcing the programmer (the author
of the method) to be responsible for preventing the ill effects of aliasing.
What if you’re making a library that’s so general purpose and commonly
used that you cannot make the assumption that it will always be cloned in
the proper places? Or more likely, what if you want to allow aliasing for
efficiency—to prevent the needless duplication of objects—but you don’t
want the negative side effects of aliasing? Feedback

One solution is to create immutable objects which belong to read-only
classes. You can define a class such that no methods in the class cause
changes to the internal state of the object. In such a class, aliasing has no
impact since you can read only the internal state, so if many pieces of code
are reading the same object there’s no problem. Feedback

As a simple example of immutable objects, Java’s standard library
contains “wrapper” classes for all the primitive types. You might have
already discovered that, if you want to store an int inside a container such
as an ArrayList (which takes only Object references), you can wrap
your int inside the standard library Integer class: Feedback

//: appendixa:ImmutableInteger.java
// The Integer class cannot be changed.
import java.util.*;

public class ImmutableInteger {
 public static void main(String[] args) {

Appendix A: Passing & Returning Objects 1085

 List v = new ArrayList();
 for(int i = 0; i < 10; i++)
 v.add(new Integer(i));
 // But how do you change the int inside the Integer?
 }
} ///:~

The Integer class (as well as all the primitive “wrapper” classes)
implements immutability in a simple fashion: they have no methods that
allow you to change the object. Feedback

If you do need an object that holds a primitive type that can be modified,
you must create it yourself. Fortunately, this is trivial. The following class
uses the JavaBeans naming conventions:

//: appendixa:MutableInteger.java
// A changeable wrapper class.
import com.bruceeckel.simpletest.*;
import java.util.*;

class IntValue {
 private int n;
 public IntValue(int x) { n = x; }
 public int getValue() { return n; }
 public void setValue(int n) { this.n = n; }
 public void increment() { n++; }
 public String toString() { return Integer.toString(n); }
}

public class MutableInteger {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 List v = new ArrayList();
 for(int i = 0; i < 10; i++)
 v.add(new IntValue(i));
 System.out.println(v);
 for(int i = 0; i < v.size(); i++)
 ((IntValue)v.get(i)).increment();
 System.out.println(v);
 monitor.expect(new String[] {
 "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]",
 "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]"
 });
 }

1086 Thinking in Java www.BruceEckel.com

} ///:~

IntValue can be even simpler if privacy is not an issue, the default
initialization to zero is adequate (then you don’t need the constructor) and
you don’t care about printing it out (then you don’t need the toString()):

class IntValue { int n; }

Fetching the element out and casting it is a bit awkward, but that’s a
feature of ArrayList, not of IntValue. Feedback

Creating read-only classes
It’s possible to create your own read-only class. Here’s an example:

//: appendixa:Immutable1.java
// Objects that cannot be modified are immune to aliasing.
import com.bruceeckel.simpletest.*;

public class Immutable1 {
 private static Test monitor = new Test();
 private int data;
 public Immutable1(int initVal) {
 data = initVal;
 }
 public int read() { return data; }
 public boolean nonzero() { return data != 0; }
 public Immutable1 multiply(int multiplier) {
 return new Immutable1(data * multiplier);
 }
 public static void f(Immutable1 i1) {
 Immutable1 quad = i1.multiply(4);
 System.out.println("i1 = " + i1.read());
 System.out.println("quad = " + quad.read());
 }
 public static void main(String[] args) {
 Immutable1 x = new Immutable1(47);
 System.out.println("x = " + x.read());
 f(x);
 System.out.println("x = " + x.read());
 monitor.expect(new String[] {
 "x = 47",
 "i1 = 47",
 "quad = 188",
 "x = 47"

Appendix A: Passing & Returning Objects 1087

 });
 }
} ///:~

All data is private, and you’ll see that none of the public methods
modify that data. Indeed, the method that does appear to modify an
object is multiply(), but this creates a new Immutable1 object and
leaves the original one untouched. Feedback

The method f() takes an Immutable1 object and performs various
operations on it, and the output of main() demonstrates that there is no
change to x. Thus, x’s object could be aliased many times without harm
because the Immutable1 class is designed to guarantee that objects
cannot be changed. Feedback

The drawback to immutability
Creating an immutable class seems at first to provide an elegant solution.
However, whenever you do need a modified object of that new type you
must suffer the overhead of a new object creation, as well as potentially
causing more frequent garbage collections. For some classes this is not a
problem, but for others (such as the String class) it is prohibitively
expensive. Feedback

The solution is to create a companion class that can be modified. Then,
when you’re doing a lot of modifications, you can switch to using the
modifiable companion class and switch back to the immutable class when
you’re done. Feedback

The example above can be modified to show this:

//: appendixa:Immutable2.java
// A companion class to modify immutable objects.
import com.bruceeckel.simpletest.*;

class Mutable {
 private int data;
 public Mutable(int initVal) { data = initVal; }
 public Mutable add(int x) {
 data += x;
 return this;
 }

1088 Thinking in Java www.BruceEckel.com

 public Mutable multiply(int x) {
 data *= x;
 return this;
 }
 public Immutable2 makeImmutable2() {
 return new Immutable2(data);
 }
}

public class Immutable2 {
 private static Test monitor = new Test();
 private int data;
 public Immutable2(int initVal) { data = initVal; }
 public int read() { return data; }
 public boolean nonzero() { return data != 0; }
 public Immutable2 add(int x) {
 return new Immutable2(data + x);
 }
 public Immutable2 multiply(int x) {
 return new Immutable2(data * x);
 }
 public Mutable makeMutable() {
 return new Mutable(data);
 }
 public static Immutable2 modify1(Immutable2 y) {
 Immutable2 val = y.add(12);
 val = val.multiply(3);
 val = val.add(11);
 val = val.multiply(2);
 return val;
 }
 // This produces the same result:
 public static Immutable2 modify2(Immutable2 y) {
 Mutable m = y.makeMutable();
 m.add(12).multiply(3).add(11).multiply(2);
 return m.makeImmutable2();
 }
 public static void main(String[] args) {
 Immutable2 i2 = new Immutable2(47);
 Immutable2 r1 = modify1(i2);
 Immutable2 r2 = modify2(i2);
 System.out.println("i2 = " + i2.read());
 System.out.println("r1 = " + r1.read());
 System.out.println("r2 = " + r2.read());

Appendix A: Passing & Returning Objects 1089

 monitor.expect(new String[] {
 "i2 = 47",
 "r1 = 376",
 "r2 = 376"
 });
 }
} ///:~

Immutable2 contains methods that, as before, preserve the
immutability of the objects by producing new objects whenever a
modification is desired. These are the add() and multiply() methods.
The companion class is called Mutable, and it also has add() and
multiply() methods, but these modify the Mutable object rather than
making a new one. In addition, Mutable has a method to use its data to
produce an Immutable2 object and vice versa. Feedback

The two static methods modify1() and modify2() show two different
approaches to producing the same result. In modify1(), everything is
done within the Immutable2 class and you can see that four new
Immutable2 objects are created in the process. (And each time val is
reassigned, the previous object becomes garbage.) Feedback

In the method modify2(), you can see that the first action is to take the
Immutable2 y and produce a Mutable from it. (This is just like calling
clone() as you saw earlier, but this time a different type of object is
created.) Then the Mutable object is used to perform a lot of change
operations without requiring the creation of many new objects. Finally,
it’s turned back into an Immutable2. Here, two new objects are created
(the Mutable and the result Immutable2) instead of four. Feedback

This approach makes sense, then, when:

1. You need immutable objects and

2. You often need to make a lot of modifications or

3. It’s expensive to create new immutable objects.

Immutable Strings
Consider the following code: Feedback

//: appendixa:Stringer.java

1090 Thinking in Java www.BruceEckel.com

import com.bruceeckel.simpletest.*;

public class Stringer {
 private static Test monitor = new Test();
 public static String upcase(String s) {
 return s.toUpperCase();
 }
 public static void main(String[] args) {
 String q = new String("howdy");
 System.out.println(q); // howdy
 String qq = upcase(q);
 System.out.println(qq); // HOWDY
 System.out.println(q); // howdy
 monitor.expect(new String[] {
 "howdy",
 "HOWDY",
 "howdy"
 });
 }
} ///:~

When q is passed in to upcase() it’s actually a copy of the reference to q.
The object this reference is connected to stays put in a single physical
location. The references are copied as they are passed around. Feedback

Looking at the definition for upcase(), you can see that the reference
that’s passed in has the name s, and it exists for only as long as the body
of upcase() is being executed. When upcase() completes, the local
reference s vanishes. upcase() returns the result, which is the original
string with all the characters set to uppercase. Of course, it actually
returns a reference to the result. But it turns out that the reference that it
returns is for a new object, and the original q is left alone. How does this
happen? Feedback

Implicit constants
If you say:

String s = "asdf";
String x = Stringer.upcase(s);

do you really want the upcase() method to change the argument? In
general, you don’t, because an argument usually looks to the reader of the

Appendix A: Passing & Returning Objects 1091

code as a piece of information provided to the method, not something to
be modified. This is an important guarantee, since it makes code easier to
write and understand. Feedback

In C++, the availability of this guarantee was important enough to put in a
special keyword, const, to allow the programmer to ensure that a
reference (pointer or reference in C++) could not be used to modify the
original object. But then the C++ programmer was required to be diligent
and remember to use const everywhere. It can be confusing and easy to
forget. Feedback

Overloading ‘+’ and the StringBuffer
Objects of the String class are designed to be immutable, using the
companion-class technique shown previously. If you examine the JDK
documentation for the String class (which is summarized a little later in
this appendix), you’ll see that every method in the class that appears to
modify a String really creates and returns a brand new String object
containing the modification. The original String is left untouched. Thus,
there’s no feature in Java like C++’s const to make the compiler support
the immutability of your objects. If you want it, you have to wire it in
yourself, like String does. Feedback

Since String objects are immutable, you can alias to a particular String
as many times as you want. Because it’s read-only there’s no possibility
that one reference will change something that will affect the other
references. So a read-only object solves the aliasing problem nicely. Feedback

It also seems possible to handle all the cases in which you need a modified
object by creating a brand new version of the object with the
modifications, as String does. However, for some operations this isn’t
efficient. A case in point is the operator ‘+’ that has been overloaded for
String objects. Overloading means that it has been given an extra
meaning when used with a particular class. (The ‘+’ and ‘+=’ for String
are the only operators that are overloaded in Java, and Java does not
allow the programmer to overload any others)5. Feedback

5 C++ allows the programmer to overload operators at will. Because this can often be a
complicated process (see Chapter 10 of Thinking in C++, 2nd edition, Prentice Hall, 2000),

1092 Thinking in Java www.BruceEckel.com

When used with String objects, the ‘+’ allows you to concatenate Strings
together:

String s = "abc" + foo + "def" + Integer.toString(47);

You could imagine how this might work: the String “abc” could have a
method append() that creates a new String object containing “abc”
concatenated with the contents of foo. The new String object would then
create another new String that added “def,” and so on. Feedback

This would certainly work, but it requires the creation of a lot of String
objects just to put together this new String, and then you have a bunch of
the intermediate String objects that need to be garbage-collected. I
suspect that the Java designers tried this approach first (which is a lesson
in software design—you don’t really know anything about a system until
you try it out in code and get something working). I also suspect they
discovered that it delivered unacceptable performance. Feedback

The solution is a mutable companion class similar to the one shown
previously. For String, this companion class is called StringBuffer, and
the compiler automatically creates a StringBuffer to evaluate certain
expressions, in particular when the overloaded operators + and += are
used with String objects. This example shows what happens:

//: appendixa:ImmutableStrings.java
// Demonstrating StringBuffer.
import com.bruceeckel.simpletest.*;

public class ImmutableStrings {
 private static Test monitor = new Test();
 public static void main(String[] args) {
 String foo = "foo";
 String s = "abc" + foo + "def" + Integer.toString(47);
 System.out.println(s);
 // The "equivalent" using StringBuffer:
 StringBuffer sb =

the Java designers deemed it a “bad” feature that shouldn’t be included in Java. It wasn’t
so bad that they didn’t end up doing it themselves, and ironically enough, operator
overloading would be much easier to use in Java than in C++. This can be seen in Python
(see www.Python.org) which has garbage collection and straightforward operator
overloading.

Appendix A: Passing & Returning Objects 1093

 new StringBuffer("abc"); // Creates String!
 sb.append(foo);
 sb.append("def"); // Creates String!
 sb.append(Integer.toString(47));
 System.out.println(sb);
 monitor.expect(new String[] {
 "abcfoodef47",
 "abcfoodef47"
 });
 }
} ///:~

In the creation of String s, the compiler is doing the rough equivalent of
the subsequent code that uses sb: a StringBuffer is created and
append() is used to add new characters directly into the StringBuffer
object (rather than making new copies each time). While this is more
efficient, it’s worth noting that each time you create a quoted character
string such as “abc” and “def”, the compiler turns those into String
objects. So there can be more objects created than you expect, despite the
efficiency afforded through StringBuffer. Feedback

The String and
StringBuffer classes
Here is an overview of the methods available for both String and
StringBuffer so you can get a feel for the way they interact. These tables
don’t contain every single method, but rather the ones that are important
to this discussion. Methods that are overloaded are summarized in a
single row. Feedback

First, the String class:

Method Arguments,
Overloading

Use

Constructor Overloaded: Default,
String,
StringBuffer, char
arrays, byte arrays.

Creating String
objects.

length() Number of characters
in the String.

1094 Thinking in Java www.BruceEckel.com

Method Arguments,
Overloading

Use

charAt() int Index The char at a location in
the String.

getChars(),
getBytes()

The beginning and
end from which to
copy, the array to copy
into, an index into the
destination array.

Copy chars or bytes
into an external array.

toCharArray() Produces a char[]
containing the
characters in the
String.

equals(), equals-
IgnoreCase()

A String to compare
with.

An equality check on
the contents of the two
Strings.

compareTo() A String to compare
with.

Result is negative, zero,
or positive depending
on the lexicographical
ordering of the String
and the argument.
Uppercase and
lowercase are not equal!

regionMatches() Offset into this
String, the other
String and its offset
and length to
compare. Overload
adds “ignore case.”

boolean result
indicates whether the
region matches.

startsWith() String that it might
start with. Overload
adds offset into
argument.

boolean result
indicates whether the
String starts with the
argument.

endsWith() String that might be
a suffix of this String.

boolean result
indicates whether the
argument is a suffix.

indexOf(),
lastIndexOf()

Overloaded: char,
char and starting
index, String,

Returns -1 if the
argument is not found
within this String,

Appendix A: Passing & Returning Objects 1095

Method Arguments,
Overloading

Use

String, and starting
index.

otherwise returns the
index where the
argument starts.
lastIndexOf()
searches backward from
end.

substring() Overloaded: Starting
index, starting index,
and ending index.

Returns a new String
object containing the
specified character set.

concat() The String to
concatenate

Returns a new String
object containing the
original String’s
characters followed by
the characters in the
argument.

replace() The old character to
search for, the new
character to replace it
with.

Returns a new String
object with the
replacements made.
Uses the old String if
no match is found.

toLowerCase()
toUpperCase()

 Returns a new String
object with the case of
all letters changed. Uses
the old String if no
changes need to be
made.

trim() Returns a new String
object with the white
space removed from
each end. Uses the old
String if no changes
need to be made.

valueOf() Overloaded: Object,
char[], char[] and
offset and count,
boolean, char, int,
long, float, double.

Returns a String
containing a character
representation of the
argument.

1096 Thinking in Java www.BruceEckel.com

Method Arguments,
Overloading

Use

intern() Produces one and only
one String ref per
unique character
sequence.

You can see that every String method carefully returns a new String
object when it’s necessary to change the contents. Also notice that if the
contents don’t need changing the method will just return a reference to
the original String. This saves storage and overhead.

Here’s the StringBuffer class:

Method Arguments, overloading Use

Constructor Overloaded: default, length
of buffer to create, String
to create from.

Create a new
StringBuffer object.

toString()

Creates a String from
this StringBuffer.

length()

Number of characters
in the StringBuffer.

capacity()

Returns current
number of spaces
allocated.

ensure-
Capacity()

Integer indicating desired
capacity.

Makes the
StringBuffer hold at
least the desired
number of spaces.

setLength() Integer indicating new
length of character string in
buffer.

Truncates or expands
the previous character
string. If expanding,
pads with nulls.

charAt() Integer indicating the
location of the desired
element.

Returns the char at
that location in the
buffer.

setCharAt() Integer indicating the
location of the desired

Modifies the value at
that location.

Appendix A: Passing & Returning Objects 1097

Method Arguments, overloading Use

element and the new char
value for the element.

getChars() The beginning and end
from which to copy, the
array to copy into, an index
into the destination array.

Copy chars into an
external array. There
is no getBytes() as
in String.

append() Overloaded: Object,
String, char[], char[]
with offset and length,
boolean, char, int, long,
float, double.

The argument is
converted to a string
and appended to the
end of the current
buffer, increasing the
buffer if necessary.

insert() Overloaded, each with a
first argument of the offset
at which to start inserting:
Object, String, char[],
boolean, char, int, long,
float, double.

The second argument
is converted to a
string and inserted
into the current buffer
beginning at the
offset. The buffer is
increased if necessary.

reverse()

The order of the
characters in the
buffer is reversed.

The most commonly used method is append(), which is used by the
compiler when evaluating String expressions that contain the ‘+’ and
‘+=’ operators. The insert() method has a similar form, and both
methods perform significant manipulations to the buffer instead of
creating new objects.

Strings are special
By now you’ve seen that the String class is not just another class in Java.
There are a lot of special cases in String, not the least of which is that it’s
a built-in class and fundamental to Java. Then there’s the fact that a
quoted character string is converted to a String by the compiler and the
special overloaded operators + and +=. In this appendix you’ve seen the
remaining special case: the carefully built immutability using the
companion StringBuffer and some extra magic in the compiler. Feedback

1098 Thinking in Java www.BruceEckel.com

Summary
Because all object identifiers are references in Java, and because every
object is created on the heap and garbage-collected only when it is no
longer used, the flavor of object manipulation changes, especially when
passing and returning objects. For example, in C or C++, if you wanted to
initialize some piece of storage in a method, you’d probably request that
the user pass the address of that piece of storage into the method.
Otherwise you’d have to worry about who was responsible for destroying
that storage. Thus, the interface and understanding of such methods is
more complicated. But in Java, you never have to worry about
responsibility or whether an object will still exist when it is needed, since
that is always taken care of for you. You can create an object at the point
that it is needed, and no sooner, and never worry about the mechanics of
passing around responsibility for that object: you simply pass the
reference. Sometimes the simplification that this provides is unnoticed,
other times it is staggering. Feedback

The downside to all this underlying magic is twofold:

1. You always take the efficiency hit for the extra memory
management (although this can be quite small), and there’s always
a slight amount of uncertainty about the time something can take
to run (since the garbage collector can be forced into action
whenever you get low on memory). For most applications, the
benefits outweigh the drawbacks, and the hotspot technologies in
particular have sped things up to the point where it’s not much of
an issue. Feedback

2. Aliasing: sometimes you can accidentally end up with two
references to the same object, which is a problem only if both
references are assumed to point to a distinct object. This is where
you need to pay a little closer attention and, when necessary,
clone() or otherwise duplicate an object to prevent the other
reference from being surprised by an unexpected change.
Alternatively, you can support aliasing for efficiency by creating
immutable objects whose operations can return a new object of the

Appendix A: Passing & Returning Objects 1099

same type or some different type, but never change the original
object so that anyone aliased to that object sees no change. Feedback

Some people say that cloning in Java is a botched design that shouldn’t be
used, so they implement their own version of cloning6 and never call the
Object.clone() method, thus eliminating the need to implement
Cloneable and catch the CloneNotSupportedException. This is
certainly a reasonable approach and since clone() is supported so rarely
within the standard Java library, it is apparently a safe one as well. Feedback

Exercises
Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for a small fee from www.BruceEckel.com.

1. Demonstrate a second level of aliasing. Create a method that takes
a reference to an object but doesn’t modify that reference’s object.
However, the method calls a second method, passing it the
reference, and this second method does modify the object. Feedback

2. Create a class MyString containing a String object that you
initialize in the constructor using the constructor’s argument. Add
a toString() method and a method concatenate() that
appends a String object to your internal string. Implement
clone() in MyString. Create two static methods that each take
a MyString x reference as an argument and call
x.concatenate("test"), but in the second method call clone()
first. Test the two methods and show the different effects. Feedback

3. Create a class called Battery containing an int that is a battery
number (as a unique identifier). Make it cloneable and give it a
toString() method. Now create a class called Toy that contains
an array of Battery and a toString() that prints out all the
batteries. Write a clone() for Toy that automatically clones all of
its Battery objects. Test this by cloning Toy and printing the
result. Feedback

6 Doug Lea, who was helpful in resolving this issue, suggested this to me, saying that he
simply creates a function called duplicate() for each class.

1100 Thinking in Java www.BruceEckel.com

4. Change CheckCloneable.java so that all of the clone()
methods catch the CloneNotSupportedException rather than
passing it to the caller. Feedback

5. Using the mutable-companion-class technique, make an
immutable class containing an int, a double and an array of
char. Feedback

6. Modify Compete.java to add more member objects to classes
Thing2 and Thing4 and see if you can determine how the
timings vary with complexity—whether it’s a simple linear
relationship or if it seems more complicated. Feedback

7. Starting with Snake.java, create a deep-copy version of the
snake. Feedback

8. Implement the Collection interface in a class called
CloningCollection, using a private ArrayList to provide the
container functionality. Override the clone() method so that
CloningCollection performs a “conditional deep copy:” it
attempts to clone() all the elements it contains, but if it cannot it
leaves the reference(s) aliased. Feedback

 1101

B: Java
Programming
Guidelines

This appendix contains suggestions to help guide you in
performing low-level program design, and in writing code.

Naturally, these are guidelines and not rules. The idea is to use them as
inspirations, and to remember that there are occasional situations where
they should be bent or broken. Feedback

Design
1. Elegance always pays off. In the short term it might seem like it

takes much longer to come up with a truly graceful solution to a
problem, but when it works the first time and easily adapts to new
situations instead of requiring hours, days, or months of struggle,
you’ll see the rewards (even if no one can measure them). Not only
does it give you a program that’s easier to build and debug, but it’s
also easier to understand and maintain, and that’s where the
financial value lies. This point can take some experience to
understand, because it can appear that you’re not being productive
while you’re making a piece of code elegant. Resist the urge to
hurry; it will only slow you down. Feedback

2. First make it work, then make it fast. This is true even if you
are certain that a piece of code is really important and that it will be
a principal bottleneck in your system. Don’t do it. Get the system
going first with as simple a design as possible. Then if it isn’t going
fast enough, profile it. You’ll almost always discover that “your”

1102 Thinking in Java www.BruceEckel.com

bottleneck isn’t the problem. Save your time for the really
important stuff. Feedback

3. Remember the “divide and conquer” principle. If the
problem you’re looking at is too confusing, try to imagine what the
basic operation of the program would be, given the existence of a
magic “piece” that handles the hard parts. That “piece” is an
object—write the code that uses the object, then look at the object
and encapsulate its hard parts into other objects, etc. Feedback

4. Separate the class creator from the class user (client
programmer). The class user is the “customer” and doesn’t need
or want to know what’s going on behind the scenes of the class. The
class creator must be the expert in class design and write the class
so that it can be used by the most novice programmer possible, yet
still work robustly in the application. Think of the class as a service
provider for other classes. Library use will be easy only if it’s
transparent. Feedback

5. When you create a class, attempt to make your names so
clear that comments are unnecessary. Your goal should be to
make the client programmer’s interface conceptually simple. To
this end, use method overloading when appropriate to create an
intuitive, easy-to-use interface. Feedback

6. Your analysis and design must produce, at minimum, the
classes in your system, their public interfaces, and their
relationships to other classes, especially base classes. If
your design methodology produces more than that, ask yourself if
all the pieces produced by that methodology have value over the
lifetime of the program. If they do not, maintaining them will cost
you. Members of development teams tend not to maintain anything
that does not contribute to their productivity; this is a fact of life
that many design methods don’t account for. Feedback

7. Automate everything. Write the test code first (before you write
the class), and keep it with the class. Automate the running of your
tests through a build tool—you’ll probably want to use ant, the
defacto standard Java build tool. This way, any changes can be
automatically verified by running the test code, and you’ll

Appendix B: Java Programming Guidelines 1103

immediately discover errors. Because you know that you have the
safety net of your test framework, you will be bolder about making
sweeping changes when you discover the need. Remember that the
greatest improvements in languages come from the built-in testing
provided by type checking, exception handling, etc., but those
features take you only so far. You must go the rest of the way in
creating a robust system by filling in the tests that verify features
that are specific to your class or program. Feedback

8. Write the test code first (before you write the class) in
order to verify that your class design is complete. If you
can’t write test code, you don’t know what your class looks like. In
addition, the act of writing the test code will often flush out
additional features or constraints that you need in the class—these
features or constraints don’t always appear during analysis and
design. Tests also provide example code showing how your class
can be used. Feedback

9. All software design problems can be simplified by
introducing an extra level of conceptual indirection. This
fundamental rule of software engineering1 is the basis of
abstraction, the primary feature of object-oriented programming.
In OOP, we could also say this as: “if your code is too complicated,
make more objects.” Feedback

10. An indirection should have a meaning (in concert with
guideline 9). This meaning can be something as simple as “putting
commonly used code in a single method.” If you add levels of
indirection (abstraction, encapsulation, etc.) that don’t have
meaning, it can be as bad as not having adequate indirection.
Feedback

11. Make classes as atomic as possible. Give each class a single,
clear purpose—a cohesive service that it provides to other classes. If
your classes or your system design grows too complicated, break
complex classes into simpler ones. The most obvious indicator of

1 Explained to me by Andrew Koenig.

1104 Thinking in Java www.BruceEckel.com

this is sheer size: if a class is big, chances are it’s doing too much
and should be broken up.
Clues to suggest redesign of a class are:
1) A complicated switch statement: consider using polymorphism.
2) A large number of methods that cover broadly different types of
operations: consider using several classes.
3) A large number of member variables that concern broadly
different characteristics: consider using several classes.
4) Other suggestions can be found in Refactoring: improving the
design of existing code by Martin Fowler (Addison-Wesley 1999).
Feedback

12. Watch for long argument lists. Method calls then become
difficult to write, read, and maintain. Instead, try to move the
method to a class where it is (more) appropriate, and/or pass
objects in as arguments. Feedback

13. Don’t repeat yourself. If a piece of code is recurring in many
methods in derived classes, put that code into a single method in
the base class and call it from the derived-class methods. Not only
do you save code space, you provide for easy propagation of
changes. Sometimes the discovery of this common code will add
valuable functionality to your interface. A simpler version of this
guideline also occurs without inheritance: if a class has methods
that repeat code, factor that code into a common method and call it
from the other methods. Feedback

14. Watch for switch statements or chained if-else clauses.
This is typically an indicator of type-check coding, which means
you are choosing what code to execute based on some kind of type
information (the exact type may not be obvious at first). You can
usually replace this kind of code with inheritance and
polymorphism; a polymorphic method call will perform the type
checking for you, and allow for more reliable and easier
extensibility. Feedback

15. From a design standpoint, look for and separate things
that change from things that stay the same. That is, search
for the elements in a system that you might want to change without

Appendix B: Java Programming Guidelines 1105

forcing a redesign, then encapsulate those elements in classes. You
can learn much more about this concept in Thinking in Patterns
with Java at www.BruceEckel.com. Feedback

16. Don’t extend fundamental functionality by subclassing. If
an interface element is essential to a class it should be in the base
class, not added during derivation. If you’re adding methods by
inheriting, perhaps you should rethink the design. Feedback

17. Less is more. Start with a minimal interface to a class, as small
and simple as you need to solve the problem at hand, but don’t try
to anticipate all the ways that your class might be used. As the class
is used, you’ll discover ways you must expand the interface.
However, once a class is in use you cannot shrink the interface
without breaking client code. If you need to add more methods,
that’s fine; it won’t break code. But even if new methods replace the
functionality of old ones, leave the existing interface alone (you can
combine the functionality in the underlying implementation if you
want). If you need to expand the interface of an existing method by
adding more arguments, create an overloaded method with the new
arguments; this way you won’t disturb any calls to the existing
method. Feedback

18. Read your classes aloud to make sure they’re logical. Refer
to the relationship between a base class and derived class as “is-a”
and member objects as “has-a.” Feedback

19. When deciding between inheritance and composition, ask
if you need to upcast to the base type. If not, prefer
composition (member objects) to inheritance. This can eliminate
the perceived need for multiple base types. If you inherit, users will
think they are supposed to upcast. Feedback

20. Use fields for variation in value and method overriding
for variation in behavior. That is, if you find a class that uses
state variables along with methods that switch behavior based on
those variables, you should probably redesign it to express the
differences in behavior within subclasses and overridden methods.
Feedback

1106 Thinking in Java www.BruceEckel.com

21. Watch for overloading. A method should not conditionally
execute code based on the value of an argument. In this case, you
should create two or more overloaded methods instead. Feedback

22. Use exception hierarchies—preferably derived from specific
appropriate classes in the standard Java exception hierarchy. The
person catching the exceptions can then write handlers for the
specific types of exceptions, followed by handlers for the base type.
If you add new derived exceptions, existing client code will still
catch the exception through the base type. Feedback

23. Sometimes simple aggregation does the job. A “passenger
comfort system” on an airline consists of disconnected elements:
seat, air conditioning, video, etc., and yet you need to create many
of these in a plane. Do you make private members and build a
whole new interface? No—in this case, the components are also
part of the public interface, so you should create public member
objects. Those objects have their own private implementations,
which are still safe. Be aware that simple aggregation is not a
solution to be used often, but it does happen. Feedback

24. Consider the perspective of the client programmer and
the person maintaining the code. Design your class to be as
obvious as possible to use. Anticipate the kind of changes that will
be made, and design your class so that those changes will be easy.
Feedback

25. Watch out for “giant object syndrome.” This is often an
affliction of procedural programmers who are new to OOP and who
end up writing a procedural program and sticking it inside one or
two giant objects. With the exception of application frameworks,
objects represent concepts in your application, not the application
itself. Feedback

26. If you must do something ugly, at least localize the
ugliness inside a class. Feedback

27. If you must do something nonportable, make an
abstraction for that service and localize it within a class.
This extra level of indirection prevents the nonportability from

Appendix B: Java Programming Guidelines 1107

being distributed throughout your program. (This idiom is
embodied in the Bridge Pattern, among others). Feedback

28. Objects should not simply hold some data. They should also
have well-defined behaviors. (Occasionally, “data objects” are
appropriate, but only when used expressly to package and
transport a group of items when a generalized container is
innappropriate.) Feedback

29. Choose composition first when creating new classes from
existing classes. You should only used inheritance if it is
required by your design. If you use inheritance where composition
will work, your designs will become needlessly complicated. Feedback

30. Use inheritance and method overriding to express
differences in behavior, and fields to express variations in
state. An extreme example of what not to do is inheriting different
classes to represent colors instead of using a “color” field. Feedback

31. Watch out for variance. Two semantically different objects may
have identical actions, or responsibilities, and there is a natural
temptation to try to make one a subclass of the other just to benefit
from inheritance. This is called variance, but there’s no real
justification to force a superclass/subclass relationship where it
doesn’t exist. A better solution is to create a general base class that
produces an interface for both as derived classes—it requires a bit
more space, but you still benefit from inheritance, and will
probably make an important discovery about the design. Feedback

32. Watch out for limitation during inheritance. The clearest
designs add new capabilities to inherited ones. A suspicious design
removes old capabilities during inheritance without adding new
ones. But rules are made to be broken, and if you are working from
an old class library, it may be more efficient to restrict an existing
class in its subclass than it would be to restructure the hierarchy so
your new class fits in where it should, above the old class. Feedback

33. Use design patterns to eliminate “naked functionality.”
That is, if only one object of your class should be created, don’t bolt
ahead to the application and write a comment “Make only one of

1108 Thinking in Java www.BruceEckel.com

these.” Wrap it in a singleton. If you have a lot of messy code in
your main program that creates your objects, look for a creational
pattern like a factory method in which you can encapsulate that
creation. Eliminating “naked functionality” will not only make your
code much easier to understand and maintain, it will also make it
more bulletproof against the well-intentioned maintainers that
come after you. Feedback

34. Watch out for “analysis paralysis.” Remember that you must
usually move forward in a project before you know everything, and
that often the best and fastest way to learn about some of your
unknown factors is to go to the next step rather than trying to
figure it out in your head. You can’t know the solution until you
have the solution. Java has built-in firewalls; let them work for
you. Your mistakes in a class or set of classes won’t destroy the
integrity of the whole system. Feedback

35. When you think you’ve got a good analysis, design, or
implementation, do a walkthrough. Bring someone in from
outside your group—this doesn’t have to be a consultant, but can be
someone from another group within your company. Reviewing
your work with a fresh pair of eyes can reveal problems at a stage
when it’s much easier to fix them, and more than pays for the time
and money “lost” to the walkthrough process. Feedback

Implementation
36. In general, follow the Sun coding conventions. These are

available at
java.sun.com/docs/codeconv/index.html (the code in this book
follows these conventions as much as I was able). These are used
for what constitutes arguably the largest body of code that the
largest number of Java programmers will be exposed to. If you
doggedly stick to the coding style you’ve always used, you will make
it harder for your reader. Whatever coding conventions you decide
on, ensure they are consistent throughout the project. There is a
free tool to automatically reformat Java code at:
home.wtal.de/software-solutions/jindent. Feedback

Appendix B: Java Programming Guidelines 1109

37. Whatever coding style you use, it really does make a
difference if your team (and even better, your company)
standardizes on it. This means to the point that everyone
considers it fair game to fix someone else’s coding style if it doesn’t
conform. The value of standardization is that it takes less brain
cycles to parse the code, so that you can focus more on what the
code means. Feedback

38. Follow standard capitalization rules. Capitalize the first letter
of class names. The first letter of fields, methods, and objects
(references) should be lowercase. All identifiers should run their
words together, and capitalize the first letter of all intermediate
words. For example:
ThisIsAClassName
thisIsAMethodOrFieldName
Capitalize all the letters (and use underscore word separators) of
static final primitive identifiers that have constant initializers in
their definitions. This indicates they are compile-time constants.
Packages are a special case—they are all lowercase letters, even
for intermediate words. The domain extension (com, org, net, edu,
etc.) should also be lowercase. (This was a change between Java 1.1
and Java 2.) Feedback

39. Don’t create your own “decorated” private field names.
This is usually seen in the form of prepended underscores and
characters. Hungarian notation is the worst example of this, where
you attach extra characters that indicate data type, use, location,
etc., as if you were writing assembly language and the compiler
provided no extra assistance at all. These notations are confusing,
difficult to read, and unpleasant to enforce and maintain. Let
classes and packages do the name scoping for you. If you feel you
must decorate your names to prevent confusion, your code is
probably too confusing anyway and should be simplified. Feedback

40. Follow a “canonical form” when creating a class for general-
purpose use. Include definitions for equals(), hashCode(),
toString(), clone() (implement Cloneable, or choose some
other object copying approach, like serialization), and implement
Comparable and Serializable. Feedback

1110 Thinking in Java www.BruceEckel.com

41. Use the JavaBeans “get,” “set,” and “is” naming
conventions for methods that read and change private fields,
even if you don’t think you’re making a JavaBean at the time. Not
only does it make it easy to use your class as a Bean, but it’s a
standard way to name these kinds of methods and so will be more
easily understood by the reader. Feedback

42. For each class you create, include JUnit tests for that
class (see www.junit.org, and examples in Chapter 15). You don’t
need to remove the test code to use the class in a project, and if you
make any changes you can easily rerun the tests. This code also
provides examples of how to use your class. Feedback

43. Sometimes you need to inherit in order to access
protected members of the base class. This can lead to a
perceived need for multiple base types. If you don’t need to upcast,
first derive a new class to perform the protected access. Then make
that new class a member object inside any class that needs to use it,
rather than inheriting. Feedback

44. Avoid the use of final methods for efficiency purposes.
Use final only when the program is running, but not fast enough,
and your profiler has shown you that a method invocation is the
bottleneck. Feedback

45. If two classes are associated with each other in some
functional way (such as containers and iterators), try to
make one an inner class of the other. This not only
emphasizes the association between the classes, but it allows the
class name to be reused within a single package by nesting it within
another class. The Java containers library does this by defining an
inner Iterator class inside each container class, thereby providing
the containers with a common interface. The other reason you’ll
want to use an inner class is as part of the private
implementation. Here, the inner class beneficial for
implementation hiding rather than the class association and
prevention of namespace pollution noted above. Feedback

46. Anytime you notice classes that appear to have high
coupling with each other, consider the coding and

Appendix B: Java Programming Guidelines 1111

maintenance improvements you might get by using inner
classes. The use of inner classes will not uncouple the classes, but
rather make the coupling explicit and more convenient. Feedback

47. Don’t fall prey to premature optimization. This way lies
madness. In particular, don’t worry about writing (or avoiding)
native methods, making some methods final, or tweaking code to
be efficient when you are first constructing the system. Your
primary goal should be to prove the design. Even if the design
requires a certain efficiency, first make it work, then make it fast.
Feedback

48. Keep scopes as small as possible so the visibility and
lifetime of your objects are as small as possible. This
reduces the chance of using an object in the wrong context and
hiding a difficult-to-find bug. For example, suppose you have a
container and a piece of code that iterates through it. If you copy
that code to use with a new container, you may accidentally end up
using the size of the old container as the upper bound of the new
one. If, however, the old container is out of scope, the error will be
caught at compile time. Feedback

49. Use the containers in the standard Java library. Become
proficient with their use and you’ll greatly increase your
productivity. Prefer ArrayList for sequences, HashSet for sets,
HashMap for associative arrays, and LinkedList for stacks
(rather than Stack, although you may want to create an adapter to
give a stack interface) and queues (which may also warrant an
adapter, as shown in this book). When you use the first three, you
should upcast to List, Set and Map, respectively, so that you can
easily change to a different implementation if necessary. Feedback

50. For a program to be robust, each component must be
robust. Use all the tools provided by Java: access control,
exceptions, type checking, synchronization, and so on, in each class
you create. That way you can safely move to the next level of
abstraction when building your system. Feedback

51. Prefer compile-time errors to run-time errors. Try to
handle an error as close to the point of its occurrence as possible.

1112 Thinking in Java www.BruceEckel.com

Catch any exceptions in the nearest handler that has enough
information to deal with them. Do what you can with the exception
at the current level; if that doesn’t solve the problem, rethrow the
exception. Feedback

52. Watch for long method definitions. Methods should be brief,
functional units that describe and implement a discrete part of a
class interface. A method that is long and complicated is difficult
and expensive to maintain, and is probably trying to do too much
all by itself. If you see such a method, it indicates that, at the least,
it should be broken up into multiple methods. It may also suggest
the creation of a new class. Small methods will also foster reuse
within your class. (Sometimes methods must be large, but they
should still do just one thing.) Feedback

53. Keep things as “private as possible.” Once you publicize an
aspect of your library (a method, a class, a field), you can never
take it out. If you do, you’ll wreck somebody’s existing code, forcing
them to rewrite and redesign. If you publicize only what you must,
you can change everything else with impunity, and since designs
tend to evolve this is an important freedom. In this way,
implementation changes will have minimal impact on derived
classes. Privacy is especially important when dealing with
multithreading—only private fields can be protected against un-
synchronized use. Feedback

Classes with package access should still have private fields, but it
usually makes sense to give the methods of package access rather
than making them public. Feedback

54. Use comments liberally, and use the javadoc comment-
documentation syntax to produce your program
documentation. However, the comments should add geniune
meaning to the code; comments that only reiterate what the code is
clearly expressing are annoying. Note that the typical verbose detail
of Java class and method names reduce the need for some
comments. Feedback

55. Avoid using “magic numbers”—which are numbers hard-
wired into code. These are a nightmare if you need to change them,

Appendix B: Java Programming Guidelines 1113

since you never know if “100” means “the array size” or “something
else entirely.” Instead, create a constant with a descriptive name
and use the constant identifier throughout your program. This
makes the program easier to understand and much easier to
maintain. Feedback

56. When creating constructors, consider exceptions. In the
best case, the constructor won’t do anything that throws an
exception. In the next-best scenario, the class will be composed and
inherited from robust classes only, so they will need no cleanup if
an exception is thrown. Otherwise, you must clean up composed
classes inside a finally clause. If a constructor must fail, the
appropriate action is to throw an exception, so the caller doesn’t
continue blindly, thinking that the object was created correctly.
Feedback

57. Inside constructors, do only what is necessary to set the
object into the proper state. Actively avoid calling other
methods (except for final methods) since those methods can be
overridden by someone else to produce unexpected results during
construction. (See Chapter 7 for details.) Smaller, simpler
constructors are less likely to throw exceptions or cause problems.
Feedback

58. If your class requires any cleanup when the client
programmer is finished with the object, place the cleanup
code in a single, well-defined method—with a name like
dispose() that clearly suggests its purpose. In addition, place a
boolean flag in the class to indicate whether dispose() has been
called so that finalize() can check for “the termination condition”
(see Chapter 4). Feedback

59. The responsibility of finalize() can only be to verify “the
termination condition” of an object for debugging. (See
Chapter 4.) In special cases, it might be needed to release memory
that would not otherwise be released by the garbage collector. Since
the garbage collector might not get called for your object, you
cannot use finalize() to perform necessary cleanup. For that you
must create your own dispose() method. In the finalize()

1114 Thinking in Java www.BruceEckel.com

method for the class, check to make sure that the object has been
cleaned up and throw a class derived from RuntimeException if
it hasn’t, to indicate a programming error. Before relying on such a
scheme, ensure that finalize() works on your system. (You might
need to call System.gc() to ensure this behavior.) Feedback

60. If an object must be cleaned up (other than by garbage
collection) within a particular scope, use the following
idiom: Initialize the object and, if successful, immediately enter a
try block with a finally clause that performs the cleanup. Feedback

61. When overriding finalize() during inheritance,
remember to call super.finalize(). (This is not necessary if
Object is your immediate superclass.) You should call
super.finalize() as the final act of your overridden finalize()
rather than the first, to ensure that base-class components are still
valid if you need them. Feedback

62. When you are creating a fixed-size container of objects,
transfer them to an array—especially if you’re returning this
container from a method. This way you get the benefit of the
array’s compile-time type checking, and the recipient of the array
might not need to cast the objects in the array in order to use them.
Note that the base-class of the containers library,
java.util.Collection, has two toArray() methods to accomplish
this. Feedback

63. Choose interfaces over abstract classes. If you know
something is going to be a base class, your first choice should be to
make it an interface, and only if you’re forced to have method
definitions or member variables should you change it to an
abstract class. An interface talks about what the client wants to
do, while a class tends to focus on (or allow) implementation
details. Feedback

64. To avoid a highly frustrating experience, make sure that
there is only one unpackaged class of each name
anywhere in your classpath. Otherwise, the compiler can find
the identically-named other class first, and report error messages
that make no sense. If you suspect that you are having a classpath

Appendix B: Java Programming Guidelines 1115

problem, try looking for .class files with the same names at each of
the starting points in your classpath. Ideally, put all your classes
within packages. Feedback

65. Watch out for accidental overloading. If you attempt to
override a base-class method and you don’t quite get the spelling
right, you’ll end up adding a new method rather than overriding an
existing method. However, this is perfectly legal, so you won’t get
any error message from the compiler or run-time system—your
code simply won’t work correctly. Feedback

66. Watch out for premature optimization. First make it work,
then make it fast—but only if you must, and only if it’s proven that
there is a performance bottleneck in a particular section of your
code. Unless you have used a profiler to discover a bottleneck, you
will probably be wasting your time. The hidden extra cost of
performance tweaks is that your code becomes less understandable
and maintainable. Feedback

67. Remember that code is read much more than it is written.
Clean designs make for easy-to-understand programs, but
comments, detailed explanations, tests and examples are
invaluable. They will help both you and everyone who comes after
you. If nothing else, the frustration of trying to ferret out useful
information from the JDK documentation should convince you.
Feedback

 1117

C: Supplements
There are several supplements to this book, including the
seminar-on-CD packaged in the back and other items and
seminars available through the MindView web site.

This appendix describes these supplements so that you can decide if they
will be helpful to you.

Foundations for Java
seminar-on-CD

The CD that is bound in the back of this book is intended to provide
foundation material to prepare you to learn Java from this book. The bulk
of the 400+ Megabytes of the CD is a full multimedia course called
Foundations for Java. This includes the Thinking in C seminar, which
gives you an introduction to the C syntax, operators and functions that
Java syntax is based upon. In addition, it includes the first 7 lectures from
the 2nd edition of the Hands-On Java seminar-on-CD that I created and
narrate. Although historically the entire Hands-On Java CD is only
available for sale separately (this is also the case with the 3rd edition of the
Hands-On Java CD), I decided to include the first seven lectures from the
2nd edition because the concepts in these lectures have not changed
substantially due to the 3rd edition of the book, and so it will not only
provide you (along with Thinking in C) with a foundation for this book,
but in addition I hope it will give you a taste for the quality and value of
the Hands-On Java CD, 3rd edition.

The CD is described in more detail at the end of the preface.

1118 Thinking in Java www.BruceEckel.com

Hands-On Java seminar-
on-CD 3rd edition

This Hands-On Java CD, 3rd edition, contains an extended version of the
material from the Thinking in Java seminar and is based on this book.
There is an audio lecture and slides corresponding to every chapter in the
book. I created the seminar (more recently, with input from Andrea
Provaglio, who teaches most of the live versions of the seminar) and I
narrate the material on the CD. The Hands-On Java CD 3rd edition is for
sale at www.MindView.net.

Thinking in Java Seminar
My company MindView, Inc. now gives this as the public and in-house
Thinking in Java seminar; this is our main introductory seminar that
provides the foundation for our more advanced seminars. You can find
details at www.MindView.net. (The introductory seminar is also available
as the Hands-On Java CD ROM. Information is available at the same
Web site.)

Thinking in Enterprise Java
The new book isn’t a second volume, but rather a more advanced topic. It
will be called Thinking in Enterprise Java and is currently available (in
some form) as a free download from www.BruceEckel.com. Because it is
a separate book, it can expand to fit the necessary topics. The goal, like
Thinking in Java, is to produce a very understandable coverage of the
basics of the J2EE technologies so that the reader is prepared for more
advanced coverage of those topics.

The biggest of these include server-side Java (primarily Servlets &
JavaServer pages, or JSPs), which is truly an excellent solution to the
World Wide Web problem, wherein we’ve discovered that the various
Web browser platforms are just not consistent enough to support client-
side programming. In addition, there is the whole problem of easily
creating applications to interact with databases, transactions, security,

Appendix D: Resources 1119

and the like, which is involved with Enterprise Java Beans (EJBs). These
topics are wrapped into the chapter formerly called “Network
Programming” and now called “Distributed Computing,” a subject that is
becoming essential to everyone. You’ll also find this chapter has been
expanded to include an overview of Jini (pronounced “genie,” and it isn’t
an acronym, just a name), which is a cutting-edge technology that allows
us to change the way we think about interconnected applications.

List of potential chapters, from Wiki page

Designing Objects &
Systems Seminar

Thinking in Patterns with
Java

Thinking in Patterns
Seminar

Design Consulting,
Reviews and
Walkthroughs

 1121

D: Resources
Software

The JDK from java.sun.com. Even if you choose to use a third-party
development environment, it’s always a good idea to have the JDK on
hand in case you come up against what might be a compiler error. The
JDK is the touchstone, and if there is a bug in it, chances are it will be
well-known. Feedback

The JDK documentation from java.sun.com, in HTML. I have never
found a reference book on the standard Java libraries that wasn’t out of
date or missing information. Although the HTML documentation from
Sun is shot-through with small bugs and is sometimes unusably terse, all
the classes and methods are at least there. People are sometimes
uncomfortable at first using an online resource rather than a printed
book, but it’s worth your while to get over this and open the HTML docs
first, so you can at least get the big picture. If you can’t figure it out at that
point, then reach for the printed books. Feedback

Books
Thinking in Java, 2nd Edition. Available as fully-indexed, color-
syntax-highlighted HTML on the CD ROM bound in with this book, or as
a free download from www.BruceEckel.com. Includes material that didn’t
make it into the third edition; see the table of contents in that book for
details.

Thinking in Java, 1st Edition. Available as fully-indexed, color-
syntax-highlighted HTML on the CD ROM bound in with this book, or as
a free download from www.BruceEckel.com. Includes older material and
material that was not considered interesting enough to carry through to
the second edition. Feedback

1122 Thinking in Java www.BruceEckel.com

Core Java 2, by Horstmann & Cornell, Volume I—Fundamentals
(Prentice Hall, 1999). Volume II—Advanced Features, 2000. Huge,
comprehensive, and the first place I go when I’m hunting for answers. The
book I recommend when you’ve completed Thinking in Java and need to
cast a bigger net. Feedback

The Java Class Libraries: An Annotated Reference, by Patrick
Chan and Rosanna Lee (Addison-Wesley, 1997). Although sadly out of
date, this is what the JDK reference should have been: enough description
to make it usable. One of the technical reviewers for Thinking in Java
said, “If I had only one Java book, this would be it (well, in addition to
yours, of course).” I’m not as thrilled with it as he is. It’s big, it’s
expensive, and the quality of the examples doesn’t satisfy me. But it’s a
place to look when you’re stuck and it seems to have more depth (and
sheer size) than most alternatives. Feedback

Java Network Programming, 2nd edition, by Elliotte Rusty Harold
(O’Reilly, 2000). I didn’t begin to understand Java networking until I
found this book. I also find his Web site, Café au Lait, to be a stimulating,
opinionated, and up-to-date perspective on Java developments,
unencumbered by allegiances to any vendors. His regular updates keep up
with fast-changing news about Java. See http://www.cafeaulait.org.
Feedback

Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley, 1995). The seminal book that started the patterns movement in
programming. Feedback

Practical Algorithms for Programmers, by Binstock & Rex
(Addison-Wesley, 1995). The algorithms are in C, so they’re fairly easy to
translate into Java. Each algorithm is thoroughly explained. Feedback

Analysis & design
Extreme Programming Explained, by Kent Beck (Addison-Wesley,
2000). I love this book. Yes, I tend to take a radical approach to things but
I've always felt that there could be a much different, much better program
development process, and I think XP comes pretty darn close. The only
book that has had a similar impact on me was PeopleWare (described
below), which talks primarily about the environment and dealing with

Appendix D: Resources 1123

corporate culture. Extreme Programming Explained talks about
programming, and turns most things, even recent “findings,” on their ear.
They even go so far as to say that pictures are OK as long as you don’t
spend too much time on them and are willing to throw them away. (You’ll
notice that this book does not have the “UML stamp of approval” on its
cover.) I could see deciding whether to work for a company based solely
on whether they used XP. Small book, small chapters, effortless to read,
exciting to think about. You start imagining yourself working in such an
atmosphere and it brings visions of a whole new world. Feedback

UML Distilled, 2nd Edition, by Martin Fowler (Addison-Wesley,
2000). When you first encounter UML, it is daunting because there are so
many diagrams and details. According to Fowler, most of this stuff is
unnecessary so he cuts through to the essentials. For most projects, you
only need to know a few diagramming tools, and Fowler’s goal is to come
up with a good design rather than worry about all the artifacts of getting
there. A nice, thin, readable book; the first one you should get if you need
to understand UML. Feedback

The Unified Software Development Process, by Ivar Jacobsen,
Grady Booch, and James Rumbaugh (Addison-Wesley, 1999). I went in
fully prepared to dislike this book. It seemed to have all the makings of a
boring college text. I was pleasantly surprised—although there are a few
parts that have explanations that seem as if those concepts aren’t clear to
the authors. The bulk of the book is not only clear, but enjoyable. And best
of all, the process makes a lot of practical sense. It’s not Extreme
Programming (and does not have their clarity about testing) but it’s also
part of the UML juggernaut—even if you can’t get XP adopted, most
people have climbed aboard the “UML is good” bandwagon (regardless of
their actual level of experience with it) and so you can probably get it
adopted. I think this book should be the flagship of UML, and the one you
can read after Fowler’s UML Distilled when you want more detail. Feedback

Before you choose any method, it’s helpful to gain perspective from those
who are not trying to sell one. It’s easy to adopt a method without really
understanding what you want out of it or what it will do for you. Others
are using it, which seems a compelling reason. However, humans have a
strange little psychological quirk: If they want to believe something will
solve their problems, they’ll try it. (This is experimentation, which is

1124 Thinking in Java www.BruceEckel.com

good.) But if it doesn’t solve their problems, they may redouble their
efforts and begin to announce loudly what a great thing they’ve
discovered. (This is denial, which is not good.) The assumption here may
be that if you can get other people in the same boat, you won’t be lonely,
even if it’s going nowhere (or sinking). Feedback

This is not to suggest that all methodologies go nowhere, but that you
should be armed to the teeth with mental tools that help you stay in
experimentation mode (“It’s not working; let’s try something else”) and
out of denial mode (“No, that’s not really a problem. Everything’s
wonderful, we don’t need to change”). I think the following books, read
before you choose a method, will provide you with these tools. Feedback

Software Creativity, by Robert Glass (Prentice Hall, 1995). This is the
best book I’ve seen that discusses perspective on the whole methodology
issue. It’s a collection of short essays and papers that Glass has written
and sometimes acquired (P.J. Plauger is one contributor), reflecting his
many years of thinking and study on the subject. They’re entertaining and
only long enough to say what’s necessary; he doesn’t ramble and bore you.
He’s not just blowing smoke, either; there are hundreds of references to
other papers and studies. All programmers and managers should read this
book before wading into the methodology mire. Feedback

Software Runaways: Monumental Software Disasters, by
Robert Glass (Prentice Hall, 1997). The great thing about this book is that
it brings to the forefront what we don’t talk about: how many projects not
only fail, but fail spectacularly. I find that most of us still think “That can’t
happen to me” (or “That can’t happen again”), and I think this puts us at
a disadvantage. By keeping in mind that things can always go wrong,
you’re in a much better position to make them go right. Feedback

Peopleware, 2nd Edition, by Tom Demarco and Timothy Lister (Dorset
House, 1999). You must read this book. It’s not only fun, but it rocks your
world and destroys your assumptions. Although they have backgrounds in
software development, this book is about projects and teams in general.
But the focus is on the people and their needs, rather than the technology
and its needs. They talk about creating an environment where people will
be happy and productive, rather than deciding what rules those people
should follow to be adequate components of a machine. This latter

Appendix D: Resources 1125

attitude, I think, is the biggest contributor to programmers smiling and
nodding when XYZ method is adopted and then quietly doing whatever
they’ve always done. Feedback

Secrets of Consulting, A Guide to Giving & Getting Advice
Successfully, by Gerald M. Weinberg (Dorset House, 1985). A superb
book, one of my all-time favorites. It’s perfect if you are trying to be a
consultant or if you’re working with consultants and trying to do a better
job. Short chapters, filled with stories and anecdotes that teach you how
to get to the core of the issue with minimal struggle. Also see More Secrets
of Consulting, published in 2002, or most any other Weinberg book.
Feedback

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). This
chronicles the coming together of a group of scientists from different
disciplines in Santa Fe, New Mexico, to discuss real problems that their
individual disciplines couldn’t solve (the stock market in economics, the
initial formation of life in biology, why people do what they do in
sociology, etc.). By crossing physics, economics, chemistry, math,
computer science, sociology, and others, a multidisciplinary approach to
these problems is developing. But more important, a different way of
thinking about these ultra-complex problems is emerging: Away from
mathematical determinism and the illusion that you can write an equation
that predicts all behavior, and toward first observing and looking for a
pattern and trying to emulate that pattern by any means possible. (The
book chronicles, for example, the emergence of genetic algorithms.) This
kind of thinking, I believe, is useful as we observe ways to manage more
and more complex software projects. Feedback

Python
Learning Python, by Mark Lutz and David Ascher (O’Reilly, 1999). A
nice programmer’s introduction to my favorite language, an excellent
companion to Java. The book includes an introduction to Jython, which
allows you to combine Java and Python in a single program (the Jython
interpreter is compiled to pure Java bytecodes, so there is nothing special
you need to add to accomplish this). This language union promises great
possibilities. Feedback

1126 Thinking in Java www.BruceEckel.com

My own list of books
Listed in order of publication. Not all of these are currently available.
Feedback

Computer Interfacing with Pascal & C, (Self-published via the
Eisys imprint, 1988. Only available via www.BruceEckel.com). An
introduction to electronics from back when CP/M was still king and DOS
was an upstart. I used high-level languages and often the parallel port of
the computer to drive various electronic projects. Adapted from my
columns in the first and best magazine I wrote for, Micro Cornucopia. (To
paraphrase Larry O’Brien, long-time editor of Software Development
Magazine: the best computer magazine ever published—they even had
plans for building a robot in a flower pot!) Alas, Micro C became lost long
before the Internet appeared. Creating this book was an extremely
satisfying publishing experience. Feedback

Using C++, (Osborne/McGraw-Hill, 1989). One of the first books out on
C++. This is out of print and replaced by its second edition, the renamed
C++ Inside & Out. Feedback

C++ Inside & Out, (Osborne/McGraw-Hill, 1993). As noted, actually
the 2nd edition of Using C++. The C++ in this book is reasonably
accurate, but it's circa 1992 and Thinking in C++ is intended to replace it.
You can find out more about this book and download the source code at
www.BruceEckel.com. Feedback

Thinking in C++, 1st Edition, (Prentice Hall, 1995). Feedback

Thinking in C++, 2nd Edition, Volume 1, (Prentice Hall, 2000).
Downloadable from www.BruceEckel.com. Feedback

Thinking in C++, 2nd Edition, Volume 2, Coathored with Chuck
Allison (Prentice Hall, 2003). Downloadable from www.BruceEckel.com.

Thinking in C#, By Larry O’Brien and Bruce Eckel. This is Larry’s
translation of Thinking in Java into C#, with some help from me
(Prentice Hall, 2003).

Black Belt C++, the Master’s Collection, Bruce Eckel, editor (M&T
Books, 1994). Out of print. A collection of chapters by various C++

Appendix D: Resources 1127

luminaries based on their presentations in the C++ track at the Software
Development Conference, which I chaired. The cover on this book
stimulated me to gain control over all future cover designs. Feedback

Thinking in Java, 1st Edition, (Prentice Hall, 1998). The first edition
of this book won the Software Development Magazine Productivity
Award, the Java Developer’s Journal Editor’s Choice Award, and the
JavaWorld Reader’s Choice Award for best book. On the CD ROM in the
back of this book, and downloadable from www.BruceEckel.com. Feedback

Thinking in Java, 2nd Edition, (Prentice Hall, 2000). This edition
won the JavaWorld Editor’s Choice Award for best book. On the CD
ROM in the back of this book, and downloadable from
www.BruceEckel.com. Feedback

 1129

Index
Please note that some names will be duplicated in
capitalized form. Following Java style, the capitalized
names refer to Java classes, while lowercase names refer
to a general concept.

o

- · 123

!

! · 127
!= · 125; operator · 1051

&

& · 131
&& · 127
&= · 131

@

@deprecated · 110

[

[]: indexing operator [] · 214

^

^ · 131
^= · 131

|

| · 131
|| · 127
|= · 131

‘

‘+’: operator + for String · 1081

+

+ · 123

<

< · 125
<< · 132
<<= · 132
<= · 125

=

== · 125; operator · 1051

>

> · 125
>= · 125

1130

>> · 132
>>= · 132

A

abstract: class · 309; inheriting from an
abstract class · 310; vs. interface · 340

abstract keyword · 310
Abstract Window Toolkit (AWT) · 769
AbstractButton · 811
abstraction · 34
AbstractSequentialList · 580
AbstractSet · 530
access: class · 248; control · 229, 252;

inner classes & access rights · 361;
package access and friendly · 239;
specifiers · 42, 229, 239; within a
directory, via the default package · 242

action command · 839
ActionEvent · 840, 903
ActionListener · 789
actor, in use cases · 1019
adapters: listener adapters · 806
add(), ArrayList · 519
addActionListener() · 901, 908
addChangeListener · 845
addition · 120
addListener · 799
addXXXListener() · 800
Adler32 · 647
aggregate array initialization · 214
aggregation · 43
aliasing · 118; and String · 1081; during a

method call · 1041
align · 777
alphabetic vs. lexicographic sorting · 504
analysis: and design, object-oriented ·

1013; paralysis · 1014; requirements
analysis · 1017

AND: bitwise · 139; logical (&&) · 127
anonymous inner class · 355, 616, 787
anonymous inner class, and table-driven

code · 581
applet · 772; advantages for client/server

systems · 773; align · 777; archive tag,
for HTML and JAR files · 865; classpath
· 779; codebase · 777; combined applets
and applications · 780; name · 777;
packaging applets in a JAR file to
optimize loading · 865; parameter · 777;

placing inside a Web page · 776;
restrictions · 772

appletviewer · 778
application: application builder · 891;

application framework · 380; combined
applets and applications · 780;
windowed applications · 780

application framework, and applets · 774
archive tag, for HTML and JAR files · 865
argument: constructor · 177; final · 283,

617; passing a reference into a method ·
1040; variable argument lists (unknown
quantity and type of arguments) · 219

array · 479; associative array · 548;
associative array, Map · 510; bounds
checking · 216; comparing arrays · 498;
copying an array · 497; dynamic
aggregate initialization syntax · 484;
element comparisons · 499; first-class
objects · 481; initialization · 214; length ·
216, 481; multidimensional · 220; of
objects · 481; of primitives · 481; return
an array · 485

ArrayList · 524, 532, 537, 578, 584; add() ·
519; get() · 519, 524; size() · 519; type-
conscious ArrayList · 523

Arrays class, container utility · 487
Arrays.asList() · 599
Arrays.binarySearch() · 505
Arrays.fill() · 495
assigning objects · 117
assignment · 116
associative array · 507, 548
associative arrays (Maps) · 510
auto-decrement operator · 124
auto-increment operator · 124
automatic type conversion · 257
available() · 638

B

bag · 508
base: types · 45
base 16 · 141
base 8 · 141
base class · 244, 259, 299; abstract base

class · 309; base-class interface · 304;
constructor · 316; constructors and
exceptions · 264; initialization · 262

Basic: Microsoft Visual Basic · 890

 1131

basic concepts of object-oriented
programming (OOP) · 33

BASIC language · 79
BasicArrowButton · 812
beanbox Bean testing tool · 911
BeanInfo: custom BeanInfo · 912
Beans: and Borland’s Delphi · 890; and

Microsoft’s Visual Basic · 890;
application builder · 891; beanbox Bean
testing tool · 911; bound properties ·
912; component · 892; constrained
properties · 912; custom BeanInfo · 912;
custom property editor · 912; custom
property sheet · 912; events · 891;
EventSetDescriptors · 898;
FeatureDescriptor · 912; getBeanInfo()
· 895; getEventSetDescriptors() · 898;
getMethodDescriptors() · 898;
getName() · 898;
getPropertyDescriptors() · 898;
getPropertyType() · 898;
getReadMethod() · 898;
getWriteMethod() · 898; indexed
property · 911; Introspector · 895; JAR
files for packaging · 909; manifest file ·
909; Method · 898; MethodDescriptors
· 898; naming convention · 892;
properties · 891; PropertyChangeEvent ·
912; PropertyDescriptors · 898;
ProptertyVetoException · 912; reflection
· 891, 895; Serializable · 903; visual
programming · 890

Beck, Kent · 1110
Bill Joy · 125
binary: numbers · 141; operators · 131
binary numbers, printing · 135
binarySearch() · 505
binding: dynamic binding · 300; dynamic,

late, or run-time binding · 295; early ·
51; late · 51; late binding · 300; method
call binding · 300; run-time binding ·
300

BitSet · 603
bitwise: AND · 139; AND operator (&) ·

131; EXCLUSIVE OR XOR (^) · 131;
NOT ~ · 131; operators · 130; OR · 139;
OR operator (|) · 131

bitwise copy · 1050
blank final · 282
blocking: and available() · 638; and

threads · 746; on I/O · 752
Booch, Grady · 1111

book: errors, reporting · 27; updates of the
book · 25

boolean: operators that won’t work with
boolean · 125

Boolean · 153; algebra · 130; and casting ·
140; vs. C and C++ · 129

BorderLayout · 791
Borland · 913; Delphi · 890
bound properties · 912
bounds checking, array · 216
Box, for BoxLayout · 795
BoxLayout · 794
break keyword · 161
browser: class browser · 247
BufferedInputStream · 626
BufferedOutputStream · 628
BufferedReader · 428, 632, 637
BufferedWriter · 632, 639
business objects/logic · 880
button: creating your own · 807; radio

button · 825
button, Swing · 784
ButtonGroup · 812, 825
buttons · 811
ByteArrayInputStream · 622
ByteArrayOutputStream · 624

C

C++ · 125; copy constructor · 1068;
Standard Container Library aka STL ·
508; strategies for transition to · 1034;
templates · 524; vector class, vs. array
and ArrayList · 480; why it succeeds · 77

callback · 500, 501, 615, 786
callbacks: and inner classes · 378
capacity, of a HashMap or HashSet · 567
capitalization: of package names · 98
case statement · 168
cast · 53, 187, 449; and containers · 518;

and primitive types · 154; from float or
double to integral, truncation · 171;
operators · 139

catch: catching an exception · 396;
catching any exception · 405; keyword ·
397

CD ROM for book · 23
change: vector of change · 383
CharArrayReader · 631
CharArrayWriter · 631
check box · 823

1132

CheckedInputStream · 645
CheckedOutputStream · 645
Checksum · 647
class · 37, 247; abstract class · 309; access ·

248; anonymous inner · 787;
anonymous inner class · 355, 616; base
class · 244, 259, 299; browser · 247;
class hierarchies and exception handling
· 431; class literal · 453, 460; creators ·
41; defining the interface · 1031; derived
class · 299; equivalence, and
instanceof/isInstance() · 464; final
classes · 287; inheritance diagrams ·
278; inheriting from an abstract class ·
310; inheriting from inner classes · 369;
initialization & class loading · 289;
initialization of fields · 203; initializing
members at point of definition · 205;
initializing the base class · 262; inner
class · 350; inner class nesting within
any arbitrary scope · 356; inner classes ·
882; inner classes & access rights · 361;
inner classes and overriding · 370; inner
classes and super · 369; inner classes
and Swing · 799; inner classes and
upcasting · 352; inner classes in
methods & scopes · 354; inner classes,
identifiers and .class files · 374; instance
of · 35; intializing the derived class ·
262; keyword · 44; loading · 290;
member initialization · 257; multiply-
nested · 368; order of initialization ·
206; private inner classes · 383; public
class, and compilation units · 231; read-
only classes · 1074; referring to the
outer class object in an inner class · 366;
static inner classes · 364; style of
creating classes · 247; subobject · 262

Class · 813; Class object · 450, 671, 734;
forName() · 452, 803; getClass() · 406;
getConstructors() · 472; getInterfaces()
· 468; getMethods() · 472; getName() ·
468; getSuperclass() · 468; isInstance ·
462; isInterface() · 468; newInstance()
· 468; printInfo() · 468; RTTI using the
Class object · 466

Class object · 210
ClassCastException · 329, 454
classpath · 233, 779
class-responsibility-collaboration (CRC)

cards · 1022

cleanup: and garbage collector · 267;
performing · 196; with finally · 420

cleanup, guaranteeing with finalize() · 197
client programmer · 41; vs. library creator ·

229
clipboard: system clipboard · 862
clone() · 1047; and composition · 1053;

and inheritance · 1061; Object.clone() ·
1051; removing/turning off cloneability ·
1063; super.clone() · 1051, 1067;
supporting cloning in derived classes ·
1063

Cloneable interface · 1048
CloneNotSupportedException · 1050
close() · 637
closure, and inner classes · 377
code: coding standards · 25, 1091;

organization · 240; re-use · 255
codebase · 777
Collection · 508
collection class · 479
Collections · 590
Collections.enumeration() · 601
Collections.fill() · 511
Collections.reverseOrder() · 502
collision: name · 236
collisions, during hashing · 564
com.bruceeckel.swing · 783
combo box · 827
comma operator · 137, 160
comments: and embedded documentation

· 104
common interface · 309
common pitfalls when using operators ·

138
Comparable · 500, 546
Comparator · 502, 546
compareTo(), in java.lang.Comparable ·

500
comparing arrays · 498
compilation unit · 231
compile-time constant · 279
compiling a Java program · 103
component, and JavaBeans · 892
composition · 43, 255; and cloning · 1053;

and design · 323; and dynamic behavior
change · 324; choosing composition vs.
inheritance · 272; combining
composition & inheritance · 265; vs.
inheritance · 279

compression: compression library · 645
concept, high · 1017

 1133

ConcurrentModificationException · 596
conditional operator · 136
conference, Software Development

Conference · 12
Console: Swing display framework in

com.bruceeckel.swing · 782
console input · 637
const, in C++ · 1081
constant: compile-time constant · 279;

folding · 280; groups of constant values
· 343; implicit constants, and String ·
1080

constrained properties · 912
constructor · 175; and anonymous inner

classes · 355; and exception handling ·
427; and exceptions · 426; and finally ·
428; and overloading · 179; and
polymorphism · 313; arguments · 177;
base-class constructor · 316; base-class
constructors and exceptions · 264;
behavior of polymorphic methods inside
constructors · 320; C++ copy
constructor · 1068; calling base-class
constructors with arguments · 263;
calling from other constructors · 191;
default · 188; initialization during
inheritance and composition · 265;
name · 176; no-arg constructors · 179;
order of constructor calls with
inheritance · 314; return value · 178;
static construction clause · 211;
synthesized default constructor access ·
474

Constructor: for reflection · 470
consulting & mentoring provided by Bruce

Eckel · 26
container: class · 479, 507; of primitives ·

484
container classes, utilities for · 512
continue keyword · 161
control: access · 42
control framework, and inner classes · 380
controlling access · 252
conversion: automatic · 257; narrowing

conversion · 139, 188; widening
conversion · 140

copy: deep copy · 1046; shallow copy ·
1046

copying an array · 497
costs, startup · 1037
coupling · 399

CRC, class-responsibility-collaboration
cards · 1022

CRC32 · 647
critical section, and synchronized block ·

740

D

daemon threads · 711
data: final · 279; primitive data types and

use with operators · 143; static
initialization · 208

data type: equivalence to class · 38
DataFlavor · 864
DataInput · 633
DataInputStream · 626, 632, 638, 639
DataOutput · 633
DataOutputStream · 628, 633, 639
dead, Thread · 746
deadlock, multithreading · 754
decorator design pattern · 625
decoupling: via polymorphism · 52
decoupling through polymorphism · 295
decrement operator · 124
deep copy · 1046, 1053; using serialization

to perform deep copying · 1059
default constructor · 188; synthesizing a

default constructor · 263
default constructor, access the same as the

class · 474
default keyword, in a switch statement ·

168
default package · 242
DefaultMutableTreeNode · 856
defaultReadObject() · 668
DefaultTreeModel · 856
defaultWriteObject() · 667
DeflaterOutputStream · 645
Delphi, from Borland · 890
Demarco, Tom · 1112
dequeue · 508
derived: derived class · 299; derived class,

initializing · 262; types · 45
design · 325; adding more methods to a

design · 253; analysis and design,
object-oriented · 1013; and composition
· 323; and inheritance · 323; and
mistakes · 252; five stages of object
design · 1024; library design · 229;
patterns · 1029, 1035

1134

design patterns · 251; decorator · 625;
singleton · 251

destructor · 194, 196, 419; Java doesn’t
have one · 267

development, incremental · 276
diagram: inheritance · 53; use case · 1019
diagram, class inheritance diagrams · 278
dialog box · 845
dialog, file · 850
dialog, tabbed · 830
dictionary · 548
digital signing · 772
directory: and packages · 239; creating

directories and paths · 618; lister · 614
display framework, for Swing · 782
dispose() · 846
division · 120
documentation: comments & embedded

documentation · 104
double, literal value marker (D) · 141
do-while · 158
downcast · 278, 327, 454; type-safe

downcast in run-time type identification
· 454

Drawing lines in Swing · 842
drop-down list · 826
dynamic: behavior change with

composition · 324; binding · 295, 300
dynamic aggregate initialization syntax for

arrays · 484

E

early binding · 51, 300
East, BorderLayout · 791
editor, creating one using the Swing

JTextPane · 822
efficiency: and arrays · 480; and final ·

288; and threads · 701
elegance, in programming · 1030
else keyword · 155
encapsulation · 246
enum, groups of constant values in C &

C++ · 343
Enumeration · 601
equals() · 126, 546; and hashed data

structures · 561; overriding for
HashMap · 559

equivalence: == · 125; object equivalence ·
125

error: handling with exceptions · 393;
recovery · 443; reporting errors in book
· 27; standard error stream · 400

event: event-driven system · 381;
JavaBeans · 891; multicast · 879;
multicast event and JavaBeans · 905;
responding to a Swing event · 785;
Swing event model · 877; unicast · 879

event listener · 799; order of execution ·
879

event model, Swing · 799
event-driven programming · 785
events and listeners · 800
EventSetDescriptors · 898
evolution, in program development · 1028
exception: and base-class constructors ·

264; and constructors · 426; and
inheritance · 424, 431; catching an
exception · 396; catching any exception ·
405; changing the point of origin of the
exception · 409; class hierarchies · 431;
constructors · 427; creating your own ·
399; design issues · 430; Error class ·
415; Exception class · 415; exception
handler · 397; exception handling · 393;
exception matching · 431;
FileNotFoundException · 430;
fillInStackTrace() · 407; finally · 418;
guarded region · 397; handler · 394;
handling · 267; losing an exception,
pitfall · 422; NullPointerException · 416;
printStackTrace() · 407; restrictions ·
424; re-throwing an exception · 407;
RuntimeException · 416; specification ·
403; termination vs. resumption · 398;
Throwable · 405; throwing an exception
· 395; try · 420; try block · 397; typical
uses of exceptions · 443

exceptional condition · 394
Exponential notation · 141
extending a class during inheritance · 47
extends · 244, 261, 325; and interface ·

343; keyword · 259
extensible: program · 304
extension: pure inheritance vs. extension ·

324
extension, sign · 132
extension, zero · 132
Externalizable · 658; alternative approach

to using · 665
Extreme Programming (XP) · 1030, 1110

 1135

F

fail fast containers · 596
false · 127
FeatureDescriptor · 912
Field, for reflection · 470
fields, initializing fields in interfaces · 346
FIFO · 542
file: characteristics of files · 618; File.list()

· 614; incomplete output files, errors
and flushing · 639; JAR file · 231

File · 622, 633; class · 614
file dialogs · 850
File Transfer Protocol (FTP) · 779
FileDescriptor · 622
FileInputReader · 637
FileInputStream · 622
FilenameFilter · 614
FileNotFoundException · 430
FileOutputStream · 624
FileReader · 428, 631
FileWriter · 631, 639
fillInStackTrace() · 407
FilterInputStream · 622
FilterOutputStream · 624
FilterReader · 632
FilterWriter · 632
final · 334; and efficiency · 288; and

private · 285; and static · 280; argument
· 283, 617; blank finals · 282; classes ·
287; data · 279; keyword · 279; method ·
300; methods · 284, 322; static
primitives · 281; with object references ·
280

finalize() · 194, 431; and inheritance ·
316; calling directly · 197

finally · 267, 270; and constructors · 428;
keyword · 418; pitfall · 422

finding .class files during loading · 233
flavor, clipboard · 862
float, literal value marker(F) · 141
floating point: true and false · 129
FlowLayout · 792
flushing output files · 639
focus traversal · 772
folding, constant · 280
for keyword · 158
forName() · 452, 803
FORTRAN · 141
forward referencing · 206
Fowler, Martin · 1014, 1028, 1111

framework: application framework and
applets · 774; control framework and
inner classes · 380

FTP: File Transfer Protocol (FTP) · 779
function: member function · 39; overriding

· 48

G

garbage collection · 194, 197; and cleanup ·
267; forcing finalization · 271; how the
collector works · 199; order of object
reclamation · 271; reachable objects ·
574

generator · 511
generator object, to fill arrays and

containers · 487
get(), ArrayList · 519, 524
get(), HashMap · 553
getBeanInfo() · 895
getBytes() · 638
getClass() · 406, 466
getConstructor() · 813
getConstructors() · 472
getContentPane() · 775
getContents() · 864
getEventSetDescriptors() · 898
getInterfaces() · 468
getMethodDescriptors() · 898
getMethods() · 472
getModel() · 857
getName() · 468, 898
getPriority() · 710
getPropertyDescriptors() · 898
getPropertyType() · 898
getReadMethod() · 898
getSelectedValues() · 828
getState() · 839
getSuperclass() · 468
getTransferData() · 864
getTransferDataFlavors() · 864
getWriteMethod() · 898
Glass, Robert · 1112
glue, in BoxLayout · 794
goto: lack of goto in Java · 162
graphical user interface (GUI) · 381, 769
graphics · 849
Graphics · 842
greater than (>) · 125
greater than or equal to (>=) · 125
GridBagLayout · 793

1136

GridLayout · 793, 885
guarded region, in exception handling ·

397
GUI: graphical user interface · 381, 769
GUI builders · 771
guidelines: object development · 1025
guidelines, coding standards · 1091
GZIPInputStream · 645
GZIPOutputStream · 645

H

handler, exception · 397
has-a · 43
has-a relationship, composition · 274
hash code · 549, 564
hash function · 564
hashCode() · 543, 549; and hashed data

structures · 561; issues when writing ·
568; overriding for HashMap · 559

hashing · 561; external chaining · 564;
perfect hashing function · 564

HashMap · 548, 578, 810
HashSet · 543, 584
Hashtable · 589, 602
hasNext(), Iterator · 526
Hexadecimal · 141
hiding: implementation · 41
hiding, implementation · 246
high concept · 1017
HTML on Swing components · 852

I

I/O: and threads, blocking · 746;
available() · 638; blocking on I/O · 752;
blocking, and available() · 638;
BufferedInputStream · 626;
BufferedOutputStream · 628;
BufferedReader · 428, 632, 637;
BufferedWriter · 632, 639;
ByteArrayInputStream · 622;
ByteArrayOutputStream · 624;
characteristics of files · 618;
CharArrayReader · 631;
CharArrayWriter · 631;
CheckedInputStream · 645;
CheckedOutputStream · 645; close() ·
637; compression library · 645; console

input · 637; controlling the process of
serialization · 658; DataInput · 633;
DataInputStream · 626, 632, 638, 639;
DataOutput · 633; DataOutputStream ·
628, 633, 639; DeflaterOutputStream ·
645; directory lister · 614; directory,
creating directories and paths · 618;
Externalizable · 658; File · 622, 633; File
class · 614; File.list() · 614;
FileDescriptor · 622; FileInputReader ·
637; FileInputStream · 622;
FilenameFilter · 614; FileOutputStream
· 624; FileReader · 428, 631; FileWriter ·
631, 639; FilterInputStream · 622;
FilterOutputStream · 624; FilterReader ·
632; FilterWriter · 632; from standard
input · 641; GZIPInputStream · 645;
GZIPOutputStream · 645;
InflaterInputStream · 645; input · 621;
InputStream · 621; InputStreamReader ·
630, 631; internationalization · 630;
library · 613; lightweight persistence ·
652; LineNumberInputStream · 626;
LineNumberReader · 632; mark() · 634;
mkdirs() · 621; ObjectOutputStream ·
653; output · 621; OutputStream · 621,
623; OutputStreamWriter · 630, 631;
pipe · 622; piped streams · 641;
PipedInputStream · 622;
PipedOutputStream · 622, 624;
PipedReader · 631; PipedWriter · 631;
PrintStream · 628; PrintWriter · 632,
639; PushbackInputStream · 626;
PushBackReader · 632;
RandomAccessFile · 633, 639; read() ·
621; readDouble() · 640; Reader · 621,
629, 631; readExternal() · 658;
readLine() · 430, 632, 639, 642;
readObject() · 653; redirecting standard
I/O · 643; renameTo() · 620; reset() ·
634; seek() · 633, 641;
SequenceInputStream · 622, 633;
Serializable · 658; setErr(PrintStream) ·
643; setIn(InputStream) · 643;
setOut(PrintStream) · 643;
StreamTokenizer · 632; StringBuffer ·
622; StringBufferInputStream · 622;
StringReader · 631, 637; StringWriter ·
631; System.err · 641; System.in · 637,
641; System.out · 641; transient · 663;
typical I/O configurations · 634;
Unicode · 630; write() · 621;

 1137

writeBytes() · 640; writeChars() · 640;
writeDouble() · 640; writeExternal() ·
658; writeObject() · 653; Writer · 621,
629, 631; ZipEntry · 649;
ZipInputStream · 645;
ZipOutputStream · 645

Icon · 814
if-else statement · 136, 155
IllegalMonitorStateException · 748
ImageIcon · 814
immutable objects · 1074
implementation · 39; and interface · 273,

334; and interface, separating · 42; and
interface, separation · 246; hiding · 41,
246, 352; separation of interface and
implementation · 799

implements keyword · 334
import keyword · 230
increment operator · 124
incremental development · 276
indexed property · 911
indexing operator [] · 214
indexOf(): String · 473
InflaterInputStream · 645
inheritance · 44, 244, 255, 259, 295; and

cloning · 1061; and final · 287; and
finalize() · 316; and synchronized ·
908; choosing composition vs.
inheritance · 272; class inheritance
diagrams · 278; combining composition
& inheritance · 265; designing with
inheritance · 323; diagram · 53;
extending a class during · 47; extending
interfaces with inheritance · 342; from
an abstract class · 310; from inner
classes · 369; inheritance and method
overloading vs. overriding · 271;
initialization with inheritance · 289;
multiple inheritance in C++ and Java ·
338; pure inheritance vs. extension ·
324; specialization · 274; vs.
composition · 279

initial capacity, of a HashMap or HashSet ·
567

initialization: and class loading · 289;
array initialization · 214; base class ·
262; class member · 257; constructor
initialization during inheritance and
composition · 265; initializing class
members at point of definition · 205;
initializing with the constructor · 175;
instance initialization · 212, 359;

member initializers · 316; non-static
instance initialization · 212; of class
fields · 203; of method variables · 203;
order of initialization · 206, 322; static ·
291; with inheritance · 289

inizialization: lazy · 257
inline method calls · 284
inner class · 350, 882; access rights · 361;

and super · 369; and overriding · 370;
and control frameworks · 380; and
Swing · 799; and upcasting · 352;
anonymous · 787; anonymous inner
class · 616; anonymous, and table-
driven code · 581; callback · 378; closure
· 377; hidden reference to the object of
the enclosing class · 363; identifiers and
.class files · 374; in methods & scopes ·
354; inheriting from inner classes · 369;
nesting within any arbitrary scope · 356;
private inner classes · 383; referring to
the outer class object · 366; static inner
classes · 364

input: console input · 637
InputStream · 621
InputStreamReader · 630, 631
insertNodeInto() · 857
instance: instance initialization · 359; non-

static instance initialization · 212
instance of a class · 35
instanceof: dynamic instanceof · 462;

keyword · 454
Integer: parseInt() · 850
Integer wrapper class · 217
interface: and implementation, separation

· 246; and inheritance · 342; base-class
interface · 304; Cloneable interface used
as a flag · 1048; common interface ·
309; defining the class · 1031; for an
object · 37; graphical user interface
(GUI) · 381, 769; implementation,
separation of · 42; initializing fields in
interfaces · 346; keyword · 333; nesting
interfaces within classes and other
interfaces · 347; private, as nested
interfaces · 349; Runnable · 716;
separation of interface and
implementation · 799; upcasting to an
interface · 338; user · 1020; vs. abstract ·
340; vs. implemenation · 273

interfaces: name collisions when
combining interfaces · 340

internationalization, in I/O library · 630

1138

Internet: Internet Service Provider (ISP) ·
779

interrupt() · 761
intranet · 773; and applets · 773
Introspector · 895
is-a · 325; relationship, inheritance · 274;

relationship, inheritance & upcasting ·
277; vs. is-like-a relationships · 48

isDaemon() · 711
isDataFlavorSupported() · 864
isInstance · 462
isInterface() · 468
is-like-a · 326
ISP (Internet Service Provider) · 779
iteration, in program development · 1027
iterator · 525
Iterator · 525, 532, 578; hasNext() · 526;

next() · 526
iterator() · 532

J

Jacobsen, Ivar · 1111
JApplet · 790; menus · 833
JAR · 909; archive tag, for HTML and JAR

files · 865; file · 231; jar files and
classpath · 235; packaging applets to
optimize loading · 865

JAR utility · 650
Java · 81; and pointers · 1039; and set-top

boxes · 131; compiling and running a
program · 103; containers library · 508;
public Java seminars · 13; versions · 26

Java 1.1: I/O streams · 629
Java AWT · 769
Java Foundation Classes (JFC/Swing) ·

769
Java operators · 115
Java Virtual Machine · 451
JavaBeans: see Beans · 890
javac · 104
JButton · 814
JButton, Swing · 784
JCheckBox · 814, 823
JCheckboxMenuItem · 839
JCheckBoxMenuItem · 835
JComboBox · 827
JComponent · 816, 842
JDialog · 845; menus · 833
JDK: downloading and installing · 103

JFC: Java Foundation Classes
(JFC/Swing) · 769

JFileChooser · 850
JFrame · 783, 790; menus · 833
JIT: Just-In Time compilers · 80
JLabel · 775, 819
JList · 828
JMenu · 833, 839
JMenuBar · 833, 840
JMenuItem · 814, 833, 839, 840, 842
JOptionPane · 831
JPanel · 790, 812, 842, 885
JPopupMenu · 840
JProgressBar · 854
JRadioButton · 814, 825
JScrollPane · 790, 820, 830, 856
JSlider · 854
JTabbedPane · 830
JTable · 857
JTextArea · 788, 862
JTextField · 786, 816
JTextPane · 822
JToggleButton · 812
JTree · 854
JVM (Java Virtual Machine) · 451

K

keyboard navigation, and Swing · 772
keyboard shortcuts · 839
keySet() · 590
keywords: class · 37, 44
Koenig, Andrew · 1093

L

label · 163
labeled break · 163
labeled continue · 163
late binding · 51, 295, 300
layout: controlling layout with layout

managers · 790
lazy inizialization · 257
left-shift operator (<<) · 132
length, array member · 216
length, for arrays · 481
less than (<) · 125
less than or equal to (<=) · 125
lexicographic vs. alphabetic sorting · 504

 1139

library: creator, vs. client programmer ·
229; design · 229; use · 230

LIFO · 541
lightweight: Swing components · 771
lightweight persistence · 652
LineNumberInputStream · 626
LineNumberReader · 632
linked list · 508
LinkedList · 537, 542, 584
list: drop-down list · 826
List · 480, 507, 508, 537, 828; sorting and

searching · 590
list boxes · 828
listener adapters · 806
listener classes · 882
listener interfaces · 805
listeners and events · 800
Lister, Timothy · 1112
ListIterator · 537
literal: class literal · 453, 460; double · 141;

float · 141; long · 141; values · 140
load factor, of a HashMap or HashSet · 567
loading: .class files · 233; initialization &

class loading · 289; loding a class · 290
lock, for multithreading · 733
logarithms: natural logarithms · 141
logical: AND · 139; operator and short-

circuiting · 129; operators · 127; OR ·
139

long, literal value marker (L) · 141
Look & Feel: Pluggable · 859
lvalue · 116

M

main() · 261
maintenance, program · 1028
management obstacles · 1036
manifest file, for JAR files · 650, 909
map · 548
Map · 480, 507, 508, 548, 587
Map.Entry · 561
mark() · 634
Math.random() · 552; values produced by

· 171
mathematical operators · 120
max() · 591
member: member function · 39; object · 43
member initializers · 316
memory exhaustion, solution via

References · 574

mentoring: and training · 1037, 1038
menu: JPopupMenu · 840
menus: JDialog, JApplet, JFrame · 833
message box, in Swing · 831
message, sending · 37
method: adding more methods to a design

· 253; aliasing during a method call ·
1041; aliasing during method calls · 119;
behavior of polymorphic methods inside
constructors · 320; distinguishing
overloaded methods · 181; final · 300,
322; final methods · 284; initialization
of method variables · 203; inline
method calls · 284; inner classes in
methods & scopes · 354; lookup tool ·
801; method call binding · 300;
overloading · 178; overriding private ·
308; passing a reference into a method ·
1040; polymorphic method call · 295;
private · 322; protected methods · 275;
recursive · 528; static · 193;
synchronized method and blocking · 746

Method · 898; for reflection · 470
MethodDescriptors · 898
methodology, analysis and design · 1013
Meyers, Scott · 41
Microsoft · 913; Visual Basic · 890
min() · 591
mission statement · 1016
mistakes, and design · 252
mkdirs() · 621
mnemonics (keyboard shortcuts) · 839
modulus · 120
monitor, for multithreading · 733
multicast · 903; event, and JavaBeans ·

905; multicast events · 879
multidimensional arrays · 220
Multimedia CD ROM for book · 23
multiparadigm programming · 35
multiple inheritance, in C++ and Java ·

338
multiplication · 120
multiply-nested class · 368
multitasking · 699
multithreading · 699; and containers · 595;

blocking · 746; deciding what methods
to synchronize · 908; drawbacks · 764;
Runnable · 883; when to use it · 763

multi-tiered systems · 880

1140

N

name · 777; clash · 230; collisions · 236;
creating unique package names · 233;
spaces · 230

name collisions when combining interfaces
· 340

narrowing conversion · 139, 154, 188
natural logarithms · 141
nesting interfaces · 347
new operator · 194; and primitives, array ·

216
newInstance() · 814; reflection · 468
next(), Iterator · 526
no-arg: constructors · 179
North, BorderLayout · 791
NOT: logical (!) · 127
not equivalent (!=) · 125
notify() · 746
notifyAll() · 746
notifyListeners() · 908
null · 89, 483
NullPointerException · 416
numbers, binary · 141

O

object · 35; aliasing · 118; arrays are first-
class objects · 481; assigning objects by
copying references · 117; assignment
and reference copying · 117; business
object/logic · 880; Class object · 450,
671, 734; creation · 177; equals()
method · 126; equivalence · 125;
equivalence vs reference equivalence ·
126; final · 280; five stages of object
design · 1024; guidelines for object
development · 1025; immutable objects ·
1074; interface to · 37; lock, for
multithreading · 733; member · 43;
object-oriented programming · 447;
process of creation · 210; reference
equivalence vs. object equivalence ·
1051; serialization · 652; web of objects ·
654, 1046

Object · 480; clone() · 1047, 1051;
getClass() · 466; hashCode() · 549;
standard root class, default inheritance
from · 259; wait() and notify() methods
· 748

object-oriented: analysis and design · 1013;
basic concepts of object-oriented
programming (OOP) · 33

ObjectOutputStream · 653
obstacles, management · 1036
Octal · 141
ones complement operator · 131
OOP · 247; analysis and design · 1013;

basic characteristics · 35; basic concepts
of object-oriented programming · 33;
protocol · 334; Simula programming
language · 37; substitutability · 35

operator · 115; + and += overloading for
String · 260; +, for String · 1081; == and
!= · 1051; binary · 131; bitwise · 130;
casting · 139; comma · 137; comma
operator · 160; common pitfalls · 138;
indexing operator [] · 214; logical · 127;
logical operators and short-circuiting ·
129; ones-complement · 131; operator
overloading for String · 1081;
overloading · 137; precedence · 116;
precedence mnemonic · 143; relational ·
125; shift · 132; ternary · 136; unary ·
123, 131

optional methods, in the Java 2 containers
· 597

OR · 139; (||) · 127
order: of constructor calls with inheritance

· 314; of initialization · 206, 289, 322
organization, code · 240
OutputStream · 621, 623
OutputStreamWriter · 630, 631
overflow: and primitive types · 153
overloading: and constructors · 179;

distinguishing overloaded methods ·
181; lack of name hiding during
inheritance · 271; method overloading ·
178; on return values · 188; operator +
and += overloading for String · 260;
operator overloading · 137; operator
overloading for String · 1081;
overloading vs. overriding · 271

overriding: and inner classes · 370;
function · 48; overloading vs. overriding
· 271; private methods · 308

P

package · 230; access, and friendly · 239;
and directory structure · 239; creating

 1141

unique package names · 233; default
package · 242; names, capitalization ·
98; visibility, access · 352

package access: and protected · 274
paintComponent() · 842, 849
Painting on a JPanel in Swing · 842
pair programming · 1033
paralysis, analysis · 1014
parameter, applet · 777
parameterized type · 524
parseInt() · 850
pass: pass by value · 1044; passing a

reference into a method · 1040
patterns, design · 1029, 1035
patterns, design patterns · 251
perfect hashing function · 564
performance: and final · 288
performance issues · 1037
persistence · 669; lightweight persistence ·

652
PhantomReference · 574
pipe · 622
piped streams · 641
PipedInputStream · 622
PipedOutputStream · 622, 624
PipedReader · 631
PipedWriter · 631
planning, software development · 1016
Plauger, P.J. · 1112
Pluggable Look & Feel · 859
pointer: Java exclusion of pointers · 378
pointers, and Java · 1039
polymorphism · 50, 295, 329, 448, 475;

and constructors · 313; behavior of
polymorphic methods inside
constructors · 320

portability in C, C++ and Java · 142
position, absolute, when laying out Swing

components · 794
precedence: operator precedence

mnemonic · 143
prerequisites, for this book · 33
primitive: comparison · 126; containers of

primitives · 484; data types, and use
with operators · 143; dealing with the
immutability of primitive wrapper
classes · 1074; final · 280; final static
primitives · 281; initialization of class
fields · 203; wrappers · 553

primitive types · 87
printInfo() · 468
printing arrays · 488

println() · 526
printStackTrace() · 405, 407
PrintStream · 628
PrintWriter · 632, 639
priority: thread · 708
private · 42, 229, 239, 242, 275, 733;

illusion of overriding private methods ·
285; inner classes · 383; interfaces,
when nested · 349; method overriding ·
308; methods · 322

problem space · 34, 276
process, and threading · 699
program: maintenance · 1028
programmer, client · 41
programming: basic concepts of object-

oriented programming (OOP) · 33;
coding standards · 1091; event-driven
programming · 785; Extreme
Programming (XP) · 1030, 1110; in the
large · 79; multiparadigm · 35; object-
oriented · 447; pair · 1033

progress bar · 853
promotion: of primitive types · 153; type

promotion · 142
property · 891; bound properties · 912;

constrained properties · 912; custom
property editor · 912; custom property
sheet · 912; indexed property · 911

PropertyChangeEvent · 912
PropertyDescriptors · 898
ProptertyVetoException · 912
protected · 42, 229, 239, 244, 274; and

package access · 274; is also package
access · 246; use in clone() · 1047

protocol · 334
prototyping: rapid · 1029
public · 42, 229, 239, 240; and interface ·

334; class, and compilation units · 231
pure: substitution · 48
pure inheritance, vs. extension · 324
pure substitution · 325
PushbackInputStream · 626
PushBackReader · 632
put(), HashMap · 553
Python · 81, 1023

Q

queue · 508, 542

1142

R

RAD (Rapid Application Development) ·
469

radio button · 825
random number generator, values

produced by · 171
random() · 552
RandomAccessFile · 633, 639
rapid prototyping · 1029
reachable objects and garbage collection ·

574
read() · 621
readDouble() · 640
Reader · 621, 629, 631
readExternal() · 658
reading from standard input · 641
readLine() · 430, 632, 639, 642
readObject() · 653; with Serializable · 665
recursion, unintended via toString() · 528
redirecting standard I/O · 643
refactoring · 1028
reference: assigning objects by copying

references · 117; equivalence vs object
equivalence · 126; final · 280; finding
exact type of a base reference · 450; null
· 89; reference equivalence vs. object
equivalence · 1051

Reference, from java.lang.ref · 574
referencing, forward referencing · 206
reflection · 469, 801, 895; and Beans · 891;

difference between RTTI and reflection ·
471

reflection example · 812
relational: operators · 125
removeActionListener() · 901, 908
removeXXXListener() · 800
renameTo() · 620
reporting errors in book · 27
request, in OOP · 37
requirements analysis · 1017
reset() · 634
resume() · 746; and deadlocks · 760
resumption, termination vs. resumption,

exception handling · 398
re-throwing an exception · 407
return: an array · 485; constructor return

value · 178; overloading on return value
· 188

reusability · 43

reuse · 1025; code reuse · 255; existing
class libraries · 1036; reusable code ·
890

right-shift operator (>>) · 132
rollover · 816
RTTI: and cloning · 1051; cast · 449; Class ·

813; Class object · 450;
ClassCastException · 454; Constructor ·
470; difference between RTTI and
reflection · 471; downcast · 454; Field ·
470; getConstructor() · 813; instanceof
keyword · 454; isInstance · 462; Method
· 470; newInstance() · 814; reflection ·
469; run-time type identification (RTTI)
· 328; type-safe downcast · 454; using
the Class object · 466

Rumbaugh, James · 1111
Runnable · 883; interface · 716; Thread ·

746
running a Java program · 103
run-time binding · 300; polymorphism ·

295
run-time type identification: (RTTI) · 328;

misuse · 475; shape example · 447; when
to use it · 475

RuntimeException · 416, 480
rvalue · 116

S

safety, and applet restrictions · 772
scenario · 1018
scheduling · 1021
scope: inner class nesting within any

arbitrary scope · 356; inner classes in
methods & scopes · 354; use case · 1027

scrolling in Swing · 790
searching: sorting and searching Lists ·

590
searching an array · 505
section, critical section and synchronized

block · 740
seek() · 633, 641
seminars: public Java seminars · 13;

training, provided by Bruce Eckel · 26
sending a message · 37
separating business logic from UI logic ·

879
separation of interface and

implementation · 42, 246, 799
SequenceInputStream · 622, 633

 1143

Serializable · 652, 658, 663, 674, 903;
readObject() · 665; writeObject() · 665

serialization: and object storage · 669; and
transient · 663; controlling the process
of serialization · 658;
defaultReadObject() · 668;
defaultWriteObject() · 667; to perform
deep copying · 1059; Versioning · 668

Set · 480, 507, 508, 543
setActionCommand() · 839
setBorder() · 819
setContents() · 864
setErr(PrintStream) · 643
setIcon() · 816
setIn(InputStream) · 643
setLayout() · 790
setMnemonic() · 839
setOut(PrintStream) · 643
setPriority() · 710
setToolTipText() · 816
shallow copy · 1046, 1053
shape: example · 45, 301; example, and

run-time type identification · 447
shift operators · 132
short-circuit, and logical operators · 129
shortcut, keyboard · 839
show() · 847
shuffle() · 591
side effect · 115, 125, 188, 1043
sign extension · 132
signed two’s complement · 136
Simula programming language · 37
Simula-67 · 247
sine wave · 842
singleton: design pattern · 251
size(), ArrayList · 519
Size, of a HashMap or HashSet · 567
sizeof(): lack of in Java · 142
sleep() · 746
slider · 853
Smalltalk · 35, 193
SoftReference · 574
software: development methodology · 1014
Software Development Conference · 12
solution space · 34
sorting · 499; and searching Lists · 590
source code copyright notice · 24
South, BorderLayout · 791
space: problem · 34; solution · 34
specialization · 274
specification: system specification · 1017
specification, exception · 403

specifier: access specifiers · 42, 229, 239
Stack · 541, 602
standard input: Reading from standard

input · 641
standards: coding standards · 25, 1091
startup costs · 1037
stateChanged() · 845
statement: mission · 1016
static · 334; and final · 280; block · 211;

clause · 452; construction clause · 211;
data initialization · 208; final static
primitives · 281; initialization · 291;
inner classes · 364; keyword · 193;
method · 193; synchronized static · 734

STL: C++ · 508
stop(): and deadlocks · 760; deprecation

in Java 2 · 760
stream, I/O · 621
StreamTokenizer · 632
String: automatic type conversion · 522;

class methods · 1079; concatenation
with operator + · 137; immutability ·
1079; indexOf() · 473; lexicographic vs.
alphabetic sorting · 504; methods ·
1083; operator + · 522; Operator + · 137;
operator + and += overloading · 260;
toString() · 257, 521

StringBuffer · 622; methods · 1086
StringBufferInputStream · 622
StringReader · 631, 637
StringSelection · 864
StringWriter · 631
struts, in BoxLayout · 794
style of creating classes · 247
subobject · 262, 272
substitutability, in OOP · 35
substitution: principle · 48
subtraction · 120
super · 263; and inner classes · 369
super keyword · 262
super.clone() · 1047, 1051, 1067
superclass · 262
suspend() · 746; and deadlocks · 760
Swing · 769
Swing component examples · 810
Swing components, using HTML with ·

852
Swing event model · 799, 877
switch keyword · 168
synchronized · 65, 733; and inheritance ·

908; and wait() & notify() · 747;
containers · 595; deciding what methods

1144

to synchronize · 908; method, and
blocking · 746; static · 734

system clipboard · 862
system specification · 1017
System.arraycopy() · 497
System.err · 400, 641
System.in · 637, 641
System.out · 641
System.out.println() · 526

T

tabbed dialog · 830
table · 857
table-driven code, and anonymous inner

classes · 581
template: in C++ · 524
termination condition, and finalize() · 197
termination vs. resumption, exception

handling · 398
ternary operator · 136
testing: automated · 1032; Extreme

Programming (XP) · 1031; unit testing ·
261

testing techniques · 366
this keyword · 189
Thread · 699; and Runnable · 883; blocked

· 746; daemon threads · 711; dead · 746;
deadlock · 754; deciding what methods
to synchronize · 908; drawbacks · 764;
getPriority() · 710; I/O and threads,
blocking · 746; interrupt() · 761;
isDaemon() · 711; new Thread · 746;
notify() · 746; notifyAll() · 746; priority
· 708; resume() · 746; resume(), and
deadlocks · 760; run() · 702; Runnable ·
746; Runnable interface · 716;
setPriority() · 710; sharing limited
resources · 724; sleep() · 746; start() ·
703; states · 746; stop() , deprecation in
Java 2 · 760; stop(), and deadlocks ·
760; suspend() · 746; suspend(), and
deadlocks · 760; synchronized method
and blocking · 746; threads and
efficiency · 701; wait() · 746, 747; when
to use threads · 763

throw keyword · 396
Throwable · 409; base class for Exception ·

405
throwing an exception · 395
toArray() · 590

tool tips · 816
TooManyListenersException · 879, 903
toString() · 257, 521, 526, 578
training · 1035; and mentoring · 1037,

1038
training seminars provided by Bruce Eckel

· 26
Transferable · 864
transient keyword · 663
translation unit · 231
tree · 854
TreeMap · 548, 589
TreeSet · 543, 584
true · 127
try · 270, 420; try block in exceptions · 397
two’s complement, signed · 136
type: base · 45; data type equivalence to

class · 38; derived · 45; finding exact
type of a base reference · 450;
parameterized type · 524; primitive · 87;
primitive data types and use with
operators · 143; type checking and
arrays · 480; type safety in Java · 138;
type-safe downcast in run-time type
identification · 454; weak typing · 51

TYPE field, for primitive class literals · 453
type safe sets of constants · 345
type-conscious ArrayList · 523

U

UML · 1023; indicating composition · 43;
Unified Modeling Language · 39, 1111

unary: minus (-) · 123; operator · 131;
operators · 123; plus (+) · 123

unicast · 903; unicast events · 879
Unicode · 630
Unified Modeling Language (UML) · 39,

1111
unit testing · 261
unmodifiable, making a Collection or Map

unmodifiable · 594
unsupported methods, in the Java 2

containers · 597
UnsupportedOperationException · 597
upcasting · 53, 277, 296, 448; and interface

· 338; inner classes and upcasting · 352
updates of the book · 25
use case · 1018; iteration · 1027; scope ·

1027

 1145

user interface · 1020; responsive, with
threading · 700

V

value: preventing change at run time · 279
variable: defining a variable · 159;

initialization of method variables · 203;
variable argument lists (unknown
quantity and type of arguments) · 219

vector: of change · 1028
Vector · 584, 600, 602
vector of change · 383
versioning, serialization · 668
versions of Java · 26
visibility, package visibility · 352
visual: programming · 890
Visual Basic, Microsoft · 890
visual programming environments · 771

W

wait() · 746, 747
Waldrop, M. Mitchell · 1113
weak: weakly typed language · 51
WeakHashMap · 576
WeakReference · 574
Web: placing an applet inside a Web page ·

776; safety, and applet restrictions · 772

web of objects · 654, 1046
West, BorderLayout · 791
while · 157
widening conversion · 140
wild-card · 1015
windowClosing() · 845
windowed applications · 780
wrapper, dealing with the immutability of

primitive wrapper classes · 1074
write() · 621
writeBytes() · 640
writeChars() · 640
writeDouble() · 640
writeExternal() · 658
writeObject() · 653; with Serializable · 665
Writer · 621, 629, 631

X

XOR · 131
XP, Extreme Programming · 1030

Z

zero extension · 132
ZipEntry · 649
ZipInputStream · 645
ZipOutputStream · 645

1146

Check www.BruceEckel.com
for in-depth details
and the date and location
of the next
Hands-On Java Seminar

• Based on this book
• Taught by Bruce Eckel
• Personal attention from Bruce Eckel

and his seminar assistants
• Includes in-class programming exercises
• Intermediate/Advanced seminars also offered
• Hundreds have already enjoyed this seminar—

see the Web site for their testimonials

LICENSE AGREEMENT FOR MindView, Inc.'s
Foundations for Java CD ROM
by Bruce Eckel and Chuck Allison
This CD is provided together with the book "Thinking in Java, 3rd edition."

READ THIS AGREEMENT BEFORE USING THIS "Foundations for Java"
(Hereafter called "CD"). BY USING THE CD YOU AGREE TO BE BOUND BY THE
TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO
THE TERMS AND CONDITIONS OF THIS AGREEMENT, IMMEDIATELY RETURN
THE UNUSED CD FOR A FULL REFUND OF MONIES PAID, IF ANY.

©2003 MindView, Inc. All rights reserved. Printed in the U.S.

SOFTWARE REQUIREMENTS
The purpose of this CD is to provide the Content, not the associated software
necessary to view the Content. The Content of this CD is in HTML for viewing
with a Web Browser (it has been tested with Microsoft Internet Explorer 6 and
Mozilla; see www.Mozilla.org) and an MP3 player such as the free RealPlayer
from www.Real.com. It is your responsibility to correctly install the appropriate
software for your system.

The text, images, and other media included on this CD ("Content") and their
compilation are licensed to you subject to the terms and conditions of this
Agreement by MindView, Inc., having a place of business at 5343 Valle Vista,
La Mesa, CA 91941. Your rights to use other programs and materials included
on the CD are also governed by separate agreements distributed with those
programs and materials on the CD (the "Other Agreements"). In the event of
any inconsistency between this Agreement and the Other Agreements, this
Agreement shall govern. By using this CD, you agree to be bound by the terms
and conditions of this Agreement. MindView, Inc. owns title to the Content and
to all intellectual property rights therein, except insofar as it contains materials
that are proprietary to third-party suppliers. All rights in the Content except
those expressly granted to you in this Agreement are reserved to MindView,
Inc. and such suppliers as their respective interests may appear.

1. LIMITED LICENSE
MindView, Inc. grants you a limited, nonexclusive, nontransferable license to
use the Content on a single dedicated computer (excluding network servers).
This Agreement and your rights hereunder shall automatically terminate if you
fail to comply with any provisions of this Agreement or any of the Other
Agreements. Upon such termination, you agree to destroy the CD and all

copies of the CD, whether lawful or not, that are in your possession or under
your control.

2. ADDITIONAL RESTRICTIONS

a. You shall not (and shall not permit other persons or entities to) directly or
indirectly, by electronic or other means, reproduce (except for archival
purposes as permitted by law), publish, distribute, rent, lease, sell, sublicense,
assign, or otherwise transfer the Content or any part thereof.

b. You shall not (and shall not permit other persons or entities to) use the
Content or any part thereof for any commercial purpose or merge, modify,
create derivative works of, or translate the Content.

c. You shall not (and shall not permit other persons or entities to) obscure
MindView's or its suppliers copyright, trademark, or other proprietary notices
or legends from any portion of the Content or any related materials.

3. PERMISSIONS
a. Except as noted in the Contents of the CD, you must treat this software just
like a book. However, you may copy it onto a computer to be used and you
may make archival copies of the software for the sole purpose of backing up
the software and protecting your investment from loss. By saying, "just like a
book," MindView, Inc. means, for example, that this software may be used by
any number of people and may be freely moved from one computer location to
another, so long as there is no possibility of its being used at one location or
on one computer while it is being used at another. Just as a book cannot be
read by two different people in two different places at the same time, neither
can the software be used by two different people in two different places at the
same time.
b. You may show or demonstrate the un-modified Content in a live
presentation, live seminar, or live performance as long as you attribute all
material of the Content to MindView, Inc.
c. Other permissions and grants of rights for use of the CD must be obtained
directly from MindView, Inc. at http://www.MindView.net. (Bulk copies of the
CD may also be purchased at this site.)
DISCLAIMER OF WARRANTY

The Content and CD are provided "AS IS" without warranty of any kind, either
express or implied, including, without limitation, any warranty of
merchantability and fitness for a particular purpose. The entire risk as to the

 1149

results and performance of the CD and Content is assumed by you. MindView,
Inc. and its suppliers assume no responsibility for defects in the CD, the
accuracy of the Content, or omissions in the CD or the Content. MindView, Inc.
and its suppliers do not warrant, guarantee, or make any representations
regarding the use, or the results of the use, of the product in terms of
correctness, accuracy, reliability, currentness, or otherwise, or that the Content
will meet your needs, or that operation of the CD will be uninterrupted or
error-free, or that any defects in the CD or Content will be corrected.
MindView, Inc. and its suppliers shall not be liable for any loss, damages, or
costs arising from the use of the CD or the interpretation of the Content. Some
states do not allow exclusion or limitation of implied warranties or limitation of
liability for incidental or consequential damages, so all of the above limitations
or exclusions may not apply to you.

In no event shall MindView, Inc. or its suppliers' total liability to you for all
damages, losses, and causes of action (whether in contract, tort, or otherwise)
exceed the amount paid by you for the CD.
MindView, Inc., and Prentice Hall, Inc. specifically disclaim the implied
warrantees of merchantability and fitness for a particular purpose. No oral or
written information or advice given by MindView, Inc., Prentice Hall, Inc., their
dealers, distributors, agents or employees shall create a warrantee. You may
have other rights, which vary from state to state.
Neither MindView, Inc., Bruce Eckel, Chuck Allison, Prentice Hall, nor anyone
else who has been involved in the creation, production or delivery of the
product shall be liable for any direct, indirect, consequential, or incidental
damages (including damages for loss of business profits, business interruption,
loss of business information, and the like) arising out of the use of or inability
to use the product even if MindView, Inc., has been advised of the possibility
of such damages. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitation may
not apply to you.
This CD is provided as a supplement to the book "Thinking in Java 3rd
edition." The sole responsibility of Prentice Hall will be to provide a
replacement CD in the event that the one that came with the book is
defective. This replacement warrantee shall be in effect for a period of sixty
days from the purchase date. MindView, Inc. does not bear any additional
responsibility for the CD.
NO TECHNICAL SUPPORT IS PROVIDED WITH THIS CD ROM
The following are trademarks of their respective companies in the U.S. and
may be protected as trademarks in other countries: Sun and the Sun Logo,
Sun Microsystems, Java, all Java-based names and logos and the Java Coffee

Cup are trademarks of Sun Microsystems; Internet Explorer, the Windows
Media Player, DOS, Windows 95, and Windows NT are trademarks of Microsoft.

 1151

Foundations for Java
Multimedia Seminar-on-CD ROM
©2003 MindView, Inc. All rights reserved.
WARNING: BEFORE OPENING THE DISC PACKAGE, CAREFULLY
READ THE TERMS AND CONDITIONS OF THE LICENSE
AGREEMENT & WARANTEE LIMITATION ON THE PREVIOUS
PAGES.

The CD ROM packaged with this book is a multimedia seminar consisting
of synchronized slides and audio lectures. The goal of this seminar is to
introduce you to the fundamentals necessary for you to move on to Java.
The CD also contains a link to the source code for this book, a link to the
HTML version of this book, and the 1st and 2nd editions of this book in
HTML form.

This CD ROM will work with most computers that have a sound system,
including Windows, Linux, and Mac OS/9 and OS/10. However, you
must:

1. Install a web browser on your machine, if you don’t already have
one. Tested browsers include Mozilla (www.Mozilla.org) and
Microsoft’s Internet Explorer.

2. Install an MP3 sound player on your machine. The slides are
designed to work either with the free RealPlayer from
www.Real.com or with another MP3 player (newer machines
come with MP3 players pre-installed).

3. At this point you should be able to play the lectures on the CD.
Using the Internet Explorer or Mozilla Web browser, open the
file Install.html that you’ll find on the CD. This will introduce
you to the CD and provide further instructions about the use of
the CD. Note that on Windows machines, the CD should auto-
run when you insert it in your CD player.

	Home
	TOC
	Preface
	Preface to the 3rd edition
	Java 2, JDK 1.4

	The CD ROM

	Introduction
	Prerequisites
	Learning Java
	Goals
	JDK HTML documentation
	Chapters
	Exercises
	Multimedia CD ROM
	Source code
	Coding standards

	Java versions
	Seminars and mentoring
	Errors
	Note on the cover design
	Acknowledgements

	1: Introduction �to Objects
	The progress of abstraction
	An object has an interface
	An object provides services
	The hidden implementation
	Reusing the implementation
	Inheritance:�reusing the interface
	Is-a vs. is-like-a relationships

	Interchangeable objects �with polymorphism
	Abstract base classes and interfaces

	Object creation, use & lifetimes
	Collections and iterators
	The singly rooted hierarchy
	Downcasting vs. templates/generics
	Ensuring proper cleanup
	Garbage collectors vs. efficiency and flexibility

	Exception handling: dealing with errors
	Concurrency
	Persistence
	Java and the Internet
	What is the Web?
	Client/Server computing
	The Web as a giant server

	Client-side programming
	Plug-ins
	Scripting languages
	Java
	.NET and C#
	Security
	Internet vs. intranet

	Server-side programming
	Applications

	Why Java succeeds
	Systems are easier �to express and understand
	Maximal leverage with libraries
	Error handling
	Programming in the large

	Java vs. C++?
	Summary

	2: Everything�is an Object
	You manipulate objects �with references
	You must create �all the objects
	Where storage lives
	Special case: primitive types
	High-precision numbers

	Arrays in Java

	You never need to �destroy an object
	Scoping
	Scope of objects

	Creating new �data types: class
	Fields and methods
	Default values for primitive members

	Methods, arguments, �and return values
	The argument list

	Building a Java program
	Name visibility
	Using other components
	The static keyword

	Your first Java program
	Compiling and running

	Comments and embedded documentation
	Comment documentation
	Syntax
	Embedded HTML
	Some example tags
	@see: referring to other classes
	{@link package.class#member label}
	{@docRoot}
	{@inheritDoc}
	@version
	@author
	@since
	@param
	@return
	@throws
	@deprecated

	Documentation example

	Coding style
	Summary
	Exercises

	3: Controlling Program Flow
	Using Java operators
	Precedence
	Assignment
	Aliasing during method calls

	Mathematical operators
	Regular expressions
	Unary minus and plus operators

	Auto increment and decrement
	Relational operators
	Testing object equivalence

	Logical operators
	Short-circuiting

	Bitwise operators
	Shift operators
	Ternary if-else operator
	The comma operator
	String operator +
	Common pitfalls when using operators
	Casting operators
	Literals
	Promotion

	Java has no “sizeof”
	Precedence revisited
	A compendium of operators

	Execution control
	true and false
	if-else
	return
	Iteration
	do-while
	for
	The comma operator

	break and continue
	The infamous “goto”

	switch
	Calculation details

	Summary
	Exercises

	4: Initialization �& Cleanup
	Guaranteed initialization �with the constructor
	Method overloading
	Distinguishing overloaded methods
	Overloading with primitives
	Overloading on return values
	Default constructors
	The this keyword
	Calling constructors from constructors
	The meaning of static

	Cleanup: finalization and �garbage collection
	What is finalize\(\) for?
	You must perform cleanup
	The termination condition
	How a garbage collector works

	Member initialization
	Specifying initialization
	Constructor initialization
	Order of initialization
	Static data initialization
	Explicit static initialization
	Non-static instance initialization

	Array initialization
	Multidimensional arrays

	Summary
	Exercises

	5: Hiding the Implementation
	package: the library unit
	Creating unique package names
	Collisions

	A custom tool library
	Using imports to change behavior
	Package caveat

	Java access specifiers
	Package access
	public: interface access
	The default package

	private: you can’t touch that!
	protected: inheritance access

	Interface and implementation
	Class access
	Summary
	Exercises

	6: Reusing Classes
	Composition syntax
	Inheritance syntax
	Initializing the base class
	Constructors with arguments
	Catching base constructor exceptions

	Combining composition �and inheritance
	Guaranteeing proper cleanup
	Name hiding

	Choosing composition �vs. inheritance
	protected
	Incremental development
	Upcasting
	Why “upcasting”?
	Composition vs. inheritance revisited

	The final keyword
	Final data
	Blank finals
	Final arguments

	Final methods
	final and private

	Final classes
	Final caution

	Initialization and �class loading
	Initialization with inheritance

	Summary
	Exercises

	7: Polymorphism
	Upcasting revisited
	Forgetting the object type

	The twist
	Method-call binding
	Producing the right behavior
	Extensibility
	Pitfall: “overriding” private methods

	Abstract classes �and methods
	Constructors and polymorphism
	Order of constructor calls
	Inheritance and cleanup
	Behavior of polymorphic methods �inside constructors

	Designing with inheritance
	Pure inheritance vs. extension
	Downcasting and run time �type identification

	Summary
	Exercises

	8: Interfaces & Inner Classes
	Interfaces
	“Multiple inheritance” in Java
	Name collisions when combining interfaces

	Extending an interface �with inheritance
	Grouping constants
	Initializing fields in interfaces
	Nesting interfaces

	Inner classes
	Inner classes and upcasting
	Inner classes �in methods and scopes
	Anonymous inner classes
	The link to the outer class
	Nested classes
	Referring to the outer class object
	Reaching outward from a multiply-nested class
	Inheriting from inner classes
	Can inner classes be overridden?
	Local inner classes
	Inner class identifiers

	Why inner classes?
	Closures & Callbacks
	Inner classes & control frameworks

	Summary
	Exercises

	9: Error Handling �with Exceptions
	Basic exceptions
	Exception arguments

	Catching an exception
	The try block
	Exception handlers
	Termination vs. resumption

	Creating your own exceptions
	The exception specification
	Catching any exception
	Rethrowing an exception
	Exception chaining

	Standard Java exceptions
	The special case of RuntimeException

	Performing cleanup �with finally
	What’s finally for?
	Pitfall: the lost exception

	Exception restrictions
	Constructors
	Exception matching
	Alternative approaches
	History
	Perspectives
	Passing exceptions to the console
	Converting checked to unchecked exceptions

	Exception guidelines
	Summary
	Exercises

	10: Detecting types
	The need for RTTI
	The Class object
	Class literals

	Checking before a cast
	Using class literals
	A dynamic instanceof
	instanceof vs. Class equivalence

	RTTI syntax
	Reflection: run time �class information
	A class method extractor

	Summary
	Exercises

	11: Collections of �Objects
	Arrays
	Arrays are first-class objects
	Containers of primitives

	Returning an array
	The Arrays class
	Filling an array
	Copying an array
	Comparing arrays
	Array element comparisons
	Sorting an array
	Searching a sorted array
	Array summary

	Introduction to containers
	Printing containers
	Filling containers

	Container disadvantage: �unknown type
	Sometimes it works anyway
	Making a type-conscious ArrayList
	Parameterized types

	Iterators
	
	Unintended recursion

	Container taxonomy
	Collection functionality
	List functionality
	Making a stack from a LinkedList
	Making a queue from a LinkedList

	Set functionality
	SortedSet

	Map functionality
	SortedMap
	LinkedHashMap
	Hashing and hash codes
	Understanding hashCode\(\)
	HashMap performance factors

	Overriding hashCode\(\)

	Holding references
	The WeakHashMap

	Iterators revisited
	Choosing an implementation
	Choosing between Lists
	Choosing between Sets
	Choosing between Maps

	Sorting and searching Lists
	Utilities
	Making a Collection or Map unmodifiable
	Synchronizing a Collection or Map
	Fail fast

	Unsupported operations
	Java 1.0/1.1 containers
	Vector & Enumeration
	Hashtable
	Stack
	BitSet

	Summary
	Exercises

	12: The Java �I/O System
	The File class
	A directory lister
	Anonymous inner classes

	Checking for and creating directories

	Input and output
	Types of InputStream
	Types of OutputStream

	Adding attributes �and useful interfaces
	Reading from an InputStream �with FilterInputStream
	Writing to an OutputStream �with FilterOutputStream

	Readers & Writers
	Sources and sinks of data
	Modifying stream behavior
	Unchanged Classes

	Off by itself: �RandomAccessFile
	Typical uses of I/O streams
	Input streams
	1. Buffered input file
	2. Input from memory
	3. Formatted memory input
	4. File output

	Output streams
	5. Storing and recovering data
	6. Reading and writing random access files

	Piped streams

	File reading & writing utilities
	Standard I/O
	Reading from standard input
	Changing System.out to a PrintWriter
	Redirecting standard I/O

	New I/O
	Compression
	Simple compression with GZIP
	Multifile storage with Zip
	Java ARchives (JARs)

	Object serialization
	Finding the class
	Controlling serialization
	The transient keyword
	An alternative to Externalizable
	Versioning

	Using persistence

	Preferences
	Regular expressions
	Creating regular expressions
	Quantifiers
	CharSequence

	Pattern and Matcher
	find()
	Groups
	start() and end()
	Pattern flags

	split()
	Replace operations
	reset()
	Regular expressions and Java I/O
	Is StringTokenizer needed?

	Summary
	Exercises

	13: Concurrency
	Motivation
	Basic threads
	Yeilding
	Sleeping
	Priority
	Daemon threads
	Joining a thread
	Coding variations
	Creating responsive user interfaces

	Sharing limited resources
	Improperly accessing resources
	A resource testing framework

	Colliding over resources
	Resolving shared resource contention
	Synchronizing the EvenGenerator
	Atomic operations
	Fixing Semaphore

	Critical sections

	Thread states
	Becoming blocked

	Cooperation between threads
	Wait and notify
	Using Pipes for I/O between threads
	More sophisticated cooperation

	Deadlock
	The proper way to stop
	Interrupting a blocked thread
	Thread groups
	Summary
	Exercises

	14: Creating Windows �& Applets
	The basic applet
	Applet restrictions
	Applet advantages
	Application frameworks
	Running applets inside a Web browser
	Using Appletviewer
	Testing applets

	Running applets from the command line
	A display framework

	Making a button
	Capturing an event
	Text areas
	Controlling layout
	BorderLayout
	FlowLayout
	GridLayout
	GridBagLayout
	Absolute positioning
	BoxLayout
	The best approach?

	The Swing event model
	Event and listener types
	Using listener adapters for simplicity

	Tracking multiple events

	A catalog of Swing components
	Buttons
	Button groups

	Icons
	Tool tips
	Text fields
	Borders
	JScrollPanes
	A mini-editor
	Check boxes
	Radio buttons
	Combo boxes (drop-down lists)
	List boxes
	Tabbed panes
	Message boxes
	Menus
	Pop-up menus
	Drawing
	Dialog Boxes
	File dialogs
	HTML on Swing components
	Sliders and progress bars
	Trees
	Tables
	Selecting Look & Feel
	The clipboard

	Packaging an applet into a JAR file
	Signing applets
	JNLP and Java Web Start
	Programming techniques
	Binding events dynamically
	Separating business logic �from UI logic
	A canonical form

	Concurrency & Swing
	Runnable revisited
	Managing concurrency

	Visual programming �and JavaBeans
	What is a JavaBean?
	Extracting BeanInfo �with the Introspector
	A more sophisticated Bean
	JavaBeans and synchronization
	Packaging a Bean
	More complex Bean support
	More to Beans

	Summary
	Exercises

	15: Discovering problems
	Unit Testing
	A Simple Testing Framework
	JUnit

	Improving reliability with assertions
	Assertion syntax
	Using Assertions for Design by Contract
	Check instructions
	Preconditions
	Postconditions
	Invariants
	Relaxing DBC
	Example: DBC + white-box unit testing

	Building with Ant
	Automate everything
	Problems with make
	Ant: the defacto standard
	Ant extensions

	Version control with CVS
	Daily builds

	Logging
	Logging Levels
	LogRecords
	Handlers
	Multiple Handlers
	Writing your own Handlers

	Filters
	Formatters
	Example: Sending email to report log messages
	Controlling Logging Levels through Namespaces
	Logging Practices for Large Projects
	Configuration files
	Rotating log files
	Suggested practices

	Summary

	Debugging
	Debugging with JDB
	Graphical debuggers

	Profiling and optimizing
	Tracking memory consumption
	Tracking CPU usage
	Coverage testing
	JVM Profiling Interface
	Using HPROF
	Thread performance
	Optimization guidelines

	Doclets
	Summary
	Exercises

	16: Analysis and design
	Methodology
	Phase 0: Make a plan
	The mission statement

	Phase 1: What are we making?
	Phase 2: How will we build it?
	Five stages of object design
	Guidelines for object development

	Phase 3: Build the core
	Phase 4: Iterate the use cases
	Phase 5: Evolution
	Plans pay off
	Extreme programming
	Write tests first
	Pair programming

	Strategies for transition
	Guidelines
	1. Training
	2. Low-risk project
	3. Model from success
	4. Use existing class libraries
	5. Don’t rewrite existing code in Java

	Management obstacles
	Startup costs
	Performance issues
	Common design errors

	Summary

	A: Passing & Returning Objects
	Passing references around
	Aliasing

	Making local copies
	Pass by value
	Cloning objects
	Adding cloneability to a class
	Using a trick with protected
	Implementing the Cloneable interface

	Successful cloning
	The effect of Object.clone\(\)
	Cloning a composed object
	A deep copy with ArrayList
	Deep copy via serialization
	Adding cloneability �further down a hierarchy
	Why this strange design?

	Controlling cloneability
	The copy constructor
	Why does it work in C++ and not Java?

	Read-only classes
	Creating read-only classes
	The drawback to immutability
	Immutable Strings
	Implicit constants
	Overloading ‘+’ and the StringBuffer

	The String and �StringBuffer classes
	Strings are special

	Summary
	Exercises

	B: Java Programming Guidelines
	Design
	Implementation

	C: Supplements
	Foundations for Java seminar-on-CD
	Hands-On Java seminar-on-CD 3rd edition
	Thinking in Java Seminar
	Thinking in Enterprise Java
	Designing Objects & Systems Seminar
	Thinking in Patterns with Java
	Thinking in Patterns Seminar
	Design Consulting, Reviews and Walkthroughs

	D: Resources
	Software
	Books
	Analysis & design
	Python
	My own list of books

	Index

