
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Use Your Knowledge of Java to Quickly Master C#

• Expert Recommendations and Comparisons of Each Language

• Download All of the Source Code from www.syngress.com

• Complete, Clear Definitions of the .NET Framework for J2EE Developers

Brian Bagnall

Philip Chen

Stephen Goldberg

Jeremy Faircloth Technical Reviewer

Harold Cabrera Technical Editor

C# Java
Programmers

for

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

223_C#Java_FM.qxd 5/22/02 9:50 AM Page i

223_C#Java_FM.qxd 5/22/02 9:50 AM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

C# Java
Programmers

for

Brian Bagnall

Philip Chen

Stephen Goldberg

Jeremy Faircloth Technical Reviewer

Harold Cabrera Technical Editor

223_C#Java_FM.qxd 5/22/02 9:50 AM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing®,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 JA9CK8HUM2
002 7YQA4FT7MZ
003 PE5ET3K8N6
004 8YG6FTX54A
005 7TBJ45S3KQ
006 SH7T3W2NAR
007 UBT46NEA2P
008 VC29KLBG5R
009 JKR34SDH78
010 TG7BH34WSX

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
C# for Java Programmers

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-931836-54-X
Technical Editor: Harold Cabrera Cover Designer: Michael Kavish
Technical Reviewer: Jeremy Faircloth Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Jonathan Babcock Copy Editor: Mike McGee, Jesse Corbeil
Indexer: J. Edmund Rush

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

223_C#Java_FM.qxd 5/22/02 9:50 AM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Ralph Troupe, Rhonda St. John, Emlyn Rhodes and the team at Callisma for their
invaluable insight into the challenges of designing, deploying and supporting world-
class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin
Votel, Kent Anderson, Frida Yara, Jon Mayes, John Mesjak, Peg O’Donnell, Sandra
Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly,Andrea Tetrick,
Jennifer Pascal, Doug Reil, David Dahl, Janis Carpenter, and Susan Fryer of Publishers
Group West for sharing their incredible marketing experience and expertise.

Jacquie Shanahan,AnnHelen Lindeholm, David Burton, Febea Marinetti, and Rosie
Moss of Elsevier Science for making certain that our vision remains worldwide in
scope.

Annabel Dent and Paul Barry of Elsevier Science/Harcourt Australia for all their help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.And welcome back to Daniel Loh—glad to have you back Daniel!

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress program.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

Thank you to our hard-working colleagues at New England Fulfillment &
Distribution who manage to get all our books sent pretty much everywhere in the
world.Thank you to Debbie “DJ” Ricardo, Sally Greene, Janet Honaker, and Peter
Finch.

223_C#Java_FM.qxd 5/22/02 9:50 AM Page v

223_C#Java_FM.qxd 5/22/02 9:50 AM Page vi

vii

Contributors

Philip Chen (MCP, JCP) is an independent consultant in enterprise Web
infrastructure and distributed application architecture. Philip’s specialties
include J2EE and .NET based server-client application development,
database integration, and technology migration. Philip’s background
includes positions as a senior member of technical staff at SUN
Microsystems and as CTO/VP of Engineering at OnVest.com, an online
financial analysis and investment planning firm. Philip holds a bachelor’s
degree from UC Berkeley and a master’s degree from Stanford. Philip
would like to thank his parents for their motivation and support
throughout his life, and Dr. Si-En Chang and Dr. Liu-Xi Yang for their
tremendous mentorship throughout his technical tenure.

Chris Peiris currently lectures on Distributed Object Technology and
Software Component Technologies subjects at Monash University,
Caulfield,Victoria,Australia. He has been designing and developing MS
Web solutions since 1995. His expertise lies in developing scalable, high-
performance Web solutions for financial institutions and media groups. He
has written many articles, reviews and columns for various online publica-
tions including Developer Exchange (www.devx.com) and Wrox Press.
Recently he co-authored the book C# Web Service with .NET Remoting
and ASP.NET. Chris also presents at seminars at professional developer
conferences including Microsoft Tech Ed 2002 in Brisbane,Australia. He
is at work on his third book on Web Services. Chris’s core skills are C++,
Java, .NET, DNA, MTS, Site Server, Data Warehousing,WAP, and SQL
Server. Chris has a bachelor’s of Computing, bachelor’s of Business, and a
master’s of Information Technology. Currently he is undertaking a Ph.D.
on Web Service Trust Agents. Chris lives in Flemington, Melbourne,
Australia with his family. He would like to thank his friends Sanjeev,
Nilantha, Sumedha, Brumoon, Janik, Rowie,Andy, Natalie, Ben Loke,
Mark Holmes, Ben Morrell, and Tommy.This is a measure of gratitude for
the support, patience, guidance, and their friendship over the years.

223_C#Java_FM.qxd 5/22/02 9:50 AM Page vii

viii

Stephen Goldberg (CCNP, MCP, MCP+I, MCSE) is a Senior
Developer with AT&T Labs. He currently works on the development
team for the AT&T Netclient family of products. Stephen has developed
client applications with several programming languages, including
C/C++, Java, and C#. He is also a Founder and Development Lead for
Absolute IT Solutions LLC, a .NET solutions provider.

Brian Bagnall (Sun Certified Java Programmer and Developer) is the
author of the popular book Core LEGO MINDSTORMS Programming
and co-author of the Sun Certified Programmer for Java 2 Study Guide. Brian
has worked for IBM and other leading computer companies. He is a key
programmer of leJOS, a Java SDK for LEGO MINDSTORMS. Brian has
bridged the world of LEGO MINDSTORMS and .NET by figuring out
how to program the LEGO RCX brick or Cybermaster using C#.

David Chung (MCP, MCT, Sun Certified Java Programmer,WebLogic
Certified Programmer,WebLogic Certified Trainer) is a Senior Consultant
with LearningVoyage. He provides training and consulting services in Java
and distributed object technologies to enterprise clients across the United
States and Canada. David is a frequent conference speaker and author and
is founder of the 380 Java Users group. David holds bachelor’s degrees in
Mathematics and Computer Science from the University of Northern
Iowa. He is the co-author of several Java programming books and training
materials in C and C++. His development experience spans embedded
systems, enterprise systems, and consumer software. David and his wife,
Janice, have eight children whose names begin with ‘J’.

Ed Lee (MCSD, MCSE, Sun Certified Java Programmer) is a consultant
with the professional services division of a leading technology company,
where he provides expert assistance on distributed system architecture and
implementation. He has developed systems for many large enterprises
using various technologies, including Java and C#. Prior to his current
engagement, Ed worked as Vice President of Technology for Netexe, Inc.,
a provider of solutions for handheld and wireless devices, and a pioneer
in using Java and the .NET Framework on mobile devices. Ed holds a

223_C#Java_FM.qxd 5/22/02 9:50 AM Page viii

ix

bachelor’s of Science and a master’s of Business Administration from
Brigham Young University.

Dreamtech Software Inc. is a software solution and service provider
that provides a broad range of services and offers a dynamic blend of con-
sultancy and system integration to help corporations build and implement
innovative e-business strategies.A futuristic vision motivates the globally
acclaimed software products of Dreamtech Software. Dreamtech has
already distinguished itself with an excellent track record of publishing
books on advanced technologies including XML and XSLT,WAP,
Bluetooth, 3G, peer-to-peer networking, C#, and Java.The success of
Dreamtech’s endeavors to provide world-class software products can be
gauged by the fact that its clientele includes some of the most distin-
guished names in IT-related publishing and solutions.

223_C#Java_FM.qxd 5/22/02 9:50 AM Page ix

x

Technical Reviewer and Contributor

Jeremy Faircloth (CCNA, MCSE, MCP+I,A+) is a Systems Analyst for
Gateway, Inc., where he develops and maintains enterprise-wide
client/server and Web-based technologies. He also acts as a technical
resource for other IT professionals, using his expertise to help others
expand their knowledge.As a Systems Analyst with over 10 years of real-
world IT experience, he has become an expert in many areas of IT
including Web development, database administration, programming, enter-
prise security, network design, and project management. Jeremy currently
resides in Dakota City, NE and wishes to thank Christina Williams for her
support in his various technical endeavors.

Harold Cabrera (Sun Certified Java Programmer) was the Technical
Editor of the Sun Certified Programmer for Java 2 Study Guide 2nd Edition
and is a Software Engineer and Co-Founder of IdleWorks Inc. Harold is
the Lead Architect for the software development team at IdleWorks,
which develops distributed processing solutions for large- and medium-
sized businesses with supercomputing needs. Harold holds a bachelor’s
degree in Computer Engineering from the University of Manitoba and is
a recipient of the IEEE Best Thesis Award for his undergraduate thesis
entitled A Distributed Computing System:An Application Written in Java for
Distributed Computing. Harold’s other interests include developing for
mobile devices and Web Services development with J2EE and C#. He
would like to thank his family and friends for their constant support and
encouragement.

Technical Editor and Contributor

223_C#Java_FM.qxd 5/22/02 9:50 AM Page x

Contents

xi

Chapter 1 The .NET Philosophy 1
Introduction 2
Overview of the .NET Platform 2
Examining the .NET Framework Features 4

Multilanguage Development 5
Platform and Processor Independence 6
Automatic Memory Management 7
Versioning Support 7
Support for Open Standards 8
Easy Deployment 9
Interoperability with Unmanaged Code 10
Providing Security 11

Understanding the .NET Architecture 13
The Common Language Runtime 14
The .NET Framework Class Library 15
The Microsoft Intermediate Language (MSIL) 17
Just-In-Time Compilation 17

Following .NET Code from Source to Binary 18
Summary 21
Solutions Fast Track 22
Frequently Asked Questions 24

Chapter 2 Introducing C# 27
Introduction 28
The C# Language 28

Similarities with Java 29
Differences with Java 30

Getting Started 32
Installing the .NET Framework SDK 32

Java Code Cycle

Java Source (.java)

Java Compiler

Java Bytecode (.class)

Class Loader
Bytecode verifier

Java Virtual
Machine
(JVM)

Operating System

Just-in-time
Compiler

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xi

xii Contents

Creating Your First C# Program 33
Compiling and Running the Program 34
Using the Debugger Tool 37

Using Different IDEs 40
Visual Studio.NET 41
Other IDEs 44

A Stroll through C# 45
Creating the Media Player Application 45
Rapid Application Development

with Visual Studio.NET 54
Summary 60
Solutions Fast Track 60
Frequently Asked Questions 62

Chapter 3 Language Fundamentals 63
Introduction 64
Main() Method 64

Command Line Arguments 66
Return Values 69

Single-Line and Multiline Comments 72
XML Documentation Comments 74

Data Types and the Common Type System 82
Variables 85
Constants 87
Assignment Statements 87

Conversions between Data Types 90
Operators 92

Mathematical Operators 92
Assignment Operators 93
Increment and Decrement Operators 95
Relational Operators 96
Logical Operators 97
Bitwise Operators 98
Ternary Operator 99
Operator Precedence 100

Preprocessor Directives 100
#define and #undef 102

Mathematical
Operators

Operator Definition

+ Addition

– Subtraction

* Multiplication

/ Division

% Modulus

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xii

Contents xiii

#if, #elif, #else, and #endif 102
#error and #warning 106
#region and #endregion 107
#line 108

Namespaces 110
Summary 112
Solutions Fast Track 112
Frequently Asked Questions 115

Chapter 4 Programming Structures 117
Introduction 118
Strings 118

The WriteLine Method 118
Creating Strings 119
Verbatim String Literal 123
The StringBuilder Class 123
Using Regular Expressions 126

Flow Control 129
Branch Statements 129

The if/else Statement 129
The switch Statement 130

Iteration Statements 132
The while Loop 133
The do-while Loop 133
The for Loop 133

Jump Statements 134
The goto Statement 134
The break Statement 135
The continue Statement 135
The return Statement 136

Arrays 137
Declaring and Initializing Arrays 137
Using the params Keyword 140
Multidimensional Arrays 141

Rectangular Arrays 141
Jagged Arrays 144

Arrays

■ Standard C# arrays are
identical to their Java
counterparts.

■ C# provides two
different kinds of
multidimensional
arrays, rectangular and
jagged.

■ A rectangular array has
equal dimensions, a
jagged array does not.

■ The params keyword
can be used to specify
that an array of
unknown dimensions
will be passed to a
method.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xiii

xiv Contents

The foreach Statement 147
Indexers 150

Implementing an Indexer 151
Multiple Indexers 155
Multiparameter Indexers 157

Collections 159
Collection Interfaces 163

Exceptions 164
Catching Exceptions 164

The try, catch, finally Blocks 164
Throwing Exceptions 167

Creating New Exceptions 170
Rethrowing Exceptions 173

Summary 175
Solutions Fast Track 175
Frequently Asked Questions 178

Chapter 5 Objects and Classes 179
Introduction 180
Using Classes 180

Access Control 181
Class Modifiers 182
Abstract Classes 186
Sealed Classes 187
Instance Variables 187
Static Variables 189

Constants as Static Members 191
Using Methods 191

Access Modifiers 194
Method Parameters 195

The ref and out Method Parameters 197
Overloaded Methods 199

Creating Objects 202
Constructors 202

Overloading Constructors 204
Static Constructors 206

Destroying Objects 208

NOTE

Only nested classes
permit the use of the
new keyword. The new
modifier specifies that
the class hides an
inherited member by
the same name. Inner
classes and Inheritance
will be discussed in
Chapter 6.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xiv

Contents xv

Memory Management and Garbage
Collection 208

C#’s Destructor 209
The Finalize, Dispose, and Close

Methods 210
The using Statement 211

Summary 214
Solutions Fast Track 214
Frequently Asked Questions 215

Chapter 6 Object-Oriented Programming 217
Introduction 218
Inheritance 218

Defining a Base Class 221
Calling Base Class Constructors 222

Polymorphism 226
Abstract Classes 227
The abstract Modifier 232
The virtual Modifier 234
The override Modifier 237
The new Modifier 241

Inner Classes 244
Using Interfaces 246

Creating an Interface 247
Declaring Interfaces 248
Implementing Interfaces 249

The is Operator 253
The as Operator 258

Explicit Interface Implementation 258
Implementation Hiding 260

Summary 262
Solutions Fast Track 263
Frequently Asked Questions 264

Chapter 7 Other C# Features 267
Introduction 268
Properties 268
Read-Only Fields 271

Frequently Asked
Questions

Q: Does C# support
multiple inheritance?

A: Yes and no—just like
Java, C# allows single
inheritance of classes
and multiple
inheritance of
interfaces.

Q: Does Java support
inner classes?

A: Yes. C# supports only
one kind of inner class
compared to Java’s
four.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xv

xvi Contents

Enumerations 272
Boxing and Unboxing 276

Boxing 277
Unboxing 278

Operator Overloading 279
Unary Operator Overloading 283
Binary Operator Overloading 287
Equals() Method 287

User-Defined Conversions 288
The implicit Operator 289
The explicit Operator 291

Structs 293
Defining Structs 294
Using Structs 297

Summary 301
Solutions Fast Track 301
Frequently Asked Questions 304

Chapter 8 Delegates and Events 305
Introduction 306
Delegates 306
Using Delegates as Callbacks 307

Declaration 308
Instantiation 309
Invocation 311
Implementing Callbacks 312

Using Delegates for Event Handling 316
Event Handling in Java 317
Event Handling in C# 319

Using System.EventArgs 320
Creating and Handling Events 321

Multicasting 328
Order of Operations in Multicasting 331

Advanced Delegate Usage 331
Declaring Delegates as Static Members 332
Delegates and Thread Creation 333

Delegates

■ Delegates are similar to
C/C++ function
pointers.

■ Delegates reference a
method.

■ Delegates are object-
oriented, type-safe,
and secure.

Unboxing

Unboxing is the act of
converting an object back
into a value type. The
syntax for this process
looks very similar to
explicit casting in Java, as
the following C# code
demonstrates:

int x = 29;

object xObj = x; //
Boxing

int x1 = (int)xObj;
// Unboxing

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xvi

Contents xvii

Summary 335
Solutions Fast Track 335
Frequently Asked Questions 337

Chapter 9 Attributes and Assemblies 339
Introduction 340
Working with Attributes 340

Using Attributes 341
Creating Custom Attributes 346

Defining the AttributeUsage Attribute 347
Declaring an Attribute Class 348
Declaring Attribute Class Constructors

and Properties 349
Using Custom Attributes 351

Using Reflection 352
Creating Assemblies 360

Manifest Data 361
Building Assemblies 361

Multiple Module Assembly 362
Versioning 364

Creating Versioned Assemblies 365
Summary 369
Solutions Fast Track 370
Frequently Asked Questions 371

Chapter 10 Multithreading 373
Introduction 374
Threads 374
Creating Threads 375
Managing Threads 380

Using Suspend()/Resume() and Abort() 382
Scheduling Threads 384
Synchronizing Threads 389

Using the lock Statement 389
Using the Monitor Class 391

Avoiding Deadlock and Starvation 395

Developing &
Deploying…

Monitor.Wait()
Parameters

The Wait() method can
take on a variety of
parameters, including an
integer specifying the
number of milliseconds to
wait as well as a TimeSpan
structure. In the event that
the specified time expires
before it is notified by a
corresponding Pulse(),
Wait() returns a boolean
value of false.

Creating Assemblies

■ Assemblies are the C#
equivalent to Java’s
packages and are used
to segment
namespaces.

■ Assemblies in the .NET
architecture can be
written and compiled
in different languages,
and still work together.

■ All information about
an assembly is stored
in the assembly
manifest.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xvii

xviii Contents

Summary 401
Solutions Fast Track 401
Frequently Asked Questions 403

Chapter 11 Working with I/O Streams 405
Introduction 406
File System 406

Directories 406
Files 411

Streams 415
Stream 416
FileStream 418
MemoryStream 419
BufferedStream 423

Encoding Data Types 423
Text 428

StreamReader and StreamWriter 429
StringReader and StringWriter 430

Network I/O 431
Server Side 432
Client Side 435

Synchronous vs.Asynchronous 438
Web Streams 441
Serialization 443

Creating a Serializable Object 443
Serializing an Object 444
Deserializing an Object 445
Transient Data 446
Deserialization Operations 446

Summary 450
Solutions Fast Track 451
Frequently Asked Questions 453

Chapter 12 Creating User Interfaces
with Windows Forms 455

Introduction 456
Windows Form Classes 456

Windows Form Class Hierarchy 457

Debugging…

The Directory Separator

One of the most frequent
bugs when programming
with the file system is the
backslash used to identify
directory structures.
Notice the need to use
two backslashes in the
preceding example. This is
because the backslash is
an escape character, so it
is necessary to nullify the
first by using two
backslashes. An even
better solution is to
indicate a verbatim string
literal by placing the @
symbol in front of the
string, as follows:

String filename =
@"c:\Program Files";

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xviii

Contents xix

Creating a Windows Form Application 458
Using Controls 460

Adding Controls 461
Basic Controls 462

Buttons 462
Textboxes 464
Labels 464

Handling Events 465
Using a Text Editor 467
Using Visual Studio.NET 470

Creating a File Browser 473
Summary 476
Solutions Fast Track 476
Frequently Asked Questions 478

Chapter 13 Web Development with C# 479
Introduction 480
Web Services Overview 480

Using SOAP 481
Creating Web Services 482

Connecting to a Database 483
Building a Web Service 486
Running and Testing Your Web Service 489
Creating the Books Web Service Using
VS.NET 491

Consuming Web Services 495
Web Service Description Language 496
Creating Proxy Objects 498

Using the wsdl.exe Utility 498
Using Visual Studio.NET 499

Web Forms Overview 503
Differences between HTML and Web

Controls 504
Understanding HTML Controls 505
Understanding Web Controls 507

Using Web Form Controls 507
HTML Page Access Web Controls 509

Creating Proxy Objects

To interact with a Web
service you will need to
create a proxy object that
will act as the middleman
between your application
and the service. The proxy
object can be generated
from the WSDL file in two
ways:

■ Using the wsdl.exe
command line utility

■ Using Visual Studio.NET

Financial Calculator

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xix

xx Contents

Data Enabling Controls 509
DataGrid 510
DropDownList 510

Validation Control 511
Required Field Validator 511
RegularExpressions Validator 512

Complex Web Controls 513
Using the AdRotator Control 513
Using the Calendar Control 514

Creating a Web Form Application 515
Summary 522
Solutions Fast Track 522
Frequently Asked Questions 524

Chapter 14 Working with ActiveX,
COM, and Unmanaged Code 527

Introduction 528
Working with Unmanaged Code 529

Interoperability with Unmanaged Code 530
Managed Code Calling an

Unmanaged COM DLL Function 531
Managed Code Calling an Unmanaged

COM Object or an ActiveX Control 531
Unmanaged COM DLL Calling

Managed .NET Code 531
Working with the Platform Invocation Utility 532
Working with COM Components 535

Creating a Simple COM Component 536
Runtime Callable Wrappers 539

Creating a Runtime Callable
Wrapper for a COM Component 541

Building a Client for the RCW 544
Examining Runtime Callable Wrapper

Properties 546
Using Late Binding RCWs 548
Limitations of Using RCWs 551

Unmanaged Code

The interoperability
services in .NET could be
categorized into the
following scenarios:

■ .NET assembly
(managed) calling a
single COM DLL
(unmanaged)

■ .NET assembly
(managed) calling a
COM object or an
ActiveX control
(unmanaged)

■ COM DLL (unmanaged)
calling a .NET assembly
(managed)

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xx

Contents xxi

Working with ActiveX Controls 552
Differences between ActiveX

Controls and Windows Forms Controls 552
Using the ActiveX Control Importer

Utility (AxImp.exe) 553
Using Visual Studio .NET to Import
ActiveX Controls 555

Working with Pointers 559
Unsafe Code 559
The unsafe Keyword 560
The fixed Keyword 561

Summary 564
Solutions Fast Track 564
Frequently Asked Questions 566

Chapter 15 Microsoft Says JUMP—
Java User Migration Path 569

Introduction 570
What Is J#? 571

Features of Visual J# 572
Using Visual J# 573
Creating a Simple Visual J# Application 578
Summary 592
Solutions Fast Track 592
Frequently Asked Questions 593

Appendix A C# Keywords and
Java Equivalents 595

Index 601

What Is J#?

J# is a complete
implementation of the
Java language
specification. J# allows
the majority of existing
Java applications to run
after recompilation or
after binary conversion.

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xxi

223_C#Java_toc.qxd 5/22/02 9:25 AM Page xxii

Welcome to C# for Java Programmers. I think you’ll find that this book will be
both enjoyable and challenging at the same time. It will cover Microsoft’s new plat-
form called .NET and the exciting new language for the platform called C#.
According to Microsoft, the C# language is a simple, modern, object-oriented, and
type-safe programming language derived from C and C++. But looking closely, you
can see that C# also has a lot of similarities with Java. Our main goal here is to teach
you the C# language by leveraging your existing Java skills.

I know, I know, you’re probably wondering why you should learn another lan-
guage when you already know Java and are reasonably comfortable with it.Well, here
are several reasons:

■ First, it’s from Microsoft.When a big company like Microsoft puts most of
their resources into a new technology it’s hard for developers not to take
notice.This new technology will certainly make an impact in the industry.

■ As a programmer, C# is a language that will benefit you if it’s add to your
repertoire.With your Java skills, it’ll be a relatively small leap to learn this
new language.Therefore, learning C# will increase your marketability in the
workplace relatively painlessly.

■ By learning C# and .NET, you’ll have several choices when implementing a
solution for a specific project. For example, you can choose between .NET
and J2EE when it comes to developing XML-based Web services.

■ It’s arguable that Java lacks the performance needed when it comes to
Windows applications development. C# enables you to develop fast

xxiii

Foreword

223_C#Java_fore.qxd 5/22/02 11:44 AM Page xxiii

xxiv Foreword

Windows applications without having to resort to learning the more com-
plicated C++ language. Not only that,Web Services development is a
breeze, and integration with COM and the Win32 API makes this new lan-
guage very appealing.

With the same ease of use as Java, and the raw power of C++, I think that you’ll
definitely like what you’ll get from C#.

For those of you who are not expert with Java, I assure you that there is no need
to worry. Knowing Java is not a pre-requisite for this book. Most of the explanations
will be easy enough to follow. However, since we will be drawing a lot of compar-
isons with Java, you might find the going a little tough at times. If you have a pro-
gramming background in other languages such as C, or C++, then you have nothing
to worry about.At the end of the book, you’ll probably even learn how to program
Java! Two books for the price of one!

All right, having said all of that, I’m sure that you’re all excited and ready to get
started learning C#. Here are the topics we’ll be covering in the book: First, we’ll
learn Microsoft’s .NET strategy and its significance in the IT industry in Chapter 1.
Then, Chapter 2 will provide an overview of the C# language and all of its features.
This chapter will also teach you how to set up all the different tools you’ll need for
developing C# applications.

We’ll then dive into more specifics. Chapter 3 will focus on the language funda-
mentals.You’ll learn the basics of the language starting from the Main() method, to
the common type system, and up to expressions and statements. Chapter 4 will go
into the rest of the C# language. It will discuss strings, arrays, and the different types
of program flow controls. Chapter 5 will introduce objects and classes in C#.The
more advanced object-oriented topics such as inheritance and polymorphism will be
covered in Chapter 6.You will also get to see the use of interfaces and inner classes
in this chapter.

In Chapter 7, we’ll learn the rest of the C# features that aren’t available in Java.
In this chapter you’ll find out about structs, enumerators, and some of the syntactical
sugar that C# provides such as properties and indexers. You’ll also get to see oper-
ator overloading and the concept of automatic boxing and unboxing. Chapter 8 will
discuss delegates and events, which is C#’s way of dealing with event handling.You’ll
also get to see how you can use delegates for callback functions in this chapter. In
Chapter 9 you will discover C#’s method of application packaging with assemblies.
This chapter will also cover how to add metadata information to your program by
using attributes.

www.syngress.com

223_C#Java_fore.qxd 5/22/02 11:44 AM Page xxiv

www.syngress.com

Next we’ll look into some of the classes available in the .NET Framework Class
Library. Chapter 10 will look at the classes available in .NET for multithreading pro-
gramming. Then, in Chapter 11, you’ll learn how to work with I/O streams in
.NET.This chapter will show you all the classes offered for handling input and
output.

The next three chapters will go into creating different types of applications you
can develop with C#. Chapter 12 will show you how to create a graphical user
interface using Windows Forms. In this chapter you will gain knowledge of how to
create Windows applications by using some of the objects and components available
in Windows Forms. Chapter 13 will cover Web development with C#. It will
demonstrate how to create Web Services and how to build Web applications with
Web Forms. Chapter 14 will illustrate C#’s support for COM,ActiveX, and pointers.
In this chapter you’ll discover all the necessary tools for interfacing with applications
not written for the .NET Framework.

Finally, Chapter 15 will discuss Microsoft’s JUMP (Java User Migration Path)
strategy. It will give you a preview of J#, which is another tool available for Java
programmers who wish to work with the .NET platform using the same Java syntax.
The book concludes with an appendix of C# keywords and their Java equivalents.

You might think that this is a lot to cover, but don’t loose sleep over it; after all,
you can go at your own pace.There are also some exercises you can do; one of the
main features of this book is that it provides you with extensive code examples.These
code examples will be very useful for enhancing your understanding of how to build
C# applications.Therefore, I highly suggest that you go through them.You can
obtain the source code for each chapter by registering at the Syngress Web site
(www.syngress.com/solutions).

All the source files are packaged in one Zip file.The code files for each chapter
will be located in their own directory.Any further directory structure depends on the
projects that are presented within the chapter.

The filenames for each example will be the same as the program class name. In
some cases where the same class name is used several times in the chapter, the file-
name will be appended with the -ex#. For example, if a class named Point is used in
three different examples, the examples will be named Point-ex1.cs, Point-ex2.cs, and
Point-ex3.cs.

I hope that you enjoy this book and experience the same pleasure I had in dis-
covering the C# language. I hope that you’ll use this book not only as a teaching

Foreword xxv

223_C#Java_fore.qxd 5/22/02 11:44 AM Page xxv

xxvi Foreword

tool, but also as a valuable resource when developing. Okay, enough with the pre-
amble—we have a lot of learning to do. Have fun learning C#, and please turn your
books to Chapter 1.

Harold Cabrera,Technical Editor and Contributing Author
B.Sc. Comp. Eng., Sun Certified Java Programmer

Software Engineer, IdleWorks Inc.

www.syngress.com

223_C#Java_fore.qxd 5/22/02 11:44 AM Page xxvi

The .NET Philosophy

Solutions in this chapter:

■ Overview of the .NET Platform

■ Examining the .NET Framework Features

■ Understanding the .NET Architecture

■ Following .NET Code from Source
to Binary

Chapter 1

1

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_01.qxd 5/21/02 3:32 PM Page 1

2 Chapter 1 • The .NET Philosophy

Introduction
Before we start our journey into the C# language, let’s step back and look at the
bigger picture. C# is a key part of Microsoft’s new .NET initiative.The
Redmond view of .NET is that is provides a development platform for the
Internet, while at the same time providing new application programming inter-
faces (API) to the Windows operating system. Internet development can come in
many forms, but the key components of the .NET platform are Web Services,
which will be discussed in this chapter.

The .NET platform is much more than a new language, a software develop-
ment kit (SDK), or even an operating system. It offers powerful new services, a
new processor-independent binary format, new managed languages, managed lan-
guage extensions to existing languages, and more.These new tools will empower
you to create amazing Internet applications, but effective use of these tools
requires a firm background knowledge of the .NET platform.

According to Microsoft, they are devoting 80 percent of the company’s
resources to the development of .NET.This results in a platform that encom-
passes and touches almost all segments of the computer industry. For the pro-
grammer segment of the industry, C# is the most important tool. C# is designed
specifically to create .NET applications; therefore it is essential that we learn the
relevant aspects of .NET before we get started.This chapter discusses the overall
.NET platform and its importance to application development. It introduces not
only technological concepts, but also the terminology used to describe them. It
provides a strong understanding of the internal workings of .NET so you can
understand concepts described in the remainder of the book. Let’s take our first
few steps.

Overview of the .NET Platform
The philosophy behind the .NET platform is that the world of computing is
changing from one of PCs connected to servers through networks such as the
Internet, to one where all manner of smart devices, computers, and services work
together to provide a richer user experience.The .NET platform is Microsoft’s
answer to the challenges imposed by this new paradigm.The .NET platform has
several broad components.The reality of the .NET platform is that it is not a
small, focussed product; rather, it includes many different components, all thrown
into the .NET category.This can make things confusing, especially when the
word .NET is bandied about so much on the Internet.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 2

www.syngress.com

The core of the .NET platform includes programming languages, the .NET
Common Language Runtime (CLR), and the .NET Framework Class Libraries.
The other components may be required by specific applications, but they are not
a necessary part of all .NET applications. Looking at the overall picture, .NET
can be broken down to the following different product groups:

■ The .NET Framework infrastructure for the overall .NET platform. The
Common Language Runtime (CLR) and the Framework Class Library
(including Windows Forms,ADO.NET, and ASP.NET) are used to
create Web services,Web applications, and Windows applications.The
framework supports a wide set of languages including C#, J#, and Visual
Basic.NET.

■ A commercial Web services initiative called .NET My Services (previously
called Project Hailstorm), which supplies developers with the necessary
building blocks to create user-centric Web applications. My Services also
includes Passport, which is a way for users to consolidate their identities
and other information in data repositories on the Internet.This project
is actually an attempt to package some of the most crucial Web Services
under the Microsoft brand name.

NOTE

As of this writing, Microsoft has announced that it will discontinue a
large part of the .NET My Services project due to lack of industry support
(Passport will continue). According to Gartner Group, it turns out compa-
nies were not very enthusiastic about a large centralized customer
database controlled by Microsoft.

■ The .NET Compact Framework, which is a scaled-down version for
devices running the upcoming Windows CE.NET operating system.
This includes cell phones, PDAs, set-top boxes, and game boxes.

■ The Microsoft.NET Enterprise Servers, which is a range of products
from messaging and collaboration to database management, and for
e-commerce and mobile information access.These applications are
based on the .NET Framework, including new versions of SQL Server,
Exchange, and Mobile Information Server among others.They are all
XML-enabled and integrated into the .NET platform.

The .NET Philosophy • Chapter 1 3

223_C#Java_01.qxd 5/21/02 3:32 PM Page 3

4 Chapter 1 • The .NET Philosophy

Most of the product groups that make up the .NET platform have a Java
counterpart.Although it is not exactly a one-to-one comparison, the Java plat-
form also provides a rich set of products that match the .NET offering. For
example, you can compare the .NET Compact Framework to J2ME (Java 2
Micro Edition). Similarly you can compare .NET to J2EE (Java 2 Enterprise
Edition), as a tool for building XML-based Web services. It is clear the scope of
.NET is huge, but this book will focus on the .NET Framework and its similarity
to the Java platform.

When we talk about Java, we use it to refer to three distinct things that make
up the Java platform. First, you can think of Java as an object-oriented program-
ming language. Second, there are the Java Foundation Classes that make up a
comprehensive set of class libraries. Finally, the Java Virtual Machine (JVM) is
used to run and execute Java byte-code. If you compare the .NET Framework to
Java, there is one major difference that stands out.The .NET Framework offers a
wide set of languages, whereas the Java platform only supports one, though as
you will soon learn other languages can develop Java-compliant byte-code too.
Let’s proceed by looking at the different features that make up the framework.

Examining the .NET Framework Features
The .NET Framework contains many features common to the JVM, and offers
all the benefits of a modern object-oriented programming language.This frame-
work acts as a layer below each of the .NET languages (C#, C++,VB.NET).The
.NET Framework Class Library exposes the features of the Common Language
Runtime in much the same way that the Java Foundation Classes utilize the fea-
tures of the Java Virtual Machine.

This architecture gives a great number of benefits, not the least of which is a
consistent API. By writing to the Common Language Runtime and using the
.NET Framework Class library, all application services are available via a common
object-oriented programming model. One advantage of this is that it provides the
ease of use that you’re familiar with in Java and brings it to the Windows plat-
form. For example, today some Windows functions are accessed via DLL calls
using the C-based API and other facilities are accessed via COM objects, making
the developer do the necessary legwork to make everything work together
smoothly.The .NET Framework greatly simplifies the efforts that were required
when writing Windows applications, or for that matter, almost any Win32 and
COM project. Developers no longer need to be a Windows or COM architec-
ture guru with an in-depth understanding of GUIDs, IUnknown,AddRef,

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 4

The .NET Philosophy • Chapter 1 5

Release, HRESULTS, and so on. .NET doesn’t just hide these from the devel-
oper; in the new .NET Framework, these concepts simply do not exist at all.This
means that by using methods and design philosophies you’re familiar with in Java,
you’ll be able to create Windows applications without having to learn the more
complicated Microsoft Foundation Classes (MFC).

Of course being able to create Windows application more easily is not all that
.NET has to offer. In fact Windows is not the only platform that .NET is tar-
geting.There are projects in the works for porting .NET to several other plat-
forms such as UNIX. Other features also offered by the .NET Framework
include shorter development cycles (code reuse, fewer programming surprises,
support for multiple programming languages), easier deployment, fewer data
type–related bugs due to integral type safety, reduced memory leaks thanks to the
garbage collector, and, in general more scalable, reliable applications.The fol-
lowing sections will outline these features in more detail.

Multilanguage Development
One feature that separates .NET from Java is its support for multiple languages.
Not only does it support multiple languages, it allows these languages to be inte-
grated together. For example, you can easily sub-class a VB.NET class from C#
and then use the resulting class in managed C++. Since many languages target
the .NET Common Language Runtime, it is now much easier to implement
portions of your application using the language that’s best suited for it.

Although there are projects out there that allow other languages to compile
to Java byte-code (see the Note sidebar in this section), most of them are merely
interpreters or scripts written in Java, which don’t allow them to use any Java fea-
tures.The .NET Framework allows languages to be integrated with one another
through the use of the Microsoft Intermediate Language (MSIL).All languages
designed for .NET are compiled to MSIL, which is then executed by the CLR—
a process that is analogous to Java source code being compiled to byte-code that
is then executed by the JVM.The MSIL, or IL for short, contains instructions
that appear similar to assembly code, such as pushing and popping values and
moving variables in and out of registers, and it also contains instructions for man-
aging objects and invoking their methods, manipulating arrays, and raising and
catching exceptions.This gives the framework a very flexible ability to mix and
match the languages being used in an application that doesn’t exist in Java.We’ll
discuss compilation in more detail later on in this chapter.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 5

6 Chapter 1 • The .NET Philosophy

NOTE

For a list of languages for the Java Virtual Machine please visit
http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html.

Microsoft is also providing the Common Language Specification (CLS), which
describes how other compilers must behave in order to output IL code that will
allow them to integrate well with other .NET languages. Microsoft currently
provides several compilers that produce IL code targeting the .NET CLR: C++
with managed extensions, C#, J#, JScript, and Visual Basic. In addition, several
companies other than Microsoft are producing compilers for languages that also
target the .NET CLR. Currently there is support for COBOL, Eiffle, Fortran,
Perl, Python, and Scheme with more in the pipeline. For a current list check
http://msdn.microsoft.com/vstudio/partners/language/default.asp.

Platform and Processor Independence
Since the MSIL is targeted for the Common Language Runtime, it means that it
is processor- and platform-independent. Like Java byte-code, the MSIL is much
higher-level than most machine languages.The CLR is analogous to the JVM, so
a managed .NET application can execute on any platform that supports the
.NET CLR.The .NET Framework also provide something called as the Common
Type System (CTS) that defines the size of the base data types that are available to
.NET applications run within the CLR.This means that the application devel-
oper is insulated from the specifics of any hardware or operating system that sup-
ports the .NET platform.

At the time of this writing a full version of the .NET Framework is only
available on the Windows platform. However, Microsoft is also involved in several
projects that are trying to port .NET to several other operating systems.
Currently Microsoft has an agreement with Corel to develop a shared-source
implementation of a C# compiler and the .NET Framework infrastructure com-
ponents for the FreeBSD version of UNIX.

Also, Microsoft has given the go-ahead to an open source version of .NET
being planned by Ximian, the developer of the popular GNOME user interface
for Linux.You can find the project, called Mono, at www.go-mono.net.The
group is developing a C# language compiler, along with the .NET Common
Language Runtime.Work has also begun on the Base Class Library.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 6

The .NET Philosophy • Chapter 1 7

It is therefore safe to say that the .NET Framework is designed to equal Java’s
write once, run anywhere philosophy and has the potential to rival Java’s platform
independence.

Automatic Memory Management
Java programmers have always enjoyed not having to worry about memory man-
agement.To some, however, the mere mention of a memory leak problem brings
forth images of endless hours of debugging if you’ve come from a development
environment that did not offer automatic memory management. Even those for-
tunate enough to work within a “garbage collector” environment have likely
spent some time trying to hunt down obscure bugs caused by tricky code that
circumvented the resource management methodology.The .NET Framework has
brought to the table automatic memory management, which will alleviate most
of the headaches associated with manual memory allocation and de-allocation
from the programmers.

If you have some Visual Basic or COM background, you are familiar with the
reference counting technique.This technique recovers the memory used by an
object when no other object has a reference to it, essentially when it’s no longer
needed.Although this sounds perfect in theory, in practice it has a few problems.
One of the most common is a circular reference problem where one object con-
tains a reference to another object which itself contains a reference back to the
first object.When the memory manager looks for objects that are not in use,
these objects will always have a reference count greater than zero, so unless they
are implicitly deconstructed, their memory may never be recovered.

For a C or C++ programmer—accustomed to ensuring that objects are
properly destroyed, essentially managing memory on their own—this sounds per-
fectly normal, and a good reason for not trusting anyone else to take care of
managing resources. However, in the .NET environment, Microsoft is striving to
make developing software easier. Much like Java, the CLR employs a garbage col-
lector to collect objects and free up memory that is no longer in use. In Chapter
5 you will see how garbage collection works in .NET, and the improvements that
have been made over strict reference counting or manual memory management
approaches.

Versioning Support
A common problem with Windows development occurs when applications con-
flict with each other because of a shared Dynamic Link Library (DLL).This

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 7

8 Chapter 1 • The .NET Philosophy

common dilemma has been coined “DLL Hell”.This scenario doesn’t really apply
when you’re developing in Java but if you have some experience in Windows
development chances are that you’ve encountered this problem before. For the
uninitiated, you’ll find yourself in DLL Hell someday when a customer installs a
software package that uses one of the same DLLs as your application. However,
your application used version 1.0 of this DLL, and the new software replaces it
with version 1.1.We developers all always make sure everything is 100 percent
backwards compatible, right? The new DLL makes your application exhibit some
strange problem or perhaps just stop working altogether.After a lot of investiga-
tion, you figure out what the offending DLL is and have the customer replace the
new one with the version that works with your software. Now their new software
doesn’t work… welcome to DLL Hell.When DLLs where invented, disk space
was scarce and reusing DLLs seems like a good idea. So now many developers
resort to simply installing every DLL their application requires in the application
directory so that it will be found first when the application loads the libraries.This
defeats the purpose of shared libraries, but it is one way around the problem.

The .NET architecture now separates application components so that an
application always loads the components with which it was built and tested. If the
application runs after installation, the application should always run.This is done
with assemblies, which are .NET-packaged components that are similar to Java’s
JAR files.Although current DLLs and COM objects do contain version informa-
tion, the OS does not use this information for any real purpose.Assemblies con-
tain version information that the .NET Common Language Runtime uses to
ensure that an application will load the components it was built with.You’ll get
to learn more about assemblies and versioning in Chapter 9.

Support for Open Standards
In today’s world, not every device you may want to work with is going to be
running a Microsoft OS or using an Intel CPU. Realizing this, the architects of
.NET are relying on XML and its most visible descendant, Simple Object Access
Protocol (SOAP), an emerging standard for sending messages across the Internet
that activates programs or applications regardless of their underlying infrastruc-
ture. SOAP will provide the means for disparate systems to exchange information
easily, but even more, SOAP allows you to invoke methods on remote systems
and return the results. Because SOAP is a simple text-based protocol that uses
HTTP for transport, it can easily pass through firewalls, unlike Java RMI, DCOM
or CORBA objects.This makes .NET as a very suitable platform for creating dis-
tributed applications and Web services.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 8

The .NET Philosophy • Chapter 1 9

Other standards employed by the .NET platform include Universal
Description, Discovery and Integration (UDDI), a directory of companies and
their XML interfaces and the Web Services Description Language (WSDL),
which describes what a piece of application code can do. By basing much of
.NET on open standards and by submitting the proposed draft standards for C#
and the .NET Common Language Infrastructure to ECMA (an international
standards organization), Microsoft hopes to see its version of the future of soft-
ware adopted beyond its own domain.

Easy Deployment
Today, developing installations for Windows-based applications can be incredibly
difficult, to the point that most companies use third-party tools for developing
their installation programs, and even then it’s not pleasant.There are usually a
large number of files to be installed in several directories, various Registry set-
tings, installation of required COM components, and shortcuts that need to be
created, and so on. Completely uninstalling an application is nearly impossible,
most leave bits and pieces of themselves around even if they provide an uninstall
feature.With the release of Windows 2000, Microsoft introduced a new installa-
tion engine that helps with some of these issues, but it is still possible that the
author of a Microsoft Installer Package may fail to do everything correctly. Even
with those third party tools specifically designed to make developing installation
programs easier, it is still frequently a monumental task to correctly install a
retrieval application.

www.syngress.com

Using the Visual Studio.NET Setup Tools
Realizing that deploying applications and authoring installation pack-
ages is frequently a monumental task, the Visual Studio.NET team inte-
grated a number of setup tools into the Visual Studio.NET environment.

After you have completed your Visual Studio.NET project develop-
ment, start a new project from the File menu. Choose Setup and
Deployment Projects from the selection list.

You’ll see a number of setup project options listed:

Developing & Deploying…

Continued

223_C#Java_01.qxd 5/21/02 3:32 PM Page 9

10 Chapter 1 • The .NET Philosophy

The .NET design team must have felt the same way about this problem,
because .NET plans to do away with these issues for good. For Java developers
this is not an issue but if you’ve ever been intimidated about writing to the
System Registry then this is great news.Your .NET components are neatly pack-
aged and are not referenced in the Registry, thanks to the use of metadata and
reflection, components are self-describing. In fact, installing many .NET applica-
tions will require no more than copying their files to a directory, and uninstalling
an application will be as easy as deleting those files.

Interoperability with Unmanaged Code
Since Windows is still the primary platform for .NET, Microsoft has bundled sev-
eral tools that will allow you to support legacy COM applications.As you can
probably guess, unmanaged code is code that isn’t managed by the .NET Common
Language Runtime.This means that this code is run outside of the CLR and
therefore doesn’t receive certain advantages, such as the Common Type System
and Automatic Memory Management. Similar functionality can be found in Java
through the Java Native Interface (JNI), which allows you to extend the func-
tionality of your application by calling native code.The .NET Framework comes
with a set of tools that makes this very easy when it comes to dealing with COM
components.You will probably end up using unmanaged code in a couple of dif-
ferent situations:

■ Calling DLL functions There is a lot of functionality locked inside
DLLs today. Not every company is going to rush to deliver a .NET

www.syngress.com

■ Cab Project
■ Deploy Wizard
■ Merge Module Project
■ Setup Project
■ Setup Wizard
■ Web Setup Project

Using the wizards, you can select the Visual Studio project you want
to use and have a setup or deployment project created automatically. If
the defaults are not sufficient for your needs, you can use the new setup
project as a basis for creating your custom setup or deployment.

223_C#Java_01.qxd 5/21/02 3:32 PM Page 10

The .NET Philosophy • Chapter 1 11

component version of their products, so if you need to interface with
them, you’ll be calling unmanaged code.

■ Using COM components This is likely to be for pretty much the
same reasons you might be required to call DLL functions.

■ Calling .NET services from COM components Although this
sounds a little odd, it is possible.A COM client can be made to call a
.NET component as though it was a COM server.

Here’s a little more information on the COM interoperability issue.When a
new piece of technology is introduced, legacy support is one of the main things
it needs in order to gain acceptance and adoption in the industry. Microsoft
didn’t want to force companies to abandon their existing COM components;
especially because many of Microsoft’s own products are COM-based today.
COM components interoperate with the .NET runtime through an interop layer
that handles all the work required when translating messages that pass back and
forth between the managed runtime and the COM components operating as
unmanaged code.

On the other side of the coin, companies with a vested interest in COM
technology might want to use a few bits and pieces from the .NET platform,
sticking a toe in before taking the plunge. COM clients can easily interface with
.NET components through the COM interop layer.

Providing Security
Distributed component-based applications require security, and thus far Microsoft
hasn’t had a lot of positive feedback about its products’ security features.
Fortunately, the .NET designers decided to take a new approach, different than
traditional OS security, which provides isolation and access control based on user
accounts. Like the model used by Java, where code that is not trusted is run in a
“sandbox” with no access to critical resources, the .NET Framework provides a
fine-grained control of application security.

Security for .NET applications starts as soon as a class is loaded by the CLR.
Before the class loader instantiates a class, security information—such as accessi-
bility rules and self-consistency requirements—are checked. Calls to class methods
are checked for type safety. If you’ve ever heard of a security vulnerability caused
by a “buffer overrun,” you can understand why this is important.With verified
code, a method that is declared as taking a 4-byte integer parameter will reject an
attempt to call it with an 8-byte integer parameter.Verification also prevents

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 11

12 Chapter 1 • The .NET Philosophy

applications from executing code at a random location in memory, a common
tactic in buffer overflow exploits.

Additionally, as code requests access to certain resources, the class credentials
are verified. .NET security crosses process boundaries and even machine bound-
aries to prevent access to sensitive data or resources in a distributed application
environment.The following are some of the basic elements of the .NET security
system:

■ Evidence-based security is a new concept introduced by the
.NET Framework. An assembly contains several important pieces of
information that can be used to decide what level of access to grant the
component. Some of the information used includes what site the com-
ponent was downloaded from, what zone that site was in, (Internet,
intranet, local machine, and so on) and the strong name of the assembly.
The strong name refers to an encrypted identifier that uniquely defines
the assembly and ensures that it has not been tampered with.

■ The .NET Common Language Runtime further provides secu-
rity using a Policy-Driven Trust Model Using Code Evidence. It
sounds worse than it really is. Essentially this is a system of security poli-
cies that can be set by an administrator to allow certain levels of access
based on the component’s assembly information.The policies are set at
three levels: the enterprise, the individual machine, and the user.

■ Calling .NET Framework methods from the Base Class Library
get the benefits of built in security. That is, the developer doesn’t
have to make explicit security calls to access system resources. However,
if your components expose interfaces to protected resources, you will be
expected to take the appropriate security measures.

■ Role-based security plays a part in the .NET security scheme.
Many applications need to restrict access to certain functions or
resources based on the user, and .NET introduces the concepts of identi-
ties and principals to incorporate these functions.

■ Authentication and authorization functions are accessed
through a single API. These functions can easily be extended to
incorporate application-specific logic as required.Authentication
methods include basic operating system user identification, basic HTTP,
ASP.NET forms, Digest and Kerberos, as well as the new .NET service,
Microsoft .NET Passport.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 12

The .NET Philosophy • Chapter 1 13

■ Isolated storage is a special area on disk assigned to a specific
assembly by the security system. No access to other files or data is
allowed, and each assembly using isolated storage is separated from each
other. Isolated storage can be used for saving a components state, or
saving settings, and can be used by components that do not have access
to read and write files on the system.

■ A robust set of cryptographic functions that support encryp-
tion, digital signatures, hashing, and random-number generation
are included in the .NET Framework. These are implemented
using well-known algorithms, such as RSA, DSA, Rijndael/AES,Triple
DES, DES, and RC2, as well as the MD5, SHA1, SHA-256, SHA-384,
and SHA-512 hash algorithms.Additionally, the XML Digital Signature
specification, under development by the Internet Engineering Task Force
(IETF) and the World Wide Web Consortium (W3C), is also available.
The .NET Framework uses these cryptographic functions to support
various internal services.The cryptographic objects are also available in
the Base Class Library for developers who require this functionality.

Understanding the .NET Architecture
Let’s take a closer look at the inner workings of .NET Framework.The diagram
in Figure 1.1 shows the .NET Framework architecture. Essentially, the .NET
families of languages are each compiled into the Microsoft Intermediate
Language according to the Common Language Specification.These languages are
supported by a rich set of class libraries intended for Web Services,Web Forms,
and Windows Forms application development. Plus another layer of data and
XML classes for communication and for designing applications with n-tier archi-
tectures. Finally, the Base class library layer is also provided for lower level func-
tions such as IO, threading, string, net, etc. Collectively these classes are called the
.NET Framework Class Library, which is very extensive and facilitates rapid devel-
opment of applications. Lastly, the most important layer of the .NET Framework
is the Common Language Runtime, which is responsible for the execution of
each program.Visual Studio.NET is not required in order to develop .NET
Framework applications, however it does offer an extensible architecture that
makes it an ideal choice for developing .NET software.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 13

14 Chapter 1 • The .NET Philosophy

The Common Language Runtime
The heart of the .NET Framework is the CLR. Similar in concept to the Java
Virtual Machine, it is a runtime environment that executes MSIL code.The fol-
lowing is a list of the most important features the CLR has to offer.

■ Conversion of MSIL code into native code for the platform in which
the application is executing

■ Automatic memory management including garbage collection

■ Providing security restrictions on applications being executed

■ Version control when applications are being loaded and executed

■ Integration of code written in various languages

Unlike the Java environment, which is the concept of one language for all
purposes, the .NET platform supports multiple programming languages through
the use of the CLS, which defines the output required of compilers that want to
target the CLR.The CLS provides the minimum requirements for being a .NET
language by outlining a series of basic rules.

Along with language independence, the .NET Framework also supports lan-
guage integration. Compilers that conform to the CLS can create objects that can
interoperate with one another.All .NET applications, regardless of their source

www.syngress.com

Figure 1.1 The .NET Platform Architecture

Common Language Specification (CLS)

Data and XML Classes
(ADO.NET, SQL, XML, etc.)

Windows Forms Web Services Web Forms

Base Class Library
(IO, threading, string, net, security, collections, etc.)

Common Language Runtime (CLR)

VB.NET Managed
C++

C# J# Other .NET
Languages

.NET Framework

Visual

Studio

.NET

223_C#Java_01.qxd 5/21/02 3:32 PM Page 14

The .NET Philosophy • Chapter 1 15

languages all share a Common Type System.What this means is that you no
longer have to worry when doing development in multiple languages about how
a data type declared in one language needs to be declared in another.Any .NET
type has the same attributes regardless of the language it is used in. Furthermore,
all .NET data types are objects, derived from System.Object. Since all data types
derive from a common base class, they all share some basic functionality, for
example the ability to be converted to a string, serialized, or stored in a collection.

When you set your compiler to generate the .NET code, it runs through the
CTS and inserts the appropriate data within the application for the CLR to read.
Once the CLR finds the data, it proceeds to run through it and lay out every-
thing it needs within memory, declaring any objects when they are called (but
not before).Any application interaction, such as passing values from classes, is also
mapped within the special data and handled by the CLR.

The .NET Framework Class Library
The .NET Framework Class Library (FCL) provides access to the system function-
ality through a set of classes, interfaces, and value types, which are designed to be
the foundation on which .NET applications are built.The very extensive library
will allow you to focus on building applications very rapidly without having to
worry about some lower level functions that are already provided by the Base
Class Library (BCL) such as IO, threading, network communication, string
manipulation, security management, etc.This Base Class Library, which is the
lowest lever of the FCL, provides similar sets of classes as its Java counterpart. For
the most part the class names only differ in capitalization and that means it will
be very familiar for Java programmers.

Above the BCL layer are a set of classes for data management and XML
manipulations.This is essential for creating distributed applications and designing
n-tier architectures.With a set of classes using the Structured Query Language
(SQL) standard and ADO.NET for data management, you can easily manipulate
persistent data and interface with databases.Also, the FCL has classes that support
the open standard of the Extensible Markup Language (XML). It has a rich set of
classes for parsing, manipulating XML data and providing translations.

The Framework Class Library also has a separate layer for technologies specif-
ically geared towards creating Windows Forms,Web Forms, and Web Services.
With a set of class libraries having a hierarchy similar to Java’s AWT or Swing,
.NET offers the same Rapid Application Development techniques to building
Web and Windows applications that Java programmers are used to.There are also
several tools and classes that will help you create Web services, which allow you

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 15

16 Chapter 1 • The .NET Philosophy

to expose your object’s functionality over the Internet with the use of HTTP and
SOAP as the underlying communications protocols.

Since all .NET languages share the same common set of libraries, the code
being executed by your C# program when it uses one of these classes is the same
code being executed by a program written in another language.This means that
all languages that target the .NET environment essentially share the same capabil-
ities, except that they have different syntax.

Some people will wonder why we even have different languages if they all
have the same capabilities.A few reasons immediately spring to mind:

■ Programmers don’t like change.

■ Programmers usually have a favorite language.

■ Programmers don’t like change…

Imagine if Microsoft had come out with all the good things in .NET, but said
that in order to use it, we all had to learn a new language. Lots of people might
have never even given it an honest look unless forced by their employers. Making
it available for all languages makes it seem less like the chore of learning a new
language and more like the excitement of receiving a new library with tens of
thousands of functions that will make your life as a developer easier.This also
gives you the flexibility to choose a language that might be better suited for a
specific application.

www.syngress.com

Using the Framework Class Library APIs
I don’t know a single Java programmer that programs without having
the Java APIs open in another window. With the massive volume of
classes available (and not to mention all the different methods) it is
impossible to have all of them committed to memory. Therefore, when
you’re developing in C#, it is very useful to have the .NET Framework
Class Library at your disposal. You can find the APIs for the FCL by
searching the Microsoft Developer’s Network (http://msdn.microsoft
.com) or by following this link: http://msdn.microsoft.com/library/default
.asp?url=/library/en-us/cpref/html/cpref_start.asp

Developing & Deploying…

223_C#Java_01.qxd 5/21/02 3:32 PM Page 16

The .NET Philosophy • Chapter 1 17

The Microsoft Intermediate Language (MSIL)
When you build your C# application, it is compiled to the Microsoft
Intermediate Language. Similar to Java’s byte-code, the IL provides portability to
the .NET Framework and is also the key to the framework’s language interoper-
ability. However, this means that the IL code is not a portable executable file and
needs the CLR in order for it to run.The IL is defined in the Common
Language Specification. It is an amalgam of a low-level language similar in many
ways to a machine language and a higher object language.You can even make a
claim of being some sort of .NET wizard by writing your applications directly in
IL, much as you can write directly in assembly language.Thankfully, this is not
necessary for most purposes.

The .NET Framework manages many of its cross-language features through
the IL. Cross-language functionality is enabled because the IL provides metadata
information that handles the entire translation. For instance, with an Exception
object defined by IL, the same object can be caught regardless of the .NET lan-
guage used.Your component written in C# can raise an exception that can be
caught by the VB.NET application using it. No more worries about different
calling conventions or data types, just seamless interoperability.

NOTE

Metadata is information describing the data associated with it. You’ll get
to learn more about metadata in later chapters.

Cross-language inheritance is another feature made possible by the use of IL.
You can now create new classes based on components written in other languages,
without needing the source code to the base component. For example, you can
create a class in C# that derives from a class implemented in C++.

Just-In-Time Compilation
After compiling your program, the IL code is saved in a file on disk. Before the
application gets executed, the CLR performs another compilation known as Just-
In-Time (JIT) compilation.The CLR utilizes a JIT compiler to compile the IL
code again, which can then be executed. Each method will get compiled once as
it gets called within a program. Subsequent calls to the same method will not

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 17

18 Chapter 1 • The .NET Philosophy

have to undergo the same compilation; therefore there is only one overhead in
this process. In .NET, you currently have three types of JIT compilers:

■ Pre-JIT This JIT compiles an assembly’s entire code into native code at
one stretch.You would normally use this at installation time.

■ Econo-JIT You would use this JIT on devices with limited resources. It
compiles the IL code bit-by-bit, freeing resources used by the cached
native code when required.

■ Normal JIT The default JIT compiles code only as it is called and
places the resulting native code in the cache.

In essence, the purpose of a JIT compiler is to bring higher performance to
interpreted code by placing the compiled native code in a cache, so that when
the next call is made to the same method, the cached code is executed, resulting
in an increase in application speed.

Following .NET Code
from Source to Binary
Let’s take a look at what’s really going on with a .NET application from code to
execution.We’ve already covered that the compiler is going to transform your
source code into MSIL, now we’ll take a look at the whole code cycle from
compilation all the way to execution.

As mentioned before, MSIL is not native code and cannot be executed
without the CLR.What actually gets generated is a small wrapper around three
blocks of data.This wrapper is called a Portable Executable (PE), which is the
binary format used to contain Windows applications.

The PE wrapper is an .exe file that has a standard Win32 executable header. It
contains a stub that specifies it needs the CLR to run the program, or if the
CLR is not available it will say something like “This program requires .NET”.
This is similar to the old MS-DOS days, when you tried to run a Windows
application from DOS and got the message saying,“This program requires
Microsoft Windows”.

Within the PE wrapper, you’ll find the CLR header followed by the MSIL
itself. It also contains the metadata information describing the contents of the
assembly such as method names, parameters, return types, etc.A manifest is also
included that describes the other necessary components or files the executable

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 18

The .NET Philosophy • Chapter 1 19

requires in order to run. Figure 1.2 shows the entire process of compiling and
executing your .NET programs.

A C# application (or any other .NET language) goes through the following
process before being executed on the Windows platform.

1. The application is developed using C# or any other .NET language.

2. The source is compiled by the C# compiler (or any other CLS-com-
pliant compiler) into an executable (.exe) file.

3. The .exe file produced by the compiler has a standard PE (portable exe-
cutable) header and contains the MSIL code, metadata, and manifest.

4. When the compiler creates the output, it also imports a function called
_CorExeMain from mscoree.dll, which is the main .NET execution
engine, or basically the CLR.

5. Upon execution, the operating system loads the PE as well as any other
DLL the application needs, such us the mscoree.dll that exports the
_CorExeMain function.

6. The operating system loader then jumps to the entry-point inside the
PE.And since the OS can’t execute MSIL code, the entry-point is a
small stub that points to the _CorExeMain function.

www.syngress.com

Figure 1.2 .NET Code Cycle

C# Source (.cs)

C# Compiler

Potable Executable (.exe)

MSIL
Metadata
Manifest

Common Language Runtime (CLR)

Just-in-time Compiler

Operating System (Windows)

223_C#Java_01.qxd 5/21/02 3:32 PM Page 19

20 Chapter 1 • The .NET Philosophy

7. The _CorExeMain will then begin execution of the MSIL code.
However, since the MSIL cannot be executed directly, it uses a Just-in-
Time compiler to compile the code into native code as it processes the
MSIL.This compilation only happens the first time a function gets called.

8. The native code is then executed by the system.

In Java this process is a little different.The Java code is either interpreted by
the Java Virtual Machine or gets compiled to native code by a JIT compiler.To
illustrate the difference Figure 1.3 shows the Java code cycle.

This is slightly different from .NET code, which is never interpreted; it is
always JIT compiled to native code before execution.The overhead of the JIT
compilation is only incurred as the function is called for the first time.This
means that as .NET applications run, they tend to get faster as the already com-
piled code is reused.

www.syngress.com

Figure 1.3 Java Code Cycle

Java Source (.java)

Java Compiler

Java Bytecode (.class)

Class Loader
Bytecode verifier

Java Virtual
Machine
(JVM)

Operating System

Just-in-time
Compiler

223_C#Java_01.qxd 5/21/02 3:32 PM Page 20

The .NET Philosophy • Chapter 1 21

Summary
The .NET platform is a great leap forward in the evolution of computing. It has
evolved from PCs connected to servers through networks such as the Internet, to
one where all manner of smart devices, computers, and services work together to
provide a richer user experience.The .NET philosophy is Microsoft’s vision of
how the developers of this new breed of software will approach the challenges of
this latest form of computing.

Automatic resource management—a feature that Java programmers have
always enjoyed—is one of the most discussed features of the .NET platform, and
for good reason. Countless man-hours have been spent chasing problems intro-
duced by poor memory management.Thanks to automatic garbage collection,
the developer is now relieved of this tedious task and can concentrate on the
problem to be solved, rather than on housekeeping.When the program no longer
needs an allocated object, it is automatically cleaned up and the memory is
reclaimed for later use.

Once written and built, a managed .NET application can execute on any
platform that supports the .NET Common Language Runtime (CLR). Because
the .NET Common Type System (CTS) defines the size of the base data types
that are available to .NET applications, and applications run within the CLR
environment, the application developer is insulated from the specifics of any
hardware or operating system that supports the .NET platform.Although cur-
rently this means only Microsoft Windows family of operating systems, work is
underway to make the .NET core components available on FreeBSD and Linux.

The .NET architecture now separates application components so that a pro-
gram always loads the components with which it was built and tested. If the
application runs after installation, the application should always run.This is done
with assemblies, which are .NET-packaged components.Assemblies contain ver-
sion information that the CLR uses to ensure that an application will load the
components it was built with

Given the massive amount of legacy code in use, it is necessary to allow
.NET applications to interact with unmanaged code. Unmanaged code is code
that isn’t managed by the .NET Common Language Runtime. However, this
code is still run by the CLR, it just doesn’t get the advantages that it offers, such
as the Common Type System and Automatic Memory Management.There may
be times when you will end up using unmanaged code, such as when using
APIs or other DLL calls, interfacing with COM components or allowing COM

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 21

22 Chapter 1 • The .NET Philosophy

components to utilize .NET components. However, it is important to realize that
by calling unmanaged code, you may be giving up portability.

The components at the heart of the .NET Framework are the Common
Language Runtime, the Framework Class Library (FCL), and the Common
Language Specification (CLS).The .NET Base Class Library exposes the features
of the CLR in much the same way the Java Foundation Classes allow you to uti-
lize the features of the JVM. However, it also provides many higher-level features
that facilitate code reuse.The CLS gives language vendors and compiler devel-
opers the base requirements for creating code that targets the .NET CLR,
making it much easier to implement portions of your application using the lan-
guage that’s best suited for it.The .NET Framework allows languages to be inte-
grated with one another by specifying the use of the Microsoft Intermediate
Language (MSIL, or just IL) as the output for all programming languages tar-
geting the platform.This intermediate language is CPU-independent, and much
higher level than most machine languages.

Developing software using .NET technology is a big change.The technology
adds a lot of pieces to the puzzle and more than a few new ideas.With a solid
understanding of the underlying framework that C# is designed for, you now
have the foundation needed to start learning the language.

Solutions Fast Track

Overview of the .NET Platform

Software design is changing from a closed to a connected world, much
like personal computers themselves are.The .NET platform is designed
to make it easier to create distributed applications that leverage this new
paradigm.

There are multiple pieces to the .NET platform, starting from the .NET
Framework, and extending to various Microsoft servers and commercial
Web Services.

The .NET Framework is designed as a single, consistent development
environment offering shorter development cycles, improved scalability,
and better behaved programs.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 22

The .NET Philosophy • Chapter 1 23

Examining the .NET Framework Features

The .NET platform hides the gory details of interfacing with the
underlying operating system functions and lets you concentrate on the
solution at hand.

Multilanguage development is greatly simplified thanks to the use of the
Microsoft Intermediate Language and the Common Language Runtime.

Automatic memory management reduces the level of effort required to
manage resources; you can simply let the garbage collector take care of
cleaning up and preventing memory leaks.

.NET includes a new versioning system designed to end “DLL Hell.”

Much of the platform is built on open standards, such as XML and SOAP.

Existing code does not have to be rewritten to use .NET—
interoperability with existing code and components is maintained.

.NET includes an improved security model, which allows fine-grained
control as well as integrated safety from security flaws caused by
problems related to buffer overruns.

Understanding the .NET Architecture

The Common Language Runtime is a managed execution environment
offering many advantages over the traditional native code development
methods.

The Common Type System allows all languages to share data types
without requiring the developer to interpret different language
conventions.

.NET includes a large Framework Class Library shared by all .NET
languages, offering a wide range of functionality intended to speed up
development.

All .NET languages compile to the same Intermediate Language.The IL
is platform and processor independent, potentially allowing .NET
applications to run on non-Windows operating systems.

Several kinds of Just-in-Time compilers are available for executing your
IL code to the native platform.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 23

24 Chapter 1 • The .NET Philosophy

Following .NET Code from Source to Binary

Compiling source code, regardless of the language used, results in IL
code output.

The IL code is wrapped in a Portable Executable (PE) .exe file, which
also contains the metadata and manifest.

Behind the scenes, the compiler inserts a stub function to load the CLR,
which then runs the Just-in-Time compiler to transform the IL code
into native code.

Q: If all .NET languages have access to everything in the Framework Class
Library, why is there so much talk about C#?

A: Although in theory all .NET languages have equal access to the FCL, in
reality it is left up to the language teams to determine the level of support to
offer, at least beyond the minimum requirements for basic compliance. C# is
ideal for .NET development because it was developed as a new language
specifically for the .NET platform.

Q: Is everything in the Win32 API exposed through the FCL?

A: Not through the FCL, but you can make API calls directly through most lan-
guages.

Q: What is the key difference with the Java platform?

A: Java as a platform requires the developer to buy into the idea of a single lan-
guage for all things, which goes against the philosophy of “use the right tool
for the job.”The .NET design allows and encourages cross-language develop-
ment, letting programmers make use of existing language skills, as well as
leveraging the various strengths of each .NET language.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_01.qxd 5/21/02 3:32 PM Page 24

The .NET Philosophy • Chapter 1 25

Q: Do I have to use Visual Studio.NET to create .NET applications?

A: Although Visual Studio.NET is a nice IDE that provides rapid application
development and an integrated debugger tool, it is not part of the .NET
Framework and not necessary to develop .NET applications.With the .NET
Framework SDK available, you can develop your application in any text
editor and use the supplied compilers to compile and run it.

www.syngress.com

223_C#Java_01.qxd 5/21/02 3:32 PM Page 25

223_C#Java_01.qxd 5/21/02 3:32 PM Page 26

Introducing C#

Solutions in this chapter:

■ The C# Language

■ Getting Started

■ Using Different IDEs

■ A Stroll through C#

Chapter 2

27

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_02.qxd 5/21/02 4:19 PM Page 27

28 Chapter 2 • Introducing C#

Introduction
C# is a new generation language designed to work within the .NET framework.
It’s a strongly typed, object-oriented language that is a direct descendent of other
languages including C, C++, and Java. C# was developed by a small team led by
Microsoft researcher Anders Hejlsberg, who is known for creating the popular
Turbo Pascal programming language and for his work on Borland Delphi, an inte-
grated development environment (IDE) for client-server programming. C# is
designed to give the optimum blend of simplicity, expressiveness, and performance.

This chapter will provide you with a whirlwind tour of the new C# pro-
gramming language.You will be introduced to the basic language features and
learn about the many similarities and differences it has compared with Java.This
chapter also covers installing and using the tools you’ll need to program your
very first C# application.

The C# Language
The C# language is highly expressive in implementing all the features of a
modern object-oriented programming language. It provides support for encapsu-
lation, inheritance, and polymorphism—the three pillars of object-oriented pro-
gramming.At its core, C# has about 80 keywords and a dozen built-in data types
(Java has 51 reserved words and 8 data types). It includes language features such as
single inheritance, multiple interfaces, and compilation to an intermediate format.
It is designed with the Internet and component architecture in mind, making it
the ideal language to use with .NET.

Java and C# have a lot in common.With the properties mentioned earlier,
plus a syntax that is almost identical to Java, it is hard to deny the similarities
between these two languages. Both languages aim for a simple language derived
from C++. By eliminating some of the complexities of C++, Java was able to
achieve significant gains in programmer productivity.This is the same case with
C#, and you’ll find that the language is just as friendly as Java.

However, C# is broader than Java in what its designers chose to derive from
C++, while offering new features of its own. Since C# is a language that is
geared for programming on the .NET Framework, the two technologies work
together hand in hand.There are some C# features that exist primarily to work
within the .NET Framework, and it could even be argued that some features of
.NET exist because of C#.This symbiotic relationship results in some impressive

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 28

www.syngress.com

features, such as versioning, COM support, and multilanguage development,
which can’t be found in Java.

Similarities with Java
Microsoft claims that the C# language definition has been derived primarily
from C++ and offers the same raw power.There has been some industry rivalry
between Microsoft and Sun, so it makes sense that they would diminish the per-
ceived impact Java had on the development of C#. For anyone who has studied
both languages, however, the similarities are quite apparent. Following is a list of
features that C# and Java share in common, which are intended to improve on
C++.

■ Both languages compile to an intermediate format that is run in a man-
aged environment.

■ Each runtime environment provides support for automatic garbage
collection.

■ All classes in both languages descend from Object and are allocated on
the heap when they are created.

■ Everything must belong to a class, which means that there are no global
functions or constants.

■ Both languages abandoned multiple inheritances, although implementing
multiple interfaces is allowed.

■ Both C# and Java use exceptions for error handling.

■ Arrays are bound checked.

■ Inline code comments are used to produce API documentation.

■ They both use packages/namespaces to avoid type collision.

In addition to sharing a number of features with Java, most keywords in C#
have their Java counterpart. For the most part these keywords are descendant
from C++, such as class, new, this, static, throw, break, and null. However, it is
interesting to note that Java keywords that do not have a C++ equivalent have
different names in C#. For example, the Java keywords super, import, package, and
final are called base, using, namespace, and sealed in C#.

Introducing C# • Chapter 2 29

223_C#Java_02.qxd 5/21/02 4:19 PM Page 29

30 Chapter 2 • Introducing C#

As you can see, there are a lot of cosmetic similarities between the two lan-
guages.This would be a great advantage, as it will greatly ease the transition in
learning the language. However, C# also brings some significant changes and fea-
tures that aren’t found in Java, as described in the next section.

Differences with Java
As expected, C# offers features that can’t be found in Java.The following list
briefly outlines some of the main differences and new features, which will be
addressed later in the book.

■ C# has a new iteration statement called the foreach statement.The foreach
statement in C# allows you to enumerate over classes that support the
Enumerable interface.This makes for easier array and collection handling.

■ C# has a cleaner and more concise syntax for encapsulating data using
Properties. A property is essentially a pair of get and set accessor methods
that provide access to a field. Properties provide syntax like you’re

www.syngress.com

Similarities between Class and Method Names
It’s a good idea to keep in mind that a lot of classes and method names
are similar in C# and Java. In most cases the class names are identical
and the method names differ only in their capitalization (in C# all
methods start with a capital letter). Therefore, when looking for a C#
counterpart to a Java class or method that you’re familiar with, start by
using the same class name and capitalizing the method name. For
example, the System.Object class in C# has similar methods as its Java
counterpart, the java.lang.Object class. The following list shows some
similar method names in both classes:

■ C# has Object.Equals(), whereas Java has Object.equals().
■ C# has Object.Finalize(), whereas Java has Object.finalize().
■ C# has Object.ToString(), whereas Java has Object.toString().

By keeping this in mind, you’ll be able to leverage your Java knowl-
edge to help learn the class libraries available in C# and make the tran-
sition a lot smoother.

Developing & Deploying…

223_C#Java_02.qxd 5/21/02 4:19 PM Page 30

Introducing C# • Chapter 2 31

accessing a member field, while actually implementing that access
through a class method.

■ C# also implements the use of enumerations with the enum keyword.
Enumerations provide a powerful alternative to constants. Enums are a
distinct value type, consisting of a set of named constants.

■ C# has chosen to adopt the concept of structs from C++, but altered its
use significantly. In C#, a struct is a lightweight alternative to classes that
is a value type as opposed to a reference type. It has a lower impact on
memory and can be used to define types that behave similarly to built-
in types.

■ C# methods are nonvirtual by default and must be explicitly declared as
virtual to be overridden. In Java, all methods are virtual by default and
can be overridden by a derived class. C# provides some versioning con-
trol for the language by preventing accidental overriding of a method.

■ C# implements delegates as a replacement for the old function pointer
of C++. Delegates are an object-oriented function pointer that can ref-
erence static or instance methods. It provides a type-safe mechanism for
implementing callback functions and events.

■ C# allows operator overloading. Operator overloading allows you to
redefine the semantics of operators for your classes. In Java this is not
allowed, and only the built-in String class has used this feature by over-
loading the + operator for concatenating strings. In C# you can over-
load most operators (+, –, +=, ++, etc.) for any given type to provide an
intuitive syntax for handling your classes like a primitive type.

■ C# also provides support for cast operators that allow you to define cast
operations for your classes.This allows you to specifically define how
you can convert your class to another class. For example, you can define
a cast operator for a Fraction class to be converted to a double.

■ C# provides XML style documentation for inline documentation that is
more flexible than Javadocs.This greatly simplifies the creation of online
and print reference documentation for an application.

■ C# provides support for directly accessing memory using pointers.
Although seen as potentially dangerous, pointers can provide program-
mers with an extra level of control that isn’t available in Java. It uses the
unsafe keyword to warn the garbage collector not to collect or move

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 31

32 Chapter 2 • Introducing C#

objects in memory that are referenced by the pointer until they are
released.

■ C# incorporates built-in support for the Component Object Model
(COM) and the Windows API.This is great news for Windows program-
mers because integration with COM and Win32 in C# is very painless,
unlike J/Direct or the Java Native Interface (JNI).

This list should give you an idea that C# does offer some new features and
improvements that clearly distinguish it from Java.These features will be covered
in more detailed throughout the book, but for now let’s stop with the theory and
start writing our first program.

Getting Started
Microsoft has several commercial products available for developing C# applica-
tions, such as Visual C# or the full blown Visual Studio.NET, which also includes
VB.NET and Visual C++. However, you don’t need to buy anything to get
started with C# programming.The Microsoft .NET Framework software devel-
opment kit (SDK) is freely available for download from the Microsoft Web site.

Most of the programs in this book can be run by using the SDK and a text
editor such as Notepad. However, we highly recommend that you use an inte-
grated development environment (IDE) such as Visual Studio.NET to be as pro-
ductive as possible. Later in this chapter, we’ll go over some basic features of
Visual Studio.NET and list some other IDEs that are freely available on the
Internet. But to get the ball rolling, first let’s look at setting up the .NET
Framework SDK and testing it by writing a simple C# program.

NOTE

If you’re planning on using Visual Studio.NET you may skip the following
section.

Installing the .NET Framework SDK
The .NET Framework SDK has all the tools you need to compile, test, run, and
deploy your C# application.You can write your application in any text editor
and use the command line compiler that comes with the SDK to compile the

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 32

Introducing C# • Chapter 2 33

program. Not only that, it also comes with a debugger tool to help you find and
fix bugs, plus a slew of other utilities to help in application development.

To install the .NET Framework SDK:

1. Go to http://msdn.microsoft.com/.

2. Go to the Software Development Kit Section, or you can type .NET
Framework SDK in the search box and you should be able to reach
the download site.

3. Download and install the .NET Framework SDK and .NET
Framework on your computer. Note that the download is 131 MB big,
which you can download as one file or in parts.

4. To make sure that the SDK has been installed properly open a command
line window (cmd.exe) and type csc.exe /help on the command
prompt. If the program has been installed properly, you should see some-
thing similar to Figure 2.1.

The csc.exe program is the main C# compiler for the .NET SDK. It has several
switches that allow you to specify compiler options. By typing /help, the program
will list all the different compiler options available as shown in Figure 2.1. Once
everything is up and running we can begin writing our first test program.

Creating Your First C# Program
The sample C# program is a very simple program that writes a couple of lines of
text to the console.This example program is used simply to demonstrate how to

www.syngress.com

Figure 2.1 The C# Compiler Options

223_C#Java_02.qxd 5/21/02 4:19 PM Page 33

34 Chapter 2 • Introducing C#

use the .NET SDK tools to develop C# applications. Don’t worry too much about
the details of how this program works; all the inner workings of this program will
be explained to you in greater detail throughout the book (although with your Java
knowledge you’ll have a pretty good idea of how the program works).

Open up your favorite text editor and type the following code, then save the
file as Hello.cs. If you don’t have a favorite text editor, Notepad will do.

using System;

class Hello

{

static void Main(string[] args)

{

DateTime today = DateTime.Now;

Console.WriteLine("I wrote my first C# program at: " +

today.ToString());

string msg = "You wanted to say hello to ";

if(args.Length > 0)

{

for(int i=0; i<=args.Length; i++)

{

msg += args[i] + " ";

}

Console.WriteLine(msg);

}

}

}

This program will print a message on the console followed by the current
time.You can also add some command line arguments to the program that will
be printed on the screen. For now, let’s look at compiling and executing our little
program.

Compiling and Running the Program
As mentioned previously, the command line compiler included in the Microsoft
.NET Framework SDK is called csc.exe.To compile the application, simply type
the following on the command prompt:

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 34

Introducing C# • Chapter 2 35

csc /out:Hello.exe Hello.cs

In this case, we’re supplying the compiler with two arguments.The first is the
/out switch, which specifies the output for our compiled file.This is optional and
if you don’t supply one, the compiler will create the output filename the same as
the input filename followed by an .exe extension. The last argument is the name
of our source file to be compiled. If everything has been entered correctly, you
should see something similar to Figure 2.2.

As discussed in Chapter 1, all C# programs are JIT compiled, unlike Java
where it is interpreted at most times by a Java runtime.Therefore, after compiling
the program, all you have to do is type the output filename at the command
prompt to execute it. In our case, type Hello at the prompt and you should see
the following output.

Output
I wrote my first C# program at: 5/14/2002 2:24:37 PM

The same program can also accept some command line arguments. For
example you can execute the program with the following arguments:

C:\test>Hello Rosie Andrea Karen

If you execute this same program with some arguments an error dialogue box
will pop up similar to Figure 2.3.

NOTE

You might get a different window such as the Just-In-Time debugger
depending on what’s installed on your machine. If you do, just click on
No or Cancel.

www.syngress.com

Figure 2.2 C# Compiler Output

223_C#Java_02.qxd 5/21/02 4:19 PM Page 35

36 Chapter 2 • Introducing C#

Just click on Cancel and you should see the following:

C:\test>Hello Rosie Andrea Karen

I wrote my first C# program at: 5/15/2002 2:27:01 AM

Unhandled Exception: System.IndexOutOfRangeException: Index was outside

the bounds of the array.

at Hello.Main(String[] args)

You might ask yourself what happened there.Well, don’t be too alarmed
because this is done deliberately, and if you typed the code exactly as shown then
you should have the same output. Obviously, something is not right with our
code. However, the error message doesn’t really tell us where the problem is.To
solve this, we can recompile the Hello.cs with the /debug switch.

csc /debug Hello.cs

By adding this debug switch the compiler will generate an extra file with the
.pdb extension, which contains debugging information.After running the pro-
gram again, it should display more information, as shown:

C:\test>Hello Rosie Andrea Karen

I wrote my first C# program at: 5/15/2002 2:48:33 AM

Unhandled Exception: System.IndexOutOfRangeException: Index was outside

the bounds of the array.

at Hello.Main(String[] args) in C:\test\Hello.cs:line 15

By compiling the program with the /debug switch, we can now tell where
exactly the error is occurring. Here’s the block of code where the error is hap-
pening:

for(int i=0; i<=args.Length; i++)

{

www.syngress.com

Figure 2.3 Runtime Error Dialogue Box

223_C#Java_02.qxd 5/21/02 4:19 PM Page 36

Introducing C# • Chapter 2 37

msg += args[i] + " "; //line 15

}

At first glance, this code block is perfectly legitimate.This for loop is perfectly
valid and the line itself where the error is occurring seems fine.As with most
bugs, some are trivial to fix and others can take days of debugging.The next sec-
tion will look at how we can use the debugger tool that comes with .NET so
that we can find and fix the bug in our program.

Using the Debugger Tool
At the time of this writing, the current version of the .NET SDK is 1.30705, and it
offers two debugging tools.There’s a command line tool called cordbg.exe and a ver-
sion with a graphical user interface called dbgclr.exe that can be found in the
GUIDebug subdirectory of the Framework SDK.When it comes to program-
ming, the majority of your time is probably spent debugging.Therefore, it makes
sense to learn how to use the debugger to greatly decrease your development time.

Since it is much more convenient to use the dbgclr.exe because of its graphical
user interface, we’ll try to debug our program using this tool.To debug your
application follow these steps:

1. In Explorer, launch the debugger, which can be found in
<InstalledDirectory>/Microsoft.NET/FrameworkSDK/GuiDebug/
dbgclr.exe. Figure 2.4 shows the CLR Debugger window.

www.syngress.com

Figure 2.4 Debugger Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 37

38 Chapter 2 • Introducing C#

2. Click on Debug | Program To Debug. This will let you specify the
program you wish to debug and enter in any arguments the program
needs.You can enter Hello.exe under Program, and type some names
under the Arguments field.After doing so, you should see something
similar to Figure 2.5.

3. Click on OK. Once that’s done, you can start debugging the program
by clicking on Debug | Start F5, or by simply pressing the F5 key.
This will start the debugging process and the program will halt once it
encounters an error.

4. Click on Break.The program will pause and highlight the piece of code
that caused the error.

5. We can visibly see where the problem is occurring. Now we can set a
breakpoint at this location in the code so that we can watch what’s
causing it.To do this, right-click on the line and select Insert
Breakpoint from the menu, as shown in Figure 2.6.

6. Now we can start the debugging process again, and as soon as the
debugger encounters the breakpoint it will automatically stop the pro-
gram.The debugger provides the Locals window to display all the
values of all the local variables.This is extremely useful because you get a
glimpse of the variable states at a specific time of code execution.This is
the key in analyzing and solving the bug.The Locals Window is located
in the lower right corner of the window, and it should display something
similar to Figure 2.7.

7. As you can see, at this point the Locals window shows all the different
variables that our program is using.The next step is to watch what’s hap-
pening to the variables when the program continues executing.To do this
we can step through the program line by line and see what’s happening

www.syngress.com

Figure 2.5 Program to Debug Selection Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 38

Introducing C# • Chapter 2 39

to each variable.To step into the program, click on Debug | Step Into
or just press F11. Once you start stepping through the program you can
see the results of each line of the code by observing changes to the vari-
ables.You’ll notice the msg and i variables are changing after each itera-
tion of the loop.After going through the loop three times (or however
many arguments you entered) you’ll notice that the problem occurs
because the loop doesn’t stop even though there are no more arguments.
If you look closely, it seems that I’ve introduce an “off-by-one error” by
using the <= operator instead of the < operator in the for loop. Problem
solved!

Now, that we’re able to find the bug in our program we can easily change the
offending code and recompile the program.The new code should be as follows:

using System;

class Hello

www.syngress.com

Figure 2.6 Inserting a Breakpoint

Figure 2.7 The Locals Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 39

40 Chapter 2 • Introducing C#

{

static void Main(string[] args)

{

DateTime today = DateTime.Now;

Console.WriteLine("I wrote my first C# program at: " +

today.ToString());

string msg = "You wanted to say hello to ";

if(args.Length > 0)

{

for(int i=0; i<args.Length; i++)

{

msg += args[i] + " ";

}

Console.WriteLine(msg);

}

}

}

After compiling and running the program with several arguments, you should
get the following output.

Output
C:\test>Hello Rosie Andrea Karen

I wrote my first C# program at: 5/15/2002 4:24:11 AM

You wanted to say hello to Rosie Andrea Karen

These are just rough steps you can follow when debugging your program.
You might have other techniques when it comes to debugging, but you will defi-
nitely want to invest some time in learning how to use the debugger effectively.
This tool will save you a lot of headaches down the road, and you can thank me
for it later!

Using Different IDEs
As you can see, with just a simple text editor and the .NET Framework SDK, we
were able to write, run, and debug our first program.The SDK has all the basic

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 40

Introducing C# • Chapter 2 41

tools needed for developing C# applications. However, an integrated development
environment (IDE) is highly recommended in order to gain full productivity.

Although this book assumes that you’ll be using Visual Studio.NET, the
examples focus more on the language and not on the tools you’re developing
with.Therefore, all examples in this book can be tested by copying the code to
any text editor and using the basic .NET Framework SDK. However, since most
programmers don’t limit themselves to using Notepad as the main development
tool, it’s worth becoming familiar with some of the IDEs available.

NOTE

In later chapters some examples will use Visual Studio.NET for devel-
oping Windows Forms and Web Forms. However, even these examples
can be created manually using a text editor, if you are really hardcore
and want to do things the hard way.

Visual Studio.NET
Visual Studio.NET is Microsoft’s next step in the evolution to the popular Visual
Studio IDE. It’s designed as a rapid application development (RAD) tool for cre-
ating Windows applications,Web applications, and XML Web services. It has sev-
eral nice features such as indentation support, color-coding, integration with help
files, and Intellisense word completion. Plus it has a powerful built-in debugger
and a wealth of other tools for end-to-end application development.

Let’s start familiarizing ourselves with the IDE by developing the previous
console application.A console application is an application that has no user interface
and typically uses the command prompt for input and output.This is a good
place to start, since most of the examples in this book are console applications, to
help simplify things and focus on the main concepts.

To create a console application in Visual Studio.NET, click on New Project
on the Start Page, or you can click on File | New | Project.This will display
the New Project window where you can select the type of project you want to
develop. Scroll down and select Console Application, then name the project
Hello Project and click on OK as shown in Figure 2.8.

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 41

42 Chapter 2 • Introducing C#

After clicking OK,Visual Studio.NET will take you to the source view page
where you can start entering code.You’ll notice that the helpful IDE automati-
cally generates some skeleton code for you to get your application started.The
skeleton code provides the basic structure for your console applications. It even
starts the documentation for you because, as computer science professors like to
remind us,“Always document your code!” Don’t worry too much about what all this
skeleton code means, as you’ll learn all about it in the following chapters. For
now, let’s duplicate the previous example using the IDE.All we need to do is
copy our previous code into the Main() method as shown.

using System;

namespace Hello_Project

{

/// <summary>

/// Summary description for Class1.

/// </summary>

class Class1

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

www.syngress.com

Figure 2.8 The New Project Selection Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 42

Introducing C# • Chapter 2 43

{

//

// TODO: Add code to start application here

//

DateTime today = DateTime.Now;

Console.WriteLine("I wrote my first C# program at: " +

today.ToString());

string msg = "You wanted to say hello to ";

if(args.Length > 0)

{

for(int i=0; i<args.Length; i++)

{

msg += args[i] + " ";

}

Console.WriteLine(msg);

}

}

}

}

Now that our source code is complete, all that’s left to do is compile and run
our code.To do this, all you need is to do is click on Debug | Start, or just
press F5. This automatically will compile and start running the application.Also,
if you just want to compile your application without running it, you can do so
by clicking on Build | Build Solution.This will compile your application and
show the output of the compilation in the Output window, which is located at
the bottom of the screen. If there are any errors during compilation they will be
displayed here. Once you run the program, you should get the expected output as
shown in Figure 2.9.

But wait, you probably noticed that the console output window quickly dis-
appears before you get a chance to view the result.You can easily work around
this by adding the Console.Read() to the end of the program.This method waits
for a keyboard input. In effect, it will pause the program until you press the Enter
key before exiting.

The last thing to point out is the built-in Debugger that comes with Visual
Studio.NET.You’ll notice that this debugger is very similar to the one that comes

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 43

44 Chapter 2 • Introducing C#

with the .NET Framework SDK. Because of these similarities, you can follow the
same steps that were outlined previously in order to debug your programs.

Other IDEs
If you’re learning C# for work and your company is willing to shell out the cash
to purchase the development tools you need (or if you just have a couple of hun-
dred bucks lying around) then I suggest purchasing Visual Studio.NET. If not,
don’t worry because you don’t have to be stuck using Notepad when developing
your C# applications. If you’re just starting out and want to learn the language
for your own benefit but don’t have the money to buy Visual Studio.NET there
are options.The Internet (bless its kind soul) has several IDEs freely available that
are more than capable of doing the job.

One of the more popular IDEs for C# at the moment is an open-source
package called SharpDevelop. It’s a full-fledged editor that contains most of the

www.syngress.com

Figure 2.9 Console Application Output

Finally, a Complete Debugging Solution
Some old-school programmers eschew today’s fancy integrated devel-
opment environments (IDEs) as mere toys for the weak. However, the
debugging capabilities offered by the new Visual Studio.NET IDE may
finally change their minds. The new IDE provides end-to-end debugging
of applications across languages, projects, processes, and stored proce-
dures. This is a monumental achievement on the part of the Visual
Studio development team.

Using the integrated debugger, developers can step between HTML,
script, and code written in any of the .NET supported languages, com-
plete with integrated call stacks offering a total solution for end-to-end
development.

Debugging…

223_C#Java_02.qxd 5/21/02 4:19 PM Page 44

Introducing C# • Chapter 2 45

features you need to get started. It even has support for other languages, including
VB.NET and even Java. Since the package is open-source you can start hacking
the SharpDevelop code to include your own features. Plus the best feature of
open-source is that it’s free! SharpDevelop can be downloaded at
http://www.icsharpcode.net/OpenSource/SD/default.asp.

A Stroll through C#
Now that we have our development environment all set up, we can actually start
learning the language.To get things started, let’s try creating a more powerful C#
application to whet your appetite.The following example highlights some of the
power of C# by creating a full-blown application with just a few lines of code.
Since one of the major features of C# is the ease of developing Windows appli-
cations and the ease of COM integration, we’ll create an application that will uti-
lize this technology.This section will demonstrate how to create a media player
that can play most media file types including MP3,WAV,AVI, and MPG by using
the Windows Media Control.

First we’ll code the example by hand and then cover some of the rapid appli-
cation development features that Visual Studio.NET has to offer.The explanations
for the code will be brief since each subject area will be discussed in more detail
throughout the book.

Creating the Media Player Application
The first thing we need to do is create an eye-catching graphical user interface
for our media player.The GUI for our application will be fairly simple: it will
contain only a menu where a user can open a file dialog and select a song or
movie.To do this, we need to create a Windows Form that will anchor the rest of
our components.The process is similar to creating a Swing or AWT application
in Java, where first you create a JFrame and then add components to it.The code
for creating the interface for the media player application is shown as follows.

using System;

using System.Windows.Forms;

public class MediaPlayerApp : Form

{

private MainMenu mainMenu;

private MenuItem fileMenu;

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 45

46 Chapter 2 • Introducing C#

private MenuItem fileOpen;

private MenuItem fileExit;

private OpenFileDialog openFileDialog;

//Constructor

public MediaPlayerApp()

{

//Creates the File Menu

mainMenu = new MainMenu();

fileMenu = new MenuItem();

fileOpen = new MenuItem();

fileExit = new MenuItem();

openFileDialog = new OpenFileDialog();

//Sets the file filters for the file dialog

openFileDialog.Filter = "MP3 files (*.mp3)|*.mp3|AVI files (*.avi)

|*.avi |All files (*.*)|*.*";

openFileDialog.FileOk += new System.ComponentModel.CancelEventHandler

(this.openFileDialog_FileOk);

//fileOpen

fileOpen.Text = "Open";

fileOpen.Index = 0;

fileOpen.Click += new

System.EventHandler(this.fileOpen_Click);

//fileExit

fileExit.Text = "Exit";

fileExit.Index = 0;

fileExit.Click += new

System.EventHandler(this.fileExit_Click);

//fileMenu

fileMenu.Text = "File";

fileMenu.Index = 0;

//Adds the Menu Items

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 46

Introducing C# • Chapter 2 47

fileMenu.MenuItems.Add(fileOpen);

fileMenu.MenuItems.Add(fileExit);

mainMenu.MenuItems.Add(fileMenu);

//Creating the Form Window

this.Text = "Media Player App";

this.AutoScaleBaseSize = new System.Drawing.Size(5,10);

this.ClientSize = new System.Drawing.Size(305,230);

this.Menu = mainMenu; //Sets the main menu for the form

}

//Handle the file open event

private void fileOpen_Click(object sender, System.EventArgs e)

{

openFileDialog.ShowDialog();

}

//Handle the file exit event

private void fileExit_Click(object sender, System.EventArgs e)

{

Application.Exit();

}

//Handles the file selection event

private void openFileDialog_FileOk(object sender,

System.ComponentModel.CancelEventArgs e)

{

//Do nothing for now

}

public static void Main()

{

Application.Run(new MediaPlayerApp());

}

}

The first two lines import some libraries that our program needs by declaring
it with the using statement.Think of this as similar to the import statement in Java,

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 47

48 Chapter 2 • Introducing C#

but with some differences you’ll see later.The next line of code declares the
MediaPlayerApp class, which is extended from the Form class.

using System;

using System.Windows.Forms;

public class MediaPlayerApp : Form

C# doesn’t use the extend keyword, but instead uses the colon (:) when
extending another class.After this, the code declares some components that make
up the file menu for our application.These are all declared as private, following
proper object-oriented design.The code then enters the constructor where each
component is instantiated using the new keyword.

mainMenu = new MainMenu();

fileMenu = new MenuItem();

fileOpen = new MenuItem();

fileExit = new MenuItem();

Once each component has been instantiated, the program sets some properties
and introduces an event handler for each MenuItem. For example, we set the
fileOpen.Text property to “Open” and its Index property to 0. Remember, these
are properties, not public fields, even though on the surface it appears as though
they are. By using properties in C#, you can set private fields as if they were
declared as public. In reality they are being accessed through get and set accessor
methods, which makes for a more intuitive syntax:

fileOpen.Text = "Open";

fileOpen.Index = 0;

fileOpen.Click += new System.EventHandler(this.fileOpen_Click);

C# uses delegates for event handling, which is similar to a function pointer in
C++.A delegate specifies a callback method to be called when an event occurs.
To define an event handler for a component, we simply pass the method to be
called to the System.EventHandler delegate. For the fileOpen menu item, the call-
back method is fileOpen.Click() for the click event.The declaration for this
method is as follows:

//Handle the file open event

private void fileOpen_Click(object sender, System.EventArgs e)

{

openFileDialog.ShowDialog();

}

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 48

Introducing C# • Chapter 2 49

Since we want to show the open file dialog when we click on the fileOpen
menu item, this method simply calls the openFileDialog.ShowDialog() method.

Once each component has been instantiated and initialized they are added to
the mainMenu component, which is then added to the main form:

//Adds the Menu Items

fileMenu.MenuItems.Add(fileOpen);

fileMenu.MenuItems.Add(fileExit);

mainMenu.MenuItems.Add(fileMenu);

This is all very similar to Java. Finally, the application is started in the Main()
method by creating an instance of MediaPlayerApp and passing it through the
Application.Run() method.The Application class is used for managing Windows
Form applications.

public static void Main()

{

Application.Run(new MediaPlayerApp());

}

Save the file as MediaPlayerApp.cs and then compile it using the following
command:

csc /target:winexe MediaPlayerApp.cs

The /target switch tells the compiler that we’re developing a Windows appli-
cation.After compiling and executing the program and you should see something
similar to Figure 2.10.

www.syngress.com

Figure 2.10 The Eye-Catching Media Player GUI

223_C#Java_02.qxd 5/21/02 4:19 PM Page 49

50 Chapter 2 • Introducing C#

When you click on File | Open, the open file dialog box should come up
as shown in Figure 2.11. Notice the file dialog will display only MP3 files first
because we set the openFileDialog.Filter property to show MP3 files.

There you have it; you’ve just created your first graphical Windows applica-
tion. Okay, it’s pretty boring and doesn’t even do anything.Well, don’t worry
because the next thing we’ll do is add some functionality to it.

To add the actual media player functionality to our program, we’ll use the
Windows Media Player ActiveX control.This ActiveX control is called
msdxm.ocx, and should be located in the c:/windows/System32 directory. In C#
you can easily import ActiveX controls by using the aximp.exe utility that comes
with the .NET Framework SDK.To import the ActiveX control into C#, type
the following command in the directory where your program is saved.

aximp c:\winnt\system32\msdxm.ocx

The AxImp utility creates a .NET assembly that acts as a proxy for the actual
ActiveX control. For now, you can think of an assembly as a JAR file in Java.You
can then use this assembly in your application just like any other .NET assembly.
Figure 2.12 shows the output of the AxImp utility.

www.syngress.com

Figure 2.11 Open File Dialog Box

223_C#Java_02.qxd 5/21/02 4:19 PM Page 50

Introducing C# • Chapter 2 51

After generating the assemblies we can use the ActiveX control and add it to
our application.The following is the modified code (in bold) with the addition
of this new component.

using System;

using System.Windows.Forms;

using AxMediaPlayer;

public class MediaPlayerApp : Form

{

private MainMenu mainMenu;

private MenuItem fileMenu;

private MenuItem fileOpen;

private MenuItem fileExit;

private OpenFileDialog openFileDialog;

private AxMediaPlayer.AxMediaPlayer mediaPlayerControl;

//Constructor

public MediaPlayerApp()

{

//Adds media player control and sets some properties

mediaPlayerControl = new AxMediaPlayer.AxMediaPlayer();

mediaPlayerControl.Location = new

System.Drawing.Point(8, 0);

mediaPlayerControl.Size = new

System.Drawing.Size(285,305);

//Instantiate the open file dialog box.

openFileDialog = new OpenFileDialog();

openFileDialog.Filter = "MP3 files (*.mp3)|*.mp3|AVI files (*.avi)

www.syngress.com

Figure 2.12 Importing an ActiveX Control Using AxImp.exe

223_C#Java_02.qxd 5/21/02 4:19 PM Page 51

52 Chapter 2 • Introducing C#

|*.avi |All files (*.*)|*.*";

openFileDialog.FileOk += new System.ComponentModel.CancelEventHandler

(this.openFileDialog_FileOk);

//Creates the File Menu

mainMenu = new MainMenu();

fileMenu = new MenuItem();

fileOpen = new MenuItem();

fileExit = new MenuItem();

//fileOpen

fileOpen.Text = "Open";

fileOpen.Index = 0;

fileOpen.Click += new

System.EventHandler(this.fileOpen_Click);

//fileExit

fileExit.Text = "Exit";

fileExit.Index = 0;

fileExit.Click += new

System.EventHandler(this.fileExit_Click);

//fileMenu

fileMenu.Text = "File";

fileMenu.Index = 0;

//Adds the Menu Items

fileMenu.MenuItems.Add(fileOpen);

fileMenu.MenuItems.Add(fileExit);

mainMenu.MenuItems.Add(fileMenu);

//Creating the Form Window

this.Text = "Media Player App";

this.AutoScaleBaseSize = new System.Drawing.Size(5,10);

this.ClientSize = new System.Drawing.Size(305,230);

this.Menu = mainMenu; //Sets the main menu for the form

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 52

Introducing C# • Chapter 2 53

//Adds the media player control to the form

this.Controls.Add(mediaPlayerControl);

}

//Handle the file open event

private void fileOpen_Click(object sender, System.EventArgs e)

{

openFileDialog.ShowDialog();

}

//Handle the file exit event

private void fileExit_Click(object sender, System.EventArgs e)

{

Application.Exit();

}

//Handles the file selection event

private void openFileDialog_FileOk(object sender,

System.ComponentModel.CancelEventArgs e)

{

//Sets the filename to be played

//by the media player control

mediaPlayerControl.FileName = openFileDialog.FileName;

}

public static void Main()

{

Application.Run(new MediaPlayerApp());

}

}

The first change to the new code is the using AxMediaPlayer statement, which
declares that we’re going to be using the AxMediaPlayer.dll assembly that was pre-
viously generated.The code then creates an instance of the AxMediaPlayer control
and sets some of its properties, just like a regular component:

//Adds media player control and sets some properties

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 53

54 Chapter 2 • Introducing C#

mediaPlayerControl = new AxMediaPlayer.AxMediaPlayer();

mediaPlayerControl.Location = new

System.Drawing.Point(8, 0);

mediaPlayerControl.Size = new

System.Drawing.Size(285,305);

Then we add our component to our main Windows form, as follows:

//Adds the media player control to the form

this.Controls.Add(mediaPlayerControl);

Finally, the last bit of code is the event handler for the open file dialog.This sets
the FileName property of mediaPlayerControl to the file selected from the open file
dialog.The file name is selected via the FileName property of the openFileDialog
object. The complete event handler for the openFileDialog is as follows:

//Handles the file selection event

private void openFileDialog_FileOk(object sender,

System.ComponentModel.CancelEventArgs e)

{

//Sets the filename to be played

//by the media player control

mediaPlayerControl.FileName = openFileDialog.FileName;

}

Now all that’s left to do is compile and run the application. Since our pro-
gram is using a separate library, you’ll have to specify this when you compile it by
using the /reference switch.This indicates to the compiler the libraries that your
program needs, which is similar to specifying the classpath for the JAR file in
Java.To compile the program type the following command:

csc /target:winexe /reference:AxMediaPlayer.dll MediaPlayerApp.cs

That’s it! We’ve just created our own media player application that can play any
MP3 file and other media types.The final application is shown in Figure 2.13.

Rapid Application Development
with Visual Studio.NET
Rapid application development is where Visual Studio.NET really shines.
Designing windows applications is a breeze by simply dragging and dropping
components onto your form. Not only that,Visual Studio provides an easy way

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 54

Introducing C# • Chapter 2 55

for configuring the properties of each component.The end result is that all the
GUI code is generated for you.About the only thing you’ll have to write is the
event handling code.

Let’s go through the Media Player example and see how we can create the
same application using Visual Studio.NET. For this example, we’ll take advantage
of the properties window in VS.NET to display the relevant information for the
ActiveX control.To create the application, follow these steps:

1. Start by creating a new Windows Application project. Click on File |
New | Project and then select Windows Application. Name your
project as MediaPlayerProject and then click on OK.This will bring
you to the design environment as shown in Figure 2.14.The design
window displays a blank Windows Form where you can drag and drop
components onto it.

2. You’ll notice that in the bottom right-hand corner is the Properties
window.This window displays all the properties for the component that
is currently selected. For example, to change the text label of the
window form, just go change the Text property from Form1 to Media
Player App as shown in Figure 2.15.

3. The next step is to create the file menu.We can use the Toolbox
window, which contains a selection of Windows widgets and controls.
Look for the MainMenu control and drag it onto the form.Then type
File, Open, and Exit for the menu items as shown in Figure 2.16.This
will create three menu item components and name them menuItem1,

www.syngress.com

Figure 2.13 The Completed Media Player Application

223_C#Java_02.qxd 5/21/02 4:19 PM Page 55

56 Chapter 2 • Introducing C#

menuItem2, and menuItem3, respectively. Go to the Properties window
for each one and change the (Name) property to file, fileOpen, and
fileExit, respectively.

www.syngress.com

Figure 2.14 The Design Environment

Figure 2.15 The Properties Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 56

Introducing C# • Chapter 2 57

4. Now look for the OpenFileDialog component in the Toolbox and
add it to the form.This will add the OpenFileDialog component and
name it openFileDialog1. With the OpenFileDialog component selected,
go to the Properties window and look for the Filter property. Change
this to MP3 files (*.mp3)|*.mp3|AVI files (*.avi)|*.avi |All files
(*.*)|*.*.This will set the file filter of the open file dialog box.

5. It’s now time to add the Windows Media Player ActiveX control. In
Visual Studio.NET you don’t have to use the AxImp.exe utility because
the IDE will import it automatically for you.To do this, click on Tools
| Customize Toolbox. In the COM Components tab, scroll down
until you find the Window Media Player control and put a check
beside it as shown in Figure 2.17.

www.syngress.com

Figure 2.16 Creating the Main Menu

Figure 2.17 Customize Toolbox Window

223_C#Java_02.qxd 5/21/02 4:19 PM Page 57

58 Chapter 2 • Introducing C#

6. After clicking on OK,Visual Studio will add the MediaPlayer to the
Toolbox window. Now you can visually add the component to the
form.The component is named axMediaPlayer1 by default. Next, go to
the Properties window and set the ShowDisplay property to True.
At this point it would be a good idea to adjust the Media Player control
to make sure that everything fits nicely in the window.

7. Now we’ll add some code.All we need to do is add the event handling
code for each component. Let’s do the fileOpen event first.To do this,
just double-click on the component in the form.This will automatically
bring you to the code view for your application.All we need to do is
call the openFileDialog1.ShowDialog() method, as follows:

private void fileOpen_Click(object sender, System.EventArgs e)

{

openFileDialog1.ShowDialog();

}

8. Next, we’ll add the event handling code for the fileExit menu item. Go
back to the design window by clicking on the Form1.cs [Design] tab.
Again, double-click on the fileExit menu item.This brings you back to
the code view where you can enter the event handling code for the
component. For this event, we want to close the application so we’ll call
the Application.Exit() method, as follows:

private void fileExit_Click(object sender, System.EventArgs e)

{

Application.Exit();

}

9. Finally, add the event handling code for the openFileDialog1 component
(which should be a familiar process by now).To do this, go back to the
design window and double-click on the openFileDialog1 component.
Again, it will bring you back to the code view where you can enter the
event handling code.All we need to do now is set the axMediaPlayer1
.FileName property to the openFileDialogl.FileName property:

private void openFileDialog1_FileOk(object sender,

System.ComponentModel.CancelEventArgs e)

{

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 58

Introducing C# • Chapter 2 59

axMediaPlayer1.FileName = openFileDialog1.FileName;

}

10. Now all that’s left for us to do is compile and run the program. Click on
Debug | Start or just press F5.The final output is shown in Figure 2.18.

There you have it, the same media player application designed in Visual
Studio.As you can see, designing the application with Visual Studio is much sim-
pler and much faster.With the help of the Properties window, you can easily con-
figure each component as opposed to coding it by hand.This allows you to
design your programs, especially the graphical user interface, more rapidly.Visual
Studio also combines all the tools you need in one easy-to-use development
environment.

www.syngress.com

Figure 2.18 Using the Media Player Application designed in Visual
Studio.NET

223_C#Java_02.qxd 5/21/02 4:19 PM Page 59

60 Chapter 2 • Introducing C#

Summary
This chapter has introduced the C# language and highlighted some basic fea-
tures. C# is a modern object-oriented programming language descending from
other languages including C, C++, and Java. It shares many features with Java,
which are intended to eliminate some of the complexities of C++.The shared
features of C# and Java include both compiling to an intermediate language and
support for automatic garbage collection.

C# supports the notion of classes and the object-oriented nature of classes,
including inheritance and polymorphism. Like Java, it supports only single-inher-
itance but can implement multiple interfaces. Other similar features include single
rooted inheritance, which means that all classes are derived from Object.

C# also adds some new features, not available in Java. It has properties and
indexers, which provide intuitive syntax for accessing data members while pro-
moting data encapsulation. It also carries over support for other C++ constructs
such as enums, structs, operator overloading, and allowing the use of pointers for
direct memory access. It has XML style documentation, which is more flexible
than using Javadocs. C# also incorporates built-in support for COM and the
Windows API, which is great news for Windows developers. Overall, C# brings
together the raw power of C++ and the simplicity of the Java language.

This chapter also demonstrated the tools you need for developing C# appli-
cations.With the use of the .NET Framework SDK, you should be able to com-
pile, test, and run programs.The .NET SDK provides two debuggers, which are
essential to learn when it comes to application development. Perhaps the easiest
debugger is the dbgclr.exe tool, which contains an easy-to-use graphical interface.

Visual Studio.NET is not necessary for developing C# applications. However,
using an integrated development environment makes application development
much faster. By developing a Media Player application, you were able to get a
glimpse at some of C# features plus the advantages of using a rapid application
development tool such as VS.NET.

Solutions Fast Track

The C# Language

C# has all the features you would expect in a modern object-oriented
language.

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 60

Introducing C# • Chapter 2 61

It has about 80 keywords and a dozen primitive data types.

It contains features similar to Java, such as compilation to an
intermediate language and a runtime that supports automatic garbage
collection.

The C# syntax is similar to Java, but provides other features such as
properties and indexers, which make it more intuitive.

Other advanced features include operator overloading, cast operators,
and pointer support.

C# incorporates built-in support for COM and the Windows API.

Getting Started

The .NET Framework SDK is all you need for developing C#
applications.

The csc.exe is the main C# compiler in the .NET SDK.

The .NET SDK provides two tools for debugging, a command line
debugger called cordbg.exe and dbgclr.exe, which has a graphical user
interface.

Using Different IDEs

Using an integrated development environment (IDE) increases
programmer productivity.

Visual Studio.NET is a feature-rich development environment available
from Microsoft.

SharpDevelop is an open-source IDE that is freely available on the
Internet that can be used to develop C# and Java applications.

A Stroll through C#

The .NET SDK provides tools for integrating COM and ActiveX
components into your application, such as the aximp.exe utility.

You can use Visual Studio.NET for rapid application development,
especially when creating graphical Windows applications.

www.syngress.com

223_C#Java_02.qxd 5/21/02 4:19 PM Page 61

62 Chapter 2 • Introducing C#

Visual Studio.NET allows you to easily drag and drop components and
modify properties when developing a user interface for you program.

Q: What debugging tools can I use when developing my programs?

A: The .NET Framework SDK provides several tools for debugging your appli-
cation.You can use cordbg.exe, which is command line debugger, or you can
use the dbgclr.exe debugger utility, which has a graphical user interface.

Q: Do C# and Java have the same class and method names?

A: Although a lot of C# classes have a Java counterpart, they don’t all have the
same class names and method names. However, the most common classes
have similar names. For the most part, the class methods are also the same and
differ only by the capitalization of the first letter.

Q: Does C# support global functions or constants?

A: No, C# is similar to Java in this respect. Everything must belong to a class,
which means that there are no global functions or constants.This is an
improvement over C++ and makes code maintenance easier.

Q: Can I use my old COM and ActiveX components with C#?

A: Yes, you can. C# provides built-in support for COM and ActiveX integration.
You can use the aximp.exe utility to import your ActiveX component.This
utility will create a .NET assembly that you can use in your C# application.

Q: Is Visual Studio.NET the only IDE available for developing C# applications?

A: There are other freely available IDEs on the Internet, such as SharpDevelop.
Although Visual Studio.NET provides a rich set of features for end-to-end
application development, it is not necessary for developing in C#. If you like to
do things the hard way, you can even just use a text editor such as Notepad.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_02.qxd 5/21/02 4:19 PM Page 62

Language
Fundamentals

Solutions in this chapter:

■ Main() Method

■ Single-Line and Multiline Comments

■ Data Types and the Common Type System

■ Variables

■ Constants

■ Assignment Statements

■ Operators

■ Preprocessor Directives

■ Namespaces

Chapter 3

63

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#java_03.qxd 5/21/02 2:09 PM Page 63

64 Chapter 3 • Language Fundamentals

Introduction
After familiarizing ourselves with the C# programming environment, it’s time to
move forward and get to work.You’re probably eager to get started and dive right
into programming your first full-blown C# enterprise application. Before we can
continue, however, we need to learn some subtle differences between C# and Java.

This chapter will go over the basic building blocks of writing a C# applica-
tion. It will explain all of the language fundamentals such as data types, variables,
expressions, and operators.We will learn the difference between namespaces and
packages, as well as C# language features not found Java.This includes XML type
comments and the preprocessor directives.

As most of you already have some Java programming experience under your
belts, this stuff will be a piece of cake. But read it carefully—you will want to
know the exact differences between Java and C#.

Main() Method
We’ll start our overview of C# fundamentals in the same manner that our appli-
cations start, with the Main() method. Similar to Java, C# uses the Main() method
as the starting point for every application.When an application is executed, it
starts by calling the Main() method of the application’s controlling class.
Additional methods from the same or other classes are then called as needed by
the Main() method. Chapter 5 will cover encapsulation and classes in more detail.

Let’s examine a quick example of a C# application using the Main() method.
Following an ancient tradition, this “Hello World” program illustrates the use of
the Main() method.

class SayHello

{

public static void Main()

{

System.Console.WriteLine("Hello "+"World!");

}

}

Let’s go through this example and see how it works.As with Java, C# uses
the class as the basic unit of encapsulation; therefore, the Main() method must be
located within a class. In this example we are using the SayHello class to encapsu-
late the Main() method.The name of this class is unimportant as long as it contains

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 64

www.syngress.com

a Main() method.The compiler will start the application execution within any
class that holds the Main() method; however if more than one class contains a
Main() method, a compiler error will occur stating that you have more than one
entry point defined.There is an exception to this: If you have multiple instances
of a Main() method defined for testing purposes, you can specify which Main()
method to use by specifying the compiler command line argument:

/main:<class>

One final word about classes at this point:As with Java, it is considered good
programming practice to use Pascal-case for your class names. Pascal-case means
that the first letter is uppercase and the first letter of any additional concatenated
words is uppercase.Your application will still compile if you don’t follow this rule,
but it really does make your code easier for you or others to follow later.

After declaring the class, we use a pair of curly braces to contain the class def-
inition.This is done in the same way as Java, C, and C++ so we’re not going to
focus on this too much. Just remember that all opening curly braces must have a
corresponding closing curly brace and that all contents of a program entity such
as a class or method must be located within this curly brace pair.

In examining the declaration of the Main() method, you’ve no doubt noticed
some major differences between this declaration and the way a similar declaration
would be done in Java. One of the first things that you learned in Java was that
the main() method must always be defined as:

Java
public static void main(String[] args)

The differences between C# and Java really start here.The first thing that
should be mentioned is that in C#, the method name must be capitalized.As you
probably learned with Java, case-sensitivity is the first issue you’ll run up against
in C#.As with Java, if you attempt to compile with the Main() method capital-
ized incorrectly, you will receive a compile error stating that you have no entry
point defined.This basically means that your compiler has no idea where to
begin execution because it cannot find its starting point.

Also, in the declaration of the Main() method in C#, you’ve probably noticed
that no parameters have been specified for the method. In Java you must specify
the String[] args parameter for the main() method even if you are not passing any
command line arguments to the method. C# has changed this by removing this
requirement. C# can still accept the same argument; we’ll discuss this in the next
section,“Command Line Arguments.”

Language Fundamentals • Chapter 3 65

223_C#java_03.qxd 5/21/02 2:09 PM Page 65

66 Chapter 3 • Language Fundamentals

One additional requirement when defining a main() method in Java is that the
method must be public due to the fact that it is started from code outside its class.
C# does not have this requirement, therefore the Main() method can also be
declared as either of the following:

static void Main()

static void Main(String[] args)

After the Main() method has been defined, we can begin our program code,
again encapsulating it within a pair of curly braces. In our example here, we are
making a call to the System.Console namespace, and executing the WriteLine func-
tion.The process as to how this works is described in the section,“Namespaces,”
later in this chapter. For our purposes here, it is sufficient to know that this call can
be performed by either the method shown in our first example, or the following:

using System;

class SayHello

{

public static void Main()

{

Console.WriteLine("Hello "+"World!");

}

}

In this example, we are using the using keyword to specify that we are using
the System namespace.The using keyword basically creates a shortcut allowing us
to specify the Console.Writeline function without using the complete fully quali-
fied name.

Following our program code, we have our closing curly braces for the
method and the class.That’s it for our little sample application. By this point, you
should have a fairly good understanding of the differences between Java’s use of
the main() method and C#’s use of the Main() method.The differences and simi-
larities between these are really your stepping stones for understanding the differ-
ences and similarities between all aspects of the two languages.

Command Line Arguments
You now know how the Main() method works and how to write a very basic
program. Our next step will be to expand on the functionality of our application
by allowing it to accept command line arguments or parameters.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 66

Language Fundamentals • Chapter 3 67

In Java, command line arguments are passed to the main() method by way of a
single argument, String[] args.To refresh your memory, basically this declares an
array of instances of the String class. Based on this declaration, an array called args
receives all of the command line arguments passed to the program when it is
executed.

C# functions in a similar manner.The Main() method accepts a parameter of
string[] args, which declares that an array of string values is to be stored in the
variable args. Just as in Java, this allows you to accept command line arguments
and to process them within your application. Let’s take a look at a quick example:

using System;

class SayHello

{

public static void Main(string[] args)

{

foreach (string arg in args)

Console.WriteLine("Hello "+"{0}", arg);

}

}

In this example, we are taking each command line argument passed to the
executable and placing those arguments into our “Hello” message.When this is
used, the args array is filled with all of the strings following the executable name
on the command line.We then execute the Console.Writeline statement against
each string in the array.You probably noticed the foreach statement, which is new
in C#.This will be discussed later in Chapter 4, but for now think of it as a for
loop that iterates through the array.When this is executed, the following output
results:

C:\chapt3-code\c#>sayhello Austin Bobby Christina

Hello Austin

Hello Bobby

Hello Christina

C:\chapt3-code\c#>

Although this is good for a sample application, what you’re probably inter-
ested in is how to make this feature truly functional in your application. In many
applications, program flow or program options can be set via command line argu-
ments.The following code illustrates how this can be done in C#.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 67

68 Chapter 3 • Language Fundamentals

using System;

class SayHello

{

public static void Main(string[] args)

{

if (args.Length >0)

{

foreach (string arg in args)

{

if (arg.Equals("/help"))

Console.WriteLine("Run this program as follows:"+

"sayhello.exe [name1] ...");

else

Console.WriteLine("Hello "+"{0}", arg);

}

}

else

Console.WriteLine("For help, run sayhello.exe /help");

}

}

In this sample, we are taking the command line arguments and performing a
few actions against them. First, we check to see if there actually are any command
line parameters by using the Length method of the args object. If there are no
command line arguments, we output the string “For help, run sayhello.exe
/help”. If there are command line arguments, we first check each one to deter-
mine if it is “/help” by using the Equals method of the arg object. If the string
stored in arg is “/help”, we send output to the console explaining how to prop-
erly use our program. If the command line argument is something other than
“/help” we use it as the string to append to “Hello”. Running this application
results in the following display:

C:\chapt3-code\c#>sayhello

For help, run sayhello.exe /help

C:\chapt3-code\c#>sayhello /help

Run this program as follows:sayhello.exe [name1] ...

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 68

Language Fundamentals • Chapter 3 69

C:\chapt3-code\c#>sayhello Mike Chad Dave Sajan

Hello Mike

Hello Chad

Hello Dave

Hello Sajan

Return Values
Another feature in C# that differs from Java is the fact that the Main() method
can actually return a value. In Java, this was not possible due to the fact that the
main() method had to be declared using the keyword void, which specifies that no
value is returned from the method. In order for a method to return a value, the
variable type for the returned value must be defined when calling the method.
C# supports returning an int value from the Main() method. In order to do this,
declare the Main() method and your return values as demonstrated in the fol-
lowing code.

using System;

class SayHello

{

public static int Main(string[] args)

{

if (args.Length >0)

{

foreach (string arg in args)

{

if (arg.Equals("/help"))

{

Console.WriteLine("Run this program as follows:" +

"sayhello.exe [name1] ...");

return(1);

}

else

Console.WriteLine("Hello "+"{0}", arg);

}

return(0);

}

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 69

70 Chapter 3 • Language Fundamentals

else

Console.WriteLine("For help, run sayhello.exe /help");

return(2);

}

}

As you can see in this example, the program returns a different value
depending on how it is executed.You’ll also notice that even if the Main()
method has been defined to return a value, it can still accept the string[] args
parameter.

So how do you make use of this feature? By returning an integer value from
the Main() method, you are able to make use of the command interpreter’s error
level conditions.This allows you to enable your program to function within batch
processes and control the flow of the batch process depending on the outcome of
your program’s execution.This is best explained by an example.The following
DOS batch file calls the program created by our previous C# source code
example:

HI.BAT
@echo off

sayhello %1 %2 %3 %4 %5

IF ERRORLEVEL 2 GOTO NOARG

IF ERRORLEVEL 1 GOTO HELPMENU

IF ERRORLEVEL 0 GOTO NORMAL

:HELPMENU

ECHO Help menu has been accessed during this run.

GOTO END

:NOARG

ECHO Program was called with no arguments.

GOTO END

:NORMAL

ECHO Program executed standard greeting.

GOTO END

:END

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 70

Language Fundamentals • Chapter 3 71

When this batch file (called hi.bat) is executed, we are presented with the fol-
lowing output depending on how the batch file was called.

C:\chapt3-code\c#>hi

For help, run sayhello.exe /help

Program was called with no arguments.

C:\chapt3-code\c#>hi /help

Run this program as follows:sayhello.exe [name1] ...

Help menu has been accessed during this run.

C:\chapt3-code\c#>hi Austin

Hello Austin

Program executed standard greeting.

C:\chapt3-code\c#>hi Austin Mark

Hello Austin

Hello Mark

Program executed standard greeting.

C:\chapt3-code\c#>

As you can see, returning a value from the Main() method can be a very useful
feature.Whenever you are writing a console application, it is a good idea to return
a value from your Main() method.This will make your application useful within
batch executions and also helps automate success or failure reporting.

www.syngress.com

Return Statement
There is something very important to keep in mind when using the
return statement. When this statement is encountered during program
execution, the method containing the return statement is terminated
and passes the return value to the calling routine. In the case of the
Main() method, execution of the entire program terminates and returns
the specified return value. Always verify that you wish for your application

Debugging…

Continued

223_C#java_03.qxd 5/21/02 2:09 PM Page 71

72 Chapter 3 • Language Fundamentals

Single-Line and Multiline Comments
Regardless of what kind of program you are writing, there is always one portion
of the code that should be considered as the most important: programmer com-
ments.As you well know, without adding appropriate comments into your code,
neither you nor anyone else can understand or remember why a program was
coded the way it was. By using comments extensively in your code, you can go
back to it a week, a month, or years after and within a few moments understand
exactly what the program does and how it works.

Java supports three main commenting styles; single-line, multiline, and docu-
mentation comments (javadoc). In this section, we will cover single-line and mul-
tiline comments.The following code shows examples of these comments as they
are implemented in Java:

Java
//This is a single line comment.

/* This is a

* multiline comment.

*/

In C#, single-line and multiline comments are done in the exact same way.
Single-line comments are prefaced with // and multiline comments are encapsu-
lated between /* and */. Let’s go ahead and add some comments to our SayHello
sample program. For brevity, I’ll list just one small section of code:

//There are args, parse through them.

foreach (string arg in args)

{

//Check for /help arg.

if (arg.Equals("/help"))

{

www.syngress.com

to terminate at the position where you place the return statement if you
are using this statement within the Main() method. For example, if you
place the return statement within a loop in your Main() method, the
loop will exit immediately without any further processing when it
encounters the return statement.

223_C#java_03.qxd 5/21/02 2:09 PM Page 72

Language Fundamentals • Chapter 3 73

//Requested help, display prog info.

Console.WriteLine(

"Run this program as follows:" +

"sayhello.exe [name1] ...");

return(1);

}

/* This arg wasn't /help, assume it's a

* name and greet it.

*/

else

Console.WriteLine(

"Hello "+"{0}", arg);

}

return(0);

As you can see from this example, adding comments in your code helps
greatly with readability and can help in understanding how the program works.
When adding comments to your code, it is best to follow these standard practices
to help make your code more understandable to others:

■ When commenting out just a few lines of code, use multiple single-line
comments.

■ When commenting out a lot of code, use multiline comments, but
preface each line included in the segment with a *.This will make each
line more easily identifiable as a comment.

■ Comment your program flow, explaining what you are doing
and why.

■ Use single-line comments to mark off sections of code for debugging
purposes.

■ Over-commenting is better by far than under-commenting.

One final word on single-line and multiline comments:These comments are
not included with your compiled executable; therefore the additional space taken
up by comments in your source files will not increase the size of your executable.
Also, any proprietary or confidential information that you include in your com-
ments will not be able to be disassembled from your executable later.This gives
you a safe and effective way to include necessary information within your source

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 73

74 Chapter 3 • Language Fundamentals

files without worrying about who will be able to read it when the program is
compiled.

XML Documentation Comments
As mentioned in the previous section, Java includes a style of commenting called
documentation comments.These comments are encapsulated between /** and */
and are used by the javadoc utility to provide documentation for your code.The
javadoc utility takes these comments and generates a series of HTML files con-
taining this information. Javadoc creates a separate HTML file for each class and
also creates an index for the documentation.

C# supports a similar documentation style, but its use is almost completely
different from the Java documentation comments.These comments are called
“XML documentation comments” and, similar to Java’s documentation com-
ments, allow you to create dynamic documentation based on your source code.
This documentation is generated by the C# compiler when your program is
compiled, and is stored in the XML format. XML documentation can be used to
easily document each class, member, and method while you are coding.As you
know, going through your code after it is complete and documenting how each
method is called and what every class is used for is a very long and tedious job.
Using XML documentation as you are coding allows you to simply export an
XML file when your project is complete and have all your documentation com-
plete as well.

You can create this XML file when your application is complete, or create it
on every compile.The choice is completely yours. In order to tell the compiler
to create this documentation, you must include an additional command-line
parameter, /doc:filename.xml, when calling the compiler.The following example
calls the compiler with this parameter:

csc SayHello.cs /doc:SayHello.xml

This will take our SayHello.cs file and create an XML file containing the
XML documentation comments included in the file. Of course, at this point we
have no XML documentation comments in our source file, so the compiler gen-
erates an XML file that looks like this:

<?xml version="1.0"?>

<doc>

<assembly>

<name>SayHello</name>

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 74

Language Fundamentals • Chapter 3 75

</assembly>

<members>

</members>

</doc>

Before we start adding in XML documentation comments to our source file,
let’s take a look at what XML documentation tags we have available. XML docu-
mentation tags are used in the XML documentation comments to specify what
our comment is about as well as provide some special functions when the XML
file is generated.Table 3.1 is a list of standard XML documentation tags and what
they mean or do.

Table 3.1 XML Documentation Tags

Tag Subtag Attribute Values Description

<c> Indicates that the text
within the tags should
be marked as code. This
is used for small seg-
ments of code on a
single line.

<code> Indicates that the text
within the tags should
be marked as code. This
is used for code that
takes up multiple lines.

<example> Indicates that the text
within the tags is an
example. Generally this
is used to show how to
use a method or
member.

<exception> This allows you to
specify which exceptions
a class can throw.

cref exception Any valid exception.
<include> This allows you to

include documentation
from external files in
your generated XML file
rather than including
them in your source file

www.syngress.com

Continued

223_C#java_03.qxd 5/21/02 2:09 PM Page 75

76 Chapter 3 • Language Fundamentals

itself. This is useful in a
team environment
where some members
are writing code and
others are providing the
documentation.

file filename Filename to include.
path tagpath tagpath is the XML path

[@name to the tag containing
=”id”] the XML documentation

comments and includes
id, which matches the
name attribute of the
tag containing the
XML documentation
comments.

<list> Indicates that the data
within the tags is part
of a list.

type bullet, This specifies what type
number, of list this is.
or table

<listheader> This indicates that the
subtags contained
within this tag are the
heading row of a table
or list.

<item> This indicates that the
subtags contained
within this tag are items
to include in the list.

<term> Indicates that the text
within the tag is a term
to define.

<description> Indicates that the text
within the tag is the
description of a term.

<para> This formats the text
contained within the
tag as a paragraph.

www.syngress.com

Table 3.1 Continued

Tag Subtag Attribute Values Description

Continued

223_C#java_03.qxd 5/21/02 2:09 PM Page 76

Language Fundamentals • Chapter 3 77

<param> Indicates that the text
within the tag describes
the parameter specified
by the name attribute.

name method Specifies the name of a
parameter parameter to be
name described.

<paramref> References a parameter
specified by the name
attribute.

name valid Specifies the name of a
parameter parameter to reference.
name

<permission> Indicates that the text
within the tag is the
description of the secu-
rity access to a member.

cref valid Specifies the member to
member be described.
or field

<remarks> Indicates that the text
within the tag contains
an overview description.

<returns> Indicates that the text
within the tag describes
the return value.

<see> Specifies a link from
within some text.

cref valid Specifies the member to
member be linked to.
or field

<seealso> Specifies a link to be
included in a “see also”
section.

cref valid Specifies the member to
member be linked to.
or field

www.syngress.com

Table 3.1 Continued

Tag Subtag Attribute Values Description

Continued

223_C#java_03.qxd 5/21/02 2:09 PM Page 77

78 Chapter 3 • Language Fundamentals

<summary> Indicates that the text
within the tag is the
description of a
member.

<value> Indicates that the text
within the tag describes
a property.

Let’s focus for a moment on how XML tags work. Every tag has an opening,
has a closing, and can contain one or more parameters. Specifying the tag name
and encapsulating it within a <> opens a tag. For example, <summary> opens the
summary tag.

A tag can be closed either within the same tag definition or by specifying a
closing tag.An example of closing a tag within the same definition would be
<seealso cref=“member”/>.The /> at the end of the tag specifies that it closes
itself.This is used for tags that just specify parameters.A normal closing tag would
be in the format of </tagname>.

Parameters (known as attributes) are specified within the opening of the tag.
They are specified in the format attribute=value, where attribute is the name of the
attribute and value is the value to which the attribute refers.An example of this is
<seealso cref=“member”/>. In this example, cref is the attribute and “member” is the
value.

Putting all this together, you can end up with tags that look like the following:

<tagname attrib1=value1 attrib2=value2>text</tagname>

<tagname2 attrib1=value1/>

Why would you need to know exactly how the XML tags work? There are
two main reasons for this. First, the XML documentation comments are com-
pletely extensible due to the fact that you can add in your own tags. I mentioned
before that the preceding tag list contained standard tags.These are the current
standard XML documentation comment tags, but the format is extensible, so you
can add as many tags as you like.Additional tags, when preceded by ///, will be
included in the generated XML file.

The second reason for understanding XML is that you can customize the dis-
play of your XML documentation by creating or modifying XML stylesheets.To
do this, you need to have a good understanding of XML tags and how they work.

www.syngress.com

Table 3.1 Continued

Tag Subtag Attribute Values Description

223_C#java_03.qxd 5/21/02 2:09 PM Page 78

Language Fundamentals • Chapter 3 79

Now let’s take our SayHello sample code and add XML documentation com-
ments to it.Then we’ll compile it from the command line and see what we end
up with. Please note that the indentations in this example don’t follow standard
programming practice due to page width limitations, and further note that the
body of the method has been removed for simplicity.

using System;

/// <summary>

/// The SayHello class is a container for a simple

/// Main method.

/// <para>This sample is pretty useless.</para>

/// </summary>

class SayHello

{

/// <summary>

/// This is the Main method for the class and is

/// the execution starting point for our application.

/// Please note that <paramref name="args">args</paramref>

/// is a array of strings.

/// </summary>

/// <param name="args">People to say "Hello" to</param>

/// <returns>Returns a value depending on how the program

/// was called.</returns>

//We want Main to return an integer.

public static int Main(string[] args)

{

//Check to see if there are any cmdline args.

if (args.Length >0)

{

//Method body removed for simplicity

return(0);

}

return(1);

}

}

When this is compiled with the command-line syntax “csc SayHello.cs
/doc:SayHello.xml”, we end up with the following XML file.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 79

80 Chapter 3 • Language Fundamentals

<?xml version="1.0"?>

<doc>

<assembly>

<name>SayHello</name>

</assembly>

<members>

<member name="T:SayHello">

<summary>

The SayHello class is a container for a simple

Main method.

<para>This sample is pretty useless.</para>

</summary>

</member>

<member name="M:SayHello.Main(System.String[])">

<summary>

This is the Main method for the class and is

the execution starting point for our application.

Please note that <paramref name="args">args</paramref>

is a array of strings.

</summary>

<param name="args">People to say "Hello" to</param>

<returns>Returns a value depending on how the program

was called.</returns>

</member>

</members>

</doc>

After our SayHello.XML file has been generated, we can simply open Internet
Explorer and view it.This will result in a screen that shows us our XML tags in a
format that can either be collapsed or expanded by clicking on the + or – signs.
This output is shown in Figure 3.1.

So we now have our SayHello.XML file and we can see that it does include
all of our XML documentation comments.The problem at this point is that the
format that it is displayed in is cryptic and difficult to read.That’s where XML
stylesheets fit in. XML stylesheets take this XML output and format it in the
manner specified in the stylesheets.They use the XSL extension and basically are
used just for making XML files more readable.A complete explanation of XML
stylesheets and how to use them is beyond the scope of this book; however, we

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 80

Language Fundamentals • Chapter 3 81

will cover how to use them with our XML file. Full information on XML
stylesheets currently can be found at www.w3.org/TR/xsl/. In addition, the XSL
file we will use in our example was obtained from Microsoft MSDN and can be
found by searching for doc.xsl at http://msdn.microsoft.com.

To cause an XML file to be formatted by an XSL file, you must specify
which XSL file to use in the header of the XML file.This process is best shown
by an example. Currently, the top line of our SayHello.XML file is:

<?xml version="1.0"?>

In order to cause this XML file to be processed by our doc.xsl file, add a
line immediately after this that references the doc.xsl file.The syntax for this is as
follows:

<?xml-stylesheet href="doc.xsl" type="text/xsl"?>

By adding this line and saving the doc.xsl file in the same directory as the
SayHello.XML file, we can now view this file using the formatting specified in
the XSL file. Opening the SayHello.XML file in Internet Explorer now results in
the screen shown in Figure 3.2.

www.syngress.com

Figure 3.1 XML Documentation—Standard Format

223_C#java_03.qxd 5/21/02 2:09 PM Page 81

82 Chapter 3 • Language Fundamentals

As you can see, using XML documentation comments is a fast and conve-
nient method of creating documentation for your program. By using the com-
piler to generate an XML file containing your XML documentation comments
and using an XSL file to format them, you can quickly generate excellent docu-
mentation in an easy-to-read format.

Data Types and the
Common Type System
C# is, of course, based on the Microsoft .NET framework. One of the funda-
mental parts of this framework is a shared Common Type System (CTS).The CTS
defines how types are declared and used throughout the .NET framework and
provides the cross-platform type support for which .NET was designed.

In Java, you are provided with the following eight built-in, primitive data
types: boolean, byte, char, double, float, int, long, and short. C# provides the equivalent
of these as well as several new data types.Table 3.2 outlines the C# data types
and their Java equivalents.

www.syngress.com

Figure 3.2 XML Documentation—Stylesheet Format

223_C#java_03.qxd 5/21/02 2:09 PM Page 82

83

Table 3.2 C# Data Types

C# Java
Data Data Runtime Size
Type Type Type (bytes) Range Description

bool boolean Boolean n/a True or false Boolean Value
byte Byte 1 0 to 255 Unsigned Integer
char char Char 2 0x0000 to 0xFFFF Unicode Character
decimal Decimal 8 –79,228,162,514,264,337,593,543,950,335 to Decimal Number

79,228,162,514,264,337,593,543,950,335
double double Double 8 –1.79769313486232e308 to Double-Precision

1.79769313486232e308 64- Bit Number
float float Single 4 –3.402823e38 to 3.402823e38 Single-Precision

32-Bit Number
int int Int32 4 –2,147,483,648 to 2,147,483,647 Signed Integer
long long Int64 8 –9,223,372,036,854,775,808 to Signed Integer

9,223,372,036,854,775,807
sbyte byte SByte 1 –128 to 127 Signed Integer
short short Int16 2 –32768 to 32767 Signed Integer
uint UInt32 4 0 to 4,294,967,295 Unsigned Integer
ulong UInt64 8 0 to 184,467,440,737,095,551,615 Unsigned Integer
ushort UInt16 2 0 to 65535 Unsigned Integer

2
2
3
_
C
#
j
a
v
a
_
0
3
.
q
x
d

5
/
2
1
/
0
2

2
:
0
9

P
M

P
a
g
e

8
3

84 Chapter 3 • Language Fundamentals

In this table, there is a column that deserve special note. In the Runtime Type
column, a value is listed for each data type. In C#, all data types are part of the
System namespace and can be referenced through there. For example, the bool data
type can be referenced as System.Boolean.

C# supports two kinds of types: value types and reference types, which are both
based on the object (System.Object) type. Value types hold actual data in the form
of variables.They are stored in the stack by C#, which is a temporary memory
space.With value types, every stored value is stored separately from all of the other
stored values, and changing one will not affect another.

Reference types hold objects, which refer to actual data.They are stored in the
heap, which is a more permanent and larger memory space. Since an object can
be referred to by multiple variables, operations using one of the variables can
affect operations by the other.This is something to keep in mind when referring
to the same object through different variables.

These basic data types are, by default, value types and are stored in the stack.
You can, however, store any data type in the heap and reference it as an object if
necessary.This process is called boxing and basically creates a wrapper that makes
the value type look like a reference object containing the value that was stored in
the value type.This process can also be reversed.An example would be as follows:

using System;

class ShowNumber

{

public static void Main()

{

Console.WriteLine("Your number is: {0}", 8);

}

}

In this example, the 8 is boxed and can be referenced as an object.The
Int32.ToString() function is called to transform this object to a string, and our
number is displayed. Unboxing works in the same way; simply assign a converted
object to a variable. Boxing and unboxing will be covered in more detail in
Chapter 7. Conversions and assignments to variables are covered in the next
few sections.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 84

Language Fundamentals • Chapter 3 85

Variables
C# works with variables in a manner similar to Java.All variables must be
declared prior to use and are declared with a statement of what data type the
variable is.Also similar to Java, variables can be initialized with a default value
when declared and multiple variables of the same type can be declared at the
same time.The following example shows the declaration of a few variables:

using System;

/// <summary>

/// This class declares and initializes a few

/// variables.

/// </summary>

class UseVars

{

static void Main()

{

//Initialize a few integers.

int a, b, c, d, e;

object o = d;

}

}

In this example, we are creating several integer variables (a, b, c, d and e) and
one object variable (o).As you can see in this code, we have declared three of the
integer variables at the same time.

For the .NET architecture, Microsoft recommends using PascalCasing for
variable names, and naming them in relation to what they are used for. In the
past, many programmers used Hungarian Notation for variable names (e.g.,
strMyString, intMyInteger, etc.) in which the type of variable being used can be
determined by the first few characters of the variable’s name. Microsoft has rec-
ommended against this practice in .NET and instead recommends simply refer-
ring to the variable’s use. For example, in our code, we would rename a to
BoxHeight, b to BoxWidth, c to BoxDepth, d to BoxVolume, o to Box, and e to
ValueOfBox.

All of the variables we’ve declared in this example are within the Main()
method.Although we haven’t explicitly declared it, their visibility is limited to

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 85

86 Chapter 3 • Language Fundamentals

within the Main() method and they cannot be seen from outside that method.
Therefore, they are considered local. In C#, there are four primary access modi-
fiers for variables, and one combination access modifier.They are outlined with
their visibility in Table 3.3.

Table 3.3 Access Modifiers

Access Modifier Definition

internal Access to the variable is limited to the local project.
private Access to the variable is limited to the containing type

(i.e., class or method).
protected Access to the variable is limited to the class.
protected internal Access to the variable is limited to the class or the local

project.
public Access to the variable is unrestricted.

There are three main types of variables: class variables, instance variables, and
local variables. Class variables are prefaced with the term static and are initialized
only once, when the class is initialized. Instance variables are initialized every
time an instance of the class is created.The last variable type is local, and these are
initialized every time the variable is declared.

In the following code sample, these variable types are demonstrated.We’ll
create a class variable called a, an instance variable called b, and a local variable
called c. We’ll also see how these variables are initialized.

When the SetVars class is first initialized, the a and b variables are both initial-
ized.When a second instance of the SetVars class is initialized, only the b variable
is initialized because the class variable a has already been initialized.The following
code sample illustrates this:

using System;

class SetVars

{

public static int a;

public int b;

}

class WorkVars

{

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 86

Language Fundamentals • Chapter 3 87

static void Main()

{

int c;

SetVars MyVars = new SetVars();

SetVars MyOtherVars = new SetVars();

}

}

Constants
Constants in C# are basically variables that are read-only.A similar functionality
exists in Java and is called by using the final keyword. By specifying a variable as a
constant, you can be sure that the value of the variable will not be changed from
its original assignment. In C#, a constant is declared by using the keyword const
prior to the data type in your declaration.Also, you can use access modifiers with
a constant just as you would with a normal variable. Note that in Java there is a
const keyword, but it is reserved and does not perform the same function.The fol-
lowing code illustrates the declaration and use of a constant:

class SetVars

{

public static int a;

public int b;

public const string IniFileName = "SETVARS.INI";

}

In this example, we have declared a class variable named a, which is only ini-
tialized the first time the class is initialized.We’ve also declared an instance vari-
able named b, which is initialized each time an instance of the class is created.
Finally, we’ve declared a constant named IniFileName.This constant is a string and
is an instance variable, therefore it is recreated for each instance of the SetVars
class. Due to the fact that it is a constant, it is static and cannot be changed after
it has been declared.

Assignment Statements
The process of assigning a value to a variable in C# is very similar to the same
process in Java.Value assignments can be performed either when the variable is

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 87

88 Chapter 3 • Language Fundamentals

declared or any time thereafter.The only prerequisite to assigning a value to a
variable is that the variable be declared.Also, when working with constants, the
value of a variable must be assigned at the time the variable itself is declared.This
is due to the fact that constants are read-only and cannot be changed after they
are initially declared.

When assigning values to variables, we use the = symbol to show that the
variable should be set to whatever follows the = symbol. It is important to keep
in mind that in C# as in Java, this symbol should be considered to mean “set
value to” instead of “is value equal to.”That function will be covered later in the
chapter in the “Operators” section.

The following code sample shows the declaration of several variables, the
assignment of values to those variables, and their subsequent use.

using System;

class BoxTest

{

static void Main()

{

//Declare and set our length,

//width and height variables.

int Length = 10, Width = 5;

int Height;

Height = 2;

//Create a box.

Box MyBox = new Box(Length, Width, Height);

//Show the box's volume.

MyBox.DisplayBoxVolume();

}

}

You can see from this example the process for assigning values to your vari-
ables. If you look in the Main() method, you will notice that the values for the
integers Length and Width have been set as they were declared.The value for the
integer Height has been set after it has been declared.You can use either of these
methods for setting values for your variables as necessary.

In addition to setting values to variables directly as we have seen in the pre-
vious example, you can set the values of variables based on other variables.This is

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 88

Language Fundamentals • Chapter 3 89

done just as it is in Java and is illustrated in the following modification to our
previous example:

using System;

class BoxTest

{

static void Main()

{

//Declare and set our length,

//width and height variables.

int ProductLength = 10, ProductWidth = 5;

int ProductHeight;

ProductHeight = 2;

//When designing the box for our product,

//we will need additional space for packing

//material.

const int PackingMaterialSize = 3;

int PackedBoxLength = ProductLength +

PackingMaterialSize;

int PackedBoxWidth = ProductWidth +

PackingMaterialSize;

int PackedBoxHeight = ProductHeight +

PackingMaterialSize;

//Create a box.

Box MyBox = new Box(PackedBoxLength, PackedBoxWidth,

PackedBoxHeight);

//Show the box's volume.

MyBox.DisplayBoxVolume();

}

}

In this example, we have taken the dimensions of a product, and then added
additional space for the product packing material by using both the variables
containing the product dimensions and a constant containing the packing mate-
rial size.As you can see in this example, C# works just like Java in manipulating
the values stored in variables.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 89

90 Chapter 3 • Language Fundamentals

Conversions between Data Types
One of the more common functions that is necessary to perform on variables is
that of conversion.This is necessary when a value has been stored in a variable of
a specific data type and you need to move the value into a variable with a dif-
ferent data type. Several examples of this would be:

■ Changing an int to a decimal to support currency

■ Changing a byte into a short so you have room for a larger value

■ Changing a char into an int so it can be worked as a number

There are two types of conversions possible: implicit and explicit.Another term
for this would be automatic and casted conversions. Implicit conversions are used in
the following situations:

■ The two data types are identical

■ The two data types are compatible

■ The destination data type is larger than the source data type

Implicit conversions are very easy to define and are performed automatically
as they are needed. By simply assigning a variable of the source type as the value
of a variable of the destination type, the conversion is performed.The following
code shows examples of some implicit conversions:

using System;

class ImplicitConversion

{

public static void Main()

{

byte a=1;

int b=1234;

int c=a; //Implicit cast

double d=b; //Implicit cast

Console.WriteLine("{0}", c);

Console.WriteLine("{0}", d);

}

}

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 90

Language Fundamentals • Chapter 3 91

In this example, we have taken a byte value and used an implicit conversion to
convert it to an integer value.We’ve also taken an integer and converted it to a double.
Both of these are implicit conversions and suffer no data loss in the conversion.

When using implicit conversions, keep in mind that the precision of some
variables may be changed after conversion. For example, converting from an int,
long, or uint to a float or from a long to a double will result in this effect.

Explicit conversions will attempt to convert the value stored in your source
variable into the data type of your destination variable.A couple things should be
noted about explicit conversions before attempting to use them. First of all, not
all conversions will be successful so you should plan your code around this even-
tuality. Second, some data may be lost in the conversion.This may be in the form
of truncated data following a decimal point, or modified numeric values. Keep in
mind also that all valid implicit conversions can be performed as an explicit con-
version.

To perform an explicit conversion, we simply perform a standard value-to-
variable assignment and include a statement specifying what type of conversion
to perform.The following code example illustrates this technique:

using System;

class ExplicitConv

{

static void Main()

{

double a = 5.654321;

int b;

b = (int) a;

Console.WriteLine("The value is {0}", b);

}

}

When this code is compiled and run, the output appears as follows:

The value is 5

Depending on your needs, explicit conversions may or may not always result
in the values you are looking for.To account for this, C# also provides the ability
to create your own user-defined implicit or explicit conversions.This will be dis-
cussed in more detail in Chapter 7.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 91

92 Chapter 3 • Language Fundamentals

Operators
C#, much like Java, makes available a large number of operators for us to use. In
C#, these are broken up into six major groups: mathematical, assignment, incre-
ment and decrement, relational, logical, and bitwise. In the following sections,
we’ll go into detail on each of these operators and see how they function.

We’ll also examine the differences between the functionality of these opera-
tors in C# and in Java. Some operators in Java do not have a C# equivalent, but
there are also several new operators available that did not exist in Java. In the final
part of this section, we’ll examine operator precedence and see how this differs
between C# and Java.Table 3.4 lists the available operators in C# as well as the
operator group of which they belong.

Table 3.4 Operator Groups

Operators Group

+ – * / % Mathematical operators
= += –= *= /= %= Assignment operators
&= |= ^= <<= >>=
++ -- Increment and decrement operators
== != < > <= >= Relational operators
& | ^ ! ~ && || Logical operators
<< >> Bitwise operators

Mathematical Operators
In C#, mathematical operators perform in the same way as arithmetic operators
do in Java.Table 3.5 lists the C# mathematical operators and their definitions.
This is mainly for review as they are the same as in Java.

Table 3.5 Mathematical Operators

Operator Definition

+ Addition
– Subtraction
* Multiplication
/ Division
% Modulus

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 92

Language Fundamentals • Chapter 3 93

Any of these operators can be used between multiple numeric data types, but
not with other data types such as boolean.You can perform mathematical opera-
tions on variables, or directly on values.These operations can be performed either
after a variable has been defined, or within its definition.The following code
example shows how this works:

using System;

class Operators

{

static void Main()

{

int a = 5, b = 10, c = 15;

int d = a + b;

int e = c - b;

int f = a * e;

int g = f / a;

Console.WriteLine("{0}", g);

Console.WriteLine("{0}", g % 2);

}

}

The operations shown in this code sample are all pretty simple. However, it is
worth noting just for review that the % operator does perform a modulus opera-
tion. Basically, this returns the resulting remainder after dividing the first value by
the second.

Assignment Operators
In the previous section on variable assignments, we made use of the = symbol to
assign a value to a variable.This symbol is actually one of several assignment opera-
tors.With = being the most basic of the assignment operators, it assigns the desig-
nated value to a variable.This assignment operator is considered a simple assignment
operator.There are, however, many other assignment operators that perform more
complex functions.These operators are referred to as complex assignment operators.
They are the same as those in Java, so we won’t spend too much time on them.
Table 3.6 shows the C# assignment operators and their definitions.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 93

94 Chapter 3 • Language Fundamentals

Table 3.6 Assignment Operators

Operator Definition

= Simple assignment
+= Addition assignment
–= Subtraction assignment
*= Multiplication assignment
/= Division assignment
%= Modulus assignment
&= AND assignment
|= OR assignment
^= Exclusive OR assignment
<<= Shift Left assignment
>>= Shift Right assignment

Basically, these assignment operators perform an operation, and then assign
the result of the operation to a variable. For example, the %= assignment oper-
ator performs a modulus operation upon the destination variable and the source
value, then assigns that result to the destination variable. Note that the >>>=
assignment operator that you may have used in Java is not available in C#.

The following code sample illustrates the use of some of these assignment
operators in C#. Before we go on, one final thing should be mentioned: with
assignment operators, unlike mathematical operators, you cannot perform a com-
plex assignment with a variable that is undefined.

using System;

class Operators

{

static void Main()

{

int a, b, c, d, e;

a = 14;

b = 15;

c = 20;

d = a + b - c; //d=9

c += d; //c=29

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 94

Language Fundamentals • Chapter 3 95

e = c + d; //e=38

e /= 2; //e=19

Console.WriteLine("{0}", e);

}

}

Increment and Decrement Operators
In C# (just as in Java) there are increment and decrement operators, which func-
tion exactly as they do in Java.The ++ operator increases a value by 1, and the
– – operator decreases the value by 1.

Again, identical to Java, these operators can be placed ahead of or behind the
value that is the object of the operation.Where the operator is placed does
modify the resulting value of the operation.This is referred to as a prefix or postfix
operation.

By placing the increment or decrement operator ahead of the value, a prefix
operation is performed.This means that the result of the operation will actually
be the value of the object prior to the operation being performed.

If you place the increment or decrement operator behind the value, a postfix
operation is performed. By performing a postfix operation, the result of the oper-
ation is returned as the value after the operation has been performed.The fol-
lowing code sample illustrates the use of these two operators in both the postfix
and prefix forms:

using System;

class Operators

{

static void Main()

{

int a=10, b, c;

b = a++; //Postfix operation

c = ++a; //Prefix operation

Console.WriteLine("{0}", b);

Console.WriteLine("{0}", c);

b = b--; //Postfix operation

c = --c; //Prefix operation

Console.WriteLine("{0}", b);

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 95

96 Chapter 3 • Language Fundamentals

Console.WriteLine("{0}", c);

}

}

Output
10

12

10

11

Relational Operators
Relational operators basically take two values and evaluate the relationship
between them.Again, these are identical to the same functions in Java. Relational
operators return a boolean value after the operation has been performed.You can
think of relational operators as asking the question,“Is x operation y?” where x is
your first value, y is your second, and operation refers to what relationship the
values have to each other. For example, the question,“Is 4 greater than 5?” could
be programmatically written in C# as:

using System;

class Operators

{

static void Main()

{

bool a = 4 > 5;

Console.WriteLine("{0}", a);

}

}

This results in the variable a having a value of false.Table 3.7 shows the avail-
able relational operators and their definitions.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 96

Language Fundamentals • Chapter 3 97

Table 3.7 Relational Operators

Operator Definition

== Equal to
!= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

Logical Operators
C#’s logical operators are identical in functionality to Java’s logical operators,
although you may not be familiar with grouping all of them as logical operators.
Table 3.8 shows the logical operators available in C# and their definitions.

Table 3.8 Relational Operators

Operator Definition

& Bitwise AND
| Bitwise OR
^ Bitwise XOR (exclusive OR)
! Logical negation
~ Bitwise complement (NOT)
&& Logical AND
|| Logical OR

The &, |, and ^ operators can be used on both numeric and boolean data
types.The ! , &&, and || operators are used exclusively with boolean values.The ~
operator is used on numeric data types and returns the bitwise opposite or com-
pliment of the value similar to the way the ! operator performs on boolean values.
The following sample code illustrates the use of these operators and shows the
result of the operation.

using System;

class Operators

{

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 97

98 Chapter 3 • Language Fundamentals

static void Main()

{

int a=10, b=15, c=20, d, e, h, i;

bool f, g, j = (a==b), k;

d = (a&b);

e = (a|b);

f = (j&&(b==c));

g = (j||(b==c));

h = (a^b);

i = ~b;

k = !j;

Console.WriteLine("{0}", d); //10

Console.WriteLine("{0}", e); //15

Console.WriteLine("{0}", f); //False

Console.WriteLine("{0}", g); //False

Console.WriteLine("{0}", h); //5

Console.WriteLine("{0}", i); //-16

Console.WriteLine("{0}", j); //False

Console.WriteLine("{0}", k); //True

}

}

Output
10

15

False

False

5

-16

False

True

Bitwise Operators
In relation to bitwise operators, C# differs from Java somewhat. Both Java and
C# have the << and >> operators, but Java also has the >>> operator whereas

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 98

Language Fundamentals • Chapter 3 99

C# does not.This is very important to note when attempting to port code over
from Java to C#.

Just as in Java, the << and >> operators are defined as a bitwise shift to the
left or the right, respectively.This bitwise shift is performed in the same manner
as most other operators in C# and can be performed either during or after a
variable declaration.The << operator basically shifts all of the bits in a value the
specified number to the left.The >> does the same, but to the right.An example
of this is shown in the following code:

using System;

class Operators

{

static void Main()

{

int a=256, b=128, c, d;

c = a >> 1;

d = b << 1;

Console.WriteLine("{0}", c); //128

Console.WriteLine("{0}", d); //256

}

}

Output
128

256

Ternary Operator
The ternary operator, also called the conditional operator, is very unique. It effec-
tively provides you with an “if…then” statement to use with operations.This same
functionality is also available in Java and it works the same way in both languages.

Like most operators in C#, this can be used on variables either after or while
they are defined. It is called in the form of: expression1 ? expression2 : expression3.
Using this syntax, expression1 is the expression that is being evaluated, expression2
is evaluated if expression1 is true, and expression3 is evaluated if expression1 is false.

There are a couple of restrictions on the use of this operator.The first expres-
sion in the operator must result in a boolean value.Also, the second and third

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 99

100 Chapter 3 • Language Fundamentals

expressions must evaluate to the same data type.The following code shows an
example of how this operator could be used:

using System;

class Operators

{

static void Main()

{

int a=10, b=5;

int c = a==b ? a : b;

Console.WriteLine("{0}", c); //5

}

}

Output
5

Operator Precedence
Operators always perform their functions in a specific order.This order of opera-
tions is referred to as operator precedence.There are specific rules that are followed
in order to make the execution of multiple operations logical and consistent.

All operations have a specific association that determines in what direction
operations are read.When dealing with any operators except for assignment
operators, this order is from left to right, or left-associative.Assignment operators
process from right to left and are therefore right-associative.

There is also a hierarchical order of precedence that is followed when
working with operators.At the top of the hierarchy are parentheses and square
brackets.Anything encapsulated within these will be processed first.This hier-
archy is shown in Figure 3.3.

Preprocessor Directives
C# has a feature called Preprocessor Directives that does not exist in Java.These
directives allow you to do conditional compilation, output code-specific warn-
ings, or perform other functions as the program is being compiled.This functions
in a similar manner to C or C++ where there is a preprocessor, but C# has no

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 100

Language Fundamentals • Chapter 3 101

actual preprocessor.These directives are simply taken into account by the com-
piler when the program compilation occurs.

There are several preprocessor directives available in C#, which are listed and
defined in Table 3.9.

Table 3.9 Preprocessor Directives

Preprocessor
Directive Definition

#define Defines a symbol
#undef Undefines a symbol
#if Begins a conditional directive
#elif Creates a compound conditional directive
#else Creates a compound conditional directive
#endif Specifies the end of a conditional directive
#error Generates an error at a specific place in your code
#warning Generates a warning at a specific place in your code
#region Specifies a block of code for outlining
#endregion Specifies the end of an outlining region
#line Modifies the line number shown for errors and warnings

www.syngress.com

Figure 3.3 Operator Precedence Hierarchy

() []

++ -- ~ !

* / %

+ -

<< >>

< > <= >=

== !=

&

^

|

&&

||

?:

= *= /= %= += -=
<<= >>= &= ^= |=

223_C#java_03.qxd 5/21/02 2:09 PM Page 101

102 Chapter 3 • Language Fundamentals

By using these directives, changes in the way your application compiles can
be made at compile time.This is a very useful feature and can be used in many
ways to improve both the way your application is compiled and the way the
compiler itself performs. For example, when you’re debugging you might want to
compile certain parts of the program that you don’t want to be included in the
final version.This is where the preprocessor will come in very handy.

#define and #undef
The #define and #undef preprocessor directives are used to define or undefine
symbols for use by other preprocessor directives. Basically, when other directives
need to evaluate a symbol, that symbol will be either defined or undefined by the
#define or #undef directives.

If you wish for the symbol to be evaluated as true, simply define it with the
#define preprocessor directive. If the symbol should be evaluated as false, undefine
it with the #undef preprocessor directive. Consider the following two statements:

#define DEBUG

#undef PERSONALIZE

In the previous statements, if a #if or #elif preprocessor directive evaluates
these two symbols, they will evaluate to true and false, respectively. Note that the
#define and #undef preprocessor directives must appear in your code prior to any
other instruction that is not another preprocessor directive.

In addition to the #define statement, you can also specify symbols to be
defined at the command line when compiling, using the following syntax:

csc MySource.cs /define:SYMBOL1, SYMBOL2

#if, #elif, #else, and #endif
The #if, #elif, #else, and #endif preprocessor directives are all used for conditional
processing when your program is compiled.The #if and #elif both evaluate the
symbols to determine whether they are defined or undefined.The #else prepro-
cessor directive allows for a compound conditional directive to be created.And
finally, the #endif preprocessor directive specifies the end of a conditional directive.

Now for a little more detail on how these work.You can think of these direc-
tives as a typical if/else statement.The #if preprocessor directive evaluates the
symbols it is given and determines whether the end result is true or false. If the
result is true, the code between the #if preprocessor directive and the #endif
preprocessor directive is executed. If the result is false, the code between the #if

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 102

Language Fundamentals • Chapter 3 103

preprocessor directive and a subsequent #endif, #elif, or #else preprocessor direc-
tive is skipped.

If, after a #if preprocessor directive has evaluated to false, a #else preprocessor
directive is found, the code between the #else preprocessor directive and the
#endif preprocessor directive is executed. However, if a #elif preprocessor directive
is found after the #if preprocessor directive has evaluated to false, the symbols
given to the #elif preprocessor directive are evaluated.This is effectively the
equivalent of performing a #else preprocessor directive followed by another #if
preprocessor directive, which is not allowed.The #elif preprocessor directive is
then processed in the same way as an #if preprocessor directive.

When a #if or #elif preprocessor directive is evaluating the symbols it is
given, there are some specific preprocessor expressions allowed that let you control
the way this evaluation is performed.These preprocessor expressions are very sim-
ilar to operators and perform in much the same way.Table 3.10 outlines the pre-
processor expressions allowed and how they are evaluated.

Table 3.10 Preprocessor Expressions

Preprocessor Expression Evaluation

== Evaluates as true if both symbols are equal
!= Evaluates as true if both symbols are not equal
! Evaluates as true if symbol is false
&& Evaluates as true if both symbols are true
|| Evaluates as true if either symbol is true

In addition, parentheses can be used to group expressions, and expressions
located within parentheses are evaluated first.These concepts are a little easier to
understand when an example is present; so examine the following code and its
subsequent output.

#define PERSONALIZE

#define DEBUG

#undef VERBOSE

using System;

class Operators

{

static void Main()

{

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 103

104 Chapter 3 • Language Fundamentals

#if PERSONALIZE

Console.WriteLine("Hi Author!");

#elif VERBOSE

Console.WriteLine("Program Starting...");

#endif

int a=10, b=5;

#if DEBUG

Console.WriteLine("a={0}, b={1}", a, b);

#endif

#if PERSONALIZE && (VERBOSE || DEBUG)

Console.WriteLine("Continuing, Author...");

#elif !PERSONALIZE && (VERBOSE || DEBUG)

Console.WriteLine("Continuing...");

#endif

}

}

Compiling and executing this code results in the following output.

Output
Hi Author!

a=10, b=5

Continuing, Author...

In the preceding example, there are several preprocessor directives in use, so
let’s examine the logic here and see why we get this output. First of all, we have
defined two symbols (PERSONALIZE and DEBUG) and undefined another
(VERBOSE).When a symbol is undefined, it’s easier to think of it as commented
out. If we wanted to make use of this symbol, we’d simply change the #undef
statement to a #define statement.

Following this, we have some preprocessor directives evaluating our symbols.
The first directive evaluates whether the PERSONALIZE symbol has been
defined. If it has, then the program personalizes the output. Second, we follow
this with a #elif statement to evaluate the VERBOSE symbol.This will only be
evaluated if the PERSONALIZE symbol evaluates to false. If VERBOSE has
been defined, which in our case it has not, the program outputs additional infor-
mation.This is followed by a #endif directive to specify that we’re done evaluating
for the moment.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 104

Language Fundamentals • Chapter 3 105

Shortly after this, we use another preprocessor directive to evaluate the
DEBUG symbol.This is very useful when performing debugging of an applica-
tion. If the DEBUG symbol evaluates to true, which it does in our example, the
values of our variables are written to the console.This is followed by another
#endif to specify that we’re done evaluating.

The directives that follow this are a little more complex. In the first, the
directive must evaluate to true on the PERSONALIZE symbol as well as true on
either the VERBOSE or DEBUG symbols in order to process the command that
follows. In our example, both PERSONALIZE and DEBUG evaluate to true, so
this statement is executed.

This is followed by a #elif directive, which is only processed if the previous
statement evaluated to false. Since this is not the case in our example, it is not
evaluated. However, if it were, it would require that the PERSONALIZE symbol
evaluate to false and either the VERBOSE or DEBUG symbol evaluate to true
before running the command that follows.This is followed by a #endif directive
as we are done with the evaluations.

Keep in mind that if code encapsulated within a preprocessor directive is not
used due to the directive evaluating to false, this code is not even compiled and is
not included with your final application.This is very useful for including debug
code within your source code, but keeping the size of your final executable
down.This can also be used to personalize the compiled code for specific uses,
but still have the complete application in your source code.

www.syngress.com

Using Preprocessor Directives
A great feature of the #define and #undef preprocessor directives is
that they provide a simple yet effective method to control debugging.
When writing your code, you can make “debug points” where you
output additional information to the console or log files when debug-
ging is enabled. These debug points simply use the #if preprocessor
directive to determine whether a specific symbol (such as DEBUG) is
defined. If it is, the additional information is output or additional func-
tions are performed. This can be incredibly useful when you are in the
development stages of a program.

Debugging…

223_C#java_03.qxd 5/21/02 2:09 PM Page 105

106 Chapter 3 • Language Fundamentals

#error and #warning
The #error and #warning preprocessor directives allow you to specify errors and
warnings to appear when the program is compiled.This is very useful if someone
else will be compiling your source code in the future and you wish to make
them aware of certain problems or conditions at compile time.

Both of these preprocessor directives are executed in the same way. Simply
insert the preprocessor directive into your code and follow it with the specific
text to display when the preprocessor directive is executed.

Keep in mind that the #error preprocessor directive will generate a compiler
error and will halt the compile.This is generally used within a conditional or
compound conditional preprocessor directive.The following code example illus-
trates the usage of these preprocessor directives:

#define PERSONALIZE

#define DEBUG

#undef VERBOSE

#define PROGRAMMER_IS_BRIAN

#undef PROGRAMMER_IS_DAVE

using System;

class Preprocessor

{

static void Main()

{

#if PERSONALIZE

Console.WriteLine("Hi Author!");

#elif VERBOSE

Console.WriteLine("Program Starting...");

#endif

int a=10, b=5;

#if DEBUG

Console.WriteLine("a={0}, b={1}", a, b);

#endif

#if PERSONALIZE && (VERBOSE || DEBUG)

Console.WriteLine("Continuing, Author...");

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 106

Language Fundamentals • Chapter 3 107

#elif !PERSONALIZE && (VERBOSE || DEBUG)

Console.WriteLine("Continuing...");

#endif

#if PROGRAMMER_IS_BRIAN || PROGRAMMER_IS_DAVE

#warning Execution may vary depending on programmer.

#endif

#if PROGRAMMER_IS_DAVE

#error Something you did broke this code.

#endif

}

}

Output
C:\chapt3-code\c#>csc Preprocessor.cs

Microsoft (R) Visual C# Compiler Version 7.00.9254

[CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

PreProcessor.cs(30,14): warning CS1030: #warning: 'Execution may vary

depending on programmer.'

C:\chapt3-code\c#>preprocessor

Hi Author!

a=10, b=5

Continuing, Author...

#region and #endregion
The #region and #endregion are preprocessor directives that are specific to the
Microsoft Visual Studio.NET Code Editor. If you are using the VS.NET Code
Editor, these preprocessor directives can be used to specify blocks of code for out-
lining.This allows you to expand or collapse the code within the Code Editor.

To do this, simply preface the block of code you wish to specify as a region
with the #region preprocessor directive, and place a #endregion preprocessor direc-
tive at the end of the code block. Keep in mind that you cannot end a region

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 107

108 Chapter 3 • Language Fundamentals

within an #if block if it was begun before the #if block was begun. In addition, if
the region was started within an #if block, it must end within that #if block.
Figure 3.4 shows this feature in use.

#line
The #line preprocessor directive allows you to give the compiler a different
line number or file name to use with any errors or warnings.This allows you to
simulate what the error line numbers would be in the complete version of an
application if you are working with only a subset of the code for the application.
For example, if multiple programmers are compiling unrelated parts of an appli-
cation and logging errors found during the compile, they might want to log
where the error would have occurred within the context of the full application.

Specify the #line preprocessor directive followed by the line number where
you want the compiler to start counting. Optionally, you can include an alternate
source file name.With this option, the compiler will report any errors that occur
and will reference this file name as the origination point for the errors.A third
option is simply to specify default, and the line numbering will be reset to where
it really is in the original source file.The following source code and compiler
output demonstrate how this works:

using System;

class Operators

{

www.syngress.com

Figure 3.4 Region Preprocessor Directives

223_C#java_03.qxd 5/21/02 2:09 PM Page 108

Language Fundamentals • Chapter 3 109

static void Main()

{

#line 300

#warning Something happened.

#warning Something else happened.

#line 400 "someotherfile.cs"

#warning Something happened later.

#line default

#warning Nothing else will happen.

}

}

The following output was generated when this source was compiled at the
command line:

C:\chapt3-code\c#>csc Operators.cs

Microsoft (R) Visual C# Compiler Version 7.00.9254

[CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

Operators.cs(300,11): warning CS1030: #warning: 'Something happened.'

Operators.cs(301,11): warning CS1030: #warning: 'Something else

happened.'

someotherfile.cs(400,11): warning CS1030: #warning: 'Something happened

later.'

Operators.cs(13,11): warning CS1030: #warning: 'Nothing else will

happen.'

We’ve gone through the entire list of C# preprocessor directives at this point
and have seen their use in several code samples.There are several main points to
remember about how the preprocessor directives work.

First, you can evaluate symbols defined using the #define directive by using
the #if and #elif directives.You can also use the preprocessor expressions with
these to expand on the functionality of the preprocessor directive logic.

You also have the ability to generate compile-time errors and warnings by
using the #error or #warning directives.These can be used in combination with
the logic provided by the #if, #elif, and #else directives as well as the preprocessor
expressions.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 109

110 Chapter 3 • Language Fundamentals

There is also functionality provided by the preprocessor directives to specify
specific code regions that allow you to collapse or expand code when working
within the Visual Studio interface.These are the #region and #endregion directives.

Finally, you can change the line numbering used for errors reported by the
compiler with the use of the #line preprocessor directive.

Also, remember that all of these directives are evaluated at compile time, and
based on this evaluation, may or may not include specific code segments in your
final application.This is a very useful feature and due to its flexibility, can be used
to fulfill the needs of any number of scenarios.

Namespaces
In Java, a new innovation in code organization was developed. Called packages,
this innovation provided a new, unique way of organizing code and eliminating
potential naming conflicts. In C#, there is a similar mechanism known as the
namespace.This mechanism is hierarchical just like Java’s packages, and allows you
to nest namespaces just as you would nest packages in Java.

There are two primary advantages to using namespaces when coding applica-
tions.The first is that this technique keeps code organized.You can pull classes and
methods out of multiple namespaces on an as-needed basis, which is substantially
more organized than simply having all of your code in one file or including mul-
tiple files at compile time.The second advantage is that you are much less likely to
end up with naming conflicts. If only one programmer in a team was allowed to
use the class name test, imagine how many conflicts would be generated! Whereas
by using namespaces, each programmer could have their own test class in a sepa-
rate namespace and not conflict with anyone else.

In our sample code so far, we’ve been using the WriteLine() method of the
Console class within the System namespace for performing program text output.
This could be referenced as:

System.Console.WriteLine();

However, that sure is a lot of typing if you happen to have a deeply nested
namespace. For this, C# has provided the using keyword.This keyword performs
two functions that assist with using namespaces.The first is that it acts as a
shortcut to access a nested namespace. By using the statement:

using System;

this allows us to reference the WriteLine() method as follows:

Console.WriteLine();

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 110

Language Fundamentals • Chapter 3 111

The using keyword allows us to do this by importing the metadata from the
namespace into our program.After this is imported, the classes of the namespace
can be accessed more easily.

The second function of the using keyword is that it allows us to assign an alias
to a namespace.This is another way of dealing with potential naming conflicts.
By referring to a namespace by an alias, the compiler will know which specific
namespace we are attempting to use even if we actually have two namespaces that
are named the same.

The following sample code demonstrates the use of the using keyword and
how it functions when performing as a shortcut or creating an alias.

using System;

using MyConsole = System.Console;

class UsingExample

{

static void Main()

{

Console.WriteLine("This is using the System.Console namespace.");

MyConsole.WriteLine("So is this.");

}

}

After compiling and running this code sample, we are presented with the fol-
lowing output:

C:\chapt3-code\c#>UsingExample

This is using the System.Console namespace.

So is this.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 111

112 Chapter 3 • Language Fundamentals

Summary
In this chapter, we started with the Main() method in C# and examined the dif-
ferences between this and the main() method in Java.We learned how to write a
simple “Hello World” program and took this program through an evolution as we
added additional capabilities such as the use of command line arguments and
returning a value.

We then learned how commenting is done in C# and examined the new
XML documentation comments that C# has made available.We learned how to
use this powerful feature to make the documentation of our programs simple yet
effective.

From there, we started working with data and exploring the different data
types that C# has made available to us.We learned about variables and constants
and how to assign values to them.We also learned how to convert data between
different data types and perform various operations on our data ranging from
mathematical operations to the powerful ternary operation.

Building on our growing knowledge of the fundamentals of the C# lan-
guage, we learned a little more about how the compiler works and how we can
control its operation to a limited degree through preprocessor directives.

To top everything off, we learned about C# namespaces and how they can
help us to organize code and prevent naming conflicts.We also learned about
some shortcuts to use when dealing with namespaces to make them a little more
user-friendly.

Solutions Fast Track

Main() Method

In C#, the Main() method is capitalized, whereas in Java it is lowercase.

The Main() method supports command line arguments as well as having
the ability to return a value.

There are eight ways of using the Main() method:

1. public static void Main(string[] args)

2. public static void Main()

3. public static int Main(string[] args)

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 112

Language Fundamentals • Chapter 3 113

4. public static int Main()

5. static void Main(string[] args)

6. static void Main()

7. static int Main(string[] args)

8. static int Main()

Single-Line and Multiline Comments

// designates a single-line comment.

A multiline comment can be placed between /* and */.

/// designates XML documentation comments.

Data Types and the Common Type System

C# supports the same data types as Java as well as providing a few
additional data types.

All data types are based on the object data type.

Data types can be referred to as objects by using a method called boxing.

Variables

In C#, variables must be defined before they can be used.

Variables can be initialized with a value when they are defined.

Microsoft recommends using PascalCasing for variables.

Constants

Constants are basically read-only variables.

Constants must be initialized with a value when they are defined.

Attempting to modify a constant will result in a compile error.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 113

114 Chapter 3 • Language Fundamentals

Assignment Statements

Values can be directly assigned to variables of the same data type as
the value.

Values can also be assigned to variables of different data types by using
implicit or explicit conversions.

The scope of a variable is defined when it is declared.

Operators

Operators can be used to perform a variety of functions to values or
variables.

When using operators, always bear in mind which data types each
operator supports.

Operators are evaluated in a specific order known as operator precedence.

Preprocessor Directives

Preprocessor directives are used at compile time even though C# does
not have a preprocessor.

Using preprocessor directives allows you to control compilation activities
for your application depending on defined symbols.

Preprocessor directives can also affect the way that the VS.NET Code
Editor displays your code.

Namespaces

Namespaces are used in C# to organize code and prevent naming
conflicts.

The using keyword allows you to create a shortcut to a nested
namespace.

The using keyword also allows you to create aliases for namespaces
to prevent naming conflicts or to refer to a namespace by a more
friendly name.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 114

Language Fundamentals • Chapter 3 115

Q: Do I have to have a Main() method?

A: No.When you are compiling an assembly for use as a library or DLL file, you
don’t necessarily need a starting point for execution within your code.This is
due to the fact that you’ll simply be making use of the code within the
classes, not executing an application.

Q: Is it better to use code comments or XML documentation comments?

A: A combination of both is best.The code comments allow you or other pro-
grammers to come back at a later time and easily understand why your code
was written the way it was. If your code is going to be released as part of a
library or DLL, XML documentation comments certainly make using the
methods you include much easier.

Q: When dealing with data type conversions, should I try and use implicit con-
versions or use explicit conversions since explicit conversions can perform the
same function?

A: Using implicit conversions in your code is best whenever it is possible.This is
due to the fact that a compiler error will be generated if you try to use an
implicit conversion incorrectly.An explicit conversion will usually just go
ahead and do the conversion, which could possibly lead to unexpected
behavior or bugs. However, there are certainly times that explicit conversions
are necessary. Simply use implicit conversions wherever possible and explicit
conversions when absolutely necessary.

Q: Why would I want to use preprocessor directives? Can’t I just comment out
code instead?

A: Commenting out sections of code or having code that requires the evaluation
of constants within the application to perform the same function is certainly

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#java_03.qxd 5/21/02 2:09 PM Page 115

116 Chapter 3 • Language Fundamentals

possible, but not recommended.There are a few reasons for this. First, using
preprocessor directives are much easier than commenting or uncommenting
code for each compile. Second, if evaluations are being performed during
runtime to determine which sections of code to run, additional system
resources are unnecessarily used.And last, when using preprocessor directives,
unneeded code is not even compiled into your final application, cutting
down on the executable size.

Q: All your sample code uses a single .cs file. Is this a recommended practice?

A: Not for larger projects or full applications. C# provides the namespaces capa-
bility to allow you to use multiple files and organize your code.The sample
code provided in this chapter is very simple and really needs only the single
file.

Q: What learning process would you recommend to me, as a Java programmer,
to transition my skills to C#?

A: My best recommendation would be to take one of your current Java applica-
tions and port it over to C#.This will provide an excellent learning experi-
ence and give you real problems and issues from which you can research and
learn more about how C# works.

Q: When writing a new C# program, I got stuck in a couple of places and need
help.Where can I turn?

A: There are many resources available to you.The first is books like this one,
which offer information and practical examples of how code works. On the
Internet, you can turn to Microsoft’s Web site for help as well as many other
independent Web sites. Usenet newsgroups are another excellent resource.
These put you in touch with many other programmers, some of which may
have experienced the same problem you’re having.

www.syngress.com

223_C#java_03.qxd 5/21/02 2:09 PM Page 116

Programming
Structures

Solutions in this chapter:

■ Strings

■ Flow Control

■ Arrays

■ The foreach Statement

■ Indexers

■ Collections

■ Exceptions

Chapter 4

117

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_04.qxd 5/21/02 3:31 PM Page 117

118 Chapter 4 • Programming Structures

Introduction
Chapter 3 discussed the basic building blocks of the C# programming language;
this chapter will highlight more advanced programming structures necessary for
building C# applications.

In this chapter you will learn about the String class in C#. Just like in Java,
strings are special objects with special support of the language.We will introduce
the basic flow controls of the C# language, and introduce the foreach statement
(which is not available in Java).We then will examine some of the collection
classes provided by the .NET Framework.We will talk about Arrays and a new
feature not found in Java, called Indexers. Finally, we will look at exception han-
dling in C#, which is very similar to Java.

Strings
The Java and C# string classes are very similar. In many instances the only differ-
ence between a member of the Java string class java.lang.string and the C# class
System.String is in the capitalization of the method name.Another interesting
tidbit is that both System.String and the datatype string can be used interchange-
ably.The reason for this is that Microsoft has aliased the string datatype to the
System.String class. Most of the Java string methods are included in the C# string
class, as well as some other methods, courtesy of Perl and Visual Basic.We will go
over String creation, and then proceed into the StringBuilder class, which is very
much like Java’s StringBuffer.We will then discuss the RegEx class, which permits
use of Regular Expressions, a very powerful feature that was Perl’s claim to fame.
Regular Expressions are not yet available in the Java SDK 1.3. However, Sun is
planning to include it in the next release of the Java SDK.

The WriteLine Method
C#’s System.WriteLine method is the counterpart to Java’s console output method
System.out.println() . Here is a simple application that prints to the console in both
languages so you can observe the similarities.

Java
public class PrintExample

{

public static void main(String[] args)

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 118

www.syngress.com

System.out.println("Hello Bruce!");

}

}

C#
class PrintExample

{

public static void Main(string[] args)

{

System.Console.WriteLine("Hello Bruce!");

}

}

This function has numerous overloads to permit calling it with any parameter
including basic numeric data types and any object. For example, note the fol-
lowing syntax, which takes parameters of numeric and string types, and outputs
them all as strings:

System.Console.WriteLine(1 + " + 2 = " + 3);

This outputs 1 + 2 = 3.The toString method is called on the parameter to
convert it to a string internally prior to output.You can also use a formatting
string to get the same results, for example:

int x = 3;

System.Console.WriteLine("{0} + 2 = {1}",1,x);

The {0} and {1} are placeholders for the values or variables that follow the
first parameter.There are several formatting specifications, which can be found in
the MSDN Library.

An important thing to remember is that this method appends a line termi-
nator to the end of the output; you may use System.Console.Write(); to write to
the console without appending the line terminator character to the output.

Creating Strings
In C#, there are several methods of creating a String object.The first and most
common method of creating a String is to use a literal.The following code
snippet creates a string with the value “A String Literal”.

String s1 = "A String Literal";

Programming Structures • Chapter 4 119

223_C#Java_04.qxd 5/21/02 3:31 PM Page 119

120 Chapter 4 • Programming Structures

As in Java, once a C# string has been created it cannot be changed; therefore
we say they are immutable.There are methods that appear to modify the string,
such as ToUpper(), but under the covers they are creating a new string.

At our disposal are several C# string constructors.Although there are eight
constructors in the C# String class, all but three of these use pointers and create a
noncompliant,“unsafe” instance.The constructors you want to get familiar with
are the following:

String(char Ch, int Count)

String(char[] CharArray)

String(char[], int Start, int Count)

The first of these constructors takes a character and an integer argument.This
constructor will simply repeat the first char parameter the length of the second
integer argument. For example, the following code will construct the string “cccc”:

String repeatedCharacterString = new String('c', 4);

The second constructor takes a character array as its argument and will con-
vert it to a string.The following code will create the string “hello”:

www.syngress.com

What Are the Implications of Immutable Strings?
It is important to remember that in C#, strings are immutable. This
means that they cannot be modified after they are created. You must be
careful when using functions that would modify the string; if you do not
reassign the return value to the string you are doing nothing. For
instance, the following code has no effect on the string.

String s2 = "This is a string!";

s2.ToUpper();

You must reassign the return value as follows:

String s2 = "This is a string!";

s2 = s2.ToUpper();

Developing & Deploying…

223_C#Java_04.qxd 5/21/02 3:31 PM Page 120

Programming Structures • Chapter 4 121

Char[] charArray = { 'h','e','l','l','o' };

String stringFromCharArray = new String(charArray);

The third and final constructor takes three parameters: a character array, and
two integers. It will create a string from a substring in the character array, starting
at the index value of the second parameter, until it has reached the number of
chars equal to the value of the third parameter.The following code will create the
string “defg” from a character array:

Char[] charArray = { 'a','b','c','d','e','f','g','h' };

String subString = new String(charArray, 3 , 4);

Unlike in Java, there is not a String(String s) constructor. Since we previously
mentioned that Strings are immutable, this would only serve to copy the String.
Instead you may use the Copy() method of the string class to get the same results.

Just as in Java, you may use the + operator to concatenate strings, as well as
perform implicit conversion of other objects into strings.As we see in the next
example, you do not have to make an explicit call to the ToString() method to
convert another object into a String when concatenating.This code will create
the string “1 is a lonely number.”

int numberOne = 1;

String lonelyString = numberOne + " is a lonely number.";

Table 4.1 lists several handy C# String methods, as well as their Java counter-
parts.

Table 4.1 C# String Class Members

C# Java Function Notes

Length length() Returns the length In Java you call a
of the string method to get the

length of a string;
in C# you just
access its public
property.

[int index] charAt(int index) Retrieves a In C# the String
character at the class is imple-
specified index mented with an

indexer, so charac-
ters can be
retrieved as if the
string were an

www.syngress.com
Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 121

122 Chapter 4 • Programming Structures

array of characters.
In Java you must
call charAt() to
obtain a character
at a specific index
into the string.

Concat(String str) concat(String str) Concatenates two In most cases you
strings would use the

overloaded con-
catenation oper-
ator +, as opposed
to calling either of
these two
methods.

Compare(string CompareToIgnore Compares Strings, In Java, case-
strA, string strB, Case (String str) ignoring case. sensitive, and
bool ingoreCase); insensitive com-

pare operations
utilize two dif-
ferent method
calls. In C# it is the
same method call,
but the third
parameter specifies
the case sensitivity.

Split(char[] sep) split(String regex) Splits a string into This method per-
an array of sub- forms the same
strings around way in Java and
matches of the C#.
split parameter

Join Not Available Joins an array of Java does not offer
substrings, with an this function; to
inserted delimiting simulate it you
character, into one would have to
string—the exact iterate through an
opposite of a Split array of substrings

appending a
delimiting char-
acter and a sub-
string to another
string.

www.syngress.com

Table 4.1 Continued

C# Java Function Notes

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 122

Programming Structures • Chapter 4 123

ToLower() toLowerCase() Converts the string This method per-
to lowercase forms the same

way in Java and
C#.

ToUpper() toUpperCase() Converts the string This method per-
to uppercase forms the same

way in Java and
C#.

Trim() trim() Removes leading This method per-
and trailing white- forms the same
space from a string way in Java and

C#.

Verbatim String Literal
C# also adds a new form of literal, dubbed the Verbatim String Literal, which
permits creating string literals exactly as written. Rather than interpreting the \
character as the start of an escape sequence, it interprets it verbatim.To indicate
that a string literal is a Verbatim String Literal, precede it with the @ character.
Keep in mind that to represent a double quote you must use two double quote
characters.The following two declarations are equivalent:

String stringLiteral = "C:\\C# programs";

String verbatimStringLiteral = @"C:\C# programs";

Verbatim String Literals are very useful for situations in which you want to
specify a path, either to a registry key or file, and when you are parsing data that
may contain characters that normally would require an escape character to
specify; for example, parsing XML, or HTML documents.

The StringBuilder Class
Due to the fact that strings are immutable, and that methods that appear to modify
strings such as ToUpper() in fact create new strings, you may have concerns about
the efficiency of C#. Java provided the StringBuffer class to remedy such a problem.
C# has its own flavor of Java’s StringBuffer class in its System.TextStringBuilder class.
The StringBuilder class creates strings that are not immutable and can be modified. It
sets an initial storage size for the string, and whenever this size is about to exceed

www.syngress.com

Table 4.1 Continued

C# Java Function Notes

223_C#Java_04.qxd 5/21/02 3:31 PM Page 123

124 Chapter 4 • Programming Structures

its limits, the buffer is reallocated at double the size. For example, examine the fol-
lowing code:

using System;

using System.Text;

class PrintExample

{

public static void Main()

{

String NormalString = "String";

StringBuilder StringBuilderString = new StringBuilder("String");

NormalString.ToUpper();

String StringBuilderTempString = StringBuilderString.ToString();

StringBuilderString.Replace(StringBuilderTempString,

StringBuilderTempString.ToUpper());

Console.WriteLine(NormalString);

Console.WriteLine(StringBuilderString.ToString());

}

}

When the preceding code has completed execution, the normalString will still
contain the value String, as it is an immutable string.The stringBuilderString will
contain the value STRING, as it is not immutable.Table 4.2 list some of the
useful methods of the C# StringBuilder class and their Java equivalents.

Table 4.2 C# StringBuilder Class Members

C# Java Function Notes

Capacity capacity() Retrieves the C# uses a public
current capacity of property to expose
the StringBuilder this value, as
object opposed to an

accessor method.
[int index] charAt(int index) Retrieves a In C# the

character at the StringBuilder
specified index class is implemented

with an indexer, so
characters can be
retrieved as if the

www.syngress.com
Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 124

Programming Structures • Chapter 4 125

string was an array of
characters. In Java
you must call
charAt() to obtain a
character at a specific
index into the
StringBuffer.

Length length() Returns the length C# uses a public
of the StringBuilder property to
object expose this value, as

opposed to an
accessor method.

Append append(String str) Appends the This method performs
(String str) specified string to the same way in

the end of this Java and C#.
instance

Insert(int insert(int offset, Inserts the string This method per-
offset, String str) into the forms the same
String str) StringBuilder way in Java and C#.

object at the
specified offset

Remove(int delete(int Removes characters The C# imple-
startindex, start, int end) from the mentation of this
int length) StringBuilder function requires a

starting offset within
a StringBuilder object,
and then the number
of characters to
remove.The Java
implementation
requires a starting
offset within the
StringBuffer object,
and an ending offset
for the delete opera-
tion. The ending
offset is not included
as a deleted character.

www.syngress.com

Table 4.2 Continued

C# Java Function Notes

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 125

126 Chapter 4 • Programming Structures

Replace replace(int start, Replaces a substring The C# implementa-
(String int end, String str) in the StringBuilder tion of this function
substring, object, with the requires a string
String specified argument specifying
Replacement) replacement string the substring to

replace, and the
string to replace it
with.
The Java implementa-
tion requires a
starting and ending
index for the sub-
string to replace, and
the string to replace
it with.

ToString() toString() Converts data in the This method per-
StringBuilder object, forms the same way
into an immutable in Java and C#.
String object

Using Regular Expressions
One feature that is not yet in Java, yet is present in C#, is support for regular
expressions.This support is provided via the System.Text.RegularExpressions classes,
and is based on the Perl 5 syntax for Regular Expressions. Regular Expressions
are sets of characters and syntactic elements used to match patterns of text.They
can be used in advanced search and replace operations, such as locating all
repeated words in a document, or parsing strings between two values.They
encompass a language within themselves; a detailed discussion of this is outside
the scope of this book. I recommend reading the Regular Expressions reference
in the MSDN library on Microsoft’s Web site for more information on how to
write Regular Expressions.The following is an example of a program that utilizes
regular expressions to parse an HTML file for links.

using System;

using System.Text.RegularExpressions;

using System.IO;

using System.Text;

www.syngress.com

Table 4.2 Continued

C# Java Function Notes

223_C#Java_04.qxd 5/21/02 3:31 PM Page 126

Programming Structures • Chapter 4 127

public class HTMLParser

{

public static void Main(String[] args)

{

FileInfo MyFile = new FileInfo(args[0].ToString());

if(MyFile.Exists)

{

StreamReader sr = MyFile.OpenText();

string text = sr.ReadToEnd();

sr.Close();

string pattern = @"<a\shref\S*/a>";

MatchCollection patternMatches = Regex.Matches(text, pattern,

RegexOptions.IgnoreCase);

foreach (Match nextMatch in patternMatches)

{

Console.WriteLine(nextMatch.ToString());

}

}

else

Console.WriteLine("The input file does not exist");

}

}

We want to focus on the following portion of code:

string pattern = @"<a\shref\S*/a>";

MatchCollection patternMatches = Regex.Matches(text, pattern,

RegexOptions.IgnoreCase);

foreach (Match nextMatch in Matches)

{

Console.WriteLine(nextMatch.ToString());

}

Regular Expressions require that you pass a string containing the Regular
Expression to the static method Matches() of the Regex class.The Regular

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 127

128 Chapter 4 • Programming Structures

Expression in this example uses \s to denote any whitespace character, and \S*
to denote any string of nonwhitespace characters. Since regular expressions make
extensive use of the \ character, this is a good opportunity to use Verbatim String
Literals, so that your \’s are not mistaken for escape characters.The Matches()
method returns an object of the MatchCollection class; MatchCollection is a collection
of Matches.We will discuss collections later in this chapter.The first parameter of
this function is the text string to search using the regular expression.The second
parameter is the string containing the actual regular expression, and the third and
final parameter is any one or more of the RegexOptions enumeration flags.The
most commonly used of these options would be RegexOptions.Ignorecase, which
tells the search to ignore case when doing a criteria check against the regular
expression. For a list of the remaining flags please check the .NET Framework
class reference library available at the MSDN Web site.

The final section of this code utilizes a foreach statement to iterate through the
matches, and writes them out to the console window. (We will cover the foreach
statement later in this chapter.)

Let’s see this code in action. For our example run, we will feed the following
HTML file, HTMLParse.html, into our program.The file contains the following
code:

<HTML>

<BODY>

Click here,

or here<a> if you prefer.

</BODY>

</HTML>

After compiling the code, we can run HTMLParser as follows:

c:\HTMLParser HTMLParse.html

This gives the following output:

C:\csharp>HTMLParser HTMLParse.html

here

here

As you can see our program parsed all the URL links out of the HTML file,
and displayed them as console output.Try this on your own HTML files, or on
an HTML file you downloaded from the Internet.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 128

Programming Structures • Chapter 4 129

Flow Control
All languages would have a hard time doing their jobs without some form of
flow control—this was true in Java, and it still holds true in C#. It is likely that
you have used the following flow control constructs in your Java programming,
so we will discuss them briefly.We will spend more time on statements that did
not exist in Java, such as the foreach iteration statement, and the infamous goto.

Branch Statements
Branch statements, also known as Conditional statements, permit us to branch
our code in a different direction based on a condition. Branch statements in both
C# and Java consist of if/else and switch statements.

The if/else Statement
The if/else construct is the most frequently used flow control statement. It tests a
condition and if that condition is true, it executes either the next code statement
or several code statements if they are enclosed in curly braces. If the condition
does not evaluate to true, then it either skips the code segment, or executes code
in an else statement. It is used in C# the same way as it is used in Java. For
example:

if(x == 1)

System.Console.WriteLine("X is equal to 1.");

else

System.Console.WriteLine("X is not equal to 1.");

It is often common to nest if/else statements as in the following example.

if(x == 1)

if(y == 2)

System.Console.WriteLine("x = 1, y = 2");

else

System.Console.WriteLine("x = 1, y != 2");

else

System.Console.WriteLine("x != 1");

As you can see, nested if/else statements can easily begin to get cumbersome.
Complex nested if/else statements can be better-written using switch statements.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 129

130 Chapter 4 • Programming Structures

The switch Statement
A switch statement will evaluate an expression and execute the corresponding case
statement. Switch statements are a common alternative to using nested if/else con-
structs for testing multiple conditions.The specifics of the case and break state-
ments will be discussed later in this chapter. Switch statements in C# have some
differences from their counterparts in Java.Their syntax and usage are still pri-
marily the same.They are the best approach towards multidecision logic, as
opposed to extensive nested if/else statements. Unlike Java, C# switch statements
do not require integers. C# switch statements can use any of the following data

www.syngress.com

The Dangling else Problem
Since every else in an if/else statement complements the immediately
preceding if statement, if you are not careful you can run into what has
been dubbed The Dangling Else problem.

if(x == 1)

if(y == 2)

System.Console.WriteLine("X = 1, Y = 2");

else

System.Console.WriteLine("X != 1 ");

In this example the programmer intended that the else statement
be for the if(x ==1) statement, but since there is another if statement
preceding it in the same code block, it belongs to the if(y==2) state-
ment. This can be corrected by using the curly braces {} to clearly define
the limits of each if statement.

if(x == 1)

{

if(y == 2)

System.Console.WriteLine("X = 1, Y = 2");

}

else

System.Console.WriteLine("X = 1, Y =2");

Debugging…

223_C#Java_04.qxd 5/21/02 3:31 PM Page 130

Programming Structures • Chapter 4 131

types: sbyte, byte, short, ushort, int, uint, long, ulong, char, string, or enum. Note that C#
strings are included in this list.The ability to switch on a string expression is a wel-
come feature. In Java, making decisions based on string values would require a
multi if/else statement.The following is an example of a C# switch statement
using a string as its switch value.All case labels must be constants.

String testString = "Test";

switch(testString)

{

case "Hello":

System.Console.WriteLine("The string says Hello.");

break;

case "Test":

System.Console.WriteLine("The string says Test");

break;

default:

System.Console.WriteLine("The string is unknown");

break;

}

Another diversion C# switch statements take from Java is in the fall-through
mechanism. In Java and in C/C++, if a case is listed without a break statement, it
will fall through to the next case statement.This feature, although sometimes
intended, was a common source of bugs. In C# you have to specify that you
want one case to fall-through to the next one using the goto statement.There is
one exception to this, and that is empty cases. If a case label is empty, then it will
fall-through to the next case.The following code comparison between Java and
C# switch statements highlights these differences. In the Java example, because we
left the break out of case 2, it will print both “x = 1” and “x = 2”. In the C#
example, this will not occur unless we specifically state goto case 3 in case 2.As a
matter of fact, the C# example will not even compile because it is lacking the
break statement.

Java
int x = 2;

switch(x)

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 131

132 Chapter 4 • Programming Structures

{

case 1:

System.out.println("x = 0.");

break;

case 2:

System.out.println("x = 1.");

case 3:

System.out.println("x = 2.");

break;

}

C#
int x = 2;

switch(x)

{

case 1:

System.Console.WriteLine("x = 0.");

break;

case 2:

//Will not compile without the goto line

System.Console.WriteLine("x = 1.");

//goto case 3;

case 3:

System.Console.WriteLine("x = 2.");

break;

}

To have the C# example perform the fall-through, uncomment the goto case
3 line and you’ll notice that the program will behave exactly as its Java counter-
part.

Iteration Statements
C# shares the same Iteration statements as Java, the pretest while and for loop, and
the posttest do-while loop. C# also adds a new Iteration statement, the foreach
loop, which will be discussed in more detail in the sections “Arrays” and
“Collections.”

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 132

Programming Structures • Chapter 4 133

The while Loop
The while loop executes a segment of code 0 or more times, based on the out-
come of a boolean control expression.The while loop is called an indeterminate
loop and is usually used when the program will be unaware of the number of
iterations of the loop until it has been entered.The following code demonstrates
the while loop.

bool noMoreRecords = false;

while(!noMoreRecords)

{

noMoreRecords = ReadRecord();

}

The use of the while loop in C# is very similar to Java.

The do-while Loop
The do-while loop executes a segment of code 1 or more times. It is similar to the
while loop, except that the control condition is evaluated after the loop body had
run once.

bool noMoreRecords;

do

{

noMoreRecords = ReadRecord();

} while(!noMoreRecords);

Again there are no surprises here.The do-while loop behaves identically to its
Java counterpart.

The for Loop
The for loop is a pretest determinate loop.This means that the program knows
how many times it’s going to execute the loop code prior to entering the loop.
The for loop is handy for situations in which you need to repeat something a
predetermined number of times, or need to iterate through an array. In C# a
new flow control loop is provided, called the foreach loop, which is described
later.This loop is specifically designed to iterate through arrays and collections so
is therefore preferred over the for loop for this purpose.The following code pre-
sents a sample for loop that will execute 31 times and print out the days in the
month of January.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 133

134 Chapter 4 • Programming Structures

for (int x = 0; x < 31; x++)

{

System.Console.WriteLine("January {0}", x + 1);

}

As you can see, the three major flow control statements in C# are very sim-
ilar to Java, so you should be familiar with them. Later on we’ll discuss the foreach
loop construct, which is new in C#.

Jump Statements
A Jump statement transfers control of the program to another block; they are
used to exit the current block of code.These statements are identical to their Java
counterparts, the one exception being the goto statement.

The goto Statement
Although the goto statement is declared a keyword in Java, its function is not
implemented.The goto statement transfers control to a code segment marked with
a label. For example the following code will print 4 as opposed to 5.The reason
for this is that when the execution flow of the program encounters the goto state-
ment, it will move execution to the label indicator, which is Print in this example.

int x = 4;

goto Print;

x = 5;

Print:

System.Console.WriteLine(x);

As you can see, extensive use of the goto command can make the execution
flow of code difficult to follow. Code that abuses the goto command is often
termed “Spaghetti Code” because the flow of execution is so convoluted it is like
looking at a bowl of spaghetti and trying to find out which noodle goes where.
In C# there is one place where it will be more common to use the goto com-
mand, and that is in switch statements. Remember, C# switch statements do not
support case fall-through.You can use the goto command to move from one case
to another, to get the same effect as case fall-through. Since this takes active
coding on your part, it solves the problem of accidentally omitting the break
statement, yet still permits fall-through if you deem you need it.When using
goto’s in this manner, you do not have to define a new label within each case.You
can use the case label in the goto statement.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 134

Programming Structures • Chapter 4 135

The break Statement
As you may have noticed in the switch example, the break statement will transfer
control of the program to the first line outside the current block of code. It may
also be used to exit any loop (Iteration statement). If the break is within a nested
loop, it will only exit the innermost loop in which it occurs.This functionality is
identical to the break statement in Java. Contrary to Java, however is that C#’s
break statement does not permit use of labels.This capability is not required due
to C#’s support of the goto statement.The following code uses a break statement
to exit a for loop early.

for(int i=0; i < 10; i++)

{

int x = DoSomething();

if(x == 0)

break;

}

The preceding code would execute the for loop 10 times, unless the imagi-
nary method DoSomething() returned a 0, if such an event occurred, the break
statement would execute and program flow would pick up immediately fol-
lowing the for loop.

The continue Statement
The continue statement performs in the same way as the break statement, but
rather than exit the loop entirely, it returns control to the start of the loop.You
can think of it as only exiting the current iteration of the loop, whereas the break
statement would have exited the loop completely.Again, this is the same func-
tionality as the continue statement in Java.The following code uses a continue state-
ment to exit one iteration of a for loop.

for(int i =0; i < 10; i ++)

{

int x = DoSomething();

if(x == 0)

continue;

System.Console.WriteLine("loop iteration " + i);

}

The preceding code will execute the for loop 10 times, and output the loop
iteration each time. If the DoSomething() function returns a 0, we will not print

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 135

136 Chapter 4 • Programming Structures

the loop iteration, and will return to the start of the loop.This is because the
continue statement does not exit the loop entirely, it merely exits the current
iteration of the loop.

The return Statement
When a program calls a method, the program flow moves to the start of that
function. For the flow to return to the code that called the method, it must
encounter a return statement. Once this is encountered, the flow returns to the
code that called the method.This is pretty much standard behavior for program-
ming languages—Java and C# are no exception. If a method returns a value, then
you must include a value of the same type in the return statement.We will discuss
methods in Chapter 5.

The following example shows a program that calls a function, and traces the
program flow.

using System;

class ProgramFlow

{

public static void Main(String[] args)

{

Console.WriteLine("Main Line 1");

MethodSample();

Console.WriteLine("Main Line 2");

}

static void MethodSample()

{

Console.WriteLine("MethodSample line 1");

return;

}

}

Output
Main Line 1

MethodSample line 1

Main Line 2

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 136

Programming Structures • Chapter 4 137

As you can see, once the return statement was encountered, program flow
returned to the line immediately after the method call. Please note that in our
example we’re returning void and therefore the return statement is not completely
necessary.You would want to use the return statement if a method returns a value;
then you must use the same data type in the return statement as you specified in
the method initialization. For example:

public static int MethodSample()

{

int x = 10;

//Perform method function here

return x;

}

Arrays
As was the case with strings, C#’s Array class shares many similarities with its Java
counterpart.You are most likely familiar with the concept of an array; an array is
a series of objects consisting of the same data types. Individual objects in the
series, called elements, are referenced by their index into the array.

This concept of an array holds true for most programming languages.The
similarities specifically between Java and C# arrays deal with the methods and
properties of their classes. Both C# and Java provide a length property, which pro-
vides the number of elements in an array.They also provide similar methods for
sorting or searching arrays.We will discuss these similarities in more detail after
we go over how to declare and initialize arrays in the next section.

Declaring and Initializing Arrays
Arrays are declared using the same syntax as in Java:

// data_type[] arrayname;

int[] IntegerArray;

Arrays can be initialized in several different ways.The most common way is
by using the new operator, which will initialize an array, but not assign any values
to it.The following code will create an integer array with four elements:

int[] integerArray = new int[4];

If you knew the values you wished to assign the array elements at the time
you created the array, you can also use the following syntax.This method will

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 137

138 Chapter 4 • Programming Structures

create an integer array with four elements, and assign the values 1, 2, 3, and 4 to
the elements, respectively.

int[] integerArray = {1,2,3,4};

To access an individual element of an array you specify the index of that ele-
ment.The following code reassigns the value of the third element in the previ-
ously created array. Note the third element is accessed via [2].This is because all
arrays in C# are 0 indexed.This means the first element of the array is accessed
via [0], not [1].

integerArray[2] = 7;

As we mentioned in the introduction to the Array section, C# provides
methods for searching and sorting arrays similar to the methods provided in the
java.util.Arrays package. In Java you can use Arrays.sort() to sort an array, in C#
sharp you use Array.Sort().The C# counterpart to Java’s Arrays.binarySearch()
method is Array.BinarySearch().As you can see from these similarities, a Java pro-
grammer familiar with the Java Array implementation should not have much
trouble using C#’s approach.

Table 4.3 shows some common Array methods and properties.

Table 4.3 C# Array Methods and Properties

C# Java Function Notes

[int index] get(Object array, Gets an element C# arrays utilize
int index) of the array the standard

indexer for indi-
vidual element
access.

Length length In C#, this In Java, this prop-
property gets erty will cause a
the total compile error
number of when used on a
elements in all multidimensional
the dimensions array, however
of the array. C# simply returns
In Java, this the total number
property gets of elements in the
the number of multidimensional
elements in a array.
single dimen-
sional array.

www.syngress.com

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 138

Programming Structures • Chapter 4 139

Rank Not Available Gets the This public prop-
number of erty returns the
dimensions of number of dimen-
the array sions in a multidi-

mensional C#
array object. This
is not possible in
Java.

BinarySearch(Array binarySearch(Object[] Searches a one- This method per-
array, Object value) array, Object value) dimensional forms the same in

sorted array for Java and C#.
a value, using
a binary search
algorithm

GetLength(int getLength(Object Gets the The C# imple-
Dimension) array) number of mentation of this

elements in the method requires
specified that the pro-
dimension of grammer pass in
the array an integer value

that represents
the dimension of
the array from
which to get the
number of ele-
ments. The Java
implementation
assumes the array
is one-dimen-
sional.

GetLowerBound() Not Available Gets the lower In Java, arrays are
bound of the always 0 based,
specified in C# this is the
dimension in recommend and
the array default approach;

however there are
methods that
permit you to
create nonzero
based arrays.

www.syngress.com

Table 4.3 Continued

C# Java Function Notes

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 139

140 Chapter 4 • Programming Structures

GetUpperBound() Not Available Gets the upper
bound of the
specified
dimension in
the array

Sort(Array array) sort(Object[] Array) Sorts the This method per-
elements of forms the same in
a one- Java and C#.

dimensional
array

Using the params Keyword
The params keyword is a new C# language construct that permits us to pass a
variable number of parameters to a method.A method can have only one params
argument, and it must be the rightmost argument.This makes sense, as the size of
the argument is variable; if it is not the rightmost, it would be impossible for the
method to determine where one argument ends and the next begins.The fol-
lowing sample shows how to declare a method that makes use of the params key-
word, and demonstrates multiple calls to the method.

using System;

class ParamsSample

{

static void PrintStrings(params String[] StringArray)

{

for (int i = 0; i < StringArray.Length; i++)

Console.Write("{0} ", StringArray[i]);

Console.WriteLine();

}

static void Main(String[] args)

{

String names = "Kyle";

www.syngress.com

Table 4.3 Continued

C# Java Function Notes

223_C#Java_04.qxd 5/21/02 3:31 PM Page 140

Programming Structures • Chapter 4 141

PrintStrings("Andrew");

PrintStrings(names,"Roz", "Slater");

PrintStrings("Rosie","Eileen","Conrad","Susan");

}

}

Notice that because we used the params keyword we were able to pass a vari-
able number of strings to the PrintStrings method, and it still worked. Because all
array elements must be of the same data type, the params keyword does require
that all params passed as part of the params array must be of the same data type.
The System.Console.Writeline() method we discussed at the beginning of this
chapter utilizes the params keyword to permit a variable number of arguments to
support the use of placeholders.The output of the program is as follows.

Output
Andrew

Kyle Roz Slater

Rosie Eileen Conrad Susan

As you can see, the program appended each of the strings we passed into the
PrintStrings method into one line of output.This in itself is not remarkable—what
makes this interesting is that we were able to pass a variable number of strings
into the same function, and had to write only one implementation for this func-
tion. In Java this would have required other techniques such as multiple method
overrides, or specifically passing the arguments as a string array. In either event,
both would have required foreknowledge on the number of strings that would be
passed in, so neither solution would be as dynamic as C#’s params keyword.

Multidimensional Arrays
So far we have looked at single-dimension arrays. C#, like Java, also provides sup-
port for multidimensional arrays.A multidimensional array, sometimes called a
matrix, provides multiple levels of indexing. Each level of indexing is referred to
as a range. In C# there are two varieties of multidimensional arrays, rectangular
and jagged. In Java, jagged arrays were referred to as ragged arrays.

Rectangular Arrays
Rectangular arrays are multidimensional arrays in which the number of rows and
columns is the same.The first dimension in a two-dimensional array can be

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 141

142 Chapter 4 • Programming Structures

thought of as the row, and the second as the column.This kind of array is excel-
lent for representing a two-dimensional axis or a graph. It can be initialized in
two different ways, depending on whether you wish to assign values to each ele-
ment at initialization time.

To initialize a rectangular array we use the following syntax.This notation is
not found in Java so pay close attention.This code declares and initializes a 2 x 2
dimensional array.

int[,] Integers = new int[2,2];

If we wanted to initialize each element of the array at the same time that we
initialize the array itself, we would use the following syntax.This code will declare
and initialize a 2 x 2 dimensional array, and also assign values to the elements.

int[,] Integers = {{ 1,2 }, { 3,4 }};

After the preceding code, Integers[0][0] equals 1, Integers[0][1] equals 2,
Integers[1][0] equals 3, and Integers[1][1] equals 4.To illustrate this further, let’s
look at an example.The following program creates a class to represent a chess-
board, a common two-dimensional grid we are all familiar with.At this stage we
will simply draw the chessboard, using the letter B to represent a black square and
the letter W to represent a white square.

using System;

class ChessBoard

{

public Char[,] SquareColor = new Char[8,8];

public ChessBoard()

{

for(int i = 0; i < SquareColor.GetLength(0); i++)

{

for(int x = 0; x < SquareColor.GetLength(1); x++)

{

if((x % 2) == 0)

if((i % 2) == 0)

SquareColor[i,x] = 'W';

else

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 142

Programming Structures • Chapter 4 143

SquareColor[i,x] = 'B';

else

if((i % 2) == 0)

SquareColor[i,x] = 'B';

else

SquareColor[i,x] = 'W';

}

}

}

void DrawBoard()

{

for(int i =0; i < SquareColor.GetLength(0); i++)

{

for(int x = 0; x < SquareColor.GetLength(1); x++)

{

Console.Write(SquareColor[i,x]);

}

Console.WriteLine();

}

}

static void Main(String[] args)

{

ChessBoard MyChessBoard = new ChessBoard();

MyChessBoard.DrawBoard();

}

}

Output
WBWBWBWB

BWBWBWBW

WBWBWBWB

BWBWBWBW

WBWBWBWB

BWBWBWBW

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 143

144 Chapter 4 • Programming Structures

WBWBWBWB

BWBWBWBW

Nothing too spectacular, but as you can see we output eight rows and eight
columns, with alternating black and white squares.The two-dimensional array that
held this information was declared as an 8 x 8 array of characters.We simply used
a for loop to iterate through the rows, and then used another for loop to iterate
through the columns.What you want to focus on is how we indexed the array.
Notice how we can use SquareColor[i,x] for indexing an array, which you can’t do
in Java.As you can see, array iteration in this manner is somewhat cumbersome—a
better solution is to use the foreach statement, which we will discuss shortly.

Jagged Arrays
Jagged arrays, called ragged arrays in Java, are multidimensional arrays in which
the numbers of rows and columns can be different.They are actually arrays of
arrays.This kind of array is useful when you know the length of one element but
not another. For example, if we knew the number of columns, but not rows in a
chart, we could initialize the columns, and initialize the rows at a later time.The
syntax for declaring jagged arrays is different than rectangular arrays.To declare a
jagged array you must use additional braces [].

The following code segment declares an integer array with two rows, but an
unspecified number of columns.

int[][] Integers = new int[2][];

Now if we want to initialize the second dimension of this array we can write
the following code.This code creates an array where the first row has two
columns, and the second row has three columns.

Integers[0] = new int[2];

Integers[1] = new int[3];

After these initialization statements have executed the following elements
would all be valid: Integers[0][0], Integers[0][1], Integers[1][0], Integers[1][1], and
Integers[1][2]. Note that Integers[0][2] is not valid, as the first row if this Jagged
Array has only two columns.

Let’s look at an example where we’ll create a jagged array of chess pieces and
then print them to the console.To create the chess pieces we can utilize a jagged
array since the quantity of each piece is different.We can use the first dimension

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 144

Programming Structures • Chapter 4 145

to represent the type of piece and the second dimension can represent which
piece it is. For example, we can designate the Knight as the fifth piece and we’ll
use a for loop to create two knights:

ChessPiece[4] = new String[2];

for (int i = 0; i < ChessPiece[4].Length; i++)

{

ChessPiece[4][i] = "Knight";

}

To access one of the Knights, you can use the following syntax:

ChessPiece[4][0];

As you can see, this is very similar to how you would access multidimensional
arrays in Java.The following is the full code listing for our example:

using System;

class ChessPieces

{

private String[][] ChessPiece = new String[6][];

public ChessPieces()

{

ChessPiece[0] = new String[1];

// Create one King.

ChessPiece[0][0] = "King";

ChessPiece[1] = new String[1];

// Create one Queen.

ChessPiece[1][0] = "Queen";

ChessPiece[2] = new String[2];

// Create two Rooks.

for (int i = 0; i < ChessPiece[2].Length; i++)

{

ChessPiece[2][i] = "Rook";

}

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 145

146 Chapter 4 • Programming Structures

ChessPiece[3] = new String[2];

// Create two Bishops.

for (int i = 0; i < ChessPiece[3].Length; i++)

{

ChessPiece[3][i] = "Bishop";

}

ChessPiece[4] = new String[2];

// Create two Knights.

for (int i = 0; i < ChessPiece[4].Length; i++)

{

ChessPiece[4][i] = "Knight";

}

ChessPiece[5] = new String[8];

// Create eight Pawns.

for (int i = 0; i < ChessPiece[5].Length; i++)

{

ChessPiece[5][i] = "Pawn";

}

}

void PrintChessPieces()

{

for(int i = 0; i < ChessPiece.Length; i++)

{

for(int x = 0; x < ChessPiece[i].Length; x++)

{

// Write out each chess piece on its own line.

Console.Write(ChessPiece[i][x] + " ");

}

Console.WriteLine();

}

}

static void Main(String[] args)

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 146

Programming Structures • Chapter 4 147

ChessPieces MyChessPieces = new ChessPieces();

MyChessPieces.PrintChessPieces();

}

}

Output
C:\csharp>ChessPieces

King

Queen

Rook Rook

Bishop Bishop

Knight Knight

Pawn Pawn Pawn Pawn Pawn Pawn Pawn Pawn

The preceding code created a jagged array of chess pieces. In chess each side
has six different types of pieces, and the quantity of each piece is different: eight
Pawns, two Rooks, two Knights, two Bishops, one Queen, and one King.This
made it easy to represent the pieces as a jagged array.The first dimension of the
jagged array represents what type the piece is.The second dimension identifies
the individual piece. For example, the first Pawn can be accessed via the fol-
lowing syntax.

ChessPiece[5][0];

This code would have benefited further from use of the foreach loop and enu-
merations. Fortunately, we discuss the foreach loop in the next section.
Enumerations will be discussed later in this book.

The foreach Statement
The foreach statement is a language construct that is very useful and is currently
not available in the Java language; in fact its origins can be traced back to Visual
Basic. It is an iteration statement, but was not mentioned earlier as it is used on
arrays and other container classes. Container classes include Arrays, preexisting
container classes in the System.Collection namespace, as well as collections created
by you that support the IEnumerable interface.We will provide more detail on the
container classes later in this chapter.

In the last two sections I mentioned how use of the foreach statement would
have been superior to for loops. If you recall, a for loop has several elements—a

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 147

148 Chapter 4 • Programming Structures

counter, a control condition, and an increment operation on the counter. In the
for loop you need to keep in mind the number of elements in the array you are
iterating through, or you will end up throwing an index out of range exception.
It is very easy to miscalculate the number of iterations a for loop will go through
before meeting its control condition. Even experienced programmers make that
mistake every now and then, myself included.The foreach statement takes away
many of the opportunities where we might shoot ourselves in the foot, yet leaves
us with the functionality we wanted.

The following code snippet demonstrates iteration through an integer array
using the for loop.

int[] IntArray = new int[6];

for(int i = 0; i < 6; i++)

System.Console.WriteLine(IntArray[i]);

Here is the same code snippet, but utilizing the foreach loop.

int[] IntArray = new int[6];

foreach (int i in IntArray)

System.Console.WriteLine(i);

As you can see, with the foreach statement we don’t need prior knowledge of
the array size.This should help eliminate indexing problems when iterating
through an array or any type of collection.The syntax for the foreach statement is

foreach(type identifier in expression) statement

Make note of the in keyword, which is used only in a foreach statement. One
key thing to remember is that the elements accessed in a foreach statement (int x
in the preceding code sample), are read-only.This means their contents cannot be
modified within the foreach statement. For example, the following code will not
compile:

int[] integerArray = new int[6];

foreach (int x in integerArray)

{

x = 5; //will not compile

System.Console.WriteLine(x);

}

If you try compiling this code the Visual Studio compiler will give the error
message: error CS1604: Cannot assign to ‘x’ because it is read-only.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 148

Programming Structures • Chapter 4 149

Let’s rewrite the PrintChessPieces() method in our previous jagged array
example, but this time we will use the foreach statement instead of the nested for
loops, to illustrate how it is more natural when iterating through a collection.

using System;

class ChessPieces

{

private String[][] ChessPiece = new String[6][];

public ChessPieces()

{

ChessPiece[0] = new String[1];

// Create one King.

ChessPiece[0][0] = "King";

ChessPiece[1] = new String[1];

// Create one Queen.

ChessPiece[1][0] = "Queen";

ChessPiece[2] = new String[2];

// Create two Rooks.

for (int i = 0; i < ChessPiece[2].Length; i++)

{

ChessPiece[2][i] = "Rook";

}

ChessPiece[3] = new String[2];

// Create two Bishops.

for (int i = 0; i < ChessPiece[3].Length; i++)

{

ChessPiece[3][i] = "Bishop";

}

ChessPiece[4] = new String[2];

// Create two Knights.

for (int i = 0; i < ChessPiece[4].Length; i++)

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 149

150 Chapter 4 • Programming Structures

{

ChessPiece[4][i] = "Knight";

}

ChessPiece[5] = new String[8];

// Create eight Pawns.

for (int i = 0; i < ChessPiece[5].Length; i++)

{

ChessPiece[5][i] = "Pawn";

}

}

void PrintChessPieces()

{

foreach(String[] x in ChessPiece)

{

foreach(String y in x)

Console.Write(y + " ");

Console.WriteLine();

}

}

static void Main(String[] args)

{

ChessPieces MyChessPieces = new ChessPieces();

MyChessPieces.PrintChessPieces();

}

}

The output of the code is the same as before. Notice that we could not use
the foreach statement when we were iterating the array to assign the names of the
pieces, due to the previously mentioned fact that the elements we access via the
foreach statement are read-only.

Indexers
Indexers are an interesting technique in C# that permits your classes to be
treated as arrays.This feature is not found in Java. It is a very handy technique if

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 150

Programming Structures • Chapter 4 151

you have an object that can reasonably be thought of as an array. However, it is
not recommended that you give every object this capability. For example, if we
were going to make a class to represent a deck of cards, it would make sense to
use indexers for the cards themselves, but there would not be a need to use
indexers for the whole deck.We will actually expound on this example in the
upcoming sections.

Implementing an Indexer
Although this is a powerful ability, it is not difficult to implement. Internally it
uses a special kind of property with get and set accessor methods to specify its
behavior. Properties will be discussed in Chapter 7.

Imagine we had a class to represent a playing card deck. It would make sense
that we should be able to treat this deck as an array of 52 playing cards.To define
an indexer we need to add the this [] property to our class, as well as its return
type.The following code snippet does this.

private String[] Cards = new String[52];

public String this [int index]

{

get

{

return Cards[index];

}

set

{

Cards[index] = value;

}

}

The preceding code declared a private String array called Cards.This is the
private data that we will return via the indexer.The next code segment is the
declaration of the Indexer:

public String this [int index]

This declaration states that the indexer [] will return a String data type, and
that it is indexed by integer values, just like an array is.The get property is called
when someone tries to read from the class, and the set property is called when
someone tries to assign to the class. Please note the use of the value keyword in
the set accessor.When you define a set accessor you must use the value keyword

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 151

152 Chapter 4 • Programming Structures

to represent the argument whose value is passed to and stored by the property. In
our example, when someone tries to read an element of the class, we return the
corresponding element in our private array Cards. If they try to assign a value to
an element of the class, we assign the value to its corresponding element in the
private array.

Now that we have added an indexer to our class, we can treat instances of it
like an array.The following driver code snippet illustrates this.

CardDeck PokerDeck = new CardDeck();

//Write each card's value out to the console.

for(int i =0; i < 52; i++)

{

Console.WriteLine(PokerDeck[i]);

}

This code snippet uses a for loop to iterate through the class as if it were
an array, and outputs the card’s name and value to the console. Notice that we
did not use a foreach loop.This is because foreach loops will not work on indexers.
The following is the complete code sample.

using System;

class CardDeck

{

private String[] Cards = new String[52];

public String this [int index]

{

get

{

return Cards[index];

}

set

{

Cards[index] = value;

}

}

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 152

Programming Structures • Chapter 4 153

public CardDeck()

{

int y = 0;

int i = 0;

while(i < 52)

{

for(int x = 0; x < 13; x++)

{

switch(y)

{

case 0:

Cards[i] = (x+1) + " of Hearts";

break;

case 1:

Cards[i] = (x+1) + " of Clubs";

break;

case 2:

Cards[i] = (x+1) + " of Spades";

break;

case 3:

Cards[i] = (x+1) + " of Diamonds";

break;

}

if(y == 3)

y = 0;

else

y++;

i++;

}

}

}

}

class CardDeckClient

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 153

154 Chapter 4 • Programming Structures

public static void Main()

{

CardDeck PokerDeck = new CardDeck();

// Write each card value to the console.

for(int i =0; i < 52; i++) {

Console.WriteLine(PokerDeck[i]);

}

}

}

Output
1 of Hearts

2 of Clubs

3 of Spades

4 of Diamonds

5 of Hearts

6 of Clubs

7 of Spades

8 of Diamonds

9 of Hearts

10 of Clubs

11 of Spades

12 of Diamonds

13 of Hearts

1 of Clubs

2 of Spades

They may not be in order, but we have all 52 cards here.As you can see in
the example, using indexers permitted us to access the individual cards in the
CardDeck as if they were elements of a 52-element array. In Java we would have
to call an accessor such as getCard() to return a specific card from the deck.

One thing to keep in mind is that although Indexers permit you to use your
classes as if they were arrays, they are not in fact actual arrays. Due to this you
may not use the foreach loop to iterate through the elements.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 154

Programming Structures • Chapter 4 155

Multiple Indexers
C# permits you to have multiple indexer types for the same class.This means you
that you’re not limited to just using integer values as the index. For example if
we wanted to be able to extend our previous CardDeck example so that we could
draw a card, not just based on its index into the deck, but also by its name, we
can overload the Indexer to accept String indexes as well. Here is the implementa-
tion for this.

using System;

class CardDeck

{

private String[] Cards = new String[52];

public String this [int index]

{

get

{

return Cards[index];

}

set

{

Cards[index] = value;

}

}

public String this [String CardName]

{

get

{

for(int i = 0; i < 52; i++) {

if(Cards[i] == CardName)

return Cards[i];

}

return Cards[0];

}

set

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 155

156 Chapter 4 • Programming Structures

for(int i = 0; i < 52; i++) {

if(Cards[i]== CardName)

Cards[i] = value;

}

}

}

public CardDeck()

{

int y = 0;

int i = 0;

while(i < 52)

{

for(int x = 0; x < 13; x++)

{

switch(y)

{

case 0:

Cards[i] = (x+1) + " of Hearts";

break;

case 1:

Cards[i] = (x+1) + " of Clubs";

break;

case 2:

Cards[i] = (x+1) + " of Spades";

break;

case 3:

Cards[i] = (x+1) + " of Diamonds";

break;

}

if(y == 3)

y = 0;

else

y++;

i++;

}

}

}

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 156

Programming Structures • Chapter 4 157

}

class CardDeckClient

{

public static void Main()

{

CardDeck PokerDeck = new CardDeck();

String FourOfHearts = PokerDeck["4 of Hearts"];

Console.WriteLine(FourOfHearts);

}

}

The output of this program is simply the name of the card:

4 of Hearts

Thanks to Indexer overloading we were able to overload the indexer to accept
a string value—in this case it was the name of the card.A class can have as many
overloaded indexers as it wants provided that they are all of different types, or
numbers of index parameters.

Multiparameter Indexers
Multiparameter indexers are useful when you are dealing with an object that you
feel should be treated as a multidimensional array. For instance if you had a class
representing a lookup table, it would make sense to permit people to access it as
if it was a two-dimensional array with rows and columns.The following code
illustrates this by simulating a multiplication table.

using System;

class MultiplicationTable

{

private int[,] MultiplicationArray = new int[10,10];

public int this[int x, int y]

{

get

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 157

158 Chapter 4 • Programming Structures

return MultiplicationArray[x,y];

}

set

{

MultiplicationArray[x,y] = value;

}

}

public MultiplicationTable()

{

for(int i = 0; i < 10; i++)

{

for(int y = 0; y < 10; y++)

{

MultiplicationArray[i,y] = i * y;

}

}

}

}

class MultiplicationTableClient

{

public static void Main(String[] args)

{

MultiplicationTable MyTable = new MultiplicationTable();

Console.Write("3 x 9 is " + MyTable[3,9]);

}

}

Output
3 x 9 is 27

We simply created a table of multiplication results, and used the row and
column to look up the result of multiplying the row with the column.This, of
course, is a lot of overkill since finding the result of a multiplication is very easy,
but it is a simplified example of how you could use multiparameter indexers to
look up data in a table. Now that you can see the power of indexers, don’t use

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 158

Programming Structures • Chapter 4 159

them as liberally as I have done in this last example. Indexers should never be
used where a simple method would make more sense.

Collections
Collections are a means of grouping objects of the same type into a structure.You
may be thinking: Isn’t that what arrays are? In fact, you would be correct.Arrays
are a type of Collection object; the simplest type, in fact. Some disadvantages of
arrays are that they do not permit us to dynamically resize them when needed.
When they are initialized we specify their dimensions, and the only way we can
change this is to actually reinitialize them.With Collections we can add elements
to our collection object, without worrying that the collection cannot hold any
more, as we would with arrays.

You have most likely used collection classes in Java such as the Vector class, and
the ArrayList class. C# has its own ArrayList, which contains the capabilities of
these Java classes. Both Java and C# store the items in the collection as objects, so
the responsibility is on you to cast it back to its type.An advantage C# has over
Java is the use of indexers to access items in a collection, as opposed to Java,
which requires use of the get method. Here is a side-by-side comparison of iden-
tical code in Java and C# to create, initialize, and use an ArrayList.This code
keeps track of players at our poker game.

Java
import java.io.IOException;

import java.util.*;

class CollectionsDemo

{

public static void main(String[] args)

{

ArrayList PokerPlayers = new ArrayList(3);

PokerPlayers.add(new String("Joe Bob"));

PokerPlayers.add(new String("Mike Smith"));

PokerPlayers.add(new String("Al Capone"));

PokerPlayers.add(new String("Johnny Come Lately"));

for(int i = 0; i < PokerPlayers.size(); i++)

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 159

160 Chapter 4 • Programming Structures

{

String Player = (String)PokerPlayers.get(i);

System.out.println(Player);

}

PokerPlayers.set(0, "Alice McShark");

System.out.println(PokerPlayers.get(0));

}

}

C#
using System;

using System.Collections;

class CollectionsDemo

{

public static void Main(String[] args)

{

ArrayList PokerPlayers = new ArrayList(3);

PokerPlayers.Add("Joe Bob");

PokerPlayers.Add("Mike Smith");

PokerPlayers.Add("Al Capone");

PokerPlayers.Add("Johnny Come Lately");

foreach(String Player in PokerPlayers)

{

Console.WriteLine(Player);

}

PokerPlayers[0] = "Alice McShark";

System.Console.WriteLine(PokerPlayers[0]);

}

}

The output for both of these programs is a listing of the players.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 160

Programming Structures • Chapter 4 161

Output
Joe Bob

Mike Smith

Al Capone

Johnny Come Lately

Alice McShark

The thing that stands out is that ArrayList was created with room for only
three elements, but we added four.This occurred without any exceptions, because
under the cover the ArrayList class was able to resize itself.Also note the use of
the indexer in C#, which makes accessing the ArrayList a little easier, as opposed
to using the get() and set() methods in Java.Table 4.4 shows some frequently used
ArrayList methods and members.

Table 4.4 Common ArrayList Methods and Members

C# Java Function Notes

Capacity capacity() Gets or sets the In Java, the
number of ArrayList class
elements the does not have
ArrayList can this method,
contain it is available

as part of the
Vector class.

Count size() Gets the In Java, the
number of ArrayList class
elements that does not have
are actually in this method,
the ArrayList it is available

as part of the
Vector class.

[int Index] get(int index) Gets an C# ArrayLists
individual utilize the
element standard

indexer for
individual ele-
ment access.

Add(Object obj) add(Object o) Adds an This method
element to performs the
the ArrayList same in Java

and C#.

www.syngress.com

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 161

162 Chapter 4 • Programming Structures

AddRange addAll(Collection c) Adds a range of This method
(Icollectionc) elements to the performs the

ArrayList same in Java
and C#.

BinarySearch(Object binarySearch(Object[] Searches an In C# this is a
obj) objArray) ArrayList for member of

a value, using the ArrayList
a binary search class; in Java
algorithm you must use

the Arrays
utility class.

Clear() clear() Clears the This method
contents of the performs the
ArrayList. same in Java

and C#.
Contains(Object obj) contains(Object obj) Determine if an This method

element is in performs the
the ArrayList same in Java

and C#.
GetRange(int Index, Not Available Gets a range of In Java you
int Count) elements from would have

the ArrayList to implement
this as a for
loop, repeat-
edly calling
get(int Index).

Insert(int Index, set(int Index, Inserts an This method
Object obj) Object obj) element into performs the

the ArrayList same in Java
and C#.

InsertRange(int Not Available Inserts a range In Java you
Index, Icollection c) of elements would have

into the to implement
ArrayList this as a for

loop repeat-
edly calling
set(int Index,
Object obj).

www.syngress.com

Table 4.4 Continued

C# Java Function Notes

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 162

Programming Structures • Chapter 4 163

Remove(Object obj) Not Available Removes an
element from
the ArrayList

RemoveAt(int Index) remove(int Index) Removes an This method
element at a performs the
specific position same in Java
from the and C#.
ArrayList

RemoveRange(int removeRange(int Removes a This method
Index, int Count) FromIndex, int ToIndex) range of performs the

elements from same in Java
the ArrayList and C#.

Sort() sort(A) Sorts the In C# this is a
elements in member of
the ArrayList the ArrayList

class. In Java
you must use
the Arrays
utility class.

ToArray() toArray() Converts the This method
ArrayList to an performs the
Array object same in Java

and C#.
TrimToSize() trimToSize() Trims ArrayList This method

so that capacity performs the
and count are same in Java
the same and C#.

Collection Interfaces
Previously we mentioned that if you use indexers, you couldn’t use the foreach
statement.That is because although they permit your class to be treated as an array,
in fact, it is not one. If you would like to use this functionality with your class, you
can implement the collection interfaces.The base collection interface is called
Ienumerable, and implementing it makes your class a collection.This is similar to
implementing the Iterator class in Java, but a good deal easier. Implementing an
interface will be discussed in more detail in Chapter 6.Table 4.5 discusses the dif-
ferent collection interfaces, and provides a brief description of what they provide.

www.syngress.com

Table 4.4 Continued

C# Java Function Notes

223_C#Java_04.qxd 5/21/02 3:31 PM Page 163

164 Chapter 4 • Programming Structures

Table 4.5 Key Collection Interfaces

Interface Purpose

IEnumerable Provides Iteration (foreach) capabilities to the class
ICollection Provides ability to get the count (number of elements) of a

collection via a public property
IList Provides ability to treat the collection like a Linked List—

adding and removing elements for example
IDictionary Provides Hash Table/Dictionary support to a collection

Exceptions
Exception handling permits you to execute code and handle error conditions
prior to the program exiting. In many cases if you catch the exception you may
be able to correct the problem and resume execution. In C# exception handling
requires three code blocks: try, catch, and finally. It is very similar to exception
handling in Java, except C# doesn’t use the throws keyword.

As mentioned, among the most noticeable differences is the lack of the throws
keyword. In Java, if a class throws an exception you indicate this with the throws
keyword. If someone uses this class, then they have to handle the exceptions
specified by the throws keyword. C# does not require this, which means that
you’re not forced to handle the exception.

Catching Exceptions
To catch an exception you would execute the code you want to execute in a try
block, and follow this block with a catch block.The following section will give
examples of how to catch exceptions.

The try, catch, finally Blocks
The core mechanism of exception handling in C# is use of the try, catch, and
finally blocks.The code in which the exception is likely to occur must be encased
in a try block followed by a catch block.Typically you would end with a finally
block to perform any cleanup code that must occur regardless if an exception was
thrown or not.This usually includes closing files and sockets.Although a try block
only requires that you provide at least one catch or finally block, it is good practice
to always have a finally block for cleanup.The catch block specifies the exception
it is designed to catch. Since these blocks are executed sequentially, you must

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 164

Programming Structures • Chapter 4 165

catch the more specific exception first.The finally block executes at the end of
the routine, regardless if an exception had been thrown or not.This is the place
that you would put clean-up code.The following example demonstrates proper
use of the try, catch, and finally blocks. Let’s say a user of our PlayingCardDeck from
the previous section tried to access card 53—perhaps they are cheating and
brought extra cards!

using System;

public class PlayingCard

{

public String Name;

}

class CardDeck

{

private PlayingCard[] Cards = new PlayingCard[52];

public PlayingCard this [int index]

{

get

{

return Cards[index];

}

set

{

Cards[index] = value;

}

}

public static void Main(String[] args)

{

try

{

CardDeck PokerDeck = new CardDeck();

PlayingCard HiddenAce = PokerDeck[53];

}

catch(IndexOutOfRangeException e)

{

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 165

166 Chapter 4 • Programming Structures

Console.WriteLine(e.Message);

}

finally

{

// Cleanup code

}

}

}

Because this program tries to access the fifty-third element of an array that
has only 52 elements, the application throws an exception. In this situation it
throws an IndexOutOfRangeException, which is caught by the application.When
the application catches the exception, it writes the Message member out to the
console.The output appears as follows.

Index was outside the bounds of the array.

Since the catch statements are checked in sequential order, it is imperative that
you try and catch more specific exceptions first; otherwise a more general catch
statement may qualify and handle the exception, albeit not as optimaly as one
that was written specifically for it.All C# exceptions are derived from
System.Exception. From this the Framework library provides quite a few other
exceptions that are more specific.The two major ones are SystemException, which
is usually thrown by the Framework.SDK, and ApplicationException, which is the
base class for any exception classes you create.

In our example you saw that we were able to use a member of the Exception
class to output a descriptive message to the console.Table 4.6 lists other proper-
ties of the Exception class that may be useful for handling or reporting error infor-
mation.

Table 4.6 Exception Class Properties

Property Description

HelpLink Gets or sets a link to the help file associated with this
exception

InnerException Gets the exception instance that caused the current
exception

Message Gets a message that describes the current exception
Source Gets or sets the name of the application or the object that

causes the error

www.syngress.com

Continued

223_C#Java_04.qxd 5/21/02 3:31 PM Page 166

Programming Structures • Chapter 4 167

StackTrace Gets a string representation of the frames on the call stack
at the time the current exception was thrown

TargetSite Gets the method that throws the current exception

Throwing Exceptions
Exceptions are not just thrown by the Framework libraries. In fact, you can, and
should, throw exceptions yourself if the situation requires. Every method you
provide should verify your assumptions about the data passed in, and if they are
violated, throw an appropriate exception.Throwing an exception is as easy as
returning from a method. It simply requires the throw keyword, followed by the
exception you wish to throw.An exception is a class, so you must actually create
an instance of the exception using the new keyword and the exceptions con-
structor. Let’s modify the CardDeck class by adding a new method for getting
cards, the GetCard method.We will, of course, remove our Iterator code, as it
would be redundant. If someone tries to ask for a card with an index not in the
range 0 to 51, we will throw an exception.

using System;

public class PlayingCard

{

public String Name;

}

class CardDeck

{

private PlayingCard[] Cards = new PlayingCard[52];

public PlayingCard GetCard(int idx)

{

if((idx >= 0) && (idx <= 51))

return Cards[idx];

else

throw new IndexOutOfRangeException("Invalid Card");

www.syngress.com

Table 4.6 Continued

Property Description

223_C#Java_04.qxd 5/21/02 3:31 PM Page 167

168 Chapter 4 • Programming Structures

}

public static void Main(String[] args)

{

try

{

CardDeck PokerDeck = new CardDeck();

PlayingCard HiddenAce = PokerDeck.GetCard(53);

}

catch(IndexOutOfRangeException e)

{

Console.WriteLine(e.Message);

}

catch(Exception e)

{

Console.WriteLine(e.Message);

}

finally

{

// Cleanup code

}

}

}

In the preceding code, when the programmer called the GetCard() method,
the method validated the input data, and because it was outside the range of the
accepted values, 0 to 52, it threw an IndexOutOfRangeException.The catch block in
the main function caught this exception.

To understand what happens when you throw an exception, you must under-
stand the concept of a call stack.A call stack is a way to view the layers of
methods that have been called.The first method on a call stack is typically the
entry point method; Main, in the case of C#.When a method is called from
within Main, it is added to the top of the call stack, and when it returns it is
removed from the call stack. Since most methods call other methods in turn, the
call stack can get rather large.When an exception is thrown, it is passed up the
call stack looking for a catch block that handles this sort of exception. If by the
time it reaches the Main method, it still cannot find a proper handler for the
exception, the program is terminated and an error is displayed to the user.The

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 168

Programming Structures • Chapter 4 169

following code will illustrate the call stack, and how an exception traverses up the
call stack.

using System;

class ExceptionThrower

{

static void MethodOne()

{

try

{

MethodTwo();

}

finally {}

}

static void MethodTwo()

{

throw new Exception("Exception Thrown in Method Two");

}

public static void Main(String[] args)

{

try

{

ExceptionThrower FooBar = new ExceptionThrower();

MethodOne();

}

catch(Exception e)

{

Console.WriteLine(e.Message);

}

finally

{

// Cleanup code

}

}

}

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 169

170 Chapter 4 • Programming Structures

At the time the exception was thrown in the preceding code, the call stack
looked like this:

MethodTwo()

MethodOne()

Main()

MethodTwo threw the exception, but as you can see, MethodOne did not have a
catch block suitable for handling the exception, so it was passed up the call stack
to Main, which did contain a catch block for the exception. Imagine if your call
stack was 20 levels deep when an error occurs.Thanks to exception handling, the
error will be passed up the stack until someone handles it.

In the preceding code samples we threw a predefined exception type. C#
permits you to create your own exception classes, just as you could in Java.
Actually, how to do this is our next topic. For your reference some commonly
used exceptions are included in Table 4.7.

Table 4.7 Common Exceptions

Exception Description

System.Exception Base class of all exceptions
System.ApplicationException Recommended base class for all user-

defined exceptions
System.SystemException Base class for most exceptions thrown

by the Framework SDK
System.IndexOutOfRangeException An attempt was made to access an ele-

ment that was outside the range of an
array

System.IO.FileNotFoundException The file was not found
ArgumentException An argument passed to a method was

not valid
ArgumentNullException An argument passed to the method was

NULL

Creating New Exceptions
The standard exception classes are quite handy and fit many scenarios, but often
you will want to make your own custom exceptions. In the preceding example
we threw an IndexOutOfRangeException; however it might have been more appro-
priate to throw a custom exception that fit more with the CardDeck class.The

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 170

Programming Structures • Chapter 4 171

user doesn’t know that the internal implementation is an indexed array.To create
your own exception class you need to create a class that is derived from
ApplicationException. Once this is done, you simply implement your constructors.
In our example we will just call the base class constructors from our custom
exception class constructors. Let’s revise the first exception example to use our
new custom exception class.

using System;

public class PlayingCard

{

public String Name;

}

class InvalidCardException: ApplicationException

{

public InvalidCardException()

: base("An invalid card has been requested!") {

}

}

class CardDeck

{

private PlayingCard[] Cards = new PlayingCard[52];

public PlayingCard GetCard(int idx)

{

if((idx >= 0) && (idx <= 51))

return Cards[idx];

else

throw new InvalidCardException();

}

public static void Main(String[] args)

{

try

{

CardDeck PokerDeck = new CardDeck();

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 171

172 Chapter 4 • Programming Structures

PlayingCard HiddenAce = PokerDeck.GetCard(53);

}

catch(InvalidCardException e)

{

Console.WriteLine(e.Message);

}

catch(Exception e)

{

Console.WriteLine(e.Message);

}

finally

{

// Cleanup code

}

}

}

Output
An invalid card has been requested!

The changes we had to implement to use our own exception were rather
small.The following snippet from the code sample is all that was required to
create a new exception type.

class InvalidCardException: ApplicationException

{

public InvalidCardException()

: base("An invalid card has been requested!") {

}

}

It merely creates a new subclass of ApplicationException, and to simplify things
our exception will call the base class constructor in its constructor. Don’t worry
too much about the syntax of this declaration—it will be discussed in the next
two chapters when we talk about object-oriented programming.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 172

Programming Structures • Chapter 4 173

Rethrowing Exceptions
Sometimes, after doing all your error handling in a routine it is necessary to
rethrow the error back up to the calling block. Doing this is simple—we just call
throw without any arguments in the catch block for the exception. Previously
when we discussed throwing exceptions, we mentioned the call stack, and that
when an exception is thrown, it is passed up the call stack until it is handled.
What if a method catches the exception and does everything it can, but still
thinks it is better to pass the exception up to the next method in the call stack
rather than continue on as if nothing occurred.To demonstrate we will revise our
previous example to rethrow the exception.

using System;

class ExceptionThrower

{

public static void Main(String[] args)

{

try

{

ExceptionThrower FooBar = new ExceptionThrower();

MethodOne();

}

catch(Exception e)

{

Console.WriteLine(e.Message);

}

finally

{

// Cleanup code

}

}

static void MethodOne()

{

try

{

MethodTwo();

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 173

174 Chapter 4 • Programming Structures

}

catch(Exception e)

{

Console.WriteLine("Exception caught in Method One.");

throw e;

}

}

static void MethodTwo()

{

throw new Exception("Exception Thrown in Method Two");

}

}

As is evident from the output,

Exception caught in Method One.

Exception Thrown in Method Two

Even though the exception was caught in Method One, because MethodOne
rethrew the exception, it was also caught by the catch block in the Main method.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 174

Programming Structures • Chapter 4 175

Summary
As we have seen, the fundamental building blocks of C# are very similar if not
identical to their Java counterparts. Strings in both languages are immutable, but a
nonimmutable version of the class is also provided. Flow control is identical, with
the lack of fall-through in switch statements being the exception.Arrays are the
same as in Java, except for the introduction of two ways of declaring multidimen-
sional arrays, as opposed to one in Java.The foreach statement is a handy new con-
struct brought in from Visual Basic, which makes iterating through collections
and arrays simple and natural. Indexers are another new concept not found in
Java.They permit you to treat your classes as if they were arrays.The C# collec-
tion classes share many of the capabilities of the Java collection classes, and as in
Java you can make your own classes into collection classes by implementing an
interface. Exception handling is also the same as in Java, except for the lack of the
throws keyword. Since C# does not require that you catch exceptions, the throws
keyword was not implemented.We also discussed how to make a custom excep-
tion class using an interface.

Solutions Fast Track

Strings

Strings can be created either by supply or a literal, or via a constructor.

Strings are immutable, meaning once they are created they cannot be
modified.

If a mutable string is required, use the stringBuilder class.

The + sign is the concatenation operator.

You may precede a string literal with the @ character to specify that its
contents are verbatim (this means escape characters are not used).

Flow Control

Most flow control statements are identical to their Java counterparts.

C# includes the familiar if/else and switch construct, as well as the while,
do-while, and for loops.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 175

176 Chapter 4 • Programming Structures

C# also provides the new foreach loop for iteration through arrays and
collections.

The C# switch statements do not have implicit fall-through; use of the
goto keyword is required to move to another case statement.

Arrays

Standard C# arrays are identical to their Java counterparts.

C# provides two different kinds of multidimensional arrays, rectangular
and jagged.

A rectangular array has equal dimensions, a jagged array does not.

The params keyword can be used to specify that an unknown number of
parameters will be passed to a method.

The foreach Statement

The foreach statement is a gift from the VB language that helps to iterate
through arrays and collections.

The elements accessed within the foreach statement are read-only, and
cannot be modified.

The foreach statement does not work on classes that implemented
iterators, only on true arrays and collections.

Indexers

Indexers permit you to treat your class as if it were an array.

Indexers should not be abused; they should be used only if it is logical
or natural for your class to be thought of as an array.

A class can have as many overloaded indexers as it wants, provided the
index types or numbers of indexes are different.

Collections

C#’s collection classes include the ArrayList class, which is C#’s
counterpart to Java’s ArrayList and Vector classes.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 176

Programming Structures • Chapter 4 177

The ArrayList class permits you to have dynamic arrays.

Collection classes store data as objects; the data must be cast back to its
original type once it is retrieved from a collection.

You can make your class a collection by implementing the Ienumerator
interface.

Exceptions

C# exception handling is very similar to Java exception handling.

The core of C# exception handling is use of the try, catch, and finally
blocks.

You must catch more specific exceptions first, as the catch blocks are
evaluated sequentially.

Your class can throw an exception using the throw keyword.

There is not a throws keyword, as in Java.

You may make your own custom exceptions by implementing the
IapplicationError interface.

www.syngress.com

223_C#Java_04.qxd 5/21/02 3:31 PM Page 177

178 Chapter 4 • Programming Structures

Q: In Java, I used the Stringbuffer class for strings that were not immutable. Does
C# offer a similar class?

A: Yes, C# offers the StringBuilder class.This class is the counterpart to the
Stringbuffer class in Java, and has similar methods.

Q: Why do my fall-through cases not fall through in my switch statement?

A: C# does not support implicit fall-through.You must use the goto command to
switch to another case.

Q: In Java, we would put a throws specifier on a class if it threw an exception. Is
this required in C#?

A: No, C# does not support the throws specifier.

Q: When should I make my class a collection, and when should I use indexers?

A: If your class can be considered logically, or might be used by someone else as
an array, then you might want to use indexers. If you wish to support the
foreach iterator, you must make your class a collection.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_04.qxd 5/21/02 3:31 PM Page 178

Objects and Classes

Solutions in this chapter:

■ Using Classes

■ Using Methods

■ Creating Objects

■ Destroying Objects

Chapter 5

179

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_05.qxd 5/21/02 2:11 PM Page 179

180 Chapter 5 • Objects and Classes

Introduction
C# is a modern object-oriented programming language (OOPL) just like Java.
This means that it upholds the three pillars of object-oriented programming—
encapsulation, inheritance, and polymorphism.This chapter will review the con-
cepts of objects and classes, which is the heart and soul of any OOPL. Most of
this will be very familiar to you, but pay attention—there are some differences
between the two languages.

This chapter will look at C# classes and objects. Just like Java, all code in C#
runs as part of a class that has a group of methods that act upon common data.
Each instance of a class is called an object and has its own copy of the data.This
is the main difference between an object and a class. C# has introduced new key-
words (ref and out) for declaring and handling method parameters, which will be
highlighted in the method parameters section.

The last section of this chapter will discuss how to create and destroy objects.
You will learn how to create constructors and destructors for your class.A con-
structor is the very first method called when you instantiate your object.A
destructor is a method you can use to free up unmanaged resources for you
object. However, the Common Language Runtime (CLR) provides a garbage
collector for cleaning up your objects after they are used, so you don’t need to
explicitly declare a destructor. Let’s now proceed and see how these are all done.

Using Classes
C# and Java both use classes to combine data and the methods that operate on that
data.This combining of data and methods is called encapsulation. Encapsulation is
an important part of object-oriented programming. Encapsulation, however, is nei-
ther new nor unique to OOPLs. Before object orientation, programmers designed
their code in “black boxes” and used information hiding.

If you are a Java developer, you will find C#’s class structure familiar. C#
classes may specialize other classes just like Java classes. In C# however, the syntax
uses a colon (:) in place of Java’s extends keyword, which will be discussed in
more detail in Chapter 6. C# classes also require access-modifiers, but C# sup-
ports five instead of Java’s four.

In C# there are no global functions or constants, and all methods and all vari-
ables are members of some class. Classes in C# define new data types, which are
the templates or patterns from which objects are created.To use a baking metaphor,
classes are the cookie cutters and objects are the cookies. Objects are instances of a
class; the process of creating an object from a class is called instantiation.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 180

www.syngress.com

Access Control
As mentioned, encapsulation is an important part of object-oriented program-
ming. Encapsulation means that you control the access to a class, method, or vari-
able.Access to a class means that another class can do one of three things:

■ Create an instance of that class

■ Extend that class

■ Access certain methods and variables within the class

Access control is important because it provides encapsulation by controlling
the visibility of a class, a method, or a variable.Table 5.1 is a list of all C# access
modifiers for classes, methods, and variables.

Table 5.1 C# Access Modifiers and Java Equivalents

C# Java Access

public public C# and Java classes, methods, and variables
marked public are accessible by everyone.

protected N/A C# classes, methods, and variables marked pro-
tected are accessible by any member of a class or
its derived classes. The same keyword in Java
behaves differently.

internal default or C# classes, methods, and variables marked
package internal are accessible to any member of any class

in the same assembly. Java classes, methods, and
variables marked with default access are acces-
sible within the same package.

protected protected C# classes, methods, and variables marked pro-
internal tected internal are accessible in the same assembly

or by derived classes. Java classes, methods, and
variables marked protected are accessible in the
same package or by derived classes.

private private C# and Java classes, methods, and variables
marked private are accessible by the class itself.

Objects and Classes • Chapter 5 181

223_C#Java_05.qxd 5/21/02 2:11 PM Page 181

Continued

182 Chapter 5 • Objects and Classes

NOTE

An assembly has a lot in common with Java’s JAR files. It is the main
form of code packaging in the .NET environment (a logical DLL). Typically,
it contains the intermediate code from the compiled class, and any other
resources required by the packaged code to perform its task. Chapter 9
will go into more detail on assemblies.

Class Modifiers
Class modifiers in C# control access to classes or define some characteristic of a
class.Table 5.2 shows the class modifiers supported by C# and their Java equiva-
lents (where appropriate).

Table 5.2 C# Class Modifiers and Java Equivalents

C# Java Function Note

public public C# classes marked public Similar to Java.
are available to everyone.

internal N/A C# classes marked internal In Java the default class
are available only within access means that the
the assembly. class is available only

within their package.
This is the same in C#.
However, in C# you can
explicitly mark a class as
internal for the same
functionality.

protected N/A Nested C# classes marked Can be used only on
protected are available to inner classes.
the containing class or
from types derived from
the containing class.

protected protected Nested C# classes marked Similar to Java, it can
internal as protected internal are be used on only inner

available to the assembly classes.Nested Java
or types derived from the classes marked protected
containing class. are available to both

derived classes and

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 182

Objects and Classes • Chapter 5 183

classes in the same
package.

private private Nested C# classes marked Similar to Java, it can be
private are available to used only on inner
the containing class only. classes.

sealed final C# and Java classes Similar to Java, this key-
marked sealed cannot word can’t be used in
be subclassed. conjunction with the

abstract keyword.
abstract abstract C# classes marked abstract Similar to Java, this key-

cannot be instantiated. word can’t be used in
Subclasses may be conjunction with the C#
instantiated if they sealed modifier.
implement all the abstract
methods (if any).

NOTE

Only nested classes permit the use of the new keyword. The new modi-
fier specifies that the class hides an inherited member by the same
name. Inner classes and Inheritance will be discussed in Chapter 6.

The C# class modifiers public, protected, internal, protected internal, and private all
control access to classes. Let us examine these access modifiers and compare them
with their Java equivalents.

Top-level classes (classes not contained in other classes) may use either the
public or internal modifier.The public modifier in C# is the same as its Java coun-
terpart.This class modifier indicates that the class (or type) is available to every
other class.The following class declaration uses the C# public modifier to illus-
trate that the class is accessible from another class in a different namespace.

namespace Mapping

{

public class MercatorProjection

{

www.syngress.com

Table 5.2 Continued

C# Java Function Note

223_C#Java_05.qxd 5/21/02 2:11 PM Page 183

184 Chapter 5 • Objects and Classes

// Methods and member variables go here.

. . .

}

}

using Mapping;

namespace Routing

{

class MinimumFuelRoute

{

MercatorProjection mercatorProjection;

// Other methods and member variables go here.

. . .

}

}

The internal modifier is unique to C# and indicates that a class is accessible
only within the assembly that contains it.The following class declaration uses the
C# internal modifier:

internal class AnotherCoolClass

{

methods and member variables go here

. . .

}

In addition to the public and internal access modifiers, inner classes (classes
contained in other classes) may use the protected and private modifiers. Nested
classes may also use the protected and internal modifiers together. Chapter 6 will
cover nested classes in greater detail.The following class declarations show the
possible access modifiers for inner classes of a public class:

public class Artists

{

protected class VanGogh

{

// Methods and member variables go here.

. . .

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 184

Objects and Classes • Chapter 5 185

}

private class Picasso

{

// Methods and member variables go here.

. . .

}

protected internal class Lautrec

{

// Methods and member variables go here.

. . .

}

}

This example declared a public class with three inner classes, each having a dif-
ferent access level.Table 5.3 shows the classes and their respective access.

Table 5.3 C# Access Level for Inner Classes Contained in a public Class

Class Access

Artists Accessible by everyone.
Artists.VanGogh Accessible only within the Artists class and derived classes.
Artists.Picasso Accessible only within the Artists class.
Artists.Lautrec Accessible by classes within the same assembly and

derived classes.

The following class declarations show the possible access modifiers for inner
classes of an internal class:

internal class Mathematicians

{

protected class Hardy

{

Methods and member variables go here.

. . .

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 185

186 Chapter 5 • Objects and Classes

private class Cantor

{

Methods and member variables go here.

. . .

}

protected internal Gauss

{

Methods and member variables go here.

. . .

}

}

This example declared an internal class with three inner classes, each having a
different access level.Table 5.4 shows the classes and their respective access.

Table 5.4 C# Access Level for Inner Classes Contained in an internal Class

Class Access

Mathematicians Accessible within the containing assembly.
Mathematicians.Hardy Accessible by derived classes within the same

assembly.
Mathematicians.Cantor Accessible only within the Mathematicians class.
Mathematicians.Gauss Accessible by classes within the same assembly and

derived classes.

Abstract Classes
C# and Java both support abstract classes.Abstract classes are classes that are not
designed to be instantiated.These classes are designed only to be subclassed.You
will learn more about abstract classes in Chapter 6,“Object-Oriented
Programming.”

The abstract modifier makes a class abstract.The following declaration is for an
abstract class:

public abstract class Einstein

{

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 186

Objects and Classes • Chapter 5 187

methods and member variables go here

. . .

}

Abstract classes in C# are similar to Java—they play an important role in
designing a class hierarchy.You may use abstract classes to tie together the
common features of several derived classes.

Sealed Classes
C#’s sealed modifier works like the Java final modifier.Apply the sealed modifier
to classes to prevent them from being subclassed. Sealed classes often are used as a
security feature to prevent overriding of class methods by derived classes.The fol-
lowing code declares a sealed class:

public sealed class Newton

{

Methods and member variables go here.

. . .

}

Sealed classes in C# are similar to Java’s final classes.An example of a sealed
class is C#’s String class, which is similar to Java’s String class in a way such that
both can’t be subclassed.

Instance Variables
C# classes may include member variables or fields. Member variables make up
the data of a class.When you declare a member variable you may also provide
access modifiers similar to those used in class declarations. Class members may be
of any value or reference type.

There are two important types of member variables—instance members and
static members.We will start by examining instance members.The following class
declaration has two instance members, a double and a String:

public class StockPrice

{

public double price ;

public String symbol ;

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 187

188 Chapter 5 • Objects and Classes

Let’s look at some code that uses the StockPrice class. Since both member vari-
ables and the class are public the member variables may be accessed anywhere.The
following code creates two StockPrice objects and initializes their members. Finally
the code prints the ticker symbol and price for our two stocks.

using System;

public class StockPrice

{

public double price ;

public String symbol ;

}

public class StockApp

{

static void Main()

{

// Create two objects.

StockPrice stock1 = new StockPrice() ;

StockPrice stock2 = new StockPrice() ;

// Initialize objects.

stock1.price = 63.08d ;

stock1.symbol = "MSFT" ;

stock2.price = 32.70d ;

stock2.symbol = "INTC" ;

System.Console.WriteLine(stock1.symbol + " " + stock1.price) ;

System.Console.WriteLine(stock2.symbol + " " + stock2.price) ;

}

}

Output
MSFT 63.08

INTC 32.7

As you can see from the output, each object or instance of type StockPrice has
its own data.Therefore every time you instantiate a new object, it gets its own

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 188

Objects and Classes • Chapter 5 189

copy of the instance members price and symbol.Any time you access an instance
member, you must do it through an instance of the class. If at any time there are
no instances, then there are no instance variables.

Static Variables
Instance members are not the only type of member variable allowed in C#. Both
C# and Java also support class member variables. Class member variables are
sometimes called static variables since they use the static keyword in both lan-
guages.All instance members belong to a specific class instance or object. Class
members belong to the class itself. Class members are shared among all the
objects of a class type and may be accessed independent of any instance.
Let’s revisit the StockPrice class, but this time making the price field static.

public class StockPrice

{

// Now price is static

static public double price ;

String symbol ;

}

In the previous example (where price was an instance variable) we simply
accessed it using the dot (.) operator.This was necessary because an instance vari-
able is bound to an instance or object. So the syntax is:

<instance name>.<variable name>

When written out in code, it would look like this:

stock1.price

Static variables are not bound to any specific instance. So in C# you will
need to access them through the class as shown:

StockPrice.price = 10.1d ;

This is different from the Java behavior, which supports both types of access
for class or static members. In Java the following line of code would be valid:

StockPrice.price = 10.1d ; // Valid in Java or C#

The following line of code would also be valid for Java but not in C#:

stock1.price = 10.1d ; // Valid only in Java

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 189

190 Chapter 5 • Objects and Classes

Modify the previous example to use the new StockPrice class and you get:

using System;

public class StockPrice

{

// Now price is static

static public double price ;

public String symbol ;

}

public class StockApp

{

static void Main()

{

// Create two objects

StockPrice stock1 = new StockPrice() ;

StockPrice stock2 = new StockPrice() ;

// Initialize objects

StockPrice.price = 63.08d ;

stock1.symbol = "MSFT" ;

StockPrice.price = 32.70d ;

stock2.symbol = "INTC" ;

System.Console.WriteLine(stock1.symbol + " " + StockPrice.price) ;

System.Console.WriteLine(stock2.symbol + " " + StockPrice.price) ;

}

}

Output
MSFT 32.7

INTC 32.7

Notice that the share prices for the two stocks seem to be the same—even
though they were initialized with unique values they display the same value as
32.7.Why did this happen? There is only one copy of the static variable price,

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 190

Objects and Classes • Chapter 5 191

and in our application we set it first to 63.08d and then reset it to 32.70d. Static
variables exist only once and serve all instances of the class. In fact it is possible to
access a static variable even if no instances of a class exist.This would be the same
as the behavior of static variables in Java.

Constants as Static Members
Use static members to provide meta-information about a class such as the
number of instances that have been created. Constants are also static members.
Both C# and Java use static or class members for constants. C# has a special const
keyword; Java uses the final or static and final keywords in combination to indicate
a constant. In Java, final variables do not have to be initialized as a part of their
declaration. Java static finals and C# const values must be initialized.Table 5.5 illus-
trates some C# constants and their Java equivalents.

Table 5.5 C# and Java Constants

C# Constant Java Constant

public const int DaysInWeek = 7 ; public static final in DAYS_IN_WEEK = 7 ;
public const double Pi = 3.1459d; public static final double PI = 3.14159 ;
public const String Name = “Bill” ; public static final String NAME = “Scott” ;

Using Methods
Classes combine data and related functionality.The functionality part of the class
is called a method. C# methods are similar to Java methods. Methods have access
to the member variables and the other methods of the class. Callers that invoke
methods pass data to those methods in the form of parameters. Methods may also
return values to the calling methods.

Here is a simple class combining both member variables and methods.

public class Point

{

public int x ;

public int y ;

public double DistanceFromOrigin()

{

return Math.Sqrt(x*x + y*y) ;

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 191

192 Chapter 5 • Objects and Classes

}

public Point Add(Point pt2)

{

Point p = new Point() ;

p.x = x + pt2.x ;

p.y = y + pt2.y ;

return p ;

}

}

The Point class represents an (x,y) point. Point has two public member vari-
ables, x and y.The DistanceFromOrigin() method calculates the distance between
the point and (0,0).The following program creates two Point objects, puts them
together to get a third Point object, and then finds the distance from the third
point to the origin.

using System;

public class Test

{

static void Main()

{

Point p1 = new Point() ;

p1.x = 4 ;

p1.y = 5 ;

Point p2 = new Point() ;

p2.x = -6 ;

p2.y = 3 ;

Point p3 = p1.Add(p2) ;

System.Console.WriteLine("p3 = (" + p3.x + ", " + p3.y + ")") ;

Double d = p3.DistanceFromOrigin() ;

System.Console.WriteLine("p3 is " + d + " from the origin.") ;

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 192

Objects and Classes • Chapter 5 193

}

}

Output
p3 = (-2, 8)

p3 is 8.24621125123532 from the origin.

Some C# methods do not need to return values to their callers. Just like Java,
C# uses a special return type called void for methods that do not return values.

Notice that the Main method in this example was declared as static. Static
methods are like static variables. Static methods are associated with the class, not
with any particular object or instance. Static methods may access static variables
in a class. Let’s add a static method to the Point class by declaring the
DistanceFromOrigin() as static.The following code shows the new version of Point:

public class Point

{

public int x ;

public int y ;

public static double DistanceFromOrigin(int x, int y)

{

return Math.Sqrt(x*x + y*y) ;

}

public double DistanceFromOrigin()

{

return DistanceFromOrigin(x, y) ;

}

public Point Add(Point pt2)

{

Point p = new Point() ;

p.x = x + pt2.x ;

p.y = y + pt2.y ;

return p ;

}

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 193

194 Chapter 5 • Objects and Classes

In this example we added a static version of DistanceFromOrigin(). In order to
reuse the code the nonstatic version of the method uses the static version.The
following code uses the static DistanceFromOrigin().

using System;

public class Test

{

static void Main()

{

double dist = Point.DistanceFromOrigin(3, -7) ;

System.Console.WriteLine(dist) ;

}

}

Notice that we were able to call the DistanceFromOrigin() without first instan-
tiating a Point object.This is exactly the same as how you would call a static
method in Java.

Access Modifiers
C# classes control access to their methods just like Java classes. C# supports five
levels of access compared to Java’s four.The five access modifiers are public,
internal, protected, protected internal, and private.

Public access is the least restrictive of all. Members declared with the public
modifier are accessible to any class. Public access in C# is exactly like public
access in Java.

Internal access is the next level.The internal modifier guarantees that only
code within the same assembly has access to a member.This is comparable to the
default or package level access in Java.

The protected modifier grants access only to the class and its derived classes.
Protected access may be used to allow derived classes to extend the functionality of
base classes.The protected modifier is not quite similar to Java’s protected access
level. Protected level access in Java limits the class accessibility to the same package
and derived classes (even if the derived classes are in a different package).

Java’s protected access modifier is more similar to C#’s protected internal modi-
fier.This access level is a hybrid of two others; in other words it is the union of
the protected and internal modifiers.Any class in the same assembly or any subclass
may access protected internal members.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 194

Objects and Classes • Chapter 5 195

The most restrictive access level is private. Private limits access to the class
itself. Not even subclasses can access private members. Java defines private access
exactly the same way as C# does.

Method Parameters
Many methods need information from their clients in order to perform their
task. In C#, methods may take parameters similar to Java methods. In Java, all
parameters are passed by value, meaning they are copied into the local stack
frame of the method.You may be wondering about reference types in Java—their
references are also passed by value.

The following program demonstrates pass by value in C#.The class Foo has a
single method called modify. Modify takes an int n and modifies it. Since n is passed
in by value it is copied into the Modify() method.When n is set to 1000 in the
method, a local copy of n is modified, not the value x that is actually passed in.

public class Foo

{

www.syngress.com

Access within Classes
Variables and methods within a class are subject to two levels of access
control. The first level of access is controlled by the access modifiers for
the class. The second level of access is controlled by the modifiers
applied to the members within the class.

Consider a public variable of a protected class as shown:

protected class Alpha

{

public int betaValue = 100 ;

// Other class stuff removed

}

Even though betaValue has public access, it is limited by the stricter
modifier of the containing class. Therefore only the class Alpha and any
subclasses of Alpha can access betaValue.

Developing & Deploying…

223_C#Java_05.qxd 5/21/02 2:11 PM Page 195

196 Chapter 5 • Objects and Classes

public void Modify(int n)

{

n = 1000 ;

}

}

public class Test

{

static void Main()

{

int x = 100 ;

Foo f = new Foo() ;

System.Console.WriteLine("x before modify :" + x) ;

f.Modify(x) ;

System.Console.WriteLine("x after modify :" + x) ;

}

}

Output
x before modify :100

x after modify :100

In the output we see that the method does not change the value of x. The
Modify() method gets a copy of x (called locally n) and sets n to 1000—not x.

As discussed in Chapter 4, C# methods may also take variable parameter lists
by using the params keyword.The params keyword allows an array of parameters
to be specified as the last or rightmost parameter in the list.The following is the
declaration of a method with variable parameters:

public class Foo

{

public void VarParamMethod(int a, double b, params int[] vals)

{

System.Console.WriteLine("a :" + a) ;

System.Console.WriteLine("b :" + b) ;

int sum = 0;

for(int i = 0; i < vals.Length; i++)

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 196

Objects and Classes • Chapter 5 197

{

sum += vals[i] ;

}

System.Console.WriteLine("sum :" + sum) ;

}

}

The vals parameter can be replaced by a variable number of arguments of
type int or by an array of type int.The VarParamMethod() method can be called by
any of the following:

public class Test

{

static void Main()

{

Foo f = new Foo();

f.VarParamMethod(1, 2.0, 3) ;

f.VarParamMethod(1, 2.0, 1, 2, 3, 4, 5) ;

int [] x = new int[5] {3,4,5,6,7} ;

f.VarParamMethod(1, 2.0, x) ;

}

}

As you can see, using the params keyword in the argument list is more flexible
than not using it.The method can take any number of integers as well as array of
integers.

The ref and out Method Parameters
Pass by value is not the end of the story in C#. C# also provides the ref and out
keywords for passing parameters by reference. Parameters declared with ref are
passed by reference, which prevents the overhead of copying objects into a
method. Uninitialized ref parameters result in a compilation error.The following
code is the Modify() method example updated for ref parameters.

public class Foo

{

public void Modify(ref int n)

{

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 197

198 Chapter 5 • Objects and Classes

n = 1000 ;

}

}

public class Test

{

static void Main()

{

int x = 100 ;

Foo f = new Foo() ;

System.Console.WriteLine("x before modify :" + x) ;

f.Modify(ref x) ;

System.Console.WriteLine("x after modify :" + x) ;

}

}

Output
X before modify :100

X after modify :1000

Notice in the output that calling Modify now really changes the value of x.
You may use ref parameters to allow methods to modify values. Remember that
the ref parameters must be initialized before use.

The out keyword allows uninitialized references to be passed into methods.
The out keyword is similar to ref with one difference: out parameters do not need
to be initialized before passing them into a method. However, when you write a
method with out parameters they must be initialized in the method before the
method returns or you will get a compilation error.The following is an example
of an out parameter:

public class Test

{

static void GetInts(int n, out int[] rand)

{

rand = new int[n];

for (int i = 0; i < n; i++)

{

rand[i] = i;

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 198

Objects and Classes • Chapter 5 199

}

}

static void Main()

{

int [] a ;

GetInts(5, out a) ;

for(int i = 0; i < a.Length; i++)

{

System.Console.WriteLine(a[i]) ;

}

}

}

This code uses a method to get an array of integers.The caller creates an
uninitialized array reference and passes it as an out parameter to the GetInts()
method.This allows GetInts() to create the array and pass it back.This is especially
useful for passing multiple parameters where you do not want to create a struct or
class to wrap them.

Callers must also use the out keyword when calling the method as shown:

Point q ;

MakePoint(out q) ;

In Java all method parameters are passed by value. C# gives us the flexibility
of passing parameters by reference with the ref and out keywords.

Overloaded Methods
C# and Java both allow overloaded methods. Overloaded methods are methods
that have the same name. In order to prevent any ambiguities, overloaded
methods must have different parameter lists. Parameters may differ in number
order and type.This should be very familiar as this concept is similar to Java.To
review,Table 5.6 show both valid and invalid overloaded examples.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 199

200 Chapter 5 • Objects and Classes

Table 5.6 Valid and Invalid Overloaded Examples

Methods Valid Explanation

public void foo(int a) Yes The parameter lists are clearly
public void foo(int a, int b) different.
public void foo(int a, int b, int c)
public int bar(int a) No Only method parameters not
public void bar(int a) return values are considered
public double bar(int a) when comparing overloaded

methods.
public void foo(Fubar f) No There is no Java equivalent to
public void foo(ref Fubar f) this overloaded case. Parameters
public void foo(out Fubar f) must differ by more than just ref

and out.
public int alpha(int a, int b) No Even though the parameter
public int alpha(int b, int a) names are different both

methods still take two ints.
public void foo(int a) Yes The last method is invoked only
public void foo(int a, int b) if you have an array or more
public void foo(int a, int b, int c) than three ints as parameters.
public void foo(params int[] a)

The following example is a simple class named Foo with an overloaded Bar()
method.

public class Foo

{

public void Bar()

{

System.Console.WriteLine("Bar()") ;

}

public void Bar(int n)

{

System.Console.WriteLine("Bar(int n)") ;

}

public void Bar(ref int n)

{

System.Console.WriteLine("Bar(ref int n)") ;

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 200

Objects and Classes • Chapter 5 201

}

public void Bar(params int[] n)

{

System.Console.WriteLine("Bar(params int[] n)") ;

}

}

public class Test

{

static void Main()

{

Foo b = new Foo() ;

b.Bar() ;

b.Bar(1) ;

int n = 10 ;

b.Bar(ref n) ;

b.Bar(1, 2) ;

}

}

Output
Bar()

Bar(int n)

Bar(ref int n)

Bar(params int[] n)

Each of the calls to a Bar() method in main resolves unambiguously to one of
the overloaded Bar() methods.The first call b.Bar() resolves to Bar() because only
one Bar method has no parameters.The second call b.Bar(1) could have been
handled by either by Bar(int n) or Bar(Params int[] n)—it gets handled by Bar(
int n) because the method with the exact match is preferred over the variable
parameter list.The third call, b.Bar(ref n), is resolved because of the ref parameter.
Finally, b.Bar(1, 2) matches Bar(params int[] n) because there is no other version
of Bar() with two parameters.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 201

202 Chapter 5 • Objects and Classes

Creating Objects
Similar to Java, C# primitives like int, double, byte, and so on are value types and
are stored on the stack.And like Java, objects in C# are reference types that are
stored on the heap.The heap is unstructured memory also known as the free store.
This section will talk about creating objects in C#.

Creating objects is fairly straightforward. In C# just like Java, you use the new
operator to create or instantiate an object.The normal process is to create a refer-
ence to an object.Then you instantiate an object and assign it to the reference.You
could also do both steps at once.The following code demonstrates this process.

Point p ; // Create a reference.

p = new Point() ; // Create the object.

Point q = new Point() ; // Create both in one step.

Constructors
Classes in C# also have special methods called constructors that are responsible
for initializing objects of the class type. Constructors have the same name as the
class itself and have no return type, which is similar to Java. If you do not provide
a constructor, the class is instantiated using a default constructor. Earlier in this
chapter we used the Point class in some sample code.The Point class represents
(x,y) points. In our sample code we had to create Point objects in two steps.The
first step was to use the new operator and instantiate the Point object.The next
step was to set the initial x and y values.

Let us revisit the Point class and see whether we can simplify the construction
and initialization process.Whenever we need a point we will need to give it an x
and a y value.Therefore we will create a constructor for the Point class that takes
and sets an x and y value. Consider the new and improved Point class:

public class Point

{

public int x ;

public int y ;

public Point(int x, int y)

{

this.x = x ;

this.y = y ;

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 202

Objects and Classes • Chapter 5 203

public double DistanceFromOrigin()

{

return System.Math.Sqrt(x*x + y*y) ;

}

public Point Add(Point pt2)

{

// This method changed to math the new constructor

return new Point(x + pt2.x, y + pt2.y) ;

}

}

NOTE

Both C# and Java use the this reference. In C#, it is a reference of a class
to itself. It has its origins in Smalltalk’s this self reference. You will most
likely use the this reference to differentiate method parameters from
instance members.

Now that the Point class has a constructor we can construct and initialize it
on one step. In the following code we will construct some Points, add them
together to get a third Point, and then calculate its distance from the origin.

public class Test

{

static void Main()

{

Point a = new Point(5, 3) ;

Point b = new Point(-2, 1) ;

Point c = a.Add(b) ;

System.Console.WriteLine("c is " + c.DistanceFromOrigin() +

" from (0,0) ") ;

}

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 203

204 Chapter 5 • Objects and Classes

Output
c is 5 from (0,0) ;

As you can see, the syntax and semantics for constructors are the same in
both Java and C#. Let’s continue our discussion and look at how you can over-
load constructors.

Overloading Constructors
You can overload constructors in C# just like regular methods. Consider the
Point class. It has a constructor that takes (x,y) coordinates.What if you wanted to
create default points, maybe points at (0,0)? The solution is to create another
overloaded constructor. Constructor overloading is subject to the same rules as
method overloading.The following code shows the Point class with overloaded
constructors:

public class Point

{

public int x ;

public int y ;

public Point()

{

x = 0 ;

y = 0 ;

}

public Point(int x, int y)

{

this.x = x ;

this.y = y ;

}

// Other methods removed for simplicity

}

You may also implement this class with constructor chaining. Constructor
chaining uses one constructor and calls another. Note that the second (or chained
constructor) is invoked first.The syntax is shown in the following class:

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 204

Objects and Classes • Chapter 5 205

C#
public class Point

{

public int x ;

public int y ;

public Point():this(0,0)

{

// This constructor does nothing; instead it calls

// the other constructor passing in 0, 0.

}

public Point(int x, int y)

{

this.x = x ;

this.y = y ;

}

// Other methods removed for simplicity

}

Constructor chaining in Java also uses the this keyword. However, it’s used
more like a method call, and differs from with C# only in syntax.This is the Java
version of the Point class.

Java
public class Point

{

public int x ;

public int y ;

public Point()

{

// This constructor does nothing; instead it calls

// the other constructor passing in 0, 0.

this(0,0) ;

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 205

206 Chapter 5 • Objects and Classes

public Point(int x, int y)

{

this.x = x ;

this.y = y ;

}

// Other methods removed for simplicity

}

Static Constructors
Static constructors in C# are not really constructors at all; that is, they do not
instantiate objects.The function of static constructors is to initialize the class
itself. Static constructors look like regular constructors and they have the same
name as the class, with a static modifier in front. Java has a similar concept in its
static initializers.

Static constructors may not access instance members of a class and they do
not have access modifiers.They may not access instance methods of a class either.
Their purpose is to initialize the class—especially its static variables. C# static
constructors may not be called explicitly and they are not for use with the new
operator.They are called automatically when a class is loaded, which is similar
behavior to Java’s static initializers.The following program has a class that uses a
static constructor to initialize some static variables.

public class Delta

{

static Delta()

{

System.Console.WriteLine("Static Constructor") ;

}

public Delta(int n)

{

System.Console.WriteLine("Regular Constructor") ;

}

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 206

Objects and Classes • Chapter 5 207

public class Test

{

static void Main()

{

Delta a = new Delta(1);

Delta b = new Delta(2);

Delta c = new Delta(3);

Delta d = new Delta(4);

}

}

When you run this program you will see that the static constructor is called
before any of the instance constructors.The output of this program follows.

Output
Static Constructor

Regular Constructor

Regular Constructor

Regular Constructor

Regular constructor

C# static constructors look like constructors with a static modifier. Java static
initializers are blocks of code outside of any method set apart with the static key-
word. Here is the equivalent Java code:

Java
class Delta

{

static

{

System.out.println("Static Initializer") ;

}

public Delta(int n)

{

System.out.println("Regular Constructor") ;

}

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 207

208 Chapter 5 • Objects and Classes

}

public class Test

{

public static void main(String[] argv)

{

Delta a = new Delta(1);

Delta b = new Delta(2);

Delta c = new Delta(3);

Delta d = new Delta(4);

}

}

Output
Static Initializer

Regular Constructor

Regular Constructor

Regular Constructor

Regular Constructor

As you can see, the Java program produced similar output. Notice that the
main difference between C#’s static constructors and Java’s static initializers is just
syntax, but they provide the same functionality.

Destroying Objects
One of the first things you learn to love about C# programming is that you do
not have to explicitly destroy objects in memory. One of the first things you
learn to hate about C# is that you can’t explicitly destroy objects in memory.
Both Java and C# provide automatic memory management, which generally adds
to program correctness and robustness. Java offers developers very little flexibility
when it comes to memory management, and programmers often complain about
their inability to explicitly invoke the garbage collector. On the other hand, C#
provides developers a variety of options when it comes to memory management.

Memory Management and Garbage Collection
Similar to Java, one of the great features of C# is automatic garbage collection.
Most of the C# classes you write will use the CLR’s garbage collector.When

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 208

Objects and Classes • Chapter 5 209

objects are no longer in use and no longer referenced the CLR is free to reclaim
them.This saves you a lot of time by not having to worry about writing cleanup
code for their classes.The problem is that the CLR will free the objects when-
ever it chooses to. Like Java, C#’s garbage collection is nondeterministic.You can
determine when an object is eligible for garbage collection but you cannot guar-
antee when it will be garbage collected.

In some situations, you may want to manually manage how your objects get
cleaned up. Both languages provide support for this. In Java you can use the
finalize() method to free up resources during garbage collection. In C# you have
a couple of different methods to assist in resource management. C# classes may
have destructors as well as Finalize(), Dispose(), or Close() methods. Let’s look at
how to use these methods.

C#’s Destructor
C# classes may have a destructor as well as constructors. In C#, destructors for all
objects are invoked prior to program termination. Destructors look like methods
with no return type or access modifiers.They are named after their class and their
names are preceded by a tilde (~) symbol.The following is a destructor for the
Point class.

~Point()

{

// Clean up here

}

Destructors take no parameters and return no values.You must never attempt
to invoke a destructor directly. C# destructors are a syntactic shortcut for the
Object.Finalize() method.You should generally implement the Finalize() method
instead of destructors if you have unmanaged resources to free.

NOTE

IDisposable is an interface. It is not limited strictly to C#; it is part of
Microsoft’s COM technology. It provides a common mechanism for
cleaning up components of all sorts, not just C#. Interfaces like
IDisposable help C# fit into the .NET framework. IDisposable defines a
single method, Dispose.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 209

210 Chapter 5 • Objects and Classes

The Finalize, Dispose, and Close Methods
The real work of memory management is done through the Dispose() method of
the IDisposable interface and the class destructor.When the garbage collector frees
an object it calls the object’s destructor.The problem with the destructor is that it is
called as a part of the garbage collection process.There is no way to determine
exactly when the destructor is invoked. Unless we suppress finalization, the garbage
collector will call the destructor on every object that needs to be cleaned up.

The destructor should be used to free shared resources in a program.There is
no need to free memory resources in the destructor. One common use of the
destructor is to free GUI resources like window handles or pens.The problem with
this scenario is that although we may know when we are done with an object and
its resources, we still have no control over when the destructor is called. Important
resources could still be tied up even after we are through with them in our code.

The Dispose() method provides a callable method to clean up resources.The
destructor cannot be explicitly called, whereas the Dispose() method should be
called when an object’s resources are no longer needed. If you have worked with
the Windows API you have probably invoked a dispose method on objects.

Neither the destructor nor Dispose is the complete solution. If you have
resources that must be freed in your class, the best practice is to provide both a
destructor and a Dispose() method. Clients should call Dispose when they wish to
free resources. If so, Dispose suppresses further finalize (i.e., destructor) calls on the
object. If a client does not explicitly call Dispose, the garbage collector will eventu-
ally invoke the destructor and free the resources. In this example the hwnd.Release()
method frees a Window in Win32.The following code is for a class that correctly
frees a resource in both a destructor and a Dispose method.

public class ResourceUser : IDisposable

{

// Other methods and variables not shown

public void Dispose ()

{

hwnd.Release ();

GC.SuppressFinalization(this); // prevent Finalize

}

~ResourceUser ()

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 210

Objects and Classes • Chapter 5 211

{

hwnd.Release ();

}

}

It is common in C# for some classes to provide a Close() method instead of
Dispose(). Classes that represent files, sockets, or connections all sound better with
close semantics.We can add a Close() method to our ResourceUser class as shown:

public class ResourceUser : IDisposable

{

// Other methods and variables not shown

public void Close ()

{

Dispose() ;

}

public void Dispose ()

{

hwnd.Release ();

GC.SuppressFinalization(this); // Prevent Finalize

}

~ResourceUser ()

{

hwnd.Release ();

}

}

The using Statement
A well-behaved program will call Dispose() or Close() on objects that utilize
resources. In C# you have the option of calling Dispose() explicitly after you’re
done with the object, or you can put the object in a using block. By putting an
object in a using block, the CLR immediately will invoke the object’s Dispose()
method at the end of the block statement.The syntax is the following:

using(object)

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 211

212 Chapter 5 • Objects and Classes

{

// Object gets used here and then Dispose

}

The following program demonstrates a using block as well as a destructor, the
Dispose and Close methods.

using System ;

public class DeltaReport

{

int InstanceNumber;

public DeltaReport (int InstanceNumber)

{

this.InstanceNumber = InstanceNumber;

Console.WriteLine("DeltaReport {0}" , InstanceNumber);

}

}

public class Delta : Idisposable

{

int n ;

public Delta(int n)

{

this.n = n ;

DeltaReport MyReport = new DeltaReport(n);

}

public void Dispose ()

{

DeltaReport MyReport = new DeltaReport(this.n);

GC.SuppressFinalize(this); // Prevent Finalize

}

~Delta()

{

DeltaReport MyReport = new DeltaReport(this.n);

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 212

Objects and Classes • Chapter 5 213

}

}

public class Test

{

static void Main()

{

Delta d1 = new Delta(1) ;

Delta d2 = new Delta(2) ;

Delta d3 = new Delta(3) ;

d1 = null ;

using (d3)

{

Delta d4 = new Delta(4) ;

}

d2.Dispose() ;

}

}

This application creates some Delta objects and then calls Dispose or Close on
two of them. One of the references gets set to null and another is in a using
block.The output of this program follows.

Output
Dispose : 3

Dispose : 2

~Delta : 4

~Delta : 1

You will notice that the cleanup begins with object d3. Object d3 is first
because it is used in a using block.The d2 object gets cleaned up next because
Dispose is called explicitly. Even though d1 is set to null before d4 goes out of
scope, d4 is cleaned up first. Unless you put an object in a using block or explic-
itly call Dispose (or Close), cleanup is left to the garbage collector and the
behavior is not deterministic.

The using block guarantees that the Dispose() method is called at the end of the
block. It’s a good idea to put objects that use valuable resources in a using statement.
That way you’re guaranteed that the Dispose method will be called automatically.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 213

214 Chapter 5 • Objects and Classes

Summary
C# classes are similar to Java classes. Use them to encapsulate data and the methods
that operate on that data. C# provides a rich set of access modifiers so that you can
choose the appropriate level of encapsulation for your problem domain. In addition
to method overloading C# provides for ref, out and variable parameters.

C# objects are automatically garbage collected just like Java objects. However
C# gives you some additional options by offering dispose, finalize, and destructors.

C# provides a class model that is similar to Java’s but there are some traps for
the unsuspecting Java programmer. However if you take the time to learn the
details you will discover that even though C# differs from Java in many ways,
your Java experience can be applied to help you produce well-designed robust
C# classes.

Solutions Fast Track

Using Classes

Classes encapsulate data and related methods.

Classes may have static and/or instance members.

Static constructors are invoked before instantiating an object.

Constructors may invoke each other (constructor chaining).

Using Methods

Methods may be overloaded if their parameters differ in number, order,
or type.

Static methods may not be called in the context of an object, only of
the class.

C# methods support variable argument lists.

Creating Objects

Similar to Java, C# primitives like int, double, byte, and so on are value
types that are stored on the stack, and objects in C# are reference types
that are stored on the heap.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 214

Objects and Classes • Chapter 5 215

Classes in C# also have special methods called constructors that are
responsible for initializing objects of the class type. Constructors have the
same name as the class itself and have no return type, which is also
similar to Java.

You can overload constructors in C# just like regular methods.

Static constructors in C# are not really constructors at all, in that they
do not instantiate objects.The function of static constructors is to
initialize the class itself.

Destroying Objects

Users may explicitly invoke Dispose() to free an object’s resources.

Finalize() is called only by the garbage collector.

Destructors are a syntactic shortcut for Finalize().

A using block guarantees that Dispose() will be called immediately and
should be used for shared resources.

Q: How do I define global constants in C#?

A: It is common practice to create a class with nothing but constant members.
Ideally to prevent instantiation, such a class would be sealed and would have a
private constructor.

Q: Is it dangerous to call Dispose (or Close) more than once on the same object?

A: It depends on the object. For example if your Dispose releases a window
handle, the best practice would be to test whether the handle is null, release
the handle, and set the handle to null. So if the handle is already null, we
won’t release it twice.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_05.qxd 5/21/02 2:11 PM Page 215

216 Chapter 5 • Objects and Classes

Q: Since a static constructor has no parameters, can a class with a static con-
structor still have a default constructor?

A: Yes, static constructors are fundamentally different from normal constructors
so there is no ambiguity.

Q: Is there any way to force garbage collection in C#?

A: Yes, you can use the System.GC.Collect method.

www.syngress.com

223_C#Java_05.qxd 5/21/02 2:11 PM Page 216

Object-Oriented
Programming

Solutions in this chapter:

■ Inheritance

■ Polymorphism

■ Inner Classes

■ Using Interfaces

Chapter 6

217

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_06.qxd 5/21/02 2:12 PM Page 217

218 Chapter 6 • Object-Oriented Programming

Introduction
In the last chapter, you learned about C# objects and classes.As you know, there
is more to object-oriented programming (OOP) than just classes and objects.
This chapter will explain most of the remaining OOP concepts that you will
need to know.You will learn about inheritance, polymorphism, inner classes, and
interfaces.

The chapter will begin by discussing the C# inheritance model. Inheritance
is the technique of deriving new classes from existing classes. Next, you will be
introduced to the concept of polymorphism, which allows for method over-
riding. In that section, you will learn about virtual methods and versioning with
the new and override keywords, which is a feature of C# that is not found in Java.

The next part of the chapter will describe C#’s support for inner classes.The
chapter will wrap up by discussing interfaces. Interfaces are a way for dealing
with the common situation of wanting an object to derive behavior from two
different parents, sometimes referred to as multiple inheritance.

Inheritance
C#’s inheritance model is very similar to Java, with syntax being the only major
difference.To start off, let’s review the theory behind this concept.

Inheritance is a relationship between classes. In this relationship, a child class
inherits the members and methods of a parent class. Inheritance is an important
part of both the C# and Java object models. In both Java and C# all classes are
derived from a common base class. Java classes all subclass java.lang.Object, and C#
classes all subclass Object.

In object-oriented programming, inheritance is a strong and fundamental rela-
tionship. For example, I have a son who plays in a high school marching band. In
the marching band, he fulfills many roles but the role that is strong and funda-
mental is that he is my son.The fact that he is a trumpet player, a section leader,
or a sophomore is secondary. In an object-oriented system I would model the
father-son relationship using inheritance. Later in this chapter we will learn how
to model the weaker relationships. From the point of view of the band director
the strong relationship is membership.The choice of fundamental relationship is
not always obvious—it often depends upon your point of view.When you write
C# code it will be your job to identify fundamental relationships and differen-
tiate between these and weaker relationships.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 218

www.syngress.com

In either C# or Java you will often create a hierarchy of related classes. For
example, a payroll system might have an Employee class.All companies have
employees, so the Employee class is a reasonable abstraction. However, is this
abstraction enough? Most payroll systems have more than just employees—they
have many different kinds of employees.A payroll system might have salaried
employees, commissioned employees and hourly employees. Some companies
might even have truck drivers, lobbyists, and who knows what other kinds of
employees.

NOTE

The Unified Modeling Language (UML) is a standard language for repre-
senting object-oriented code, applications, or designs. Before UML there
were several competing notational systems, but today almost all devel-
opers use UML. This chapter will use UML class diagrams to show the
relationships between classes.

In class diagrams the boxes represent classes and the arrows point
from derived classes to base classes.

Even though a company may have many different types of employees, they
are all employees. In code, they are all child classes derived from the base class
Employee. Figure 6.1 is a UML diagram showing the Employee class and the four
specialized types of employees for a mythical company called Acme Widgets Inc.

In the class hierarchy of Figure 6.1, you see that the classes Salaried,
Commission, Hourly, and Driver all specialize Employee.The Employee class defines
attributes common to all employees and the subclasses define those attributes

Object-Oriented Programming • Chapter 6 219

Figure 6.1 Class Hierarchy for Acme Widgets Inc.

Employee

Commissioned HourlySalaried Driver

223_C#Java_06.qxd 5/21/02 2:12 PM Page 219

220 Chapter 6 • Object-Oriented Programming

unique to the specific employee type.Within a class hierarchy common attributes
(and methods) are defined at the highest level at which they are common.

All employees have names and social security numbers. Salaried employees have
a monthly salary. Hourly employees have a rate and hours worked. Commissioned
employees have a sales and commission percentage.Truck Drivers have a base salary,
miles, and rate per mile. Figure 6.2 shows the Acme Widgets class hierarchy with
class attributes displayed (constructors and methods are not shown).

www.syngress.com

Figure 6.2 Class Hierarchy for Acme Widgets Inc. with Attributes

Employee

-name : string
-ssn : string

Commissioned

-basePay : double
-sales : double
-commPct : double

Hourly

-wage : double
-hours : double

Salaried

-salary : double

TruckDriver

-basePay : double
-miles : double
-perMile : double

What’s in a Name?
In his play, Romeo and Juliet, Shakespeare asks the question, “What’s in
a name? That which we call a Rose by any other name would smell as
sweet.” The terminology used to describe inheritance differs from pro-
gramming language to programming language. Academic literature
often uses its own set of terms. The following list defines the terms used
to describe the classes in an inheritance relationship:

■ Parent class and Child class
■ Super class and Sub class
■ Base class and Derived class

There are also a variety of terms used for the relationship itself. If a
class A is a parent class and another class B is a child class of A, we use
the following terminology:

Developing & Deploying…

Continued

223_C#Java_06.qxd 5/21/02 2:12 PM Page 220

Object-Oriented Programming • Chapter 6 221

Defining a Base Class
When you declare a class in C# you need to identify its base class.As we men-
tioned earlier, all classes in C# are derived from Object. If you derive a class
directly from Object, there is no need to specify it. If you derive a class from any
other class you must indicate the parent class in the class declaration.

Both Java and C# offer support for single inheritance.A C# class is allowed
to have only one base class. Of course that base class may have its own base class,
and so on.This limitation removes a great deal of the complexity associated with
other OOPLs like C++. Later in this chapter we will see that C# classes may
implement multiple interfaces.

In Java we use the extends keyword to indicate inheritance. C# uses a colon
(:) to indicate a base class. Let us look at an example from the class hierarchy
shown in Figure 6.2.The following is the Java version of the Employee and
Salaried classes.

Java
// Java base class

public class Employee

{

protected String name ;

protected String ssn ;

}

// Java derived class

public class Salaried extends Employee

{

protected long salary ;

www.syngress.com

■ B subclasses A
■ B derives from A
■ B specializes A
■ B extends A
■ B is A

You are likely to see all of these terms in use by C# and other
object-oriented programmers.

223_C#Java_06.qxd 5/21/02 2:12 PM Page 221

222 Chapter 6 • Object-Oriented Programming

public Salaried(String name, String ssn, double salary)

{

this.name = name ;

this.ssn = ssn ;

this.salary = salary ;

}

}

This is the C# version of the Employee and Salaried classes.As you can see, in
the Salaried class we use the colon to indicate that Salaried is derived from
Employee.

C#
// C# base class

public class Employee

{

protected string name ;

protected string ssn ;

}

// C# derived class

public class Salaried : Employee

{

protected double salary ;

public Salaried(string name, string ssn, double salary)

{

this.name = name ;

this.ssn = ssn ;

this.salary = salary ;

}

}

Calling Base Class Constructors
In our previous code example we did not give the Employee class any construc-
tors.The Salaried class constructor does all the work of initializing variables in

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 222

Object-Oriented Programming • Chapter 6 223

both the Employee and Salaried classes. In the Acme Widgets Inc. class hierarchy
(Figure 6.2) this means that we would have to initialize the Employee class vari-
ables in the constructors for all four of the derived classes.Whenever you have
identical code in multiple places it is a clear sign that there is a problem with
your design. In order to solve this problem we will examine the issue of base class
constructors.

The following code snippet instantiates a Salaried object as previously defined.

Salaried s = new Salaried("Albert",

"123456789",

80000.00) ;

The Employee class does not define any constructors so it has a default con-
structor.The system first invokes the Employee default constructor, then the
Salaried constructor. Let’s look at how we can improve this code. In order to pre-
vent duplication of code, we will implement a constructor in the Employee class.
This new constructor will initialize the name and ssn variables that are common
to all Employee objects.We’ll also add some WriteLine() method calls to show the
order in which the object is constructed.

In many real applications you will write multiple (overloaded) constructors
for your classes.As soon as you explicitly create any constructor(s) for a class, you
must explicitly choose the constructor to invoke.When the class had no explicit
constructors, the system always invoked the default constructor. Now that the
Employee class has a constructor, the Salaried constructor must specify which
Employee constructor to invoke.

We will use a constructor initializer in the derived class constructor to specify a
base class constructor. Insert a : base(arguments) after the derived class constructor
declaration. Make sure that the arguments match the signature of the appropriate
base class constructor.

The following is a C# application that creates a Salaried object that uses a
constructor initializer to invoke a specific Employee class constructor.

// C# base class

public class Employee

{

protected string name ;

protected string ssn ;

public Employee(string name, string ssn)

{

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 223

224 Chapter 6 • Object-Oriented Programming

System.Console.WriteLine("Employee") ;

this.name = name ;

this.ssn = ssn ;

}

}

// C# derived class

public class Salaried : Employee

{

protected double salary ;

public Salaried(string name,

string ssn,

double salary) : base(name, ssn)

{

System.Console.WriteLine("Salaried") ;

this.salary = salary ;

}

}

public class Test

{

static void Main()

{

new Salaried(

"Albert",

"123456789",

80000.00) ;

}

}

If you compile and run this application you will get the following output:

Output
Employee

Salaried

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 224

Object-Oriented Programming • Chapter 6 225

This output clearly demonstrates that the order of construction is base class fol-
lowed by derived class. Both C# and Java strictly follow this order of construction.

Calling base class constructors is very different in C# than it is in Java. C#
uses the base keyword, and Java uses the super keyword. C# uses a constructor ini-
tializer, and Java uses the super keyword more like a method call. In Java the super
keyword must be the first line of code in a derived class constructor.The fol-
lowing is the equivalent Java versions of Employee and Salaried.

Java
// Java base class

public class Employee

{

protected String name ;

protected String ssn ;

public Employee(String name, String ssn)

{

System.out.println("Employee") ;

this.name = name ;

this.ssn = ssn ;

}

}

// Java derived class

public class Salaried extends Employee

{

protected double salary ;

public Salaried(String name,

String ssn,

double salary)

{

super(name, ssn) ;

System.out.println("Salaried") ;

this.salary = salary ;

}

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 225

226 Chapter 6 • Object-Oriented Programming

Polymorphism
Polymorphism comes from two Greek root words: poly means many and morphe
means form.The idea is that something may take on many forms. In the Acme
Widgets Inc. class hierarchy of Figures 6.1 and 6.2, we see a base class Employee
and the derived classes Salaried, Commissioned, Hourly, and TruckDriver. If the
chairman of Acme Widgets Inc. calls an all-employee meeting, the attendees will
include managers (who are salaried), sales staff (who are commissioned), produc-
tion line workers (who are hourly), and truck drivers. So for the purpose of
holding an employee meeting, all employees are treated simply as employees.

If we apply our definition of polymorphism we see that the Employee class
takes on four specialized forms (Salaried, Commissioned, Hourly, and TruckDriver). In
fact, in object-oriented programming we often are more concerned with the gen-
eral or common form than the specific. It is quite common that we will use base
class references to refer to derived class objects. Consider the following C# code.

Employee [] employees = new Employee[6] ;

employees[0] = new Salaried(

"Becky","123456789",80000) ;

employees[1] = new Commissioned(

"Chuck","234567891",20000,.05) ;

employees[2] = new Hourly(

"Deb","345678912",19.75) ;

employees[3] = new TruckDriver(

"Earl","456789123",20000,0.30) ;

employees[4] = new Salaried(

"Fae","567891234",110000) ;

employees[5] = new Hourly(

"Greg","678912345",15.50) ;

In the previous code snippet we created two Salaried, one Commissioned, two
Hourly, and one TruckDriver objects. If you look closely you see that although we
created all of these different kinds of objects, we created only one kind of refer-
ence to access them—employee references.You may wonder whether this code
will even compile—not only does it compile but the practice of instantiating
many different types of objects and keeping a single kind of reference is common
in all object-oriented programming.What we mean by this code is that all the

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 226

Object-Oriented Programming • Chapter 6 227

different specialized types of Employee are just Employees.The Employee class cre-
ated these other forms, so polymorphically all of these objects are Employees.

This polymorphic relationship is directional and is based on inheritance. In
UML diagrams the inheritance arrow points from derived class to base class, so
we can have Employee references to Commissioned objects but not the reverse. For
example the following C# code is correct:

Employee e = new Salaried("Harry","789123456",55000) ;

On the other hand the more specific (derived) cannot point to the more
general (base).Therefore the following code will not compile:

Salaried s = new Employee("Harry","789123456") ;

The Salaried class has all the attributes and methods of the Employee class.
However the Employee class does not have all of the attributes and methods of the
Salaried class.Therefore we can say polymorphically that a Salaried object is an
Employee object. Or even more strongly, that all Salaried objects are Employee
objects. However the reverse is not true. Only some Employee objects are Salaried
objects.The rule is that base class references may be used to refer to derived class
objects.

Abstract Classes
Let us revisit the class hierarchy of Figure 6.1.Acme Widgets Inc. has four kinds
of employees represented by the Salaried, Commissioned, Hourly, and TruckDriver
classes. But let us consider the Employee class itself. If all of the people who work
for Acme Widgets Inc. fit into one of the four categories (derived classes), why do
we need the Employee class in the first place?

From a design point of view, even though there are no workers at the com-
pany who are just employees it is still useful to have an Employee class in the
system.The Employee class does not represent any particular type of employee,
since it represents all types of employees.The Employee class is an abstraction that
allows us to combine all attributes and methods that are common to all employees
in one place. In this class hierarchy we will never actually instantiate an Employee
but only subclass it.Therefore we would make Employee an abstract class.

In both C# and Java, abstract classes are used in class hierarchies to tie
together commonalities among derived classes.You may never instantiate an
abstract class.The abstract keyword identifies and abstracts a class in both C# and
in Java.We will make the Employee class abstract by using the abstract modifier in
its declaration as shown in the following code sample:

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 227

228 Chapter 6 • Object-Oriented Programming

// C# abstract class

public abstract class Employee

{

protected string name ;

protected string ssn ;

protected Employee(string name, string ssn)

{

System.Console.WriteLine("Employee") ;

this.name = name ;

this.ssn = ssn ;

}

}

You may wonder why a class that cannot be instantiated needs a constructor.
The reason is that derived classes need to have a way to initialize the base class
part just like they did when the base class was not abstract. Notice also that there
is no longer any need to make the constructor public. Since the class will be con-
structed only by derived classes we will declare it to be protected.

In UML notation we use italics to indicate abstract classes. Figure 6.3 shows
our class hierarchy with an abstract Employee class.

UML class diagrams are a powerful way to visualize your classes.Take a close
look at the class diagram in Figure 6.3. Notice that both the TruckDriver and
Commissioned classes have a basePay attribute. In order to prevent duplication, let’s

www.syngress.com

Figure 6.3 Class Hierarchy for Acme Widgets Inc. with Abstract Employee
Class

Employee

-name : string
-ssn : string

Commissioned

-basePay : double
-sales : double
-commPct : double

Hourly

-wage : double
-hours : double

Salaried

-salary : double

TruckDriver

-basePay : double
-miles : double
-perMile : double

223_C#Java_06.qxd 5/21/02 2:12 PM Page 228

Object-Oriented Programming • Chapter 6 229

refactor the classes and move the common attribute up the hierarchy.We will
accomplish this by creating a new class called BasePlus.

BasePlus will be a child of Employee and will be the parent of both TruckDriver
and Commissioned. Figure 6.4 shows the refactored Acme Widgets Inc. hierarchy.

In the refactored class hierarchy of Figure 6.4, the BasePlus class is an abstract
class. On further reflection, the BasePlus and Salaried classes look very similar.We
can do one slightly more radical refactoring and replace BasePlus with Salaried.

In Figure 6.5, the Salaried class is not abstract since many actual employees are
salaried.This hierarchy suggests that Commissioned and TruckDriver employees are
specialized versions of Salaried.You may end up doing this sort of refactoring
more than once in a single project.

Now that we’ve reviewed the theory behind polymorphism and abstraction,
let’s look at actual code.The following is the source code for the Acme Widgets
Inc. class hierarchy:

www.syngress.com

Figure 6.4 Refactored Class Hierarchy for Acme Widgets Inc.

Employee

-name : string
-ssn : string

Commissioned

-sales : double
-commPct : double

Hourly

-wage : double
-hours : double

Salaried

-salary : double

TruckDriver

-miles : double
-perMile : double

BasePlus

-basePay : double

223_C#Java_06.qxd 5/21/02 2:12 PM Page 229

230 Chapter 6 • Object-Oriented Programming

public abstract class Employee

{

protected string name ;

protected string ssn ;

public Employee(string name, string ssn)

{

this.name = name ;

this.ssn = ssn ;

}

}

public class Hourly : Employee

{

protected double wage ;

protected double hours ;

public Hourly(

string name,

www.syngress.com

Figure 6.5 Final Class Hierarchy for Acme Widgets Inc.

Employee

-name : string
-ssn : string

Commissioned

-sales : double
-commPct : double

Hourly

-wage : double
-hours : double

TruckDriver

-miles : double
-perMile : double

Salaried

-basePay : double

223_C#Java_06.qxd 5/21/02 2:12 PM Page 230

Object-Oriented Programming • Chapter 6 231

string ssn,

double wage,

double hours) : base(name,ssn)

{

this.wage = wage ;

this.hours = hours ;

}

}

public class Salaried : Employee

{

protected double basePay ;

public Salaried(

string name,

string ssn,

double basePay) : base(name,ssn)

{

this.basePay = basePay ;

}

}

public class Commissioned : Salaried

{

protected double sales ;

protected double commPct ;

public Commissioned(

string name,

string ssn,

double basePay,

double sales,

double commPct) : base(name,ssn,basePay)

{

this.sales = sales ;

this.commPct = commPct ;

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 231

232 Chapter 6 • Object-Oriented Programming

}

}

public class TruckDriver : Salaried

{

protected double miles ;

protected double perMile ;

public TruckDriver(

string name,

string ssn,

double basePay,

double miles,

double perMile) : base(name,ssn,basePay)

{

this.miles = miles ;

this.perMile = perMile ;

}

}

The abstract Modifier
Similar to Java, C# provides support for abstract methods which are familiar to
most of you.An abstract method is a method that must have an implementation
in a derived class.This is because abstract methods have no implementation in
their own class. For example, let’s consider the following C# class:

abstract class Alpha

{

public void Beta()

{

System.Console.WriteLine("Beta") ;

}

public abstract void Delta() ;

}

The Alpha class has two methods: Beta(), with no qualification, and Delta(),
which is abstract.What would be the purpose of a class like this? The abstract class

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 232

Object-Oriented Programming • Chapter 6 233

provides a method, Beta, that is inherited by all its subclasses. The Delta method is
really a requirement that all (nonabstract) subclasses must provide a suitable Delta
implementation.

Going back to our example, so far the Acme Widgets Inc. hierarchy consists
of classes with attributes and constructors.We can now add some methods to this
hierarchy.We are going to add two methods, GetName and GetGrossPay. Since the
name attribute is at the Employee class level, the GetName method will be a
method of the Employee class.There is no reason for any derived class to provide
its own implementation of GetName, so it will not be abstract.The GetGrossPay
method is different, and though we will want to get the gross pay for all types of
employees, it is calculated differently for each type.Therefore in the base class
Employee there is really no common implementation that can be shared.
GetGrossPay is a perfect candidate to be an abstract method. Figure 6.6 shows the
Acme Widgets Inc. hierarchy with these methods added.

As you can see in Figure 6.6, all classes in the hierarchy inherit the GetName
method from Employee.All classes also inherit the requirement that they either
implement or inherit the implementation of a GetGrossPay method with the
same method signature including accessibility.

www.syngress.com

Figure 6.6 Acme Widgets Inc. Class Hierarchy with Methods

Employee

+GetName() : string
+GetGrossPay() : double

-name : string
-ssn : string

Commissioned

+GetGrossPay() : double

-sales : double
-commPct : double

Hourly

+GetGrossPay() : double

-wage : double
-hours : double

TruckDriver

+GetGrossPay() : double

-miles : double
-perMile : double

Salaried

+GetGrossPay() : double
-basePay : double

223_C#Java_06.qxd 5/21/02 2:12 PM Page 233

234 Chapter 6 • Object-Oriented Programming

The virtual Modifier
When multiple classes in a hierarchy implement similar methods it can be con-
fusing determining which method is actually invoked by any particular call. C#
handles these polymorphic methods quite a bit differently than Java. Consider the
Java class hierarchy in Figure 6.7.

In the class hierarchy of Figure 6.7 we have a base class A and two derived
classes B and C. Using polymorphism we could create objects of all three types
and refer to them using baseclass or A references.What happens if you have an A
reference to a C object and you use the A reference to call the foo() method?
Let’s look at the following Java code to see what happens.

Java
class A

{

public void foo()

{

System.out.println("A.foo") ;

}

}

www.syngress.com

Figure 6.7 A Simple Java Class Hierarchy

A

+foo() : void

B

+foo() : void

C

+foo() : void

223_C#Java_06.qxd 5/21/02 2:12 PM Page 234

Object-Oriented Programming • Chapter 6 235

class B extends A

{

public void foo()

{

System.out.println("B.foo") ;

}

}

class C extends B

{

public void foo()

{

System.out.println("C.foo") ;

}

}

public class Test

{

public static void main(String[] args)

{

A[] a = new A[3] ;

a[0] = new A() ; // A.foo

a[1] = new B() ; // B.foo

a[2] = new C() ; // C.foo

for(int i=0;i<3;i++)

{

a[i].foo();

}

B b = new B() ;

b.foo() ; // B.foo

C c = new C() ;

c.foo() ; // C.foo

}

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 235

236 Chapter 6 • Object-Oriented Programming

Output
A.foo

B.foo

C.foo

B.foo

C.foo

When you look at the output, you see that in Java the actual class of the
object determines the method called. In the for loop we have this code:

for(int i=0;i<3;i++)

{

a[i].foo();

}

When a[i] is of type A we get A.foo.When a[i] is of type B we get B.foo.And
a[i] of type C results in C.foo. Java uses the type (or class) of the object, not the
type of the reference, to select which version of the method to invoke.

We could build the same program in C# as we did in Java.The difference is
that this is default Java behavior whereas C# supports more choices. In C#, when
you build a class hierarchy with polymorphic methods you will have to choose
whether to use the virtual, override, new or even abstract modifier.

We will begin by looking at the virtual modifier.We use the virtual modifier
in C# to indicate that a method may have alternate implementations in a derived
class. So if we redo the preceding Java example in C#, the class A will have a foo
method declared to be virtual, like this:

class A

{

public virtual void Foo()

{

System. Console.WriteLine ("A.Foo") ;

}

}

In Java there is no virtual keyword.All Java methods are essentially considered
to be virtual. In C# you must use the virtual keyword to mark any methods that
will have their implementations determined by derived classes.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 236

Object-Oriented Programming • Chapter 6 237

The override Modifier
Whenever you use the virtual or abstract modifier in a base class method, the
matching methods in derived classes must use either the override or new modifier.
The purpose of the override modifier is to indicate that the derived class version
of the method overrides the base class implementation. In Java this is the default
behavior. In the Acme Widgets Inc. hierarchy all of the GetGrossPay methods in
the derived classes should be declared override.The declaration is as follows:

public override double GetGrossPay()

The override keyword tells the compiler that this class has intentionally over-
ridden how the GetGrossPay method works.The following is the source code for
the Acme Widgets Inc. hierarchy.

public abstract class Employee

{

protected string name ;

protected string ssn ;

public Employee(string name, string ssn)

{

this.name = name ;

this.ssn = ssn ;

}

public string GetName() { return name ; }

public abstract double GetGrossPay() ;

}

public class Hourly : Employee

{

protected double wage ;

protected double hours ;

public Hourly(

string name,

string ssn,

double wage,

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 237

238 Chapter 6 • Object-Oriented Programming

double hours) : base(name,ssn)

{

this.wage = wage ;

this.hours = hours ;

}

public override double GetGrossPay()

{

return wage * hours ;

}

}

public class Salaried : Employee

{

protected double basePay ;

public Salaried(

string name,

string ssn,

double basePay) : base(name,ssn)

{

this.basePay = basePay ;

}

public override double GetGrossPay()

{

return basePay ;

}

}

public class Commissioned : Salaried

{

protected double sales ;

protected double commPct ;

public Commissioned(

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 238

Object-Oriented Programming • Chapter 6 239

string name,

string ssn,

double basePay,

double sales,

double commPct) : base(name,ssn,basePay)

{

this.sales = sales ;

this.commPct = commPct ;

}

public override double GetGrossPay()

{

return basePay + (sales * commPct) ;

}

}

public class TruckDriver : Salaried

{

protected double miles ;

protected double perMile ;

public TruckDriver(

string name,

string ssn,

double basePay,

double miles,

double perMile) : base(name,ssn,basePay)

{

this.miles = miles ;

this.perMile = perMile ;

}

public override double GetGrossPay()

{

return basePay + (miles * perMile) ;

}

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 239

240 Chapter 6 • Object-Oriented Programming

The abstract or virtual modifiers combined with override give you a powerful
mechanism for customization within a class hierarchy. In the Acme Widgets Inc.
hierarchy, the abstract GetGrossPay method requires that all the specialized
employee types provide their own GetGrossPay method. It is a perfect fit for our
hierarchy since each employee class has its own way of computing gross pay.

The sealed modifier is used in conjunction with the override modifier to indi-
cate that a method that overrides a base class method may not be further over-
ridden.

Derived class methods may invoke overridden base class methods by using
the base keyword. In the following code example the fubar method in the Bar
class overrides the virtual fubar method in Foo.

class Foo

{

public virtual void fubar()

{

System.Console.WriteLine("Foo.fubar") ;

}

}

class Bar : Foo

{

public override void fubar()

{

System.Console.WriteLine("Bar.fubar") ;

base.fubar() ;

}

}

public class Test

{

static void Main()

{

Foo a = new Foo() ;

Foo b = new Bar() ;

a.fubar() ;

b.fubar() ;

}

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 240

Object-Oriented Programming • Chapter 6 241

In this example, the Bar implementation of fubar invokes the Foo implementa-
tion. Here is the output of the program:

Foo.fubar

Bar.fubar

Foo.fubar

The base keyword allowed the overriding method, bar.fubar(), to access the
overridden method Foo.fubar().

The new Modifier
The C# new method modifier has no equivalent in Java.The new modifier is used
on a derived class’s method in conjunction with the abstract or virtual modifier in a
base class.You may use the new modifier to indicate that a method in a derived class
that has the same signature as a virtual method in a base class does not override the
base class method. It is almost as if the new method had a different signature.

Let’s look at a simple class hierarchy in Figure 6.8.

Using the hierarchy of Figure 6.8 we will experiment with the virtual,
override, and new keywords. In addition to the four classes shown we will need the
following Test class:

www.syngress.com

Figure 6.8 A Simple Class Hierarchy

A

+foo() : void

B

+foo() : void

C

+foo() : void

D

+foo() : void

223_C#Java_06.qxd 5/21/02 2:12 PM Page 241

242 Chapter 6 • Object-Oriented Programming

public class Test

{

static void Main()

{

A[] x = new A[4] ;

x[0] = new A() ;

x[1] = new B() ;

x[2] = new C() ;

x[3] = new D() ;

A a = new A() ;

B b = new B() ;

C c = new C() ;

D d = new D() ;

for(int i = 0; i < 4; i++)

{

// Invoke foo() method on each object using

// A(baseclass) type reference.

x[i].foo() ;

}

// Invoke foo() method on each object using

// its actual type reference.

a.foo() ;

b.foo() ;

c.foo() ;

d.foo() ;

}

}

In this code example we create objects of type A, B, C, and D.We then
invoke their foo() methods with A references and then with A, B, C, and D

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 242

Object-Oriented Programming • Chapter 6 243

references, respectively.Table 6.1 shows the results of various combinations of vir-
tual, new, override, and sealed on the method invocations.

Table 6.1 Use of Virtual, New, Override, and Sealed Modifiers

Example Output A.foo B.foo C.foo D.foo

1 A.foo virtual override override override
B.foo
C.foo
D.foo
A.foo
B.foo
C.foo
D.foo

2 A.foo virtual override new override
B.foo
B.foo
D.foo
A.foo
B.foo
C.foo
D.foo

3 A.foo virtual new new new
A.foo
A.foo
A.foo
A.foo
B.foo
C.foo
D.foo

4 * Compilation virtual new override override
error since C.foo
tries to override
the nonvirtual

method B.foo
5 A.foo virtual virtual override override

A.foo
A.foo
D.foo
A.foo
B.foo
C.foo
D.foo

www.syngress.com

Continued

223_C#Java_06.qxd 5/21/02 2:12 PM Page 243

244 Chapter 6 • Object-Oriented Programming

* compilation
warning since
B.foo replaces
A.foo.

6 * Compilation virtual sealed override override
error since B.foo override
cannot be over-
ridden by C.foo

In example 1 from Table 6.1, the A.foo() is virtual.All the derived class imple-
mentations are declared override.Therefore, regardless of which type of reference
you use, the version of foo() depends only on the type of the object.This is the
same behavior as in Java where none of these modifiers apply.

In example 2, A.foo() is virtual. B.foo() and D.foo() are declared override. So like
the previous example, using the base class reference results in the actual class
implementation of foo(). C.foo() however is declared new.Therefore C.foo() is not
in any way related to A.foo() or B.foo(). So the call to A.foo() on the C object
results in B.foo(). But the call C.foo() ends up with C.foo().

In example 3, all of the foo() methods except A.foo() are new.Therefore a call
to foo() with an A reference always returns A.foo(). On the other hand, calling
each individual object with a pointer of its own type results in the object’s spe-
cific foo() implementation.

Examples 4 and 6 do not compile. In example 5, the compiler warns that
B.foo() replaces A.foo(). It might be helpful to think of the virtual keyword as if it
had an implied new associated with it.

The new method modifier essentially allows a child method to hide a parent’s
class method.This means that you can explicitly prevent polymorphism by
redefining the inherited methods in the child class at the cost of hiding the
parent’s method.

Inner Classes
Java supports four kinds of inner or nested classes.The four kinds are top-level
nested classes, member classes, local classes, and anonymous classes.Top-level
nested classes are static classes declared inside another class. Member classes are
similar to top-level nested classes, except that they are not static. Both local and

www.syngress.com

Table 6.1 Continued

Example Output A.foo B.foo C.foo D.foo

223_C#Java_06.qxd 5/21/02 2:12 PM Page 244

Object-Oriented Programming • Chapter 6 245

anonymous classes are declared within the body of a method, whereas anony-
mous classes are used and declared in the same statement. C# supports only one
kind of inner class, equivalent to Java’s top-level nested (or static) inner class.

You create an inner class in C# by simply declaring a class within another
class’s declaration. Inner classes may have either public or internal access. Let us take
a look at an example of a C# inner class:

public class Outer

{

public int x ;

public int y ;

public class Inner

{

public int x ;

public int z ;

public void InnferFoo()

{

// Do something here.

}

}

public void OuterFoo()

{

// Do something here.

}

}

This source code defines a class called Outer with an inner class named Inner.
Like Java’s static inner classes, you may create an instance of Inner from within
Outer, or from anywhere else. Here is the syntax:

// From code within Outer

Inner i = new Inner() ;

// From all other locations in code

Outer.Inner oi = new Outer.Inner() ;

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 245

246 Chapter 6 • Object-Oriented Programming

Notice that you can create instances of the nested class without having to
create instances of the class that contains it.Therefore there is no access from the
methods of an inner class to the methods or attributes of its containing class.The
InnerFoo method cannot access Outer.y nor can it call OuterFoo unless it gets an
Outer reference. Inner classes may access only static methods and data members of
their containing classes.

In some ways inner classes may be thought of as genetically engineered classes.
These classes are often not part of any hierarchy and are designed to serve a
single role tightly coupled to their containing class. For example, if you build a
linked list class you might create in inner class to represent the nodes.

Using Interfaces
Interfaces are an important part of both Java and C#. Earlier in this chapter I
mentioned that my son was in the marching band. From my point of view, the
inheritance relationship, the strong essential relationship, is the father-son relation-
ship. If I were building a management system for the band director I might
choose the band-member relationship or band member-musical section relation-
ship as the strong essential or fundamental relationship. In my case I’ll stick to the
father-son relationship.The problem is we are allowed to have only one inheri-
tance relationship. In fact my son plays many other roles, both in the band and at
school in general—he is on the tennis team, in the band he is a section leader
and a trumpet player, and of course, he is a student.This combination of one
essential and strong relationship with many weaker ones is common in all sorts of
systems.We need to model these other roles without using inheritance.The best
way to do this in either Java or C# is by using interfaces. Interfaces specify
weaker less essential relationships that are still useful. Consider the UML class dia-
gram in Figure 6.9.

Figure 6.9 shows the essential father-son relationship using a solid line indi-
cating inheritance.The dashed lines point from the Son class to the roles that he
plays. Some of the roles are subroles of Student; other roles are further subroles of
BandMember. In C# and Java we model these roles using interfaces.

Interfaces are really just abstract classes whose methods are all abstract.
Interfaces are often called contracts. In our class diagram these is a SectionLeader
contract.All SectionLeaders (i.e., all BandMembers who are SectionLeaders) must be
able to march, count, turn, straighten up their rows, and so on.As long as a
BandMember can do these things he can be a SectionLeader. Of course
SectionLeaders must also be BandMembers and BandMembers must be Students.
TennisPlayers, however, do not have to be BandMembers, only Students.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 246

Object-Oriented Programming • Chapter 6 247

If you look closely you will see that the Son class has exactly one base class
(Father) but it directly implements three interfaces.Also note that interfaces may
specialize each other and an interface may specialize more than one interface. For
example, TennisPlayers must be Students and they must HavePhysical.

Creating an Interface
Interface declarations in C# look a lot like their Java counterparts. Here is a
simple interface:

interface ILocatable

{

Point GetLocation() ;

void SetLocation(Point pt) ;

void Move(int xOffset, int yOffset) ;

double CalculateDistance(Ilocatable loc) ;

}

www.syngress.com

Figure 6.9 UML Representing a Busy High School Student

Father

Son

BandMember

TrumpetPlayer SectionLeader TennisPlayer

Student HavePhysical

223_C#Java_06.qxd 5/21/02 2:12 PM Page 247

248 Chapter 6 • Object-Oriented Programming

Methods in an interface are public and abstract by default and generally do not
need any modifiers.All methods are declarations only and end in semicolons (;)
with no bodies. Like Java, C# interfaces may subclass multiple interfaces. In
Figure 6.9, the TennisPlayer interface is derived from both Student and
HavePhysical.The following shows the declaration of the TennisPlayer interface.

interface TennisPlayer : Student, HavePhysical

{

// TennisPlayer methods here

}

NOTE

Given the position of C# within the .NET framework, it is helpful to point
out that interfaces have been a part of Microsoft’s COM component
architecture even before the implementing languages supported them.
To be interoperable within the CLR environment C# interfaces may
include more than just methods and attributes. They are also allowed to
include events and indexers. Events are covered in Chapter 8 and
indexers are covered in Chapter 7.

Interfaces in COM generally begin with I and end with –able—for
example, IEnumerable.

Declaring Interfaces
A class or interface declares the interfaces that it implements using a colon (:).
Since classes may both subclass another class and implement interfaces, any base
classes must come first in the declaration list. So a class B that subclasses A and
implements an interface IQ must declare them as shown:

class B : A, IQ

If A implements other interfaces, they follow IQ in the list. Remember that
in Java you use extends to indicate class inheritance and implements to indicate
interface inheritance. In C# the colon (:) is used to indicate both types of inheri-
tance.The following Java and C# code snippets demonstrate declaring a class that
inherits from another class and two interfaces.The example is based on the class
diagram from Figure 6.9.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 248

Object-Oriented Programming • Chapter 6 249

Java
class Son extends Father implements TrumpetPlayer, SectionLeader,

TennisPlayer

{

// Methods and variables here

}

C#
class Son : Father, TrumpetPlayer, SectionLeader, TennisPlayer

{

// Methods and variables here

}

Implementing Interfaces
When a class implements an interface it must provide an implementation of all
the methods declared in the interface.These implementations can be declared
with the virtual modifier.Therefore subclasses can declare methods that use new or
override on these methods.

Interfaces define a set of common operations supported by all implementing
classes. In the following example, ISavable defines Read() and Write() methods for
saving an object.The TextFile class implements ISavable. ZipFile subclasses TextFile
and by inheritance, ZipFile also implements ISavable.This example uses the virtual,
override, and new modifiers.

using System;

interface ISavable

{

void Read();

void Write();

}

public class TextFile : ISavable

{

public virtual void Read()

{

Console.WriteLine("TextFile.Read()");

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 249

250 Chapter 6 • Object-Oriented Programming

}

public void Write()

{

Console.WriteLine("TextFile.Write()");

}

}

public class ZipFile : TextFile

{

public override void Read()

{

Console.WriteLine("ZipFile.Read()");

}

public new void Write()

{

Console.WriteLine("ZipFile.Write()");

}

}

public class Test

{

static void Main()

{

Console.WriteLine("\nTextFile reference to ZipFile");

TextFile textRef = new ZipFile();

textRef.Read();

textRef.Write();

Console.WriteLine("\nISavable reference to ZipFile");

ISavable savableRef = textRef as ISavable;

if(savableRef != null)

{

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 250

Object-Oriented Programming • Chapter 6 251

savableRef.Read();

savableRef.Write();

}

Console.WriteLine("\nZipFile reference to ZipFile");

ZipFile zipRef = textRef as ZipFile;

if(zipRef!= null)

{

zipRef.Read();

zipRef.Write();

}

}

}

Output
TextFile reference to ZipFile

ZipFile.Read()

TextFile.Write()

ISavable reference to ZipFile

ZipFile.Read()

TextFile.Write()

ZipFile reference to ZipFile

ZipFile.Read()

ZipFile.Write()

The sample application begins by creating a TextFile reference to a ZipFile
object. Next it uses an ISavable reference to call Read() and Write() followed by the
same method calls with a ZipFile reference. Regardless of the type of reference
used, the results of the Read() calls are the same.The Read() method is declared in
an interface—virtual in the derived class and override in the implementing class
(ZipFile).Therefore it does not matter what sort of reference we use to call it; the
runtime binding of a call to the Read() method for this object is ZipFile.Read().

The output is a little different for the Write() method. Java developers may
have some difficulty resolving why it is so different. In the ZipFile class, Write() is

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 251

252 Chapter 6 • Object-Oriented Programming

declared new.This means that it is not a polymorphic implementation of
TextFile.Write() or ISavable.Write().Therefore when you call Write() with either an
ISavable or TextFile reference, you get the implementation of Write() from
TextFile. It is only when you use the actual type reference (ZipFile) that you can
ever invoke ZipFile.Write().

Let’s take a look at another example. In this example we have an interface,
ILocatable, and a class Point, and another class, GamePiece, that implements
ILocatable.The ILocatable interface defines location in terms of Point objects.This
would be useful for points on a computer display.

class Point

{

public int x;

public int y;

public Point(int x, int y)

{

this.x = x;

this.y = y;

}

}

interface ILocatable

{

Point GetLocation();

void SetLocation(Point pt);

void Move(int xOffset, int yOffset);

double CalculateDistance(ILocatable loc);

}

class GamePiece : ILocatable

{

protected Point position ;

public GamePiece(Point position)

{

this.position = position ;

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 252

Object-Oriented Programming • Chapter 6 253

public Point GetLocation() { return position ; }

public void SetLocation(Point pt) { position = pt ; }

public void Move(int xOffset, int yOffset)

{

position.x += xOffset ;

position.y += yOffset ;

}

public double CalculateDistance(ILocatable loc)

{

Point pt = loc.GetLocation() ;

double xDiff = position.x - pt.x ;

double yDiff = position.y - pt.y ;

return Math.Abs(xDiff*xDiff - yDiff*yDiff) ;

}

}

The GamePiece class must provide an implementation for each method in
ILocatable. If a class does not implement all the methods of an interface, the class
itself must be declared abstract.When you create a GamePiece object you may use an
ILocatable reference to it.The ILocatable interface serves to provide location support
for all the classes that implement it. It is a powerful abstraction since in a graphical
system it is often useful to think of objects in terms of their location only.

The is Operator
The is operator in C# is similar to Java’s instanceof operator.This operator takes
two operands, the first being an object and the second being a class.The operator
has a bool value.The is operator returns false where the cast operator would throw
an exception.Therefore, you might use the is operator to test before doing a cast.
The syntax of the is operator is:

a is A

In this example, a is an object reference and A is a class.Table 6.2 gives the
possible values for the expression.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 253

254 Chapter 6 • Object-Oriented Programming

Table 6.2 Possible Values for an Expression

Expression True or False

a is null False
a is of type A True
a is a subclass of A True
There is a reference conversion from a to A True
There is a boxing/unboxing conversion from a to A True
All other conditions False

The C# is operator and the Java instanceof operator both fail at compile time if
it is not possible for them to be true at runtime.The is operator can be used to
determine the real class of an object at runtime. It may be used with a collection of
base class or interface references to identify members of a specific derived class.

Figure 6.10 shows a class hierarchy of pets.All pets share a common abstract
base class from which they override an Eat method.Three types of pet classes
implement the interface IAffectionate. (Of course the Cat class does not since
everybody knows that cats are not truly affectionate!) The Dog, Snake, and Fish
classes all implement IAffectionate.

www.syngress.com

Figure 6.10 A Pet Hierarchy Putting Cats in Their Place

Pet

+Eat() : void

Dog

+Eat() : void
+GreetOwner() : void

Snake

+Eat() : void
+GreetOwner() : void

Fish

+Eat() : void
+GreetOwner() : void

Cat

+Eat() : void
+DemandService() : void

IAffectionate

+GreetOwner()

223_C#Java_06.qxd 5/21/02 2:12 PM Page 254

Object-Oriented Programming • Chapter 6 255

The following program uses the classes from the hierarchy in Figure 6.10:

using System ;

abstract class Pet

{

public virtual void Eat()

{

Console.WriteLine("Pet.Eat") ;

}

}

interface IAffectionate

{

void GreetOwner() ;

}

class Dog : Pet, IAffectionate

{

public override void Eat()

{

Console.WriteLine("Dog.Eat") ;

}

public void GreetOwner()

{

Console.WriteLine("Woof!") ;

}

}

class Snake : Pet, IAffectionate

{

public override void Eat()

{

Console.WriteLine("Snake.Eat") ;

}

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 255

256 Chapter 6 • Object-Oriented Programming

public void GreetOwner()

{

Console.WriteLine("Hiss!") ;

}

}

class Fish : Pet, IAffectionate

{

public override void Eat()

{

Console.WriteLine("Fish.Eat") ;

}

public void GreetOwner()

{

Console.WriteLine("Splash!") ;

}

}

class Cat : Pet

{

public override void Eat()

{

Console.WriteLine("Cat.Eat") ;

}

public void DemandService()

{

Console.WriteLine("Waiter, ...") ;

}

}

public class Menagerie

{

static void Main()

{

Pet [] pets = new Pet[4] ;

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 256

Object-Oriented Programming • Chapter 6 257

pets[0] = new Dog() ;

pets[1] = new Snake() ;

pets[2] = new Fish() ;

pets[3] = new Cat() ;

// Master comes home

for (int i=0; i<4; i++)

{

if (pets[i] is IAffectionate)

{

((IAffectionate)pets[i]).GreetOwner() ;

}

}

// Master feeds pets

for (int i=0; i<4; i++)

{

pets[i].Eat() ;

}

}

}

In this example we create an array of Pet references and assign all four types
of Pet to the array.When the master comes home all the affectionate pets line up
to greet him. Since we did not keep an array of IAffectionate references, we will
test each Pet in the array to see whether it is affectionate.The Pet array is very
general; we used the is operator to extract specific information about objects in
the array.The output of this program is:

Woof!

Hiss!

Splash!

Dog.Eat

Snake.Eat

Fish.Eat

Cat.Eat

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 257

258 Chapter 6 • Object-Oriented Programming

The as Operator
The C# as operator has no equivalent in Java. In a way it is like the is operator—
it does not throw exceptions.The difference is that the as operator performs a
cast, and the result is the object on the left side cast to the type on the right (or
null if it is not possible).We could replace the is operator with the as operator in
the previous code as follows:

// Master comes home

for (int i=0; i<4; i++)

{

IAffectionate cuddly = (pets[i] as IAffectionate);

if (cuddly != null)

{

cuddly.GreetOwner() ;

}

}

The best practice is to use the is operator when testing the type of an object.
The as operator is more appropriate when actually doing a cast. Either one allows
you to do a safe cast, but if you use is, you end up testing the type once for the is
operator and once again for the actual cast.As a rule, if you’re just testing
whether an object is of a particular type then you would want to use the is oper-
ator. However, if you’re testing whether the object is of a particular type and then
would want to cast it to that type, then you would use the as operator to elimi-
nate the overhead of the checking the cast twice.

Explicit Interface Implementation
It is possible for a class to implement two interfaces with the same method signa-
ture. For example in the pet hierarchy we could introduce a new interface,
IFriendly, which like IAffectionate, has a GreetOwner method. Figure 6.11 shows
the Dog class in the pet hierarchy with IFriendly.

There are a couple of ways to implement the Dog class in this case.The first is
simple; implement a single GreetOwner method in the Dog class to fulfill the con-
tract of both interfaces.This is illustrated in the following example:

class Dog : Pet, IAffectionate, IFriendly

{

public override void Eat()

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 258

Object-Oriented Programming • Chapter 6 259

{

Console.WriteLine("Dog.Eat") ;

}

public void GreetOwner()

{

Console.WriteLine("Woof!") ;

}

}

Another way is to say explicitly which interface method you’re imple-
menting. Explicit implementation is a way to provide different methods to handle
the GreetOwner call depending on which interface is invoked.The following is an
example of the Dog class with explicit implementation.

interface IFriendly

{

void GreetOwner() ;

}

class Dog : Pet, IAffectionate, IFriendly

{

public override void Eat()

{

Console.WriteLine("Dog.Eat") ;

}

void IAffectionate.GreetOwner()

www.syngress.com

Figure 6.11 Dog Hierarchy with IFriendly

Pet

+Eat() : void

Dog

+Eat() : void
+GreetOwner() : void

IAffectionate

+GreetOwner()

IFriendly

+GreetOwner() : void

223_C#Java_06.qxd 5/21/02 2:12 PM Page 259

260 Chapter 6 • Object-Oriented Programming

{

Console.WriteLine("Woof!") ;

}

void IFriendly.GreetOwner()

{

Console.WriteLine("Jump up!") ;

}

}

public class Pets

{

static void Main()

{

IFriendly mansBestFriend = new Dog() ;

mansBestFriend.GreetOwner() ;

(mansBestFriend as IAffectionate).GreetOwner() ;

}

}

Output
Jump up!

Woof!

In this example—a call to the GreetOwner() method using an IFriendly refer-
ence—the result is “Jump up!”. And by using the IAffectionate interface, the same
method call will result to “Woof!”

Implementation Hiding
If you need to implement an interface, you can do so without making the inter-
face methods publicly available in your implementation class. Consider the fol-
lowing without implementation hiding:

class Dog : Pet, IFriendly

{

public override void Eat()

{

Console.WriteLine("Dog.Eat") ;

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 260

Object-Oriented Programming • Chapter 6 261

}

public void GreetOwner()

{

Console.WriteLine("Jump up!") ;

}

}

In this example, the GreetOwner method is directly available as part of the Dog
class. Implementation hiding is an explicit interface implementation.You can use
implementation hiding to fully implement an interface without publicly exposing
the methods in your class.The interface methods are accessible only if you use an
interface reference.

class Dog : Pet, IFriendly

{

public override void Eat()

{

Console.WriteLine("Dog.Eat") ;

}

void IFriendly.GreetOwner()

{

Console.WriteLine(" Jump up!") ;

}

}

Notice that GreetOwner is not public in the Dog class.Thus the following
produces a compile error:

Dog fido = new Dog() ;

fido.GreetOwner() ; // Compile error

In order to access the GreetOwner method, you must use the interface
IFriendly:

Dog fido = new Dog() ;

((IFriendly)fido).GreetOwner() ; // Jump up!

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 261

262 Chapter 6 • Object-Oriented Programming

Summary
C# is a modern object-oriented language. It borrows many features from pre-
vious OO languages like Java and C++. C#, however, is newer than either Java
or C++ and has many features that do not exist in previous languages. In this
chapter we examined the C# object model.

Three of the primary features of an object-oriented programming language are
encapsulation (covered in Chapter 5), inheritance, and polymorphism. In this
chapter we began by looking at inheritance.We described inheritance as an essential
and strong relationship. A class may only subclass one other class, and in C# as in
Java, all classes are directly or indirectly derived from a common base class.We
looked at how to organize class hierarchies and examined a few UML class dia-
grams. Next we looked at how to specify base classes and invoke their constructors.

Our next topic was polymorphism. In this section we saw how a base class
could take on many forms and how a single type could be a general representa-
tion of many derived types.We discovered along the way that many classes exist
in our hierarchies simply to combine common features. Some of these classes are
not even meant to be used other than as an abstraction.These classes, called
abstract base classes, are extremely useful in modeling real-world systems.

Still in the realm of polymorphism we visited the topic of virtual methods.
Use virtual methods when different classes in a hierarchy provide similar but dif-
ferent behavior.Although both Java and C# support virtual methods, C# pro-
vides a variety of nuances that have no equivalent in Java.We looked at
overriding and hiding methods.

C# supports one type of inner class (compared to Java’s four).We looked next
at how to use inner classes and access their methods.We also noted that inner
classes have only limited access to the instance members of the classes that con-
tain them.

Whereas inheritance is a fundamental and strong relationship, our real-world
systems often require other, weaker (albeit no less important) relationships.You
normally will use interfaces to model these relationships. Once again both C#
and Java support interfaces, but C# provides more nuances in its implementation.
We looked at explicit interface implementation and implementation hiding.

C# provides a flexible robust object model. Using object-oriented method-
ology in C# you will be able to model both simple and complex systems and
generate solutions for your business problems.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 262

Object-Oriented Programming • Chapter 6 263

Solutions Fast Track

Inheritance

Classes inherit the methods and attributes of their parent classes.

In Java all methods are essentially virtual—in C# you must use the
virtual keyword.

C# also supports override and new modifiers to allow classes to
implement methods that are not related to super class methods of the
same name.

Polymorphism

Any class in a hierarchy may be referenced by using a reference of a type
higher in the hierarchy.

You can refer to any object that implements an interface by the
interface type.

The mapping of a reference to an object of a specific type is a runtime
mapping.

Inner Classes

Inner classes are classes that are declared within other classes.

Inner classes may implement interfaces and/or subclass another class.

Classes that are helpers to others are often implemented as inner classes.

Using Interfaces

Interfaces are used all over C# and .NET.

Classes are often required to implement a particular interface to be used
in a component framework.

Interfaces define the methods (including signatures) that a class supports
without defining the implementation.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 263

264 Chapter 6 • Object-Oriented Programming

Use explicit interface implementation when a class implements two
interfaces with the same methods.

Use is when you want to test the runtime type of an object.

The as operator should be used to provide type-safe casts.

For robust coding you must test the results of an as operation since it
may be null.

Q: Does C# support multiple inheritance?

A: Yes and no—just like Java, C# allows single inheritance of classes and mul-
tiple inheritance of interfaces.

Q: What is the difference between is and as?

A: The is operator tests whether an object is of a particular type and returns a
Boolean (is does the same thing as Java’s instanceof operator).The as operator
both tests the validity and does the cast. If the cast is invalid, as returns null.

Q: What are interfaces for?

A: Interfaces define a standard for interaction between objects.They are essen-
tially a contract between objects. Interfaces place requirements on the classes
that implement them.

Q: What is polymorphism?

A: Polymorphism is the object-oriented property that allows objects to be refer-
enced with different levels of specificity.This fits our intuitive understanding
of the world where we may say that a dog is a four-legged animal, a mammal,
a pet, or an animal.We choose the level of abstraction appropriate for our
problem.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_06.qxd 5/21/02 2:12 PM Page 264

Object-Oriented Programming • Chapter 6 265

Q: Does C# support inner classes?

A: Yes. C# supports only one kind of inner class compared to Java’s four.

Q: Are all C# classes derived from a common class like Java, or are classes inde-
pendent like C++?

A: All C# classes are derived from object. C# classes do not need to explicitly
declare that they subclass object.

www.syngress.com

223_C#Java_06.qxd 5/21/02 2:12 PM Page 265

223_C#Java_06.qxd 5/21/02 2:12 PM Page 266

Other C# Features

Solutions in this chapter:

■ Properties

■ Read-Only Fields

■ Enumerations

■ Boxing and Unboxing

■ Operator Overloading

■ User-Defined Conversions

■ Structs

Chapter 7

267

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_07.qxd 5/21/02 2:13 PM Page 267

268 Chapter 7 • Other C# Features

Introduction
At this point you have learned most of the basic tools for object-oriented pro-
gramming.This chapter will complete the tool set by introducing the rest of the
new C# features that are not found in Java. Many of the concepts in this chapter
will be familiar to those who also know C++, but pure Java developers will be
unfamiliar with most of these.

This chapter begins by discussing some syntactic sugar that C# provides.We
will discuss properties as they apply to the C# language. Properties provide data
encapsulation, but allow direct access to member fields.You will then learn about
enumerations, a distinct value type consisting of a set of named constants. Next,
the chapter will discuss support for boxing and unboxing of data types.This is a
convenient way to move from primitives to objects and back. Operator over-
loading is a powerful new addition to C# that allows users to define how opera-
tors behave with objects. In a similar vein, C# also supports user-defined
conversions, known as casting to Java programmers. Finally, you will learn about
the struct, which is a lightweight user-defined alternative to a class.

Properties
Properties are an interesting addition to C# that allow the benefits of encapsula-
tion while also allowing direct access to a field. In Java, set and get methods are
the only way to provide encapsulation of data. C# allows this through the use of
properties, which have get and set methods that are invisible to the programmer
accessing the field. Let’s examine a property within an actual class.This example
uses a Circle class with diameter and circumference members. In this case, diameter is
a regular variable but circumference is defined as a property.

using System;

namespace Other_Features

{

public class Circle

{

private double diameter;

//Creates the property

public double Circumference

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 268

www.syngress.com

set

{

diameter = value/Math.PI;

}

get

{

return diameter * Math.PI;

}

}

}

public class CircleTester

{

public static void Main()

{

Circle c = new Circle();

c.Circumference = 20;

Console.WriteLine("New Circumference = " + c.Circumference);

}

}

}

This program creates a Circle object with only an accessible Circumference
member.The diameter variable is private.The Main method changes the
Circumference value, which must also change diameter.The inner workings of the
Circle object are hidden in true object-oriented fashion, so from the outside it’s
impossible to know how the data is stored internally. In this program the diameter
variable is a regular private field, just as it would appear in Java.The Circumference
property, however, looks like part variable and part method.As you can see, the
Circumference property is accessed just like a field, without the use of methods, as
follows:

c.Circumference = 20;

Even though it appears we are accessing the property like a normal field,
there are actually methods at work. Notice that neither of the accessors in the
example have arguments or brackets.The Circumference property uses two acces-
sors, set and get.The set and get accessors behave just like normal class methods.
The set accessor is similar to a method that takes a value type and returns void.

Other C# Features • Chapter 7 269

223_C#Java_07.qxd 5/21/02 2:13 PM Page 269

270 Chapter 7 • Other C# Features

The get accessor is similar to a method that returns an object of the same prop-
erty type.

Of course, the real reason for using get and set accessors is to provide object
encapsulation.Any code can be contained in these two accessors, but typically the
code performs some specific functions. Some typical uses of set and get accessors
in properties are as follows:

■ Verify that the new data is correct.

■ Recalculate values for this or other variables.

■ Refresh a GUI object.

The get accessor code is very basic:

get

{

return diameter * Math.PI;

}

There are no limitations to this get accessor, as long as it returns a double
value. Keep in mind the return type must be compatible with the declared type
of the property (implicit casts are fine).The set code is a little more complex, but
not by much, as the following shows.

set

{

diameter = value/Math.PI;

}

The set value contains a special variable called value.The value keyword repre-
sents the value passed to the set accessor when a programmer attempts to change
the value of the property.

In the Circle class it might be useful to make the diameter field visible. In the
preceding example we would use the following code, which simply shows how
to access the private diameter field.

private double diameter;

public double Diameter

{

get

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 270

Other C# Features • Chapter 7 271

return diameter

}

set

{

diameter = value;

}

}

These are the most basic types of accessor methods possible, since there are
no calculations performed. Each accessor just sets or gets a variable.

NOTE

Properties normally are capitalized in C#.

Read-Only Fields
In C#, fields can be declared as constants so a programmer cannot attempt to
alter the value once it is initialized (Java declares it as final). Sometimes, however,
it is necessary to allow a field to be altered in the constructor, but still keep it off
limits to the programmer accessing the class. In order to prevent a field from
modification, the readonly keyword is used.

using System;

namespace Other_Features

{

public class Polyhedron

{

public readonly double Volume;

public Polyhedron(int length, int width, int height)

{

Volume = length * width * height;

}

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 271

272 Chapter 7 • Other C# Features

public static void Main()

{

Polyhedron poly = new Polyhedron(3,4,5);

Console.WriteLine("Volume = " + poly.Volume);

}

}

}

This program creates a Polyhedron object and calculates Volume within the
constructor.This field can be accessed as usual, but if a programmer tries to
modify it an error will be generated. For example, if a programmer tries to
change this field outside of a constructor (such as in the Main() method) an error
will occur during build:

poly.Volume = 200;

This generates the following response from the compiler:

A readonly field cannot be assigned to (except in a constructor or a

variable initializer)

NOTE

Accessible fields (nonprivate) normally are capitalized in C#.

Enumerations
In Java, lists of constants are often stored in interfaces instead of storing them
right in classes. C# provides an alternative to this in the form of enumerations.
The main difference between enumerations and constants is that an enumeration
may consist only of integral numbers (no Strings, chars, doubles, or floats). First, let’s
examine an alternative, but somewhat cumbersome, way of doing this.

using System;

namespace Other_Features

{

public class PowerPlant

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 272

Other C# Features • Chapter 7 273

const int Low = 0;

const int Medium = 1;

const int High = 2;

const int Emergency = 3;

public static void Main()

{

int level = 3;

if(level >= High)

Console.WriteLine("Evacuate facility!");

}

}

}

In this example we have four levels of danger, each represented by an integer.
This works out okay unless there are other parameters in the PowerPlant class,
such as temperature level or power level.The temperature level constants might
look like this:

const int Sub_Boiling = 0;

const int Low = 1;

const int Medium = 2;

const int High = 3;

const int Too_Hot = 4;

Now there is the potential for conflicts.The programmer will need to get
creative to think up new variable names to distinguish them from one another.
Things become less cumbersome by using enumerations to group these constants
together.The following example shows an enumeration called DangerLevel within
a class.

using System;

namespace Other_Features

{

public class PowerPlant

{

public enum DangerLevel :int

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 273

274 Chapter 7 • Other C# Features

Low = 0,

Medium = 1,

High = 2,

Emergency = 3

}

public static void Main()

{

DangerLevel level = GetDangerLevel();

if(level >= DangerLevel.High)

Console.WriteLine("Evacuate facility!");

}

public static DangerLevel GetDangerLevel()

{

return DangerLevel.Emergency;

}

}

}

This nicely illustrates the use of an enumeration.The keyword enum specifies
an enumeration. Notice after the enumeration name there is a type specification
of int.The enumerator list is within the curly braces of the enumeration, and the
values within this list are separated by commas. In pseudocode, an enumeration is
defined as follows (italics indicate optional statements):

[access modifier] enum [name] [:type] {}

Enumerations may be passed into methods as parameters or retrieved from
methods as the method GetDangerLevel() demonstrated previously. Essentially,
enumerations behave like objects, and they even have their own set of standard
methods (see Table 7.1).These methods are stored in the System.Enum class,
which is the base class for all enumerations.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 274

Other C# Features • Chapter 7 275

Table 7.1 Enum Methods

Method Name Description

CompareTo Compares this instance to a specified object and returns
an indication of their relative values

Equals Returns a value indicating whether this instance is equal
to a specified object

Format Converts the specified value of a specified enumerated
type to its equivalent string representation according to
the specified format

GetHashCode Returns the hash code for this instance
GetName Retrieves the name of the constant in the specified enu-

meration that has the specified value
GetNames Retrieves an array of the names of the constants in a

specified enumeration
GetTypeCode Returns the underlying TypeCode for this instance
GetUnderlyingType Returns the underlying type of the specified enumeration
GetValues Retrieves an array of the values of the constants in a

specified enumeration
IsDefined Returns an indication whether a constant with a specified

value exists in a specified enumeration
Parse Converts the string representation of the name or

numeric value of one or more enumerated constants to
an equivalent enumerated object

ToObject Returns an instance of the specified enumeration type set
to the specified value

ToString Converts the value of this instance to its equivalent string
representation

If you want to use an enumeration value as a number (for example, in an
equation) it must be cast into an int value.This is because enum is a formal type,
so the enum must be explicitly cast into an int. Obviously enumerations are not
meant to be used in equations or comparisons, but rather to represent abstrac-
tions.

Enumerations do not need specific values assigned to them. If you leave out
literal values in the enumerator list, C# assigns values automatically:

enum DangerLevel :int

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 275

276 Chapter 7 • Other C# Features

Low,

Medium,

High,

Emergency

}

By default, values are assigned starting with 0 and incrementing by 1. In this
example, Low will have a value of 0 and Emergency will be 3. If you assigned High
with a value of 10 then further enumerations will continue with 11, and so on.

enum DangerLevel :int

{

Low,

Medium,

High = 10,

Emergency // 11

}

Notice that the C# class library lists several enumerations that are not con-
tained within classes. C# allows enumerations to be listed within their own class
file, as follows:

namespace Other_Features

{

public enum Mode

{

Forward,

Reverse,

Stop

}

}

An enumeration typically is listed on its own when more than one class
within the same package will use it.

Boxing and Unboxing
Java has two main data types: objects and primitives. In Java, all objects derive
from the Object class, and thus all objects have a set of methods such as
toString().Primitives, on the other hand, can represent only a data type and may
not contain methods. C# is a little different since it provides a unified type system,

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 276

Other C# Features • Chapter 7 277

in which all types (even value types) derive from the type object.This means
methods may be called on value types, as the following example demonstrates:

int x = 29;

String xStr = x.ToString();

This code could not exist in Java for obvious reasons, but C# allows it.
Boxing and unboxing are processes that allow value types (primitives) to be
treated as objects.As we shall see, these processes are very similar to implicit and
explicit casting.

Boxing
The closest thing to boxing in Java is the use of wrapper classes.The java.lang
package includes equivalent classes for all of the primitive types: Byte, Short,
Integer, Long, Float, Double, Character, and Boolean. In Java if you want to obtain an
object to represent a primitive, the primitive is used in the constructor of the
wrapper class as follows:

int x = 29;

Integer xObj = new Integer(x);

C# is a little easier.To get an object equivalent of a value type, simply assign
an object reference to the value type:

int x = 29;

object o = x; // Boxing

Because object is the root of all types (even int), this can be done implicitly.
This act should seem very familiar to Java programmers because the syntax is
almost identical to an implicit cast of an object to one of the parent classes.The
reason it is called boxing is because when a value type (such as int) needs to be
converted to a reference type (object), an object box is allocated to hold the value
(see Figure 7.1).

NOTE

The keyword object can be boxed and unboxed just as well to the corre-
sponding System.Object class. You can declare Object o = x or object o
= x (note the capitalization).

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 277

278 Chapter 7 • Other C# Features

Unboxing
Unboxing is the act of converting an object back into a value type.The syntax
for this process looks very similar to explicit casting in Java, as the following C#
code demonstrates:

int x = 29;

object xObj = x; // Boxing

int x1 = (int)xObj; // Unboxing

Only objects that have been boxed from a value type may be unboxed. If you
attempt to cast an object that did not originate from a value type you will get an
InvalidCastException thrown.

It is important to note that the object does not have a reference variable to
the value type. In other words, if you change something with the boxed object it
will not change the original value.The following example makes this clear:

using System;

namespace Other_Features

{

public class Boxing

{

public static void Main()

{

int x = 29;

object xObj = x; // Boxing

int x1 = (int)xObj; // Unboxing

++x1;

Console.WriteLine("x = " + x); //29

www.syngress.com

Figure 7.1 Copying a Value into an Object Box

2929

Value: Object Box:

223_C#Java_07.qxd 5/21/02 2:13 PM Page 278

Other C# Features • Chapter 7 279

Console.WriteLine("x1 = " + x1); //30

}

}

}

This program starts with an int value of 29. It then boxes this into an object,
and then unboxes it to another value type. Now if you make a change to x1 is it
reflected in x? Of course not, as the output of this program confirms:

Output
x = 29

x1 = 30

Operator Overloading
Operator overloading is a useful addition to C# that is not available to Java pro-
grammers.The Java language itself overloads the + operator to work with String,
as follows:

String name = "Bilbo " + "Baggins";

Java has overloaded the + operator with String, but it does not allow you as a
programmer to overload other objects; however, C# does. Operator overloading
is programmed slightly differently, depending on whether the operator is unary
(only one operand, usually to the left of the operator) or binary (two operands,
one on each side of the operator).Table 7.2 shows a complete list of the unary
and binary operators that may be overloaded in C#.

Table 7.2 Overloadable Operators in C#

Unary + - ! ~ ++ -- true false

Binary + - * / % & | ^ << >> == != > < >= <=

Several operators may not be overloaded, specifically member access, method
invocation, or the =, &&, ||, ?:, new, typeof, is, as, checked, and unchecked operators.

Creating an overloaded operator is as easy as writing a method. In C# the
operator keyword is used to create an overloaded operator. Let’s try an example.
New Java programmers, upon learning that the + operator is overloaded for
Strings, try to use the – operator.This of course doesn’t work, but it would seem

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 279

280 Chapter 7 • Other C# Features

like it could be useful to remove substrings from a string.The following example
creates an enhanced String class called EString to accomplish this.

NOTE

The String class is sealed in C# and therefore cannot be extended, so the
following class acts as a wrapper for String instead.

using System;

namespace Other_Features

{

www.syngress.com

Overloading Relevant Operators
One of the best ways to keep your code error free is to make it under-
standable to other programmers. Operator overloading has always been
available in C++ but sometimes programmers use it in a manner that is
not intuitive. For example, with a Date object, overloading the – oper-
ator makes sense. As a programmer you would expect the – operator to
subtract two Date values and perhaps return an integer of milliseconds.

Other operators just don’t fit, however. Overloading the % operator
is quite confusing because it isn’t clear what function this would have.
Keep in mind that just because there are 24 available operators for over-
loading, overloading as many as possible does not make for a better
program.

Some operators are understandable for most objects to overload.
The = = and ! = operators will likely be useful for all objects, and it
would be rare for them not to be useful. Many objects also have a use
for + or – operators, and also the ++ and -- unary operators. The math-
ematical operators (and comparisons such as greater than) are going to
be intuitive only in situations where the object represents a number.
Using these with objects that contain string or other varied data types is
probably a mistake. Don’t use it if it is not intuitive.

Debugging…

223_C#Java_07.qxd 5/21/02 2:13 PM Page 280

Other C# Features • Chapter 7 281

public class EString

{

public String s;

public EString(String s)

{

this.s = s;

}

public static EString operator- (EString full, String sub)

{

String newStr = "";

int pos = full.s.IndexOf(sub);

if(pos > -1)

{

newStr = full.s.Substring(0,pos);

newStr = newStr + full.s.Substring(pos + sub.Length);

}

else

newStr = full.s;

return new EString(newStr);

}

public static void Main()

{

EString test = new EString("Renowned");

test = test - "Ren";

Console.WriteLine(test.s);

}

}

}

Output
owned

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 281

282 Chapter 7 • Other C# Features

This program presents an enhanced string class called EString.This class acts as
a wrapper for the String class, since C# won’t allow us to extend String.We’ve
overloaded the – operator with the following method declaration:

public static EString operator- (EString full, String sub)

Now, when we invoke the following code in the Main() method:

EString test = new EString("Renowned");

test = test - "Ren";

our code removes “Ren” from the test string and returns a new String con-
taining “owned”.There are several rules that must be followed when overloading
operators:

■ The operator method must be both public and static.

■ The method arguments must be value types (i.e., not ref or out
parameters).

■ The signature of the operator method must be unique within the class.

■ If using the extern modifier a semicolon is used at the end of the defini-
tion (rather than using a body of code in brackets).

■ All types referenced in the declaration must be at least as accessible as
the operator definition. For example, a public operator may not access a
protected type.

www.syngress.com

Supporting Other .NET Languages
Not all languages for the .NET platform support operator overloading.
Some, such as VB.NET, do not contain the mechanisms that allow
operator overloading. Since the languages of the .NET platform are
interchangeable, it’s possible for a VB class to use code written in C#.
This brings to light a potential pitfall when overloading operators in a
language.

If certain functionality is available only through the use of the oper-
ator then those languages will not be able to access this functionality.
For this reason it is a good idea to provide an alternate method to allow

Developing & Deploying…

Continued

223_C#Java_07.qxd 5/21/02 2:13 PM Page 282

Other C# Features • Chapter 7 283

Unary Operator Overloading
Unary operations contain one operator, normally followed by one operand, as
follows:

++x;

A unary operator is defined in a class (or struct) in a manner similar to binary
operator overloading.There are several specific rules that must be followed when
defining a unary operator method.

When overloading the ++ or - - operators, the method must accept one
argument of the same type as the class and must return a value of the same type.
Let’s examine how to overload a unary operator using a class that represents only
prime numbers.

using System;

namespace Other_Features

{

public class Prime

{

public int number;

public Prime(int n)

{

if(isPrime(n))

this.number = n;

else

throw new Exception(n + " is not a prime!");

}

public static bool isPrime(int number)

{

int max = (int)(number/2 + 1);

www.syngress.com

access. Keep in mind, however, that within the C# code (or whichever
language you are using) you may use the overloaded operator freely. The
inner workings of a class written in C# are completely hidden from other
.NET languages accessing the members.

223_C#Java_07.qxd 5/21/02 2:13 PM Page 283

284 Chapter 7 • Other C# Features

for(int i = 2;i < max;++i)

if(number % i == 0)

return false;

return true;

}

}

}

This simple class creates a Prime number object with a nifty helper method.
The method isPrime() checks a given number to see if any other numbers evenly
divide into it. If the modulo (%) operator returns a zero it means the number was
evenly divisible, hence it is not a prime number.

A useful feature to add to this class would be the increment operator ++.
Using this on a Prime object should change this object into the next prime
number.This is quite easy to implement by adding the following method to the
Prime class:

public static Prime operator ++ (Prime orig)

{

bool succeeded = false;

while(!succeeded)

succeeded = isPrime(++orig.number);

return orig;

}

Notice that the operator parameter and return type are both the same; this is
required when overloading the ++ and -- operators. Now we can easily call the
++ operator on an instance of Prime to get the next prime number.The fol-
lowing example shows the complete code with our new overloaded operator and
a Main() method.

using System;

namespace Other_Features

{

public class Prime

{

public int number;

public Prime(int n)

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 284

Other C# Features • Chapter 7 285

{

if(isPrime(n))

this.number = n;

else

throw new Exception(n + " is not a prime!");

}

public static Prime operator ++ (Prime orig)

{

bool succeeded = false;

while(!succeeded)

succeeded = isPrime(++orig.number);

return orig;

}

public static bool isPrime(int number)

{

int max = (int)(number/2 + 1);

for(int i = 2;i < max;++i)

if(number % i == 0)

return false;

return true;

}

public static void Main()

{

Prime p = new Prime(11);

for(int i=0;i<10;++i)

{

Console.WriteLine(p.number);

++p;

}

}

}

}

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 285

286 Chapter 7 • Other C# Features

Output
11

13

17

19

23

29

31

37

41

43

NOTE

The overloaded ++ or - - operator can be used for postfix and prefix
notation. In other words, p++ or ++p both work as expected, with
postfix calculating the result after the operator executes and prefix calcu-
lating before the operator executes.

When using +, -, !, or ~ operators the method definition must take a single
argument of the same type as the class, and it can return any type. For example,
imagine a game with a class called Fighter.We could overload the ! operator so it
returns an object that is the opposite of a fighter (such as a peasant).The fol-
lowing is a legal definition for the ! operator in this example:

public static Peasant operator!(Fighter f)

Of course, this method can return any type, including a Fighter object if we
choose.

You might be wondering how and why you would overload the true or false
operators.These operators are used in logic tests, such as if statements.This oper-
ator definition uses a single argument of the same type as the class and must
return type bool, as follows:

public static bool operator true(GeneticComparison gc)

Now if you wanted to use a GeneticComparison object in a logic test, you just
place the object in the brackets, as follows:

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 286

Other C# Features • Chapter 7 287

GeneticComparison gc = new GeneticComparison(fred, bill);

if(gc)

Console.WriteLine("These two are related.");

The true and false operators are closely related, thus if you overload the true
operator you are required by C# to overload false as well.These are called logical
pairs.

Binary Operator Overloading
Binary operations consist of two values and one operator, with the operator placed
between the two values, as follows:

x != y

When overloading a binary operator, the first argument always represents the
object to the left of the operator and the second argument represents the object
to the right.At least one of the objects (it doesn’t matter which) must be of the
same type as the class or struct in which it is declared.

There are three logical pairs of binary operators:

■ == and !=

■ > and <

■ >= and <=

If one operator of a logical pair is overloaded then the other operator must
also be overloaded, otherwise the compiler will complain.

Equals() Method
Java programmers are familiar with the Object.equals() method. C# uses an equiv-
alent method, Equals() which has the same function. Programmers are encouraged
to override the Equals() method so the object can be compared to other objects
of the same type. Normally if you are overriding the == operator you would also
overload Equals() so other languages can access the functionality.

WARNING

Overriding the Equals() method does not automatically override the func-
tionality of the == operator.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 287

288 Chapter 7 • Other C# Features

User-Defined Conversions
C# also allows programmers to define casting. Java programmers are probably quite
familiar with the built-in casting of Java, which is identical to C#. Implicit casts
occur when a larger type is instructed to hold the value from a smaller value type.
This requires no extra syntax because it is always guaranteed that a larger data type
will be able to hold the value from a smaller data type. Explicit casts occur when a
smaller data type is instructed to hold the value from a larger data type.These types
of casts require the programmer to explicitly indicate a cast is occurring in the
syntax to ensure the programmer is aware of the possible loss of precision.

int a = 221;

double b = a; // implicit cast

a = (int)b; // explicit cast

Any conversion operation that might result in the loss of data should be con-
sidered an explicit cast.There are always two parts to a conversion: the source type,
which is the original type of the value being converted, and the target type, which
is the type it is being converted to. Defining conversion operations in C# is very
similar to overloading operators. Conversion operators also use the operator key-
word, along with the explicit or implicit keyword:

public static implicit operator Prime(int num)

NOTE

Conversions can occur between objects and primitive types as well as
between objects and other object types.

Let’s go over some general rules that must be obeyed when overloading con-
versions. First, you may not override an existing conversion. Implicit and explicit
conversions are already defined for all objects in the same family tree. In other
words, the source type may not be a base class for the target type and vice versa.
As long as the two class types are in a different branch of the tree, the conversion
may be overloaded. For example, let’s make up a fictitious hierarchy of classes that
are based on mathematical number types. In Figure 7.2 there are two separate
branches of classes that inherit from Number.The C# language automatically
defines conversions between MersennePrimeNumber, PrimeNumber, Number, and
Object. It has also defined conversions between FibonacciNumber, Number, and

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 288

Other C# Features • Chapter 7 289

Object. Since they are already defined we may not override them.We can, how-
ever, define conversions between FibonacciNumber and the PrimeNumber types.

With conversions the definition can occur in either of the two classes.
There are essentially two directions of conversion, explicit and implicit, so it really
doesn’t matter in which of the two classes it is defined.The important thing is
that the conversion definition must be located in one of the classes being con-
verted.A conversion definition may not reside in a third party class. For example,
a PrimeNumber class could convert from PrimeNumber to MersennePrimeNumber
or MersennePrimeNumber to PrimeNumber, but not FibonacciNumber to
MersennePrimeNumber.

Neither the source object nor target type may be of object type, since it is a
given that there will already be a conversion defined for this. Nor may either be
an interface type, since any type may inherit the interface, hence it could create
an illegal conversion. Now that we know the rules for defining conversions let’s
examine how they occur in code.

The implicit Operator
Earlier in this chapter we created a class called Prime that represents a prime
number. Since all prime numbers are numbers, a conversion from Prime to any
number type should be defined as an implicit cast.This will allow us to assign a
Prime object value to a variable of type int, as follows:

Prime p = new Prime(11);

int x = p; // Implicit cast

www.syngress.com

Figure 7.2 Overloading Conversions

Object

MersennePrimeNumber

PrimeNumber

Number

FibonacciNumber

223_C#Java_07.qxd 5/21/02 2:13 PM Page 289

290 Chapter 7 • Other C# Features

In order to achieve this kind of behavior we must create an implicit conver-
sion definition.The following definition will allow a Prime instance to be treated
as an int:

public static implicit operator int(Prime p)

{

return p.number;

}

This is an easy conversion, but it gives our Prime class the impressive ability to
masquerade as an int primitive, as follows:

public static void Main()

{

Prime p = new Prime(11);

int sum = p + 12;

Console.Write("The sum of " + p.number);

Console.WriteLine(" + 12 is " + sum);

}

Output
The sum of 11 + 12 is 23

www.syngress.com

Integer Math vs. Floating Point Math
When performing a calculation that assigns an integer value to a double,
an implicit conversion occurs:

double val = 3 / 4;

So what value does this return? Many novice programmers would
be surprised that it returns 0. These two integers use integer division,
therefore 3 divided by 4 equals 0. Once the division is complete it is
assigned to the double variable. In order to receive a true double result
from two integer values, you must explicitly cast one of the two values
into a double so that floating point math occurs:

double val = (double)3 / 4;

Debugging…

Continued

223_C#Java_07.qxd 5/21/02 2:13 PM Page 290

Other C# Features • Chapter 7 291

The explicit Operator
The assumption with an explicit conversion is that data may be lost or altered
when the conversion occurs. For example, when a float is converted to an int, all
decimal places are dropped off. Using our Prime example, when an int is con-
verted to a Prime the int may not actually be a prime number. For example, if 4 is
converted to a prime number, it must somehow be metamorphosed to become
prime. For our example, let’s assume if the number is not prime it is converted to
the next highest prime number.

public static explicit operator Prime(int n)

{

while(!isPrime(n))

++n;

return new Prime(n);

}

This gives a valid conversion from an int to a Prime object.The following class
includes our new implicit and explicit definitions, as well as a Main() method to
perform an explicit cast.

using System;

namespace Other_Features

{

public class Prime

{

public int number;

public Prime(int n)

{

if(isPrime(n))

this.number = n;

else

throw new Exception(n + " is not a prime!");

www.syngress.com

or by attaching the letter d beside one of the values:

double val = 3 / 4d;

This will assign the expected value of 0.75 to the variable val.

223_C#Java_07.qxd 5/21/02 2:13 PM Page 291

292 Chapter 7 • Other C# Features

}

public static explicit operator Prime(int n)

{

while(!isPrime(n))

++n;

return new Prime(n);

}

public static implicit operator int(Prime p)

{

return p.number;

}

public static Prime operator ++ (Prime orig)

{

bool succeeded = false;

while(!succeeded)

succeeded = isPrime(++orig.number);

return orig;

}

public static bool isPrime(int number)

{

int max = (int)(number/2 + 1);

for(int i = 2;i < max;++i)

if(number % i == 0)

return false;

return true;

}

public static void Main()

{

Prime p = new Prime(11);

int sum = p + 9;

p = (Prime)sum;

Console.WriteLine("p is now " + p.number);

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 292

Other C# Features • Chapter 7 293

}

}

}

Output
p is now 23

As you can see, the Main() method starts with the prime number 11. It then
adds 9 to it and performs an explicit cast.The explicit cast code knows 20 is not
a prime number, so it continues incrementing the number until it finds the next
prime number, which is 23.

NOTE

The implicit and explicit operators are not logical pairs. You may legally
define one conversion without defining the other in a class.

Structs
You may have noticed a pattern to the last part of this chapter. Java has a fixed set
of operators; C# allows overloading of operators. Java has a fixed set of casts
allowed; C# allows you to define casting.This brings us to structs, a topic that
follows this pattern.The theme for this section is that Java has a limited set of
primitives, whereas C# allows you to define objects that behave like primitives.

Structs are very similar to classes; in fact there are probably more similarities
than differences. Structs may define the same members as classes: methods, con-
structors, fields, constants, properties, events, indexers, operators, and conversions.
A struct may also implement one or more interfaces, just like a class.

There are, of course, some important differences, otherwise this construct
would not have been included in C#. First, structs may not inherit from classes
or other structs. Structs inherit from objects automatically, just like other value
types, but for all purposes they are similar to sealed classes.They also may not
create destructor methods, since they are not instantiated in the same way as
classes (more on this later).

When a class is instantiated it creates an object that is accessed by reference.
The actual object is created on the heap. The heap is section of memory that
stores long-term program data that exists even after methods returns. Structs,

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 293

294 Chapter 7 • Other C# Features

however, are value types and stored on the stack, a section of memory that holds
values used and computed during program execution. It is faster for a program to
access values from the stack than from the heap. Primitive values are stored on
the stack.This means structs behave just like primitive values.When a struct is
passed to a method, a copy of the struct is made. Normally instances are passed
by reference, which results in different behavior (this will be explored later).

So what does C# gain by allowing structs? They are used primarily to repre-
sent data types such as points and number sets.Although they allow methods to
be defined, a struct is generally not created for providing functionality. Something
like the Math class, which is designed purely for functionality and not storing
data, could be considered the opposite of a struct.

Using a struct instead of a class provides several benefits. Let’s use the example
of a Point class used for storing two integer values, X and Y. If we create an array
to hold 200 instances of this class, the program will create an object for the array
plus 200 objects to hold the points. However, if we employ a struct instead, only
one object will be created for the array and the 200 Point structs are stored inline
with the array.

Structs also have their weaknesses.When a struct is passed to a method, copies
of the fields are created. If the struct contains a lot of data this can result in more
memory use.Also, if the struct is used as an object then boxing will automatically
be used (just like other primitive types).This can create some extra overhead and
slow things down slightly.

Defining Structs
The C# language defines all of its primitive types as structs.Along with operator
overloading and user-defined conversions, this allows you to define very func-
tional primitive types. In this section we will define a new primitive type, but
first let’s examine the basic syntax for defining a struct.

attributes modifiers struct identifier :interfaces {}

This is almost identical to a class definition.About the only difference is that
inheritance of other classes is not allowed. Now let’s define our own struct. C#
pretty much has most useful number types defined as primitives, but there is no
fraction primitive. Fractions are even more accurate than decimal numbers, since
many decimal numbers are forced to round the last decimal place. Our fraction
struct will store just two integral numbers: the numerator and the denominator. It
will allow for conversions to and from double values, and allow fraction multipli-
cation and addition.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 294

Other C# Features • Chapter 7 295

using System;

namespace Other_Features

{

public struct fraction

{

public int numerator;

public int denominator;

public fraction(int numerator, int denominator)

{

this.numerator = numerator;

this.denominator = denominator;

Reduce();

}

public static fraction operator *(fraction f1, fraction f2)

{

fraction f;

f.numerator = f1.numerator * f2.numerator;

f.denominator = f1.denominator * f2.denominator;

f.Reduce();

return f;

}

public static fraction operator +(fraction f1, fraction f2)

{

fraction f;

f.numerator = f1.numerator * f2.denominator + f2.numerator *

f1.denominator;

f.denominator = f1.denominator * f2.denominator;

f.Reduce();

return f;

}

public static implicit operator double(fraction f)

{

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 295

296 Chapter 7 • Other C# Features

double d = (double)f.numerator/f.denominator;

return d;

}

public static explicit operator fraction(double d)

{

fraction f;

f.denominator = 1;

while(d - (int)d != 0)

{

d *= 10;

f.denominator *= 10;

}

f.numerator = (int)d;

f.Reduce();

return f;

}

public void Reduce()

{

int max = (int)this.denominator / 2 + 1;

for(int i=max;i>1;--i)

{

if(this.numerator % i == 0 & this.denominator % i == 0)

{

this.numerator /= i;

this.denominator /= i;

}

}

}

public override string ToString()

{

String s = this.numerator + "/" + this.denominator;

return s;

}

}

}

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 296

Other C# Features • Chapter 7 297

In many ways this class is a summary of most of the material covered in this
chapter.There is a helper method called Reduce(), which reduces the denominator
to the lowest value possible. On the surface the methods in this struct appear to
be identical to class methods, until we take a closer look. Let’s examine the first
two lines of the explicit operator definition:

fraction f;

f.denominator = 1;

Notice the code begins accessing f.denominator without calling the constructor
for the struct.When creating an instance of a class it is necessary to use the key-
word new in order to create a new object. Structs don’t require this, since the data
is stored right on the stack.All variables are ready for access without even using
new, just like primitive types, which is why the fraction type can access denomi-
nator without a constructor.

Struct constructors behave differently from class constructors. In a regular class,
when there is no constructor created, the default no-arguments constructor will
initialize the variables with default values (0, null or false).The struct default con-
structor behaves the same way, but if you create a constructor with arguments, the
variables in your struct are not automatically given default values.Try removing the
lines in the constructor that assign values to numerator and denominator:

public fraction(int numerator, int denominator)

{

//This.numerator = numerator;

//This.denominator = denominator;

//Reduce();

}

Now if we create a struct and attempt to access numerator or denominator
we receive the following error from the compiler:

Field 'Other_Features.fraction.denominator' must be fully assigned before

control leaves the constructor.

As you can see, the variables were not given default values of 0.The fields are
not initialized with values; therefore they may not be accessed.

Using Structs
There are two ways to obtain structs and to use them, as mentioned previously.
The first is by using the new keyword, just like a regular class.The second is to

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 297

298 Chapter 7 • Other C# Features

assign it to a variable and access it right away.Try the following code to see the
fraction struct in action.

public static void Main()

{

fraction f1 = new fraction(10, 20);

fraction f2;

f2.numerator = 5;

f2.denominator = 20;

fraction f = f1 + f2;

Console.WriteLine("f is " + f);

}

Output
f is 3/4

WARNING

Obtaining a struct without calling the new keyword can lead to prob-
lems since it bypasses the constructor method. The programmer of a
struct may have included vital initialization code in the constructor, so
you are playing with fire by ignoring it.

Earlier in this section it was mentioned that when an instance of a class is
passed to a method, a reference to the object is passed. In contrast, when a struct
is passed to a method, a copy of the struct is made and passed to the method.
Let’s first see how a struct behaves when passed to a method:

using System;

namespace Other_Features

{

public class Test

{

public static void Main()

{

fraction f = new fraction(10, 20);

Console.WriteLine(" In Main() method before: " + f);

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 298

Other C# Features • Chapter 7 299

Increment(f);

Console.WriteLine(" In Main() method after: " + f);

}

public static void Increment(fraction f)

{

++f.numerator;

Console.WriteLine("In Increment method: " + f);

}

}

}

Output
In Main() method before: 1/2

In Increment method: 2/2

In Main() method after: 1/2

As you can see, the fraction struct in the Main() method is not affected by
changes made to the variable in the Increment() method.This is because a copy is
passed to the Increment() method. Now let’s make a simple Fraction class to
demonstrate how classes behave:

using System;

namespace Other_Features

{

public class Fraction

{

public int numerator;

public int denominator;

public Fraction(int numerator, int denominator)

{

this.numerator = numerator;

this.denominator = denominator;

}

}

}

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 299

300 Chapter 7 • Other C# Features

This is a simplified version of the fraction struct. Now let’s try a similar test
by passing the object to the Increment() method.

using System;

namespace Other_Features

{

public class Test

{

public static void Main()

{

Fraction f = new Fraction(1, 2);

Console.WriteLine(" In Main() method before: " + f);

Increment(f);

Console.WriteLine(" In Main() method after: " + f);

}

public static void Increment(Fraction f)

{

++f.numerator;

Console.WriteLine("In Increment method: " + f);

}

}

}

Output
In Main() method before: 1/2

In Increment method: 2/2

In Main() method after: 2/2

This clearly shows a change made within a method to an object also occurs
outside the method. Class instances are passed to methods using a reference vari-
able, hence when a change occurs within the method it is reflected outside the
method with other references to the same object. Most Java programmers are
aware of this, but it’s an important difference with structs that is worth reviewing.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 300

Other C# Features • Chapter 7 301

Summary
In this chapter we covered some important differences between Java and C#.A
lot of these differences may seem revolutionary, especially for programmers who
were not already familiar with C++.

Properties, read-only fields, and enumeration offer new ways of accessing
variables within a class or object.A property is a great way to receive the benefits
of encapsulation without needing to use accessor methods. Read-only fields
allow variables to be initialized only within the constructor. Enumerations offer
an alternative to the Java alternative of piggybacking constants on interfaces.

C# also offers a type of casting between primitives and objects known as
boxing.This allows primitives to be passed into methods that require objects.To
Java programmers, boxing appears similar to a wrapper class, only C# performs
boxing automatically.

Operator overloading is yet another powerful C# feature that allows pro-
grammers to use operators such as + and % on common objects, rather than just
on primitives. User-defined conversions takes polymorphism to a whole new
level.With Java the only casting that can occur between objects are with objects
in the same line of inheritance. Now any object not in the same inheritance line
can be converted (explicitly or implicitly) to another—but it helps if the conver-
sion makes sense.

Finally, we covered structs, a way to define primitive-like objects that exist on
the stack.There are certain advantages to using structs but, depending on what
the struct is used for, there can also be disadvantages. Generally they save system
resources, but if they are used as objects the boxing/unboxing procedure can slow
the program down.

Solutions Fast Track

Properties

The get accessor must return the same type as the property.

The set accessor uses a single parameter with the value keyword.

Accessors can be used to

■ verify that the new data is correct.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 301

302 Chapter 7 • Other C# Features

■ recalculate values for this or other variables.

■ refresh a GUI object.

Read-Only Fields

Read-only fields may not be altered except for those in constructors.

Fields are defined as read-only with the readonly keyword.

Enumerations

Enumeration lists group integer constants together.

Enumerators are not integers, they are objects.

Enumerators may be explicitly cast into integers.

Boxing and Unboxing

All primitives can be boxed into an object automatically.

Boxed objects may be unboxed by explicitly casting them into
primitives.

The boxed data is in no way referenced by the original primitive.

Operator Overloading

The operator method must be both public and static.

The method arguments must be value types (i.e., not ref or out
parameters).

The signature of the operator method must be unique within the class.

If using the extern modifier, rather than using a body of code in brackets,
a semicolon is used at the end of the definition.

All types referenced in the declaration must be at least as accessible as
the operator definition. For example, a public operator may not access a
protected type.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 302

Other C# Features • Chapter 7 303

User-Defined Conversions

Existing conversions may not be overridden.

The conversion definition must be located in one of the classes being
converted.

Neither the source object nor the target type may be of object type.

A conversion may not occur with an interface type.

Structs

Structs may not inherit from classes or other structs.

Objects reside on the heap, and structs reside on the stack.

Structs are generally used to represent data types such as points and
number sets.

Structs are passed by value, not by reference.When a struct is passed to a
method, copies of the values are created.

If the struct is used as an object then boxing will be used automatically.

www.syngress.com

223_C#Java_07.qxd 5/21/02 2:13 PM Page 303

304 Chapter 7 • Other C# Features

Q: Generally explicit casts return less precise data than implicit casts. Is it possible
to do the opposite and make an implicit cast return less accurate data?

A: Yes, C# gives the programmer the freedom to determine how a cast actually
operates, but a good design makes casts intuitive.When creating explicit and
implicit casts between two types it is wise to analyze which type seems to
have more precise data, and make those conversions implicit.

Q: Why would I choose to use a struct instead of a class?

A: When the reason for the existence of an object is mainly to store data, a
struct would be a good option. Structs reside on the stack so they are slightly
faster and take up less memory than an object.

Q: In Java, constants that are used by many different classes typically are declared
in an interface. How do C# programs declare constants?

A: By using enumerations.An enumeration allows formal constants to be defined
within a class, or as a separate entity.

Q: How is encapsulation of data handled in C# compared to Java?

A: Java uses get() and set() methods whereas C# uses properties. Properties are
defined in a class by creating get and set definitions (without parameters).The
set method accepts a single parameter by using the value keyword.

Q: How is it possible to call methods on a primitive in C#?

A: C# provides boxing and unboxing.This is very similar to casting in that there
are implicit and explicit directives to govern this.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_07.qxd 5/21/02 2:13 PM Page 304

Delegates
and Events

Solutions in this chapter:

■ Delegates

■ Using Delegates as Callbacks

■ Using Delegates for Event Handling

■ Multicasting

■ Advanced Delegate Usage

Chapter 8

305

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_08.qxd 5/21/02 2:14 PM Page 305

306 Chapter 8 • Delegates and Events

Introduction
Interaction between the user and the computer is a fundamental part of com-
puting. In the old days we used a procedural programming model, like a com-
mand line program that asks for user input one line (or character) at a time.
Nowadays we are treated to more sophisticated programs with rich graphical user
interfaces (GUI) and event-driven programming.To facilitate writing event-
driven programs, a language must provide support for event handling. Java pro-
vides this by using inner class adapters in its Abstract Windowing Toolkit (AWT)
event-handling model. C#, on the other hand, implements event handling
through delegates.

A delegate is essentially a reference to some method.When it is declared, it is
assigned a method signature.An application can then assign any method that
matches this signature to a delegate variable.When this delegate variable is
invoked, the associated method is called. If you have some C/C++ background,
think of delegates as being very similar to function pointers. However, unlike
function pointers, delegates are object-oriented, type-safe, and secure.

In the first part of the chapter we will look at delegates and how they can be
used as callback methods. Next we’ll talk about how delegates are used for events
and event handling. Finally, we’ll go over some more advanced delegate concepts.

Delegates
As previously mentioned, a delegate is a reference to some method. It is much
like any other variable, except that it represents a method. For instance, an integer
type can hold any value that fits the description of an integer.A class reference
can refer to any object, as long as that object is of the correct type.A delegate can
refer to any method, as long as it has a certain signature. For example, you could
specify that a delegate refer to a method that returns an integer and takes a single
parameter of type string. It can then hold a reference to any method with that
signature, and then that delegate could be used to call that method. In that sense,
a delegate object is really just a variable, but instead of holding an integer or class
type, it holds a method of a predetermined signature.

A delegate’s ability to allow a method to be called dynamically is what makes
it so powerful.The method (or methods) that is referred to by the delegate is
assigned at runtime and can be added and removed at will. For this reason, dele-
gates are especially useful for event handlers and callback functions, for which
they are primarily used in the .NET Framework.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 306

www.syngress.com

One concept that is important to remember (and somewhat confusing) with
delegates is that when you initially declare a delegate, you are essentially declaring
a new type, rather than declaring a reference to an object.You can then declare
objects of that type, and then instantiate them.We will go into more detail on
this in the next section. For the time being, just remember that a delegate decla-
ration actually specifies a new class.This declaration can be within the current
namespace, or in its own namespace.

Using Delegates as Callbacks
Callback methods are an extremely useful programming tool.Anyone who has
done good-old-fashioned Windows programming in C or C++ should be very
familiar with them. For the benefit of those not familiar with callback methods,
they are simply methods that are provided for another thread to call later. For
example, in Windows programming, every window implements a callback func-
tion (called a window procedure).A reference to the window procedure is passed to
Windows, so that Windows can call that procedure when a user, say, clicks the
mouse when the mouse is over that window. Otherwise, our window would have
to poll the mouse every few milliseconds to see if a button were clicked or not
(highly inefficient, since every window would have to do its own polling).

Callbacks are useful not just for receiving notifications—they are also very
handy for asynchronous processing. For example, my program may want to tell a
database to do a very long re-indexing operation, but I want my program to con-
tinue normal operation in the meantime. I could start the indexing operation and
provide the database engine with a reference to a callback method.The database
would then do its indexing asynchronously and call my method when the opera-
tion was done to notify my program that it is finished.

Since delegates can be used to dynamically call methods, they are ideally suit-
able to be use for callback functions. For instance, let’s look at a database-
indexing example to show how we can make use of delegates.Assume that you
have a database application and part of the program performs indexing on the
database.When you invoke the indexing function, you don’t want the main
thread to have to wait for the indexing to finish. By the same token, you also
don’t want to have to poll the method constantly to see if it has finished. Instead,
you can have the indexing method call back the main program to notify it when
it has completed its task.This would be an excellent time to use delegates.

Basically, the database engine will declare a delegate type. Our program will
then create an instance of that delegate type and provide it to the database

Delegates and Events • Chapter 8 307

223_C#Java_08.qxd 5/21/02 2:14 PM Page 307

308 Chapter 8 • Delegates and Events

engine. Finally, our database engine will use the delegate instance to call our call-
back method.

Declaration
The database indexing engine will declare the delegate type. Remember that the
indexer is not declaring a variable or an instance of an object—it is actually
declaring a new type.This declaration makes use of the delegate keyword, which
means that instances of this type will be delegates. If we wanted a callback of
return type void that takes no arguments, it would look like this:

class DBIndexer

{

public delegate void DoneIndexingCallback();

}

Basically, this means that

■ There is now a new type named DoneIndexingCallback.

■ Instances of DoneIndexingCallback will contain references to methods.

■ The referenced methods can be any method, as long as they have a
return type of void, and take no arguments.

A delegate can also return a value and/or accept arguments. In this block of
code, we will declare a delegate type that returns an integer, and accepts an
integer and a string as arguments:

class DBIndexer

{

public delegate int DoneIndexingCallback(int nNum, string

sString);

}

For the purposes of our database indexer, let’s say that our delegate has a
return type of void, and takes a single integer as a parameter, namely the number
of indexes that were re-indexed. Keep in mind that the indexer will be calling
back our main program; thus the parameter (the number of indexes) will actually
be supplied by the indexer to our main program when the callback is called.
Therefore, our actual delegate declaration will look like this:

class DBIndexer

{

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 308

Delegates and Events • Chapter 8 309

public delegate void DoneIndexingCallback(int

nNumberOfIndexes);

}

Instantiation
Once a delegate has been defined, an instance of that delegate can be instantiated
and then made to reference a method. Remember that the signature of the
method that the delegate will reference was determined when the delegate was
declared.We can instantiate the delegate with any method that matches that

www.syngress.com

Some Notes on Declaration
As mentioned earlier, a delegate does not have to be declared inside of
a class namespace. This is because a delegate is not class-specific. In our
previous example, all of our declarations were done within the
DBIndexer class, but they can also be declared in their own namespace.
For instance, I could create a new namespace, called MyNamespace, and
declare a delegate in it:

namespace MyNamespace

{

public delegate void MyDelegate();

}

Down the road, we would simply refer to the delegate as
MyNamespace.MyDelegate, or include MyNamespace with the using
keyword. Of course, if our classes were also implemented within
MyNamespace, we wouldn’t need to do anything. The .NET Framework
includes many delegates that are declared outside of classes, such as the
EventHandler delegate that is declared in the System namespace. We
will talk more about that in the section on event handling.

Delegates do not have to be declared with any modifiers other than
the delegate keyword, and they can have any signature. If you want to
use them outside of your current class or namespace, however, (which
is often the case) you must declare them as public.

Developing & Deploying…

223_C#Java_08.qxd 5/21/02 2:14 PM Page 309

310 Chapter 8 • Delegates and Events

signature.To take the previous example a step further, we will declare a delegate
in DBIndexer, and then instantiate an instance of it in our main class.The instance
will be constructed with a reference to the DoneIndexing method (a member of
DBEngine), which is the method through which we want to get called back.

Expanding on the code we wrote before, we will now implement our
DBEngine. Inside of the Main() method, we must first instantiate an instance of
DBEngine. In this particular case, we need this instance so that we can access the
nonstatic method DoneIndexing:

DBEngine dbEngine = new DBEngine();

Once we have an instance of DBEngine, we can instantiate the delegate itself.
Remember that declaring a delegate declares a new type. If we were declaring a
variable of type string, we might say:

string s = new string("hello");

In this case, however, the type is DoneIndexingCallback, which is the delegate
type we declared earlier.The declaration will look like this:

DBIndexer.DoneIndexingCallback callback = new

DBIndexer.DoneIndexingCallback(DBEngine.DoneIndexing);

Now we have declared a new object of type DBIndexer.DoneIndexingCallback,
and instantiated it.The constructor takes only one argument, namely the method
that we want to get called (i.e., our callback). Note that DBEngine.DoneIndexing
returns void and takes a single integer as a parameter, just as our
DoneIndexingCallback declaration specified.

The final piece of DBEngine would be to implement the DoneIndexing
method, which will be implemented later. For now, here is all of the code that
we have thus far:

using System;

class DBIndexer

{

//Declare our delegate.

public delegate void DoneIndexingCallback(int nNumberOfIndexes);

}

class DBEngine

{

public static void Main(string[] args)

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 310

Delegates and Events • Chapter 8 311

{

//Instantiate an instance of DBEngine.

DBEngine dbEngine = new DBEngine();

//Instantiate an instance of our delegate, and make it

//reference the dbEngine.DoneIndexing method.

DBIndexer.DoneIndexingCallback callback = new DBIndexer.

DoneIndexingCallback(dbEngine.DoneIndexing);

}

//The callback method

public void DoneIndexing(int nNumberOfIndexes)

{

//We will implement later.

}

}

To summarize, we now have a delegate type that we declared, namely
DoneIndexingCallback.We created the DBEngine class and instantiated an instance
of DoneIndexingCallback, which we assigned to callback, and set it to reference the
DoneIndexing method. Now when callback is invoked, it will execute the
DoneIndexing method. In the next section, we’ll take a look at actually invoking
DBEngine.DoneIndexing from within DBIndexer.

Invocation
To invoke our callback, we first provide a reference to it to the DBIndexer class.
This can be done in various ways, but often is accomplished by passing the dele-
gate into the method that is going to call us back. For instance, our asynchronous
method will be declared like this:

public void Index(DoneIndexingCallback callback)

As you can see, we are passing an argument of type DoneIndexingCallback into
our method. Depending on our architecture, we could either store the reference
into a property so we could call it outside of this method’s scope, or we could
just use the argument itself to invoke the callback. In our case, we will just use
the argument itself. Invoking the callback looks just like making a regular method
call, like this:

callback(nNumberOfIndexes);

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 311

312 Chapter 8 • Delegates and Events

Now let’s put it all together: the final DBIndexer class declaration will look
like the following.

class DBIndexer

{

public delegate void DoneIndexingCallback(int

nNumberOfIndexes);

public void Index(DoneIndexingCallback callback)

{

int nNumberOfIndexes=0;

//Perfom indexing operation here.

//Invoke the callback.

callback(nNumberOfIndexes);

}

}

Note that we invoked our callback method using the callback delegate that
was passed in, just like we were calling any other method. In the next section, we
will tie everything together and implement the entire working example.

Implementing Callbacks
To implement the callback, the DBEngine will need to create an instance of the
DBIndexer class and pass it the callback delegate. Here’s what it will look like:

DBIndexer.DoneIndexingCallback callback = new

DBIndexer.DoneIndexingCallback(dbEngine.DoneIndexing);

DBIndexer indexer = new DBIndexer();

indexer.Index(callback);

That’s about all there is to callbacks! To summarize, in order to create a call-
back method, first you’ll need to declare a delegate.The callback method you
wish to call back must match the signature of the delegate.You then create an
instance of the delegate, which references the method that you want to call back.
The instance of the delegate can be passed into any method, just like any other
object.

Now let’s finish implementing the database indexing example. First, however,
let me point out that in order to be practical and useful, callbacks really require

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 312

Delegates and Events • Chapter 8 313

some asynchronous processing to take place.To make a truly realistic example, we
would want to spawn a new thread to perform indexing and then return to the
main thread. Later, when the new thread is finished, it would call the callback to
alert the main thread that it is finished.We will not be using threads for this
example to make it simpler (they will be discussed later in Chapter 10).You
should note, therefore, that this example is simple and single-threaded. I will
point out where you would normally want to spawn another thread, but we will
not actually do so.

We must add two more sections of code to our example to make it complete.
The first is the complete DBIndexer.Index method. In our case, we will just make
it waste some time by calling the Thread.Sleep() method, to give the appearance
of hefty logic. For this exercise, we’ll pass an arbitrary number (6 in this case) to
the calling function.The DB.Indexer.Index method will look like this:

public void Index(DoneIndexingCallback callback)

{

int nNumberOfIndexes=6;

//Pretend like we are working hard.

System.Threading.Thread.Sleep(5000);

//Tell the calling function we are done.

callback(nNumberOfIndexes);

}

The final piece of our example is the implementation of the actual method
that will get called back, namely DBEngine.DoneIndexing. It simply will consist of
a single statement that will let us know when it gets called:

public void DoneIndexing(int nNumberOfIndexes)

{

Console.WriteLine("Done indexing, there are " +

nNumberOfIndexes + " indexes in the database");

}

That completes our example! Now let’s see the entire example, end to end:

using System;

namespace CallbackSample

{

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 313

314 Chapter 8 • Delegates and Events

class DBIndexer

{

//This declares a delegate that we can use for

// callbacks.

public delegate void DoneIndexingCallback(int

nNumberOfIndexes);

//The indexing method, where we presumably would execute

// complex and time-consuming logic

public void Index(DoneIndexingCallback callback)

{

int nNumberOfIndexes=6;

//Pretend like we are working hard.

System.Threading.Thread.Sleep(5000);

//Tell the calling function we are done.

callback(nNumberOfIndexes);

}

}

//This is our main class. It will be making a call to the

//DBIndexer, and will get called back when the

//indexer is done processing.

class DBEngine

{

static void Main(string[] args)

{

DBEngine dbEngine = new DBEngine();

//Assign the DoneIndexing method as the method to

//be called back when indexing is complete.

DBIndexer.DoneIndexingCallback callback = new

DBIndexer.DoneIndexingCallback(dbEngine.DoneIndexing);

DBIndexer indexer=new DBIndexer();

Console.WriteLine("Calling the DBIndexer...");

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 314

Delegates and Events • Chapter 8 315

//Call the Index method passing the callback delegate.

//Ideally, we would launch this method in a new thread

//and then continue on with other logic.

indexer.Index(callback);

//Continue doing some work while waiting for the

//callback, but since it's not asyncronous, it will

//actually block before continuing.

for(int i=0; i<100; i++)

{

Console.WriteLine(i);

}

}

//This is the method that will get called back when

// the Indexer is finished.

public void DoneIndexing(int nNumberOfIndexes)

{

Console.WriteLine("Done indexing, there are " +

nNumberOfIndexes + " indexes in the database");

}

}

}

If you run this example, you will see the following output:

Calling the DBIndexer.

Done indexing, there are 6 indexes in the database

0

1

...

99

Note that the callback is called before we write out 1 through 100.That is
because, in our case, everything happens in the same thread.We call the indexer,
and then the indexer calls the callback.After the callback has been called, control
returns to the main thread, so it can continue. Had we added asynchronous logic
to the DBIndexer, the results would most likely be different.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 315

316 Chapter 8 • Delegates and Events

Using Delegates for Event Handling
Events in C# follow the very common publisher-subscriber model.This model is
so named because it consists of event publishers, which publish or “fire” an event,
and event subscribers, which subscribe to that event (in other words, they register
to receive the event).This event model is often used in GUI programs.The idea
behind the event model is that some classes publish events, and consumers sub-
scribe to the events in which they are interested.When an event fires, a method is
invoked in the publisher that will cycle through each of the registered subscribers
and invoke a callback method on each one.The subscribers then take some action.

When we talked about using delegates as callbacks, the delegate could repre-
sent a method with any signature—it could take any number of arguments with
different types, and return any type. In the .NET Framework, there are built-in
delegates defined for events.The most basic of them is the System.EventHandler
delegate.

The System.EventHandler delegate specifies a return type of void, and it takes
two arguments.The first argument is a reference to the object that published the
event (the event source).The second argument consists of data about the event
itself. It must be of type System.EventArgs, or some type derived from
System.EventArgs.All event delegates in the .NET Framework have this same sig-
nature. For example, the MouseEventHandlerDelegate in the System.Windows.Forms
namespace is used to handle mouse events, like mouse clicks.As its first argu-
ment, it takes an object type (the event source). Its second argument is of type
MouseEventArgs, which is derived from System.EventArgs.

Theoretically you could create your own events and delegates that do not
follow the System.EventHandler convention. However, there is really no need to
do so. By following this convention, the Framework allows for a single known
delegate signature that works for any event, no matter what kind of data needs to
be supplied to the handler.

As we discuss events, keep in mind that an event handler is really just a call-
back method.When we discussed callbacks, we created a callback function and
gave another object a reference to it so we could receive a callback notification.
With events, we create an event handler, which is basically a callback function,
and then provide the system with a reference to our event handler.The system
will then call back our event handler when our event occurs.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 316

Delegates and Events • Chapter 8 317

Event Handling in Java
In Java’s AWT, events are usually handled through inner classes that implement
the ActionListener interface. Let’s look at an example. Figure 8.1 defines a JPanel
object. It will use an inner class that implements ActionListener as an event han-
dler.This will be added as a handler for a button click event.

Figure 8.1 Java JPanel Object with Event Handling

public class MyPanel extends JPanel

{

//Here is a button to receive click events.

JButton myButton = new JButton("Click me");

//And now for an inner class to listen for events

private class ButtonClick implements ActionListener {

public void actionPerformed(ActionEvent e) {

//Event handler code here

...

}

}

public MyPanel()

{

//Tell ActionListener to handle button clicks.

myButton.addActionListener(new ButtonClick());

...

}

}

In the example in Figure 8.1 we defined an inner class called ButtonClick
that will act as the event subscriber for the button. In other words, it will receive
the event that is published by the button.When the user clicks on the button, it
invokes the actionPerformed method.

As you’ll discover in the next section, the net effect is the same as using dele-
gates in C#.An event handler subscribes to certain events, and then gets called
when the events get fired.You could even think about the previous example in
terms of delegates, and perhaps understand them better: the ActionListener interface

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 317

318 Chapter 8 • Delegates and Events

(extended by ButtonClick in this case) is behaving as a delegate.You can think of the
actionPerformed method as the callback method being called back when an event
occurs. Events in C# behave in much the same way. Some class will delegate the
handling of its events to a method (or several methods). Instead of having to imple-
ment a certain interface like ActionListener, it must simply have a method with the
proper signature (i.e., the signature must match a certain delegate).To clearly show
the analogy, let’s look at how the Java code could be implemented using delegates
in C#, as shown in Figure 8.2.

Figure 8.2 C# Equivalent of Figure 8.1

namespace EventTest

{

public delegate void ActionListener(String actionEvent);

public class Button

{

public void addActionListener(ActionListener actionListener)

{

//Generate an ActionEvent and then perform the

//callback.

actionListener("Button Clicked");

}

}

public class MyPanel

{

public MyPanel()

{

ActionListener buttonClick = new ActionListener(ActionPerformed);

Button myButton = new Button();

myButton.addActionListener(buttonClick);

}

public void ActionPerformed(String actionEvent)

{

//Event handler code here

www.syngress.com

Continued

223_C#Java_08.qxd 5/21/02 2:14 PM Page 318

Delegates and Events • Chapter 8 319

}

}

}

In Figure 8.2 we named our methods and variables to match their Java equiv-
alents. Notice that we defined the delegate within the namespace, but outside of
the class definition, which is a valid declaration.The ActionListener delegate is
behaving like its Java counterpart. However, instead of having an inner class
extending an interface, we instantiate the delegate (which we called buttonClick)
and assign a callback method which, in this case, we called ActionPerformed.

Note that this example is not the proper way to create buttons and event
handlers in C#—it is used just to illustrate a point.You’ll get to see how to
handle GUI events in C# later.

NOTE

Microsoft first introduced delegates in their Visual J++ product, which
was designed by Anders Hejlsberg (also one of the lead designers for
C#). This caused a lot of legal and technical disputes between Sun and
Microsoft. Sun claims that delegates are unnecessary and that inner
classes provide better support for user-interface event handling require-
ments. Microsoft strongly disagrees with this point of view. It’s hard to
judge which technology is superior. The important thing is that both lan-
guages provide support for event handling. As a Java programmer you
might be a little biased, but once you get the hang of delegates, you will
probably find that they are extremely flexible and do tend to lead to
more concise source code.

For more information on Microsoft and Sun’s arguments you can
read the white papers at http://msdn.microsoft.com/visualj/technical/
articles/delegates/truth.asp and at http://java.sun.com/docs/white/
delegates.html.

Event Handling in C#
Event handling in C# is fairly simple.As stated earlier, the System.EventHandler
delegate specifies a return type of void, and takes two arguments.The first argu-
ment is a reference to the event source, and the second is the event data, which

www.syngress.com

Figure 8.2 Continued

223_C#Java_08.qxd 5/21/02 2:14 PM Page 319

320 Chapter 8 • Delegates and Events

must derive from System.EventArgs.Any method that has the correct signature can
be used as an event handler. For example, the following method might be used to
handle the Click event for a button named cmdClickMe. (The cmdClickMe_Click is
an arbitrary name for the function.)

private void cmdClickMe_Click(object sender,

System.EventArgs e) {

MessageBox.Show("cmdClickMe was clicked!");

}

To register our method as an event handler we must create a new
System.EventHandler delegate and pass our method name as a parameter:

new System.EventHandler(cmdClickMe_Click);

Since cmdClickMe_Click matches the System.EventHandler delegate’s signature,
we can assign it to handle any standard system event.The System.EventHandler
delegate is a predefined delegate especially declared to be used for handling stan-
dard system events.We can use it to instantiate an instance of a delegate through
which our event handler will be called.

To assign our event handler to the cmdClickMe button click event, we can
take advantage of the overloaded + operator. Specifically, we can use the +=
operator to add our delegate to the button’s click event handler list, like this:

cmdClickMe.Click += new

System.EventHandler(cmdClickMe_Click);

It’s as simple as that! If we click the cmdClickMe button, we will see a mes-
sage box that says,“cmdClickMe was clicked!”We used the += operator to add
an event handler for the click event, which we constructed using the global
EventHandler delegate.This same convention is used for consuming any standard
system event in C#. Creating GUI applications will be discussed again in
Chapter 12.

Using System.EventArgs
For simple events, like button clicks, the System.EventArgs argument has very little
data in it, since there is not really any information to pass. For more complex
events, however, our handler generally will use a subclass of System.EventArgs that
has some real data in it. For instance, if we are consuming mouse events, our han-
dler will take an argument of type System.Windows.Forms.MouseEventArgs.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 320

Delegates and Events • Chapter 8 321

MouseEventArgs contains information specific to mouse clicks, such as which
button was clicked, how many times it was clicked, what the x and y screen
coordinates of the mouse were at the time, and so on.To illustrate this further,
the following section will show how you can extend System.EventArgs and create
your own events.

Creating and Handling Events
In many applications, especially multithreaded ones, creating, firing, and handling
your own events can be extremely useful.Take, for example, a socket-based appli-
cation.You could use a single thread to do all of your processing, including
checking the socket for incoming data. It would be much tidier, however, to
spawn a separate thread that listens on the socket for incoming data while
another thread performs the processing.When new data is received, it could fire
an event, and we could create an event handler to get called when new data
arrives on the socket.

Events are also useful when an application needs to receive data from external
sources. Often, this communication is accomplished using messages. Such mes-
sages generally are transferred using message queues, or are sent directly to an
application.To get the full effect of events, let’s create an application where we
create, fire, and handle our own events when a message is received. Our applica-
tion will allow messages to be sent to it, and when it receives messages, it will fire
an event to the clients subscribing to the messages. It will have these parts:

■ A MessageData class, derived from System.EventArgs, that will contain our
message data when events are fired

■ A MessageManager class that receives messages and then fires events

■ A MessageClient class that handles events fired by the MessageManager

■ A MainApplication class that creates our other class instances and sends
messages to the MessageManager

The MessageData Class
The MessageData class encapsulates the data that will be sent as the second argu-
ment to the event handler.As discussed previously, this object must derive from
System.EventArgs. Our class will have only one property, namely a string that will
contain the text of the message that was sent.We will also provide a constructor
to initialize our string. Our class will look like this:

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 321

322 Chapter 8 • Delegates and Events

class MessageData : System.EventArgs

{

//This is the string that will contain the message text.

public string sMessageText;

//A constructor to initialized sMessageText

public MessageData(string sText)

{

sMessageText = sText;

}

}

The MessageManager Class
The MessageManager class actually will receive the messages. It will be called by
other components, which will pass the message to it. It is then responsible for
firing the event that will notify subscribed clients that a message has been
received.

To define the type of event handler that it is able to call, the MessageManager
declares a delegate named MessageEventHandler, which returns void and takes two
parameters, an object and a MessageData parameter. Since MessageData is derived
from System.EventArgs, our MessageEventHandler delegate fits the mold for a stan-
dard event handler.The declaration looks like this:

public delegate void MessageEventHandler(object sender,

MessageData e);

NOTE

We named our MessageData parameter e. This is not really descriptive,
and you can call your EventArgs object something more useful. In this
example, e is used simply to follow the precedence set by the rest of the
.NET Framework, where this object is always named e.

MessageManager also defines the event that we will fire when we receive a
new message.This event is defined using the event keyword.When we use the
event keyword, the compiler will look for two things after it: the delegate type

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 322

Delegates and Events • Chapter 8 323

that will be allowed to handle this event, and the name of the event. In our
example, the event declaration looks like this:

public event MessageEventHandler OnMessageReceived;

This basically says that we have declared a new event that can be handled by
delegates of type MessageEventHandler.The name of the event will be
OnMessageReceived.

Since the MessageManager class is responsible for receiving messages, we need
to implement a method through which clients can send messages.We’ll call the
method SendMessage.This method will also be responsible for creating a
MessageData class with the message text in it, and then sending the MessageData
out as part of an OnMessageReceived event that it will fire.The MessageData object
is created by using its constructor.The OnMessageReceived event can then be fired
by calling the OnMessageReceived event as if it were a method.We’ll supply a ref-
erence to ourselves using the this keyword along with the MessageData object
when we fire the event.The entire SendMessage() method will look like this:

public void SendMessage(string sMessage)

{

MessageData msgData=new MessageData(sMessage);

OnMessageReceived(this, msgData);

}

To put all of those segments together, the entire MessageManager class will
look like this:

class MessageManager

{

public delegate void MessageEventHandler(object sender,

MessageData e);

public event MessageEventHandler OnMessageReceived;

public void SendMessage(string sMessage)

{

Console.WriteLine("MessageManager - Received message: " + sMessage);

MessageData msgData=new MessageData(sMessage);

OnMessageReceived(this, msgData);

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 323

324 Chapter 8 • Delegates and Events

}

}

The MessageClient Class
The primary purpose of the MessageClient is to consume the events that the
MessageManager publishes. For it to subscribe to MessageManager’s events, it
needs a reference to the MessageManager itself.We therefore provide one
through MessageClient’s constructor. Inside of the constructor, we associate
MessageManager’s OnMessageReceived event with our message handler using the
overloaded += operator:

public MessageClient(MessageManager mgr)

{

mgr.OnMessageReceived += new

MessageManager.MessageEventHandler(HandleMessageReceived);

}

The message handler HandleMessageReceived that we assigned to the event has
not been implemented yet—that is the next step.We will make it write a message
to the console to alert us that a message has been received:

public void HandleMessageReceived(object sender,

MessageData e)

{

Console.WriteLine("MessageClient - The message text is: " +

e.sMessageText);

}

The MainApplication Class
We’re all done implementing our messaging system. Now we just need an entry
point where we can create our class instances and send a message. First we’ll
create an instance of the MessageManager.Then we’ll create an instance of the
MessageClient, and pass our reference to MessageManager into its constructor.
Finally, we’ll send a message.

class MainApplication

{

static void Main(string[] args)

{

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 324

Delegates and Events • Chapter 8 325

MessageManager mgr=new MessageManager();

MessageClient client=new MessageClient(mgr);

mgr.SendMessage("Here is a new message");

}

}

Our Complete Messaging Example
Our event publisher/subscriber system is now complete. Here is the complete
code listing for our messaging system:

using System;

namespace EventSample

{

//This is the data that will be sent with the event when

// it fires. Note that is derived from System.EventArgs.

class MessageData : System.EventArgs

{

public string sMessageText;

public MessageData(string sText)

{

//This will hold the actual text of the message.

sMessageText=sText;

}

}

//The message manager receives messages, and fires an

// event when it receives a message.

class MessageManager

{

//This delegate defines what our event handlers have

// to look like.

public delegate void MessageEventHandler(object sender, MessageData e);

//This is the actual event that we will fire.

// 'MessageEventHandler' is the delegate type that

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 325

326 Chapter 8 • Delegates and Events

// can handle this event.

public event MessageEventHandler OnMessageReceived;

//This is the method through which applications can

// send messages.

public void SendMessage(string sMessage)

{

Console.WriteLine("MessageManager - Received message: " + sMessage);

//We have received a message. First create our

//message data class, supplying the message text to

//the constructor.

MessageData msgData=new MessageData(sMessage);

//Now fire the event.

OnMessageReceived(this, msgData);

}

}

//The MessageClient registers for and handles the

// OnMessageReceived event from MessageManager.

class MessageClient

{

//Our constructor takes a reference to a

//MessageManager object so we can register to receive

//its events.

public MessageClient(MessageManager mgr)

{

//Use the overloaded += operator to register for

//the OnMessageReceived event.

mgr.OnMessageReceived += new

MessageManager.MessageEventHandler(

HandleMessageReceived);

}

//This is our actual event handler.

public void HandleMessageReceived(object sender,

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 326

Delegates and Events • Chapter 8 327

MessageData e)

{

//Our MessageData object contains the message

//text. Write the message to the console.

Console.WriteLine("MessageClient - The message text is: " +

e.sMessageText);

}

}

//This is the main entry point.

class MainApplication

{

static void Main(string[] args)

{

//Create a new MessageManager.

MessageManager mgr=new MessageManager();

//Create a new MessageClient and supply it with a

// reference to the MessageManager so it can register

// for MessageManager's events.

MessageClient client = new MessageClient(mgr);

//Send a message to the MessageManager. This will then

// in turn cause an event to be fired to the

// MessageClient.

Console.WriteLine("Sending a message to MessageManager");

mgr.SendMessage("Delegates are cool!");

}

}

}

Output
Sending a message to MessageManager

MessageManager - Received message: Delegates are cool!

MessageClient - The message text is: Delegates are cool!

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 327

328 Chapter 8 • Delegates and Events

We send the message, the message is received, and the event fires. Our handler
then fires and prints out the final line in the output. Note that, in fact, we could
add as many handlers as we want to the OnMessageReceived event. Each of these
handlers then would get called when the event fires.This ability is called
multicasting, and will be discussed in the next section.

Multicasting
Multicasting involves sending one event notification to many different event sub-
scribers. For example, consider using an e-mail client to send an e-mail.When
you click the Send button, there are several different components that need to
know about it.The windowing component needs to know you clicked the Send
button so it can animate the button pushing in. It might also automatically close
the window in which you were composing the e-mail.The network spooling
component needs to know so that it can queue the e-mail and then send it.
Depending on the architecture of the e-mail client, there may even be a thread
that needs to be notified so that it can place the e-mail in a folder of items that
have been sent. In such a scenario, multicasting can be useful. By allowing dif-
ferent components to subscribe to the same event, we can allow many different
actions to take place in response to the event.

C#’s delegates, of course, support multicasting.We can use the overloaded +=
operator to assign as many delegates as we want to an event. For an example, let’s
revisit the messaging application we created earlier.We’ll add another class to it,
called MessageLogger.The purpose of the MessageLogger will be to write any mes-
sages that are received to a file.We will subscribe it to the
MessageManager.OnMessageReceived event, just as we did with MessageClient. In
other words, both MessageLogger and MessageClient will be subscribing to the same
event at the same time.Thus, the event will be multicast to both.

The MessageLogger will have much the same structure as the MessageClient
class.The constructor, for instance, will be almost identical. It will take a reference
to the MessageManager class and then subscribe to the MessageManager’s
OnMessageReceived event:

public MessageLogger(MessageManager mgr)

{

mgr.OnMessageReceived += new

MessageManager.MessageEventHandler(WriteMessageToFile);

}

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 328

Delegates and Events • Chapter 8 329

Our handler in this case will be called WriteMessageToFile. It will follow the
same format that MessageClient’s handler follows, in that it will take argument
types of object and MessageData. It will then use a StreamWriter to write the mes-
sage to a file:

public void WriteMessageToFile(object sender,

MessageData e)

{

System.IO.StreamWriter writer = new

System.IO.StreamWriter("c:\\log.txt", true);

writer.WriteLine(e.sMessageText);

writer.Close();

}

The StreamWriter object takes two arguments.The first is the path to our log
file, and the second is a boolean that signifies that we wish to open the file in
append mode. Chapter 11 discusses the System.IO namespace in full detail. For
the time being, all you need to know is that our example will create a file called
log.txt located in the root of the C drive (c:\ directory).All of our messages will
be written to that file.

The final step is to instantiate an instance of MessageLogger in our Main
method.The rest of the code will be similar to the preceding one except for the
following additions:

using System:

namespace EventSample

{

...

//Rest of the code removed for simplicity

...

//The MessageLogger class responds to the

// MessageManager.OnMessageReceived event and writes the

// message that was received to a file.

class MessageLogger

{

public MessageLogger(MessageManager mgr)

{

mgr.OnMessageReceived += new

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 329

330 Chapter 8 • Delegates and Events

MessageManager.MessageEventHandler(WriteMessageToFile);

}

public void WriteMessageToFile(object sender,

MessageData e)

{

Console.WriteLine("MessageLogger - Writing message to file: " +

e.sMessageText);

//Create a stream writer object to write the file to.

System.IO.StreamWriter writer = new

System.IO.StreamWriter("c:\\log.txt", true);

//Write the message text to file.

writer.WriteLine(e.sMessageText);

writer.Close();

}

}

class MainApplication

{

static void Main(string[] args)

{

//Create a new MessageManager.

MessageManager mgr=new MessageManager();

//Create a new MessageClient and supply it with a

// reference to the MessageManager so it can register

// for MessageManager's events.

MessageClient client = new MessageClient(mgr);

//Create a new MessageLogger and supply it with a

// reference to the MessageManager.

MessageLogger logger = new MessageLogger(mgr);

//Send a message to the MessageManager. This will then

// in turn cause an event to be fired to the

// MessageClient.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 330

Delegates and Events • Chapter 8 331

Console.WriteLine("Sending a message to MessageManager");

mgr.SendMessage("Here is a new message");

}

}

}

The net effect here is that we will now perform two actions when a message
is sent to the MessageManager: the MessageClient will write a message to the console
and the MessageLogger will write the message to a file.The output is as follows:

Sending a message to MessageManager

MessageManager - Received message: Delegates are cool!

MessageClient - The message text is: Delegates are cool!

MessageLogger - Writing message to file: Delegates are cool!

In addition to the console output, a new file has been created, namely
C:\log.txt. Opening the file reveals that it contains the following text:

Delegates are cool!

Order of Operations in Multicasting
Multicast events are published to subscribers in the order in which they are
assigned. In the example in the previous section, for instance, the message will
first be written to the console, then the message will be written to a file.

Note that multicasting is also single threaded. In other words, when an event
is fired, control does not return to the firing thread until the consuming event
handler returns.This becomes significant if you have a multithreaded application
and are multicasting an event to different threads.The event will be published on
a single thread, so it is up to the subscribing threads to consume it responsibly
and return properly so that the other subscribers can also receive the event.

In a worst-case scenario, a subscriber could receive an event and put up, say, a
modal dialog box waiting for user input. If the computer happens to be unat-
tended, the multicasting thread will block and no other subscribers will receive
the event until the dialog box is dismissed.

Advanced Delegate Usage
You have already learned most of the important concepts behind delegates.As
a matter of fact, you now know enough to use delegates very successfully! This

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 331

332 Chapter 8 • Delegates and Events

section covers some more advanced concepts with delegates to augment your
knowledge and maybe make your life a little easier.

Declaring Delegates as Static Members
As we discussed earlier, an instance of a delegate must be created before it can be
used. In our database engine example, we first had to instantiate an instance of
our class that contained the callback function so that we could use the instance of
the callback function to create the delegate.We also explicitly had to instantiate
our delegate before it could be used. Specifically, I’m referring to the following
code segment:

class DBEngine

{

static void Main(string[] args)

{

DBEngine dbEngine = new DBEngine();

DBIndexer.DoneIndexingCallback callback = new

DBIndexer.DoneIndexingCallback(dbEngine.DoneIndexing);

}

}

We could simplify this code segment somewhat by taking advantage of the
fact that a delegate can be a reference to a static member method, and we can
also declare the delegate itself as a static member.The new DBEngine would look
like this:

class DBEngine

{

//We will declare and instantiate the delegate here as a

// static member.

public static DBIndexer.DoneIndexingCallback callback = new

DBIndexer.DoneIndexingCallback(DBEngine.DoneIndexing);

static void Main(string[] args)

{

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 332

Delegates and Events • Chapter 8 333

DBIndexer indexer = new DBIndexer();

Console.WriteLine("Calling the DBIndexer…");

//Index the DB!

indexer.Index(callback);

//Continue doing some work while waiting for the

//callback. But since it's not asyncronous it will

//actually block before continuing.

for(int i=0; i<100; i++)

{

Console.WriteLine(i);

}

}

//Note we have made this callback method static.

public static void DoneIndexing(int nNumberOfIndexes)

{

Console.WriteLine("Done indexing, there are " +

nNumberOfIndexes + " indexes in the database");

}

}

The method is now a bit simpler.Additionally, our delegate is created stati-
cally.This would be especially beneficial if we needed to access the delegate many
different times and from different parts of our class. Creating it statically saves us
the need for recurring instantiation.

Delegates and Thread Creation
In Java, thread creation generally is accomplished by making a class implement
the Runnable Interface. Since C# already has the flexibility of delegates, however,
they make for an easy solution to creating threads.We use a delegate to get a ref-
erence to a thread’s entry point, and use it when creating the thread.When we
tell the thread to run, that delegate will then be used to start the thread’s main
method.

Threads are constructed via a predefined delegate called System.Threading
.ThreadStart, which returns void and takes no parameters.You can assign any

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 333

334 Chapter 8 • Delegates and Events

method with this signature to this delegate and have it run as a separate thread.
Here’s an example:

using System;

using System.Threading;

namespace ThreadingSample

{

class ThreadSample

{

static void Main(string[] args)

{

Thread thread;

//Create a thread using the predefined ThreadStart

// delegate declaration.

thread = new Thread(new ThreadStart(MyThread));

//Tell the new thread to start execution.

thread.Start();

Console.WriteLine("In main thread");

}

static void MyThread()

{

Console.WriteLine("In new thread");

}

}

}

Don’t worry too much about understanding the ins and outs of this example
now, as threads and multithreading programming are covered in more detail in
Chapter 10. Just be aware of the existence of the System.Threading.ThreadStart del-
egate and how you can assign a method to this delegate, which can then be exe-
cuted as separate thread.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 334

Delegates and Events • Chapter 8 335

Summary
In this chapter, we talked about delegates, and how they are type-safe and object-
oriented.We also discussed how they are references to a method.They can refer-
ence any method, as long as that method conforms to the signature with which
the delegate was declared.

After learning about what delegates are, we learned how they could be used
as callback functions, or for asynchronous processing.We looked at how they are
declared, instantiated, and invoked.We then created the DBIndexer sample appli-
cation, where we used a delegate to alert us through a callback when the
DBIndexer was finished processing.

Next, we discussed how delegates are used in event handling.We learned that
there are many delegates already defined in the .NET Framework, and they all
have the same signature as System.EventHandler.They return void and take two
arguments: an object and a class derived from System.EventArgs.We then built our
own event publisher/subscriber system, where we sent messages to an object, and
that object then fired the events to subscribed handlers.

Next, we learned about how delegates are used to handle events in GUI
applications, like button clicks or other windowing events.We created a form that
had a single button, implemented a handler, and then assigned the handler to the
button’s click event.

After our discussion on GUI events, we took a look at multicasting, which is
firing the same event to multiple subscribers.We revisited the messaging example
and added another subscriber to receive the OnMessageReceived event.The event
was then multicast to both subscribers.

As a final note, we talked about how delegates can be declared statically to
simplify coding.We also took a look at how delegates are used as part of the
.NET Framework’s threading model.

Solutions Fast Track

Delegates

Delegates are similar to C/C++ function pointers.

Delegates reference a method.

Delegates are object-oriented, type-safe, and secure.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 335

336 Chapter 8 • Delegates and Events

Using Delegates as Callbacks

Using delegates as callbacks is useful for receiving notifications.

Using delegates as callbacks is helpful in asynchronous processing.

Using Delegates for Event Handling

Using delegates for event handling is the standard publisher/subscriber
model.

Handlers take two arguments: a reference to the event source and an
object derived from System.EventArgs.

Event delegates are constructed using the predefined delegate declaration
System.EventHandler.

Multicasting

Multicasting publishes one event to multiple subscribers.

Multicasting is single threaded.

Advanced Delegate Usage

The delegate and the handler are both declared static.

Declaring delegates as static members yields more concise and easier-to-
read code.

The predefined delegate System.Threading.ThreadStart is used to create a
delegate.

The new delegate holds a reference to the thread’s entry point.

www.syngress.com

223_C#Java_08.qxd 5/21/02 2:14 PM Page 336

Delegates and Events • Chapter 8 337

Q: What is the Java equivalent of a delegate?

A: There really is no Java equivalent to delegates. Java does provide elements that
give similar functionality (like the ActionListener interface for event handling),
but the concept of using a variable to reference to a method does not really
exist in Java.

Q: Are delegates really function pointers?

A: No.Though they are similar, delegates are much more than function pointers.
Most importantly, they can hold references to multiple methods, and they are
type-safe.

Q: How many event handlers can be assigned to a multicast delegate?

A: A multicast delegate stores its invocation list in a linked list.That being the
case, the number of references it can hold theoretically is limited only by
system resources (and practicality!).

Q: Why did Microsoft choose to use delegates instead of a more Java-like
architecture?

A: This is perhaps best answered by Microsoft. Recently, Microsoft published an
article at http://msdn.microsoft.com/visualj/technical/articles/delegates/
truth.asp, which explains the issue very well.The article was posted in
response to a white paper published by Sun at http://java.sun.com/docs/
white/delegates.html, criticizing Microsoft’s use of delegates in J++ and C#.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_08.qxd 5/21/02 2:14 PM Page 337

223_C#Java_08.qxd 5/21/02 2:14 PM Page 338

Attributes and
Assemblies

Solutions in this chapter:

■ Working with Attributes

■ Using Reflection

■ Creating Assemblies

■ Versioning

Chapter 9

339

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_09.qxd 5/21/02 2:15 PM Page 339

340 Chapter 9 • Attributes and Assemblies

Introduction
One of the features of the Common Language Runtime (CLR) is that any types
built for the CLR with any .NET languages can be shared among other applica-
tions in the Microsoft .NET Framework. In this section we will look at building,
packaging, and deploying applications for the .NET Framework. More specifi-
cally, we will learn about attributes and assemblies.

The first part of this chapter will look at attributes.Attributes are used to give
extra information to the .NET compiler. Java uses a combination of /** and @
tag comments for including additional documentation information about classes,
methods, fields, and even individual parameters. However, this information is not
included as parts of the bytecode after you compile your class.With attributes
you have the ability to provide custom information about any element of your
code that gets compiled as part of your program.This information or metadata
can then easily be retrieved at runtime through a process known as reflection.

The second part of the chapter will look at assemblies, which are C#’s ver-
sion of packaging.Assemblies are .exe’s or .dll’s generated from compiling a pro-
ject of files.The .NET runtime uses the configurable attributes and versioning
rules built into assemblies to greatly simplify application deployment. Finally, you
will learn about versioning, which will prevent a common Windows application
development problem referred to as “DLL Hell.”

Working with Attributes
The most useful thing to know about attributes is that the information supplied
in the attribute is compiled as part of the Intermediate Language (IL) file for
your class.Therefore, any information stored as C# attributes is available at run-
time.This can be very handy, as you’ll learn in the following sections.

Attributes store their information in the application metadata.This is a binary
form of information storage that is included with every compiled application or
dynamic link library (DLL) in the .NET framework. Program information such
as assembly information, types and resources in an assembly, and various other
pieces of data about the application or DLL is stored here.As a matter of fact,
every type and member defined or referenced in your code is described in the
application metadata.

As the programmer, you also have the ability to include information in the
metadata of your program or DLL.This information can then be read at runtime,
or can be accessed via a third-party application. Information can be placed into
the metadata using either default or custom attributes.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 340

www.syngress.com

Why would you want to add attributes? A couple of very useful implementa-
tions of attributes would be to use them for bug tracking or for code-check veri-
fication. If you need a way to verify that the code in particular sections has been
checked or reviewed, attributes can provide an easy way to implement this.
Project tracking and bug tracking are just two of the useful applications for this
new feature.

Using Attributes
Attributes can be applied to many locations and scopes within your code.These
elements are called Attribute Targets. The following elements are able to have
attributes applied to them:

■ Assemblies

■ Classes

■ Constructors

■ Delegates

■ Enums

■ Events

■ Fields

■ Interfaces

Attributes and Assemblies • Chapter 9 341

Application Security
Keep in mind that attribute information will be stored in the application
metadata and included with your runtime executable. This means that
anybody can read this information by using a third-party application
capable of reading application metadata. This can be useful if you’re
including information on how to use your distributed DLL files success-
fully, but not as useful if you include proprietary information. Just keep
this in mind when deciding what to include in your attributes.

Developing & Deploying…

223_C#Java_09.qxd 5/21/02 2:15 PM Page 341

Continued

342 Chapter 9 • Attributes and Assemblies

■ Methods

■ Modules

■ Parameters

■ Properties

■ Return Values

■ Structs

As mentioned previously, you can use either default attributes or define
custom attributes in your code.All attributes have specific targets that they are
assigned to support.This is defined by the AttributeTargets parameter of the
attribute.We’ll examine this parameter in more detail in the section,“Creating
Custom Attributes.”

Table 9.1 lists some of the default attributes that are included with C#
(which are all members of the System.Attribute namespace).This list shows only
some of the more common, practical attributes that you’ll encounter.There are
hundreds of default attributes available in C#, plus the ability to create your own
custom attributes.

Table 9.1 Common Default Attributes

Attribute Description

System.SerializableAttribute [Serializable] Allows your class to be serializ-
able to disk or over a network.

System.NonSerializedAttribute [NonSerialized] Allows certain members to be
nonserialized so that data
won’t be saved to disk or over
a network. Similar to the tran-
sient keyword in Java.

System.Web.Services.WebServiceAttribute Allows you to specify a name
[WebService] and description for a Web

service.
System.Web.Services.WebMethodAttribute Marks a method to be
[WebMethod] exposed as part of a Web

service.
System.AttributeUsageAttribute Defines the usage parameters
[AttributeUsage] for custom attributes.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 342

Attributes and Assemblies • Chapter 9 343

System.Diagnostics.ConditionalAttribute Makes the execute of a
[Conditional] method optional depending

on specific preprocessor
directives.

System.ObsoleteAttribute [Obsolete] Marks a specific section of
code as obsolete.

System.Reflection.AssemblyCultureAttribute Specifies a specific culture
[AssemblyCulture] supported by the assembly.
System.Reflection.AssemblyVersionAttribute Specifies the version number
[AssemblyVersion] of the assembly.
System.Reflection.AssemblyKeyFileAttribute Specifies a key file to use
[AssemblyKeyFile] when assigning a “strong

name” to an assembly.

To use an attribute, simply specify the attribute you wish to use and encapsu-
late it within a pair of brackets.You will notice that all of the attributes in Table
9.1 end with the text Attribute. In C#, when you specify an attribute, you can
leave off this portion of the attribute name. In addition, if you have specified the
using System statement in your code, you can leave off the System namespace
identifier.As a result of this, the System.NonSerializedAttribute attribute would
simply be referenced as [NonSerialized].

You can apply your attribute to your target by placing it immediately before
the target element. For example, to apply the [Serializable] attribute to a class, you
would do the following:

using System;

[Serializable]

class SerialaizableClass

{

//Class definition here

}

To apply more than one attribute to a target, you can simply stack them one
on top of the other, or you can separate them using commas. For example, these
two declarations are the same:

[Serializable]

[WebService]

www.syngress.com

Table 9.1 Continued

Attribute Description

223_C#Java_09.qxd 5/21/02 2:15 PM Page 343

344 Chapter 9 • Attributes and Assemblies

or

[Serializable, WebService]

As I’ve mentioned, attributes can be applied on most elements within your
application, depending on which attribute targets the attribute has defined.
Attributes are applied to all of these in the same way, with one exception.When
applying attributes to the assembly level, they must be specified as [assembly:
Attribute].This designates that the attribute refers to the assembly level and it will
be applied to the assembly element. In all other cases, the compiler will deter-
mine the attribute target based on the attribute’s location.

Some attributes accept a string parameter and use it as part of their function.
A good example of this would be to use the System.ObsoleteAttribute attribute.
This attribute is used to mark a program element as obsolete and destined to be
removed in a future version.The following code sample shows how this attribute
would be used:

using System;

class AttributesSample

{

static void Main()

{

string FullString = ConcatStrings("This is our ",

"attributes example.");

Console.WriteLine(FullString);

FullString = ConcatTwoStrings("Compiler generates ",

"a warning when this line is compiled.");

Console.WriteLine(FullString);

FullString = ConcatStrings("This example ",

"is ", "complete.");

Console.WriteLine(FullString);

}

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 344

Attributes and Assemblies • Chapter 9 345

[Obsolete("Use ConcatStrings instead.")]

public static string ConcatTwoStrings(string StringOne,

string StringTwo)

{

return (StringOne + StringTwo);

}

public static string ConcatStrings()

{

return ("No strings submitted");

}

public static string ConcatStrings(string StringOne,

string StringTwo)

{

return (StringOne + StringTwo);

}

public static string ConcatStrings(string StringOne,

string StringTwo,

string StringThree)

{

return (StringOne + StringTwo + StringThree);

}

}

When the preceding code is compiled, a warning is generated that notifies
you that you are using a method that is obsolete. It includes the text specified
with the [Obsolete] attribute, which can include redirecting someone to use a dif-
ferent method.The actual warning is as follows:

Microsoft (R) Visual C# Compiler Version 7.00.9254 [CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

AttributesSample.cs(12,15): warning CS0618:

'AttributesSample.ConcatTwoStrings(string, string)' is obsolete:

'Use

ConcatStrings instead.'

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 345

346 Chapter 9 • Attributes and Assemblies

As you can see, this attribute alone can help a great deal when working with
an application that will end up with multiple version releases as it is developed.
This and all the other built-in attributes can be very useful as a project continues
through the development phases.

Creating Custom Attributes
Generally, the built-in attributes will cover most situations that would require the
use of attributes. Situations do tend to arise, however, where the default attributes
just don’t provide the necessary information or functions that you require.This
eventuality is provided for in the .NET architecture by allowing you to define
your own custom attributes.

There are several situations when this may be useful. In a case where code
development is done by several distinct groups, a custom attribute could be
defined to pass information about certain sections of code between groups.
Another good example of this would be when using a third-party change man-
agement system to track code development. Custom attributes that relate to the
data needed for the change management system could be defined and then later
extracted into a database. Finally, when developing a program that has the ability
to run in both a demo or licensed mode, you could define a custom attribute to
designate which sections of code are designed to work in each mode.

A custom attribute is really just an attribute class.These classes are derived
from System.Attribute either directly or indirectly.There are several steps involved
in creating an attribute class. First, the allowed targets for your custom attribute
must be defined.This is done by adding the AttributeUsageAttribute to your class.

Second, you must declare the class itself as either a direct derivative or an
indirect derivative of System.Attribute. In addition to this requirement, the class
must also be defined as a public class. It is highly recommended, though not
required, that you end the class name with Attribute. Next, the constructors for
your class must be declared.This can be done in the same way as any other class
and does support overloading the constructor.This leads us to our final step of
defining properties. Defining properties allows optional parameters to be passed
to the constructor.

Due to the number of steps involved in creating custom attributes, we will go
through each step individually and examine the options available to us each step
of the way.As we work through each step, we’ll watch as our code evolves until
finally we have a new custom attribute defined and implemented.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 346

Continued

Attributes and Assemblies • Chapter 9 347

Defining the AttributeUsage Attribute
The first step of designing our custom attribute is to define the target of the new
custom attribute.This defines the elements to which the attribute can be applied.
So, we first need to determine whether the attribute should be applied to specific
elements or available to all elements.The available target values are shown in
Table 9.2 along with a description of the elements to which an attribute can be
applied when using each target:

Table 9.2 Attribute Targets

Target Description

All Any element
Assembly An assembly
ClassMembers Any class member
Class A class
Constructor A constructor
Delegate A delegate
Enum An enumeration
Event An event
Field A field
Interface An interface
Method A method
Module A module
Parameter A parameter

www.syngress.com

Conflicting Attributes
When writing your own custom attributes, it is always best to make sure
that there isn’t a built-in attribute with the same name. If there is, this
can lead to conflicts and compile errors. It’s also a good idea to see if
there is an existing built-in attribute that will fulfill your needs rather
than creating a custom attribute. There’s no point in reinventing the
wheel!

Debugging…

223_C#Java_09.qxd 5/21/02 2:15 PM Page 347

348 Chapter 9 • Attributes and Assemblies

Property A property
ReturnValue A return value
Struct A structure

In addition to the target, there are two additional properties that need to be
set for the AttributeUsage attribute.The Inherited property is a boolean property that
specifies whether your attribute can be inherited by any classes derived from a
class to which your attribute has been applied.The default value for this property
is true, but you can specify it as false to prevent this behavior.

The second property is the AllowMultiple property.This property is a boolean
as well, and specifies whether multiple instances of your attribute can exist on any
given element to which it is applied.The default value for this property is false,
but you can specify it as true to allow your attribute to be specified multiple times
on a given element.

So, for our example, let’s define an AttributeUsage attribute and give it targets
of Assembly, Class, and Method.We’ll also leave the Inherited property with its
default of true, but set the AllowMultiple property to true. In our code, this would
look like the following:

[AttributeUsage(AttributeTargets.Assembly

| AttributeTargets.Class

| AttributeTargets.Method, AllowMultiple=true)]

(Note that you separate multiple attribute targets by using the pipe | character.)

Declaring an Attribute Class
Before declaring our attribute class, we must keep the rules for doing this prop-
erly in mind to make sure we get it right the first time.

■ An attribute class must directly or indirectly derive from System.Attribute.

■ An attribute class must be declared as public.

■ An attribute class should follow the attribute naming convention.

So, with that in mind, let’s declare our attribute class. For this example, we’ll
name our attribute class CodeTrackerAttribute.We’ll be using this attribute to track
the development of code within our project.A perfect scenario for the usage of

www.syngress.com

Table 9.2 Continued

Target Description

223_C#Java_09.qxd 5/21/02 2:15 PM Page 348

Attributes and Assemblies • Chapter 9 349

this would be in a situation when a very large code project has been divided
between several companies, with each wanting to keep their source code
restricted from the other.This custom attribute could be included in a compiled
assembly and distributed for the other companies to use. XML documentation
comments could also be used to accomplish the same goal, but this is simply
another alternative.The following code sample shows how we would define this
while complying with our rules:

[AttributeUsage(AttributeTargets.Assembly

| AttributeTargets.Class

| AttributeTargets.Method, AllowMultiple=true)]

public class CodeTrackerAttribute : System.Attribute

{

}

Declaring Attribute Class Constructors and Properties
Attribute class constructors function in the same way as normal constructors, and
can be overloaded in the same manner as you would in a normal class.You can
also specify required and optional parameters for your attribute class constructor.
Generally, this is done by using properties with your constructor.

For our example, we’ll want our attribute to take the programmer’s name, a
coding phase designator, and an optional notes field as parameters. In order to do
this, we’ll create our constructor and require the name and phase fields while
leaving the notes field as optional. In order to define the notes field as optional, all
we have to do is leave it out of the constructor and it automatically becomes an
optional field.The following code demonstrates how we could do this by using
properties:

using System;

[AttributeUsage(AttributeTargets.Assembly

| AttributeTargets.Class

| AttributeTargets.Method, AllowMultiple=true)]

public class CodeTrackerAttribute : System.Attribute

{

private string name;

private string phase;

private string notes;

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 349

350 Chapter 9 • Attributes and Assemblies

//We'll require the name and phase parameters.

public CodeTrackerAttribute(string name, string phase)

{

this.name=name;

this.phase=phase;

this.notes=notes;

}

//Define the name property.

public virtual string Name

{

get {return name;}

}

//Define the phase property.

public virtual string Phase

{

get {return phase;}

}

//Define the notes optional property.

public virtual string Notes

{

get {return notes;}

set {notes=value;}

}

}

Just to review, we first use the AttributeUsage attribute to define the targets for
our new attribute class.Then we define the attribute class as a derivative of the
System.Attribute class.We then define our three string variables as private and
define our constructor. In the constructor, we specify the name and phase parame-
ters so that they are required fields.We then define these two properties as well as
the notes property, which is optional.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 350

Attributes and Assemblies • Chapter 9 351

Using Custom Attributes
Now that we’ve created our custom attribute class, all that remains is to actually
make use of our new attribute. Custom attributes are used in the same way as the
built-in attributes. Since our new custom attribute is defined with targets of
Assembly, Class, and Method, the attribute can be applied to any of these three ele-
ments.The following code gives us an example of using this new attribute:

[CodeTracker("Jeremy Faircloth", "R1",

Notes = "This is only for testing.")]

class AttribTest

{

public AttribTest()

{

Console.WriteLine ("AttribTest initialized");

}

[CodeTracker("Jeremy Faircloth", "R2")]

public void AttribMessage(string Message)

{

Console.WriteLine(Message);

}

}

In the preceding code, we have declared the CodeTracker attribute on the
AttribTest class. In this case, we have also included the optional notes field.You will
notice that in order to specify that the additional parameter is to be used for the
notes property, we have specified Notes = prior to the string.The required fields
do not have this requirement as they are included as part of the constructor of
our attribute class. Since the notes field is not a part of the constructor, the con-
structor needs to know that the additional incoming parameter is to be used for
this property.

We have also declared the CodeTracker attribute on the AttribMessage method. In
this case, we are simply including the two required fields and not making use of
our optional notes property.Therefore, each parameter is sent simply as a string and
does not require any additional parameter to specify for what they are to be used.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 351

352 Chapter 9 • Attributes and Assemblies

Using Reflection
Now that we have learned how to use the built-in attributes and how to create
and use our own custom attributes, it’s time to move on to how we can retrieve
information from our attributes.To do this, we have to retrieve the attribute
information out of the metadata.This process is called reflection.

By using reflection, you can pull information from the metadata at runtime
or during the compile. Reflection actually offers us much more than just the
ability to gather information about properties, however. By using reflection, you
also have the ability to:

■ Define and load assemblies

■ Load modules listed in the assembly manifest

■ Create new instances of a type from an assembly

■ Discover information about modules

■ Discover information about classes

■ Discover information about constructors

■ Invoke a constructor

■ Discover information about methods

■ Invoke a method

■ Discover information about fields

■ Set or get field values

■ Discover information about events

■ Add or remove event handlers

■ Discover information about properties

■ Set or get property values

■ Discover information about parameters

As you can see, reflection is a very powerful tool.As it relates to attributes,
we can obtain the information that has been stored in the metadata by our
attribute classes and display or work with that data.This is done by using the
GetCustomAttributes() method, which is part of the System.Reflection namespace.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 352

Attributes and Assemblies • Chapter 9 353

We can use this method in one of two ways: as a discovery tool to determine
which members of our application have attributes and what those attributes are;
or to determine the values of the attributes within our application.

To use the GetCustomAttributes() method to discover attributes, we need to
obtain an array of members within our application.After we have this array, we
apply the GetCustomAttributes() method to each member in the array and deter-
mine whether it returns a value. If data is returned, it will be returned as an array
containing the names of the attributes applied to the member.We’ll then need to
parse through that array and display the contents.An example of how to perform
this is as follows:

Type ClassType = typeof(AttribTest);

MemberInfo[] AttribMembers = ClassType.GetMembers();

for(int i = 0; i < AttribMembers.Length; i++)

{

Object[] OurAttributes =

AttribMembers[i].GetCustomAttributes(false);

if(OurAttributes.Length > 0)

{

Console.WriteLine("The attributes for the member {0}

are: ", AttribMembers[i]);

for(int j = 0; j < OurAttributes.Length; j++)

Console.WriteLine("{0}", OurAttributes[j]);

}

}

In this code, we go through several operations, which end with the result of
each member with attributes being displayed as well as the attributes assigned to
the member. Let’s go through this example and see exactly how it all works. First,
we determine the object type of AttribTest by using the typeof operator.This oper-
ator, when used in this context, returns the System.Type object for the member
that has been passed to it. In this case, it returns AttribExample.AttribTest.

Type ClassType = typeof(AttribTest);

We then create a new instance of the System.Type class called ClassType, and
set it to contain the value AttribExample.AttribTest as previously determined by
the use of the typeof operator. The System.Type class is the fundamental class that
allows you to perform reflection on the members of your assembly. Once a
System.Type object is created, you can use the object’s methods, fields, properties,

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 353

354 Chapter 9 • Attributes and Assemblies

and classes to gather any information about the type. In this case, we are creating
a new System.Type object, which allows us to access information on the
AttribExample.AttribTest member.

There are several methods available for the System.Type object. In this case,
we’re going to use the GetMembers() method to return a list of all of this object’s
members, which we will store in a System.Reflection.MemberInfo array called
AttribMembers.The MemberInfo class is used to obtain information about members
of a class such as constructors, events, fields, methods, or properties.This declara-
tion is as follows:

MemberInfo[] AttribMembers = ClassType.GetMembers();

Stepping through this array with a for loop, we now use the
GetCustomAttributes() method on each member listed in the array. Basically, the
GetCustomAttributes() method causes objects to be constructed for each custom
attribute defined on the member and stores these constructed objects in an array.
In this example we are storing them in an Object array named OurAttributes.

Object[] OurAttributes =

AttribMembers[i].GetCustomAttributes(false);

Before continuing to the next step, we need to determine whether the array
of attribute objects actually contains anything.This is done by using an if state-
ment. If there are attribute objects defined on the member we’re working on, we
output the name of the member and a list of the attributes defined on the
member to the console.

Through this series of operations, we’ve determined which members of the
AttribTest class have attributes and have also determined what those attributes are.
Now, let’s move on to determining the value of an attribute.

To use the GetCustomAttributes() method to discover the values of an
attribute, we need to know the name of the attribute from which we wish to
gather information and the values available in the attribute.With this knowledge
in hand, we obtain a list of attributes by using the GetCustomAttributes() method
with the class from which we wish to obtain the attribute information. By using
the resulting object as a new attribute object based on the attribute about which
we wish to obtain the information, we can pull the individual attribute parame-
ters from the attribute.The following code illustrates this process:

Type type = typeof(AttribTest);

foreach (object MyObj in type.GetCustomAttributes(true))

{

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 354

Attributes and Assemblies • Chapter 9 355

CodeTrackerAttribute att = MyObj as CodeTrackerAttribute;

if (att != null)

{

Console.WriteLine("Name: {0}", att.Name);

Console.WriteLine("Phase: {0}", att.Phase);

Console.WriteLine("Notes: {0}", att.Notes);

}

}

Stepping through this code, we first create a new System.Type object of the
same type as AttribTest, just as we did in the last code sample.We then use the
GetCustomAttributes method on each object of that type.

Next, we create a new CodeTrackerAttribute object named att using the previ-
ously created object as a CodeTrackerAttribute object. If this object is null after this
procedure, it would mean that there were no CodeTrackerAttribute attributes defined
on the object.Therefore, we check to see if this is the case and if not, we proceed.

Since we have now identified that there is a CodeTrackerAttribute attribute
defined on the member we’re working with, we can now iterate through the
information that we know is stored in that attribute and display it to the console.

Now that we know how to use the GetCustomAttributes() method, let’s take a
look at how to put it all together.The following code sample takes our previous
custom attribute sample and expands on it. Included in this code is the definition
of a new custom attribute, then an example of how to obtain the information
contained within the attribute.

using System;

using System.Reflection;

[AttributeUsage(AttributeTargets.All, AllowMultiple=true)]

public class CodeTrackerAttribute : System.Attribute

{

private string name;

private string phase;

private string notes;

//We'll make the name and phase parameters required

//and the notes property optional.

public CodeTrackerAttribute(string name, string phase)

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 355

356 Chapter 9 • Attributes and Assemblies

{

this.name=name;

this.phase=phase;

this.notes=notes;

}

//Define the name property.

public virtual string Name

{

get {return name;}

}

//Define the phase property.

public virtual string Phase

{

get {return phase;}

}

//Define the notes optional property.

public virtual string Notes

{

get {return notes;}

set {notes=value;}

}

}

[CodeTracker("Jeremy Faircloth", "R1",

Notes = "This is only for testing.")]

public class AttribTest

{

[CodeTracker("Jeremy Faircloth", "R1")]

public AttribTest()

{

//Insert useful constructor code here.

}

[CodeTracker("Jeremy Faircloth", "R2",

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 356

Attributes and Assemblies • Chapter 9 357

Notes="Revision 2 for this method")]

public void AttribMessage(string Message)

{

Console.WriteLine("*****" + Message + "*****");

}

}

public class AttribInfo

{

public AttribInfo()

{

Type type = typeof(AttribTest);

MemberInfo[] AttribMembers = type.GetMembers();

for(int i = 0; i < AttribMembers.Length; i++)

{

Object[] OurAttributes =

AttribMembers[i].GetCustomAttributes(false);

if(OurAttributes.Length > 0)

{

Console.WriteLine("The attributes for the " +

"member {0} are: ", AttribMembers[i]);

for(int j = 0; j < OurAttributes.Length; j++)

Console.WriteLine("{0}", OurAttributes[j]);

Console.WriteLine("*****");

foreach (object MyObj in OurAttributes)

{

CodeTrackerAttribute att = MyObj as

CodeTrackerAttribute;

if (att != null)

{

Console.WriteLine("The CodeTracker attribute"

+ " values for this member are:");

Console.WriteLine("Name: {0}", att.Name);

Console.WriteLine("Phase: {0}", att.Phase);

Console.WriteLine("Notes: {0}", att.Notes);

Console.WriteLine("*****");

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 357

358 Chapter 9 • Attributes and Assemblies

}

}

}

}

}

}

class AttribWork

{

static void Main()

{

AttribTest attrib = new AttribTest();

attrib.AttribMessage ("Attribute Example");

AttribInfo attinfo1 = new AttribInfo();

}

}

This code example is a little more complex, so let’s examine it and see exactly
what is happening. In the first part of the code, we’re creating a new custom
attribute called CodeTracker.This is very similar to our original CodeTracker
custom attribute, with the notable difference that this attribute has the attribute
target All. Since we’ve already gone over how this custom attribute works, we’ll
move on to the AttribTest class.

First of all, we’ve declared our CodeTracker attribute on the AttribTest class.
This class contains a constructor and one method.The constructor really doesn’t
do anything, but we have declared our attribute on it as well.The AttribMessage
method simply outputs an incoming string to the console after encapsulating it
within ten asterisks.

The real functionality of this application is in the AttribInfo class, which per-
forms the reflection and examines the attributes contained in the AttribTest class.
This class first creates a System.Type object based on the AttribTest class.We then
gather a list of the members in the class into a System.Reflection.MemberInfo array
called AttribMembers. Now that we have the array of members in the class, we
iterate through them all.

For each member, we create an object called OurAttributes, containing the
custom attributes declared on the object based on the objects returned by the

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 358

Attributes and Assemblies • Chapter 9 359

GetCustomAttributes method. If there are custom attributes defined on the
member, we output the member name and the attributes defined on it.

At this point, we change things a little from our previous example code.We
now iterate through each object in the OurAttributes array using a foreach state-
ment.With each iteration, we create a new CodeTrackerAttribute object using the
current object in the array. If the object is a valid CodeTrackerAttribute object, we
write the values of the attribute to the console.

The AttribWork class serves as a container for our Main() method. In the
Main() method, we simply create a new AttribTest object and use its AttribMessage
method to send a message to the console.Then we create a new AttribInfo object
causing the attribute information to be written to the console as well.

When we run this code, we are presented with the following output:

*****Attribute Example*****

The attributes for the member Void AttribMessage(System.String) are:

CodeTrackerAttribute

The CodeTracker attribute values for this member are:

Name: Jeremy Faircloth

Phase: R2

Notes: Revision 2 for this method

The attributes for the member Void .ctor() are:

CodeTrackerAttribute

The CodeTracker attribute values for this member are:

Name: Jeremy Faircloth

Phase: R1

Notes:

NOTE

The .ctor() method is the constructor name for the class.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 359

360 Chapter 9 • Attributes and Assemblies

As you can see with the use of reflection we were able to examine the meta-
data information contained in the AttribTest class.Viewing metadata is just one of
the major uses of reflection. Using the classes in the Reflection namespace along
with the System.Type class, you can examine and interact with the metadata of a
class to perform type discovery, dynamically invoke properties and methods, or
create new types at runtime.

Creating Assemblies
If you’re familiar with Java’s packages then you’ll easily understand the basic con-
cepts of C#’s assemblies.When working with large applications, the code quickly
becomes unwieldy due to the number of classes that eventually are defined. In
addition, naming conflicts for classes quickly arise in the application. By man-
aging the namespace, these conflicts can be avoided. In addition, your code is
more portable, with programmers needing to check out only the particular por-
tion of the namespace on which they are currently working.

Whereas Java packages are stored in .JAR files, C# assemblies are stored in
either a .CAB or a .MSI file. However, a compiled .EXE or .DLL file is also con-
sidered an assembly.These files contain all of your interfaces and classes as well as
any additional resources necessary for your assembly, such as graphic files or con-
figuration files.They also include the metadata for your application.

Although similar to Java packages, assemblies do differ in many ways. First is
the ability to perform versioning.This allows you to create and track multiple
versions of an assembly. Second, assemblies can actually be written in any of the
.NET languages, and then referenced by any other .NET language.This allows a
program to actually be composed of code written in different languages, all
working together.

The data contained in your assembly contains an intermediate form of your
compiled code.As we mentioned before, this is known as IL, and is the bytecode
form of your code.This bytecode can be disassembled by a utility included with
the .NET Framework SDK called ILDasm.This utility allows you to view the
manifest of your assembly, or to disassemble and view the bytecode contained
within it.The ILDasm utility works in both a graphical or command-line form
and can show you any information about an assembly simply by opening the
assembly within the utility. Command-line options for the utility can be found
by using the /? parameter.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 360

Attributes and Assemblies • Chapter 9 361

Manifest Data
Assemblies are similar to Java’s packages in some other ways as well.Assemblies
contain a manifest, which is similar to a manifest within a Java package.This
manifest is basically metadata, containing information about the assembly.This
metadata contains information describing the relationship between all of the parts
of your assembly. Information such as what classes are included in the assembly,
what methods are included, which outside assemblies are referenced, what
graphic files are included, and various other bits of information are stored here.

The manifest is also where versioning information for the assembly is stored.
This allows you to determine and control which versions of an assembly are in
use.Also, the manifest is digitally signed, which allows you to determine authen-
ticity of an assembly.

Building Assemblies
Assemblies can be created in two primary forms, a single-file assembly or a multi-
file assembly.When working with a single-file assembly, you can create either an
executable assembly or a library assembly.

Creating a single-file executable assembly is done in the same way as we’ve
been compiling our sample applications. Using the command-line compiler with
the following syntax creates an executable assembly named after the source file:

csc MyAssembly.cs

You can also specify a different filename for your executable assembly, by
using the /out: command-line parameter. By using the following syntax, our code
will be compiled into an executable assembly with a name that differs from the
name of the source file:

csc /out:MyNewAssembly.exe MyAssembly.cs

Keep in mind that any code used for a single-file executable assembly must
contain an entry point. More than one entry point can be defined in the code,
but only one can be used by the compiled executable.The entry point to use can
be specified at the command line with the following syntax specifying the class
containing the entry point that you wish to use:

csc /main:MyClass MyAssembly.cs

A library assembly is defined as an assembly containing multiple classes, but
no entry point.The classes within these assemblies can be called and used by

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 361

362 Chapter 9 • Attributes and Assemblies

other assemblies.To compile a library assembly, simply add the command-line
parameter /t:library to your compiler command line.This is shown in the fol-
lowing example:

csc /out:MyNewAssembly.dll /t:library MyAssembly.cs

Multiple Module Assembly
Creating a multiple module assembly easily lets you segment your namespace
into multiple files.An example for this would be where a code module references
a namespace from another code module.This is very useful when segmenting
programming work between multiple programmers. In addition, by using mul-
tiple files in your assemblies, each file could be written in a different language
under the .NET architecture and still interact.

As with a single-file assembly, a multiple module assembly must have an entry
point defined if it is to be compiled into an executable assembly.Also, the mani-
fest for your assembly must be stored in one file that you specify within the
assembly. For example, if you have a code file that references a namespace within
another code file and contains the Main method, your assembly would contain
the two code files and one additional file that contains the manifest, references
both code modules, and launches the application.

There is a specific order that should be followed when creating a multi-
module assembly. By following these steps, you will be able to generate a multi-
module assembly successfully:

1. All code files containing namespaces referenced in other code files
should be compiled into code modules first.

2. All other code files should be compiled into modules.

3. Use the Assembly Generation Tool to create an output file containing
the assembly manifest.This file can also act as the executable for the
application.

We’ll take a look at each of these steps in detail. First, let’s create two code
files with one code file referencing a namespace within the other.The following
two sample files will work for this example.

Messaging.cs
using System;

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 362

Attributes and Assemblies • Chapter 9 363

namespace Messaging

{

class MyMessage

{

public MyMessage(string InMsg)

{

Console.WriteLine("The author says: " + InMsg);

}

}

}

MainApp.cs
using System;

using Messaging;

class SendMsg

{

public static void Main()

{

MyMessage MyMsg = new MyMessage("Greetings!");

}

}

So we now have our two code samples and are ready to compile our
assembly.The first step in the process is to compile the code file with the name-
space that is being referenced into a module. In our example, this is the
Messaging.cs file.To compile a code file into a module, we must pass the /t:module
command-line parameter to the compiler. For this example, our command-line
syntax would be:

csc /t:module Messaging.cs

Now that our referenced namespace has been compiled into a module, we
can proceed to step two. Note that the filename of the module we compiled is,
by default, Messaging.netmodule. Now we need to compile our referencing code
file into a module. For this, we need to use the same command-line parameter
specifying that the file should be compiled into a module.We also need to add a

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 363

364 Chapter 9 • Attributes and Assemblies

command-line parameter specifying that the Messaging.netmodule module is refer-
enced by this module. Our syntax for this would be:

csc /addmodule:Messaging.netmodule /t:module MainApp.cs

Now for our final step, we need to use the Assembly Generation Tool to
compile our final multifile assembly.This will create the manifest and add it to
our final executable assembly.To do this, we will run the al.exe (assembly linker)
utility with the following syntax (note that it should be written on a single line):

al Messaging.netmodule MainApp.netmodule /main:SendMsg.Main

/out:MainProg.exe /target:exe

Let’s go over the options that we’re specifying in that command line.The first
parameters following your call to the al.exe executable are the modules that are to
be included in the assembly.The /main: parameter specifies where your applica-
tion starting point is. In our case, this is the Main() method in the SendMsg class.
The /out: parameter specifies the filename for our final assembly, which will also
contain the assembly manifest.And finally, the /target: parameter specifies the type
of assembly to compile.The options for this are exe for a console application, win
for a Windows executable, or lib for a library.

Now that we have a compiled executable assembly, we can run our
MainProg.exe application.This generates the following output:

The author says: Greetings!

There is one very important thing to remember when working with a multi-
module assembly:When you distribute your application, you must be sure to
include the final executable assembly as well as all compiled modules referenced
by the final assembly.Without these compiled modules, the executable assembly
will generate a file not found exception.

Versioning
One of the most common problems encountered with software development is
the issue of supporting files and multiple versions of an application. Questions
arise with each new software release regarding which support files are to be used
with which version. Is the new version of the software compatible with the old
components? Are the new components backward-compatible with the old ver-
sion of the software? Will these new components break another installed applica-
tion? And then on the developer side, which component should be included in a
new application assembly?

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 364

Attributes and Assemblies • Chapter 9 365

This problem is fondly referred to as “DLL Hell,” and is a plague on applica-
tion users and developers alike.The .NET architecture solves this with the inclu-
sion of versioning capability into its assemblies.With versioning, you have the
capability to specify which versions of a component are compatible with your
final application.You also have the ability for multiple versions of a component to
run side-by-side.

The idea is to end the problems associated with multiple versions of compo-
nents.This gives the end user a better experience, eliminates many software sup-
port headaches, and makes development of new software versions easier for
developers to create and distribute.

In order to do versioning of assemblies, the .NET architecture stores the ver-
sion number of each assembly in the assembly manifest. In addition, a culture
identifier and digital key can be stored in the assembly manifest to provide for
further versioning based on region, and in order to verify that the correct
assembly is being used.When the runtime is attempting to bind to an assembly,
all of these values are checked and you have the ability to stop the application
from executing if the wrong version of any assembly is found.

On top of all this, you also have the ability to use private or shared assem-
blies. Basically, you can set up an assembly to be installed with your application
and have it installed in your application’s directories.This would be considered a
private assembly and would be used only by your application.The alternative
would be to set up a shared assembly, which could be located in the global
assembly cache.This global assembly cache is a machinewide code cache that is set
up wherever the Common Language Runtime is installed. It allows you to place
your assemblies into a central location for sharing between multiple applications.
These assemblies are considered shared assemblies, and this is where versioning
can really show its usefulness. For example, if your company has developed mul-
tiple applications that share components, and then a new application is released
with updated components, you could specify that the components are a newer
version and should not be used by the applications released previously.This elimi-
nates the need to include backward-compatibility in the new components.

Creating Versioned Assemblies
To create a versioned assembly you must first create an assembly with a strong
name.A strong name is basically the assembly’s identity, a public key, and a digital
signature.This strong name is stored in the assembly file containing the assembly
manifest and is generated using a private key.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 365

366 Chapter 9 • Attributes and Assemblies

This public-private key pair is used to validate the authenticity of the
assembly.A bytecode hash is generated for the assembly, and then digitally signed
using the private key.When an assembly with a strong name is used, the validity
of the assembly is verified by first checking the signature using the public key. If
this test passes, the hash code is checked against a current hash code of the
assembly to verify that they are identical. If this test passes, the assembly is consid-
ered authentic and untampered.

So, before we can create our versioned assembly, we must first give it a strong
name.This can be done at the command line using tools included with the .NET
Framework SDK.This requires two tools: the assembly generation tool, with
which you’re already familiar, and a new tool called the strong name tool.The
strong name tool is used to create the cryptographic key pair, and then the
assembly generation tool is used to assign the key pair to the assembly.

To create the key pair, simply run the following command at a command
prompt:

sn –k MyKey.snk

This will generate your private key and store it in a file called MyKey.snk (snk
is the standard extension for private keys in the .NET Framework).After this file
is generated, your next step is to extract the public key from your private key.
This is done by using the following syntax:

sn -p MyKey.snk MyPublicKey.snk

Running this command will extract the public key from the file containing
your key pair and store it in the MyPublicKey.snk file. Now we have two key files
with one containing our key pair and one containing only the public key.At this
point we need to assign the key to an assembly and assign a version number to
our assembly. For this example, let’s use the Messaging.cs file from the previous
source example.

In order to do this, we must add an attribute to the code specifying the name
of the key file to use.This is an assembly level attribute called
AssemblyKeyFileAttribute. It is also important to note that this attribute is in the
System.Reflection namespace, so we’ll have to be sure and insert a using statement
for System.Reflection.This attribute accepts a string parameter, which specifies the
filename (assumed to be in the current directory) for the key file containing the
private key. In our case, this file is the MyKey.snk file. So we’ll add the following
statements to the top of our code file:

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 366

Attributes and Assemblies • Chapter 9 367

using System.Reflection;

[assembly:AssemblyKeyFileAttribute("MyKey.snk")]

Now, we need to add a version number to our assembly, using the
AssemblyVersionAttribute.This attribute is also an assembly level attribute, and is
located in the System.Reflection namespace.This attribute accepts a string value
specifying the version number of the assembly in the format of major.minor.build
.revision. For our file, let’s go ahead and set this to 1.1.0.0, as follows:

[assembly:AssemblyVersionAttribute("1.1.0.0")]

If we choose, we can also add a culture attribute to the assembly, which
specifies that this is intended for a specific culture.This is done using the
AssemblyCultureAttribute, which is also an assembly level attribute from the
System.Reflection namespace. It accepts a string parameter specifying the culture
code.This does not work for executable assemblies that include modules.This is
intended primarily for executable assemblies referencing libraries instead. So as a
consequence, this will not work in our sample application. For this example, we’ll
use en as our culture:

[assembly:AssemblyCultureAttribute("en")]

If you’ll think back to the information on how attributes work from earlier
in this chapter, you might recall that attributes are named with the Attribute
suffix—this is not required when referring to them. Based on this, the following
statements also work:

using System;

using System.Reflection;

[assembly:AssemblyKeyFile("MyKey.snk")]

[assembly:AssemblyVersion("1.1.0.0")]

Now we’ll need to compile our code into a module.To do this, we need to
make sure that the MyKey.snk file is located in the same directory as our source
file and run the compiler with the /t:module command-line parameter.This
would result in the following command line:

csc /t:module Messaging.cs

At this point, we now have a compiled module with has a strong name. In
order to make use of this module, we now need to compile the source file refer-
encing the Messaging namespace with a reference to the new Messaging.netmodule

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 367

368 Chapter 9 • Attributes and Assemblies

file.This is done the same way as our compile of the MainApp.cs file, referenced
earlier in the chapter.This syntax would look like the following:

csc /t:module MainApp.cs /addmodule:Messaging.netmodule

Now that our modules are compiled, we can compile our executable
assembly and complete our application using the assembly generation tool.The
syntax for this is:

al MainApp.netmodule Messaging.netmodule /main:SendMsg.Main

/out: MyVersionedApp.exe /t:exe

If we run our new executable assembly, we’ll receive the following result:

C:\chapt9-code>myversionedapp

The author says: Greetings!

Of course, this is the same result that we previously obtained when we went
through the same procedure without versioning. How is this any different than
the previous compile? Well, this can easily be shown by making a small modifica-
tion to our Messaging.cs file and recompiling it. If we change the version number
to 2.1.0.0, then recompile the file into a module, we end up with a module con-
taining a different version number. If you attempt to run your previously com-
piled version of MyVersionedApp.exe without recompiling it with the new version
of the module, you receive the following message:

C:\chapt9-code>myversionedapp

Unhandled Exception: System.IO.FileLoadException: The check of the

module's hash failed for file 'Messaging.netmodule'.

File name: "Messaging.netmodule"

at SendMsg.Main()

Based on this, you can see how a versioned application reacts when presented
with a module of the wrong version.This allows us to have a great deal of flexi-
bility when dealing with versioning problems and gives us a new weapon to
combat the nemesis of DLL Hell.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 368

Attributes and Assemblies • Chapter 9 369

Summary
This chapter has covered a lot of ground in two distinct sections. In the first part
of the chapter, we learned about attributes. C# has a plethora of default (or built-
in) attributes available for you to use in your applications.These attributes cover
everything from setting up Web services to code obsolescence. C# also provides
you with the ability to design your own custom attributes as needed for your
applications.These custom attributes are attribute classes and can contain both
required and optional parameters.The entities upon which they can be defined
are also customizable with the use of attribute targets.These attributes, both
default and custom, provide you with a powerful method of providing informa-
tion or performing operations upon your application.

We also created our own custom attribute called CodeTracker, and learned
how to gather information about our custom attribute through a process called
reflection. Reflection is a powerful tool that allows us to gather information out
of the assembly manifest at runtime as well as perform many other functions. In
our examples, we used reflection to determine the members of a class, which
attributes are defined on these members, and what the properties of any
CodeTracker attributes on the members are.

In the second part of the chapter, we learned about assemblies.Assemblies are
the basic containers of compiled code for C# and are similar in function to Java’s
.JAR files.Assemblies can be in the form of .DLL files and can be used to provide
additional functionality to an application, or they can be compiled as executable
assemblies with an .EXE extension.We also learned the difference between single-
file and multimodule assemblies, and how to properly compile each.

In this section we also learned about assembly manifests and how they are
used.All data in the assembly manifest can be read either from within the
assembly itself, or from external utilities.The assembly manifest does have to be
generated slightly different for multimodule assemblies and we learned how to do
this as well.

Finally, we covered the new versioning features available to us in C#.We
learned how to assign versions to assemblies and how to sign or assign a strong
name to an assembly.We also created a versioned assembly and learned what hap-
pens if an incorrect version of an assembly is used when a specific version is
expected.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 369

370 Chapter 9 • Attributes and Assemblies

Solutions Fast Track

Working with Attributes

Attributes are additional pieces of information that the developer can
choose to store in the application metadata.

There are many built-in attributes, but custom attributes can also easily
be created and used.

Attributes are defined on specific targets, and can be limited as to which
targets are available.

Using Reflection

Reflection is a process that allows us to retrieve and work with data
stored in the application metadata.

Data in the application metadata can be retrieved either at compile time
or runtime by using this process.

Reflection allows us to list attributes defined on a target as well as list
the values of defined attributes.

Creating Assemblies

Assemblies are the C# equivalent to Java’s packages and are used to
segment namespaces.

Assemblies in the .NET architecture can be written and compiled in
different languages, and still work together.

All information about an assembly is stored in the assembly manifest.

Versioning

Versioning allows developers to prevent DLL conflicts and make sure
that their application is using the correct version of a component.

In order to implement versioning, an assembly must have a strong name
and be compiled with a public-private key pair.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 370

Attributes and Assemblies • Chapter 9 371

If a component is used that is not the correct version, exceptions can be
generated and handled.

Q: Are attributes required in an application?

A: Yes, but you don’t have to define them.There are attributes that the compiler
adds into the application metadata, and these are required. However, you also
have the option of adding your own.

Q: Why would I want to limit the targets available for my custom attribute?

A: A good example of this would be the built-in AssemblyVersionAttribute.This
attribute specifies the version number for your assembly. If this could be
defined at more levels than the assembly target, it could cause confusion as to
what the version number of the assembly really is.

Q: Is reflection the only way to view information stored in an application’s
metadata?

A: No. Since the metadata is included with the compiled assembly, any utility
capable of viewing an assembly could see this as well.An example of this is
the ILDasm.exe utility included with the .NET Framework.

Q: Why should I use assemblies?

A: Assemblies can really be useful when developing a very large program or even
when developing code that you think you might use again. In large programs,
assemblies help make the namespace more manageable as well as making it
easy for programmers to work on specific sections of the application.When
you develop useful code that you think you might be able to use sometime in
the future, you could simply compile it as an assembly and reuse it later.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_09.qxd 5/21/02 2:15 PM Page 371

372 Chapter 9 • Attributes and Assemblies

Q: So with assemblies, I can write anything in any of the languages supporting
the common language runtime and the assemblies will always work together?

A: No, this is not always the case.There are some functions that will work in
some languages that just aren’t supported in others.Therefore, there are spe-
cific rules that define what code is or is not compatible for this purpose.

www.syngress.com

223_C#Java_09.qxd 5/21/02 2:15 PM Page 372

Multithreading

Solutions in this chapter:

■ Threads

■ Creating Threads

■ Managing Threads

■ Scheduling Threads

■ Synchronizing Threads

■ Avoiding Deadlocks and Starvation

Chapter 10

373

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_10.qxd 5/21/02 4:20 PM Page 373

374 Chapter 10 • Multithreading

Introduction
In this chapter you will learn about the System.Threading namespace, which is one
of the main class libraries provided by the .NET Framework for creating multi-
threaded programs. Multithreaded programs are similar to multitasking—the
ability to have more than one program working at the same time—except that
it’s one step lower. Multithreaded applications give individual programs the ability
to do multiple tasks at the same time.

The first part of the chapter will discuss threads and synchronization.Threads
are lightweight processes used for multitasking within a single application. Just
like Java, C# provides us with a simple way to build multithreaded programs and
synchronizing resources accessed by multiple threads.

To end the chapter we will look at some of the trouble you can get into
when you’re writing multithreaded programs.We will look at conditions that can
cause deadlocks and starvation to your running application, as well as how best to
avoid these conditions.

Threads
Threads are an excellent way for programmers to parallelize multiple operations
efficiently.Very much like multiple processes in multitasking operating systems,
multiple threads within a single process can time-share critical resources such as
the CPU and memory. Often threads are used to speed up response time to a
program. For example, one thread can perform computations while another per-
forms memory updates.The two threads would make the compute and update
operations seem simultaneous.

Although threads generally tend to improve the performance of a program,
they can negatively impact a program if there are not enough shared resources.
Because a substantial amount of overhead is involved in switching from one
thread to another, having threads in an environment where resources are relatively
limited (such as a single CPU, for example) can cause an adverse slowing effect as
a result of frequent context switching.Therefore the use of threads must be con-
sidered carefully in light of available resources in a particular operating environ-
ment and whether the availability of these resources can balance out the thread
switching overheads. Improvement in performance must also be adequate to jus-
tify the extra time required to verify and debug multiple threads.

Very much like threads in Java, threads in C# within the .NET Framework
are concurrent, lightweight control flows of individual sequential operations.

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 374

www.syngress.com

However, although very similar to its counterpart in Java, threads in C# have a
slightly simplified and different model.

The .NET Framework provides us with the System.Threading namespace for
creating and managing threads.This namespace contains a wealth of classes and
interfaces to facilitate multithreaded programming and to simplify most threading
tasks.The System.Threading namespace provides the Thread object as well as several
classes for managing threads. Here’s a list of other useful classes in the namespace:

■ Timer Enables the programmer to execute methods at certain time
intervals.

■ Interlocked Enables the programmer to perform atomic operations for
variables shared by multiple threads.

■ Monitor Enables the programmer to synchronize access to thread
objects.

■ WaitHandle Enables the programmer to perform wait notification by
encapsulating operating system-specific objects that wait for exclusive
access to shared resources.

■ Mutex With the WaitHandle class, enables the programmer to manage
interprocess thread synchronization.

■ ThreadPool With the WaitHandle class, enables the programmer to
manage thread groups by providing a pool of threads that can post work
items, process asynchronous I/O, wait on behalf of other threads, and
process timers.

Several classes of methods for managing thread objects are derived from these
classes. Examples for using some of these classes will be presented in the fol-
lowing sections.

Creating Threads
In Java, threads are created either by extending the java.lang.Thread class and over-
riding its run() method or by implementing the java.lang.Runnable interface and its
corresponding run() method. In C# the simplest way to create a thread is to
create an instance of the Thread class found in the System.Threading namespace.
The Thread constructor takes a single argument, which is a delegate type.

As mentioned, there are several ways you can create a thread in Java, but for
the following example we will use anonymous inner classes to resemble the C#
model closely (inner classes are comparable to delegates; refer to Chapter 8). Let’s

Multithreading • Chapter 10 375

223_C#Java_10.qxd 5/21/02 4:20 PM Page 375

376 Chapter 10 • Multithreading

write a program that will create two threads; each thread will count from 0 to 9.
Here’s how you would write it in Java:

Java
class ThreadExample

{

public static void main (String[] args)

{

Thread threadA = new Thread(new Runnable() {

public void run() { count("threadA"); } });

Thread threadB = new Thread(new Runnable() {

public void run() { count("threadB"); } });

threadA.start();

threadB.start();

}

public static void count(String name)

{

for(int i = 0; i < 10; i++)

{

System.out.println(name + " " + i);

}

}

}

In this example, a thread is created by passing it an anonymous inner class
that implements java.lang.Runnable and contains the count method.

Let’s now look at an example of how you would create threads in C#. Let’s
look at the C# equivalent of the previous Java program example:

C#
using System;

using System.Threading;

class ThreadExample

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 376

Multithreading • Chapter 10 377

{

public static void Main()

{

Thread threadA = new Thread(new ThreadStart(count));

Thread threadB = new Thread(new ThreadStart(count));

threadA.Start();

threadB.Start();

}

public static void count()

{

for(int i = 0; i < 10; i++)

{

Console.WriteLine(i);

}

}

}

As you can see, creating threads in C# is pretty straightforward, and the code
is fairly similar to Java. Just like in Java, you implement a thread by creating a
thread object and calling its Start() method. In C# thread objects are created by
passing the intended instance object method (count in this case) to a ThreadStart()
delegate.The ThreadStart() delegate thus points to a method you supply, which
the CLR will execute as soon as the thread is started.The delegate declaration
looks like this:

public delegate void ThreadStart();

The method that you pass to this delegate must match its signature.This
means that it must return void and takes no parameters.Therefore, if you wish to
create a thread, your declaration will look something like this:

Thread myThread = new Thread(new ThreadStart(myMethod));

If you are paying close attention, you may notice that the codes aren’t com-
pletely identical. In the Java version, we were able to pass a variable to the count
method, but since the method that you pass to the ThreadStart() delegate must take
no parameters, we cannot do the same thing in C#.The reason for this is that
unlike Java where we can extend the java.lang.Thread class or implement
java.lang.Runnable interface, C#’s thread class is sealed and cannot be extended;

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 377

378 Chapter 10 • Multithreading

thus, whatever is passed to the delegate must match its signature exactly, as previ-
ously mentioned. One way around this is to create a new object that can hold
variables that you want to keep track of and can pass a method from the object
that you wish to be threaded. Here’s an example to illustrate how this can be done:

using System;

using System.Threading;

class ThreadExample

{

public static void Main()

{

Counter counterA = new Counter("threadA");

Counter counterB = new Counter("threadB");

Thread threadA =

new Thread(new ThreadStart(counterA.count));

Thread threadB =

new Thread(new ThreadStart(counterB.count));

threadA.Start();

threadB.Start();

}

}

class Counter

{

private String name;

public Counter(String name)

{

this.name = name;

}

public void count()

{

for(int i = 0; i < 10; i++)

{

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 378

Multithreading • Chapter 10 379

Console.WriteLine(name + " " + i);

}

}

}

Note that in this case since the count() method is not static, an object instance
of the Counter class must be created in the Main() method and then passed to the
ThreadStart delegate.

When threads are executed in the .NET environment, they alternate and
time-share the computing resources.To observe this, first we will slow down each
thread by using the Sleep() method:

public void count()

{

for(int i = 0; i < 10; i++)

{

Console.WriteLine(name + " " + i);

Thread.Sleep(2);

}

}

The Sleep() method takes in a parameter of type long, which tells the thread
to block for a specified number of time in milliseconds.Therefore, Sleep(2) gives
the thread a slight two millisecond pause. Now if we execute the program we can
see how the operating system switches between the two threads in order to share
the CPU processing. Here’s the output of the program.

Output
threadA 0

threadB 0

threadA 1

threadB 1

threadA 2

threadB 2

threadA 3

threadB 3

threadA 4

threadB 4

threadA 5

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 379

380 Chapter 10 • Multithreading

threadB 5

threadA 6

threadB 6

threadA 7

threadB 7

threadA 8

threadB 8

threadA 9

threadB 9

The output might vary from computer to computer because the thread
scheduler is dependent on many factors, such as processor speed, other programs
running, and so forth. Scheduling threads will be discussed in greater detail later
in this section.

As a last note on creating threads, threads in C# can be given names by
setting the Name property of the thread object:

threadA.Name = "thread A";

threadB.Name = "thread B";

Other properties of the Thread object will be discussed in the following
section when we discuss how to manage threads.

Managing Threads
Once threads are started, they can be managed with methods and properties pro-
vided by the Thread and ThreadPool classes. For example, the threads IsAlive and
ThreadState properties can be used to check on the execution status and states of
a thread. Furthermore, the thread’s Join() method can be used to join two threads
together. Similar to its counterpart in Java, C#’s Join() method is a wait for the
child thread’s termination or timeout mechanism. However, unlike its counterpart
in Java, Join() in C# can return a boolean to signify whether a thread died (true) or
timed out (false). C#’s Join() method is overloaded with three types of parameters:

■ Null The calling thread is blocked until a particular thread terminates:

public void Join();

■ Integer The calling thread is blocked until a particular thread either
terminates or the specified number of milliseconds (integer) has elapsed,
whichever comes first:

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 380

Multithreading • Chapter 10 381

public bool Join(int);

■ TimeSpan The calling thread is blocked until the thread either termi-
nates or the specified amount of time (timespan) has elapsed, whichever
comes first:

public bool Join(TimeSpan);

The following example illustrates the use of the Join() method. Suppose there
are three threads: the parent thread opens and prepares a file for writing and then
starts a couple of child threads to read and collect data from network sockets.The
parent thread needs to wait until both child threads complete before it can actu-
ally write the collected data into the file.The Join() method can be used to make
sure the child threads complete before writing to the file:

using System;

using System.IO;

using System.Net;

using System.Threading;

public class JoinExample

{

public static void Main()

{

Thread myParent =

new Thread(new ThreadStart(Parent));

myParent.Start();

}

public static void Parent()

{

//Prepares file for writing

//Creates and dispatches the reader threads

Thread mySocketReader1 =

new Thread(new ThreadStart(SocketReader));

Thread mySocketReader2 =

new Thread(new ThreadStart(SocketReader));

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 381

382 Chapter 10 • Multithreading

mySocketReader1.Start();

mySocketReader2.Start();

//Waits for reader threads to complete

mySocketReader1.Join();

mySocketReader2.Join();

//Writes to file

FileWriter();

}

public static void SocketReader()

{

//Reads from socket here

}

public static void FileWriter()

{

//Writes to file here

}

}

Join() makes sure all the reader threads are completed before starting the
writer that writes the contents to files.

Using Suspend()/Resume() and Abort()
Oftentimes the programmer wants to stop the execution of a thread temporarily,
until another event takes place. For example, after a certain computation, it might
be desirable to wait for an update to be successfully displayed before another
computation is performed. In this case the thread can be paused, and once the
update completion event is detected, restarted at the point where it was paused.
In C# a thread can be suspended and resumed using the Suspend() and Resume()
methods of the Thread object as follows:

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 382

Multithreading • Chapter 10 383

Suspending
if (threadA.ThreadState = ThreadState.Running)

{

threadA.Suspend();

}

Resuming
if (threadA.ThreadState = ThreadState.Suspended)

{

threadA.Resume();

}

First the state of the thread is checked (this usually is a good idea since we
want to make sure the thread is in a state where Suspend() and Resume() can be
performed), and then the thread itself is suspended or resumed accordingly.

There might also be times when a thread must be terminated upon a certain
event. For example, if in the middle of a heavy computation the user changes his
or her mind and decides to stop the computation, he or she might press a certain
key that would in turn trigger an event that can be used to signal a thread that it
should be killed.A thread can be killed using the Abort() method of the Thread
object as follows:

if (threadA.IsAlive)

{

try

{

www.syngress.com

Suspend/Resume May Be Deadlock Prone
Note that Suspend() does not release locks. Thus care must be taken to
make sure any locked objects do not inadvertently block other threads
and cause the program to deadlock (deadlock will be discussed in more
detail in the section “Avoiding Deadlock and Starvation”).

Developing & Deploying…

223_C#Java_10.qxd 5/21/02 4:20 PM Page 383

384 Chapter 10 • Multithreading

threadA.Abort();

}

catch (ThreadAbortException ta)

{

Console.WriteLine(ta.ToString());

}

}

Again the state of the thread is checked to see whether it is a live thread, then
the abort operation is attempted and exceptions are caught (if any, should the
Abort() operation fail).

Scheduling Threads
When there are limited resources, such as in a single CPU environment, only one
task or thread can be serviced at a time. Multitasking is done by switching back
and forth between the different threads. In such cases, it might be a good idea to
give certain threads higher priorities than others. For example, in GUI applica-
tions, the thread that is refreshing and updating the user interface window might
be given a higher priority in order to improve the apparent responsiveness of the
program to the user.

Similar to Java, threads in the .NET environment are scheduled for execution
according to their priorities.The Priority property of the Thread object provides
the means for setting the priority level.There are five possible priority levels,
listed in Table 10.1.

Table 10.1 Different Thread Priorities

Priority Description

AboveNormal Scheduled after threads with Highest priority and before
those with Normal priority

BelowNormal Scheduled after threads with Normal priority and before
those with Lowest priority

Highest Scheduled before threads with any other priority
Lowest Scheduled after threads with any other priority
Normal Default

Suppose there is a thread called guiUpdater that refreshes the graphical user
interface, and another thread called calculator.You would want the guiUpdater

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 384

Multithreading • Chapter 10 385

thread to have a higher priority than calculator because you want the user inter-
face to be responsive.You wouldn’t want the calculator thread to tie up the pro-
cessor and make it seem to the user that the application has “frozen.”The
following assignment statement can be used to set the priority of guiUpdater to
highest before starting thread execution:

guiUpdater.Priority = ThreadPriority.Highest;

This will give guiUpdater the highest possible priority during execution when
a critical computing resource is limited.This way if the calculator thread, for
example, is doing some heavy calculations, the thread scheduler will give more
priority to the guiUpdater so that the GUI can be updated first before proceeding
with the calculation.

Threads can also be scheduled to execute at certain time intervals.This is sup-
ported by the Timer class in the .NET environment.After a start time and a period
(time between execution) are specified, a TimerCallback delegate is used to designate
which methods to execute.The timer can be changed and disposed on the fly.This
is best illustrated by an example—the following program creates a timer that has an
initial interval of two seconds, then it switches to two tenths of a second.

First, create an empty Timer placeholder class. In this class, an integer counter is
declared and a dummy Timer handle (for the purpose of being able to dispose this
object later) is created—it will be assigned to point to the actually timer later:

class TimerExampleState

{

public int counter = 0;

public Timer tmr;

}

Next, create a timer and a delegate that will invoke the timer itself.The dele-
gate creation part is done by declaring a TimerCallback delegate and providing the
method to call (CheckStatus() in this case).The delegate is then tied to the object
we created and the time intervals are specified.The Timer constructor can take
the time specification in either milliseconds or TimeSpan:

public Timer(callback, object, int/long, int/long);

public Timer(callback, object, TimeSpan, TimeSpan);

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 385

386 Chapter 10 • Multithreading

Here’s the code listing for our TimerExample class.The Main() method first
creates the timerDelegate and assign the CheckStatus() method to it. It then creates
a stateHandler to keep track of the timer, so that we can dispose it later.Then, a
new instance of the Timer class is created by passing our timerDelegate and
stateHandler to its constructor.Afterward, we put the main thread to sleep while
we execute the timer.

Next, we declare our delegated method CheckStatus(). This method incre-
ments the counter every time it is called. It also shortens the timer period to
two-tenths of a second when the counter reaches 10 and kills the timer when the
counter reaches 20. WriteLine() is called to print out the time and the counter for
illustration. Following is the full code listing for our example.

using System;

using System.Threading;

class TimerExampleState

{

public int counter = 0;

public Timer tmr;

}

class TimerExample

{

public static void Main()

{

TimerCallback timerDelegate =

new TimerCallback(CheckStatus);

TimerExampleState stateHandler = new

TimerExampleState();

Timer timer = new Timer(timerDelegate,

stateHandler, 1000, 2000);

//Now we can assign the handle we created earlier to

//point back to the timer itself:

stateHandler.tmr = timer;

//We can now put the main thread to sleep while we

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 386

Multithreading • Chapter 10 387

//execute the timer:

while(stateHandler.tmr != null)

Thread.Sleep(0);

Console.WriteLine("Timer example done.");

}

static void CheckStatus(Object state)

{

TimerExampleState s =(TimerExampleState) state;

s.counter++;

Console.WriteLine("{0}:{1} Checking Status {2}.",

DateTime.Now.Minute, DateTime.Now.Second,

s.counter);

if(s.counter == 10)

{

// Restarts after ten seconds and shortens the

// period to 2/10th of a second

(s.tmr).Change(10000, 200);

Console.WriteLine("changed...");

}

if(s.counter == 20)

{

Console.WriteLine("disposing of timer...");

s.tmr.Dispose();

s.tmr = null;

}

}

}

The output of this timer example follows.As we can see, the timer switches
to a smaller interval when the count reaches 10:

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 387

388 Chapter 10 • Multithreading

Output
29:56 Checking Status 1.

29:58 Checking Status 2.

30:0 Checking Status 3.

30:2 Checking Status 4.

30:4 Checking Status 5.

30:6 Checking Status 6.

30:8 Checking Status 7.

30:10 Checking Status 8.

30:12 Checking Status 9.

30:14 Checking Status 10.

changed...

30:24 Checking Status 11.

30:24 Checking Status 12.

30:24 Checking Status 13.

30:25 Checking Status 14.

30:25 Checking Status 15.

30:25 Checking Status 16.

30:25 Checking Status 17.

30:25 Checking Status 18.

30:26 Checking Status 19.

30:26 Checking Status 20.

disposing of timer...

Timer example done.

As a closing remark for this section,Table 10.2 summarizes some of the major
methods available to the Thread object, and their equivalents in Java. Note that
the C# methods appear to be either the same as or only a little more flexible
than their corresponding Java equivalents.

Table 10.2 Common C# and Java Equivalent Thread Methods and Properties

C# Java Function Notes

IsBackground setDaemon() Sets the thread to In C#, a property needs to
set property run as a daemon be set.
IsBackground isDaemon () Determines whether In C#, this property will
get property a thread is a return true if it is a

daemon daemon.

www.syngress.com
Continued

223_C#Java_10.qxd 5/21/02 4:20 PM Page 388

Multithreading • Chapter 10 389

IsAlive get isAlive () Determines whether In C#, this property will
property a thread is alive return true is it is alive.
Sleep() sleep() Pauses thread In C#, this method can

execution for take the TimeSpan
specified time structure.

Join() join() Serializes thread In C#, a Boolean value is
execution by returned to indicate
waiting for whether the thread died
completion (true) or timer expired

(false).
Suspend() suspend() Suspends a thread This is deprecated in Java.
Resume() resume() Resumes a thread This is deprecated in Java.
Abort () stop() Kills a thread This is deprecated in Java.

Synchronizing Threads
Since different threads can operate on the same data structure set, problems of
ordering and consistency can arise if there is a lack of synchronization. Like Java,
the .NET environment provides synchronization as a mean of ensuring serialized
execution of critical sections (codes that operate on the same data structure) and
atomic operations in consistent order.Two methods of synchronization are pro-
vided for this purpose: using the lock statement (similar to Java’s synchronized state-
ment), which in turn calls the underlying Monitor class of System.Threading
namespace in the .NET environment, or using the Monitor class’ Enter() and Exit()
methods directly. However, just as in Java, if synchronization is done incorrectly
critical sections can pose a danger for one thread either to block another
(deadlock) or to hog available resource (starvation) indefinitely.Therefore extreme
care must be taken to synchronize multiple threads correctly.

Using the lock Statement
If a critical section operates on the same data structure in a multithreaded envi-
ronment, unpredictable ordering can occur unless care is taken to serialize the
different threads (i.e., make sure when one thread is accessing the common data
structure, the data structure is locked from being accessed by another thread). In
Java, this synchronization can be done using the synchronized keyword. For

www.syngress.com

Table 10.2 Continued

C# Java Function Notes

223_C#Java_10.qxd 5/21/02 4:20 PM Page 389

390 Chapter 10 • Multithreading

example, suppose there are two threads both sharing the same Counter object.
Since both can call the Increment() method at the same time, we would want to
synchronize access to the shared count variable.We can use the synchronized key-
word to accomplish serializing the critical section as follows.

Java
public class Counter

{

private int count = 0;

public void Increment()

{

synchronized(this)

{

for(int i = 0; i < 10; i++)

count++;

}

}

}

The same thing can be accomplished in C# using the corresponding lock
keyword.The lock keyword locks the shared resource before performing the
increment. If the Increment() method is called from two simultaneous threads one
will lock the object before the other.Therefore, only one thread can increment
the count variable at a time.The lock is released upon completion of the code
block, which is enclosed by the curly braces {}:

C#
public class Counter

{

private int count = 0;

public void Increment()

{

lock(this)

{

for(int i = 0; i < 10; i++)

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 390

Multithreading • Chapter 10 391

count++;

}

}

}

The locked item can be any object. In the preceding example the lock is
placed on the object this.This aspect will be discussed in more detail in the fol-
lowing sections, where the underlying mechanisms that make synchronization
with the lock statement possible are discussed.

Using the Monitor Class
When the lock statement is used, it actually calls the underlying Monitor class pro-
vided by the .NET environment to perform its locking task.The Monitor class
contains various methods to control synchronization of threads. If desired, the
programmer can access these methods directly rather than using the lock state-
ment to achieve the same purpose.The following code shows how the synchro-
nization example in the previous section can be done the same way using the
Monitor class methods directly:

www.syngress.com

Interlocked Class
Since incrementing and decrementing a variable in a synchronized
fashion is such a common programming concept, C# offers the
Interlocked class for just this purpose. This class has two methods,
Increment() and Decrement(), which will increment and decrement a
variable under a synchronized control. The variable count in the previous
example can actually be locked as follows:

public int count = 0;

public void Increment()

{

for(int i = 0; i < 0; i++)

Interlocked.Increment(ref count);

}

Developing & Deploying…

223_C#Java_10.qxd 5/21/02 4:20 PM Page 391

392 Chapter 10 • Multithreading

public static void Increment()

{

try

{

Monitor.Enter(this);

for(int i = 0; i < 10; i++)

count++;

}

finally

{

Monitor.Exit(this);

}

}

NOTE

When using Monitor’s Enter() and Exit() it is a good idea to use a
try/finally construct to prevent possible exceptions from blocking out
the Exit(). For example, suppose count++ is some other operation
that throws an exception; the Exit() would have been lost if we did not
enclosed it within a try/finally block.

The Monitor.Enter() and Exit() pair performs the same task, and they can
coexist with lock statements. However, using the Monitor methods directly gives
the programmer a lot more flexibility in controlling the synchronization.The
Monitor class also provides the Pulse() and Wait() methods.The Wait() method tells
the thread to wait until the object protected by the monitor becomes available.
The Pulse() method signals that there has been a change in state, and other
waiting threads can have control of the monitor object. Let’s look at an example.
Suppose we have a MessageBoard class where individual threads can post and read
messages.We will synchronize access to this class so that only one thread can per-
form a read or write at a time. Our MessageBoard class will have a Reader()
method and a Writer() method.

The Reader() method checks the string messages to see if messages are available,
and the Writer() method writes to same string. If there are no messages during
reading, the Reader() method waits via Wait() until the Writer() method has written

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 392

Multithreading • Chapter 10 393

the messages and sent out a signal via Pulse() to tell the Reader() method to stop
waiting and go on.The following is a code listing for the MessageBoard class:

using System;

using System.Threading;

class MessageBoard

{

private String messages = "no messages" ;

public void Reader()

{

try

{

Monitor.Enter(this);

//If there are no messages then wait.

if (messages == "no messages")

{

Console.WriteLine("{0} {1}",

Thread.CurrentThread.Name, messages);

Console.WriteLine("{0} waiting...",

Thread.CurrentThread.Name);

Monitor.Wait(this);

}

//Means that messages state has changed

Console.WriteLine("{0} {1}",

Thread.CurrentThread.Name, messages);

}

finally

{

Monitor.Exit(this);

}

}

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 393

394 Chapter 10 • Multithreading

public void Writer()

{

try

{

Monitor.Enter(this);

messages = "Greetings Caroline and Marianne!";

Console.WriteLine("{0} Done writing message...",

Thread.CurrentThread.Name);

//Signal waiting threads that there's data to be read

Monitor.Pulse(this);

}

finally

{

Monitor.Exit(this);

}

}

public static void Main()

{

MessageBoard myMessageBoard = new MessageBoard();

Thread reader = new Thread(new

ThreadStart(myMessageBoard.Reader));

//Assign the thread a name.

reader.Name = "ReaderThread:";

Thread writer = new Thread(new

ThreadStart(myMessageBoard.Writer));

//Assign the thread a name.

writer.Name = "WriterThread:";

reader.Start();

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 394

Multithreading • Chapter 10 395

writer.Start();

}

}

Output
ReaderThread: no messages

ReaderThread: waiting...

WriterThread: Done writing message...

ReaderThread: Greetings Caroline and Marianne!

As you can see from the output, since we started the reader thread first, it
locks the MessageBoard class first, which means that it has exclusive access to the
messages string variable. But since the messages still contains no message, the reader
releases the lock by calling the Wait() method.The writer thread then gets a
chance to lock the object and write its message.Then it calls the Pulse() method
to signal the waiting reader thread that it can proceed.

Avoiding Deadlock and Starvation
Like in Java, deadlock and starvation can occur if synchronization is not done
correctly. Deadlock occurs when multiple threads interfere with one another,
causing one or more of them to wait forever on one another’s resource. Starvation
is a similar problem in which one thread grabs all the available resources forever,
thus depriving the other threads from utilizing their shared resource.

Consider the classic dining philosophers’ example whereby five philosophers
are sitting around a round table. Between each pair of philosophers is one

www.syngress.com

Monitor.Wait() Parameters
The Wait() method can take on a variety of parameters, including an
integer specifying the number of milliseconds to wait as well as a
TimeSpan structure. In the event that the specified time expires before it
is notified by a corresponding Pulse(), Wait() returns a boolean value of
false.

Developing & Deploying…

223_C#Java_10.qxd 5/21/02 4:20 PM Page 395

396 Chapter 10 • Multithreading

chopstick. Each philosopher must get two chopsticks before he can eat.They
must find a way to share chopsticks such that they all get to eat. Suppose they
come up with a GetChopSticks() function where each philosopher first reaches for
a chopstick on his right, and then his left. If he gets both chopsticks, he eats and
then puts them down and signals to the other philosophers. If he gets only one
chopstick, then he waits. However, suppose every philosopher reaches for the
chopstick on his right at the same time—then deadlock occurs because after each
philosopher picks up one chopstick from his right, the chopstick on his left is no
longer available and then everybody waits for the second chopstick indefinitely.
This is an example of deadlock.

Now consider an alternate case where one of philosophers does get two
chopsticks, but he keeps on eating and never releases either one of his chopsticks.
In this case the other philosophers will also wait indefinitely.This is an example
of starvation.

The best way to prevent deadlock and starvation is to avoid it, either by
making sure that each thread accesses the shared resources in an orderly sequen-
tial fashion or releases the resources when it is not using them.The first method
can be done via the Join() method of the Thread object, and the latter can be
accomplished via the use of Wait() and Pulse() methods of the Monitor class. Let’s
go through an example.

The best way to avoid deadlock and starvation is to make sure that either the
threads access the shared resource in a fixed order or the shared resource is
released before the next thread can acquire the same resource. In our example,
the philosophers’ GetChopSticks() attempts must be ordered.As illustrated previ-
ously, the Join() method enables one thread to wait for another.The same mecha-
nism can be used to ensure orderly resource acquisition and release.

Let’s simplify the philosopher’s dilemma problem to two philosophers and
two chopsticks. Now suppose there are two variables indicating the availability of
the chopsticks and two GetChopSticks() methods used by the philosophers. Each
of the methods picks up one chopstick at a time and sets the corresponding vari-
able to false. Once both chopsticks are picked up the philosopher uses the chop-
sticks and makes both chopsticks available again for use:

using System;

using System.Threading;

class PhilosopherExample

{

public static bool chopStick1Available = true;

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 396

Multithreading • Chapter 10 397

public static bool chopStick2Available = true;

public static void Main()

{

Thread philosopher1 =

new Thread(new ThreadStart(GetChopSticks1));

Thread philosopher2 =

new Thread(new ThreadStart(GetChopSticks2));

philosopher1.Start();

philosopher2.Start();

}

public static void GetChopSticks1()

{

while (!chopStick1Available)

{

Console.WriteLine("#1 waiting for 1st chopstick.");

Thread.Sleep(0); // Wait until available

}

Console.WriteLine("#1 got 1st chopstick.");

chopStick1Available = false;

while (!chopStick2Available)

{

Console.WriteLine("#1 waiting for 2nd chopstick.");

Thread.Sleep(0); // Wait until available

}

Console.WriteLine("#1 got 2nd chopstick.");

chopStick2Available = false;

// Uses chopsticks then makes them available again

Console.WriteLine("#1 uses and releases chopsticks.");

chopStick1Available = true;

chopStick2Available = true;

}

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 397

398 Chapter 10 • Multithreading

public static void GetChopSticks2()

{

while (!chopStick2Available)

{

Console.WriteLine("#2 waiting for 1st chopstick.");

Thread.Sleep(0); // Wait until available

}

Console.WriteLine("#2 got 1st chopstick.");

chopStick2Available = false;

while (!chopStick1Available)

{

Console.WriteLine("#2 waiting for 2nd chopstick.");

Thread.Sleep(0); // Wait until available

}

Console.WriteLine("#2 got 2nd chopstick.");

chopStick1Available = false;

// Uses chopsticks then makes them available again

Console.WriteLine("#2 uses and releases chopsticks.");

chopStick1Available = true;

chopStick2Available = true;

}

}

Now here’s the problem.What if philosopher1 picks up chopstick #1 while
philosopher #2 picks up chopstick #2? Deadlock then occurs because everybody
is waiting for the second chopstick:

#1 waiting for 2nd chopstick.

#2 waiting for 2nd chopstick.

To solve this problem, the Join() method can be used to serialize the opera-
tions.As illustrated previously, the Join() method waits for one thread to finish
before going on.The previous deadlock condition can be prevented if the fol-
lowing codes were used:

philosopher1.Start();

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 398

Multithreading • Chapter 10 399

philosopher1.Join();

philosopher2.Start();

This way, philosopher2 will wait for philosopher1 to finish before attempting
to pick up any chopsticks, thus avoiding deadlock.

In our simple program it was very easy to see where a deadlock can occur
and where we can correct it. However, in a program running many threads, it
might not be so intuitive to see where a deadlock can occur. One good rule to
follow is to try to get all the locks you need, and if you can’t, release all the locks
you have and try again.Another good rule is to try to hold your locks as briefly
as possible.

www.syngress.com

Semaphores
Semaphores are classical examples of synchronizing two or more
threads where one set of threads is producing results and another set of
threads is consuming the results. A semaphore is basically a count that
maintains the number of users for a particular lock. A semaphore class
is typically created to make available one counter and two methods: one
to acquire the semaphore and other to release a semaphore. As it turns
out, the Monitor class’s Pulse() and Wait() methods make it very simple
to implement such a semaphore class. The following code is an example
of such a class—acquire() tries to acquire the semaphore and decre-
ments the count, and release() releases the semaphore and increments
the count. If the semaphore is not available when it is being acquired,
acquire() will Wait() until someone else releases the semaphore and sig-
nals a Pulse():

class Semaphore

{

int s_count;

public Semaphore(int count)

{

s_count = count;

Developing & Deploying…

Continued

223_C#Java_10.qxd 5/21/02 4:20 PM Page 399

400 Chapter 10 • Multithreading

www.syngress.com

}

public void acquire()

{

lock(this)

{

// Keep waiting until a semaphore is

// available.

while(s_count <= 0)

{

Monitor.Wait(this);

}

s_count--;

}

}

public void release()

{

lock(this)

{

s_count++;

Monitor.Pulse(this);

}

}

}

A typical use of the semaphore would be to initialize the
semaphore in the parent:

Semaphore s = new Semaphore(1);

You would then do the following in each of the threads:

s.acquire();

// Perform critical operation

s.release();

223_C#Java_10.qxd 5/21/02 4:20 PM Page 400

Multithreading • Chapter 10 401

Summary
Multithreading is essential to providing superior performance and effective
resource utilization. Like Java, the .NET environment provides the means needed
for creating and managing as well as scheduling threads.The Threading namespace
and the Thread object, along with classes such as Timer, Monitor, WaitHandle,
Mutex, and ThreadPool, provide the means for seamless handling of threads.
Although similar to their counterparts in Java, threads in C# are simpler in model
and more flexible in terms of usage.The methods available for thread manage-
ment in C# are designed to fit both the novice and expert programmers’ intents.

Threads in C# are created using the Threading namespace and the
ThreadStart() delegate.The ThreadStart() delegate takes an instance object method
that take no parameters and returns void. Furthermore, if the threaded method is
nonstatic it must be created first in the calling method.

The Join() method can be used to serialize thread execution. Similarly,
Suspend() and Resume() can be used to pause and restart threads. Lastly, the Abort()
method can be used to terminate a thread.

Threads can be given priorities in execution by setting their priorities to one
of five levels. Setting of priorities must be weighed carefully against the resource
utilization associated with each of the prioritized threads.

Synchronization of threads can be done with either the lock statement (which
in turns call the underlying Monitor class in the .NET environment) or the
Monitor class methods themselves.The choice of which one to use would have to
depend on whether the programmer prefers convenience (in the case of the lock
statement) or control flexibility (in the case of Monitor class methods).

Last but not least, the .NET environment also provides support for preventing
deadlock and starvation. Deadlock and starvation are best prevented during plan-
ning in the design stage by using proper lock and release mechanisms provided
by either the Join() method or the Monitor()/Wait() pair of the Monitor class.
Proper serialization guarantees that critical sections will not consume all available
resources inadvertently without releasing them.

Solutions Fast Track

Threads

Threads are an excellent way for programmers to efficiently parallelize
multiple operations.

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 401

402 Chapter 10 • Multithreading

www.syngress.com

Threads can negatively impact a program if there are not enough shared
resources.

The .NET framework provides us with the System.Threading namespace
for creating and managing threads.

Creating Threads

Use the Threading namespace and the ThreadStart() delegate to create
a thread.

Threaded methods take no parameters and return void.

If the threaded method is nonstatic it must be created first in the caller.

Managing Threads

Threads can be serialized using Join().

Threads can be paused/restarted using Suspend()/Resume().

Threads can be killed using Abort().

Scheduling Threads

Threads are scheduled for execution based on their priorities.

There are five priority levels.

Balance thread priority with resource demands according.

Synchronizing Threads

Threads can be synchronized using the lock statement.

Threads can also be synchronized using the intrinsic Monitor class.

Choice of the lock statement versus the Monitor class depends on
flexibility versus convenience.

Avoiding Deadlocks and Starvation

Deadlocks and starvation are best avoided with proper planning in the
design stage.

223_C#Java_10.qxd 5/21/02 4:20 PM Page 402

Multithreading • Chapter 10 403

To avoid deadlock and starvation, use the proper lock and release
mechanism via the Join() method.

The Monitor.Wait() and Monitor.Pulse() methods can also be used to
synchronize resource utilization properly.

Q: The lock statement and Monitor.Enter/Exit methods allow me to synchronize
threads within the same process.Are there mechanisms that will allow me to
synchronize threads across different processes?

A: The .NET environment provides a Mutex class that is derived from
WaitHandle for this purpose.A Mutex object is a named synchronization
object that can be obtained from any thread within any process.The Mutex
class takes as its argument a bool indicating whether the current thread ini-
tially owns the Mutex object or not. Once created, a Mutex object is refer-
enced by its handle (similar to a file handle). Mutex provides several
synchronization support methods such as WaitOne to request for a Mutex and
ReleaseMutex to release a Mutex.An example code of how this is used follows:

public static void Increment()

{

Mutex myMutex = new Mutex(false);

myMutex.WaitOne ();

count++;

myMutex.Close ();

}

Please refer to the MSDN documentation for more details on the Mutex
class.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_10.qxd 5/21/02 4:20 PM Page 403

404 Chapter 10 • Multithreading

Q: If a have a COM callable wrapper that invokes an unmanaged thread during
runtime, can they coexist with my managed threads (ones created with the
Thread class)?

A: Yes.The .NET environment’s runtime support monitors all threads, managed
and unmanaged.

Q: Is it possible to store data that is unique to a particular thread or application?

A: Thread local storage (TLS) and thread relative static fields support in the
.NET environment enable programmers to store data associated with a par-
ticular managed thread. Please consult the MSDN documentation for more
details.

Q: Where on the Web can I find resources and sample codes for multithreaded
programming?

A: Besides MSDN (msdn.microsoft.com), additional resources can be found on
third-party sites such as www.codeproject.com and www.c-sharpcorner.com.

www.syngress.com

223_C#Java_10.qxd 5/21/02 4:20 PM Page 404

Working with
I/O Streams

Solutions in this chapter:

■ File System

■ Streams

■ Encoding Data Types

■ Text

■ Network I/O

■ Synchronous vs. Asynchronous

■ Web Streams

■ Serialization

Chapter 11

405

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_11.qxd 5/21/02 3:33 PM Page 405

406 Chapter 11 • Working with I/O Streams

Introduction
One of Java’s great features is providing a layer of abstraction for performing
input/output and networking operations.The Java model for IO uses streams,
something familiar to most Java programmers. C# also uses streams and provides a
rich set of libraries for hiding the complications of data transfer.The counterpart of
the java.io package is the System.IO namespace. Classes in the System.IO namespace
allow you to read and write information to a file, or to the console. Other pack-
ages, such as System.Net.Socket, support streams for network connections.

File System
In Java, files and directories are handled using a single class called File.This
ambiguous design sometimes leads to confusion since it can be difficult to deter-
mine if a file or directory is being used. C# distinguishes between files and direc-
tories by giving us two classes to handle disk operations: File and Directory.These
two classes use only static methods to perform disk operations, but there are also
two corresponding classes that perform disk operations on instances: FileInfo and
DirectoryInfo. For Java programmers, the latter seems more familiar.

C# uses a base class for FileInfo and DirectoryInfo called FileSystemInfo.This
base class contains only methods that are common to both directories and files.
Many of the methods in FileSystemInfo have counterparts in java.io.File. C# also
has methods that have no counterpart in Java, since the Java strategy is to create
only methods that are universal across different platforms. For example, methods
for accessing the last time a file was accessed or when a file was created are
unique to C#.

Directories
The two classes for handling directories are Directory and DirectoryInfo. Both of these
classes have almost identical methods, except that Directory contains static methods
(as shown in Table 11.1), which are called from the class meta-object. Because an
instance is not used, it is necessary to specify the directory path (as a String argu-
ment) for most of these method calls.A typical Directory call is as follows:

bool exists = Directory.Exists("c:\\Program Files");

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 406

www.syngress.com

Table 11.1 The Directory API

C# Java Equivalent Description

CreateDirectory() File.mkDir() Creates all directories and sub-
directories as specified by path.

Delete() File.delete() Deletes a directory and its
contents.

Exists() File.exists() Determines whether the given
path refers to an existing direc-
tory on disk.

GetCreationTime() Not Available Gets the creation date and time
of a directory.

GetCurrentDirectory() Not Available Gets the current working direc-
tory of the application.

GetDirectories() File.list() or Gets the names of subdirecto-
File.listFiles() ries in the specified directory.

GetDirectoryRoot() File.getAbsolutePath() Returns the volume informa-
tion, root information, or both
for the specified path.

GetFiles() File.list() or Returns the names of files in
File.listFiles() the specified directory.

GetFileSystemEntries() File.list() Returns the names of all files
and subdirectories in the speci-
fied directory.

GetLastAccessTime() Not Available Returns the date and time the
specified file or directory was
last accessed.

GetLastWriteTime() File.lastModified() Returns the date and time the
specified file or directory was
last written to.

GetLogicalDrives() File.listRoots() Retrieves the names of the log-
ical drives on this computer in
the form “<drive letter>:\”.

GetParent() File.getParent() Retrieves the parent directory of
the specified path, including
both absolute and relative
paths.

Move() File.renameTo() Moves a file or a directory and
its contents to a new location.

Working with I/O Streams • Chapter 11 407

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 407

408 Chapter 11 • Working with I/O Streams

SetCreationTime() Not Available Sets the creation date and time
for the specified file or direc-
tory.

SetCurrentDirectory() Not Available Sets the application’s current
working directory to the speci-
fied directory.

SetLastAccessTime() Not Available Sets the date and time the
specified file or directory was
last accessed.

SetLastWriteTime() File.setLastModified() Sets the date and time a direc-
tory was last written to.

Unlike Directory, in order to use DirectoryInfo it must be instantiated.
DirectoryInfo contains several properties (as shown in Table 11.2), whereas Directory
contains none since all the methods are static.A single DirectoryInfo instance rep-
resents a single directory, much like the Java counterpart File. Let’s examine the
use of DirectoryInfo in a simple example. Directories are a perfect opportunity to
use recursion, so we’ll create a simple recursive method called CountDirectories()
that will drill down through the hierarchy, counting the directories it encounters.

using System;

using System.IO;

www.syngress.com

Table 11.1 Continued

C# Java Equivalent Description

The Directory Separator
One of the most frequent bugs when programming with the file system
is the backslash used to identify directory structures. Notice the need to
use two backslashes in the preceding example. This is because the back-
slash is an escape character, so it is necessary to nullify the first by using
two backslashes. An even better solution is to indicate a verbatim string
literal by placing the @ symbol in front of the string, as follows:

String filename = @"c:\Program Files";

Debugging…

223_C#Java_11.qxd 5/21/02 3:33 PM Page 408

Working with I/O Streams • Chapter 11 409

namespace IOTest

{

public class DirectoryCounter

{

public static void Main()

{

DirectoryInfo myDir = new

DirectoryInfo(@"c:\Program Files");

int total = CountDirectories(myDir);

Console.WriteLine("Total for " + myDir.FullName);

Console.WriteLine(total);

}

public static int CountDirectories(DirectoryInfo dir)

{

DirectoryInfo [] dirs = dir.GetDirectories();

int count = dirs.Length;

foreach(DirectoryInfo subDir in dirs)

{

count += CountDirectories(subDir);

}

return count;

}

}

}

This program begins by creating a new DirectoryInfo object representing the
directory “Program Files.” It then calls a custom method called CountDirectories(),
which counts the number of subdirectories in the directory. For every directory it
encounters it recursively calls CountDirectories().This program may take a while as
it seeps through the directory structure, so be patient as it explores.

Table 11.2 DirectoryInfo Methods and Properties

C# Java Equivalent Description

Create() File.mkDir() Creates a directory.

www.syngress.com

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 409

410 Chapter 11 • Working with I/O Streams

CreateSubdirectory() Not Available Creates a subdirectory or subdi-
rectories on the specified path.
The specified path can be relative
to this instance of the
DirectoryInfo class.

Delete() File.delete() Deletes a DirectoryInfo and its
contents from a path.

GetDirectories() File.list() or Returns the subdirectories of the
File.listFiles() current directory.

GetFiles() File.list() or Returns a file list from the cur-
File.listFiles() rent directory.

GetFileSystemInfo() Not Available Retrieves an array of strongly
typed FileSystemInfo objects.

MoveTo() File.renameTo() Moves a DirectoryInfo instance
and its contents to a new path.

Attributes Not Available Gets or sets the FileAttributes of
the current FileSystemInfo.

CreationTime Not Available Gets or sets the creation time of
the current FileSystemInfo object.

Exists File.exists() Gets a value indicating whether
the directory exists.

Extension Not Available Gets the string representing the
extension part of the file.

FullName File.getAbsolutePath() Gets the full path of the directory
or file.

LastAccessTime Not Available Gets or sets the time the current
file or directory was last
accessed.

LastWriteTime File.lastModified() Gets or sets the time when the
current file or directory was last
written to.

Name File.getName() Gets the name of this
DirectoryInfo instance.

Parent File.getParent() Gets the parent directory of a
specified subdirectory.

Root Not Available Gets the root portion of a path.

www.syngress.com

Table 11.2 Continued

C# Java Equivalent Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 410

Working with I/O Streams • Chapter 11 411

Files
File handling in C# is structured in almost the same way as directories.There are
two classes: File and FileInfo, which work much the same as their directory coun-
terparts. File contains all static methods and cannot be instantiated, so most of the
methods require the file name to be specified.Table 11.3 lists the relevant
methods of the File class and their Java counterparts. Notice there are no proper-
ties in the class, since this class is not instantiated.

Table 11.3 The File API

C# Java Equivalent Description

AppendText() Not Available Creates a StreamWriter that
appends UTF-8 encoded text to an
existing file.

Copy() Not Available Copies an existing file to a new
file.

Create() File.createNewFile() Creates a file in the specified fully
qualified path.

CreateText() Not Available Creates or opens a new file for
writing UTF-8 encoded text.

Delete() File.delete() Deletes the file specified by the
fully qualified path. An exception
is not thrown if the specified file
does not exist.

Exists() File.exists() Determines whether the specified
file exists.

GetAttributes() Not Available Gets the FileAttributes of the file
on the fully qualified path.

GetCreationTime() Not Available Returns the creation date and time
of the specified file or directory.

GetLastAccessTime() Not Available Returns the date and time the
specified file or directory was last
accessed.

GetLastWriteTime() File.lastModified() Returns the date and time the
specified file or directory was last
written to.

Move() File.renameTo() Moves a specified file to a new
location, providing the option to
specify a new filename.

www.syngress.com

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 411

412 Chapter 11 • Working with I/O Streams

Open() Not Available Opens a FileStream on the speci-
fied path.

OpenRead() File.setReadOnly() Opens an existing file for reading.
OpenText() Not Available Opens an existing UTF-8 encoded

text file for reading.
OpenWrite() Not Available Opens an existing file for writing.
SetAttributes() Not Available Sets the specified FileAttributes of

the file on the specified path.
SetCreationTime() Not Available Sets the date and time the file was

created.
SetLastAccessTime() Not Available Sets the date and time the speci-

fied file was last accessed.
SetLastWriteTime() File.setLastModified() Sets the date and time that the

specified file was last written to.

FileInfo is almost identical to the Java class File, except FileInfo cannot represent
a directory.A complete list of methods and properties can be found in Table 11.4.

Table 11.4 FileInfo Methods and Properties

C# Java Equivalent Description

AppendText() Not Available Creates a StreamWriter that appends
text to the file represented by this
instance of the FileInfo.

CopyTo() Not Available Copies an existing file to a new file.
Create() File.createNewFile() Creates a file.
CreateText() Not Available Creates a StreamWriter that writes a

new text file.
Delete() File.delete() Permanently deletes a file.
MoveTo() File.renameTo() Moves a specified file to a new location,

providing the option to specify a new
filename.

Open() Not Available Opens a file with various read/write and
sharing privileges.

OpenRead() File.setReadOnly() Creates a read-only FileStream.

www.syngress.com

Table 11.3 Continued

C# Java Equivalent Description

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 412

Working with I/O Streams • Chapter 11 413

OpenText() Not Available Creates a StreamReader with UTF8
encoding that reads from an existing
text file.

OpenWrite() Not Available Creates a write-only FileStream.
Refresh() Not Available Refreshes the state of the object.
Attributes Not Available Gets or sets the FileAttributes of the

current FileSystemInfo.
CreationTime Not Available Gets or sets the creation time of the

current FileSystemInfo object.
Directory Not Available Gets an instance of the parent directory.
DirectoryName Not Available Gets a string representing the direc-

tory’s full path.
Exists File.exists() Gets a value indicating whether a file

exists.
Extension Not Available Gets the string representing the exten-

sion part of the file.
FullName Not Available Gets the full path of the directory or

file.
LastAccessTime Not Available Gets or sets the time the current file or

directory was last accessed.
LastWriteTime File.lastModified() Gets or sets the time when the current

file or directory was last written to.

An instance of FileInfo can be obtained from DirectoryInfo using a method
called GetFiles(), which returns an array of FileInfo objects.This can be useful
when searching through directories, as the following example demonstrates.

using System;

using System.IO;

namespace IOTest

{

public class FileSearch

{

public static void Main()

{

String searchName = "win";

www.syngress.com

Table 11.4 Continued

C# Java Equivalent Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 413

414 Chapter 11 • Working with I/O Streams

DirectoryInfo myDir = new

DirectoryInfo(@"c:\Program Files");

SearchDirectories(myDir, searchName);

}

public static void SearchDirectories(

DirectoryInfo dir, String target)

{

FileInfo[] files = dir.GetFiles();

foreach(FileInfo file in files)

{

// Check if name is in any files

if(file.Name.IndexOf(target) > -1)

{

Console.WriteLine(file.Name);

}

}

DirectoryInfo [] dirs = dir.GetDirectories();

foreach(DirectoryInfo subDir in dirs)

{

SearchDirectories(subDir, target);

}

}

}

}

This program starts by creating a DirectoryInfo object pointing to the
“Program Files” directory. It calls the SearchDirectories() method, which retrieves
an array of FileInfo objects, representing all files in the directory. It then goes
through the array checking if the filename matches the search string win.This is
done using the String method IndexOf(), which will return –1 if no substring is
found; otherwise it returns the index number representing the start of the sub-
string.Any matching substrings cause the program to output the filename to the
console. In other words, this program will output any file that has win in its file-
name.The SearchDirectories then performs the same search on the other subdirec-
tories using recursion.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 414

Working with I/O Streams • Chapter 11 415

Streams
Most Java programmers are familiar with the concept of streams. Briefly, streams
allow a programmer to layer different stream classes to provide functionality. For
example, imagine a program that will be used to send double values across a net-
work, while buffering the data. In Java the first step is to obtain an OutputStream
from a Socket object, using the getOutputStream() method.The next step is to
create a BufferedOutputStream object with the original OutputStream object in the
constructor. Finally, a DataOutputStream object is created with the
BufferedOutputStream object in the constructor. In this example we’ve added three
layers of functionality to the stream of data.

C# uses the streams concept as well, with some changes. Probably the most
surprising change in the way C# handles streams is combining Input and Output
streams into one class. For example, C# combines BufferedInputStream and
BufferedOutputStream into a single BufferedStream class. Let’s explore the available
stream classes in C# and their functionality.Table 11.5 shows the C# stream classes
and their Java equivalents (all of these classes will be covered later in this chapter).

Table 11.5 The System.IO Namespace and Corresponding Java Classes

C# Java Description

Stream InputStream Provides a generic view of a
OutputStream sequence of bytes.

BinaryReader DataInputStream Reads primitive data types as binary
values in a specific encoding.

BinaryWriter DataOuptutStream Writes primitive types in binary to a
stream and supports writing strings
in a specific encoding.

BufferedStream BufferedInputStream Reads and writes to another
BufferedOutputStream stream. This class cannot be

inherited.
FileStream FileInputStream Exposes a stream around a file,

FileOutputStream supporting both synchronous
and asynchronous read and write
operations.

MemoryStream Not Available Creates a stream whose backing
store is memory.

NetworkStream (hidden; returned Creates a network stream using
by java.net.Socket) TCP/IP.

www.syngress.com

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 415

416 Chapter 11 • Working with I/O Streams

StreamReader InputStreamReader Implements a TextReader that reads
characters from a byte stream in a
particular encoding.

StreamWriter PrintWriter, Implements a TextWriter for writing
OutputStreamWriter characters to a stream in a partic-

ular encoding.
StringReader StringReader Implements a TextReader that reads

from a string.
StringWriter StringWriter Writes information to a string. The

information is stored in an under-
lying StringBuilder.

TextReader Reader Represents a reader that can read a
sequential series of characters.

TextWriter Writer Represents a writer that can write a
sequential series of characters. This
class is abstract.

Stream
Stream is an abstract class from which all other stream classes are derived. Most
methods in this class are very similar to those found in Java streams: WriteByte(),
ReadByte(), Flush(), and Close().

Additionally, there are four methods used for asynchronous data transfer:
BeginRead(), BeginWrite(), EndRead(), and EndWrite(). In Java, data is handled in a
synchronous fashion, where method calls to the various read and write methods
cause the program to halt while it finishes IO (unless you specifically call the IO
method from a separate thread). Asynchronous IO allows the program to start
reading data (from a file, network, or other source) and then continue with other
tasks. Once the data operation is completed, a callback method will notify the
program it has finished, and the program can then process the data.Asynchronous
data transfer will be discussed in depth later in this chapter.

Table 11.6 shows the methods of the Stream class.These methods are present
in FileStream, MemoryStream, BufferedStream, and NetworkStream (mentioned later),
since Stream is the base class for all other streams. For this reason there is no need
to go over the API for all four of these classes.

www.syngress.com

Table 11.5 Continued

C# Java Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 416

Working with I/O Streams • Chapter 11 417

Table 11.6 Stream Methods and Properties

C# Java Description

BeginRead() Not Available Begins an asynchronous read
operation.

BeginWrite() Not Available Begins an asynchronous write
operation.

Close() InputStream.close() and Closes the current stream and
OutputStream.close() releases any resources (such as

sockets and file handles) associ-
ated with the current stream.

EndRead() Not Available Waits for the pending asyn-
chronous read to complete.

EndWrite() Not Available Ends an asynchronous write oper-
ation.

Flush() OutputStream.flush() When overridden in a derived
class, clears all buffers for this
stream and causes any buffered
data to be written to the under-
lying device.

Read() InputStream.read(byte [] b) When overridden in a derived
class, reads a sequence of bytes
from the current stream and
advances the position within the
stream by the number of bytes
read.

ReadByte() InputStream.read() Reads a byte from the stream and
advances the position within the
stream by one byte, or returns –1
if at the end of the stream.

Seek() InputStream.skip() When overridden in a derived
class, sets the position within the
current stream.

SetLength() Not Available When overridden in a derived
class, sets the length of the cur-
rent stream.

Write() OutputStream.write(byte [] b) When overridden in a derived
class, writes a sequence of bytes
to the current stream and
advances the current position
within this stream by the number
of bytes written.

www.syngress.com
Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 417

418 Chapter 11 • Working with I/O Streams

WriteByte() OutputStream.write(byte b) Writes a byte to the current posi-
tion in the stream and advances
the position within the stream by
one byte.

CanRead Not Available When overridden in a derived
class, gets a value indicating
whether the current stream sup-
ports reading.

CanWrite Not Available When overridden in a derived
class, gets a value indicating
whether the current stream sup-
ports writing.

CanSeek InputStream.markSupported() When overridden in a derived
class, gets a value indicating
whether the current stream sup-
ports seeking.

Length InputStream.available() When overridden in a derived
class, gets the length in bytes of
the stream.

Position InputStream.mark() When overridden in a derived
class, gets or sets the position
within the current stream.

FileStream
There are several ways to obtain a FileStream.The first way to obtain an instance
is to use one of the nine overloaded constructors of FileStream.A FileMode enu-
meration is used to specify how to obtain the FileStream (Append, Create,
CreateNew, Open, OpenOrCreate, or Truncate).The following example creates a
new file on disk or overwrites an existing file if it has the same name.

FileStream ioStream = new FileStream(@"c:\data\test.dat",

FileMode.Create);

An instance of FileStream can also be obtained from the File class.The fol-
lowing example opens an existing file for write access only:

FileStream outputStream = File.OpenWrite(@"c:\test.dat");

www.syngress.com

Table 11.6 Continued

C# Java Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 418

Working with I/O Streams • Chapter 11 419

Finally, FileStream can be obtained from a FileInfo instance:

FileInfo file = new FileInfo(@"c:\data\test.dat");

FileStream outStream = file.OpenRead();

MemoryStream
MemoryStream is a new addition to the streams family, and is probably unfamiliar
to Java programmers.A MemoryStream is simply a stream with a backing store that
originates in memory, in the form of an array of bytes.There are seven construc-
tors for MemoryStream, but essentially two different kinds, depending on the
parameters used in the constructor.The first type of MemoryStream accepts an
array of bytes in the constructor.

byte [] b = {1,2,3,4,5,6};

MemoryStream memOut = new MemoryStream(b);

A MemoryStream with an array of bytes in the constructor is not resizable.
Byte values within the stream may be changed (as long as it is not specifically
created as read only), but the size of the internal array will remain constant.The
other kind of MemoryStream is resizable.

MemoryStream memOut = new MemoryStream();

This kind of MemoryStream does not use a byte array in the constructor. Some
of the constructors also allow an int parameter that determines the initial array
size. Data is stored in the MemoryStream using the Write() method, as shown in
this example.

using System;

using System.IO;

namespace IOTest

{

public class MemTest

{

public static void Main()

{

MemoryStream memOut = new MemoryStream();

byte [] bs = {1,2,3,4,5,6};

memOut.Write(bs,0,bs.Length);

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 419

420 Chapter 11 • Working with I/O Streams

memOut.Seek(+3, SeekOrigin.Begin);

byte b = (byte)memOut.ReadByte();

Console.WriteLine("Value: " + b);

}

}

}

Output
4

This program creates an empty MemoryStream and writes an array of bytes to
it in regular stream fashion. It then uses the Seek() method to move the pointer to
the beginning (+3) and reads in a value.The capacity of this MemoryStream will
grow automatically as it is written to by increments of 256.You can also manually
change the capacity using the SetLength() method.

So what are MemoryStream objects used for? Generally for buffering purposes,
where it is better to have the image in memory than residing on the network or
on disk.The following example shows how to obtain a stream of a binary file (for
example, an image) and store it in memory so it can be analyzed.

Image analysis programs typically process large amounts of data. Bitmap color
images are made up of thousands of byte values. Each byte represents the inten-
sity of one of three colors: red, green, or blue.A value of 0 represents no color,
whereas a value of 255 has an intense color. So for a single pixel in a bitmap
image, the value 255,127, 0 has intense blue, medium green and no red in it.
Using these assumptions, let’s create a program to analyze the overall intensity of
each color in a picture.

The following example will read in all the bytes from a jpeg image and con-
verts the data into a basic bitmap image (raw bytes). It then sums all the various
bytes in the image in threes and stores them to an array—for example, all blue
values belong to array 0, green to array 1, and red to array 2. From the stats, you
can then tell what the mood of the picture is by looking at the occurrence of the
different colors.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 420

Working with I/O Streams • Chapter 11 421

NOTE

For this example you can use any jpeg images you want. Windows XP
users have four sample pictures located in the shared folder C:\Documents
and Settings\[username] \Documents\My Pictures\Sample Pictures\. These
pictures all have only one dominant color, which will allow us to easily
verify the results. The images are Blue Hills.jpg (very blue), Winter.jpg
(blue), Sunset.jpg (red), and Water lilies.jpg (green).

using System;

using System.IO;

using System.Drawing;

using System.Drawing.Imaging;

namespace ImageAnalyzer

{

public class Analyzer

{

public byte [] currentImage;

public Analyzer(String file)

{

Image sample = new Bitmap(file);

MemoryStream buf = new MemoryStream();

sample.Save(buf, ImageFormat.Bmp);

currentImage = buf.GetBuffer();

}

public int [] GetStats()

{

int [] stats = new int[3];

for(int i=0;i<currentImage.Length;)

for(int j=0;j<3;j++){

stats[j] += currentImage[i];

++i;

}

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 421

422 Chapter 11 • Working with I/O Streams

return stats;

}

public static void Main()

{

String f = @"C:\Documents and Settings\All Users\

Documents\My Pictures\Sample Pictures\

Blue Hills.jpg";

Analyzer a = new Analyzer(f);

int [] stats = a.GetStats();

Console.WriteLine("Blue: " + stats[0]);

Console.WriteLine("Green: " + stats[1]);

Console.WriteLine("Red: " + stats[2]);

if((stats[0] > stats[1]) && (stats[0] > stats[2]))

Console.WriteLine("This is a cold picture.");

if((stats[1] > stats[0]) && (stats[1] > stats[2]))

Console.WriteLine("This is a summer picture.");

if((stats[2] > stats[0]) && (stats[2] > stats[1]))

Console.WriteLine("This is a fiery picture.");

}

}

}

In the preceding code, the Analyzer constructor creates a new Image object
from the jpeg image on disk.The next line creates an empty MemoryStream
object, then sends the entire Image into the stream in bitmap format, using the
Image.Save() method.The entire byte array is then retrieved from the
MemoryStream object and sent to the GetStats() method.This method contains an
array of three values.The method loops through the entire image byte array, and
each byte it encounters increments the appropriate value in the stats array. In this
manner it counts each byte in the image array.The output of the program fol-
lows. From the output we can see that the most intense color in this image is
blue.

Output
Blue: 100706587

Green: 63844498

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 422

Working with I/O Streams • Chapter 11 423

Red: 28778940

This is a cold picture.

BufferedStream
The previous section showed how to manually buffer an individual binary file.
Most Java programmers are aware of BufferedInputStream and BufferedOutputStream
from Java. C# contains this functional layer in one class, BufferedStream.The use of
BufferedStream should be very familiar to Java programmers since it is so similar.
Buffering is added to a stream by accepting a Stream object in the BufferedStream
constructor.The new BufferedStream object will provide buffering automatically,
on the fly. Let’s examine this in code.

FileStream fs = new

FileStream(@"c:\test.txt", FileMode.Open);

BufferedStream bs = new BufferedStream(fs);

WARNING

Remember to call Flush() after all write operations, otherwise the stream
could have unsent bytes that will not arrive at the destination.

Encoding Data Types
All data is sent as byte values (0 to 255).This is useful as a building block for
other data types, but other classes are required if we want to send larger types
such as integers, floating point numbers, or even Strings. In order to send these
data types the class must be able to encode byte values into the respective data
types using some sort of algorithm.And of course, at the other end of the stream
a class must be able to decode these bytes and convert them back into the respec-
tive data types.

Java programmers are used to the DataInputStream and DataOutputStream
classes to perform this task. C# provides an equivalent pair of classes, but they are
not Stream classes (they do not inherit Stream). Instead, C# uses BinaryWriter and
BinaryReader to perform data encoding and decoding. Both of these classes accept
a Stream parameter in their constructors, however.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 423

424 Chapter 11 • Working with I/O Streams

So why not follow the pattern set by Java and use DataStream instead?
Probably because this class is meant to be the last class added to a chain of
streams. BufferedStream works fine sandwiched in the middle of a stream, because
none of the methods in BufferedStream need to be accessed directly by a pro-
grammer.With BinaryReader and BinaryWriter, however, the methods must be
accessible to the programmer (methods such as ReadInt(), for example). In other
words, it does no good to sandwich BinaryReader in the middle layer of many
streams since that would hide the useful encoding/decoding methods from being
accessed. Let’s take a look at a problem that can occur in Java.

Java
FileInputStream file = new FileInputStream("c:\\data.dat");

DataInputStream dIn = new DataInputStream(file);

BufferedInputStream bIn = new BufferedInputStream(dIn);

This example shows a continuous chain of streams consisting of a
FileInputStream, a DataInputStream, and a BufferedInputStream. But once we have
created the last object, the DataInputStream is no longer useful for anything.
BufferedInputStream will use only the read() methods of DataInputStream, but the
other methods for reading data types will be hidden from the final
BufferedInputStream instance.

By using a different class type (BinaryReader and BinaryWriter), C# ensures
this cannot happen. It is a one-way street, where streams can be added to the
BinaryReader/Writer, but the Writer cannot be added to another stream.The fol-
lowing code demonstrates this.

C#
FileStream file = new

FileStream("c:\\data.dat",FileMode.Open);

BufferedStream bIn = new BufferedStream(file);

BinaryReader dIn = new BinaryReader(bIn);

It would be impossible to sandwich BinaryReader in the middle layer of these
streams. In this respect, the C# API has just a little more enforcement than the
Java API.

Table 11.7 shows the methods in BinaryReader and the corresponding methods
in Java. Notice the method names for integers and floating point numbers seem
quite general. For example, C# uses ReadInt16() rather than ReadShort().This is

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 424

Working with I/O Streams • Chapter 11 425

because these classes are shared by Visual Basic and C++, and those languages
don’t use the same names for their primitive types; hence the generalization of
method names.

Table 11.7 BinaryReader Methods vs. DataInputStream Methods

C# Java Description

PeekChar() Not Available Returns the next available character
and does not advance the byte or char-
acter position.

Read() Not Available Reads characters from the underlying
stream and advances the current posi-
tion of the stream.

ReadBoolean() ReadBoolean() Reads a Boolean from the current
stream and advances the current posi-
tion of the stream by one byte.

ReadByte() readByte() Reads the next byte from the current
stream and advances the current posi-
tion of the stream by one byte.

ReadBytes() read() Reads a specific number of bytes from
the current stream into a byte array
and advances the current position by
count bytes.

ReadChar() readChar() Reads the next character from the cur-
rent stream and advances the current
position of the stream in accordance
with the encoding used and the spe-
cific character being read from the
stream.

ReadChars() Not Available Reads a specific number of characters
from the current stream, returns the
data in a character array, and advances
the current position in accordance with
the encoding used and the specific
character being read from the stream.

ReadDecimal() Not Available Reads a decimal value from the current
stream and advances the current posi-
tion of the stream by 16 bytes.

ReadDouble() readDouble() Reads an 8-byte floating point value
from the current stream and advances
the current position of the stream by
eight bytes.

www.syngress.com
Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 425

426 Chapter 11 • Working with I/O Streams

ReadInt16() readShort() Reads a 2-byte signed integer from the
current stream and advances the cur-
rent position of the stream by two
bytes.

ReadInt32() readInt() Reads a 4-byte signed integer from the
current stream and advances the cur-
rent position of the stream by four
bytes.

ReadInt64() readLong() Reads an 8-byte signed integer from
the current stream and advances the
current position of the stream by four
bytes.

ReadSByte() readByte() Reads a signed byte from this stream
and advances the current position of
the stream by one byte.

ReadSingle() readFloat() Reads a 4-byte floating point value
from the current stream and advances
the current position of the stream by
four bytes.

ReadString() readUTF() Reads a string from the current stream.
The string is prefixed with the length,
encoded as an integer 7 bits at a time.

ReadUInt16() readUnsignedShort() Reads a 2-byte unsigned integer from
the current stream using little endian
encoding and advances the position of
the stream by two bytes.

ReadUInt32() Not Available Reads a 4-byte unsigned integer from
the current stream and advances the
position of the stream by four bytes.

ReadUInt64() Not Available Reads an 8-byte unsigned integer from
the current stream and advances the
position of the stream by eight bytes.

BinaryWriter is a little different from BinaryReader.All of the methods in
BinaryReader read a specific type, but BinaryWriter has one overloaded method to
handle all of this: Write(). So depending on the type of parameter used in the
Write() method, C# will choose the proper encoding for that data type.There are
18 overloaded Write() methods that can encode all primitive types (see Table 11.8),

www.syngress.com

Table 11.7 Continued

C# Java Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 426

Working with I/O Streams • Chapter 11 427

including byte, short, int, long, double, bool, char, float, double, string, and the
unsigned integer types.

Table 11.8 BinaryWriter Methods

C# Description

Write(bool) Writes a one-byte Boolean value to the current stream,
with zero representing false and one representing true.

Write(byte) Writes an unsigned byte to the current stream and
advances the stream position by one byte.

Write(byte[]) Writes a byte array to the underlying stream.
Write(char) Writes a Unicode character to the current stream and

advances the current position of the stream in accor-
dance with the encoding used and the specific characters
being written to the stream.

Write(char[]) Writes a character array to the current stream and
advances the current position of the stream in accor-
dance with the encoding used and the specific characters
being written to the stream.

Write(decimal) Writes a decimal value to the current stream and
advances the stream position by eight bytes.

Write(double) Writes an 8-byte floating point value to the current
stream and advances the stream position by eight bytes.

Write(short) Writes a 2-byte signed integer to the current stream and
advances the stream position by two bytes.

Write(int) Writes a 4-byte signed integer to the current stream and
advances the stream position by four bytes.

Write(long) Writes an 8-byte signed integer to the current stream
and advances the stream position by eight bytes.

Write(sbyte) Writes a signed byte to the current stream and advances
the stream position by one byte. This method is not CLS-
compliant.

Write(float) Writes a 4-byte floating-point value to the current stream
and advances the stream position by four bytes.

Write(string) Writes a length-prefixed string to this stream in the cur-
rent encoding of the BinaryWriter, and advances the cur-
rent position of the stream in accordance with the
encoding used and the specific characters being written
to the stream.

www.syngress.com

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 427

428 Chapter 11 • Working with I/O Streams

Write(ushort) Writes a 2-byte unsigned integer to the current stream
and advances the stream position by two bytes. This
method is not CLS-compliant.

Write(uint) Writes a 4-byte unsigned integer to the current stream
and advances the stream position by two bytes. This
method is not CLS-compliant.

Write(ulong) Writes an 8-byte unsigned integer to the current stream
and advances the stream position by two bytes. This
method is not CLS-compliant.

Write(byte[],int,int) Writes a region of a byte array to the current stream.
Write(char[],int,int) Writes a section of a character array to the current

stream, and advances the current position of the stream
in accordance with the encoding used and perhaps the
specific characters being written to the stream.

Text
Most languages contain support for reading and writing text. C# happens to
contain text classes that are very similar to Java’s. Java contains two abstract classes
called Reader and Writer that are used specifically for character streams. From the
Reader class we get a whole slew of subclasses: BufferedReader, CharArrayReader,
FilterReader, InputStreamReader, PipedReader, StringReader, and FileReader. Likewise,
Writer also produces many subclasses: BufferedWriter, CharArrayWriter, FilterWriter,
OutputStreamWriter, PipedWriter, PrintWriter, StringWriter, and FileWriter.

In C#, the base classes used for handling text are TextReader and TextWriter,
both abstract classes. C# offers a much more simplified collection of TextReaders
and TextWriters. TextReader has only two subclasses:

■ StreamReader

■ StringReader

TextWriter, on the other hand, has five subclasses:

■ StreamWriter

■ StringWriter

■ System.Web.HttpWriter

www.syngress.com

Table 11.8 Continued

C# Description

223_C#Java_11.qxd 5/21/02 3:33 PM Page 428

Working with I/O Streams • Chapter 11 429

■ System.Web.UI.HtmlTextWriter

■ System.CodeDom.Compiler.IndentedTextWriter

NOTE

BinaryReader and BinaryWriter do not inherit from TextReader or
TextWriter.

StreamReader and StreamWriter
The Java strategy for Readers and Writers is to have a lot of different classes that
specialize. C# uses fewer classes that allow specialized behavior to be chosen
through the constructors. StreamReader has 10 constructors that determine the
source (file or stream), buffer size, character encoding, and whether it allows mark
detection. Let’s try obtaining a StreamReader using one of these constructors:

StreamReader txtFile = new StreamReader(@"c:\data\readme");

It is also possible to obtain a StreamReader from other objects, such as a
FileInfo object:

FileInfo readme = new FileInfo(@"c:\data\readme");

StreamReader txtFile = readme.OpenText();

TextReaders have the ability to read one line at a time using the ReadLine()
method.The following code opens a file and outputs the text to the console.

using System;

using System.IO;

namespace IO

{

public class LicenseViewer

{

public static void Main()

{

FileInfo license = new

FileInfo(@"c:\jdk1.3.1_02\LICENSE");

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 429

430 Chapter 11 • Working with I/O Streams

StreamReader txtIn = license.OpenText();

String line;

do

{

line = txtIn.ReadLine();

Console.WriteLine(line);

} while(line != null);

}

}

}

This class is quite simple. It creates a FileInfo object referencing the JDK
license. It then calls the OpenText() method to retrieve a StreamReader object.
Once it has this it is simple to read in text line by line.

The Read() method is overloaded with two methods. If we used Read() it
would read in a single character at a time. It is also possible to read in sections of
the data at a time by using Read() with parameters including a char array and an
index value.

StringReader and StringWriter
StringWriter and StringReader both inherit from TextWriter and TextReader, respec-
tively; therefore they function the same way as other Readers and Writers.The
crucial difference is that rather than using a Stream as the source it uses a String.
A constructor for a typical StringReader is as follows:

MyString = "a1b2c3d4e5";

StringReader sr = new StringReader(myString);

StringReader’s and StringWriter’s each have their own uses.These classes are
useful because strings are perhaps the most popular currency for handling text in
C#. So it makes sense to be able to write directly to a string from a stream
source. Let’s look at an example.

using System;

using System.IO;

using System.Xml;

namespace IO

{

public class BookListing

{

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 430

Working with I/O Streams • Chapter 11 431

public static void Main()

{

XmlDocument doc = new XmlDocument();

String entry = "<book genre='biography'" +

" ISBN='0553256742'><title>Yeager</title>" +

"</book>";

doc.LoadXml(entry); // to XmlDocument

StringWriter writer = new StringWriter();

doc.Save(writer); // to StringWriter

String strXML = writer.ToString(); // to String

Console.WriteLine(strXML);

}

}

}

Output
<?xml version="1.0" encoding="utf-16"?>

<book genre="biography" ISBN="0553256742">

<title>Yeager</title>

</book>

This example demonstrates how smoothly C# can convert data between var-
ious data types.This code creates an XML document, then saves the data to a
StringWriter, then uses ToString() to convert to a string and output the data to the
console.The StringReader and StringWriter allow conversions to be that much sim-
pler, since streams, writers, and strings are the most popular objects for
exchanging text data.

Network I/O
Network IO is one of the strong points of Java.The java.net package provides
intuitive classes for obtaining a socket connection to another computer. C#
essentially uses the same model, but there are some differences in the way they
choose to implement the methods for retrieving a stream. Let’s dive right in and
see how this is done.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 431

432 Chapter 11 • Working with I/O Streams

Server Side
In Java, a server is created using a ServerSocket object, which defines a port
number.The ServerSocket accepts connection and returns a Socket with which the
program can communicate with the client.

Java
ServerSocket server = new ServerSocket(55555);

Socket client = Server.accept();

OutputStream out = client.getOutputStream();

In C# the equivalent to ServerSocket is TcpListener, found in the System.Net
.Sockets namespace.This class accepts a connection using the AcceptSocket()
method, which returns a Socket object.The names might be different but the
functionality is about the same, except for one minor difference.The TcpListener
does not start listening for connections until Start() is called.

C#
TcpListener server = new TcpListener(55555);

server.Start();

Socket client = server.AcceptSocket();

The AcceptSocket() method waits for connection, just like Java.The program
essentially halts at this point until the method call returns with a Socket object.

Now things start to diverge slightly from what Java programmers are used to.
In Java, once a Socket has been obtained we can simply call getInputStream() or
getOutputStream().This contrasts with C#, which requires the program to create a
new instance of NetworkStream.The NetworkStream class accepts a Socket in the
constructor. Since NetworkStream inherits from Stream, it can be used in any
classes using Stream, such as BinaryWriter.

NetworkStream netStream = new NetworkStream(client);

BinaryWriter dataOut = new BinaryWriter(netStream);

Let’s create a complete Server to demonstrate these concepts.This server will
send the time using BinaryWriter to any client that connects to it.And any good
server should be able to handle multiple connections, so this server will spawn a
new thread to handle each client.

using System.Net.Sockets;

using System.IO;

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 432

Working with I/O Streams • Chapter 11 433

using System;

using System.Threading;

namespace IO

{

public class TimeServer

{

public static void Main()

{

TcpListener server = new TcpListener(55555);

server.Start();

Console.WriteLine("Waiting for connections...");

while(true)

{

Socket client = server.AcceptSocket();

Console.WriteLine("New connection detected on "

+ client.Handle);

ClientHandler ch = new ClientHandler(client);

}

}

class ClientHandler

{

private Socket client;

public ClientHandler(Socket client)

{

this.client = client;

Thread clientThread = new Thread(new

ThreadStart(ClientSession));

clientThread.Start();

}

public void ClientSession()

{

NetworkStream netStream = new

NetworkStream(client);

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 433

434 Chapter 11 • Working with I/O Streams

BinaryWriter timeOut = new

BinaryWriter(netStream);

String time = DateTime.Now.ToString();

timeOut.Write(time);

timeOut.Close();

netStream.Close();

client.Close();

}

}

}

}

The main loop for this program occurs in the Main() method.This method
creates a TcpListener with a port number of 55555. It then waits for a client to
connect. Upon connection it spawns a new thread to handle all client interac-
tions—in this case, sending the current time.As you can see there’s really not that
much to handling network connections using C#.

www.syngress.com

Avoiding Conflicting Ports
Each network application you create needs a unique port number with
which to communicate. Since users may run more than one networked
application on their computer it is important that no two applications
use the same port. The Internet Assigned Numbers Authority (IANA)
assigns port numbers to programs. Port numbers 0 through 49151 are
registered to programs as connection ports. Ports 49152 through 65535
are assigned dynamically by the server, therefore they may not be regis-
tered. Once a computer connects to a server through the connect port,
the connection is shuffled over to a dynamic port so the connection port
is not tied up. To see an up-to-date listing of all registered port numbers,
visit the IANA at www.iana.org/assignments/port-numbers.

Developing & Deploying…

223_C#Java_11.qxd 5/21/02 3:33 PM Page 434

Working with I/O Streams • Chapter 11 435

Client Side
There are a few differences with creating network clients as well. In Java we
simply use the Socket class to create a client socket.

Java
Socket client = new Socket("127.0.0.1",55555);

C# has a few ways of obtaining a socket connection with another client.The
most familiar way for Java programmers is to create a Socket object (see the
sidebar,“Using a Socket”), but in C# the equivalent class in terms of function-
ality is TCPClient.

C# can also create a socket by using objects that are tailor-made for a specific
transport protocol. Currently the System.Net.Sockets namespace includes two such
classes: TcpClient and UdpClient.The TcpClient constructor requires the IP address
and port number to connect to, much like Socket in Java:

TcpClient client = new TcpClient("127.0.0.1",55555);

When the TcpClient is initialized it connects automatically to the server
described in the parameters. TcpClient (and UdpClient) are like convenience
classes, making it easier to create a socket using a TCP connection. TcpClient
contains the GetStream() method for retrieving a stream. Let’s examine this code
in a complete client program.

using System.Net.Sockets;

using System.IO;

using System;

namespace IOClient

{

public class TimeClient

{

TcpClient client;

public TimeClient()

{

client = new TcpClient("127.0.0.1",55555);

}

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 435

436 Chapter 11 • Working with I/O Streams

public static void Main()

{

TimeClient tc = new TimeClient();

String time = tc.RetrieveTime();

Console.Write("The time is: ");

Console.WriteLine(time);

}

public String RetrieveTime()

{

NetworkStream netStream = client.GetStream();

BinaryReader timeIn = new BinaryReader(netStream);

return timeIn.ReadString();

}

}

}

This program will connect to the server we made previously. If you are
using Visual Studio you will need to open two instances of the IDE. Start the
TimeServer program first, and then switch over to the second Visual Studio
instance and run TimeClient.The output window will display the current time,
retrieved from the server program.

The constructor for this program creates an instance of TcpClient, connecting
to the local IP address and port 55555. It then calls the RetrieveTime() method.
This method obtains a network stream by using GetStream(), then reads in a
single string representing the time.As you can see, it is much more convenient to
use a TcpClient object as opposed to a Socket object (see the sidebar,“Using a
Socket”). However, if you need to use a different transport protocol, C# gives
you the flexibility with the Socket class.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 436

Working with I/O Streams • Chapter 11 437

www.syngress.com

Using a Socket
The C# Socket class is much more complicated to use than the Java
Socket class. The reason for the complexity is because C# allows a lot
more flexibility in deciding the type of connection to establish. Let’s try
this out in a quick example to demonstrate these complexities.

The first step is to obtain a resolved IP address, in the form of an
IPAddress object. This can be obtained from the Dns class using the
Resolve() method, which returns an IPHostEntry object, from which an
IPAddress may be obtained. Simple, isn’t it? There’s more. Once an
IPAddress is obtained, an IPEndpoint must be obtained, which specifies
a port number to connect to. In code it takes up only three lines, but
there’s more to come.

// Use Dns to get the first IPAddress in the list.

IPHostEntry host = Dns.Resolve("localhost");

IPAddress serverIP = host.AddressList[0];

IPEndPoint serverEP = new IPEndPoint(serverIP, 80);

OK, we’ve got an IPEndPoint, but so far there is no Socket object,
so now what do we do? The next step is to create a Socket object. There
are three enumerations used to define the socket: AddressFamily,
SocketType, and ProtocolType. AddressFamily specifies the addressing
scheme that this instance of Socket will use. For example, it could use
AppleTalk, Banyan, IPX, or UNIX, among many. We’re going to use an IP
address (four bytes separated by decimals), which is indicated by the
InterNetwork enumerator. SocketType determines the type of socket to
create. In our case, we’re going to use Stream. For the final parameter,
we will select the TCP protocol.

//Create TCP Socket

Socket server = new Socket(

AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp);

server.Connect(serverEP);

NetworkStream inout = new NetworkStream(server);

Developing & Deploying…

Continued

223_C#Java_11.qxd 5/21/02 3:33 PM Page 437

438 Chapter 11 • Working with I/O Streams

Synchronous vs. Asynchronous
The examples presented so far have used synchronous data access, meaning when a
method is called to read or write, the method does not return until the process is
done.The Stream class in C# also allows asynchronous access, meaning read and
write methods will immediately return, accessing the data in the background.All
streams allow asynchronous data transfer.There are two methods to use for asyn-
chronous data access (see Table 11-6), BeginRead() and BeginWrite().

Let’s look at BeginRead() first.This method accepts five parameters:

public override IAsyncResult BeginRead(

byte[] array,

int offset,

int numBytes,

AsyncCallback userCallback,

object stateObject

)

In this method definition the byte array acts as the buffer to read the data
into.The second and third parameters, offset and numBytes, determine the byte at
which to start reading, and the maximum number of bytes to read.

The fourth parameter is an AsyncCallback object, which is a delegate (see
Chapter 8).This object references an event handler to notify the program when
the operation is finished.You may optionally choose not to use a delegate by
passing null as the parameter, in which case the program will not be notified
when the read has completed. In this case you must program the class to manu-
ally check if the file read has completed.

www.syngress.com

It should be noted in the preceding example that SocketType and
ProtocolType are directly related within an AddressFamily. For example,
when the SocketType is Dgram the ProtocolType must always be UDP.
When the SocketType is Stream the ProtocolType must always be TCP.

Once the socket has connected to the server it’s possible to create
a new NetworkStream using the Socket object in the constructor. As you
can see from this example, it’s not the most intuitive process in the
world for most programmers, which is why Java programmers might
feel more at home with the TcpClient class. However, it does provide you
with great flexibility when you need to create different types of network
connection.

223_C#Java_11.qxd 5/21/02 3:33 PM Page 438

Working with I/O Streams • Chapter 11 439

The final parameter can be any object, such as the caller itself, which is used
to distinguish this asynchronous request from other requests.This parameter, and
the delegate object, are optional.The user may ignore these parameters by passing
null values instead. Let’s look at an example of asynchronous data transfer.We’ll
modify our previous LicenseViewer example to read the text asynchronously.

using System;

using System.IO;

using System.Text;

namespace IO

{

public class LicenseViewer

{

FileStream license;

private AsyncCallback doneDelegate;

private byte [] buff = new byte[100];

public LicenseViewer(String file)

{

license = new FileStream(file, FileMode.Open);

doneDelegate = new AsyncCallback(UpdateConsole);

}

/** Read in the license in blocks at a time */

public void ReadLicense()

{

if (buff[0] > 0)

{

license.BeginRead(buff, 0,

buff.Length, doneDelegate, this);

}

}

public void UpdateConsole(IAsyncResult result)

{

// Suspend reading, then output contents:

int totalBytes = license.EndRead(result);

if(totalBytes > 0)

{

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 439

440 Chapter 11 • Working with I/O Streams

String s = Encoding.ASCII.GetString(buff, 0,

totalBytes);

Console.WriteLine(s);

// Continue reading:

}

ReadLicense();

}

}

public class Test

{

public static void Main()

{

String file = @"C:\jdk1.3.1\LICENSE";

LicenseViewer lv = new LicenseViewer(file);

//Read in licence asynchronously

lv.ReadLicense();

//Continue processing, this loop will be performed

//concurrently with the read.

long tally = 0;

for(int i=0;i<50000;++i)

{

tally += i;

Console.WriteLine(tally);

}

}

}

}

This program starts an asynchronous read on the JDK license. Notice in the
constructor for LicenseViewer, that the method UpdateConsole is specified as the
delegate.This is done by creating an AsyncCallback object and using the method
name as a parameter. Once an AsyncCallback object is obtained (doneDelegate) it is
used as a parameter in the BeginRead() method in the ReadLicense() method.

The ReadLicense() method initiates the read, and reads in 100 bytes at a time.
Once the asynchronous read has begun it goes into a loop where it counts off
numbers and outputs them to the console, providing a visible demonstration that

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 440

Working with I/O Streams • Chapter 11 441

the program has continued to execute.After each 100 byte block is read, the del-
egate will be notified via the callback method UpdateConsole() we created.This
method suspends disk access to the file, outputs the contents of the buff variable,
and then continues reading.

NOTE

Java has no built-in support for asynchronous file reads, but it can easily
perform them by reading all data from a separate thread.

Web Streams
The C# language wisely contains classes made specifically for interacting with
the Internet.At the code level, it can be useful to retrieve information from a
Web site that is used within an application. C# provides some useful classes for
reading data directly from Web pages using any valid Web address.

Retrieving information from a Web server is essentially a two-step process.
The first step is to send a request to the server. If all goes well, your computer
will connect to a server somewhere across the Internet. Step two is receiving a
response from the server, in the form of a data file. C# breaks up the request and
response into two separate classes: HttpWebRequest and HttpWebResponse.The ulti-
mate goal is to receive a stream with a Web page as the backing-store.

An HttpWebRequest object can be obtained from a static method contained in
the WebRequest class (which is also the base class of HttpWebRequest).This
method is called Create() and it accepts either a URI object (Uniform Resource
Identifier) or simply a string of the Web address.

String page = "http://www.mts.net/~bbagnall/index.html";

HttpWebRequest site =

(HttpWebRequest)WebRequest.Create(page);

Once we have an HttpWebRequest object we can use it to receive an
HttpWebResponse.This is accomplished using the HttpWebRequest.GetResponse()
method.

HttpWebResponse response =

(HttpWebResponse)site.GetResponse();

And finally, we can achieve our ultimate goal, obtaining a stream using the
GetResponseStream() method.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 441

442 Chapter 11 • Working with I/O Streams

Stream dataStream = response.GetResponseStream();

The completed code for an application to retrieve the contents of a Web page
is as follows:

using System;

using System.Net;

using System.IO;

namespace IO

{

public class WebApp

{

public static void Main()

{

String page =

"http://www.mts.net/~bbagnall/index.html";

HttpWebRequest site =

(HttpWebRequest)WebRequest.Create(page);

HttpWebResponse response =

(HttpWebResponse)site.GetResponse();

Stream dataStream = response.GetResponseStream();

StreamReader read = new StreamReader(dataStream);

String data = read.ReadToEnd();

Console.WriteLine(data);

}

}

}

Output
<TITLE>Homepage of Brian Bagnall</TITLE>

<H1>

Welcome to my web page...

</H1>

(abbreviated)

The flow of this program is quite basic. It creates an HttpWebRequest
object pointing to a Web page. It then retrieves an HttpWebResponse using the
GetResponse() method. From this it harvests a Stream object and uses it to create a

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 442

Working with I/O Streams • Chapter 11 443

StreamReader for handling text. It reads to the end of the stream using ReadToEnd(),
which returns a String. It then outputs the entire String to the console.As you can
see from the output, the HTML code for the Web page is displayed.

Serialization
One of the best features of Java I/O is the ability to send objects through a
stream, a process known as serialization. Java has two classes for object transfer:
ObjectOutputStream and ObjectInputStream.These classes can send any object
through any stream, provided the object implements the Serializable interface.

C# takes a different approach to serialization. Instead of creating a stream
capable of sending objects, C# uses two methods in the BinaryFormatter class:
Serialize() and Deserialize().The Serialize() method requires two parameters: a
stream to write to, and the object that will be sent.The Deserialize() method
requires only a stream to read from, and it returns an object (which can be cast to
the appropriate type).

Creating a Serializable Object
Before we get into serialization and deserialization, let’s try creating a serializable
object. Rather than implement a Serializable interface as Java does, C# requires an
object to be marked with the [Serializable] attribute.This attribute is actually
defined in the System.SerializableAttribute class.

For our example, we will create a simple class that stores a String and an int.
This class could just as easily be a struct—it makes no difference for serialization
purposes.

using System;

namespace IO

{

[Serializable]

public class BookRecord

{

public String title;

public int asin;

public BookRecord(String title, int asin)

{

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 443

444 Chapter 11 • Working with I/O Streams

this.title = title;

this.asin = asin;

}

}

}

This class represents a book record. It stores a string representing the title of a
book and an integer representing an ASIN number.The most obvious difference
is the use of the [Serializable] attribute located just above the class definition.This
indicates that this object is eligible for serialization.Without this attribute, it will
not be accepted by the methods in the BinaryFormatter class.

Serializing an Object
Now that we have a serializable object we can try sending it through a stream.
We’ll create a FileStream to create a new file to disk.

using System;

using System.Runtime.Serialization.Formatters.Binary;

using System.IO;

namespace IO

{

public class SerializeObject

{

public static void Main()

{

BookRecord book = new BookRecord(

"Building Robots with Lego Mindstorms",

1928994679);

FileStream stream = new FileStream(@"book.obj",

FileMode.Create);

BinaryFormatter bf = new BinaryFormatter();

bf.Serialize(stream, book);

stream.Close();

}

}

}

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 444

Working with I/O Streams • Chapter 11 445

This program creates a new BookRecord object that will act as our test subject.
It then creates a new FileStream object pointing to the file book.obj. Note that any
stream can be used, including a NetworkStream. In order to use the methods of
BinaryFormatter we need an instance, so the code creates a new one. It then calls
the method Serialize() and writes the given object to the stream. Once this pro-
gram has finished, a new file called book.obj, will appear in the current project
directory.

Deserializing an Object
It is just as easy to retrieve an object through a stream.This example opens a
stream with the book.obj file as a backing-store.The hardest part of reading an
object is to remember to cast it to the appropriate type.

using System;

using System.Runtime.Serialization.Formatters.Binary;

using System.IO;

namespace IO

{

public class DeserializeObject

{

public static void Main()

{

FileStream streamIn = new FileStream(

@"book.obj", FileMode.Open);

BinaryFormatter bf = new BinaryFormatter();

BookRecord book =

(BookRecord)bf.Deserialize(streamIn);

streamIn.Close();

Console.Write(book.title + " " + book.asin);

}

}

}

Output
Building Robots with Lego Mindstorms 1928994679

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 445

446 Chapter 11 • Working with I/O Streams

As you can see from the output, all the data within the class was successfully
stored and retrieved.The Main() method starts by creating a FileStream to the
book.obj file. It then creates a BinaryFormatter and calls the Deserialize() method to
read in the object.The object is cast into a BookRecord and then the two public
fields are output to the console.

Transient Data
Transient data is data that you do not want to travel with the object when it is
serialized. In Java it is easy to mark data as transient—just declare the variable
with the transient keyword.

Java
transient int total_sales;

The only difference with the C# language is that it uses the [NonSerialized]
attribute instead.

C#
[NonSerialized] int total_sales;

Now when an object is sent through the stream, the total_sales variable will
not be sent. On the other end of the stream, when the object is Deserialized it
will equal 0.This leads us to the next topic.

Deserialization Operations
Sometimes it is necessary to perform some data processing just after an object is
deserialized. For example, a transient field might need to be recalculated upon
deserialization.The data for a field in an object might be large but repetitive; hence
memory can be saved by recalculating the data once it is deserialized rather than
transferring it through the stream. Or the data may come from another source, such
as the Internet, and should be updated when the object is deserialized.

C# has the IDeserializationCallback interface with one method for performing
this kind of operations.The method OnDeserialization() must be implemented
when this interface is used.This method is called automatically by the CLR once
the object has been deserialized.

The following example is the BookRecord class, only it has been modified to
include a field of the sales rank.This field is transient so it will not be sent
through a stream.When the object is reassembled on the other side it will have

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 446

Working with I/O Streams • Chapter 11 447

the default value (a value of 0), therefore it is up to the OnDeserialization()
method to update the field with the appropriate data.

using System;

using System.Runtime.Serialization;

namespace IO

{

[Serializable]

public class BookRecord: IDeserializationCallback

{

public String title;

public int asin;

[NonSerialized] public int sales_rank;

public BookRecord(String title, int asin)

{

this.title = title;

this.asin = asin;

sales_rank = GetSalesRank();

}

public int GetSalesRank()

{

Random r = new Random();

return r.Next(5000);

}

public void OnDeserialization(Object o)

{

sales_rank = GetSalesRank();

}

}

}

The major changes to the original BookRecord code have been highlighted.A
new field has been added that keeps track of the sales rank.This field has been
declared as NonSerialized, therefore it will not be sent through the stream when it

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 447

448 Chapter 11 • Working with I/O Streams

is serialized. BookRecord now implements the IDeserializationCallback interface, and
implements the OnDeserialization() method.When this method is called the
object will retrieve the sales rank information (in this case, a random number, but
it could also retrieve it over a network).

Now let’s examine some code that uses this new class.

using System;

using System.Runtime.Serialization.Formatters.Binary;

using System.IO;

namespace IO

{

public class StreamObject

{

public static void Main()

{

BookRecord book = new BookRecord("Building " +

"Robots with Lego Mindstorms", 1928994679);

Console.WriteLine(book.title + " " + book.asin);

Console.WriteLine("Sales rank: " +

book.sales_rank);

//Serialize the object to disk.

FileStream stream = new FileStream(@"book.obj",

FileMode.Create);

BinaryFormatter bf = new BinaryFormatter();

bf.Serialize(stream, book);

stream.Close();

//Read the object from disk.

FileStream streamIn = new FileStream(@"book.obj",

FileMode.Open);

BookRecord bookIn = (BookRecord)

bf.Deserialize(streamIn);

Console.WriteLine(bookIn.title + " " +

bookIn.asin);

Console.WriteLine("Sales rank: " +

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 448

Working with I/O Streams • Chapter 11 449

bookIn.sales_rank);

}

}

}

Output
Building Robots with Lego Mindstorms 1928994679

Sales rank: 1621

Building Robots with Lego Mindstorms 1928994679

Sales rank: 1177

This program serializes the object to a FileStream, then deserializes it and
outputs the results.As you can see the sales rank has changed, indicating the
CLR executed the OnDeserialization() method at some point after the object
was deserialized.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 449

450 Chapter 11 • Working with I/O Streams

Summary
As we have learned in this chapter, the C# File System differs from Java in two
important ways. First, C#’s main platform is Windows; therefore it contains a
range of file operations targeting the Windows platform. Second, C# has two
separate classes (FileInfo and DirectoryInfo) to describe files and directories (four,
counting the static method classes File and Directory).This contrasts with Java,
which only contains the File class to handle both.

C# streams do not separate the input and output streams in two separate
classes as Java does. Rather, they contain methods for both reading and writing
in one class.The access properties of the streams are set in the constructor for
the Streams.

The equivalents of Java DataInputStream and DataOutputStream classes are
BinaryReader and BinaryWriter. BinaryWriter contains essentially one method
named Write() that is overloaded to handle most of the common data types.
BinaryReader() contains many methods for handling the major data types in C#.

All text is handled by writers in C#.The base classes that all text streams
inherit from are TextReader and TextWriter.These each have two subclasses:
StreamReader/StreamWriter and StringReader/StringWriter.

C# also has built-in methods for Asynchronous data streaming. In Java there
are only Stream methods that block while the transfer occurs, but C# streams
have built-in methods to continue the program execution: BeginRead() and
BeginWrite().A delegate system is used to notify the program when the
read/write operation has completed.

Network servers listen for connections with a TcpListener object using the
AcceptSocket() method. From the client side, a TcpClient object is used to connect
to the server. Streams can also be obtained directly from resources located on
Web servers.This is accomplished using the HttpRequest and HttpResponse classes.
These classes handle the protocol transactions with Web servers and allow you to
retrieve data easily across the Internet.

Serialization is the process of breaking down the fields of an object so they
can be sent across a stream. C# uses methods in the BinaryFormatter class to per-
form serialization and deserialization.Transient data within an object can be
defined with the [NonSerialized] attribute. If the serialized object uses the
IDeserializationCallback interface, upon deserialization the OnDeserialization()
method is called automatically.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 450

Working with I/O Streams • Chapter 11 451

Solutions Fast Track

File System

File contains static methods for file operations.

FileInfo objects are used to handle a designated file.

Directory contains static methods for directory operations.

DirectoryInfo objects are used to handle a designated directory.

Streams

InputStream and OutputStream are amalgamated into a single Stream class
in C#.

Stream contains the methods WriteByte(), ReadByte(), Flush(), and Close().

There are also four methods for asynchronous data transfer: BeginRead(),
BeginWrite(), EndRead(), and EndWrite().

Encoding Data Types

BinaryReader is used to read in different data types from a stream.

BinaryWriter is used to write different data types to a stream.

Text

Use either StreamReader or StreamWriter for streaming text.

Use either StringReader or StringWriter for streaming from a String object.

Network I/O

Create a new TcpListener object, specifying a socket number.

Call the Start() method on the TcpListener to begin listening.

Call the AcceptSocket() method to wait for a client socket.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 451

452 Chapter 11 • Working with I/O Streams

Synchronous vs.Asynchronous

Create an AsyncCallback object and specify the method name that will
act as the delegate.

Write the delegate method to handle notification when the access is
complete.

Call BeginRead() or BeginWrite() to begin asynchronous access. Specify
the AsyncCallback object in the method call.

Web Streams

The System.Net namespace contains classes for performing transactions
with Web servers.

HttpWebRequest is used to initiate a request of a file from a Web server.

An HttpWebResponse object is received as a response from the
HttpWebRequest object via the GetResponse() method.

A stream may be obtained with the HttpWebResponse via the
GetResponseStream() method.

Serialization

All objects that are to be sent through streams must have the
[Serializable] attribute.

BinaryFormatter.Serialize() is used to send an object through a stream.

BinaryFormatter.Deserialize() is used to retrieve an object from a stream.

The [NonSerialized] attribute is used to mark data as transient.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 452

Working with I/O Streams • Chapter 11 453

Q: Why does C# use only one Stream class as opposed to InputStream and
OutputStream?

A: Probably because most communications are two way.Very rarely does an
application only send or only receive data, so it makes it more convenient to
contain the read/write operations in one class.

Q: Is there really any difference between using asynchronous access vs. creating a
separate thread?

A: Yes, in C# the BeginRead() and BeginWrite() methods use a delegate system to
notify the program when the IO operation completes. If you were using a
thread this would not occur (unless you programmed it yourself).

Q: What is a MemoryStream store typically used for?

A: Often it is used as a buffer for data. Often it is more convenient to start an
asynchronous read to transfer large amounts of data over the network, then
deal with the data when it has been completely read.

Q: Why does C# provide directory and file classes with both static and instance
methods?

A: When you are performing operations on only a single file or directory it is
more convenient to use an object.When doing many functions on many files
it is more convenient to use static methods.

Q: Once an object is serialized and sent through a stream is it possible to change
fields and call methods on the remote object?

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_11.qxd 5/21/02 3:33 PM Page 453

454 Chapter 11 • Working with I/O Streams

A: This is not possible with the methods described in this chapter.When an
object is shared by more than one machine across a network, it is known as
remoting. In order for remoting to take place, the object must go through a
process of marshaling, which prepares the object for remoting. C# provides
classes for remoting and marshaling in the System.Runtime.Remoting namespace.

www.syngress.com

223_C#Java_11.qxd 5/21/02 3:33 PM Page 454

Creating User
Interfaces with
Windows Forms

Solutions in this chapter:

■ Windows Form Classes

■ Creating a Windows Form Application

■ Using Controls

■ Handling Events

■ Using a Text Editor

■ Using Visual Studio.NET

Chapter 12

455

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_12.qxd 5/21/02 2:20 PM Page 455

456 Chapter 12 • Creating User Interfaces with Windows Forms

Introduction
In this book so far, all the example codes you have seen are console-based appli-
cations.This might have been great in the good old days of DOS, but for today’s
programs you might like a richer user interface. In this chapter you will broaden
your C# arsenal by learning how to implement a graphical user interface (GUI)
using Windows Forms.

Java provided us with the Abstract Windowing Tool (AWT), and then later,
with Swing for creating platform-independent GUIs.The .NET Framework fol-
lowed Java’s lead by providing a more unified programming model similar to
Swing. However, unlike Swing it is not platform independent.A Windows Form
is a tool for building Windows applications, and is built specifically for the
Windows platform.

In this chapter we will look at some of the classes found in the System
.Windows.Forms namespace.You will learn how to create Windows applications by
looking at some of the basic controls and event handling.To wrap up the chapter
you will learn about rapid application development using Visual Studio.NET.

Windows Form Classes
Direct, integrated support in Windows classes makes it very easy to create forms
in the .NET environment. In Java, GUI forms are often developed using
AWT/Swing. In the .NET environment, GUI forms are a part of the
Windows.Forms class.Thus creating forms in the .NET environment is much
more convenient than doing so in Java. In addition, just as What You See Is What
You Get (WYSIWYG) Integrated Development Environments (IDEs) (like
SUN’s Forte) make it easy to develop forms in Java,Visual Studio .NET makes it
easy to develop forms in the .NET environment.

The basic Windows programming model consists of three main parts: forms,
controls, and events. Forms are windows that enclose the controls, controls are
components such as buttons, and events are action notifications such as a pressed
key or mouse button down.The .NET environment provides the means for inte-
grating these three parts to enable building of GUIs.

In this chapter we will create a working financial calculator that accepts user
inputs for principal and calculates the amount of interest using a particular
interest rate.This example will illustrate some of the major GUI concepts and
make use of some Windows components.

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 456

www.syngress.com

Windows Form Class Hierarchy
The System.Windows.Forms namespace (also known as the WinForms namespace)
provides the necessary classes for implementing forms and the various controls
that can be placed onto these forms. Figure 12.1 shows some of the major classes
within the Windows Form class hierarchy.

As you can see, this is very similar to Java’s AWT/Swing hierarchy where sim-
ilar objects are derived from java.lang.Object.The Form class in C# is similar to
the Applet class in Java, Button class is likewise similar to Button/JButton, TextBox
class is analogous to TextField class, and so on.The methods for adding controls to
forms are also very similar between C# and Java, as we shall see in the following
sections.

NOTE

It is interesting to note that form itself is a special type of control known
as a ContainerControl. ContainerControls can contain other controls
(such as Buttons, TextBoxes, and Labels).

Creating User Interfaces with Windows Forms • Chapter 12 457

Figure 12.1 Windows Form Class Hierarchy

System.Object

System.ComponentModel.Component

System.Windows.Forms.Control

System.Windows.Forms.Form

System.Windows.Forms.ContainerControl

System.Windows.Forms.StatusBar

System.Windows.Forms.ToolBar

System.Windows.Forms.Label

System.Windows.Forms.TextBox

System.Windows.Forms.Button

System.Windows.Forms.Menu

223_C#Java_12.qxd 5/21/02 2:20 PM Page 457

458 Chapter 12 • Creating User Interfaces with Windows Forms

Creating a Windows Form Application
A form is a representation of any window in an application.To create a form,
simply derive from the Form class (i.e.,“extending” the Form class) within the
Windows.Forms namespace.The Form class can be used to create different types of
windows that can interact with the user: standard, tool, borderless, floating, or
even modal dialog box (see Table 12.1).

Table 12.1 Different Types of Windows

Window Function

Standard Normal application window (default)
Tool Window that drops down with a list of selectable tools
Borderless Window that does not have borders (cannot be resized)
Floating Window that always stays (floats) on top of other windows
Modal Window that always locks focus when it is active

In this chapter, we will create a financial calculator that makes use of the
Form class.This financial calculator will have a GUI application window (i.e., a
form) that takes a user’s inputs for principal and returns an output for the com-
puted interest based on a particular interest rate.The form window will look like
Figure 12.2.

To create a form, three basic steps are involved. First, using the
System.Windows.Forms namespace, we will derive the form from the Form class.
Our declaration will look like this:

public class InterestCalculator : Form

www.syngress.com

Figure 12.2 Financial Calculator

223_C#Java_12.qxd 5/21/02 2:20 PM Page 458

Creating User Interfaces with Windows Forms • Chapter 12 459

Second, we need to set several of the Form’s properties.The Forms class has
several properties that you can set to determine how it is going to look. Some of
these properties include:

■ Text Title text of the form.

■ Size Size of the form.

■ DesktopLocation Initial location of the form.

■ ForeColor Foreground color of the form.

For our calculator we will set only two properties: the Form.Text and the
Form.Size. The declaration looks like this:

this.Text = "Interest Calculator"; // Sets title

this.Size = new Size(200,225); // Sets size

The only major difference between Java and C# is that C# uses properties,
whereas Java uses accessor methods such as setText() and setSize().

Finally, to display the form you must provide a Main() method to get the ball
rolling.Within this we have to call the Run() method from the Application class
and supply it an object instance of form as an argument.The declaration looks
like the following:

Application.Run(new InterestCalculator());

The Application class found in the System.Windows.Forms namespace provides
static methods to manage an application (such as methods to start or stop an
application, and to process Windows messages) and properties to get information
about an application.This class is sealed and therefore it cannot be inherited.

The following listing illustrates how these three steps are performed for our
Financial Calculator example:

using System;

using System.Drawing;

using System.Windows.Forms;

public class InterestCalculator : Form

{

public InterestCalculator()

{

this.Text = "Interest Calculator"; // Sets title

this.Size = new Size(200,225); // Sets size

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 459

460 Chapter 12 • Creating User Interfaces with Windows Forms

}

public static void Main(string[] args)

{

Application.Run(new InterestCalculator());

}

}

The form class has several member functions that enable the programmer to
manipulate the form. Some of the more useful methods of a form are listed in
Table 12.2.

Table 12.2 Form Member Methods

Method Function

FindForm() Retrieves the form that the control is on
Focus() Sets input focus to the control
Invalidate() Invalidates the control and causes a paint message to

be sent
PointToClient() Computes the location of the specified screen point into

client coordinates
PointToScreen() Computes the location of the specified client point into

screen coordinates
ShowDialog() Shows the form as a modal dialog box
Dispose() Releases the resources used
Close() Closes the form (calls Dispose() automatically)

The next steps involve instantiating controls and adding the appropriate
event handlers to the controls.The following section illustrates how these two
steps are done.

Using Controls
Once a form is created, controls that facilitate user interactions with the form can
then be added to it.These user interface controls are managed internally by
Windows using special grouping and tabbing logic, thus relieving the programmer
of a major burden.Windows provides interface to these controls through the
Control class.This provides a handle known as the hWnd pointer that is established
upon the creation of a control and which can obtained by the Handle() method.

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 460

Creating User Interfaces with Windows Forms • Chapter 12 461

The Control class also implements the functionalities needed for these controls to
handle user inputs from devices such as the keyboard and the mouse.

Our Financial Calculator makes use of three common controls: Buttons,
TextBoxes, and Labels. Buttons allow user interaction through mouse clicking
actions. TextBoxes can provide information to users and let them input informa-
tion through the keyboard. Labels often are used to display information to the
users. In the following sections we will demonstrate how these controls can be
added to the form we created in the previous section. Understanding of how
these three basic controls are used will provide the basic foundation needed to
use any other controls and components provided by the System.Windows.Forms
namespace.You will also want to be familiar with the controls RadioButton,
CheckBox, ListBox, and Edit. Other control-like components like menus and dialogs
exist and can provide you with more sophisticated user interactions.

Adding Controls
A form (a control itself—a container control as previously mentioned) essentially
consists of a collection of controls.This collection of controls is represented by the
Control.Collection object, which in turn becomes a child of the form.When con-
trols are added to the form, they become members of the form’s Control.Collection
object.Windows then assigns this collection object to the form’s Controls property
through which this collection can be manipulated and managed.

A Control.Collection object’s members can be managed using the collection
object’s methods. For example, to add a button control member to a hypothetical
collection named Group, the Add() method can be used as follows:

Group.Add(buttonControl);

Likewise, the Contains() method can be used to determine whether a collec-
tion contains a particular control and the Remove() method can then be used to
remove the intended control from the collection:

if (Group.Contains(buttonControl))

{

Group.Remove(buttonControl);

}

Or the Clear() method can be used to clear an entire collection:

Group.Clear();

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 461

462 Chapter 12 • Creating User Interfaces with Windows Forms

In the context of the form, the collection group is mapped to the form’s
Controls property as mentioned previously.Thus to add a control to a form, call
the form collection object’s (i.e., the form’s Controls property) Add() method:

Form.Controls.Add(buttonControl);

Note the similarity and difference between how controls are added here and
how controls are added in Java’s AWT/Swing. For example, in Java we would add
a button control to an applet by doing the following:

Applet.Add(buttonControl);

In .NET we are adding to the control’s collection group as opposed to
adding directly to the control itself as we would in Java.

The following sections illustrate how each type of control can be initialized
and added to our financial calculator’s form.

Basic Controls
Three of the most basic controls are buttons, textboxes, and labels.With these
three controls, most applications can be built.

To create and use a control, perform the following three steps:

1. Create and instantiate the control by calling its constructor.

2. Set its properties as needed (to characterize how it should be
displayed, etc.).

3. Call the form collection’s Add() method to add the control.

The following section illustrates how these three controls can be utilized to
build our financial calculator. Examples will be provided on how these three steps
are taken.

Buttons
Buttons are useful for collecting user inputs through mouse clicks.To add a
button, simply instantiate the button and initialize its properties before calling
the form collection object’s Add() method.The following creates a button, sets
its location and text properties, and add the control to our Financial Calculator
form:

Button buttonCalculate = new Button();

buttonCalculate.Location = new Point(50,100);

buttonCalculate.Text = "Calculate";

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 462

Creating User Interfaces with Windows Forms • Chapter 12 463

this.Controls.Add(buttonCalculate);

As you can see, adding controls in C# is fairly similar to how you would do
it in Swing.The only major differences are the properties that you would have to
set in C# as opposed to calling different accessor methods in Java. Some of the
most frequently used properties of button include:

■ Text Text of the control.

■ Size Size of the control.

■ Width/Height Width and height of the control.

■ Left/Right/Top/Bottom Distance of the control’s edges with respect
to the edges of the form window.

■ Location Initial location of the control.

■ TabIndex Tab order of the control.

In our example, we set the text label and the location of the button. Notice
that in order to set the control’s location we need to create a Point object, which
takes in two integers that set the horizontal and vertical positions, respectively, of
the control within the form. If desired, the size, width, height, edge distances
(left/right/top/bottom), and the TabIndex (which determines the order in which
Windows scrolls through each one of the buttons as well as other controls when
the user presses the Tab key) properties can also be set.

www.syngress.com

Where Exactly Is the Origin in Device Coordinates?
The origin (0, 0) of the forms window, in device coordinates (i.e., pixels),
is located at the top-left corner of the screen. The x-coordinate increases
as one moves to the right, and the y-coordinate increases as one moves
down. It is important to know the different coordinate systems in
Windows.

Developing & Deploying…

223_C#Java_12.qxd 5/21/02 2:20 PM Page 463

464 Chapter 12 • Creating User Interfaces with Windows Forms

Textboxes
Textboxes are useful for collecting user inputs as well as displaying outputs to
users. Creation of textboxes is very similar to that of buttons: instantiate, initialize
properties, and then add.The following code creates a textbox, sets its location
and text properties, and then adds the control to our Financial Calculator form:

TextBox textBoxPrincipal = new TextBox();

textBoxPrincipal.Location = new Point(10,20);

textBoxPrincipal.Size = new Size(150,10);

textBoxPrincipal.Text = "100000.00";

this.Controls.Add(textBoxPrincipal);

TextBox in C# is analogous to TextField in Java. Like buttons, we can set the
textbox’s various properties to control how it should be displayed and managed.
Some of the most frequently used properties of textboxes include:

■ Text Text of the control.

■ Size Size of the control.

■ Location Initial location of the control.

■ TabIndex Tab order of the control.

■ ReadOnly (bool) Whether the text field is read-only.

Note the similarity of these properties to those of buttons (Text, Size,
Location, and TabIndex). In our example we set the text label and location of our
textbox. If desired, we can also set the TabIndex (similar to that of button’s prop-
erty). Furthermore, in an application where we do not want the user to alter what
is displayed in the textbox, we can set the Boolean ReadOnly property to true.

Labels
Labels are useful for displaying information.Adding a label follows the same pro-
cedure as that of buttons and textboxes: instantiate, initialize properties, and then
add.The following code creates three labels, sets their location and text proper-
ties, and adds the controls to our Financial Calculator form:

Label labelPrincipal = new Label();

labelPrincipal.Location = new Point(10,5);

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 464

Creating User Interfaces with Windows Forms • Chapter 12 465

labelPrincipal.Size = new Size(144,15);

labelPrincipal.Text = "Principal";

this.Controls.Add(labelPrincipal);

Again, labels in C# are just like labels in Java.We can set the label’s properties
to control how it should be displayed. Some of the most frequently used proper-
ties of labels include:

■ Text Text of the control.

■ TextAlign Alignment of the text (default is TopLeft).

■ Font Font of the text.

■ Size Size of the control.

■ Location Initial location of the control.

■ TabIndex Tab order of the control.

Note once more that these properties are similar to those for buttons and
textboxes. In our example we set the text label, location, and size of the label. If
desired, the text alignment, the font, and the TabIndex (similar to that of button’s
and textbox’s properties) can also be set.

Now that we have built our controls for our Financial Calculator, we will need
to enable them to interact with the users.To do so, we will have to create event
handlers and associate them with our controls. Let us now proceed to how event
handlers work and how we can make use of them to enable interaction between
the user and our application.The following sections describe how this is done.

Handling Events
To process user inputs, the program must trap user events (such as keyboard and
mouse) and handle them accordingly.To handle an event, an event handler must
be defined and attached to the corresponding control.

As you may recall from Chapter 8, user events are handled by using delegates
and the very common publisher-subscriber model.You can think of the button as
the publisher and the main form as the subscriber. So what we need is for the
button to define a delegate of type System.EventHandler.

The delegated method you define must return void and take two parameters:
an object (sender) type and a System.EventArgs type.

void delegateMethod(Object sender, System.EventArgs e) {}

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 465

466 Chapter 12 • Creating User Interfaces with Windows Forms

For example, to handle the mouse click event on the Calculate button, first
create an event handler function to take the user inputs (principal and rate), con-
vert them to double, perform the calculation, and finally convert back to string
for display:

private void buttonCalculate_Click

(object sender, System.EventArgs e)

{

double prin = Convert.ToDouble(textBoxPrincipal.Text);

double rate = Convert.ToDouble(textBoxRate.Text);

double amt = prin * rate;

string ans = amt.ToString("f2");

textBoxInterest.Text = ans;

}

Our buttonCalculate_Click event handler takes two parameters and returns void,
which matches the delegate signature.The sender parameter is a reference to the
control that fired the event (the Calculate button in this case), and System.EventArgs
are event objects that will be captured and managed by Windows internally.

Now that our event handler has been created, it needs to be associated with the
Calculate button to handle the mouse click event (i.e., when the user clicks on this
button, the event handler is executed).You do this by creating a System.EventHandler
delegate, passing in the name of our method buttonCalculate_Click(). Then you add
it to the button’s click event handler list with the += operator. For example:

buttonCalculate.Click += new

System.EventHandler(this.buttonCalculate_Click);

This will attach the event handling method buttonCalculate_Click() to
buttonCalculate’s click event.Any time this button is clicked, buttonCalculate_Click()
will be called.

Here is a list of common Button events that can take a handler:

■ Button.Click Mouse click of button.

■ Button.MouseEnter Mouse entering button area region.

■ Button.MouseLeave Mouse leaving button area region.

Since a control can generate multiple events, more than one event handler
can be attached to a single control. For example, if a second handler function

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 466

Creating User Interfaces with Windows Forms • Chapter 12 467

buttonCalculate_Over() exists to display a help message when a user’s mouse hovers
over the button (i.e., a mouseover event), it can be attached with:

buttonCalculate.MouseEnter += new System.EventHandler(buttonCalculate_Over);

Moreover, more than one event handler can be associated with the same
event.A program might want to calculate something and at the same time save to
file. If the calculate and save to file functions have already been defined and are in
separate functions, they can be reused and attached quickly to the control. For
example, suppose we have a second handler called buttonCalculate_Click2() that
performs a save to file.We can add this handler:

buttonCalculate.Click += new

System.EventHandler(this.buttonCalculate_Click2);

Now both buttonCalculate_Click() and buttonCalculate_Click2() will get exe-
cuted upon the mouse click event (i.e., the calculation and saving to file will
both happen).

Last but not least, an event handler can be removed from the control in the
following manner:

buttonCalculate.Click -= new

System.EventHandler(this.buttonCalculate_Click);

This is often done when we want to redefine the handler for a particular
control: we can just remove the old one and add the new one.

Using a Text Editor
When creating applications with GUIs, you would want to use an IDE such as
Visual Studio.NET, which provides a rich set of drag-and-drop tools. However,
now that you know the concepts of how to create a GUI from scratch, you can
easily use any text editor to code it by hand.The only downside to this is that the
work would probably take longer and be a little more painful because getting the
locations of components just right is basically trial and error. But to prove a
point, let’s look at our Financial Calculator example and first code it using a non-
IDE editor (such as Antechinus’s C# Editor, or UNIX-originated editors (graph-
ical versions) like EMACS or VI(M).We do not recommend using DOS Edit,
NotePad,WordPad, or even Word due to impracticalities with their limited
editing capabilities).

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 467

468 Chapter 12 • Creating User Interfaces with Windows Forms

Create a file called FinancialCalculator.cs and type in the code. Here is the
full source listing:

using System;

using System.Drawing;

using System.Windows.Forms;

public class InterestCalculator : Form

{

Button buttonCalculate;

TextBox textBoxPrincipal;

TextBox textBoxRate;

TextBox textBoxInterest;

Label labelPrincipal;

Label labelRate;

Label labelInterest;

//Constructor

public InterestCalculator()

{

//Set the Form properties.

this.Text = "Interest Calculator";

this.Size = new Size(200,225);

buttonCalculate = new Button();

buttonCalculate.Location = new Point(50,100);

buttonCalculate.Text = "Calculate";

//Add the event handler for the button.

buttonCalculate.Click += new System.EventHandler

(this.buttonCalculate_Click);

//Add the button to the form.

this.Controls.Add(buttonCalculate);

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 468

Creating User Interfaces with Windows Forms • Chapter 12 469

//Create the Principal TextBox.

textBoxPrincipal = new TextBox();

textBoxPrincipal.Location = new Point(10,20);

textBoxPrincipal.Size = new Size(150,10);

textBoxPrincipal.Text = "100000.00";

this.Controls.Add(textBoxPrincipal);

//Create the BoxRate TextBox.

textBoxRate = new TextBox();

textBoxRate.Location = new Point(10,60);

textBoxRate.Size = new Size(150,10);

textBoxRate.Text = "0.15";

this.Controls.Add(textBoxRate);

//Create the BoxInterest TextBox.

textBoxInterest = new TextBox();

textBoxInterest.Location = new Point(10,150);

textBoxInterest.Size = new Size(150,10);

textBoxInterest.Text = "15000.00";

this.Controls.Add(textBoxInterest);

//Create the Principal Label.

labelPrincipal = new Label();

labelPrincipal.Location = new Point(10,5);

labelPrincipal.Size = new Size(144,15);

labelPrincipal.Text = "Principal";

this.Controls.Add(labelPrincipal);

//Create the Rate Label.

labelRate = new Label();

labelRate.Location = new Point(10,45);

labelRate.Size = new Size(144,15);

labelRate.Text = "Rate";

this.Controls.Add(labelRate);

//Create the Interest Label.

labelInterest = new Label();

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 469

470 Chapter 12 • Creating User Interfaces with Windows Forms

labelInterest.Location = new Point(10,135);

labelInterest.Size = new Size(144,15);

labelInterest.Text = "Interest";

this.Controls.Add(labelInterest);

}

//This is the event handler for the Calculate button.

private void buttonCalculate_Click (object sender,

System.EventArgs e)

{

double prin =

Convert.ToDouble (textBoxPrincipal.Text);

double rate =

Convert.ToDouble(textBoxRate.Text);

double amt = prin * rate;

string ans = amt.ToString("f2");

textBoxInterest.Text = ans;

}

public static void Main(string[] args)

{

Application.Run(new InterestCalculator());

}

}

Note that we added two more textboxes and two more labels: one each for
the interest rate and interest amount. Go ahead and compile the code with (csc
FinancialCalculator.cs) to generate the executable for running.

In the next section, we will use the Visual Studio.NET IDE to create the
same Financial Calculator.

Using Visual Studio.NET
Visual Studio.NET provides a user-friendly, interactive means for creating forms
through an effortless drag-and-drop process. Creating forms through Visual
Studio.NET is an example of rapid application development (RAD), whereby a

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 470

Creating User Interfaces with Windows Forms • Chapter 12 471

significant amount of development time can be reduced.To see how easy it is to
create forms in the Visual Studio.NET IDE, we will build the same Financial
Calculator using this approach. Let’s begin by starting up Visual Studio.NET and
performing the following steps:

1. Open File | New Project | Choose C# Project | Choose
Windows Application.A blank form will automatically pop up.You
can resize this form by clicking and dragging any one of the resize han-
dles around the edges of the form.What you have should be the same as
what is displayed in Figure 12.3.

2. Right-click on the form, and then click on the Properties in the sub-
menu. Several of the form’s properties can be set here. Go ahead and
change the text of the form to Interest Calculator.

3. Open View | Toolbox or left-click on the Toolbox on the left naviga-
tion bar to bring up a toolbox menu of controls that can be added to
the form. Controls can be dragged and dropped onto the form: try drag-
ging over the following controls for our Financial Calculator:

www.syngress.com

Figure 12.3 Building Windows Forms Via Visual Studio.NET

223_C#Java_12.qxd 5/21/02 2:20 PM Page 471

472 Chapter 12 • Creating User Interfaces with Windows Forms

■ One button

■ Three textboxes

■ Three labels (one for each textbox)

These controls can be moved and resized. Right-click on each one
of the controls to enter the Properties form to edit the properties for
each of the controls. Set the text of the button to Calculate.You may
name the button buttonCalculate if you want. Name the three
textboxes (by setting the name property) textBoxPrincipal,
textBoxRate, textBoxInterest, and name their respective labels
labelPrincipal, labelRate, labelInterest.Also change the texts of the
labels to Principal, Rate, and Interest. Figure 12.4 shows where you
are currently:

4. Now you are ready to enter the code for our Calculate button’s event
handler. Enter the code section by either double-clicking on the
Calculate button or right-clicking on the button to select View Code

www.syngress.com

Figure 12.4 Building Financial Calculator Via Visual Studio .NET

223_C#Java_12.qxd 5/21/02 2:20 PM Page 472

Creating User Interfaces with Windows Forms • Chapter 12 473

from the submenu. Notice that the IDE already wrote the majority of
the code for you: the event handlers have already been attached to the
buttons.All there is left to do is to manually type the following five lines
into the handler (between the curly bracelets {…}):

double prin = Convert.ToDouble(textBoxPrincipal.Text);

double rate = Convert.ToDouble(textBoxRate.Text);

double amt = prin * rate;

string ans = amt.ToString("f2");

textBoxInterest.Text = ans;

5. You are all done—press the F5 function key to compile and run the
application.

As you can see, building Windows applications using Visual Studio.NET’s IDE
is quick and easy. Being able to quickly put together already-made building
blocks and extending them as needed to build an application is one of the
strengths of the Visual Studio development environment.

Creating a File Browser
Let’s build one more application: a file browser that can be used to open a text
file for reading. In this application we will demonstrate the use of menus and
dialogs. Let’s begin by starting up Visual Studio.NET and performing the fol-
lowing steps:

1. Open File | New Project | Choose C# Project | Choose
Windows Application.

2. Rename the form by setting its text property to something meaningful,
like FileBrowser.

3. Open the Toolbox as before. Drag over two items:

■ RichTextBox Resize the box to fill the form and set its text
property to blank.

■ MainMenu A Type Here blank menu will appear. Enter File fol-
lowed by Open for the menu items.What you should see is dis-
played in Figure 12.5.

4. Notice each menu item has several properties. For example, you can add
a shortcut to the Open menu item by selecting the shortcut property
and its key mapping. Select Ctrl+O for the shortcut if you want.

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 473

474 Chapter 12 • Creating User Interfaces with Windows Forms

5. Double-click on the Open menu item to go to code. Enter the fol-
lowing code to open a file dialog and read in the file, and to set the
Form title when the Open menu item is selected:

OpenFileDialog dlgOpen = new OpenFileDialog();

if(dlgOpen.ShowDialog() == DialogResult.OK)

{

richTextBox1.LoadFile(dlgOpen.FileName,

RichTextBoxStreamType.PlainText);

this.Text=dlgOpen.FileName;

}

6. Compile and run by pressing F5.

Try to open and browse a text file.You can open the FinancialCalculator.cs
file we created previously.What you will see is shown in Figure 12.6.

www.syngress.com

Figure 12.5 Building File Browser Via Visual Studio .NET

223_C#Java_12.qxd 5/21/02 2:20 PM Page 474

Creating User Interfaces with Windows Forms • Chapter 12 475

Notice that with the use of a tool such as Visual Studio.NET, creating a
graphical user interface for your application is much simpler.The IDE saves you
time by eliminating the grunt work of typing in all of the necessary code for
adding in your components.This leaves you more time to concentrate on fig-
uring out the actual logic for your application. But if you’re the type of pro-
grammer that prefers to hand-code everything, you now know the building
blocks needed to create a great looking GUI.

www.syngress.com

ShowDialog()
The ShowDialog() method makes a form modal (i.e., it freezes all other
windows when it is active) and also sets the form’s modal property. It is
usually used in an if statement to check whether the user clicks on the
button that returns an OK result (i.e., OK, Accept, Open, etc.):

if (form.ShowDialog() == DialogResult.OK)

{

…

}

Developing & Deploying…

Figure 12.6 File Browser

223_C#Java_12.qxd 5/21/02 2:20 PM Page 475

476 Chapter 12 • Creating User Interfaces with Windows Forms

Summary
Forms, controls, and event handlers are essential for creating graphical user inter-
faces (GUIs). Similar to their counterparts in Java’s AWT/Swing, the available
classes in the .NET environment offer a rich collection of resources for utilizing
forms and controls as well as building event handlers to develop powerful user
interfaces and applications.

In this chapter, we created a financial calculator by first building a form, then
adding the controls and event handlers for some of those controls. Some of the
controls we utilized in our application include buttons (for accepting user inputs
from the mouse), textboxes (for accepting user inputs from the keyboard as well
as displaying outputs to the user), and labels (for displaying outputs to the user).
We also fine-tuned the appearances of our calculator by setting the various prop-
erties associated with our forms and controls.To make our controls work, we
built event handlers and associated them with the corresponding events produced
by user interactions with our various controls.We learned that events can have
multiple event handlers associated with each of them.

Lastly, we learned how to employ Visual Studio.NET’s rapid application
development capability to quickly develop Windows form-based applications.We
learned how easy it is to create controls via drag-and-drop and perform on-the-
fly modifications to event handlers for our controls’ events.

Solutions Fast Track

Windows Form Classes

A form is the application window that contains the various controls.

Controls are components (such as buttons, textboxes, and labels) that can
be added to the form.

Events are actions monitored by the event handlers. Events include user
interactions such as keyboard and mouse actions.

Creating a Windows Form Application

A form is created by extending from the Form class.

A form has several properties that can be set.

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 476

Creating User Interfaces with Windows Forms • Chapter 12 477

Your opening form is invoked via Application.Run() within Main().

Using Controls

Buttons can be used to take mouse inputs from users.

Textboxes can be used to take keyboard inputs from users or to display
text outputs to them.

Labels can be used to display outputs to users.

Handling Events

User interactions with controls produce events.

Events are captured by Windows and their associated event handlers
are executed.

Events can have more than one handler.

Using a Text Editor

Forms can be coded manually using a text editor.

Coding forms manually takes quite a bit of trial and error as well as time
and effort.

Completed codes can be compiled via csc at the command line.

Using Visual Studio.NET

Visual Studio.NET IDE makes it possible to build forms via drag-
and-drop.

The Toolbox contains a list of controls that can be dragged into the form.

Manual codes can be added to IDE generated codes.

www.syngress.com

223_C#Java_12.qxd 5/21/02 2:20 PM Page 477

478 Chapter 12 • Creating User Interfaces with Windows Forms

Q: Can I define my own controls?

A: Yes, to develop your own controls inherit directly from the
System.Windows.Forms.UserControl class (which is derived from
System.Windows.Forms.Control) and modify/extend the inherited class
methods as needed.

Q: Which classes do menus use? What about right-click menus?

A: Menus use the Menu component classes MainMenu, ContextMenu, and
MenuItem. MainMenu is the menu across the top of the form and ContextMenu
is the menu displayed upon the right-click of a mouse within the form.
MenuItems are items in MainMenu and ContextMenu.

Q: How can I add tool icons near the top of a form? How can I display statistics
about a certain form (such as page number, and line and word counts) at the
bottom of a form?

A: Consider using the ToolBar control class to add a toolbar to the form, and
using the StatusBar control class to add a status bar.

Q: Where can I find sample Windows Form applications and codes?

A: Besides MSDN (msdn.microsoft.com), additional resources can be found
on third-party sites such as www.gotdotnet.com, www.codeproject.com,
www.c-sharpcorner.com, and www.fawcette.com/dotnetmag/.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_12.qxd 5/21/02 2:20 PM Page 478

Web Development
with C#

Solutions in this chapter:

■ Web Services Overview

■ Creating Web Services

■ Consuming Web Services

■ Web Forms Overview

■ Using Web Forms Controls

■ Creating a Web Forms Application

Chapter 13

479

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_13.qxd 5/21/02 2:21 PM Page 479

480 Chapter 13 • Web Development with C#

Introduction
If you have been paying attention to the information technology (IT) industry,
you’ve probably heard a lot about Web Services. In this chapter we will look at
Web Services and how you can use C# to build Web Services and Web applica-
tions with Web Forms.

For the first part of the chapter we will look at .NET Web Services.A Web
service is basically just an application that exposes its application programming
interface (API) through the Web.That means you can invoke the application pro-
grammatically over the Web.You will learn how to create a Web service and gen-
erate proxy files that help publish your Web Service.

The second part of the chapter will look at developing Web applications using
Web Forms.Web Forms are similar to Windows Forms from the last chapter,
except the applications that you develop with Web Forms are deployed to a Web
server, and users interact with the applications through a Web browser. In this sec-
tion you will learn how to work with Web Forms and how to use the different
controls available through the System.Web and System.Web.UI namespaces.

Web Services Overview
Web Services can generally be described as a remote method call over the
Internet.This means that you can build distributed applications that are made up
of components that are distributed across the Web. For example, a car company
might have a Web service method that allows you to input a car model and it
will return a specific part number.Your application can then use that part number
and combine it with another Web service method from a different company,
where you can check the price for that specific part.You can see the value in
such a system—instead of duplicating the same service that has already been
developed, you as the developer can concentrate on adding value to the overall
system by stitching together these services.

Web Services have the potential to take the Web to a whole new level.With
this technology, you can see how you can have a Web browser in Melbourne act
as the user interface for an application that has one component running in a
Linux server in London and another from a Windows NT box in New York. It
will allow the Internet to be utilized as a medium where methods are invoked
and applications are executed.

To realize Web Services, a standard has been developed to facilitate exposing,
acquiring, and executing methods over Hypertext Transfer Protocol (HTTP).This
standard is called the Simple Object Access Protocol (SOAP).

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 480

www.syngress.com

Using SOAP
SOAP is an XML-based protocol that uses HTTP for accessing services and
objects in a platform-independent manner.The XML structure encapsulates three
things: a framework definition for describing what’s in the message and how to
process it, a set of encoding rules expressing application specific datatypes, and a
convention for representing a remote method call.

The SOAP XML structures can be described as envelopes.A SOAP envelope
will have details about the source, destination, and the query.A typical SOAP
envelope will look like this:

POST /Books_Web_Service/Book_Details.asmx HTTP/1.1

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://myCompany.com/Books_Web_Service/GetBookTitles"

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<GetBookTitles

xmlns="http://myCompany.com/Books_Web_Service/">

<Author_Last_Name>Peiris</Author_Last_Name>

</GetBookTitles>

</soap:Body>

</soap:Envelope>

As you can see, SOAP is based on XML standards.All the remote function
call directions are written as XML tags inside a SOAP envelope.The first few
lines describe the source, destination, and the implementation details of the
SOAP envelope.After the <soap: Body> tag the actual query begins. In this
query I am trying to access a Web Service SOAP implementation at
http://myCompany.com/Books_Web_Service/GetBookTitles by using Peiris
as an input parameter.

Web Development with C# • Chapter 13 481

223_C#Java_13.qxd 5/21/02 2:21 PM Page 481

482 Chapter 13 • Web Development with C#

Creating Web Services
Microsoft has done a great job with the Web Service creation tools in the .NET
Framework.Writing Web Services using the SOAP toolkit used to be a very
tedious task.Thanks to the .NET Framework the task is relatively simple now.

Most Web Services are built with a three-tier architecture, using separate
layers for Presentation, Business Logic, and Database.This is a good design to
follow since each layer is not dependent on each other as long as you have a
well-defined interface between them.This means that you can create an applica-
tion with a Presentation layer using a Web browser or a Windows form.Also this
wouldn’t limit you in terms of which database you would want to use. For
example you can start with an MS-Access database and easily scale it up to SQL
Server to satisfy the demand without doing a complete rewrite.

Since many real-world applications need to interact with a database, our
example will create a Web Service that will allow you to query and interact with
one.We’ll use a three-tier architecture design so that we can use a Web browser
or a simple Windows Forms client to display the result.The Web Service will use
an MS-Access database for the database layer and it will use ADO.NET for
accessing it.We’ll have a simple books database, which has a single table that con-
tains information about books and their authors.We will refer to our Publication
database as pubs.mdb, and the table will be called tbl_Book_Titles. Figure 13.1
shows the structure of the database we’re trying to access.

www.syngress.com

Figure 13.1 Database Table Information

223_C#Java_13.qxd 5/21/02 2:21 PM Page 482

Web Development with C# • Chapter 13 483

NOTE

The pubs database is a sample database installed with SQL Server 2000.
If you have SQL Server 2000, you can export this database and use it for
the example. Or you can download the database from the Syngress Web
site at www.syngress.com. Otherwise, you can create the database in
MS-Access.

The Web service interface will expose this table data. Our need is to obtain
the following information from the table.

■ Look up a book title from a given title ID.

■ Get a complete list of the books.

We will build a single Web service that exposes two methods to facilitate
these needs.We will build this Web service in two steps. First we will build a Web
service to look up a book-title functionality.Then we will learn how to handle
complex data structures and ADO.NET controls using Visual Studio.NET.

Connecting to a Database
To start, the first thing we’ll look at is how to interact with a database in .NET.
The .NET Framework has a rich set of classes for managing and working with
databases.These classes are collectively referred to as ADO.NET.

ADO.NET is very similar to, and evolved from, its predecessor ADO.The key
difference between the two is that ADO.NET has a disconnected data architecture.
This means that when you receive the data from the database, the result is stored
on your local machine.You can then manipulate the result locally, and only con-
nect to the database when you wish to update it or get new results.This architec-
ture scales very well and it’s perfect for using with Web Services.

The following example will show how you can connect to a database and
perform a simple query.We’ll connect to the pubs.mdb MS-Access database and
retrieve the book title by supplying a method with the Title_ID string.

The first thing we need to do is make a connection to a database.To create a
database connection you just need to specify what type of database you’re going
to use, and the name of the database.You have to supply this to an OleDbAdapter
object, which is responsible for establishing the connection.This object also takes
another string argument for the SQL statement to generate the data you want
from the database.The two string declarations are as follows:

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 483

484 Chapter 13 • Web Development with C#

//Sets up the database connection command

string connectionString =

"provider=Microsoft.JET.OLEDB.4.0;" +

"data source= c:\\pubs.mdb";

//Sets up the SQL query

string commandString =

"SELECT title FROM tbl_Book_Titles WHERE Title_ID='" +

Title_ID + "'";

OleDbDataAdapter dataAdapter = new

OleDbDataAdapter(commandString,connectionString);

The OleDbDataAdapter basically is acting as a bridge between the database
and our application.ADO.NET has several data adapters depending on the
database you wish to connect to. For example it also has an SQLDataAdapter for
connecting to an SQL Server database.

Next we declare a DataSet object that will contain the result of our SQL
select statement.To do this, we use the Fill() method in the DataAdapter class and
supply it with the DataSet object and the table name on which we wish to per-
form the query:

DataSet dataSet = new DataSet();

dataAdapter.Fill(dataSet,"tbl_Book_Titles");

The result contained in the dataSet object is a subset of the entire database. It
is disconnected from the actual database and any changes you make to it will not
affect the original database.To get the actual result we want, we need to follow
several steps. First, we have to create a DataTable to get the table from the data
set.Then we create a DataRow object and extract the row we want from the
table. In our example, we can assume that the result will be the first row, since the
query will return only one result. Finally, we can extract the Title field from the
row, which will give us the title of the book.This is shown in the following code
snippet:

DataTable dataTable = dataSet.Tables[0];

DataRow dataRow = dataTable.Rows[0];

return (String) dataRow["Title"];

Let’s now put it all together and look at the full source code.The following
program has a single method called GetBookTitleByID() where you can pass it a

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 484

Web Development with C# • Chapter 13 485

string containing a title ID and it will search the database and return the full title
of the book.

using System;

using System.Data;

using System.Data.OleDb;

public class Book_Details

{

public Book_Details()

{

}

public String GetBookTitleByID(String Title_ID)

{

//Sets up the database connection command

string connectionString =

"provider=Microsoft.JET.OLEDB.4.0;" +

"data source= c:\\pubs.mdb";

//Sets up the SQL query

string commandString =

"SELECT title FROM tbl_Book_Titles WHERE Title_ID='" +

Title_ID + "'";

//Make the database connection

OleDbDataAdapter dataAdapter = new

OleDbDataAdapter(commandString,connectionString);

//Fill the dataSet with the result of the query

DataSet dataSet = new DataSet();

dataAdapter.Fill(dataSet,"tbl_Book_Titles");

//Extract the result from the dataset

DataTable dataTable = dataSet.Tables[0];

DataRow dataRow = dataTable.Rows[0];

return (String) dataRow["Title"];

}

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 485

486 Chapter 13 • Web Development with C#

public static void Main()

{

Book_Details bookDetails = new Book_Details();

//Perform the search

string bookTitle = bookDetails.GetBookTitleByID("BU7832");

Console.WriteLine("The Book title is: " + bookTitle);

}

}

If you’ve typed the same information shown in Figure 13.1, the program will
produce the following output:

The book title is: Straight Talk About Computers

Now that we have our method for connecting and querying a database, the
next section will show you how you can easily turn this into a Web Service.

Building a Web Service
Declaring your class as a Web service and having certain methods exposed and
executed over the Web is fairly easy. In .NET, a Web service is as an ASP.NET file
with an .asmx file extension.These files will contain the class and methods of an
XML Web service.You can easily expose your program as a Web service by
adding several lines and saving it as an .asmx file. For our example, we’ll turn our
Book_Details class into an XML Web service by exposing the GetBookTitleByID()
method as a Web method.The following code shows how to do this.

<%@ WebService Language="C#" Class="Book_Details" %>

using System;

using System.Data;

using System.Data.OleDb;

using System.Web.Services;

[WebService(Name="Book_Details",

Namespace="http://myCompany.com/Books_Web_Service/")]

public class Book_Details : System.Web.Services.WebService

{

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 486

Web Development with C# • Chapter 13 487

public Book_Details()

{

}

[WebMethod (Description="This method will return a Book

Title for a given Title ID.")]

public String GetBookTitleByID(String Title_ID)

{

//Sets up the database connection command

string connectionString =

"provider=Microsoft.JET.OLEDB.4.0;" +

"data source= c:\\pubs.mdb";

//Sets up the SQL query

string commandString =

"SELECT title FROM tbl_Book_Titles WHERE Title_ID='" +

Title_ID + "'";

//Make the database connection

OleDbDataAdapter dataAdapter = new

OleDbDataAdapter(commandString,connectionString);

//Fill the dataSet with the result of the query

DataSet dataSet = new DataSet();

dataAdapter.Fill(dataSet,"tbl_Book_Titles");

//Extract the result from the dataset

DataTable dataTable = dataSet.Tables[0];

DataRow dataRow = dataTable.Rows[0];

return (String) dataRow["Title"];

}

}

The first part in the .asmx file for a Web service is the following:

<%@ WebService Language="C#" Class="Book_Details" %>

The @ WebService directive is used to identify specific attributes of the Web
service file.The Language parameter specifies the .NET language used to create

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 487

488 Chapter 13 • Web Development with C#

the Web service and the Class parameter specifies the class name being exposed as
a Web service.This class can be defined within the .asmx file itself or you can
compile this class and have the assembly reside in the \bin subdirectory where
you’ll be serving your Web service application.

The @ WebService directive is the only code required in the .asmx file. If you
have the class compiled and located in the \bin directory, then all you need is this
line in the .asmx file. For our example we’ll have our class definition contained
in the .asmx file, which will then be compiled by the JIT compiler just before
serving the Web Service page.

The next thing you need to do is declare the [WebService] attribute for
your class.

[WebService(Name="Book_Details",

Namespace="http://myCompany.com/Books_Web_Service/")]

public class Book_Details : System.Web.Services.WebService

This attribute is optional and can take several parameters.

■ Name specifies the name of your Web service.

■ Description specifies the description for the Web service.

■ Namespace specifies the default namespace for the Web service.

It is important to specify the Namespace parameter for your Web service,
which is used to uniquely identify your Web service.There will be heaps of avail-
able Web services on the Internet.There is even a possibility that someone had
already built a Books_Detail Web service.Therefore, it is important that you define
this parameter to distinguish your Web service before deployment.You can set
this to any name you like as long as you’re positive that it isn’t being used by
another Web service.A common standard is to use your company Web address as
a default name for the Web service. If this parameter is not specified, the .NET
Framework supplies the default name http://tempuri.org.

The class being defined as a Web service optionally can derive from the
System.Web.Services.WebService class, as shown:

public class Book_Details : System.Web.Services.WebService

It is a good idea to derive from this class when creating a Web service to
inherit some of the basic functionality provided by the WebService class. It allows
for some advance features such as state management for a Web service across the
lifetime of a particular session.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 488

Web Development with C# • Chapter 13 489

To expose a method as a Web Service method that can be executed over the
Web, all you need to do is attach the [WebMethod] attribute to the method you
want exposed.You don’t need to declare every method in your class as a Web
method; however, the Web method you’re exposing must have this attribute and
it must be declared as public. This attribute will indicate to the .NET Framework
that the method should be made accessible over the Internet via standard proto-
cols such as SOAP, HTTP GET, and HTTP POST.The declaration follows.

[WebMethod (Description="This method will return a Book

Title for a given Title ID.")]

public String GetBookTitleByID(String Title_ID)

This attribute can take several parameters, all of which are optional.The
Description parameter describes the functionality of the method.The method will
have the same declaration as our previous example. By declaring it as a Web
method you can interact with this method over the Web through SOAP, HTTP
GET, and HTTP POST.

Once you’ve declared a [WebMethod] attribute for your class, you’ll have the
necessary elements for a Web service.The following section will describe how to
build and run your Web service.

Running and Testing Your Web Service
In order to test and run your Web service, you’ll need to have Internet
Information Server (IIS) with the Front Page Server extensions installed on your
machine.When you install the .NET Framework, it configures IIS to be able to
serve the .asmx files for your Web service.

To test the Web service, all you need to do is browse to the .asmx file using a
Web browser. Keep in mind that if you have your class file in a separate assembly
it must be in the \bin subdirectory.The result will be similar to Figure 13.2.

www.syngress.com

Figure 13.2 Books Web Service View

223_C#Java_13.qxd 5/21/02 2:21 PM Page 489

490 Chapter 13 • Web Development with C#

The Web page is generated automatically by the .NET Framework.This is
the default implementation of a Web service file. It includes a link to all Web
methods for the Web service, which is the GetBookTitleByID() method for this
example. Below it, you can see the Description parameter that we specified in the
[WebMethod] attribute. Clicking on the GetBookTitleByID() hyperlink will open
another page where you can test your Web method as shown in Figure 13.3.

NOTE

The test page generated is available only for Web methods that take in
simple parameters such as strings or integers. If your Web method
accepts a more complicated data type, a SOAP message will be required
to test it.

Now you can enter a Title ID as the input parameter and click the Invoke
button.This will generate the output shown in Figure 13.4.

The Web method returns an XML String with the title of the book.We can
use this XML output as a data source for any application.This shows the power
of a Web Service as it allows you to invoke methods over the Internet, thus
allowing you to create an application that is distributed over the Web.

www.syngress.com

Figure 13.3 Invoking the GetBookTitleByID Method

223_C#Java_13.qxd 5/21/02 2:21 PM Page 490

Web Development with C# • Chapter 13 491

Creating the Books Web Service Using VS.NET
Visual Studio.NET saves you a lot of work when creating Web services. It creates
the directories and all the necessary files for your Web service.To show how you
can create a Web service using VS.NET, we’ll add another Web method to our
previous example.We will create a second Web method called GetBookTitles().
This method will return the complete list of books in the database by returning a
DataSet object as opposed to a simple data structure such as a string.To create the
Web service in VS.NET, follow these steps:

1. Open Visual Studio.NET and create a new Project (File | New |
Project).

2. Select Visual C# Projects from the Project Types pane and select
ASP.NET Web Service from the Template pane. Enter Books_Web_
Service under location as shown in Figure 13.5.This will create a
Books_Web_Service virtual directory under IIS and the files will be stored
in a subdirectory under c:\inetpub\wwwroot\.All the necessary files for the
project such as the Book_Details.asmx will be stored in this directory.

www.syngress.com

Figure 13.4 Books Web Service XML Output

Figure 13.5 Creating a C# Web Services Project

223_C#Java_13.qxd 5/21/02 2:21 PM Page 491

492 Chapter 13 • Web Development with C#

Once you’ve created the project, you can easily drag and drop controls to it.
You can create an ADO.NET connection to the pubs.mdb database by using the
Data Controls available from the Toolbox. We can manually write code to do this
as shown earlier, but utilizing Visual Studio.NET can save a lot of time and
debugging headaches. Figure 13.6 shows the Data Controls available.

To make a database connection to the pubs.mdb database, you’ll need to use
the following components:

■ OleDbConnection

■ OleDbDataAdapter

■ DataSet

The OleDbConnection object is used to make the database connection, and the
OleDbDataAdapter will be used to handle the SQL query to the database.The
result will be stored in a DataSet object.

To create the database connection, drag and drop an OleDbConnection compo-
nent on the Web service form and rename it Pub_Connection. Then using the
properties window of the component, click on the ConnectionString property
and select New Connection. From here you can select the type of database to
which you want to connect. For an MS-Access database, we need to select the
Microsoft Jet 4.0 OLE DB Provider from the Provider tab of the Data
Link Properties as shown in Figure 13.7.

Then click on the Next button and it’ll bring you to the Connection tab.
In here you can provide the location of the database you wish to access.You can
also specify login information if the database being accessed requires authoriza-
tion.Then click on the Test Connection button to test the connection as
shown in Figure 13.8.

www.syngress.com

Figure 13.6 Data Controls Available in Visual Studio.NET Toolbox

223_C#Java_13.qxd 5/21/02 2:21 PM Page 492

Web Development with C# • Chapter 13 493

The next step is to create an OleDbDataAdapter to act as a bridge to the
database.We can then send our database queries through this object. Dragging
and dropping the OleDbDataAdapter should bring up the Data Adapter
Configuration Wizard. Follow these steps to configure the wizard.

1. Select Access.c:\Pubs.mdb.Admin from the Choose Your Data
Connection screen.

www.syngress.com

Figure 13.7 Selecting the Provider to the Access Database

Figure 13.8 Connection Properties for the Access Database

223_C#Java_13.qxd 5/21/02 2:21 PM Page 493

494 Chapter 13 • Web Development with C#

2. Select Use SQL Statements form the Choose a Query Type screen.

3. In the Generate the SQL Statements screen type the following
SQL query:

SELECT Title_Id, Title, Au_Lname, Au_Fname,

Price, Annual_Sales FROM tbl_Book_Titles

4. Select the defaults on the rest of the screen.

5. The wizard will finish by creating an OleDbDataAdpater1 component.
Rename this component Pubs_OleDbDataAdapter.

6. Now we can generate a DataSet from this data adapter. Right-click on
the Pubs_OleDbDataAdapter and select Generate DataSet as
shown in Figure 13.9.

7. Name the DataSet Pubs_DataSet.The .NET Framework will also
create an XML Schema file to illustrate the structure of the DataSet
named Pubs_DataSet.xsd.This file is added automatically to the Web
Service project.

Once we’ve created all the components needed to make the database connec-
tion, all that is left to do is create our Web methods.The first method we’ll add is
the GetBookTitleByID(), which is similar to the previous example.Therefore, you
can just copy and paste the previous code in the Code View of the project.We’ll
then create another Web method called GetBookTitles(), which will return a
DataSet object that has a complete list of the books in the database.We need to
add the following code to our Web service.

www.syngress.com

Figure 13.9 Generating a DataSet from an OleDbDataAdapter Object

223_C#Java_13.qxd 5/21/02 2:21 PM Page 494

Web Development with C# • Chapter 13 495

[WebMethod (Description="This method will return all the books in the

database")]

public DataSet GetBookTitles()

{

Pubs_OleDbConnection.Open();

Pubs_OleDbDataAdapter.Fill(Pubs_DataSet,"BookTitles");

Pubs_OleDbConnection.Close();

return Pubs_DataSet;

}

In this method, the first thing it does is open a connection to the database by
calling the Open() method of the Pubs_OleDbConnection. Next, it invokes the
Fill() method of the Pubs_OleDbDataAdapter component.This executes the SQL
query and returns the result in the Pubs_DataSet object. Finally, the database con-
nection is closed and the Pub_DataSet is returned.

When you run the code in Visual Studio.NET it will automatically open the
page for you in a Web browser as shown in Figure 13.10.When this method is
invoked it will return a DataSet object using SOAP that can be consumed by
another application.

Consuming Web Services
Before you can create a client application to consume the Web Service, you must
first create a proxy object that will be used to interact with the Web Service.The
proxy object acts like a middleman between the client application and the Web
Service. Its main function is the marshalling of data to execute the Web Service.

You can code this proxy object manually if you like; however, the .NET
Framework has a tool that can generate the source code for you.The technical

www.syngress.com

Figure 13.10 Updated Books Web Service

223_C#Java_13.qxd 5/21/02 2:21 PM Page 495

496 Chapter 13 • Web Development with C#

implementation details for creating a proxy object are produced from the Web
Service Description Language (WSDL) supplied by the Web Service. Once you
have a proxy created, you can then use it in your client application and invoke
the methods supplied by the Web Service.

Web Service Description Language
We need a blueprint or a software contract specification to create our proxy
object.This contract specification is referred as a Web Service Description
Language file.The WSDL describes the Web Service implementation details to
the proxy objects.

You can obtain the contract of a .NET Web Service by appending ?WSDL to
the URL of the Web service you’re trying to access. In our previous example the
URL will look similar to this.

http://localhost/Books_Web_Service/Book_Details.asmx?WSDL

You can also click the Service Description link in the .asmx file.The result
of this will be an XML document explaining the structure of the Web Service as
shown in Figure 13.11.

www.syngress.com

Figure 13.11 WSDL Contract for Books Web Service

223_C#Java_13.qxd 5/21/02 2:21 PM Page 496

Web Development with C# • Chapter 13 497

Fortunately, you don’t need to fully understand all of this code because there
are tools that will generate the WSDL file for you. But just so that you’re familiar
with it, let’s look at what a WSDL file is primarily composed of.WSDL is an
XML-based language and it can be broken down to the following elements:

■ XML Namespace Definitions This could be found at the top of the
WSDL file. It lists all the namespaces to which the WSDL file belongs.

■ Messages This defines the input the client can provide to the Web
method and the output the client can expect from the Web method.
Most WSDL tools will provide three default implementations for your
method: SOAP, HTTP GET, and HTTP POST. Each one specifies how
to handle input and output parameters, through the corresponding port.

■ Port Types and Operations Operations tie your messages to a corre-
sponding method, which means that it defines the input and output mes-
sage for a method call.The portType (i.e., the class) element is a collection
of operations (i.e., the Web methods) exposed by your Web service. In our
case Book_DetailsSoap will be the portType and GetBookTitles will be the
operations, as shown in Figure 13.12. Since our service is available on
three different ports (SOAP, HTTP GET, and HTTP POST), each one
will have its own corresponding portTypes and operations definition.

■ Bindings The bindings will map the client requests to different opera-
tions.This client request could either be SOAP, HTTP GET, or HTTP
POST. In our example, if we use an HTTP GET request (Book_
DetailsHTTPGet binding type), the CLR will match the GetBookTitles
operation name to it. In other words, the Book_DetailsHTTPGet binding
type will bind the HTTP GET request to GetBookTitles operation.

www.syngress.com

Figure 13.12 Books Web Service Port Information

223_C#Java_13.qxd 5/21/02 2:21 PM Page 497

498 Chapter 13 • Web Development with C#

■ Service Name This is the name of the Web service class.This name is
used by the CLR to identify our Web service. In our example the ser-
vice name is Book Details.

Now we understand Web Services and WSDL. Let’s learn to create a proxy
object—then we can write a client to consume our book’s Web service.

Creating Proxy Objects
To interact with a Web service you will need to create a proxy object that will
act as the middleman between your application and the service.The proxy object
can be generated from the WSDL file in two ways:

■ Using the wsdl.exe command line utility

■ Using Visual Studio.NET

Using the wsdl.exe Utility
The .NET Framework provides a utility called wsdl.exe to create a proxy for
command line compilation.To use it, follow these steps:

1. Bring up a command line prompt (Start | Programs | Microsoft
Visual Studio.NET | Visual Studio.NET Tools | Visual
Studio.NET Command Prompt)

2. Execute the following command all in one line:

wsdl.exe http://localhost/Books_Web_Service/Book_Details.asmx

3. The result should be a Book_Details.cs file on the current directory as
shown in Figure 13.13.This C# file can be compiled to a DLL (using
csc.exe or Visual Studio.NET) or added to any project as a normal C#
class file.Then we can instantiate an object from the class and execute
methods on it similar to any local object.

www.syngress.com

Figure 13.13 Creating a Proxy Object with WSDL.exe Utility

223_C#Java_13.qxd 5/21/02 2:21 PM Page 498

Web Development with C# • Chapter 13 499

NOTE

Remember that what we’re creating in these steps is a proxy. All we are
doing is mimicking the functionality of the remote Web Service. The
actual method execution is done at the remote Web Service end.

Using Visual Studio.NET
It is very simple to create a proxy object using Visual Studio.NET.We can add a
Web reference to any Web Form or Win Form application very easily.When we
add a Web reference, a proxy object is generated in the background, which makes
it much simpler and more effective to use.

The following example will show you how you can use Visual Studio.NET to
create a Windows application that will consume the Web service we’ve created.
We will create a Windows form client that will utilize the Web methods of the
Web service and it will have the following components:

■ A DataGrid control to display the complete list of books in the Pubs
database using the GetBookTitles Web method

■ A TextBox to enter a Title ID, which is used to look up a database table
and populate a Label with the book title using the GetBookTitleByID
Web method

■ A Button to initiate the communication between the Web service and
the client application

The following steps outline how to create the client application.

1. Open Visual Studio.NET IDE.

2. Create a new C# Windows Application Project (File | New |
Project). Select Visual C# Projects as the project type and select
Windows Application from the templates.

3. Name the project Books_WinForm_Client and save it to a suitable
location.

4. To create a Web reference, go in the Solution Explorer and right-click
on References and select Web Reference as shown in Figure 13.14.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 499

500 Chapter 13 • Web Development with C#

5. Then, an Add Web Reference window will come up. Here you can
enter the URL of the Web service with which you wish to work. Enter
the URL of the Web service for our example and you can view all the
Web methods available.When the Web service is loaded, the left pane
will act as a browser interface to run the Web service.You can view the
WSDL contract on the right pane.You should see something similar to
Figure 13.15.

6. Then click the Add Reference button.Your Solution Explorer
will have an extra Web Reference section that will look similar to
Figure 13.16.

www.syngress.com

Figure 13.14 Adding a Web Reference in Visual Studio.NET

Figure 13.15 Add Web Reference Window

223_C#Java_13.qxd 5/21/02 2:21 PM Page 500

Web Development with C# • Chapter 13 501

7. Next create the interface for the application, which should look similar to
Figure 13.17. Our Windows Form will have the following components:

■ A Label (Lbl_Title) asking the user to enter the input

■ A Textbox (Txt_Title_ID) to enter the Title ID

■ A Button (Btn_Get_Books) to initiate the Web service calls

■ A Label (Lbl_Title_Result) to display the title of the book as the
result from the Title ID search

■ A DataGrid (Books_DataGrid) to display the complete list of books

www.syngress.com

Figure 13.16 Updated Solutions Explorer after Adding a Web
Reference

Figure 13.17 Design View of the Client Win Form

223_C#Java_13.qxd 5/21/02 2:21 PM Page 501

502 Chapter 13 • Web Development with C#

Of course we need to write some code to execute when the button is
clicked. First we create the Web Service object.Then we invoke the
GetBookTitles() and GetBookTitleByID Web methods.The GetBookTitles() Web
method returns a DataSet object.This object is used as the data source for the
data grid.The GetBookTitleByID method accepts the Txt_Title_ID textbox value
as input. It will return a string, which is used to populate the Lbl_Title_Result
label.The code will look similar to this:

private void Btn_Get_Books_Click(object sender,

System.EventArgs e)

{

localhost.Book_Details Books_Service = new

localhost.Book_Details();

DataSet Books_DataSet = new DataSet();

Books_DataSet = Books_Service.GetBookTitles();

Lbl_Title_Result.Text = "Title :- " +

Books_Service.GetBookTitleByID(Txt_Title_ID.Text);

Books_DataGrid.DataSource =

Books_DataSet.Tables["BookTitles"].DefaultView;

Books_DataGrid.Visible = true;

}

You may ask, how do I know about the BookTitles table in the data set?
(Remember we do not know any technical implementation of the remote Web
Service.) This information is extracted from reading the WSDL description of the
Web Service.

<BookTitles diffgr:id=" BookTitles1"

msdata:rowOrder="0">

If you look closely, this line corresponds to the following line of the original
Web Service file.

Pubs_OleDbDataAdapter.Fill(Pubs_DataSet,"BookTitles");

After building and running the application the end result should be similar to
Figure 13.18.

This example demonstrates the true power of Web Services.As you can see,
we were able to create an application that has its main functionality executed
remotely from a Web service.As more and more Web services become available
on the Web, it is very easy to stitch them together and create very powerful dis-
tributed applications.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 502

Web Development with C# • Chapter 13 503

Web Forms Overview
Web Forms could be described as the presentation layer for Web applications in
the .NET Framework.These controls are very similar to Windows Forms.The
key difference is the target interface.Web Forms are used to create Web pages,
whereas Windows Forms are more focused on Windows applications.Web Forms
are also referred to as ASP.NET in the .NET jargon.

The ASP.NET architecture is built on a server model.The primary purpose is
to save round trips and increase efficiency between the Web client and the server.
The ASP.NET Web Forms are compiled once and cached on the server before
they are executed.All subsequent requests to the page emanate from the cache.
Compiled code allows for faster execution, especially for post-backs or requests to
the same page thereafter, which translates to an application with a noticeably
improved performance.

NOTE

The key difference between traditional Active Server Pages (ASP) and
ASP.NET is that ASP.NET is compiled (ASP 3.0 and earlier use interpreted
code and are slower than ASP.NET).

An ASP.NET Web Forms page is a declarative text file with an .aspx filename
extension.When a client (either a browser or any Internet-enabled device)
requests an .aspx resource, the .NET runtime parses and compiles the file into a
.NET Framework Page class that is cached on the server.This is then used to
dynamically process the incoming request.The same compiled instance will be
used on other subsequent requests to the page.The pages are updated in the

www.syngress.com

Figure 13.18 Win Form Web Service Client

223_C#Java_13.qxd 5/21/02 2:21 PM Page 503

504 Chapter 13 • Web Development with C#

cache only when the page changes or the caching period expires.We can also
programmatically specify the cache time period for a Web form.When the speci-
fied time period elapses, the CLR will update the cache with a new version of
the ASP.NET page.

A great feature of ASP.NET Web Forms is that it’s not targeted towards a par-
ticular browser.ASP.NET is smart enough to serve different Hypertext Markup
Language (HTML) output for different browser specifications.At the same time,
Web Forms applications can be optimized to take advantage of features built into
the more recent browsers that support the new standards—such as HTML 4.0,
CSS, and client-side scripting support—to enhance performance and responsive-
ness. In many cases, this optimization is built into the Web Forms components,
which can automatically detect browser levels and render pages accordingly.

Another feature of ASP.NET is that it can be written in multiple languages.
Currently you can write ASP.NET code in C#,VB.NET, and J#.These are the
default languages provided by the Microsoft .NET Framework.You can also uti-
lize any other language that conforms to the CLR to create Web Forms. (e.g.,
Perl, Eiffel, Python, etc.). C# seems like a natural fit for creating Web Forms,
however any other .NET-compliant language can be declared as the default
through a directive at the top of the page, like this:

<%@ Language = C#%>

The language may also be declared within <script> blocks:

<script language=C# runat=server>

Differences between HTML and Web Controls
Web Forms exist in two types that differ in functionality: HTML controls and Web
controls. Both of these controls render the output in HTML for a Web browser.
They also encapsulate the mechanisms for preserving state across server round-
trips and for invoking server-side events that are handled on the server. Let’s look
at some of the key differences between the two types of controls.

1. Web controls provide a richer functionality than the HTML controls.
HTML controls basically are rendered HTML tags. On the other hand,
Web controls encapsulate more complex functionality. For example, a
DataGrid Web control will render text, customize it, bind it to an
ADO.NET data source, and then render it in HTML.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 504

Web Development with C# • Chapter 13 505

2. HTML controls inherit from the System.Web.UI.HtmlControls names-
pace, and the Web controls inherit from System.Web.UI.WebControls.

3. HTML controls are relatively browser neutral, having the output as basic
HTML tags. On the other hand,Web controls can detect the browser
capabilities and render the HTML in different formats. For example, a
Web control can detect older browsers (pre-version 4.0) and serve
HTML code to it. If it recognizes a post-version 4.0 browser, it may
serve some Dynamic HTML (DHTML) version of the same data.

4. Web controls can be bound to data sources. HTML controls will accept
only string arguments.

5. All Web controls starts with the prefix <asp:*>.

There are close to 45 HTML and Web controls available in the Microsoft
.NET Framework. Let’s look at them in more detail.

Understanding HTML Controls
HTML controls functionality is very similar to HTML tags. HTML server con-
trols are special HTML interfaces that enable page developers to programmati-
cally manipulate standard HTML elements on the server. By simply converting
existing HTML elements to HTML server controls in a Web Forms page, you
expose them as elements that you can program on the server, regardless of to
which client the page will be exposed.When a Web Forms page is processed on
the server, an instance of each HTML server control is created using the infor-
mation from the underlying HTML element.Attributes recognized by the con-
trol class become programmable properties.Any HTML element on a page can
be converted to an HTML server control.The conversion is a simple process
involving just a few attributes.At a minimum, an HTML element is converted to
a control by the addition of the attribute runat=”server”. Here is an example of an
HTML control for the img HTML tag.

There are about 20 HTML controls in .NET released version 1.0;Table 13.1
shows some of the common ones.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 505

506

Table 13.1 HTML Controls in .NET

Component Description Syntax and HTML Tag

HtmlAnchor To create a hyper Syntax: <a id= Syngress href= www.syngress.com
link in a Web page runat=”server”>Go To Syngress Publishing

HTML Tag: Go To Syngress
HtmlButton To create a button Syntax: <button id=”myButton” onServerClick=” myButton _OnClick”

in a Web page runat=”server”> Click me!</button>
HTML Tag: <input type=”button” name=”myButton” value=”Click
Me!”>

HtmlForm To create a form in a Syntax: <form id=myForm runat=server>…</form>
Web page (note HTML Tag: <Form name=”myForm”>…</form>
that this tag should
be present to use
the rest of the HTML
controls)

HtmlImage To display images Syntax:
in a Web page HTML Tag:

HtmlInput Normal Button Syntax: <input type=button value=”myButton” onServerClick=
Button ”myButton_Click” runat=”server”>

HTML Tag: <input type=”button” value=”myButton”>
HtmlInput To display a check Syntax: <input id=”my_CheckBox” type=checkbox runat=”server”>
CheckBox box in a Web page HTML Tag: <input type=”Checkbox” name = “my_CheckBox”>
HtmlInputText To display a text Syntax: <input id=”myName” type=text size=25 runat=server>

box in a Web page HTML Tag: <input type=”text” name=”myName” max size=”25”>
HtmlTable To display a table Syntax: <table id=”Table1” CellPadding=5 CellSpacing=0 Border=”1”

in a Web page runat=”server” />
HTML Tag: <table CellPadding=5 CellSpacing=0 Border=”1”>
…</table>

2
2
3
_
C
#
J
a
v
a
_
1
3
.
q
x
d

5
/
2
1
/
0
2

2
:
2
1

P
M

P
a
g
e

5
0
6

Web Development with C# • Chapter 13 507

Understanding Web Controls
ASP.NET Web controls are more flexible than HTML controls.They are
designed to provide a simplified way to add powerful functionality to a Web page,
such as displaying data.Web controls are particularly useful for dynamically gener-
ating HTML user interfaces and responding to client requests, as they are
designed to work the same no matter what type of browser the user has.

Web controls include the traditional form controls, as well as other higher-
level abstractions such as List-bound controls and other controls for special pur-
poses. List-bound controls are used to render the contents of a data source or list
with which they are associated.This includes the Repeater, DataList, and DataGrid
controls.They offer the ability to create a variety of standard and custom layouts.
Special-purpose controls include commonly used page tools such as the
AdRotator and Calendar controls.These controls will be explained in more detail
in the following sections.

In addition, the Web controls include a set of validation controls, which are
server-side interfaces that incorporate logic to allow evaluation of a user’s input.
Attached to an input control, validation controls allow testing of what the user
enters for that input control.We can match a pattern of the input or we can
check whether the field input is of a different data type. For example, a state
name can be abbreviated to two characters.We can check the length of a user
input and make sure both letters are characters.

Using Web Form Controls
You can easily add server-side controls to a Web Form by using Visual Studio.NET.
The IDE will have a Toolbox window to drag and drop the target Web Form con-
trol to a project.This is the same procedure for both HTML controls and Web
controls. Figure 13.19 shows some of the available Web controls available in the
Toolbox.

Alternatively you can manually write the HTML code directly into the HTML
page. For example, suppose you want to use a Button.The syntax would be:

<asp:Button id="Btn_Submit" runat="server" Text="Submit"> </asp:Button>

The general syntax for a Web control is <asp:ControlName/>, where
ControlName would be the control you’re going to use. Control names are identi-
fied within the HTML markup as namespace tags or declarative tags with a
prefix using the format:

<asp:ControlName attributes runat="server"/>

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 507

508 Chapter 13 • Web Development with C#

The <asp:> prefix is used to map the tag to the namespace of the runtime
component, which in this case is System.Web.UI.WebControls.The remainder of
the tag is the name of the runtime class itself.The attributes in this case are not
those of HTML elements; instead, they are properties of the ASP.NET Web con-
trol. Like HTML controls, these tags must also contain a runat=”server” attribute.

When we drag and drop the controls from the Toolbox in Visual Studio, this
code will automatically be generated for you.

There are close to 25 Web controls available in the .NET Framework Version
1.0.We will discuss some of the key controls.These controls can be divided into
the following categories according to their functionality:

■ HTML page access Web controls

■ Data enabling controls

■ Validation controls

■ Complex Web controls

NOTE

A sample Web form application will be created at the end of this section.
All the components discussed here are used in this application.

www.syngress.com

Figure 13.19 Web Control Toolbox

223_C#Java_13.qxd 5/21/02 2:21 PM Page 508

Web Development with C# • Chapter 13 509

HTML Page Access Web Controls
All of these components are straightforward.These controls, specified in Table 13.2,
mainly provide a server API for client HTML tags.The properties of each Web
control are very similar to HTML tag properties.

Table 13.2 HTML Page Access Controls

Control Name Description

Button Creates a button on a Web Form
Checkbox Creates a check box on a Web Form
Hyperlink Creates a hyperlink on a Web Form
Image Renders an image on a Web Form
Textbox Creates a text box on a Web Form

Data Enabling Controls
ASP.NET provides some sophisticated data binding techniques.We’re provided
with sophisticated controls that allow you to access and bind to different types of
data sources.The data sources can be a database or a static data structure like an
array or a text file.When connecting to a database,ADO.NET is used to facilitate
the communication.

This extremely flexible syntax permits the developer to bind Web control
properties not only to data container values such as a database, but also to simple
properties, collections, expressions, and even results returned from method calls.
To do this you simply enclose the data to which you want to bind the control
between <%# and %>. For example, if you have a property called Student_ID,
you would declare it with <%#Student_ID%>. As another example, say you want
to bind a string variable called Students to a ListBox; you would have the fol-
lowing declaration:

<asp:ListBox id="List1" datasource="<%#Students%>"

runat="server">

As you can see, this gives you a lot of flexibility and will allow you to create a
very sophisticated Web page with dynamic content. Now let’s look at some of the
available Data Binding controls.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 509

510 Chapter 13 • Web Development with C#

DataGrid
The DataGrid control is a very important component in Web Forms.This com-
monly used control has a lot of functionality.We can display, edit, delete, and add
data rows using a single DataGrid.All these properties can be manipulated using
the Properties window of the DataGrid component in Visual Studio.We can also
alter the presentation of the DataGrid by right-clicking on the DataGrid and
selecting the Property Builder window in Visual Studio. Figure 13.20 shows an
example of a Data Grid.

The code that generates this data set will look similar to this:

<asp:DataGrid id="Books_DataGrid" runat="server"

Width="424px" BorderColor="#CC9966" BorderStyle="None"

BorderWidth="1px" BackColor="White" CellPadding="4"

Font-Size="X-Small" Font-Names="Tahoma">

<SelectedItemStyle Font-Bold="True" ForeColor="#663399"

BackColor="#FFCC66"></SelectedItemStyle>

<ItemStyle ForeColor="#330099"

BackColor="White"></ItemStyle>

<HeaderStyle Font-Bold="True" ForeColor="#FFFFCC"

BackColor="#990000"></HeaderStyle>

<FooterStyle ForeColor="#330099"

BackColor="#FFFFCC"></FooterStyle>

<PagerStyle HorizontalAlign="Center" ForeColor="#330099"

BackColor="#FFFFCC"></PagerStyle>

</asp:DataGrid>

DropDownList
The DropDownList control allows a single selection from a number of choices dis-
played as a drop-down list. Figure 13.21 shows an example of a drop-down list.

www.syngress.com

Figure 13.20 Data Grid Component

223_C#Java_13.qxd 5/21/02 2:21 PM Page 510

Web Development with C# • Chapter 13 511

The code for this looks like this:

<asp:DropDownList id="Lst_Last_Name" runat="server">

<asp:ListItem Value="Dull">Dull</asp:ListItem>

<asp:ListItem Value="Green" Selected="True">Green</asp:ListItem>

<asp:ListItem Value="Hunter">Hunter</asp:ListItem>

<asp:ListItem Value="White">White</asp:ListItem>

</asp:DropDownList>

The display items in the dropdown list will be specified within the
<asp:ListItem> and </asp:ListItem> tags.We can preselect items by specifying the
Selected attribute to the value true.

Validation Control
These controls are very handy for form validations.We do not need to spend hours
getting client-side Java Script functions to work.These server controls generate the
Java Script and push it to the client browser within seconds.We just have to drag
and drop them to the Web Form and set the target properties.These controls could
facilitate many scenarios. For example, we can use these controls to build an order
form for an e-commerce site.A Required Filed Validator control can be used to
ensure the credit card name field is not blank.And we can use the Regular
Expression Validator to check for numeric values in the credit card number filed.

Required Field Validator
This control will check for invalid blank input. If no input is detected, an error
message will be displayed.We do not need to make a round trip to the server to
get the error message; the error message is a property of the control itself.You
can attach a RequiredFieldValidator to any Web form control.The following
example shows a Textbox control named Txt_Title with a RequiredFieldValidator
attached.

www.syngress.com

Figure 13.21 DropDownList Component

223_C#Java_13.qxd 5/21/02 2:21 PM Page 511

512 Chapter 13 • Web Development with C#

<asp:RequiredFieldValidator class="NormalRed"

id="Title_RequiredFieldValidator"

runat="server"

ErrorMessage="Please enter a Title"

ControlToValidate="Txt_Title"> </asp:RequiredFieldValidator>

This control validates a blank input for a Title field.We display the “Please
enter a Title” error message if the user does not enter a value.The control in
action is shown in Figure 13.22.You can see the error message in red at the
bottom of the image.

RegularExpressions Validator
This control will check for a matching pattern in the input. ZIP code, e-mail
address, or ISBN number are formatted in a particular pattern.We can use this
control to check the validity of the input against these patterns.Visual
Studio.NET has wizards to support some common patterns (e.g., US ZIP codes,
e-mail address, etc.). Here is a sample to check the validity of an e-mail address.

<asp:RegularExpressionValidator class="NormalRed"

id="Email_RegularExpressionValidator"

runat="server"

ErrorMessage="Invalid Author email address"

ControlToValidate="Txt_Author_Email"

ValidationExpression=

"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

</asp:RegularExpressionValidator>

Let’s look at the validation rules.The “\w+([-+.]\w+)*@\w+([-.]\
w+)*\.\w+([-.]\w+)*” string will search for a pattern in the input. (In this
case the string should have multiple characters before and after the @ sign.These
characters could be multiples of letters and “.”.) If the input pattern does not
follow the string we will see an error message.The code output is shown in
Figure 13.23. In this case we are not entering a @ sign in the e-mail field to
produce an error.

www.syngress.com

Figure 13.22 Required Field Validator Control

223_C#Java_13.qxd 5/21/02 2:21 PM Page 512

Web Development with C# • Chapter 13 513

Complex Web Controls
These are special Web controls built into Web Forms.These controls used to be
ActiveX plug-ins under ASP 3.0. Here are some of the important ones.

Using the AdRotator Control
The AdRotator component will behave like an advertisement server.We can enter
our advertisement requirements in a XML file and map the XML file to the
AdRotator component as a property.This is a great tool to handle banners in a
small Web site.Again, you can simply drag and drop this control from Visual
Studio and it will automatically generate the following code for you.

<asp:AdRotator id="AdRotator_Syngress" runat="server"

Width="468px" Height="60px"

AdvertisementFile="Ad_Source.xml">

</asp:AdRotator>

You can specify the width and the height of the banners using the Width and
Height properties.The banner details are read from an XML file.The XML file
should contain elements to describe the image location, navigation URL (when
the banner is clicked), and impression ratios. For our example we will use the fol-
lowing Ad_Source.xml file.

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

<Ad>

<ImageUrl>images/banner1.gif</ImageUrl>

<NavigateUrl>http://www.microsoft.com</NavigateUrl>

<AlternateText>Microsoft.com</AlternateText>

<Keyword>MSN</Keyword>

<Impressions>80</Impressions>

</Ad>

<Ad>

www.syngress.com

Figure 13.23 Regular Expression Validator Control

223_C#Java_13.qxd 5/21/02 2:21 PM Page 513

514 Chapter 13 • Web Development with C#

<ImageUrl>images/banner2.gif</ImageUrl>

<NavigateUrl>http://www.fuji.com</NavigateUrl>

<AlternateText>Fuji</AlternateText>

<Keyword>Fuji</Keyword>

<Impressions>50</Impressions>

</Ad>

<Ad>

<ImageUrl>images/banner3.gif</ImageUrl>

<NavigateUrl>http://www.Monster.com.au</NavigateUrl>

<AlternateText>Holidays</AlternateText>

<Keyword>Holidays</Keyword>

<Impressions>80</Impressions>

</Ad>

</Advertisements>

The AdRotator will take into account the <Impressions> tag to alternate
between the three banners.We can also associate key word searches with the
<Keyword> element.The <AlternateText> element will specify some alternative
text for the banner.

Using the Calendar Control
The Calendar control provides various ways of date selection, including a range of
dates by week or month.This control could be customized to render in different
style sheets.The control implements an OnSelectionChanged event that could be
used to trigger date-specific business logic. Figure 13.24 is an example of a
Calendar control.

Here is the code behind the image:

<asp:Calendar id="Publishing_Date_Calendar" runat="server"

Font-Names="Verdana" Width="220px" Height="200px"

www.syngress.com

Figure 13.24 Calendar Web Control

223_C#Java_13.qxd 5/21/02 2:21 PM Page 514

Web Development with C# • Chapter 13 515

BorderWidth="1px" BackColor="White"

DayNameFormat="FirstLetter" ForeColor="#003399" Font-

Size="8pt" BorderColor="#3366CC" CellPadding="1">

<TodayDayStyle ForeColor="White"

BackColor= "#99CCCC"></TodayDayStyle>

<SelectorStyle ForeColor="#336666"

BackColor="#99CCCC"></SelectorStyle>

<NextPrevStyle Font-Size="8pt"

ForeColor="#CCCCFF"></NextPrevStyle>

<DayHeaderStyle Height="1px" ForeColor="#336666"

BackColor="#99CCCC"></DayHeaderStyle>

<SelectedDayStyle Font-Bold="True" ForeColor="#CCFF99"

BackColor="#009999"></SelectedDayStyle>

<TitleStyle Font-Size="10pt" Font-Bold="True" Height="25px"

BorderWidth="1px" ForeColor="#CCCCFF"

BorderStyle="Solid" BorderColor="#3366CC"

BackColor="#003399"></TitleStyle>

<WeekendDayStyle BackColor="#CCCCFF"></WeekendDayStyle>

<OtherMonthDayStyle

ForeColor="#999999"></OtherMonthDayStyle>

</asp:Calendar>

Creating a Web Form Application
We will try to use the existing Books information example from the previous
section and use a Web Form as the interface.This will also contrast the difference
between a Web Service and a Web Form interface. Probably the greatest lesson is
to appreciate the flexibility of .NET. Regardless whether it is a Web Service or
Web Form, you will realize that the code is very similar. Here are the steps.

1. Create a new ASP.NET project (File | New | Project).

2. Select ASP.NET Web Application.

3. Enter the location of the Web site to be created.Your screen should look
similar to Figure 13.25.

4. Press the OK button.This will create a Web project for you. In addition
it will create a behind-the-scenes virtual directory with the same name
as the project name. It will also create a new folder under the c:\inetpub\
wwwroot directory.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 515

516 Chapter 13 • Web Development with C#

5. Now you will enter the Visual Studio.NET IDE.There will be a sample
Web form called WebForm1.aspx created for you. Rename the page
HTML_Form.aspx. In this Web form we are exploring the Web
controls in action.We will create another Web form called
Data_Bindings.aspx to handle ADO.NET and list bound controls.

6. Drag and drop HTML and Web controls from the Toolbox to create the
Web form shown in Figure 13.26. Our Web form is a New Book Entry
form for Syngress Publishing.When a new book is published, we enter
the book information to our database.We will use Label and Textbox
controls to enter author information.A calendar control is used to select
the published day of the book.An AdRotator component is used to dis-
play multiple banners at the top of the Web form.We will also use some
validation controls to stop invalid input.

Table 13.3 lists the controls you need to create this Web form.

Table 13.3 A List of Web Controls in the Web Form

Component Name Type

AdRotator_Syngress AdRotator
Img_Company_Logo Image
Lbl_Title Label
Lbl_Author_Name Label
Lbl_Author_Email Label

www.syngress.com

Figure 13.25 Creating an ASP.NET Web Application

Continued

223_C#Java_13.qxd 5/21/02 2:21 PM Page 516

Web Development with C# • Chapter 13 517

Chk_Paper_Back CheckBox
Title_RequiredFieldValidator RequiredFieldValidator
Email_RegularExpressionValidator RegularExpressionValidator
Publishing_Date_Calendar Calendar

Let’s look at the code closely.This is the first line of the Web form.

<%@ Page language="c#" Codebehind="HTML_Form.aspx.cs"

Inherits="Books_ASPNET_WebSite.HTML_Form" %>

This line will give instructions to the CLR.The language parameter will
describe the programming language the code is written.This Web form will con-
sist of several Web controls, with many event handlers.We need to write code to
utilize these event handlers. For example, if we have a button on the Web form
we need to write code to facilitate the Click() event handler.This code is written
in a separate C# file.The Codebehind attribute will point to this file, which is
generated by Visual Studio.NET.The Inherits attribute will describe the inheri-
tance structure of the C# code.

<form id=HTML_Form name=myForm action=HTML_Form_Result.aspx

method=get runat="server">

...</form>

www.syngress.com

Figure 13.26 Design View for Web Form Application

Table 13.3 Continued

Component Name Type

223_C#Java_13.qxd 5/21/02 2:21 PM Page 517

518 Chapter 13 • Web Development with C#

This code segment will describe how a server side Form tag is declared.This
is very similar to a HTML form tag.The only difference will be the
runat=“server” directive.

<asp:image id=Img_Company_Logo runat="server"

AlternateText="Syngress Logo" Width="112px"

ImageUrl="images/logo.gif">

</asp:Image>

This is how we display an image on a Web form. It is very similar to a HTML
IMG tag. Let’s learn how to use a AdRotator component in our Web form.

<asp:adrotator id=AdRotator_Syngress runat="server"

AdvertisementFile="Ad_Source.xml" Height="60px"

Width="468px">

</asp:AdRotator>

We also need a Required Field Validator control to stop blank input form the
user.We also need to put some pattern validations on the Email field. Here is the
relevant code for it (please refer to the section,“Validation Controls” to under-
stand this code):

<asp:requiredfieldvalidator class=NormalRed

id=Title_RequiredFieldValidator runat="server" \

ControlToValidate="Txt_Title" ErrorMessage="Please enter a

Title">

</asp:RequiredFieldValidator>

<asp:regularexpressionvalidator class=NormalRed

id=Email_RegularExpressionValidator runat="server"

ControlToValidate="Txt_Author_Email" ErrorMessage="Invalid

Author email address" ValidationExpression="\w+([-

+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

</asp:RegularExpressionValidator>

The combination of all these controls could be viewed in Figure 13.27.
Let’s create another Web Form for data bound controls.We are basically going

to use the same database layer as our previous Web Services example.We will be
accessing the Pubs database.You may need to create an OleDbConnection,
OleDbDataAdapter, and a DataSet object to handle the ADO.NET queries.These
steps are the same as the Web Service example.The only difference is to create a

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 518

Web Development with C# • Chapter 13 519

standalone DataSet; do not try to create the DataSet from the OleDbDataAdapter.
We need to provide a Title ID to get a valid row set from the Pubs database.This
is done at runtime.Therefore the DataSet should be created at runtime; otherwise
it will always be empty.Table 13.4 shows the elements in the Web forms.

Table 13.4 Web Controls for Data Access Web Form

Component Name Type

AdRotator_Syngress AdRotator
Img_Company_Logo Image
Lbl_Title_ID Label
Btn_Get_Books Button
Books_DataGrid DataGrid
Lst_Title_ID Drop-down list box

The drop-down list box will have a list of the Title IDs.A user can pick a
Title ID and press the Get Books Titles button to display the book information in
the DataGrid control.

www.syngress.com

Figure 13.27 Sample Web Form in Action

223_C#Java_13.qxd 5/21/02 2:21 PM Page 519

520 Chapter 13 • Web Development with C#

We should write some code to enable the data loading to the data grid. First
we open the database connection, and then we provide the Title ID to make the
database query.This Title ID is selected from our drop-down list box.Then we fill
the DataSet and use it to populate the DataGrid. First, we will look at the button
click event handler.

private void Btn_Get_Books_Click(object sender,

System.EventArgs e)

{

Render_Data_Grid(Lst_Title_ID.SelectedItem.Value);

}

This method passes the selected Title ID to the Render_Data_Grid function.
Let’s have a look at this function.

private void Render_Data_Grid(String Title_ID)

{

Pubs_OleDbConnection.Open();

oleDbSelectCommand1.CommandText = "SELECT Title, Au_Lname,

Au_Fname, Title_Id FROM tbl_Book_Titles where Title_ID='"

+ Title_ID + "'";

Pubs_dataSet.Clear();

Pubs_OleDbDataAdapter.Fill(Pubs_dataSet,"BookTitles");

Books_DataGrid.DataSource =

Pubs_dataSet.Tables["BookTitles"].DefaultView;

Books_DataGrid.DataBind();

Pubs_OleDbConnection.Close();

}

First we open a connection to our Pubs database.Then we need to create the
correct SQL statement to make the database query.We need to append the
selected Title ID from the list box to get the correct data row from the table.
Then we Fill the DataSet and bind the DataSet to the DataGrid. In this example
all the data binding is handled by the DataGrid control. Finally we close the
database connection. Now we can compile and run the Web form.The screen
should be similar to Figure 13.28.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 520

Web Development with C# • Chapter 13 521

www.syngress.com

Figure 13.28 Data Bound Web Form Controls in Action

223_C#Java_13.qxd 5/21/02 2:21 PM Page 521

522 Chapter 13 • Web Development with C#

Summary
In this chapter we have covered two of the most interesting areas in the .NET
Framework. Both Web Services and Web Forms are dominant topics in .NET.

First we looked at Web Services and the concepts behind them.You learned
about the purpose of the application of Web Services and the importance of
SOAP and WSDL. SOAP is the mechanism that lets you bypass firewall security
and execute remote function calls over HTTP.A Web service can publish its
technical details using WSDL.We created a sample Web service to expose a
database query as XML over HTTP.Then we learned how to create a client to
consume our Web service by creating a Proxy object.A Proxy object can be cre-
ated using wsdl.exe utility or Visual Studio.NET

In the second part of the chapter we learned about Web Forms.We learned
that there are two types of Web Form controls,Web controls and HTML con-
trols.There are close to 45 Web and HTML controls in .NET Framework.We
also discussed the key difference between Web and HML controls. HTML con-
trols are similar to HTML tags;Web controls can implement functionality on a
Web form.We can also bind data sources (database DataSets, array of Strings, etc.)
to Web controls.We looked into several important HTML and Web controls.
Finally we created an ASP.NET application to utilize our knowledge.

Solutions Fast Track

Web Services Overview

Web Services are remote function calls over HTTP using SOAP
envelopes.

Since it uses HTTP as the transport protocol, it can bypass firewall
restrictions using the default Web port.

Web Services deliver data in XML format.Therefore we can build
multiple interfaces to consume XML data (Web browsers, PDAs, mobile
phones, etc.).

Creating Web Services

Web Services can be created using a text editor or Visual Studio.NET
IDE.The Web service files have the .asmx extension.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 522

Web Development with C# • Chapter 13 523

The methods you like to expose over HTTP should be declared with
the [WebMethod] attribute.

The .NET Framework will automatically create a runtime implementa-
tion for the Web service.

Consuming Web Services

We need to create a proxy object to consume a Web service.This is
done using the wsdl.exe command line utility or Visual Studio.NET
(using the Add Web Reference utility).

The WSDL contract can be obtained by appending the string ?wsdl to
the end of the Web service URL.

The proxy object will be primarily responsible for marshalling of data
between the client and Web service.

The clients can be created in multiple interfaces. For example, a
Windows application or a Web browser can act as an interface for the
Web service.

Web Forms Overview

Web Forms are the presentation layer for the Web interface .NET.

There are two categories of Web Forms controls: HTML controls and
Web controls.

HTML controls are very similar to HTML tags; but they are run at the
server end.

Web controls are more sophisticated, and support rapid application
development.

Using Web Forms Controls

There are close to 45 Web controls.

All those controls can be found in the Toolbox window of Visual
Studio.NET.We need to drag and drop the appropriate control to
a Web form and write some code to facilitate the event handlers.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 523

524 Chapter 13 • Web Development with C#

Most of these controls can be bound to data sources.These data sources
include strings, array data, and database data (using DataSet objects).

Creating a Web Forms Application

The project type for a Web form application should be ASP.NET
Application.

The Web form will consist of multiple Web controls and HTML
controls.These controls represent the presentation layer of your
application.You should use the Toolbox window to drag and drop these
controls to the Web form.

ADO.NET facilities can easily be accessed from the Toolbox controls.
These controls represent the database layer in your application.All you
have to do is drag and drop them to the Web form and set their
appropriate properties.

Q: Is it necessary to create a proxy object to consume a Web Service?

A: No, you do not need a proxy object to obtain the data from a Web Service.
The .NET Framework creates HTTP GET, HTTP POST, and SOAP imple-
mentations when a .NET Web Service is created.Therefore you can query
the Web Service using HTTP GET and POST. In this case you are directly
accessing the Web Service, not going through a middleman (proxy object).

Q: Is HTTP GET and POST access available on Java and other Web Services
architectures?

A: To my knowledge, no.The only platform that has a default implementation of
POST and GET is MS .NET.You can customize your own SOAP handlers
for this in Java implementations.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_13.qxd 5/21/02 2:21 PM Page 524

Web Development with C# • Chapter 13 525

Q: Can we initialize a complete class as a Web Method?

A: No, only methods can be initialized as Web Methods.

Q: Are HTML controls the same as HTML tags?

A: No, they are not. Since HTML controls are processed at the server side they
can be optimized to render different tags on the server side (for example,
members of the HTMLGenericControl class can render multiple tags as
<body>, <head>, , etc.).

Q: What happens if the client’s browser does not support any JavaScript? How
do we run the validation controls then?

A: The .NET Framework is smart enough to understand this.Therefore the
validations are done at the server end and pushed to the client browser.
The down side is the increased number of round trips.

www.syngress.com

223_C#Java_13.qxd 5/21/02 2:21 PM Page 525

223_C#Java_13.qxd 5/21/02 2:21 PM Page 526

Working with
ActiveX, COM, and
Unmanaged Code

Solutions in this chapter:

■ Working with Unmanaged Code

■ Working with the Platform Invocation
Utility

■ Working with COM Components

■ Working with ActiveX Controls

■ Working with Pointers

Chapter 14

527

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_14.qxd 5/21/02 2:22 PM Page 527

528 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Introduction
At this point you have learned most of what C# has to offer.This chapter will
complete your arsenal by showing you some more advanced programming tech-
niques available in the C# language.

No matter how good a technology is, it just can’t come in and replace all of
the other existing ones.The designers of the C# language realized this fact and
equipped the language with support for old legacy applications. Java provides this
functionality through the Java Native Interface (JNI), which allows you to work
with code that is written in some other language.This chapter will look at several
ways that C# lets you work with objects that are written in another language
such as C, C++, or Visual Basic.

Currently, there are several projects, such as the Mono project
(www.go-mono.net), which are trying to port the .NET platform to other oper-
ating systems like the UNIX-BSD OS. However, Microsoft would probably prefer
that you develop most of your C# applications under the Windows environment.
Therefore, most of the tools provided by Microsoft are for interacting with existing
Windows applications and components such as ActiveX controls, COM DLLs, and
the Win32 APIs.You will see some of these tools in action in this chapter.

The first thing you will learn is the difference between managed and unman-
aged code in C#. Unmanaged codes are methods that are executed outside the
.NET Framework’s managed environment.

Next, the chapter will show how you can incorporate standard COM dynamic
link library (DLL) files with your C# program.You will see how you can easily
turn COM components into .NET assemblies that you can use with C#.

Then you will learn how to import ActiveX controls into a C# application.
ActiveX controls are objects that support a customizable, programmatic interface
that can typically be dropped into a form. Finally, the chapter will talk about
unsafe code and how to use pointers within your C# application.

You can access the code files that apply to the examples and demonstrations
throughout this chapter at the book’s web page at www.syngress.com.This code
will be very useful in actively working through the demonstrations and for
enhancing your understanding of how to build C# applications.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 528

www.syngress.com

Working with Unmanaged Code
COM components and ActiveX controls have contributed to thousands of appli-
cations on the Windows platform. Most companies have made a significant
investment in these components, and for this reason Microsoft has provided a way
to support these legacy applications.The .NET Framework has supplied us with
several tools and utilities that allow us to interoperate with these existing compo-
nents and make it simple to access them. Since COM and ActiveX components
run outside the .NET Framework, they’ve been labeled as unmanaged code, which
distinguishes them from managed code that runs within the framework.

Managed code could be defined as code that runs under the control of the
Common Language Runtime (CLR).At this point all of the codes that we’ve
looked at are managed code because they’re run within the CLR. Managed code
has the advantage of utilizing the CLR functionalities about which we don’t have
to concern ourselves, such as automatic memory management, type checking,
and exception handling.

On the other hand, the code that runs outside the runtime is called unman-
aged code.This includes COM components,ActiveX interfaces, and Win32 API
functions.This code is compiled directly into native code, cannot enjoy any ben-
efits that the CLR offers, and is unaware of the existence of the CLR.

In a way, writing unmanaged code is similar to invoking the Java Native
Interface API. Just as the JNI API extends the Java virtual machine’s horizons to
languages like C, C++, or assembly language, the ability to write unmanaged
code allows you to extend the boundaries of the Microsoft .NET Framework.
Unmanaged code can be written only using a pre-.NET compiler, which means
that the .NET compiler can’t compile unmanaged code. Since unmanaged code
is not compiled as Microsoft Intermediate Language (MSIL) and does not run
under the CLR, it has the following limitations:

■ Memory management, type checking, exception handling, and garbage
collection has to be done within the component.

■ The code will not be able to port to another language. (As an example,
managed C# programs could be debugged in VB.NET. Unfortunately,
an unmanaged VB program will not be accessible to C#.)

■ Wrapper components are needed to communicate with managed .NET
assemblies.This is also a performance hit under .NET Framework.

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 529

223_C#Java_14.qxd 5/21/02 2:22 PM Page 529

530 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Interoperability with Unmanaged Code
The Component Object Model (COM) is Microsoft’s solution to code
reusability, binary standardization, language independence, and object-oriented
programming.This architecture provides a way for programmers to develop com-
ponents that can be used by a wide variety of consumers that support its stan-
dard. Every COM component written to this standard can easily be updated and
reused by other programmers.

This reuse is made possible as COM components are built upon interfaces.As
discussed in Chapter 6, an interface is a way for a component to expose its func-
tionality to the caller.As you know, interfaces can be viewed as a binary contract
between the server component and its caller.This binary contract establishes how
they will communicate with each other, what functions are provided, and the
required parameters. Once you know each function and property in an interface,
it’s simply a case of tying these into your own program to make use of them.

COM is also a binary standard.Therefore COM components can be devel-
oped in a wide variety of languages and still obey its rules. Microsoft Visual Basic
and Microsoft Visual C++ are two of the most popular languages for developing
COM components.You could also use include Microsoft Visual J++,
Powerbuilder, Borland Delphi, and Micro Focus Object Cobol.This allows pro-
ject teams to take advantage of a variety of skill sets (C++, Delphi,VB, Java, etc.)
for a wide variety of needs.

NOTE

ActiveX controls are COM components that follow the COM binary
standard.

The .NET base class library has specialized classes to support interoperability
with unmanaged COM components.These classes could be found under the
System.Runtime.InteropServices namespace.The interoperability services in .NET
could be categorized into the following scenarios:

■ .NET assembly (managed) calling a single COM DLL (unmanaged)

■ .NET assembly (managed) calling a COM object or an ActiveX control
(unmanaged)

■ COM DLL (unmanaged) calling a .NET assembly (managed)

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 530

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 531

Managed Code Calling an
Unmanaged COM DLL Function
In C# you can easily invoke a function from any native dynamic link library
(DLL). If you’ve done some Windows development and you are familiar with
certain COM components or with Win32 DLL, it is still possible to utilize them
under .NET.To access any function in a DLL, all you need to know is the func-
tion name you wish to call, the DLL that contains the function, and how to mar-
shal or handle the function parameters.This can be done using the Platform
Invocation Services with the .NET Framework.This topic will be discussed in
greater detail later in this chapter.

Managed Code Calling an Unmanaged
COM Object or an ActiveX Control
In this case we want our .NET assembly to have access to the complete COM
DLL.We need to convert the COM DLL into a structure that the CLR can rec-
ognize.The major difference between a COM DLL and a .NET assembly is the
lack of metadata.The .NET Framework provides a tool called the Type Library
Importer (TlbImp.exe) that will create a wrapper for COM components and make
them accessible to .NET assemblies.This Runtime Callable Wrapper (RCW) acts as
a proxy object between the COM DLL and the .NET assembly.

A similar tool, called the ActiveX Control Importer (AxImp.exe), is provided
for creating wrappers for ActiveX objects.ActiveX objects are prepackaged COM
components working to build a functional unit of software.We will discuss both
utilities and how to work with RCWs later in this chapter.

Unmanaged COM DLL
Calling Managed .NET Code
We can also call a .NET assembly from unmanaged code, such as a COM compo-
nent or a Windows program not written in .NET.To do this, we must make our
.NET assembly behave like an ordinary COM DLL.Typically, to access a COM
DLL you have to refer to the Windows registry to get information about that
component.Therefore we need to create a registry entry for our .NET assembly if
we want it to be accessed by another COM component or program.The .NET
Framework provides a utility called the Register Assembly (RegAsm.exe) for this pur-
pose.This utility will generate a GUID for the .NET assembly and will register it

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 531

532 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

in the system registry.This allows a .NET assembly to behave like a typical COM
object and can be accessed by any program, or by another COM DLL.

Figure 14.1 summarizes the interoperability options available in the .NET
Framework.

Figure 14.1 illustrates the communication between unmanaged and managed
code in a Windows environment.The unmanaged environment is composed of
COM components and ActiveX controls. COM components can be defined as a
component that implements the IUnknown interface.As you can see, the managed
environment is composed of code that runs within the CLR or, basically, .NET
assemblies.There are two ways we can access unmanaged code from .NET
assemblies: by using the PInvoke and by using Runtime Callable Wrappers
(RCW).You can also make your managed code available to COM components
by using the Register Assembly utility (regasm.exe). However, this is beyond the
scope of this book and will not be discussed.

Working with the
Platform Invocation Utility
The Platform Invocation Service (PInvoke) allows you to access unmanaged
public functions residing in a Win32 DLL component.This could be very useful
as it allows you to work with the Windows API and to expose functions in any
DLL.This is helpful for software developers that are very familiar with a partic-
ular COM object or Win32 API and would like to continue using it. For
example, with PInvoke you can easily invoke the MessageBox function in the

www.syngress.com

Figure 14.1 Interoperability Options in .NET

.NET Assembly

Common Language Runtime
Managed Environment

Unmanaged Environment

IUnknown

COM DLL

ActiveX Control

PInvoke

Runtime Callable
Wrappers

Register
Assembly

MS IL

Meta Data

223_C#Java_14.qxd 5/21/02 2:22 PM Page 532

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 533

user32.dll COM object.This is not advisable; I would suggest using its .NET
equivalent instead because accessing unmanaged code incurs some overhead and
you loose the benefits of the CLR. However, we have to acknowledge the fact
that there will be third-party COM components out there we might still need to
use, and for this situation, PInvoke can be very useful.

To expose functions in any DLL, you have to attach the [DllImport] attribute
to the method and declare it with the static and extern keywords.The [DllImport]
attribute allows you to specify the name of the DLL that contains the DLL func-
tion that your method will use. For example, if you want to access the puts()
function in the msvcrt.dll, you will have to code the following line:

[DllImport("msvcrt.dll", EntryPoint="puts")]

public static extern int puts(string c);

The common practice is to name the C# method the same as the exported
function, but you can use any name you like as long as you specify in the
EntryPoint parameter which function you would like to use.The static keyword
means there is only one instance of this method in the class, and the extern key-
word instructs the compiler that the method is implemented using an external
unmanaged source and will be invoked through PInvoke.

Optionally, you can specify custom marshaling information for the method’s
parameters and return a value, which will override the .NET Framework default
marshaling.This is implemented by the [MarshalAs] attribute.The CLR needs to
marshal the input and output parameters of unmanaged code invocation. It has
default types to match every unmanaged type. For an example, a C# String is

www.syngress.com

The EntryPoint Parameter
The EntryPoint attribute parameter is optional. However, if you don’t
declare this parameter, then your method name must be similar to the
function name you wish to invoke. By specifying the EntryPoint param-
eter, you could have a different name from the method name. But for
convention, it’s typically a good idea to use the same function name you
wish to invoke.

Developing & Deploying…

223_C#Java_14.qxd 5/21/02 2:22 PM Page 533

534 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

equal to a LPTSTR (pointer to a TCHAR char buffer) in unmanaged code. If we
do not specify any marshalling instructions the CLR will use these default mar-
shalling values. In some cases we need to marshal data to a specific type, which
you can do by using [MarshalAs] attribute. For example, let’s look at the fol-
lowing code:

[DllImport("msvcrt.dll")]

[return : MarshalAs(UnmanagedType.I4)]

public static extern int puts(string c);

In the preceding example we are instructing the runtime to override the
default marshalling with an Integer 4 type for the puts() function return value.All
the marshalling information could be found under System.Runtime.InteropService
.Marshal and System.Runtime.InteropService.MarshalAs attribute classes.

Let’s take a complete example to witness Platform Invocation in action.We will
create a small application to bring up a message box and display some text. From
experience I am aware of the user32.dll library that implements this functionality.
It contains the MessageBox function, which displays a message box on the screen.
The following is the C# code listing:

// PInvoke_Test.cs

using System;

using System.Runtime.InteropServices;

public class DisplayText

{

[DllImport("user32.dll", EntryPoint="MessageBox",

CharSet=CharSet.Auto)]

public static extern int MessageBox(int hWnd, String

text, String caption, uint type);

}

public class Display_MessageBox

{

public static void Main()

{

DisplayText.MessageBox(0, "This text is displayed

using user32.dll", "Display Text", 0);

}

}

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 534

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 535

Let’s try to understand this sample code. First we create a DisplayText class
that acts as a wrapper for the MessageBox function in the user32.dll library.The
main part that we want to look at is the DllImport attribute declaration:

[DllImport("user32.dll", EntryPoint="MessageBox",

CharSet=CharSet.Auto)]

The first parameter specifies that we’re going to use the user32.dll library.The
next parameter specifies that the EntryPoint for our method is the MessageBox
function. Finally, the CharSet = CharSet.Auto attribute parameter is just a com-
piler directive informing the runtime to marshal the string automatically.The
default marshalling pattern will be ANSI strings.

We then declare our method as static extern to instruct the compiler that the
method is residing on a separate DLL.Then we create another class called the
Display_MessageBox to act as the driver program to test the DisplayText class.
Figure 14.2 displays the output of the program, and as you can see, a message box
pops up with our message.

Working with COM Components
In general terms, a COM component is any object that conforms to the binary
standards that COM enforces, and that supports the IUnknown interface.The
IUnknown interface allows clients to invoke the COM object and also controls the
object lifetime.The underlying principle behind COM specifies that interfaces
are immutable, and once published, they cannot be changed. Each interface and
object is uniquely identified by a Globally Unique Identifier (GUID), which has a
128-bit value and is stored in the registry.

The COM runtime maps COM object calls to a GUID, which points it to
the location of the COM object.This information is stored in the registry under

www.syngress.com

Figure 14.2 Executing the PInvoke Test Program

223_C#Java_14.qxd 5/21/02 2:22 PM Page 535

536 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

the HKEY_CLASSES_ROOT\CLSID key.All registered classes are stored here
and usually have an InprocServer32 or LocalServer key that point to the location of
the object.A client uses this information to locate a COM object and to utilize
its services. Further, COM components generate type libraries that can be used
by calling clients to obtain information about the COM object and its exposed
interfaces and types.

The component model in .NET is represented by assemblies. COM and
.NET assemblies are similar but, at the same time, very different technologies in
their own ways.The following are differences between COM components and
.NET assemblies:

■ .NET managed components behave very differently from COM compo-
nents. Managed components do not interact with the registry to store and
locate information. Instead, the metadata is self-contained in the assembly
and the runtime looks for the assembly in the local or global cache.

■ .NET Assemblies do not utilize GUIDs to identify objects, and they do
not support the IUnknown interface. Object lifetime is managed by the
.NET runtime via garbage collection.The .NET assemblies do not
explicitly call methods to create AddRef() method and destroy object ref-
erences via the Release() method. (We will discuss these methods later in
the chapter.) A managed component is identified by its namespace and
object name and it does not need to be registered with any runtimes
(like the registry).The .NET runtime will look into the global assembly
cache or the application cache to locate the assembly; this information is
not obtained from the registry.

■ Every assembly has embedded metadata that completely describe the
assembly and its types. Unlike COM, managed components do not gen-
erate type libraries.

Creating a Simple COM Component
To demonstrate how we can use COM components with our C# application,
we’ll first create a sample COM component. Later we will convert this COM
object to a .NET assembly and investigate the differences in detail. In the first
part we will create a COM component using MS Visual Basic 6.0.This is a
simple component, which will take two numbers as input and multiply them.
Then we will use a Web client to test the component to make sure that it’s func-
tional. If you don’t have Visual Basic 6.0, you can download the precompiled

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 536

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 537

DLL from the Syngress Web site at www.syngress.com.To create the component,
follow these steps:

1. Open Visual Basic 6.0 (this is a part of Visual Studio 6.0).

2. Select ActiveX DLL from the New Project menu in VB 6.0 (see
Figure 14.3).

3. Name the project COM_Example.

4. Add a Form called Multiply and type the following code:

Function MultiplyNumbers(ByVal Number1 As Integer, ByVal

Number2 As Integer)

Multiply = Number1 * Number2

End Function

5. Compile the project by selecting File | Make COM_Example.dll.
Now you have a very simple COM object.The next step is to create a
client to consume it. Let’s use a Web interface as our client. Here is the
code for our sample Active Server Page. The ASP page is called
test_COM.asp.

<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

www.syngress.com

Figure 14.3 Select ActiveX DLL as the New Project Type

223_C#Java_14.qxd 5/21/02 2:22 PM Page 537

538 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

<meta name="ProgId" content="FrontPage.Editor.Document">

<meta http-equiv="Content-Type" content="text/html;

charset=windows-1252">

<title>COM Test Page</title>

</head>

<body>

<%

Dim obj, result

Set obj = Server.CreateObject("COM_Example.Multiply")

result = obj.MultiplyNumbers(2,2)

%>

<p>The Product of 2

x 2 is <%=result%></p>

</body>

</html>

6. Create a virtual directory called Simple_COM_Example in
Internet Information Server (IIS) and map the location of the file.

7. Send a HTTP request to the IIS Web server.To do so, load a
Web browser and invoke the Web page http://localhost/
Simple_COM_Example/test_COM.asp.

IIS will try to load the ASP file. IIS needs to create an instance of the COM
object to load the Web page. IIS looks up the registry with the keyword
COM_Example.Multiply and creates an instance of our simple COM component.
The instance would have been assigned a GUID when it was created.The COM
component takes the two integers as the arguments and returns the product to
IIS.Then IIS renders HTML and sends it back to the client.The end result is
shown in Figure 14.4.

From this example you can see the flexibility of a COM object. In this
example, an ASP page made use of the component.You easily could have
written a Windows application to use the COM object. Now let’s see how we
can use this COM component under the .NET Framework.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 538

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 539

Runtime Callable Wrappers
The semantics of object creation and maintenance are very different under COM
and .NET. In order to invoke a COM component we need to know the class IDs
and interface IDs of the component.We also need to call the AddRef() and
Release() methods on the COM component to maintain its lifetime.The AddRef()
method allocates memory for a COM component and the Release() method will
release the memory resources. Unfortunately managed components are not aware
of the IUnknown interface and it is not practical for the managed components to
explicitly support this interface solely to support legacy COM components.

What we need is seamless support from the .NET runtime that allows man-
aged components to transparently invoke COM components in the exact manner
as it would invoke a managed component.This is done by creating a managed
wrapper around the COM object, called the Runtime Callable Wrapper (RCW).
The RCW takes care of the incompatibilities between .NET and COM and acts
as a proxy that makes the COM component accessible to managed components.
Essentially the RCW is the bridge between COM and .NET assemblies, acting
as a COM component on one side and as a managed component on the other.
Since there is now an extra layer, there will be a performance hit while using
wrappers. Figure 14.5 shows where RCWs fit into the .NET Framework.

www.syngress.com

Figure 14.4 Web Client for the COM Component

Figure 14.5 Runtime Callable Wrapper Architecture

.NET Assembly

Common Language Runtime
Managed Environemnt

Unmanaged Environemnt

IUnknown

Win 32 COM DLL

MyInterface1

MyInterface2

Meta Data

MS IL

Runtime Callable
Wrapper

Meta Data

MS IL
FooInterface

FooInterface

223_C#Java_14.qxd 5/21/02 2:22 PM Page 539

540 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

As you can see in Figure 14.5, RCW acts as a middleman between the COM
component and the .NET assembly.The runtime will create one RCW for each
COM component regardless of the number of references to that COM compo-
nent. If there are 50 references to the COM object, all of them will be channeled
through one RCW.The managed single .NET client can access multiple RCWs
to reach different COM objects.The following lists the major tasks carried out by
the RCW:

■ Marshalling This is the most important functionality of the RCW.The
RCW marshals the calls from the managed component to the COM
component.This involves converting types into those recognized by the
managed and unmanaged worlds, handling errors in the COM compo-
nent and handling return values and output parameters. Further, this
ensures that all threading and apartment issues are resolved.

■ Map Underlying Interfaces The RCW maps calls to the underlying
COM interfaces. Every time a new interface is requested, the RCW
performs a QueryInterface on the underlying COM component and
caches the returned interface. On subsequent calls, the cached interface
is made available to the managed component.There is a single RCW for
each COM component that is being accessed.

■ Maintain Object Lifetime COM requires using AddRef() and
Release() to maintain object lifetime. However, since the managed com-
ponents do not explicitly call AddRef() and Release(), the RCW has to
maintain a reference on the COM object to ensure that it is not released
while a managed object is still connected to it.The RCW maintains a
reference on each interface pointer it wraps, and calls Release() on these
interfaces when it itself is being freed by the garbage collector.

■ Consume Interfaces A COM component supports multiple inter-
faces such as IUnknown, IDispatch, and IErrorInfo that provide the
plumbing necessary for COM to work.These have no parallels and are
not required in the .NET Framework.The RCW consumes these inter-
faces and does not expose them to the managed object. If you look
closely at Figure 14.5, you will view three interfaces in the COM com-
ponent (MyInterface1, MyInterface2, and FooInterface).The RCW has con-
sumed the MyInterface1 and MyInterface2 interfaces and made the
FooInterface available in the RCW.You can think of MyInterface1 and
MyInterface2 as similar to IDispatch; therefore their only purpose is to

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 540

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 541

provide the plumbing for the COM object. In other words, the RCW
hides certain interfaces that handle the COM object lifecycle and expose
only the interfaces that provide functionality.

Creating a Runtime Callable
Wrapper for a COM Component
Creating a Runtime Callable Wrapper for a COM component is fairly straight-
forward.There are two ways we can create a RCW:

■ Using the Type Library Importer (TibImp.exe) command line utility

■ Using Visual Studio .NET

We will learn both methods by creating a RCW for the simple COM object
that we created previously. It is important to note that both of these methods use
early binding.This means we have the ProgID or COM Registry information
available at compile time for us. In other words, we know the name of the com-
ponent, function name, and types that we’re going to use. In our example the
COM DLL name is COM_Example.dll, and we’re going to use the Multiply func-
tion.With this information, we can bind to the component at compile time.

In some cases we do not have this information available to us and therefore
we need to dynamically bind to a COM object at runtime.This mechanism is
referred to as late binding. Both these methods have their merits and each will be
examined.

Early Binding Using the TlbImp.exe Utility
The purpose of the Type Library Importer (TlbImp.exe) utility is to add metadata
information to COM components in order to make them behave like a .NET
assembly.The key difference between COM components and .NET assemblies is
the lack of metadata. By utilizing the TlbImp.exe utility it will import the COM
type library to run under the .NET Framework by wrapping it in a .NET
assembly. For an example, let’s import our COM_Example.dll that we created earlier
and import it to a .NET assembly that we will call Managed_NET_Assembly.dll.The
following steps will outline how to do this:

1. Bring up a command line window.

2. Use the TlbImp.exe utility.

Syntax: TlbImp.exe TypeLibName [Options]

c:\TlbImp.exe COM_Example.dll /out:Managed_NET_Assembly.dll

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 541

542 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

NOTE

You can use the command prompt that comes with Visual Studio.NET by
clicking on MS Visual Studio .NET | Visual Studio .NET Tools | .NET
Command Prompt from the programs menu. Otherwise you need to set
the PATH variables for the TlbImp.exe utility manually.

This command will create a new .NET assembly called Managed_NET_
Assembly.dll in the current directory.The /out: keyword is used to name the target
DLL. Figure 14.6 shows the output of running the TlbImp.exe utility.

Once you’ve imported the COM component to a .NET assembly, it will now
be available for you to use in your C# programs.The Managed_Net_Assembly.dll will
behave identically to a native managed component.Table 14.1 shows some of the
important parameters used in the TlbImp.exe utility.

Table 14.1 Available Options for the TlbImp.exe Utility

Parameter Description

/asmversion:versionNumber Specifies the version number of the assembly to
produce.

/keyfile:filename Signs the resulting assembly with a strong name
using the publisher’s official public/private key
pair found in filename.

/namespace:namespace Specifies the namespace in which to produce
the assembly.

/out:filename Specifies the name of the output file, assembly,
and namespace in which to write the metadata
definitions. The /out option has no effect on the
assembly’s namespace if the type library speci-
fies the Interface Definition Language (IDL)
custom attribute that explicitly controls the
assembly’s namespace.

www.syngress.com

Figure 14.6 Using the TlbImp.exe Utility

Continued

223_C#Java_14.qxd 5/21/02 2:22 PM Page 542

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 543

/unsafe Produces interfaces without .NET Framework
security checks. Calling a method that is
exposed in this way might pose a security risk.
You should not use this option unless you are
aware of the risks of exposing such code. We
will look into unsafe code later in the chapter.

/? Displays command syntax and options for the
tool.

Since we did not specify a namespace, the runtime will create a default
namespace using the DLL name. In this case Managed_NET_Assembly.dll will
belong to a .NET namespace called COM_Example. Remember, Managed_NET_
Assembly.dll is a RCW and functions as a native component, but it acts as an
intermediary between the runtime and the Com_Example.dll object.

Early Binding Using Visual Studio .NET to Create a RCW
You can also use Visual Studio.NET to create the RCW, which is much simpler
than using the TlbImp.exe utility.All the plumbing work is done for you by Visual
Studio .NET and all you have to do is to add the COM DLL as a reference to an
existing project. Here are the steps.

1. Right click on the Solutions Explorer of the project and select Add
Reference.

2. Browse to the COM Component location you want to add. For our
example, you can browse to the location of the COM_Example.dll.
Please make sure you select the COM tab.The default tab is .NET.You
can also navigate through the list to find the COM_Example.dll. It
should appear in the component list under the COM tab.You should
have something similar to that shown in Figure 14.7.

The .NET Framework will recognize the COM component and will create a
managed assembly wrapper. It will also add the wrapper to the local cache of the
project.The name of the Wrapper will be interop plus the DLL name. So for our
example it will be called as Interop.COM_Example.This DLL could be found in
the bin directory under either the Release or Debug subdirectories, depending
whether you have released it or debugged it.You will be able to call this object as
an assembly like any other inside the project scope.

www.syngress.com

Table 14.1 Continued

Parameter Description

223_C#Java_14.qxd 5/21/02 2:22 PM Page 543

544 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Building a Client for the RCW
Now that we know how to early bind a COM component in the .NET
Framework, let’s build a sample client to invoke these RCWs.We’ll create a
Windows application to use our existing COM_Example.dll.The application will
let you enter two integers and it will invoke the multiply function in the
COM_Example.dll using our RCW.The RCW will pass the two integers to the
COM component and then it will pass the result of the multiplication back from
the COM component to the Windows Form to be displayed. Here are the steps
to build the application.

1. Create a Windows Application project called Simple_Net_Assembly in
Visual Studio .NET.

2. Add a reference to our COM_Example.dll by right-clicking on
Solutions Explorer and selecting Add Reference as shown in Figure
14.7.We can also add the Managed_Net_Assembly.dll we created under
the TlbImp.exe tool. However, there is no point in adding the RCW
generated by the TlbImp.exe when Visual Studio will generate a RCW
and add it for you.

3. Drag and drop the Windows controls from the ToolBox to the Web
form design view.The list of Windows controls can be found in Table
14.2.These controls will build an interface to enter the input parameters
(two integers).

www.syngress.com

Figure 14.7 Adding a COM Component to Your Visual Studio
.NET Project

223_C#Java_14.qxd 5/21/02 2:22 PM Page 544

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 545

Table 14.2 Design Properties for RCW Windows Application

Control Name Type Description

Lbl_Number1 Label The caption for first number input
Txt_Number1 Text Box The text box to enter the first number
Lbl_Number2 Label The caption for the second number input
Txt_Number2 Text Box The text box to enter the second number
Btn_Get_Result Button To initiate the method call to the COM

component
Lbl_Result Label The caption for the result from the binding
Txt_Result Text Box The text box to display the result from multi-

plying number 1 and number 2

4. Use the components listed from Table 14.2 to create the user interface
for the application.The Windows form should be similar to Figure 14.8.

5. The next thing we need to do is write some code to call the COM
component when the button is clicked.We’ll add this code in the
button’s click event:

private void Btn_Get_Result_Click(object sender, System.EventArgs e)

{

COM_Example.Multiply myMultiply = new

COM_Example.Multiply();

Txt_Result.Text = myMultiply.MultiplyNumbers(

System.Convert.ToInt16(Txt_Number1.Text),

www.syngress.com

Figure 14.8 Design View for RCW Test Application

223_C#Java_14.qxd 5/21/02 2:22 PM Page 545

546 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

System.Convert.ToInt16(Txt_Number2.Text)).ToString();

}

First we create a myMultiply variable and we invoke the
MultiplyNumbers method in the COM component.The number1 and
number2 text box arguments have to be converted to integers from a
String type using the System.Convert class.The result will be displayed in
the Txt_result text box.

6. Now let’s debug and run the application.The user will enter the two
numbers as integers and press the Multiply button.We have not created
any new methods or interfaces in our old COM_Example.dll.The same
Multiply() method is used to produce the product for two given integers.
The output will be similar to Figure 14.9.

Examining Runtime Callable Wrapper Properties
Let’s look at our RCW in more detail.There is a tool called the Intermediate
Disassembler (ILDASM.exe) in the .NET Framework.This is great tool to
explore .NET assembly data structure.

www.syngress.com

Figure 14.9 RCW Win Application in Action

ILADSM .NET Utility
ILDASM allows you to investigate the methods, properties, and classes
of an assembly. Any managed component can be loaded to the ILDASM
viewer. The data in the ILADSM is displayed as MSIL code. We can also
convert our C# file to MSIL code using the Dump menu option from the
ILDASM menu.

Debugging…

223_C#Java_14.qxd 5/21/02 2:22 PM Page 546

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 547

Let’s look at our wrapper class in the ILDASM.exe utility. Start the utility by
typing in ildasm.exe at the .NET command prompt.To open an assembly that you
wish to view, simply click on File | Open in the menu.

NOTE

You can load ILDASM by bringing up a .NET Command Prompt and typing
ildasm.exe. Then use the File | Open menu option to select the DLL.

Our assembly will look like Figure 14.9 when it has been loaded to the
ILDASM. Remember you can use either Interop.COM_Example.dll created by
Visual Studio .NET or the Managed_NET_Assembly.dll that we created using the
TlbImp.exe utility. It is important to note that both RCWs are the same. I have
used the latter in Figure 14.10.

If you are familiar with COM objects, you’ll find that there are no IUtility or
IDispatch interfaces in the assembly.These interfaces were essential in the COM
world to force components to have a specified structure. If the interface or the
structure of the component is modified, it could not communicate with another
component.The structure of these components (which includes the interfaces
that the components implement) is recorded in the registry. In the .NET world
we do not need these rigid structured interfaces any more because of the meta-
data information contained in the assemblies.Therefore the IDispatch and IUtility
interfaces have been filtered out by TlbImp.exe utility.

www.syngress.com

Figure 14.10 Using Intermediate Language Disassembler to Investigate
RCW Properties

223_C#Java_14.qxd 5/21/02 2:22 PM Page 547

548 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Furthermore, there are no AddRef() and Release() methods.All of these
methods are still available in the COM object, however. Remember that the
RCW is just a vehicle that the .NET Framework uses to get to the COM com-
ponent, and doesn’t actually modify the COM component itself. It relies on the
System Registry to locate the COM object.To illustrate this point, let’s unregister
the COM component.

c:\regsvr32 COM_Example.dll –u

Now if you try to execute our sample Windows application, it will result in
an error.Therefore, we can conclude that the RCW is just a vehicle to get to
COM components. Now let’s try to move the COM_Example.dll to another
directory and try to execute our Windows application.Again, you’ll find that it
will result in an error.

The reason for this is because the RCW relies on the registry data to locate
the COM component. Since we change the location of the COM_Example.dll,
the registry values are invalid. If you unregister the COM_Example.dll from its
original location, then copying it to a new location and registering it again will
result in a successful execution.

Using Late Binding RCWs
The previous methods we discussed relate to early binding to RCWs.We knew
exactly what the COM registry name was (COM_Example.Multiply) before we
executed our applications.The COM registry name was hard-coded into the
source code as a reference in the projects. Sometimes we need to use late binding
when we develop code. Late binding is a mechanism where at runtime we read a
ProgID of an object and create an instance of it on the fly.The difference with
early binding is that in late binding we do not know the target COM registry
name.The name is provided when the application is executing during runtime.

In the COM world we used to implement the IDispatch interface specifically
to support late binding for COM components.The .NET Framework’s support
for late binding to COM components is a little bit more difficult.With late
binding we do not know about the target object type, so first we need to get an
idea of the object type.Then we have to come up with a way to pass the input
parameters to the object and then invoke the COM DLL. Let’s try to learn all
these steps using a sample Windows application in Visual Studio .NET.

Let’s create a small Visual Studio .NET project to explain late binding.The
specification for the project is the same for the early binding project.We will
create a small Windows application that takes in two integers and displays the

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 548

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 549

result of them. But we do not know that the component we are creating is of
type COM_example.Multiply; type information is provided by the user at runtime.
Here are the steps to create the project.

1. Create a Windows application and call it COM_Late_Binding.

2. Create the following controls on a Form. (Remember we are not adding
any references to this project.This is late binding, and the binding is done
at runtime.) Add the Windows controls from the ToolBox to the
Windows Form.The list of controls can be found in Table 14.3.After
adding the controls the Windows Form will look similar to Figure 14.11.

Table 14.3 Design Properties for Late Binding Windows Application

Control Name Type Description

Lbl_Caption Label To display the top caption.
Lbl_COM_Name Label The caption for the COM registry name text box.
Txt_COM_Name Text Box The text box to enter COM registry name. This

name is used to look up the registry when late
binding is activated.

Lbl_Header Label The caption for the header for the input
parameters.

Lbl_Number1 Label The caption for first number input.
Txt_Number1 Text Box The text box to enter the first number.
Lbl_Number2 Label The caption for the second number input.
Txt_Number2 Text Box The text box to enter the second number.
Btn_Invoke Button To initiate the late binding process.
Lbl_Result Label The caption for the result from the binding.
Txt_Result Text Box The text box to display the result from multi-

plying number 1 and number 2.

3. Now we need to write some code. Let’s populate the Btn_Invoke_Click
event for this application. Here is the complete code.

private void Btn_Invoke_Click(object sender,

System.EventArgs e)

{

Type myType = Type.GetTypeFromProgID(Txt_COM_Name.Text);

object myObject = Activator.CreateInstance(myType);

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 549

550 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

object [] inputParameters = new object []

{Txt_Number1.Text,Txt_Number2.Text};

Txt_Result.Text = myType.InvokeMember("MultiplyNumbers",

System.Reflection.BindingFlags.InvokeMethod,

null,myObject,inputParameters).ToString();

}

Let’s take a look at this code.The top line will get the COM registry
name or ProgID (in our case it will be COM_Example.Multiply) from the
input box and query its type.Then using the Activator class we will create
an instance of that type.The Activator and the Type classes are used to
query the data type of the binding object. Using the Type class we can
extract the data type information at runtime for a given object reference.
The Activator class has a method called CreateInstance(), used to instantiate
an object for a given type.Then we create an array of objects to store
the input parameters for a method invocation.At runtime we do not
know what types these input parameters are going to be; therefore we
create objects type of System.Object. Since System.Object is the super class
of every .NET class, we will not have a type compatibility issue.

The next line will use the InvokeMember method of the Type class to
communicate with the COM component.We specify the function name
MultiplyNumbers, the target object (myObject), and the input parameters
(inputParameters) to invoke method. Note that we are not using Reflection

www.syngress.com

Figure 14.11 Form Design for COM Late Binding

223_C#Java_14.qxd 5/21/02 2:22 PM Page 550

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 551

on this project.The System.Reflection.BindingFlags.InvokeMethod is a com-
piler directive to facilitate late binding.

4. Now let’s debug and compile the code.The user needs to enter the
COM registry class name (COM_Example.Multipy), number1, and
number2 inputs, and press the button.The result of the late bound
COM query could be displayed in the result text box.The output
should be similar to Figure 14.12.

Limitations of Using RCWs
Finally, the last thing we’ll look at is the limitations you need to take into
account when using RCWs:

■ If you are using COM components in a .NET application you still need
to register the COM components.This will unfortunately take away the
xcopy philosophy in .NET architecture. Just copying the files across will
not result in a successful deployment. (You also need to register the
COM components.)

■ A Runtime Callable Wrapper only channels the instructions to the
COM components.The actual code is still executed at the COM level.
Therefore we are still getting unmanaged code, and running unmanaged
code under the .NET Runtime incurs a performance hit.

■ The data access in a COM component is done by using Active Data
Objects (ADO).ADO uses COM-based marshalling. If we were using
.NET assemblies we could have used ADO.NET to leverage XML based
marshalling to increase performance.

www.syngress.com

Figure 14.12 COM Late Binding Application

223_C#Java_14.qxd 5/21/02 2:22 PM Page 551

552 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Working with ActiveX Controls
ActiveX controls could generally be described as prepackaged COM components
that are small and easy to work with.They’re typically dropped into a form, and
they might or might not have a user interface.ActiveX controls are a perfect
example of binary reuse; for example, you can create a control in Visual Basic and
use it in a C++ application.There are thousands of ActiveX controls developed,
sold, and used over the past few years. For this reason, Microsoft made it easy to
import ActiveX controls into .NET.

Most user interface programming in the Windows environment makes use of
prepackaged controls.The notion of distributing reusable software containing user
interface elements, methods, properties, and events in a convenient package that
plugs into a smart environment for rapid development has been fantastically suc-
cessful in the software marketplace. It started with 16-bit VBX controls and
moved to ActiveX controls when Windows moved to a 32-bit environment.The
ActiveX controls are usually a dynamic link library (DLL) or an .OCX file.

The user interface portion of .NET, called Windows Forms, provides support
for developing your own Windows Forms controls.Think of them as conceptually
doing the same thing as ActiveX controls, except they’re written for .NET.
Therefore we need to convert these ActiveX components to new Windows Forms
controls to run under the .NET Framework.The following sections will show you
how to do this. First we will try to understand a bit about ActiveX controls and
how they differ form Windows Forms controls.Then we will investigate the
methods available to import existing ActiveX components into the .NET domain.

Differences between ActiveX
Controls and Windows Forms Controls
ActiveX controls are built on Component Object Model (COM) architecture,
which is limited to the Windows platform. On the other hand,Windows Forms
controls are built for the .NET Framework, which is the key difference between
the two.The traditional COM components have to be imported to run under
the .NET Framework.ActiveX components are prepackaged COM components
working together to ease software development.Therefore we need to import
ActiveX components to run under the .NET environment.

You might be wondering whether we can run Windows Forms controls on
other platforms.Windows Forms controls are tightly integrated to use the Win 32
APIs.Therefore, it will not be very efficient on other platforms. But it does
extend the reach to other platforms compared to ActiveX components.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 552

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 553

Most of the prepackaged ActiveX controls were written in Visual Basic (VB).
Inheritance is a very important concept in OO programming. Unfortunately
Microsoft did not implement the Inheritance concept well in VB. Having mul-
tiple interfaces basically confused the developers and added more complexity to
the code. Microsoft has taken measures to rectify this problem with VB.NET.
Windows Forms controls that are written in VB.NET, C#, or any other CLR-
compliant language will truly inherit from the basic classes in the Windows
Forms controls. Specifically the controls can directly inherit from
System.Windows.Forms.Control class and extend their functionality.Therefore
developers can use Inheritance to build complex software components under
Windows Forms controls.This feature wasn’t available for VB ActiveX controls.

These are some of the critical differences between ActiveX controls and
Windows Forms controls.There are many applications that are built on ActiveX
controls. Especially most of Microsoft’s Web technologies were dominated with
ActiveX controls in the past few years.You can still make use of these controls by
importing them to .NET.There are two ways of doing this:

■ Use ActiveX Control Importer utility (AxImp.exe)

■ Use Visual Studio .NET

Using the ActiveX Control
Importer Utility (AxImp.exe)
The Microsoft .NET Framework comes with a set of command line utilities; one
of them is the AxImp.exe utility.You can use this utility to create a wrapper class for
any ActiveX control that you can use under the Windows Forms environment.The
wrapper control is derived from the class called System.Windows.Forms.AxHost.This
wrapper class will act as a proxy between the ActiveX control and .Net runtime.
The following is the syntax for using the utility:

Aximp.exe [options]{file.dll | file.ocx}

The filename should be a valid ActiveX DLL or .OCX file.Table 14.4 lists
some of the important options available for this utility.

Table 14.4 Options Available for the AxImp.exe Utility

Options Description

/help Displays command syntax and options for the tool.

www.syngress.com

Continued

223_C#Java_14.qxd 5/21/02 2:22 PM Page 553

554 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

/out:filename Specifies the name of the assembly to create.
/source Generates C# source code for the Windows Forms wrapper.
/? Displays command syntax and options for the tool.

Let’s look at an example on how to use this tool.We are going to pick an
existing ActiveX control and create a wrapper class for it. Let’s utilize the
Microsoft Date and Time Picker control, which is one that is regularly used.The
filename for the control is mscomct2.ocx, and it should be located in the system32
subdirectory under your main Windows directory. So for example, if you are run-
ning Windows 2000, the file will be located at C:\winnt\system32\mscomct2.ocx. By
creating a wrapper for this control we’ll be able to use it in our C# application.
To create the wrapper:

1. Bring up a .NET command prompt window. Use MS Visual Studio.
NET | Visual Studio .NET Tools | .NET Command Prompt
from the Programs menu. Otherwise you need to manually set the
PATH variables for the AxImp.exe utility.

2. Navigate to the c:\winnt\system32\ directory.

3. Type the following command:

AxImp.exe mscomct2.ocx /out:ActiveX_Date_Time_Wrapper.dll /source

This will create an ActiveX Importer wrapper for the mscomct2.ocx control
called ActiveX_Date_Time_Wrapper.dll.The AxImp.exe utility will result in multiple
DLL in most cases. Remember that an ActiveX control is a combination of
COM DLLs that work in harmony for a common goal.Therefore the runtime
will create a wrapper for each COM DLL. Figure 14.13 shows the output for
using the AxImp.exe utility.

As you can see this will generate a set of assemblies.The .NET runtime will
create an implementation module called MSComCtl2.dll and a proxy class called

www.syngress.com

Figure 14.13 Executing Commands with the AxImp.exe Utility

Table 14.4 Continued

Options Description

223_C#Java_14.qxd 5/21/02 2:22 PM Page 554

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 555

ActiveX_Date_Time_Wrapper.dll.We can use the ActiveX_Date_Time_Wrapper.dll as
a vehicle to execute methods and properties on MSComCtl2.dll.The .NET run-
time will execute method calls through the ActiveX_Date_Time_Wrapper.dll.Then
this DLL will communicate with the MSComCTl2.dll to produce the desired
output.The developer interacts only with the wrapper DLL and the runtime is
responsible for invoking, marshalling, and reallocating memory for the wrapper.
The bridging concept will be much clearer if we can look into the structure of
the wrapper class. Figure 14.14 shows the properties of the ActiveX wrapper
using the ILDASM utility.

Observe that the AxImp.exe utility has prefixed Ax in front of all the inter-
faces available. It had renamed MSComCtl2 to AxMSComCtl2 and Animation to
AxAnimation. In theory the Animation method in MSComCtl2.dll will match to
the AxAnimation method of the ActiveX_Date_Time_Wrapper.dll.

Now you can use this wrapper class in your C# applications.This wrapper is
treated the same as a native .NET assembly by the .NET runtime.

Using Visual Studio .NET
to Import ActiveX Controls
The Visual Studio.NET IDE makes the conversion process seamless and hides the
complexity from the developer.This method is relatively easier than using the
AxImp.exe command line utility. Let’s use the same ActiveX control we used in
the previous scenario to highlight the effectiveness of the Visual Studio .NET
IDE. Here is a sample application to convert ActiveX controls using Visual Studio
.NET.To import the ActiveX control:

1. Open Visual Studio .NET and create a new project: File | New |
Project Menu items.

2. Select Windows Project from the New Project window.

3. Name the project Simple_ActiveX_Control.

www.syngress.com

Figure 14.14 Investigating the Properties of the ActiveX Wrapper

223_C#Java_14.qxd 5/21/02 2:22 PM Page 555

556 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

4. Select Tools from the Menu bar and then click on Customize
ToolBox. Figure 14.15 is a screen shot of the window that appears.

5. We can toggle between the COM Components and the Windows Forms
Components in the toolbox. Select the COM Components tab.

6. Select Microsoft Date and Time Picker Control, version 6.0 from
the component list.This ActiveX control will be added to the available
Windows Forms control list now.When you click on the ToolBox
menu you will see this control (short name DTPicker) added to the list,
as shown on Figure 14.16.

www.syngress.com

Figure 14.15 Creating an ActiveX Wrapper Using Visual Studio .NET

Figure 14.16 DTPicker Control in the Toolbox List

223_C#Java_14.qxd 5/21/02 2:22 PM Page 556

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 557

Now we can create a sample application using this ActiveX control.We can
simply drag and drop the control from the toolbox to our Windows Forms. Let’s
create a Windows application that will display a Date and Time Picker control
and ask the user to select a date.Then the user can enter a value for number of
days.The application will add the amount of days to the selected day and display
the new date.As an example, if I select today as the date and enter 1 as the
number of days value, the application will add one day to the current day and
return tomorrow’s date as the result.Table 14.5 is a list of controls we are embed-
ding to the form. Now create the form to look like Figure 4.17.

Table 14.5 Design Properties for ActiveX Test Application

Control Name Type Description

Lbl_Caption Label To display the top caption.
axDTPicker1 Date Time The ActiveX control to pick the date and

Picker time. We drag this control from the toolbox
(DTPicker) (DTPicker control—refer to Figure 14.17).

Lbl_Days Label Caption to enter number of days.
Txt_Days Text Box The text box to enter number of days.
Btn_Get_New_Date Button The button to initiate the call to the ActiveX

wrapper.
Lbl_Result Label The caption for the result of the new date.
Lbl_New_Date Label The label to display the result of the new

date. Alternatively you can use a text box
control.

www.syngress.com

Figure 14.17 Adding the DTPicker to a Win Form

223_C#Java_14.qxd 5/21/02 2:22 PM Page 557

558 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Now we need to write a bit of code to initiate the process with the button
click.The following code is for our button click event:

private void Btn_Get_New_Date_Click(object sender,

System.EventArgs e)

{

int day =0;

int month = 0;

int year = 0;

int interval = 0;

day = System.Convert.ToInt16(axDTPicker1.Day);

month = System.Convert.ToInt16(axDTPicker1.Month);

year = System.Convert.ToInt16(axDTPicker1.Year);

interval = System.Convert.ToInt16(Txt_Days.Text);

DateTime selectedDate = new DateTime(year,month,day);

DateTime newDate = selectedDate.AddDays(interval);

Lbl_New_Date.Text = newDate.ToLongDateString();

}

NOTE

When you convert an ActiveX control to run under the .NET Framework,
Visual Studio puts the prefix “Ax” in front of the object’s name. In our
example, the default name given to our date time control when it is
dragged and dropped to a form will be axDTPicker1.

Let’s have a look at the code. First we get the selected day, month, and year
value from the Date and Time Picker ActiveX control.As you can see it is behaving
very similarly to a native .NET assembly in Visual Studio .NET.The developer is
actually unaware of the wrappers that are created to access these ActiveX con-
trols.Then we basically create a new Date object with these values and invoke the
AddDay() method to produce the target date, which we will display to the user.
Figure 14.18 displays the output of our program.

If you check the references of the project, you will notice a reference to
AxMSComCtl2.Visual Studio seamlessly does all this work, by loading the
ActiveX component into the ToolBox. If we were using the AxImp.exe utility we

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 558

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 559

need to add a reference and declare the variable manually.Therefore Visual Studio
.NET makes our life much simpler in this way.

Working with Pointers
Under certain situations, developers need the ability to use pointers to write per-
formance critical code by manually manipulating the system memory. Pointer
support is available only in C# and Managed C++ under the .NET Framework.
Pointers by their nature are dangerous and should be handled with great care.
When pointers directly access memory location it creates an unsafe environment
under the .NET Framework.Therefore pointer code is referred to as unsafe code.
We make an unsafe environment by using pointers because we give up some of
the protection that the CLR provides by default, such as garbage collection, pro-
tection against uninitialized variables, dangling pointers, and accessing memory
beyond the bounds of an array.As most of you know, Java doesn’t support
pointers because of their unsafe nature. But pointers do serve a purpose, so let us
continue and try to understand what unsafe code is.

Unsafe Code
We should make a clear distinction between unsafe code and unmanaged code.
Unmanaged code does not run under the CLR. On the other hand, unsafe code
will run under the CLR but will not benefit from any CLR advantages. One of
those advantages is the memory management by CLR. Unsafe code will be able
to access memory locations directly using pointers.Therefore the CLR will not be
able to manage memory for unsafe code.The rest of the CLR functionalities are
still available for unsafe code. Hence, any unrelated memory errors will still raise
an exception. Unsafe code is indeed managed code with a few exceptions. C#
allows you to write unsafe code, but unmanaged code cannot be written in C#,
or for that matter, by any .NET language.

www.syngress.com

Figure 14.18 Win Form Client Program for the ActiveX Wrapper

223_C#Java_14.qxd 5/21/02 2:22 PM Page 559

560 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

As you’ve learned in Chapter 5 the CLR handles memory management.As
you know, when objects are instantiated they are allocated memory from the
heap.When the object is destroyed and all references to the memory are freed up,
the garbage collector steps in to reclaim the memory space.When the garbage
collector runs, it can move chunks of memory around in order to compress them
and free up some memory space to maximize heap storage. Since managed code
does not have direct memory access, it doesn’t get affected when the garbage col-
lector move objects around in memory. It will still retain its object references
because the CLR is in charge of the memory management.

Unfortunately, with pointers this causes an issue because pointers have direct
access to memory. Pointers contain the memory address of an object and they
always expect the object to be present at that location. If the garbage collector
moves the object from that address to another, it can cause unexpected behavior
and may even cause the program to crash.Therefore, we need a mechanism to let
the garbage collector know that we are using pointers and that it should not
move the contents of the memory block that is being accessed via pointers.

C# implements pointer functionality with the unsafe and fixed keywords.The
ability of C# to hold the contents of memory fixed is called pinning.When an
object is pinned, it is guaranteed that the object will remain in memory while
there are outstanding pointers to it.

The unsafe Keyword
The unsafe keyword signifies an unsafe context.This keyword acts as the founda-
tion to implement pointers in your code. Once a block of code is marked as
unsafe, the C# compiler will allow you to write code that will perform the fol-
lowing functions:

■ Use pointers

■ Dereference pointers

■ Use the & operator to obtain the address of the object to which you
want to point

If we do not use the unsafe keyword, the compiler will result in an error.
Therefore the compiler forces us to declare this keyword before we write any
pointer code.The unsafe keyword can be applied to any block of code within a
class.The block of code may be an entire method, a property, a single line, or any
other code block.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 560

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 561

NOTE

An unsafe keyword cannot be applied to an entire class.

For example, the following code will instruct the compiler to treat the whole
Person_In_Line data structure as unsafe:

public unsafe struct Person_In_Line

{

public int Current_Position;

public Person_In_Line* Back;

public Person_In_Line* Front;

}

We can also make the individual variables to be declared as unsafe:

public struct Person_In_Line

{

public int Current_Position;

public unsafe Person_In_Line* Back;

public unsafe Person_In_Line* Front;

}

In this case we are instructing the compiler that the Back and Front variable is
unsafe code.These variables are a pointer to a Person_In_Line structure and
pinned to a memory location.The * operator is the compiler directive to recog-
nize a pointer in a data structure.

The fixed Keyword
The fixed keyword pins an object down to a fixed memory location when the
code is being executed.This allows the garbage collector to recognize the pinned
object so it will not relocate it.

It is your responsibility to ensure that pointers created by fixed statements do
not survive beyond execution of those statements. For example, when pointers
created by fixed statements are passed to external APIs, it is your responsibility to
ensure that the APIs retain no memory of these pointers.

Using fixed objects may cause heap fragmentation because they cannot be
reallocated or deleted by the garbage collector.Therefore objects should be fixed

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 561

562 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

only when absolutely necessary and then only for the shortest amount of time
possible.The fixed keyword cannot be used on managed types. However, if the
managed type has value types, you can declare pointers to these value types.
Doing so requires the runtime to pin the entire managed object to a fixed loca-
tion in memory. Let’s try to illustrate these points in an example.

In this example, we will try to directly manupulate memory using pointers.
Our small C# program will display the text Syngress Media Ltd on the screen.We
will display each of the three strings using different methods using pointers. Lets
look at the complete code.

using System;

class Unsafe

{

static string testString = "Syngress";

unsafe static void DisplayString(char* pointerToChar)

{

for (int i = 0; pointerToChar[i] != '\0'; ++i)

{

System.Console.Write(pointerToChar[i]+" ");

}

}

unsafe static void Main()

{

char[] text = new char [3];

text[0] = 'L';

text[1] = 't';

text[2] = 'd';

fixed (char* pointer = testString) DisplayString(pointer);

fixed (char* pointer = "Media") DisplayString(pointer);

fixed (char* pointer = &text[0]) DisplayString(pointer);

}

}

Let’s look at the code closely. First we declared a class variable called testString
with the value Syngress:

static string testString = "Syngress";

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 562

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 563

Then we create a function called DisplayString that takes a pointer to a char-
acter and displays the contents till the null value is found, which is represented by
\0.As you know, a string could be described as an array of chars.Therefore this
function will navigate through the memory space and display each memory loca-
tion’s content until it finds null.

Then we have the Main() method that declares an array of characters to hold
the value Ltd. Let’s see how we can display the different strings using pointers.

fixed (char* pointer = testString) DisplayString(pointer);

This line will declare a pointer to a character, and that pointer will point at
the testString variable, which is fixed to a memory location.Then the
DisplayString function is invoked.

fixed (char* pointer = "Media") DisplayString(pointer);

This line will declare a pointer to a character and will point at the string Media:

fixed (char* pointer = &text[0]) DisplayString(pointer);

We will also declare a pointer to a character that will have the memory
address of the text array.The memory address of the array is obtained by using the
& operator.

It is important to note that in all instances of the pointer, the variable is fixed
or pinned to a memory location by the .NET runtime.This is done by using the
fixed keyword. Let’s name this file unsafe.cs and compile it using the command
line C# compiler (csc.exe).To compile this you will need to add the /unsafe com-
piler directive because it contains unsafe code. It should look something like this:

C:\csc Unsafe.cs /unsafe

The output of the program follows.

S y n g r e s s M e d i a L t d

The last thing to remember about pointers is that if a type is passed by refer-
ence to a method, then that object will have to be pinned before its address can
be assigned to a pointer type.This makes sense because we do not want the
garbage collector to delete any references to the address.Trying to access an
object passed by reference outside a fixed block will also raise a compiler error.A
single fixed block can pin objects only of a certain type. If you need to pin
objects of different types, you will have to use nested fixed blocks.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 563

564 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Summary
This chapter concentrates on accessing legacy and pre-.NET code.We have to be
realistic and acknowledge that no organization is going to dump all their systems
and embrace pure .NET architecture.Therefore it is essential that the .NET
Framework consists of good interoperability tools.The .NET Framework uses
command line utilities and the Visual Studio .NET IDE to implement these
tools.Visual Studio .NET provides a user-friendly and seamless integration envi-
ronment for the developers. It hides most of the underlying complexities of the
framework.

Previous Microsoft software architecture such as COM and ActiveX compo-
nents are widely used around the world.Visual Studio .NET or command line
tools are used to import these components into .NET space.This is achieved by
using wrappers around COM components.We can use the TblImp.exe command
line utility to create a wrapper around a COM component.An ActiveX control
wrapper is created using the AxImp.exe command line utility.These COM and
ActiveX wrappers can be generated alternatively by adding a reference to a Visual
Studio .NET project.These wrappers are necessary to supply the metadata to the
.NET runtime.This metadata is the key difference between these wrapper assem-
blies and the COM or ActiveX components.We can build wrappers at compile
time (early binding) or at runtime (late binding).

The .NET Framework also allows runtime communication with other DLLs
using the Platform Invocation Services (PInvoke).This will let the developer
access the Win32 DLLs at runtime.This is implemented by using the DllImport
attribute in C#. On top of all these features, pointer manipulation is also available
in C# to accommodate mission critical scenarios. It is implemented by using
unsafe and fixed keywords.

Solutions Fast Track

Working with Unmanaged Code

Unmanaged code is defined as code that runs outside of the CLR.This
includes COM components,ActiveX components, and Win32 DLL calls.

Unmanaged code could be accessed either through a wrapper class or
through Platform Invocation Service at runtime.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 564

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 565

Working with the Platform Invocation Utility

PInvoke is used to invoke functions in Win32 DLLs.

You need to know the name of the DLL you want to access (e.g.,
user32.dll).

You need the method name of the DLL function (MessageBox()).

Attach the DllImport attribute before the function name.

Add the EntryPoint parameter of the DllImport attribute to change the
function name.

You can also use the MarshalAs attribute to alter default marshalling
of data.

Working with COM Components

COM components can be run under the .NET Framework.

There are utilities that will create a Runtime Callable Wrapper (RCW)
class around the COM component.This wrapper class will act as a proxy
to the CLR.

We can use either Type Library Importer (TlbImp.exe) or Visual Studio
.NET to build wrappers around COM objects.

There is a performance hit with using these wrappers.

Working with ActiveX Controls

ActiveX components can also be run under the .NET Framework.

Like COM, we need to create wrapper classes to communicate with the
CLR.These wrapper classes can be created by the AxImp.exe utility or
Visual Studio .NET.

Most ActiveX components will result in multiple assemblies after
conversion.

You can add these components to the Visual Studio toolbox and drag
and drop them to your Windows Forms.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 565

566 Chapter 14 • Working with ActiveX, COM, and Unmanaged Code

Working with Pointers

Pointer syntax is available in C# to access memory directly.This is
implemented using the unsafe and fixed keywords.

The unsafe keyword instructs CLR to suspend memory management on
the specified code block.

The unsafe keyword can be applied to any block of code within a class.
The block of code may be an entire method, a property, a single line, or
any other code block.

The fixed keyword pins an object down to a fixed memory location.

If a type is passed by reference to a method, then that object will have to
be pinned before its address can be assigned to a pointer type.

Q: If a COM component has 100 references to it how many Runtime Callable
Wrappers does the runtime need to track the COM Component?

A: Just one.There is one RCW for each COM component regardless of the ref-
erences to the object.

Q: What is the difference between PInvoke and COM wrappers?

A: Platform Invocation Service (PInvoke) is used at runtime to communicate
with Win32 DLL. COM wrappers are proxy objects that could be early
bound to C# code.

Q: How does the garbage collector treat a managed component, which has an
unsafe pointer as a class?

A: From the garbage collector’s point of view the whole managed object is
treated differently for memory management.Therefore memory will not be

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_14.qxd 5/21/02 2:22 PM Page 566

Working with ActiveX, COM, and Unmanaged Code • Chapter 14 567

reallocated for this managed object.The whole object is pinned to the
memory location and not just the pointer class variable.

Q: What is the difference between the treatment for managed code and unsafe
code by the .NET runtime?

A: Memory management.All the other CLR utilities (such as Type checking) are
available for unsafe code.

www.syngress.com

223_C#Java_14.qxd 5/21/02 2:22 PM Page 567

223_C#Java_14.qxd 5/21/02 2:22 PM Page 568

Microsoft Says
JUMP—Java User
Migration Path

Solutions in this chapter:

■ What Is J#?

■ Using Visual J#

■ Creating a Simple Visual J# Application

Chapter 15

569

Summary

Solutions Fast Track

Frequently Asked Questions

223_C#Java_15.qxd 5/21/02 5:37 PM Page 569

570 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

Introduction
Now that you have learned the C# language exhaustively, you are equipped with
enough skills to develop full-fledged Windows or Web applications.With your
new knowledge about the features and the capabilities of the C# language, you
are in a position to assess its suitability against that of the Java language as a plat-
form for developing applications, and to choose between the two.

One thing for sure is that the .NET platform is very much here, and here to
stay.As a developer, it is a platform you want to get familiar with and have as
part of your repertoire.With the aid of this book and the leverage provided by
your Java experience, you have learned C# quite easily and quite thoroughly.
However, if you still prefer sticking to the Java syntax but want to use the .NET
platform, Microsoft has the solution you need.

The .NET platform originally was designed with the primary objective of
enabling as many developers using different languages as possible to avail the
.NET Framework.To encourage Java developers to use the .NET platform,
Microsoft formulated a scheme called JUMP (Java User Migration Path) to
.NET.As the name suggests, JUMP to .NET offers developers a number of paths
for migrating to the .NET platform.These include tools for converting Visual
J++ applications for .NET, a tool for migrating existing code entirely to the C#
language, and a new language, J# (pronounced J-Sharp), that uses the Java lan-
guage syntax for creating new .NET applications.As the product documentation
states,“Microsoft Visual J# .NET is a development tool that developers who are
familiar with the Java-language syntax can use to build applications and services
on the .NET Framework. It integrates the Java language syntax into the Visual
Studio .NET shell. Microsoft Visual J# .NET also supports the functionality
found in Visual J++ 6.0 including Microsoft extensions. However, Microsoft
Visual J# .NET is not a tool for developing applications intended to be run on a
Java Virtual Machine.Applications and services built with Visual J# .NET will
run only in the .NET Framework.Visual J# .NET has been independently
developed by Microsoft. It is not endorsed or approved by Sun Microsystems,
Inc.”Thus, J# uses only the Java language syntax and not the Java Foundation
classes. Besides, as mentioned, applications created with J# will not run on any
Java Virtual Machine (JVM).

At the time of this writing, Microsoft has just released the Java Conversion
Language Assistant (JCLA), which is part of their JUMP to .NET strategy.
According to the documentations, the purpose of the JCLA is to help move Visual
J++ 6.0 projects to C# and the .NET Framework.The JCLA tool will convert

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 570

www.syngress.com

Java-language code to the C# syntax, and Java code that accesses most JDK 1.1.4
level classes to use the .NET framework directly.The tool is currently available for
download and Microsoft is planning to include it in the future versions of Visual
Studio.NET.This tool is beyond the scope of this book and will not be discussed.
Latest information in this regard is available from the MSDN Web site.

What Is J#?
J# is a complete implementation of the Java language specification. J# allows the
majority of existing Java applications to run after recompilation or after binary
conversion. However, J# code is different from Java code and does not use the
Java Foundation classes. J# code is not compiled into a byte code as is Java code.
Therefore, J# cannot be compiled using a JDK or any other development envi-
ronment for Java, nor can it be run by a JVM.This means that a Java .class file
cannot be used within a J# project and vice versa. However, Microsoft’s byte
code converter can be used to convert Java .class files into Microsoft Intermediate
Language (MSIL).The byte code converter also allows batch conversion of a col-
lection of Java class files and hence is quite fast.This converted code is compatible
with the .NET platform and can be called from within a J# application.
Nevertheless, this byte code conversion needs to be done during development
process, not at runtime.

J# was developed by Microsoft to encourage Java developers to migrate to
the .NET platform. Naturally, with J# code being compiled into MSIL, J# is
designed to work on the .NET platform only.

J# is quite compatible with Visual J++ and implements its extensions to Java.
This includes Component Object Model (COM) support and the J/Direct native
code interface.This allows for migration of VJ++ projects to J#. However, J#
functionality is restricted to the JDK1.1.4 level and as per indications from
Microsoft, later versions of the JDK will not be emulated.This is primarily
because Microsoft feels that JDK compatibility is irrelevant to them.The .NET
framework makes up for the lack of compatibility of J# with the JDK libraries.

The J# interface blends with the .NET framework, although not as smoothly
as C# does. Specifically speaking, J# code cannot define new .NET properties,
events, value types, or delegates. If these are already defined in code written in
another language, J# can make use of them. Still, the inability of J# to define
these limits its scope and interoperability as compared to other .NET languages.
Thus, J# is meant primarily for those Java developers who seek to move to the
.NET platform but need to preserve or enhance their Java language projects.

Microsoft Says JUMP—Java User Migration Path • Chapter 15 571

223_C#Java_15.qxd 5/21/02 5:37 PM Page 571

572 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

Such developers can use their existing skills in Java to write J# code to move on
to the .NET platform before making the full leap to C#.

Visual J# is the development tool Microsoft offers for developing J# applica-
tions.Visual J# not only provides the transition to the .NET platform, but also
enables the use of Java syntax (as explained earlier, J# follows the Java syntax, but
is not Java by any means, and hence, use of the term “Java syntax”) to create
XML (extensible markup language)-based Web services.

Visual J# technology enables developers and users to make Java code
operable on the .NET platform. It also allows existing applications developed
with Visual J++ to be modified to execute on the .NET framework.This means
that such applications can now interoperate with other .NET-based languages and
applications.

Features of Visual J#
Visual J# has the following features:

■ Visual J# applications and services will run only on the .NET platform.
They are not understood by any JVM and hence will not compile or
run on any JVM.Visual J# is neither endorsed, nor approved by Sun
Microsystems. It is an independent endeavor on the part of Microsoft
that targets Java developers.

■ Visual J# tools support complete integration with the integrated devel-
opment environment (IDE) of Visual Studio.NET.A Visual J# developer
can easily access all the features of the IDE.

■ Visual J# has been designed to target the .NET framework.Thus, it pro-
vides full integration with the .NET functionality available as XML-
based Web services,ASP.NET,ADO.NET etc. It also allows integration
with other .NET languages.

■ Visual J# includes tools to convert (and automatically upgrade, if
required) existing Visual J++ 6.0 projects to the new Visual Studio .NET
format. It provides existing Visual J++ developers with tools to migrate
to Visual J# and develop .NET applications and components.

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 572

Microsoft Says JUMP—Java User Migration Path • Chapter 15 573

Using Visual J#
To reiterate, you can install and hence, use,Visual J# only on the .NET platform.
To install Visual J#, simply download and run the setup file available from the
MSDN Web site http://msdn.microsoft.com/visualj/jsharp/beta.asp.

As of this writing,Visual J# is available only as a Beta 1.0 version. However,
Microsoft is slated to release the Beta 2 version shortly. Note that the Beta 2 ver-
sion would require Visual Studio 7.0 to be installed on your computer.

Once you have installed the Visual J# application on your system, use the
Start | Programs | Microsoft Visual Studio.NET | Visual J#.NET path
to run Visual J#.NET.To start a J# application, follow these steps:

1. On the Visual J#.NET application window, choose File | New
Project as shown in Figure 15.1.This will open a new project window
as shown in Figure 15.2.

2. Choose Visual J# Projects from the Project Types option as shown
in Figure 15.2.The upper right frame of the New Project window
shows the templates that can be chosen for the project. For example,
your project could be a windows application or an ASP.NET Web appli-
cation. Choose the appropriate template. In Figure 15.2, we have chosen

www.syngress.com

Figure 15.1 The Visual J#.NET Application Window

223_C#Java_15.qxd 5/21/02 5:37 PM Page 573

574 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

the Windows Application (This is the template on which the code in
Figure 15.5, to be discussed in the next section, is built).

3. In the Name option, enter the name you propose for your project.

4. In the Path option, provide the physical path of the directory/folder
where you wish to save your J# project.

5. Click the OK button.You will now be presented with a Visual J#
project window as shown in Figure 15.3.

When you open a new project, by default, it starts with a Form interface that
can, in turn, be used to create a user interface consisting of buttons, text field, and
so forth. If you need to write your code, choose the View | Code option from
the Visual J# project window, and you will be presented a skeleton code (see
Figure 15.4) that is built automatically by the Microsoft Visual J# development
environment when you start a new project.

www.syngress.com

Figure 15.2 Starting a New Visual J# Project

223_C#Java_15.qxd 5/21/02 5:37 PM Page 574

Microsoft Says JUMP—Java User Migration Path • Chapter 15 575

Figure 15.4 The Skeleton Code for a New Visual J# Project

import System.Drawing.*;

import System.Collections.*;

import System.ComponentModel.*;

import System.Windows.Forms.*;

import System.Data.*;

//Summary description for Form1

public class Form1 extends System.Windows.Forms.Form

{

//Required designer variable

private System.ComponentModel.Container components = null;

public Form1()

{

//

// Required for Windows Form Designer support

www.syngress.com

Figure 15.3 The Visual J# Project Window

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 575

576 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

//

InitializeComponent();

//

// TODO: Add any constructor code after

//InitializeComponent call.

}

// Clean up any resources being used.

protected void Dispose(boolean disposing)

{

if (disposing)

{

if (components != null)

{

components.Dispose();

}

}

super.Dispose(disposing);

}

//Region Windows Form Designer generated code

//Required method for Designer support - do not modify

//the contents of this method with the code editor.

private void InitializeComponent()

{

// Form1

this.set_AutoScaleBaseSize(new

System.Drawing.Size(((int)5), ((int)13)));

this.set_ClientSize(new System.Drawing.Size(((int)292),

((int)273)));

this.set_Name("Form1");

this.set_Text("Form1");

}

//Endregion

www.syngress.com

Figure 15.4 Continued

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 576

Microsoft Says JUMP—Java User Migration Path • Chapter 15 577

// The main entry point for the application

/** @attribute System.STAThreadAttribute() */

public static void main(String[] args)

{

Application.Run(new Form1());

}

}

The code in Figure 15.4 begins with certain default import statements. Java
programmers should note that the import statements in a Visual J# project do
not import packages from the Java class library. Instead, they specify namespaces
that are part of the .NET Framework. For example, Drawing, Collections,
ComponentModel, Forms, and Data in Figure 15.4 are all namespaces. Each one of
these namespaces contains classes that provide certain basic functionality to a
Visual J# project, just as the imported packages do in a Java application.These
namespaces are the same ones used by C# (and in fact all languages that support
.NET), and the functionality provided by these five namespaces is as follows:

■ The System.Drawing namespace provides classes that provide graphics
functionality, namely drawing bitmaps, setting fonts, and so on.

■ The System.Collections namespace provides classes that define various
collections of objects, such as arrays, hash tables, and so on.

■ The System.ComponentModel namespace provides classes that implement
runtime and design-time behavior of components.

■ The System.Windows.Forms namespace provides classes for creating win-
dows-based applications that can fully utilize the GUI features provided
by the Windows operating system.

■ The System.Data namespace provides ADO.NET support to manage data
from data sources.

Note that the code body of Figure 15.4 declares a class, Form1 (this is the
default name—you may specify any name that is descriptive of your project), and
its constructor (if you change the class name, remember to rename the con-
structor).The code starts at the main() method similar to Java.The points of dif-
ference will be clarified in the next section, where we will build a sample Visual

www.syngress.com

Figure 15.4 Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 577

578 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

J# application as shown in Figure 15.5, and compare the code with its relevant
counterpart code in Java.

Creating a Simple Visual J# Application
We will now build a very simple Visual J# application that is meant solely to give
you an idea of what a Visual J# application looks like.You are encouraged to
change and manipulate its graphical user interface and methods to build code
that is of some practical use to you, or to improve upon the code.

The Visual J# application we’re going to build is an image previewer program
that displays Bitmap images from a specified directory. Figure 15.5 shows the
graphical user interface (GUI) for the application.

The application’s GUI contains a text box where you can specify an image
directory on your local computer. Each time the Next button is pressed, subse-
quent images from the directory (in the order that they are present in the direc-
tory) are shown in the picture box.The Previous button shows the previous
image in the directory. If you intend to test the code as it is, ensure that the
directory you specify contains no files of a format other than .bmp.This code is
not designed to handle any data other than Bitmap images. If a file format other
than .bmp is encountered, the code throws an exception.The code for the Visual
J# application is listed in Figure 15.6. In this code listing, the code you want to
focus on is shown in bold typeface.The rest of the code is automatically gener-
ated by Microsoft Visual J# development environment when various elements
(buttons, text boxes, etc.) are placed on the form.

www.syngress.com

Figure 15.5 The GUI for the Visual J# Application

223_C#Java_15.qxd 5/21/02 5:37 PM Page 578

Microsoft Says JUMP—Java User Migration Path • Chapter 15 579

Figure 15.6 The Visual J# Code

package Chapter15;

import System.Collections.*;

import System.ComponentModel.*;

import System.Windows.Forms.*;

import System.Data.*;

import System.IO.*;

// Summary description for Form1

public class Form1 extends System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnPrevious;

private System.Windows.Forms.Button btnNext;

private System.Windows.Forms.PictureBox ptrBox;

private System.Windows.Forms.TextBox txtImageDirectory;

private System.Windows.Forms.Label Lable;

// Required designer variable

private System.ComponentModel.Container components = null;

private int ImageFile = -1;

public Form1()

{

//

// Required for Windows Form Designer support

//

InitializeComponent();

//

// TODO: Add any constructor code after

//InitializeComponent call

//

}

// Clean up any resources being used.

protected void Dispose(boolean disposing)

www.syngress.com

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 579

580 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

{

if (disposing)

{

if (components != null)

{

components.Dispose();

}

}

super.Dispose(disposing);

}

#region Windows Form Designer generated code

// Required method for Designer support - do not modify

// the contents of this method with the code editor.

private void InitializeComponent()

{

this.btnPrevious = new System.Windows.Forms.Button();

this.btnNext = new System.Windows.Forms.Button();

this.ptrBox = new System.Windows.Forms.PictureBox();

this.txtImageDirectory = new System.Windows.Forms.TextBox();

this.Lable = new System.Windows.Forms.Label();

this.SuspendLayout();

//

// btnPrevious

//

this.btnPrevious.set_Location(new

System.Drawing.Point(((int)200), ((int)8)));

this.btnPrevious.set_Name("btnPrevious");

this.btnPrevious.set_Size(new

System.Drawing.Size(((int)112), ((int)24)));

this.btnPrevious.set_TabIndex(((int)0));

this.btnPrevious.set_Text("Previous");

this.btnPrevious.add_Click(new

System.EventHandler(this.btnPrevious_Click));

//

// btnNext

www.syngress.com

Figure 15.6 Continued

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 580

Microsoft Says JUMP—Java User Migration Path • Chapter 15 581

//

this.btnNext.set_Location(new

System.Drawing.Point(((int)24), ((int)8)));

this.btnNext.set_Name("btnNext");

this.btnNext.set_Size(new System.Drawing.Size(((int)112),

((int)24)));

this.btnNext.set_TabIndex(((int)1));

this.btnNext.set_Text("Next");

this.btnNext.add_Click(new

System.EventHandler(this.btnNext_Click));

//

// ptrBox

//

this.ptrBox.set_BorderStyle(System.Windows.Forms

.BorderStyle.FixedSingle);

this.ptrBox.set_Location(new

System.Drawing.Point(((int)8), ((int)104)));

this.ptrBox.set_Name("ptrBox");

this.ptrBox.set_Size(new System.Drawing.Size(((int)248),

((int)192)));

this.ptrBox.set_SizeMode(System.Windows.Forms

.PictureBoxSizeMode.AutoSize);

this.ptrBox.set_TabIndex(((int)2));

this.ptrBox.set_TabStop(false);

//

// txtImageDirectory

//

this.txtImageDirectory.set_Location(new

System.Drawing.Point(((int)8), ((int)72)));

this.txtImageDirectory.set_Name("txtImageDirectory");

this.txtImageDirectory.set_Size(new

System.Drawing.Size(((int)344), ((int)20)));

this.txtImageDirectory.set_TabIndex(((int)3));

this.txtImageDirectory.set_Text("");

//

www.syngress.com

Figure 15.6 Continued

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 581

582 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

// Lable

//

this.Lable.set_Location(new

System.Drawing.Point(((int)8), ((int)48)));

this.Lable.set_Name("Lable");

this.Lable.set_Size(new System.Drawing.Size(((int)104), ((int)16)));

this.Lable.set_TabIndex(((int)4));

this.Lable.set_Text("Image Directory :");

//

// Form1

//

this.set_AutoScaleBaseSize(new

System.Drawing.Size(((int)5), ((int)13)));

this.set_ClientSize(new System.Drawing.Size(((int)360), ((int)309)));

this.get_Controls().AddRange(new

System.Windows.Forms.Control[] {this.Lable,

this.txtImageDirectory,this.ptrBox,this.btnNext,

this.btnPrevious});

this.set_Name("Form1");

this.set_Text("Chapter 15");

this.ResumeLayout(false);

}

#endregion

// The main entry point for the application

/** @attribute System.STAThreadAttribute() */

public static void main(String[] args)

{

Application.Run(new Form1());

}

private void btnNext_Click (System.Object sender, System.EventArgs e)

{

if(txtImageDirectory.get_Text().get_Length()!= 0)

www.syngress.com

Figure 15.6 Continued

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 582

Microsoft Says JUMP—Java User Migration Path • Chapter 15 583

{

try

{

if(Directory.Exists(txtImageDirectory.get_Text()))

{

System.String [] files = Directory.GetFiles(txtImageDirectory.

get_Text());

Bitmap image = new Bitmap(files[++ImageFile]);

ptrBox.set_Image(image);

}

else

MessageBox.Show("Directory doesn't exist.","Image Viewer");

}

catch(Exception ex)

{

MessageBox.Show("No more images in the Directory.","Image Viewer");

--ImageFile;

return;

}

}

else

MessageBox.Show("Please specify the image directory.","Image Viewer");

}

private void btnPrevious_Click (System.Object sender,

System.EventArgs e)

{

if(txtImageDirectory.get_Text().get_Length()!= 0)

{

try

{

if(Directory.Exists(txtImageDirectory.get_Text()))

{

System.String [] files = Directory.GetFiles(txtImageDirectory.

get_Text());

www.syngress.com

Figure 15.6 Continued

Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 583

584 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

Bitmap image = new Bitmap(files[--ImageFile]);

ptrBox.set_Image(image);

}

else

MessageBox.Show("Directory doesn't exist.","Image Viewer");

}

catch(Exception ex)

{

MessageBox.Show("No more images in the Directory.","Image Viewer");

ImageFile = -1;

return;

}

}

else

MessageBox.Show("Please specify the image directory.","Image Viewer");

}

}

The code listing of Figure 15.6 contains a new import statement, apart from
the five import statements whose namespaces have already been discussed (see
explanations for the skeleton code of Figure 15.4).This new import statement is
as follows:

import System.IO.*;

The System.IO namespace, discussed in Chapter 11, enables reading and
writing of data from data streams or files. Here, this namespace is required to read
the image data from the image files. Let’s now dissect the J# code and compare it
to its Java counterpart.

The Visual J# application declares a class, Form1, that extends the Form class
in the System.Windows.Forms namespace. It then declares two buttons, a picture
box, a text box, and a label to be used in creating the application’s GUI.The con-
structor of the class calls the InitiallizeComponent() method that instantiates the
GUI elements and sets their size, location, and label. Note that the code gener-
ated for creating the GUI elements and setting their properties is quite similar to
Java in syntax but differs in the classes being used. For example, the Previous

www.syngress.com

Figure 15.6 Continued

223_C#Java_15.qxd 5/21/02 5:37 PM Page 584

Microsoft Says JUMP—Java User Migration Path • Chapter 15 585

button is created using the System.Windows.Forms.Button() class and its label is set
as given in the following code snippet:

private void InitializeComponent()

{

this.btnPrevious = new System.Windows.Forms.Button();

this.btnPrevious.set_Text("Previous");

...

}

For comparison, in Java you would use the JButton() class from the javax.swing
package to create a button as well as to set its label, in a single code line as follows:

Java
JButton btnPrevious = new JButton("Previous");

The InitiallizeComponent() method also adds event handlers to the two
buttons and sets the controls for various GUI elements within the context of
the current form. Note that the event handling mechanism in J# is different
than in Java. For example, to recognize a click event on the Previous button, the
btnPrevious_Click() method is passed as a parameter to the System.EventHandler()
class as shown in the following code line:

J#
this.btnPrevious.add_Click(new

System.EventHandler(this.btnPrevious_Click));

The btnPrevious_Click() method defines actions to be taken in the event of the
Previous button being clicked. In Java, you would use the ActionListener interface
to add an action listener to the Previous button as given in the following code
line:

Java
BtnPrevious.addActionListener(this);

Also, the J# application defines separate methods to handle the events gener-
ated upon clicking different buttons. For example, our J# application contains
two event handling methods, the btnNext_Click() and the btnPrevious_Click() as
shown by the following code snippet:

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 585

586 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

J#
private void btnNext_Click (System.Object sender,

System.EventArgs e)

private void btnPrevious_Click (System.Object sender,

System.EventArgs e)

However, in Java you can achieve the same by defining a single action
Performed() method and checking the source of the event as shown by the fol-
lowing code snippet:

Java
public void actionPerformed(ActionEvent ae)

{

if (ae.getSource() == btnPrevious)

{

// Actions to be taken if the Previous button is clicked

}

if (ae.getSource() == btnNext)

{

// Actions to be taken if the Next button is clicked

}

}

The J# application uses the PictureBox control to display the picture, using its
set_Image() method.The PictureBox element is created in the InitiallizeComponents()
method, using the System.Windows.Forms.PictureBox() class as shown in the fol-
lowing code line:

this.ptrBox = new System.Windows.Forms.PictureBox();

The image is set within the btnPrevious_Click() and btnNext_Click() methods
using the following code line:

ptrBox.set_Image(image);

Java does not have a picture box element; instead, you can use the JLabel class
from the javax.swing package to display an image.This will require passing an

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 586

Microsoft Says JUMP—Java User Migration Path • Chapter 15 587

object of type ImageIcon to the setIcon() method of the JLabel class.Assuming that
the physical paths for the images in the specified directory are stored in the files[]
array and ImageFile contains the index of the current image, the following Java
code lines will serve the purpose:

Java
JLabel imageLabel;

ImageIcon img;

imageLabel = new JLabel();

img = new ImageIcon(files[++ImageFile]);

imageLabel.setIcon(img);

The program execution for the J# application begins at the main() method
(just as it does in Java) where the constructor function Form1() is called.The
Dispose() method disposes the application; that is, it takes its components off the
screen.This method is called when the project is closed. Now let’s look at what
the method btnNext_Click() does. First, the btnNext_Click() method checks
whether or not a directory is specified in the text box named txtImageDirectory,
and whether the specified directory exists. If a directory has not been specified, a
message box pops up displaying the message “Please specify the image directory.”
If the specified directory does not exist, the message displayed in the message box
is “Directory doesn’t exist.”These two message box codes are enclosed in the else
clause of an if/else statement. If the last image in the directory has been displayed,
then clicking the Next button will display a message box saying “No more
images in the Directory.”This message box code is specified within the catch
block of the try-catch statement.The following code listing displays the if/else and
try-catch statements that perform the checks and display the respective message
boxes:

if(txtImageDirectory.get_Text().get_Length()!= 0)

{

try

{

if(Directory.Exists(txtImageDirectory.get_Text()))

{

// Code to obtain image files

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 587

588 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

}

else

MessageBox.Show("Directory doesn't exist.","Image

Viewer");

}

catch(Exception ex)

{

MessageBox.Show("No more images in the

Directory.","Image Viewer");

}

}

else

MessageBox.Show("Please specify the image

directory.","Image Viewer");

}

If the specified directory exists, the names of the files in that directory are
stored in the array named files[]. The image data is stored using the Bitmap vari-
able (image) that is derived from the Bitmap class as given in the following code:

if(Directory.Exists(txtImageDirectory.get_Text()))

{

System.String [] files = Directory.GetFiles(txtImageDirectory.

get_Text());

Bitmap image = new Bitmap(files[++ImageFile]);

ptrBox.set_Image(image);

}

The variable, ImageFile serves as a counter that carries the index of the cur-
rent image in the files[] array. Quoting from what was said at the beginning of the
application, this Visual J# application is designed to handle Bitmap data only. If
the specified directory contains a file other than a Bitmap image, an exception
will be thrown.

The method btnPrevious_Click() is the same as btnNext_Click() except that it
uses the decremented value of the ImageFile variable to obtain the previous image
in the directory.

Let’s now look at the process of saving our J# project, compiling it, and run-
ning it.When you save the project, it is saved with the extension .jshproj.The

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 588

Microsoft Says JUMP—Java User Migration Path • Chapter 15 589

source code files are saved with the extension .jsl in the same folder as the .jshproj
file.To run this Visual J# application, perform the following steps:

1. Use the Build menu on your Visual J# application window and choose
the Build Solution option as shown in Figure 15.7.This will compile
your Visual J# project and generate a compilation report at the bottom
right frame of the window. Errors, if any, will be listed. If the compila-
tion is successful, an .exe file of your project will be created at the loca-
tion <yourProjectFolder>\bin\debug. Here, yourProjectFolder indicates the
directory/Folder where your Visual J# Project file is saved.

2. Double-click on the .exe file to run your Visual J# application.When
you run this Visual J# application, it displays two buttons, a text box, and
a picture box as shown in Figure 15.8.

3. Put the physical path of your image-directory in the text box and click
the Next button.You will be presented with the first image in your
directory as shown in Figure 15.9.

www.syngress.com

Figure 15.7 Building the .exe File for the Visual J# Application

223_C#Java_15.qxd 5/21/02 5:37 PM Page 589

590 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

Note that the code syntax for the Visual J# project (see the code listing of
Figure 15.6) is just as it would be for a Java program (declares a class, defines its
constructor, defines the main() method, etc), but the similarity ends right here.An
experienced Java programmer will readily notice that none of the Java packages
are being used. Instead, the base .NET classes are being used.There are other
points of difference, too.The major differences are the following:

■ The first and most important difference is that you are required to save
your Java code file with the class name itself.The filename has to be
Form1.java for the code to compile, whereas, in the case of Visual J#
you may save your project with any name you like.

www.syngress.com

Figure 15.8 The GUI for the Visual J# Application

Figure 15.9 Program Output When a Button Is Clicked

223_C#Java_15.qxd 5/21/02 5:37 PM Page 590

Microsoft Says JUMP—Java User Migration Path • Chapter 15 591

■ Java classes extend the Frame (or JFrame if you’re using Swing) class from
the Java class library to present their GUIs, whereas the Visual J# class
extends the Form class in the System.Windows.Forms namespace.

■ In Java, a call to the class constructor using the new keyword automati-
cally will instantiate the class (new Form1()). On the other hand, the
Visual J# class passes this instantiation code to the Run() method of the
Application class that starts an application in the current thread.This is
similar to how you would start a C# windows application.

■ A Java code explicitly states that the components are shown, using the
show() method. However, in case of a Visual J# application, a call to the
Run() method of the Application class in itself includes the option to
show the form and its components by default.

■ The Java class implements the ActionListener interface to handle button-
click events, whereas in the Visual J# application these events are han-
dled through controls provided within the System.Windows.Forms.Form
class itself.

■ Java defines a single method actionPerformed() that takes an action event as
a parameter.The source of this action event is determined using the
getSource() method, which identifies every button clicked to generate the
corresponding output. On the other hand, the Visual J# project defines
separate methods for each of the buttons.These methods take two param-
eters, the object that sends the event and the event itself.This event han-
dling mechanism is the similar to the C# event handling model.

As mentioned in the beginning of the chapter, a Visual J# code cannot be
run using any JVM other than the Microsoft JVM on the .NET platform. Copy
the code in Figure 15.5 to any text editor and save it with a .java extension (just
as you would save a Java program). Now try compiling the code using the javac
command at the command prompt (you need to have JDK/J2SE installed on
your system to compile a Java program).You will find that the compiler generates
multiple errors (I got 20 of them when I tried to compile the code of Figure
15.5 using JDK 1.3).This is because the J# code in Figure 15.5 is not a valid Java
program. Its syntax resembles the syntax of Java, but the basic classes are not valid
classes from the Java class library. Hence, the classes and their respective method
properties are not recognized or supported by Java’s development or runtime
environment.

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 591

592 Chapter 15 • Microsoft Says JUMP—Java User Migration Path

Summary
In this chapter, you were introduced to the concept of J#.You learned how
Microsoft’s Visual J# development environment can be used to develop J# appli-
cations.The emphasis in this chapter was on the fact that though J# is syntacti-
cally similar to Java, it is not compatible with any JVM, and will only run on the
.NET platform.To clarify this point, the sample Visual J# application of this
chapter was also built in Java and the points of differences were highlighted.The
main goal of the chapter is to present Visual J# to you, in order to help you
migrate to the .Net platform.Thus, most of the Visual J# concepts and codes in
the chapter have been presented in relation to Java concepts and codes.

Solutions Fast Track

What Is J#?

J# is a complete implementation of the Java language specification. J#
allows the majority of existing Java applications to run after
recompilation or after binary conversion.

J# is not Java. It follows Java’s syntax but none of Java’s Foundation
classes can be used in a J# project, nor can a J# project be run on any
JVM other than Microsoft’s JVM on the .NET platform.

J# code is not compiled into a byte code as happens with Java code.
Therefore, J# cannot be compiled using a JDK or any other
development environment for Java.

Using Visual J#

Install the Visual J# development environment and use it to create a
new J# project.

Visual J# allows access to all the features of the integrated development
environment of Visual Studio.NET.

Visual J# allows integration with .NET services (ASP.NET,
ADO.NET, etc.).

www.syngress.com

223_C#Java_15.qxd 5/21/02 5:37 PM Page 592

Microsoft Says JUMP—Java User Migration Path • Chapter 15 593

Creating a Simple Visual J# Application

This Visual J# application we’ve built is an image previewer program
that displays Bitmap images from a specified directory.

The program execution for our simple Visual J# application begins at
the main() method (just as it does in Java) where the constructor
function Form1() is called.

Q: How is J# similar to Java?

A: J# is syntactically similar to Java. J# is Microsoft’s implementation of the Java
language specification. Nevertheless, Sun Microsystems has not contributed to
the development of J#, nor does Sun approve or endorse J#.

Q: Can I use my Java .class file (created using JDK) in a J# project?

A: No, you cannot use a Java .class file in a J# project. However, you can use
Microsoft’s byte code converter to convert Java .class files into Microsoft
Intermediate Language (MSIL) and then use them in your J# project.

Q: Can I run my Visual J# project on any JVM?

A: No, you cannot run your Visual J# project on a JVM other than the
Microsoft runtime available on the .NET platform.

Q: How do I convert my Visual J++ applications to Visual J#.NET?

A: You can convert Visual J++ applications to Visual J#.NET by using Java
Language Conversion Assistance.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

223_C#Java_15.qxd 5/21/02 5:37 PM Page 593

223_C#Java_15.qxd 5/21/02 5:37 PM Page 594

C# Keywords and
Java Equivalents

Appendix A

595

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 595

596 Appendix A • C# Keywords and Java Equivalents

C# Java Description

abstract abstract A class modifier that specifies that the class can’t
be instantiated but only derived by another class.

as N/A An operator used to perform casts conversion
between compatible types. It casts the left
operand to the type specified by the right
operand and it returns null rather than throwing
an exception if the cast fails.

base super A keyword used to access members of a base
class from within a derived class.

bool boolean Used to declare System.Boolean variables. Boolean
variables contain either true or false as their
values.

break break Terminates the innermost loop in which it occurs.
Transfers program flow to the statement immedi-
ately following the loop.

byte N/A Used to declare System.Byte variables. A byte is an
8-bit unsigned integer value between 0 – 255.
(Note: A byte in Java is signed)

case case A keyword to define a labeled value within a
switch statement.

catch catch A catch block specifies an exception to catch. They
can only be used when coupled with a try block.

char char Used to declare a Unicode character variable of
data type System.Char. Unicode characters are 16
bit integer values capable of representing most of
the world’s languages.

checked N/A A keyword used to control overflow checking on
integral type arithmetic operations and conver-
sions.

class class A keyword used to declare a class.
const const A field or local variable modifier that specifies the

field cannot be modified. The const keyword is
reserved in Java, but is not implemented.

continue continue The continue statement transfers program flow to
the next iteration of the innermost enclosing loop.

decimal N/A A keyword used to declare a variable of the
System.Decimal data type. The decimal data type
is a 128-bit value with a precision of 28-29 signifi-
cant digits.

www.syngress.com

Continued

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 596

www.syngress.com

default default A keyword used to designate a “catch all” case in
a switch statement.

delegate N/A The delegate keyword permits you to pass a
method as a parameter in a type-safe manner.

do do The do statement executes a block of code until a
control expression evaluates to false. They are
coupled with a while statement to form the do-
while iteration loops.

double double A keyword used to declare a variable of type
System.Double. A double is a 64-bit floating-point
number.

else else A partner statement for the if keyword. The else
expression executes if the partnered if statement
evaluates to false.

enum N/A A keyword used to declare an enumeration.
event N/A A keyword used to specify an event.
explicit N/A A keyword used to declare a user-defined explicit

type conversion.
extern native A keyword used to declare that a method imple-

mentation is declared externally.
false false A keyword that evaluates to the boolean value of

false.
finally finally A code segment label used to designate code that

executes after a try block regardless if an excep-
tion has occurred.

fixed N/A Use in pointer operations to prevent the garbage
collector from moving the address of a variable in
memory.

float float Used to declare a variable of type System.Single.
System.Single contains a 32-bit floating-point
value.

for for Creates a for loop which will execute a code seg-
ment until its control expression evaluates to false.

foreach N/A Creates a foreach loop for iterating through an
Array or object collection.

goto goto Transfers program execution to the target label.
This is a reserved keyword in Java but is not
implemented.

C# Keywords and Java Equivalents • Appendix A 597

C# Java Description

Continued

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 597

598 Appendix A • C# Keywords and Java Equivalents

if if The if statement executes a block of code, if a
control expression evaluates to true.

implicit N/A A keyword used to declare a user-defined implicit
type conversion.

in N/A Used with a foreach statement to specify the
name of the collection that you are iterating
through.

int int Used to declare a variable of type System.Int32.
An int contains a 32 bit signed value.

interface interface Used to define a reference type that has abstract
members.

internal protected An access modifier used to specify that members
are only accessible from within the same
assembly.

is instanceof Used to determine if an object is an instance of an
object class.

lock synchronized Specifies that a code segment is a critical section.
long long Used to declare a variable of type System.Int64. A

long contains a 64 bit signed integer value.
namespace package Specifies a scope that contains your classes.

Permits you to organize your code.
new new Creates an instance of a class and calls its con-

structor. The keyword is overloaded and it’s also
used as a method modifier to hide inherited
methods.

null null The null keyword represents a null object. The
default value for all reference types is null.

object N/A An alias for System.Object. You can assign values
of any type to variables of object.

operator N/A Declares an operator in a class or struct. Used for
overloading operators.

out N/A This keyword on a method parameter causes the
method to refer to the same variable that was
passed into the method.

override N/A Used to override inherited methods.
params N/A This keyword on a method parameter lets the

method take a variable number of arguments.

www.syngress.com

C# Java Description

Continued

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 598

C# Keywords and Java Equivalents • Appendix A 599

private private An access modifier that restricts access to a
member to the body of the class in which they are
declared.

protected N/A An access modifier that restricts access to a
member to the class in which it is declared, or to
any class derived from it.

public public An access modifier specifying no restrictions on
access to a member.

readonly N/A A modifier specifying that a field’s value may only
be set during construction, or at declaration.

ref N/A This keyword on a method parameter causes the
method to refer to the same variable that was
passed into the method. The difference between
the ref keyword and the out keyword is that the
argument specified by the ref keyword must be
initialized prior to using it.

return return This keyword terminates the function in which it is
used and returns program flow to the calling
code. It may also be used to return a value to the
calling code.

sbyte byte Used to declare System.SByte variables. A sbyte is
an 8-bit signed integer value between –128 and
127.

sealed final A class modifier that specifies that a class can’t be
derived by another class.

short short Used to declare a variable of type System.Int16. A
short contains a 16 bit signed value.

sizeof N/A Used to obtain the size in bytes of a type.
stackalloc N/A Allocates a block of memory on the stack.
static static Designates that a member belongs to the class

itself, and not to an instance of the class.
string N/A Used to declare System.String variables. A string is

a string of Unicode characters.
struct N/A Used to define a value type that can contain

fields, methods, properties, indexers, operators,
and nested types.

switch switch Used to specify a control statement which that has
multiple selections indicated by case statements.

www.syngress.com

C# Java Description

Continued

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 599

600 Appendix A • C# Keywords and Java Equivalents

this this Used to refer to the current instance object.
throw throw Used to throw an exception.
true true A keyword that evaluates to the Boolean value of

true.
try try Specifies a code segment, which might throw an

exception. When coupled with catch blocks, it
provides the base mechanism for C# exception
handling.

typeof N/A Used to obtain the System.Type object for a type.
uint N/A Used to declare a variable of type System.UInt32.

A uint contains a 32 bit unsigned value.
ulong N/A Used to declare a variable of System.UInt64. A

ulong contains a 64 bit unsigned integer value.
unchecked N/A A keyword used to control overflow checking on

arithmetic operations and conversions.
unsafe N/A Declares code is run under an “unsafe context”.

Indicates the code might involve pointers.
ushort N/A Used to declare a variable of type System.UInt16.

A ushort contains a 16 bit unsigned value.
using import Creates an alias for a namespace.
virtual N/A Indicates a virtual member. A virtual member can

be overridden.
volatile volatile Indicates a field can be modified by something

outside of the current thread.
void void Indicates a method does not return a value.
while while Creates a while loop which will execute a code

segment until its control expression evaluates to
false.

: implements Indicates a class is derived from another class.
: extends Indicates a class implements an interface.
N/A strictfp No C# equivalent.
N/A throws No C# equivalent.
N/A transient No C# equivalent, however the [NonSerialized]

attribute is available.

www.syngress.com

C# Java Description

223_C#Java_AppA.qxd 5/21/02 4:44 PM Page 600

601

Index
...?...!... (ternary operator),

99–100, 279
/ (division operator), 92, 279
/// delimiter for XML, 78
/> delimiter for tags, 78
/= (division assignment

operator), 94
/* and */ delimiters, 72
/** and */ delimiters, 74
* (compiler directive for

pointers), 561
* (multiplication operator), 92,

279
*= (multiplication assignment

operator), 94
[] (square brackets) for jagged

arrays, 144
/target switch, 49
!= (inequality operator)

in code, 97
overloadable, 279
in preprocessor expressions, 103

! (logical negation operator)
in code, 97
overloadable, 279
in preprocessor expressions, 103

!= (not-equal operator)
in code, 97
in preprocessor expressions, 103

%= (modulus assignment
operator), 94

% (modulus operator), 92–93, 279
&= (AND assignment operator),

94
& (bitwise AND operator), 97,

279
&& (logical AND operator)

in code, 97
not overloadable, 279
in preprocessor expressions, 103

+= (addition assignment
operator), 94

+ (addition operator), 92, 279
+ (concatenation operator), 121,

279
++ (increment operator), 95–96,

279
+ (unary positive operator), 279
. (dot) operator, 189
: (colon) interface indicator, 248
< (less-than operator), 97, 279
<= (less-than-or-equal-to

operator), 97, 279

<<= (shift-left assignment
operator), 94

<< (shift-left operator), 99
== (equality operator)

in code, 97
overloadable, 279
in preprocessor expressions, 103

= (simple assignment operator),
88, 94, 279

> (more-than operator), 97, 279
>= (more-than-or-equal-to

operator), 97, 279
>>> operator (Java only), 97
>>= (shift-right assignment

operator), 94
>> (shift-right operator), 99
@ (literal string indicator), 123
^ (bitwise exclusive OR

operator), 97, 279
^= (exclusive OR assignment

operator), 94
| (bitwise OR operator), 97, 279
|| (logical OR operator)

in code, 97
not overloadable, 279
in preprocessor expressions, 103

|= (OR assignment operator), 94
~ (bitwise complement operator),

97, 279
~ (destructor indicator), 209
– – (decrement operator), 95–96,

279
– = (subtraction assignment

operator), 94
– (subtraction operator), 92, 279
– (unary negative operator), 279

A
Abort() method, 383–384
Abstract classes, 186–187,

227–232
abstract method modifier,

227–228, 232–233
Abstract Windowing Toolkit

(AWT), 15, 45, 306,
456–457

Access control for classes,
181–182

Access modifiers
Java/C# comparison, 181
list of, 86

Acme Widgets employee
example, 219–233,
237–241

Active Data Objects (ADO), 551
See also ADO.NET

ActiveX controls
ActiveX Control Importer

Utility (axImp.exe), 531,
553–555

combination of COM DLLs,
554

description, 552
importing, 50
naming, 553, 558
Visual Studio.NET Code

Editor, 555–559
versus Windows Forms controls,

552–553
Windows Media Player, 50
written in Visual Basic, 553
See also Controls

Add() method, 461
Addition assignment operator

(+=), 94
Addition operator (+), 92, 279
ADO. See Active Data Objects

(ADO)
ADO.NET, 483
AdRotator Web control, 513–514
Advertising banners, 513–514
AllowMultiple property, 348
Ancestry of C#, 29
AND assignment operator (&=),

94
Application metadata, 17,

340–341, 360
Application programming

interfaces (APIs)
directory, 407–408
file, 411–412
Framework Class Library

(FCL), 116
Applications

console, 41
creating in Visual J#, 578–591
creating with GUIs, 467
legacy, 528
Web Forms, 515–521
See also Rapid application

development (RAD)
Architecture

.NET, 13–18, 85
runtime callable wrappers

(RCWs), 539
Web Services, 482

ArrayList collection class
Java/C# comparison, 159–163

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 601

602 Index

methods and members,
161–163

Arrays
arrays of, 144
declaring and initializing,

137–140, 142–144
jagged, 144–147
Java/C# comparison, 138–140
multidimensional, 141–147
params keyword, 140–141
rectangular, 141–144
treating classes as arrays,

150–151, 154
as operator, 258, 279
.asmx file extension, 486
Asp: prefix, 508
ASP.NET Web controls, 503, 507,

515–516
Assemblies

building, 361–364
creating, 360
entry points, 361
executable, 361–362
.JAR file comparison, 8, 182,

360
library, 361–362
manifest data, 361
multiple-module, 362–364
purpose, 371
single-module, 361–362

Assembly cache, global, 365
Assembly Generation Tool, 364
AssemblyCultureAttribute attribute,

343
AssemblyKeyFileAttribute attribute,

343
AssemblyVersionAttribute attribute,

343
Assignment operators, 93–95
Assignment statements, 87–89
Asynchronous data access, 416,

438–441
Attribute namespace, 342
Attributes

applying to a target, 343
AttributeUsage example,

347–350
common defaults, 342–343
creating, 346–351
custom, 346–351
declaring attribute classes,

348–349
declaring constructors and

properties, 349–350
GetCustomAttributes() method,

352–355

Microsoft .NET, 340
purpose, 340–341
targets, 347–348
using, 341–346, 351

Attributes of XML tags, 75–78
AttributeTargets parameter, 342
AttributeUsageAttribute attribute,

342
Authentication and

authorization, 12
Automatic type conversion, 90
AWT. See Abstract Windowing

Toolkit (AWT)
axImp.exe (ActiveX Control

Importer Utility), 50, 531,
553–555

B
Banner advertising, 513–514
Base class library (BCL), 12,

15–16, 530
Base classes

constructors, 222–225
defining, 221–222
derived classes, 220–221
Java/C# comparison, 221–222,

225
base keyword, 225
BCL. See Base class library (BCL)
BeginRead() method, 416,

438–440
BeginWrite() method, 416, 438
Binary contract, 530
Binary operators, overloading,

287
BinaryFormatter class, 443
BinaryReader methods, 425–426
BinaryWriter methods, 427–428
Binding of runtime callable

wrappers, 541–551
Bindings, 497
Bitwise AND operator (&), 97,

279
Bitwise complement operator

(~), 97, 279
Bitwise exclusive OR operator

(^), 97, 279
Bitwise NOT operator (~), 97,

279
Bitwise operators, 98–99
Bitwise OR operator (|), 97, 279
Bitwise XOR operator (^), 97,

279
Booklist example, 482, 491–495
BookRecord class example,

443–448

Boolean values, 96
Borderless windows, 458
Borland Delphi, 530
Boxing, 84, 276–278
Brackets, square ([]), for jagged

arrays, 144
Branch statements, 129–132

if/else statements, 129
switch statements, 130–132

break statements
in any iteration statements, 135
in switch statements, 131–132

Browser (file), creating, 473–475
Browser (Web), choice of, 504
Buffer overrun, 11–12
BufferedInputStream class (Java),

423
BufferedOutputStream class (Java),

423
BufferedStream class, 423
Bug tracking, 341
Buttons in forms, 462–463,

466–467

C
C++

C# origins, 28–29
callback methods, 307
case statements, 131
class derived from, 17
function pointers, 31, 48, 268
managed, 5, 559
operator overloading, 280
structs, 31

<c> documentation tag, 75
C# language, origin of, 29
C# language fundamentals. See

Fundamentals
.CAB files, 360
Calendar Web control, 514–515
Callbacks

implementing, 312–315
uses, 307

CardDeck example, 151–157,
165–172

case parameters, data types in,
130–131

Case sensitivity, 65, 85
Casting type conversion, 90, 288
catch code blocks, 164–166
Chaining constructors, 204–206
checked operator, 279
Chessboard example, 142–150
Child and parent classes, 220–221
Chopsticks example, 395–399
Circle class example, 268–271

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 602

Index 603

Class member variables. See Static
variables

Classes
abstract, 186–187, 227–232
access control, 181–182
attribute classes, 348–349
constructors, 202–206,

222–225
converting to MSIL, 571
derived classes, 220–221
encapsulation, 180–181
extending (Java), 221
final (Java), 187
hierarchies, 219–220
inner, 183, 244–246, 265, 319
instance variables, 187–189
instantiation, 180
internal access, 86, 181–182,

181–184
Java/C# comparison, 221–222
modifiers, 182–186
name similarities, 30
nested, 183, 244–246, 265
Pascal-case for names, 65
polymorphism, 226–227, 264
private access, 86, 181–186, 183
protected access, 86, 181–182,

184–185, 228
protected internal access, 86,

181–182, 184–185
public access, 86, 181–184
refactoring, 228–229
sealed, 187, 240
static variables, 189–191
superclasses and subclasses,

220–221
treating as arrays, 150–151, 154
wrapper (Java), 277
See also Base classes

Cleaning up resources, 208–213
CLI. See Common Language

Infrastructure (CLI)
Client-side network I/O,

435–438
Clients for runtime callable

wrappers, 544–546
Close() method, 210–211, 215
CLR. See Common Language

Runtime (CLR)
CLS. See Common Language

Specification (CLS)
COBOL, 6
Code

performance-critical, 559
size of, 105

See also Unmanaged code;
Unsafe code

Code analysis, 18–20
Code blocks for exception

handling, 164–166
<code> documentation tag, 75
Code Editor,Visual Studio .NET.

SeeVisual Studio .NET
Code Editor

Code-specific warnings, 100
Collection interfaces, 163–164
Collections, 159–164
Colon (:) interface indicator, 248
COM components

creating, 536–539
description, 535–536
interoperability, 11
See also Component Object

Model (COM); Runtime
callable wrappers (RCWs)

Command-line arguments
C# language fundamentals,

66–69
/doc:filename.xml parameter, 74
program flow, 67–69
string[] args parameter (C#), 67
String[] args parameter (Java),

65, 67
Command prompt in Visual

Studio, 542
Comments

delimiters, 72
importance of, 42, 72–74
Java/C# comparison, 72–73
Java comment types, 72–74
Javadoc, 72, 74
XML documentation, 74–82

Common Language
Infrastructure (CLI), 9

Common Language Runtime
(CLR)

features, 14–15
garbage collection, 180,

208–209
global assembly cache, 365
managed code, 529
memory management, 560
program execution, 13
types, shared, 340
version data, 8

Common Language Specification
(CLS), 6, 17

Common Type System (CTS), 6,
10, 15, 82–84

Compact Framework, 103

Comparisons. See Java/C# basic
comparison; Java/C# code
comparisons; Java/C#
comparison tables

Compilation, conditional,
100–110

Compile-time errors, 109
Compiler, csc.exe, 33–34
Compiler directives, 561
Component Object Model

(COM)
binary standard, 530
built-in support, 32
IDisposable interface, 209
interfaces, 248
languages, 530
See also COM components

Concatenating strings, 121
Conditional compilation,

100–110
Conditional operator (...?...!...),

99–100, 279
Conditional statements, 129–132
ConditionalAttribute attribute, 343
Conflicting ports, 434
Console applications, 41
const keyword, 191
Constants

definition, 87
enumerations, 272
global, 180, 215
static members, 191

Constructors
attribute constructors, 349–350
base classes, 222–225
chaining, 204–206
creating class objects, 202–204
definition, 180
initializers, 223
overloading, 204–206, 223
signatures, 223
static, 206–208
for strings, 120–121

Consuming Web Services,
495–496

Container classes, 147
ContainerControls control, 457
Contains() method, 461
continue statements, 135–136
Contract, binary, 530
Contract specification, 496
Controls

ASP.NET, 503, 507, 515–516
basic, 462–465
buttons, 462–463
Control.Collection object, 461

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 603

604 Index

creating, 461–462
custom, 478
device coordinates (pixels), 463
HTML, 504–506
labels, 464–465
methods, 461
Point() object, 463
server-side controls, 507
textboxes, 464
using, 460–461
validation, 511–513
See also ActiveX controls;Web

controls
Conversion of data types, 90–91,

288–293
Converting data types, 90–91
Copy() method, 121
CORBA objects, 8
cordbg.exe debugger tool, 37–40
_CorExeMain function, 19–20
C++, 268, 307
csc.exe compiler, 33–34
CTS. See Common Type System

(CTS)
Custom attributes, 346–351
Custom controls, 478

D
Dangling else problem, 130
Data, manipulating, 510
Data architecture disconnected,

483
Data binding controls, 509–511
Data types

BinaryReader methods, 425–426
BinaryWriter methods, 427–428
case parameters in switch

statements, 130–131
conversion, 90–91, 288–293
DataInputStream methods (Java),

425–426
encoding, 423–428
Java/C# comparison, 82–84
numbers of, 28
unified type system, 276–277

Database, connecting to, 483–486
DataGrid Web control, 510
DataInputStream class, 423
DataInputStream methods (Java),

425–426
DataOutputStream class, 423
DataSet object, 492, 495
Date and Time Picker control,

554
dbgclr.exe debugger tool, 62

DBIndexer example, 306–308,
312–315, 332–333

DCOM, 8
Deadlock, 383, 389, 395–400
Debugging

/debug switch, 36
attribute conflicts, 347
conditional compilation, 102
cordbg.exe debugger tool, 37–40,

62
dangling else problem, 130
dbgclr.exe debugger tool, 37, 62
directory separator, 408
preprocessor directives, 105
return statements, 71–72
Visual Studio .NET Code

Editor, 43–44
Declaring arrays, 137–140
Decrement operator (– –), 95–96,

279
#define preprocessor directive,

102
delegate keyword, 308
Delegates

advanced usage, 331–334
callback methods, 307–308
creating threads, 333–334
declaration, 308–309
definition, 48, 306–307
event handling, 316–328
instantiation, 309–311
invocation, 311–312
Java alternative, 319, 337
static members, 332–333
ThreadStart, 333–334

Delimiters
for comments, 72, 74
for tags, 78

Delphi, Borland, 530
Deployment, 9–10
Derived and base classes, 220–221
Deserialization operations,

446–449
Deserializing objects, 445–446
Destroying objects

Close method, 210–211
destructors, 209
Dispose method, 210–211
Finalize method, 210–211
garbage collection, 208–209
memory management,

208–209
using statement, 211–213

Destructors, 209
Development environments, 32,

40–45

See also Integrated development
environment (IDE);Visual
Studio .NET Code Editor

Device coordinates (pixels), 463
Directives, compiler, 561
Directives, preprocessor. See

Preprocessor directives
Directories, 406–410
Directory API, 407–408
Directory separator, 408
DirectoryInfo class

application programming
interface (API), 407–408

example of use, 409
FileSystemInfo base class, 406,

411–414
instantiating, 408
methods and properties,

409–410
purpose, 406

Disassembling Intermediate
Language (IL), 360

Disconnected data architecture,
483

Dispose() method, 210–211, 215
Division assignment operator

(/=), 94
Division operator (/), 92, 279
.DLL files, 360
DLL functions, 10–11
DLL Hell, 7–8, 365, 368
DLLs. See Dynamic link libraries

(DLLs)
do-while loops, 133
/doc:filename.xml parameter, 74
Documentation. See Comments;

XML documentation
Documentation comments. See

Javadoc; XML
documentation

Documentation tags, XML. See
Tags, XML documentation

DropDownList Web control,
510–511

Dynamic link libraries (DLLs), 7,
10–11, 107–108, 360, 531,
533

E
Early binding of runtime callable

wrappers, 541–544
ECMA, 9
Eiffle, 6
Elements, access to, 137–138
#else preprocessor directive,

102–105

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 604

Index 605

Emacs text editor, 467
E-mail addresses, validation of,

512
Encapsulation, 180–181, 268
Encoding data types, 423–428
#endif preprocessor directive,

102–105
#endregion preprocessor

directive, 107–108
Entry points for assemblies, 361
EntryPoint attribute parameter,

533
enum keyword, 272
Enumeration flags in

RegexOptions, 128
Enumerations, 272–276
Envelopes, Simple Object Access

Protocol (SOAP), 481
Equality operator (==)

in code, 97
overloadable, 279
in preprocessor expressions, 103

Equals() method, 287
equals() method (Java), 287
Error messages. See Exceptions
#error preprocessor directive,

106–107
Event handling

button events, 466
in C#, 319–328
code examples, 58
creating events, 321–328
delegates, 48, 316
EventArgs argument, 320–321
example, 325–328
graphical user interface (GUI),

465–467
in Java, 317–319
MessageClient class, 324–325
MessageData class, 321–322
MessageManager class, 322–323
subscribers, 328
trapping, 465

event keyword, 322
EventArgs argument, 320–321
<example> documentation tag,

75
Examples

Acme Widgets employee,
219–233, 237–241

AttributeUsage attribute,
347–350

booklist with Web Services,
482, 491–495

BookRecord class, 443–448
CardDeck, 151–157, 165–172

chessboard, 142–150
Circle class, 268–271
DBIndexer, 306–308, 312–315,

332–333
file browser, 473–475
financial calculator, 458–472
first C# program, 33–37
HI.BAT, 70–71
high-school student, 218,

246–249
image previewer, 578–590
MainApplication class, 324–325
media player, 45–54
MessageClient class, 324
MessageData class, 321–322
MessageManager class, 322–323
messaging, 321–331
Pet hierarchy, 254–261
philosophers’ chopsticks,

395–399
prime numbers, 283–293
sample code at Syngress Web

site, 528, 537
StockPrice, 187–190

Exception class properties,
166–229

<exception> documentation tag,
75

Exceptions
catching, 164–167
code blocks, 164–166
common, 170
creating new, 170–172
message-box code, 587
rethrowing, 173–174
throwing, 167–174
throws keyword (Java), 164

Exclusive OR assignment
operator (^=), 94

.EXE files, 360
Executable assembly, 361
explicit operator, 291–293
Explicit type conversion, 90–91,

288, 291–293
Expressions

grouping, 103
preprocessor, 103
regular, 126–128

extends keyword (Java), 180, 221,
248

Extensible Markup Language
(XML), 15

See also XML documentation
Extensions. See File extensions
extern modifier, 282

F
FAQ. See Frequently asked

questions (FAQ)
FCL. See Framework Class

Library (FCL)
Fields, read-only, 271–272
File browser, creating, 473–475
File extensions

.asmx, 486

.CAB, 360

.DLL, 360

.java, 591

.jshproj, 588

.MSI, 360

.SNK, 360

.XML, 74, 80–81

.XSL, 80–81
File handling, 411–414
File system

directories, 406–410
files, 411–414

FileInfo class
application programming

interface (API), 411–412
FileSystemInfo base class, 406,

411–414
methods and properties,

412–413
FileStream class, 418–419
final classes (Java), 187
final keyword (Java), 191
Finalize() method, 209–211
finalize() method (Java), 209
finally code blocks, 164–165
Financial calculator example,

458–472
First C# program example,

33–37
fixed keyword, 560–563, 561–563
Floating-point versus integer,

290–291
Floating windows, 458
Flow control

branch statements, 129–132
break statements, 135
conditional statements,

129–132
continue statements, 135–136
do-while loops, 133
goto statements, 134
if/else statements, 129
iteration statements, 132–134
jump statements, 134–137
for loops, 133–134
return statements, 136–137

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 605

606 Index

switch statements, 130–132
while loops, 133

Flush() method, 423
for loops, 133–134
foreach statements, 30, 147–150
Formatting specifications, 119
Forms. See Windows forms
Fortran, 6
Fragmentation, heap, 561
Frame class (Java), 591
Framework, .NET

SDK, 32–33, 37
See also Compact Framework;

Framework Class Library
(FCL)

Framework Class Library (FCL),
13, 15–16

Free store, 202
FreeBSD UNIX, 6
Frequently Asked Questions

(FAQ)
ActiveX, COM, and

unmanaged code, 566–567
attributes and assemblies,

371–372
C# language fundamentals,

115–116
C# language introduction, 62
delegates and events, 336
graphical user interfaces

(GUIs), 478
I/O streams, 453–454
J# language, 593
miscellaneous features, 304
multithreading, 403–404
.NET philosophy, 24–25
object-oriented programming,

264–265
objects and classes, 215–216
programming structures, 178
Web development, 524–525

Fundamentals
assignment statements, 87–89
command-line arguments,

66–69
comments, 72–82
constants, 87
data types, conversion of,

90–91
data types in Java and C#,

82–84
Main () and main () methods,

64–66
namespaces, 110–111
operators, 92

preprocessor directives,
100–110

return values, 69–72
variables, 85–87

G
Garbage collection, 180,

208–213, 216
get accessor methods, 151,

268–271
GET and POST access, 489, 497,

524
GetCustomAttributes() method,

352–355
Global assembly cache, 365
Global functions or constants, 62,

180, 215
Globally Unique Identifier

(GUID), 535–536
GNOME Linux, 6
goto statements, 134
Graphical user interface (GUI),

465–467
Greater-than operator (>), 97,

279
Greater-than-or-equal-to

operator (>=), 97, 279
GUI. See Graphical User

Interface (GUI)
GUID. See Globally Unique

Identifier (GUID)

H
Hailstorm Project, 3
Heap, 84
Heap fragmentation, 561
Hejlsberg,Anders, 28, 319
HI.BAT example, 70–71
Hierarchies

classes, 219–220
operator precedence, 101

High-school student example,
218, 246–249

HTML. See Hypertext Markup
Language (HTML)

HTTP GET and POST access,
489, 497, 524

HttpWebRequest class, 441
HttpWebResponse class, 441
Hungarian Notation, 85
Hypertext Markup Language

(HTML)
HTML Controls in .NET, 506
HTML controls versus Web

controls, 504–507
page-access Web controls, 509
varying browsers, 504

I
IANA. See Internet Assigned

Numbers Authority
(IANA)

IDE. See Integrated development
environment (IDE)

IDeserializationCallback interface,
446

IDispatch interfaces, 547
IDisposable interface, 209–210
IEnumerable collection interface,

163–164
if/else statements, 129
#if preprocessor directive,

102–105
IIS. See Internet Information

Server (IIS)
IL. See Microsoft Intermediate

Language (MSIL)
ILDasm utility, 360
ILDASM.exe (Intermediate

Disassembler), 546–547
Image-previewer example,

578–590
Immutable strings, 120
implements keyword (Java), 248
implicit operator, 289–291
Implicit type conversion, 90–91,

288–291
import statement (Java), 47–48
<include> documentation tag,

75–76
Increment operator (++), 95–96,

279
Independence, 6–7
Indexers

access in collections, 159
implementing, 151–154
multiparameter, 157–159
multiple, 155–157
overloading, 157
treating classes as arrays,

150–151, 154
Inequality operator (!=)

in code, 97
overloadable, 279
in preprocessor expressions, 103

Inheritance, 218–221
Inheritance, multiple. See

Multiple inheritance
Inherited property, 348
Initializing

arrays, 137–140, 142–144
constructors, 223

Inner classes. See Classes, inner

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 606

Index 607

Input/output, network. See
Network I/O

Instance variables, 86, 187–189
instanceof operator (Java), 253–257
Instantiation, 180
Integer versus floating-point,

290–291
Integrated development

environment (IDE)
assumptions, 40–41
creating applications with

GUIs, 467
ease of forms development, 456
eliminating grunt work, 475
SharpDevelop, 44–45
Visual J# integration, 572
See alsoVisual Studio .NET

Code Editor
Interfaces

creating, 247–248
declaring, 248–249
definition, 246–247
hiding, 260–261
implementing, 249–261
Java/C# comparison, 248–249
naming, 248

Interlocked class, 375, 391
Intermediate Language

Disassembler
(ILDASM.exe), 546–547

internal access
classes, 181–182, 181–184
definition, 86
methods, 194

Internet Assigned Numbers
Authority (IANA), 434

Internet Information Server (IIS),
489

interop layer, 11
Interoperability

COM components, 111
.NET Framework, 532

is operator, 253–257, 279
Isolated storage, 13
Iteration statements, 132–134

do-while loops, 133
foreach statements, 30, 147–150
for loops, 133–134
while loops, 133

Iterator class (Java), 163
IUnknown interface, 532, 535
IUtility interfaces, 547

J
J/Direct native code interface,

571
J# language

Component Object Model
(COM), 571

definition, 571–572
Java comparison, 593
Java/J# code comparisons,

585–587
.NET platform only, 571
See alsoVisual J#

J2EE. See Java 2 Enterprise
Edition (J2EE)

J2ME. See Java 2 Micro Edition
(J2ME)

Jagged arrays, 144–147
.JAR files (Java), 8, 182, 360
Java 2 Enterprise Edition (J2EE),

4
Java 2 Micro Edition (J2ME), 4
Java/C# basic comparison

differences, 30–32
introduction, 28
similarities, 29–30

Java/C# code comparisons
ArrayList collection class,

159–161
base classes, 221–222, 225
comments, 72–73
encoding data types, 424
event handling, 317–328
interfaces, 248–249
network I/O, 432
polymorphism, 234–236
static initializers/constructors,

206–208
strings, 118–119
switch statements, 131–132
threads, creating, 376–377
transient data, 446

Java/C# comparison tables
arrays, 138–140
class modifiers, 182–183
constants, 191
data types, 82–84
directory-handling API,

407–408
file-handling API, 411–412
Main () method (C#), 65–66
methods for encoding data

types, 425–426
return values, 69
stream classes, 415–416
strings, 121–125
threads, scheduling, 388–389

Java Foundation Classes, 4
Java/J# code comparisons,

585–587

Java Language Conversion
Assistant (JLCA), 570–571,
593

Java Native Interface (JNI), 10,
528–529

Java RMI, 8
Java SDK, 118
Java User Migration Path

(JUMP), 570
Java Virtual Machine (JVM)

J# incompatibility, 570, 572,
591

running byte-code, 4
javac command, 591
Javadoc, 72, 74
.java file extension, 591
JDK incompatibility, 571
JFrame class (Swing), 45, 591
JIT. See Just-In-Time (JIT)
JLCA. See Java Language

Conversion Assistant
(JLCA)

JNI. See Java Native Interface
(JNI)

Join() method, 381–382
.jshproj file extension, 588
JUMP. See Java User Migration

Path (JUMP)
Jump statements, 134–137

break statements, 135
continue statements, 135–136
goto statements, 134
return statements, 136–137

Just-In-Time (JIT)
compilation, 17
debugger, 35

JVM. See Java Virtual Machine
(JVM)

K
Key pairs, public-private, 366
Keys, private, 366
Keywords

base, 225
const, 191
delegate, 308
enum, 272
event, 322
extends (Java), 180, 221, 248
final (Java), 191
fixed keyword, 560–563,

561–563
implements (Java), 248
lock, 389–390
numbers of, 28
operator, 279, 288
params, 140–141, 196

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 607

608 Index

static final (Java), 191
synchronized (Java), 389–390
throws (Java), 164
unsafe, 560–561
value, 151–152
See also new keyword

L
Labels in forms, 464–465
Language fundamentals. See

Fundamentals
Late binding of runtime callable

wrappers, 548–551
Legacy applications, support for,

528
Less-than operator (<), 97, 279
Less-than-or-equal-to operator

(<=), 97, 279
Library assembly, 361
Lifetime, object, 540
Limitations of runtime callable

wrappers, 551
#line preprocessor directive,

108–110
Linux, 6
<list> documentation tag, 76
Literal string indicator (@), 123
Literals, creating, 123
Local variables, 86
lock keyword, 389–390
Logical AND operator (&&)

in code, 97
not overloadable, 279
in preprocessor expressions, 103

Logical negation operator (!)
in code, 97
not overloadable, 279
in preprocessor expressions, 103

Logical operators, 97–98
Logical OR operator (||)

in code, 97
not overloadable, 279
in preprocessor expressions, 103

M
Main () method (C#)

C# language fundamentals,
64–66

declaration types, 112–113
Java/C# comparison, 65–66
multiple instances, 65

main () method (Java), 64–66
MainApplication class example,

324–325
Managed code, 528
Manifest data in assemblies, 361

Marshaling, 453–454, 533–534,
540

MatchCollection class, 127–128
Matches()method, 127
Mathematical operators, 92–93
Matrices. See Multidimensional

arrays
Media-player example, 45–54
Member variables. See Instance

variables; Static variables
Memory, direct manipulation of,

562–563
Memory leaks, 7
Memory management, 7,

208–209, 560
MemoryStream class, 419–423
Menus, 478
Message-box code, 587
MessageClient class example,

324–325
MessageData class example,

321–322
MessageManager class example,

322–323
Messages, error. See Exceptions
Messaging example, 321–331
Metadata, application, 17,

340–341, 360
Method call, remote. See Web

Services
Methods

abstract modifier, 227–228,
232–233

access modifiers, 194–195
called dynamically, 306
definition, 191
enumerations, 275
internal access, 194
Main () or main (), 64–66
name similarities, 30
new modifier, 241–244
overloading, 199–201
override modifier, 237–241,

243–245
parameters, 195–198
private access, 194
protected access, 194
protected internal access, 194
public access, 194
signatures, 233, 241, 306
strings, 121–123
using, 191–194
virtual modifier, 234–236,

243–245, 249
Methods and properties

DirectoryInfo class, 409–410

FileInfo class, 412–413
streams, 417–418
threads, 388–389

Micro Focus Object Cobol, 530
Microsoft Intermediate Language

(MSIL)
assembly code, 5, 17
attributes, 340
byte-code converter, 571
description, 17
disassembling, 360
ILADSM data, 546
role in .NET, 5
unmanaged code, 529

Microsoft Word, 467
Modal windows, 458, 475
Modifiers

abstract, 227–228, 232–233
for classes, 182–186
new, 241–244
override, 237–241, 243–245
virtual, 234–236, 243–245, 249
See also Access modifiers

Modifiers, access. See Access
modifiers

Modulus assignment operator
(%=), 94

Modulus operator (%), 92–93,
279

Monitor class, 375, 391–395
Mono project, 6, 528
More-than operator (>), 97, 279
More-than-or-equal-to operator

(>=), 97, 279
MouseEventArgs argument,

320–321
MSDN library, 119, 126, 128
.MSI files, 360
MSIL. See Microsoft

Intermediate Language
(MSIL)

Multicasting, 328–331
Multidimensional arrays

jagged arrays, 144–147
rectangular arrays, 141–144

Multilanguage development, 5–6
Multiline comments, 72–82
Multiple indexers, 155–157
Multiple inheritance, 218, 264
Multiple instances of Main ()

method, 65
Multiple-module assemblies,

362–364
Multiple parameters, 199
Multiplication assignment

operator (*=), 94

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 608

Index 609

Multiplication operator (*), 92,
279

Mutex class, 375, 403

N
Namespaces, 110–111
Naming

ActiveX controls, 553, 558
attribute classes, 343, 346
classes, 65
exported functions, 533
fields, 272
interfaces, 248
Java/C# similarities, 30
properties, 271
runtime callable wrappers

(RCWs), 543
variables, 85
versioned assemblies, 365
Visual J# code files, 590

Nested classes. See Classes, inner
Nested if/else statements, 129
.NET Framework infrastructure,

3
.NET

ADO.NET, 482–483
architecture, 13–18, 85
attributes, 340
base class library (BCL), 12,

15–16, 530
code analysis, 18–20
Common Language

Infrastructure (CLI), 9
Common Type System (CTS).,

82
Compact Framework, 3
components compared with

COM, 536
database interaction, 483–486
easy deployment, 9–10
Enterprise Servers, 3
features, 4–13
Framework Class Library

(FCL), 13, 15–16
Framework SDK, 32–33
HTML Controls in .NET, 506
Intermediate Disassembler

(ILDASM.exe), 546–547
interoperability, 10–11, 532
languages, compatible, 6
managed code, 529
MessageData object e, 322
multilanguage development,

5–6
My Services, 3

.NET Framework
infrastructure, 3

open standards, 8–9
operator overloading, 282–283
overview, 2–4
platform and processor

independence, 6–7
security, 11–13
threads in C#, 374–375
Universal Description,

Discovery, and Integration
(UDDI), 9

unmanaged code, 10–11
versioning support, 7–8
xcopy philosophy, 551
See also Delegates; Microsoft

Intermediate Language
(MSIL);Visual Studio
.NET Code Editor;Web
Services

Network I/O
client side, 435–438
server side, 432–434

nw keyword
creating a struct, 279
creating objects, 202
creating structs, 298
initializing arrays, 137
modifying methods, 241–244
nesting classes, 183
not overloadable, 279

NonSerializedAttribute attribute,
342

Not-equal operator (!=)
in code, 97
overloadable, 279
in preprocessor expressions, 103

NOT operator (~), 97, 279
Notation, Hungarian, 85
Notational system, 219
NotePad text editor, 467

O
Object lifetime, 540
Object-oriented programming,

pillars of, 180
ObjectInputStream class (Java), 443
ObjectOutputStream class (Java),

443
Objects

constructors for, 202–208
definition, 180

ObsoleteAttribute attribute,
343–345

OleDbAdapter object, 483–484
OleDbConnection object, 492

OleDbDataAdapter object,
492–494

OnDeserialization() method, 446
Open standards, 8–9
operator keyword, 279, 288
Operators

as, 258
assignment, 88, 93–95
bitwise, 98–99
conditional (...?...!...), 99–100,

279
decrementing, 95–96
dot (.), 189
explicit, 291–293
groups of, 92
implicit, 289–291
incrementing, 95–96
instanceof (Java), 253–257
is, 253–257
logical, 97–98
mathematical, 92–93
new, 137
overloading, 31, 279–287
precedence, 100
relational, 96–97
ternary (...?...!...), 99–100, 279
unary, 279, 283–287

OR assignment operator (|=), 94
Origin for forms window, 463
Origin of C# language, 29
out method parameter, 197–199
Overloading

constructors, 204–206, 223
indexers, 157
methods, 199–201
operators, 31, 279–287
type conversions, 288–289

override method modifier,
237–241, 243–245

Overrunning buffers, 11–12

P
Packages (Java), 110, 360
Page-access Web controls,

HTML, 509
<para> documentation tag, 76
<param> documentation tag, 77
Parameters for methods

multiple, 199
passed by reference, 197
passed by value, 195, 199
passing, 195–198
string[] args (in C#), 67
String[] args (in Java), 65, 67
See also Command-line

arguments

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 609

610 Index

<paramref> documentation tag,
77

params keyword, 140–141, 196
Parent and child classes, 218,

220–221
Parentheses, 103
Pascal-case

class names, 65
variable names, 85

Passed by reference, 197
Passed by value, 195, 199
Passport, 3, 12
PATH variables, 542
PE. See Portable Executable (PE)

wrapper
Performance-critical code, 559
Perl, 6, 118
<permission> documentation tag,

77
Pet-hierarchy example, 254–261
Philosophers’ chopsticks example,

395–399
Pillars of object-oriented

programming, 180
Pinning, 560
PInvoke. See Platform Invocation

Service (PInvoke)
Pixels (Device coordinates), 463
Platform independence, 6–7
Platform Invocation Service

(PInvoke), 532–535
Pointers

fixed keyword, 561–563
unsafe code, 559–560
unsafe keyword, 31–32,

560–561
Polymorphism, 226–227,

234–236, 264
Portable Executable (PE)

wrapper, 18–19
Ports

conflicting, 434
types and operations, 497

POST and GET access, 489, 497,
524

Postfix operations, 95
Powerbuilder, 530
Precedence of operators, 100
Prefix operations, 95
Preprocessor directives

debugging, 105
description, 100–101
#else, 102–105
#endif, 102–105
#endregion, 107–108
#error, 106–107

example, 103–105
expressions, 103
#if, 102–105
#line, 108–110
list of, 101
#region, 107–108
size of code, 105
#undef, 102
#warning, 106–107

Prime-number example, 283–293
Println() method (Java), 118–119
Priority property of threads, 384
private access

classes, 181–186, 183
definition, 86
methods, 194–195

Processor independence, 6–7
Program flow, 67–69
Project Hailstorm, 3
Project tracking, 341
Properties

advantage, 30–31
attribute classes, 349–350
buttons, 463
labels, 465
naming, 271
objects, 268–271
runtime callable wrappers

(RCWs), 546–548
textboxes, 464
Windows forms, 459
See also Methods and properties

protected access
classes, 181–182, 184–185, 228
definition, 86
methods, 194

protected internal access
classes, 181–182, 184–185
definition, 86
methods, 194

Proxy objects for Web Services
need for, 524
Visual Studio.NET Code

Editor, 499–503
Web Service Description

Language (WSDL),
496–498

wsdl.exe utility, 498–499
public access

classes, 181–184
definition, 86
methods, 194

Public-private key pairs, 366
Pulse() method, 399
Python, 6

Q
Quotation marks, 123

R
RAD. See Rapid application

development (RAD)
Ragged arrays (Java). See Jagged

arrays
Rapid application development

(RAD), 16, 41, 54–59,
470–471

RCWs. See Runtime callable
wrappers (RCWs)

Read-only fields, 271–272
Reader class (Java), 428
ReadLicense() method, 440
Rectangular arrays, 141–144
ref method parameter, 197–199
Refactoring classes, 228–229
Reference counting technique, 7
Reference types, 84
Reflection, 352–360
RegAsm.exe (Register Assembly),

531
Regex class, 127
RegexOptions enumeration flags,

128
#region preprocessor directive,

107–108
Register Assembly (RegAsm.exe),

531–532
Registry,Windows, 10, 531, 536
Regular expressions, 126–128
RegularExpressions classes, 126
RegularExpressionValidator Web

control, 512–513
Relational operators, 96–97
<remarks> documentation tag, 77
Remote method call. See Web

Services
Remoting, 453–454
Remove() method, 461
RequiredFieldValidator Web

control, 511–512
Resources, cleaning up, 208–213
Resume() method, 382–383
Return statement, 71–72
return statements, 136–137
Return values

Java/C# comparison, 69
Main () declaration, 69–71
void, 193

<returns> documentation tag, 77
Right-click menus, 478

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 610

Index 611

runat=”server” attribute, 505, 508,
518

Runtime callable wrappers
(RCWs)

architecture, 539
clients, building, 544–546
creating for COM

components, 541–544
description, 539–541
early binding, 541–544
late binding, 548–551
limitations, 551
naming, 543
properties, 546–548
tasks, 540
Type Library Importer

(TlbImp.exe) utility, 531,
541–543

Visual Studio.NET Code
Editor, 543–544

S
Sample code. See Examples
Scheme, 6
SDK. See Java SDK; .NET,

Framework SDK
Sealed classes, 187, 240
Security, 11–13, 341
<see> documentation tag, 77
<seealso> documentation tag, 77
Semaphores, 399–400
Serializable objects, creating,

443–444
SerializableAttribute attribute, 342
Serialization

BinaryFormatter class, 443
deserialization operations,

446–449
deserializing objects, 445–446
ObjectInputStream class (Java),

443
ObjectOutputStream class (Java),

443
serializable objects, creating,

443–444
serializing objects, 444–445
transient data, 446–447

Serializing objects, 444–445
Server requests, 441
Server-side controls, 507
Server-side network I/O,

432–434
set accessor methods, 151,

268–271
Setup tools, 9–10

SharpDevelop Integrated
development environment
(IDE), 44–45

Shift-left assignment operator
(<<=), 94

Shift-left operator (<<), 99, 279
Shift-right assignment operator

(>>=), 94
Shift-right operator (>>), 94, 279
ShowDialog() method, 475
Signatures

constructors, 223
methods, 233, 241, 306,

309–310
Simple assignment operator (=),

94
Simple Object Access Protocol

(SOAP), 8, 480–481, 490
Single-line comments, 72–82
Single-module assemblies,

362–363
Size of code, 105
Smalltalk, 203
.SNK files, 360
SOAP. See Simple Object Access

Protocol (SOAP)
Socket class, 437–438
Socket connections, 435
Sockets namespace, 435
Software contract specification,

496
Solutions Fast Track

ActiveX, COM, and
unmanaged code, 564–566

attributes and assemblies,
370–371

C# language fundamentals,
112–114

C# language introduction,
60–62

delegates and events, 335–336
graphical user interfaces

(GUIs), 476–477
I/O streams, 451–452
J# language, 592–593
miscellaneous features, 301–303
multithreading, 401–403
.NET philosophy, 22–24
object-oriented programming,

263–264
objects and classes, 214–215
programming structures,

175–177
Web development, 522–524

Spaghetti code, 134
Specifications, formatting, 119

Square brackets ([]) for jagged
arrays, 144

Stack, 84
Standard windows, 458
Standards, open, 8–9
Starting to program in C#,

32–37
Starvation, 389, 395–400
Static constructors, 206–208
static final keywords (Java), 191
Static variables

for classes, 189–191
definition, 86

StockPrice example, 187–190
Streams

asynchronous I/O, 416
BufferedInputStream class (Java),

423
BufferedOutputStream class

(Java), 423
BufferedStream class, 423
buffering, 420–423
definition, 415–416
FileStream class, 418–419
Flush() method, 423
input and output combined,

415
Java/C# comparisons,

415–416, 417–418
MemoryStream class, 419–423
methods and properties,

417–418
Stream base class, 416–418, 453
StreamReader class, 428–429
StreamWriter class, 428–429
synchronous I/O (Java), 416

Strings
concatenating, 121
constructors, 120–121
Copy() method, 121
creating, 119–123
immutable, 120
Java/C# comparison, 118–119,

121–125
literals, creating, 123
methods, list of, 121–123
regular expressions, 126–128
string[] args parameter (C#), 67
String[] args parameter (Java), 65
StringBuffer class (Java), 118, 123
StringBuilder class, 118, 123–126
StringReader class, 429–430
StringWriter class, 429–430
ToString() method, 121
Verbatim String Literal, 123

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 611

612 Index

wrapper for String class,
280–282

WriteLine method, 118–119
Strong name, 12, 365
Structs

C++, 31
constructors, 297
defining, 294–297
purpose, 293–294
using, 297–300

Stylesheets, XML documentation,
80–81

Subclasses and superclasses,
220–221

Subscribers, 328
Subtraction assignment operator

(-=), 94
Subtraction operator (–), 92, 279
Suffixes. See File extensions
<summary> documentation tag,

78
Sun Microsystems, 29, 118, 319,

570, 572
Suspend() method, 382–383
Swing, 15, 45, 456–457, 591
switch statements, 130–132
Symbols

defining (#define), 102
evaluating, 102–103
undefining (#undef), 102

synchronized keyword (Java),
389–390

Synchronous data access, 416,
438–440

System namespace, 84

T
Tags, XML documentation

descriptions, 75–78
example, 79–80
understanding, 78–79

Targets for attributes, 347–348
TcpClient class, 435–436
Ternary operator (...?...!...),

99–100
Testing Web Services, 489–491
Testing with PInvoke, 532–535
Text editor, 467–470
Text handling, 428–431
Textboxes in forms, 464
TextReader class, 428
TextWriter class, 428
this [] property (arrays), 151
this reference (classes), 203–204
this self (Smalltalk), 203
Thread class, 375

Thread local storage (TLS), 404
Threading namespace, 375
ThreadPool class, 375
Threads

Abort() method, 383–384
creating, 333–334, 375–380
deadlock, 383, 389, 395–400
Integer parameter, 380
Java/C# comparisons,

376–377, 388–389
killing, 383
lock statement, 389–391
managing, 380–384
methods and properties,

388–389
Null parameter, 380
Priority property, 384
purpose, 374–375
Resume() method, 382–383
scheduling, 384–389
semaphores, 399–400
starvation, 389, 395–400
Suspend() method, 382–383
synchronizing, 389–395
TimeSpan parameter, 381

ThreadStart delegate, 333–334
ThreadStart() delegate, 377
Three-tier architecture of Web

Services, 482
throws keyword (Java), 164
Timer class, 375
TlbImp.exe (Type Library

Importer) utility, 531,
541–543

TLS. See Thread local storage
(TLS)

Tool icons, 478
Tool windows, 458
ToString() method, 121
Tracking bugs and projects, 341
Transient data, 446–447
try code blocks, 164–165
Type Library Importer

(TlbImp.exe) utility, 531,
541–543

typeof operator, 279, 353
Types, data. See Data types

U
UDDI. See Universal

Description, Discovery,
and Integration (UDDI)

UdpClient class, 435
UML. See Unified Modeling

Language (UML)
Unary operators, 279, 283–287

Unboxing, 84, 278–279
unchecked operator, 279
#undef preprocessor directive,

102
Unified Modeling Language

(UML), 218
Unified type system, 276–277
Universal Description, Discovery,

and Integration (UDDI), 9
UNIX, 6
Unmanaged code

definition, 10, 528–529
EntryPoint attribute parameter,

533
interoperability, 530–532
Platform Invocation Service

(PInvoke), 532–535
unsafe code, 559

Unsafe code, 559–560
unsafe keyword, 31–32, 560–561
URLs. See Web sites
User-defined type conversion,

288–293
using statement

creating shortcuts, 66, 110–111
garbage disposal, 211–213

V
Validation controls, 511–513
<value> documentation tag, 78
value keyword, 151–152
Value types, 84
Values, boolean, 96
Values, returning. See Return

values
Variables

access modifiers, 86
member, 187, 189
Pascal-case for names, 85
types of, 86

Vector class (Java), 159
Verbatim String Literal, 123
Versioning

creating versioned assemblies,
365–368

DLL Hell, 7–8
format of version numbers, 367
need for, 364–365

vi text editor, 467
virtual method modifier,

234–236, 243–245, 249
Visual Basic, 118, 147, 530, 536,

540
Visual Basic++, 530
Visual J#

creating applications, 578–591

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 612

Index 613

description, 570
features, 572
installing, 573
Java Virtual Machine (JVM)

incompatibility, 570, 572,
591

.jshproj file extension, 588
naming code files, 590
skeleton code, 574–577
using, 573–578

Visual J++
converting to C#, 570
delegates, 319
developing COM components,

530
Visual Studio 7.0, 573
Visual Studio .NET Code Editor

ActiveX controls, 555–559
alternative IDEs, 44–45
built-in Debugger, 43–44
command prompt, 542
creating applications with

GUIs, 467
data controls available, 492
preprocessor directives, 107
proxy objects for Web Services,

496, 499–503
runtime callable wrappers

(RCWs), 543–544
using, 41–44, 470–475
See also Integrated development

environment (IDE); Rapid
application development
(RAD)

Visual Studio .NET setup tools,
9–10

W
Wait() method, 395, 399
WaitHandle class, 375
Warnings, code-specific, 100
#warning preprocessor directive,

106–107
Web browser, choice of, 504
Web controls

AdRotator, 513–514
Calendar, 514–515
complex, 513–515
data, enabling, 509–511
DataGrid, 510
DropDownList, 510–511
versus HTML controls,

504–507
HTML Page Access, 509
RegularExpressionValidator,

512–513

RequiredFieldValidator, 511–512
Web Forms

applications, 515–521
controls, descriptions of,

507–515
overview, 503–507

Web Service Description
Language (WSDL),
496–498

Web Services
.asmx file extension, 486
booklist example, 482, 491–495
building, 486–489
consuming, 495–496
creating, 482–495
database, connecting to,

483–486
definition, 480
description language, 496–498
Namespace parameter, 488
proxy objects, 496, 498–503
running and testing, 489–491
three-tier architecture, 482
[WebService] attribute, 488–489
@ WebService directive,

487–488
Web Services Description

Language (WSDL), 9
Web sites

compilers for .NET, 6
delegates versus inner classes,

319
Internet Assigned Numbers

Authority (IANA), 434
Microsoft Developer’s

Network, 16
Mono project, 6, 528
MSDN, 404
multithreaded programming,

404
.NET Framework SDK, 33
port numbers, registered, 434
sample code at Syngress, 528,

537
sample Windows forms, 478
SharpDevelop IDE, 44–45
XML stylesheets, 80–81

Web streams, 441–443
WebMethodAttribute attribute, 342
[WebService] attribute, 488–489
@ WebService directive, 487–488
WebServiceAttribute attribute, 342
while loops, 133
Window procedures, 307
Window types, 458
Windows Forms

accessor methods (Java), 459
versus ActiveX controls,

552–553
buttons, 462–463
classes, 456–457
controls, 460–465
creating, 458–460
definition, 552
displaying, 459
labels, 464–465
methods, 460
modal, 458, 475
properties, 459
textboxes, 464

Windows programming model,
456

Windows registry, 10, 531, 536
Windows.Forms class, 456
Windows.Forms namespace, 457
WinForms namespace. See

Windows.Forms namespace
Word text editor, 467
WordPad text editor, 467
Wrapper classes (Java), 277
Wrapper for String class, 280–282
Write() method, 119
WriteLine method, 118–119
Writer class (Java), 428
WSDL. See Web Services

Description Language
(WSDL)

wsdl.exe utility, 498–499

X
Xcopy philosophy, 551
Ximian, 6
XML. See Extensible Markup

Language (XML)
XML documentation

documentation comments in
C#, 74–82

Javadoc, 74
stylesheets, 80–81
tags, descriptions of, 75–78
tags, understanding, 78–79

.XML files, 74, 80–81
XML namespace definitions, 497
.XSL files, 80–81

Z
ZIP codes, 512
Zones, 12

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 613

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

Developing Web Services with
Java APIs for XML Using WSDP
WSDP is Sun Microsystem’s all-in-one development kit that utilizes
XML to build cross platform Web services. Bundling the Java XML
technologies together into WSDP ensures developers a quick and
easy development cycles for integration of XML into the Java plat-
form. This will be the first book available that details all components
of JAX Pack and is written for experienced Web developers.
ISBN: 1-928994-85-7

Price: $49.95 USA, $77.95 CAN

AVAILABLE JUNE 2002
ODER at
www.syngress.com

AVAILABLE NOW!
ORDER at
www.syngress.com

.NET Developer’s Kit, Including ASP, C#, and VB
This 3-book box set will help developers build solutions for the .NET
platform. The set includes ASP .NET Web Developer’s Guide, C# .NET
Web Developer’s Guide, and VB.NET Developer’s Guide.
ISBN: 1-928994-61-X

Price: $119.95 USA, $185.95 CAN

Programming LEGO Mindstorms with Java
Programming LEGO Mindstorms with Java is as much about robotics pro-
gramming as it is about Java programming. This book is for all levels of
Mindstorms users, from hobbyists to the serious Mindstorms aficionados. This
book is also appropriate for a variety of programming levels; those with only
a modicum of Java knowledge as well as those at an advanced level will find
much to learn within these pages. You will cover all the basics of program-
ming the RCX, beginning with the introduction of the available Java APIs used
to communicate remotely to the RCX using its default firm- ware, all the way
through the advanced topics of embedded programming using a custom Java
Virtual Machine (JVM).
ISBN: 1-928994-55-5

Price: $29.95 US, $46.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

223_C#Java_indx.qxd 5/22/02 11:57 AM Page 614

http://www.syngress.com/catalog/sg_main.cfm?pid=2102
http://www.syngress.com/catalog/sg_main.cfm?pid=1772
http://www.syngress.com/

Document3 4/3/02 4:04 PM Page 1

	Cover
	Table of Contents
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Appendix A
	Index
	Related Titles

