

Foundations
Java

4373book.fm Page i Wednesday, July 21, 2004 12:24 AM

4373book.fm Page ii Wednesday, July 21, 2004 12:24 AM

San Francisco

◆

 London

Foundations
Java

™

Todd Greanier

4373book.fm Page iii Wednesday, July 21, 2004 12:24 AM

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Maureen Adams
Production Editor: Mae Lum
Technical Editor: Jerome Goodman
Copyeditor: Pat Coleman
Compositor: Maureen Forys, Happenstance Type-O-Rama
Graphic Illustrator: Jeff Wilson, Happenstance Type-O-Rama
Proofreaders: Laurie O’Connell, Nancy Riddiough
Indexer: Ted Laux
Book Designer: Judy Fung
Cover Designer: Ingalls + Associates
Cover Illustrator/Photographer: Jerry Driendl, Taxi

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this pub-
lication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, pho-
tograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

An earlier version of this book was published under the title

Java Certification JumpStart

 © 2003 SYBEX Inc.

Library of Congress Card Number: 2004109314

ISBN: 0-7821-4373-3

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4373book.fm Page iv Wednesday, July 21, 2004 12:24 AM

For my son, Maximilian Arthur

4373book.fm Page v Wednesday, July 21, 2004 12:24 AM

Acknowledgments

Without my wife, Stacey Ann, this book could never have been written. Her patience and support are seem-
ingly endless, and I am eternally grateful to her. As an author, I have to make certain sacrifices, but as a wife,
she has to make those same sacrifices and then some. Sore fingers and tired eyes don’t seem such a bother when
she walks into the room.

Other friends also deserve a bit of thanks, including Don Holt, Bill Mulligan, Kelby and Beth Zorgdrager,
Sean and Heather Lahman, Randy Bonferraro, Cara Lynch, Paul Eberhardt, Lee and Judy Bruder, Kwai Chang
Caine, and Dan Millman.

Of course, I also want to thank several of the fine folks at Sybex who helped get this book into your hands.
Maureen Adams first brought the idea to me and helped me get the ball rolling. Pat Coleman and Mae Lum
helped me to turn the chaos of my thoughts into coherent sentences and made the entire writing process
extremely pleasant. Thanks also to Maureen Forys of Happenstance Type-O-Rama for the book layout and
to Ted Laux for the index.

4373book.fm Page vi Wednesday, July 21, 2004 12:24 AM

Contents

Introduction xiii

Chapter 1 The History of Java 1

Where Java Technology Came From 2
The Green Project . 2
Enter the Web . 2

The Features of Java Technology . 3
Java Is Simple . 4
Java Is Object Oriented . 4
Java Is Interpreted . 5
Java Is Portable . 6
Java Is Robust . 6
Java Is Secure . 7
Java Is Multithreaded . 8
Java Is High Performance . 9
Java Saves Time and Money . 9
Java Solves Important Problems 10

How Java Compares with Other Languages 10
How to Download and Install Java 11

Downloading the J2SE Software 12
Terms to Know . 20
Review Questions . 21

Chapter 2 Java Fundamentals 23

Creating a Java Program . 24
The HelloWorld Program . 24

Writing the HelloWorld Source Code 25
Compiling the HelloWorld Source Code 26
Executing the HelloWorld Program 27

Examining the Source Code . 28
Using Comments . 29
Using White Space . 31
Defining the Class . 31
Defining the Method . 34
Wrapping Up the HelloWorld Program 38
Working with Arguments in the

main()

 Method 39
The Basic Java Data Types . 41

Literal Values . 42
The Integer Types . 43

4373book.fm Page vii Wednesday, July 21, 2004 12:24 AM

viii

Contents

The Floating Point Types . 45
The Character Type . 45
The Boolean Type . 46
Using the Primitive Types . 46
The

String

 Class . 47
Primitive Values versus Reference Values 47

Terms to Know . 51
Review Questions . 52

Chapter 3 Keywords and Operators 53

Creating Valid Names in Java . 54
The Keyword List . 55

The Primitive Type Keywords 56
The Flow Control Keywords . 56
Modification Keywords . 57
Class-Related Keywords . 60
Object-Related Keywords . 69
Wrapping Up the Keywords . 74

The Java Operators . 74
The Arithmetic Operators . 75
The Assignment Operators . 80
The Relational Operators . 81
The Conditional Operators . 83

Terms to Know . 86
Review Questions . 87

Chapter 4 Flow Control 89

Application Scope . 90
The

if

 Statement . 90
Adding the

else

 Statement . 92
Testing the Array of Arguments 94

The

switch

 and

case

 Statements . 97
The

default

 Statement . 100
Deciding between

if/else

 and

switch/case

 100
Processing a Range of Values 102

The Ternary Operator . 104
The

for

 Loop . 105
Multiple Increment Steps . 107
Beware the Infinite Loop . 109

The

while

 Loop . 110
Comparing

for

 and

while

 Loops 111
The

do

 Statement . 113

4373book.fm Page viii Wednesday, July 21, 2004 12:24 AM

Contents

ix

The Branching Statements . 114
The

break

 Statement . 114
The

continue

 Statement . 117
The

return

 Statement . 121
Terms to Know . 123
Review Questions . 124

Chapter 5 Arrays 125

Understanding Arrays . 126
Declaring Arrays . 128
Creating Arrays . 129

Getting the Length of an Array 130
Populating an Array . 132

Using Array Initializers . 133
An Array Initializer Variation 134

Accessing Array Elements . 135
Multidimensional Arrays . 137

Two-Dimensional Array Initializers 140
Nonrectangular Arrays . 141

The

java.util.Arrays

 Class . 142
Filling an Array . 142
Sorting an Array . 143
Searching an Array . 144

Terms to Know . 145
Review Questions . 146

Chapter 6 Introduction to Object-Oriented Programming 147

The Object-Oriented Paradigm 148
Real-World Objects . 149

Defining a Class . 150
Instantiating and Using Objects 152

A Closer Look at a

Lamp

 Object 153
Sharing a Reference . 155

Object Messaging: Adding a Lightbulb 156
Passing by Value . 160
Passing by Reference . 162

The

this

 Keyword . 165
Bypassing Local Variables Using

this

 166
Passing a Reference Using

this

 168
Static Methods Have No

this

 Reference 169
Constructors . 170

Multiple Constructors . 173
Constructor Chaining . 177

4373book.fm Page ix Wednesday, July 21, 2004 12:24 AM

x

Contents

Terms to Know . 179
Review Questions . 180

Chapter 7 Advanced Object-Oriented Programming 181

Claiming Your Inheritance . 182
Using the

extends

Keyword . 184
The Rules of Inheritance . 185
Reference Types versus Runtime Types 187
Expanding the Subclasses . 190
The Class Hierarchy . 193
The Reference Type Rule for Methods 195

The

instanceof

 Operator and Object Casting 196
Object Casting . 197

Introducing Polymorphism . 199
Method Overloading . 199
Method Overriding . 201

Abstract Classes and Methods . 212
Interfaces . 215
Terms to Know . 219
Review Questions . 220

Chapter 8 Exception Handling 221

The Method Call Stack . 222
Exception Noted . 223

The Exception Hierarchy . 224
Handling Those Exceptions . 226

Using

try

 and

catch

 . 227
Using a

finally

 Clause . 232
Creating Your Own Exception Type 235
Throwing Exceptions . 237

Using the

throws

 Keyword . 238
The

throw

 Keyword . 240
Terms to Know . 246
Review Questions . 247

Chapter 9 Common Java API Classes 249

The

java.lang.String

 Class . 250
Common

String

 Methods . 251
The

java.lang.StringBuffer

 Class 260
The

java.lang.Math

 Class . 264
Calculating a Random Number 266

The Wrapper Classes . 270
Creating Wrapper Objects . 271

4373book.fm Page x Wednesday, July 21, 2004 12:24 AM

Contents

xi

Common Wrapper Methods 273
The

Character

 Class . 276
Wrapping It Up . 278

Terms to Know . 278
Review Questions . 279

Chapter 10 The Collections Framework 281

Defining a Framework . 282
The

java.util.Collection

 Interface 282
Understanding Lists . 284

The

java.util.List

 Interface . 284
The

java.util.ArrayList

 Class 285
Summarizing Lists . 291

Understanding Sets . 291
The

java.util.Set

 Interface . 291
The

java.util.HashSet

 Class . 292
Summarizing Sets . 294

Understanding Maps . 294
The

java.util.Map

Interface . 294
The

java.util.HashMap

 Class 296
Summarizing Maps . 298

Working with Iterators . 298
The

java.util.Iterator

Interface 299
The

java.util.ListIterator

 Interface 301
Iterators and Maps . 304

Terms to Know . 306
Review Questions . 307

Appendix A Answers to Review Questions 309

Chapter 1 . 309
Chapter 2 . 310
Chapter 3 . 310
Chapter 4 . 311
Chapter 5 . 313
Chapter 6 . 314
Chapter 7 . 315
Chapter 8 . 316
Chapter 9 . 317
Chapter 10 . 317

Glossary 319

Index 329

4373book.fm Page xi Wednesday, July 21, 2004 12:24 AM

4373book.fm Page xii Wednesday, July 21, 2004 12:24 AM

Introduction

When you’re learning any new topic or technology, it’s important to have all the
basics at your disposal. The Sybex Foundations series provides the building
blocks of specific technologies that help you establish yourself in IT.

Java is one of the most popular languages in the world and can be used to
develop everything from web applications to cell-phone tools to space vehicles.
Although it has enormous flexibility and power, it is not a difficult language to
learn.

Java Foundations

 assumes no prior knowledge of Java programming and
provides a solid introduction to this language, explaining the fundamentals in
simple terms with plenty of examples.

My goal with

Java Foundations

 is to introduce you to the core Java concepts
so that you’ll come away with an intermediate understanding of the language.
This book isn’t boringly technical; each topic is covered to sufficient depth, but
not to an extreme.

As a software architect and instructor, I have several years’ experience work-
ing in the computer industry and specifically with Java. Drawing from this expe-
rience, I’ve tried to present the relevant material in an interesting way, and I’ve
included what I have found to be the most important concepts. The book is filled
with several simple examples, diagrams, and screen captures in an effort to make
the Java language more tangible.

This book is neither operating system–specific nor software-specific. Concepts are
presented so that you can gain an understanding of the topic without being tied to a
particular platform.

Who Should Read This Book?

Java Foundations

 is designed to teach the fundamentals of the Java programming
language to people who are fairly new to the topic. This book will be useful for:

◆

People interested in learning more about Java

◆

Decision-makers who need to know the fundamentals in order to make
valid, informed choices around Java

◆

Administrators who feel they are missing some of the foundational infor-
mation about Java

◆

Small-business owners interested in a language they can use for their
applications

◆

Instructors teaching a Java fundamentals course

◆

Students enrolled in a Java fundamentals course

4373book.fm Page xiii Wednesday, July 21, 2004 12:24 AM

xiv

Introduction

What This Book Covers

Working with Java has been an interesting, exciting, and rewarding experience.
As I continue to learn about today’s applications and Java, the more I see the
need to continue learning. No matter what sector of the computer industry
you’re employed in (or even if you’re not employed in IT yet), Java is an impor-
tant foundational topic that you must understand.

Java Foundations

 contains many drawings and charts that help create a com-
fortable learning environment. It provides many real-world analogies that you
will be able to relate to and through which the Java language will become tan-
gible. The analogies provide a simple way to understand the technical knowledge
required to successfully use Java.

This book builds your understanding about Java progressively, like climbing
a ladder. Here’s how the information is presented:

Chapter 1

This chapter provides an overview of where Java came from
and why it is an important language.

Chapters 2–5

These chapters describe the fundamentals of the Java lan-
guage, including all the keywords, the flow-control syntax, and arrays.

Chapters 6–7

These two chapters introduce you to the world of object-
oriented programming and show you how to master the techniques with Java.

Chapter 8

This chapter discusses the exception-handling mechanism that
aids in creating robust Java applications.

Chapter 9

This chapter contains some of the common Java classes that
you will use over and over again as you learn more about the language.

Chapter 10

This chapter introduces the collection classes provided by
the Java language to allow more complex forms of data structuring.

Making the Most of This Book

At the beginning of each chapter of

Java Foundations

, you’ll find a list of the top-
ics that I’ll cover within the chapter.

flow control

Special constructs in a language that
allow simple or complex algorithms to be
defined. Essentially, these form the intel-
ligence of your code.

To help you soak up new material easily, I’ve highlighted new terms, such as

flow control

, in italics and defined them in the page margins.
In addition, several special elements highlight important information:

Notes provide extra information and references to related information.

4373book.fm Page xiv Wednesday, July 21, 2004 12:24 AM

Introduction

xv

Tips are insights that help you perform tasks more easily and effectively.

Warnings let you know about things you should—or shouldn’t—do as you learn more
about Java.

At the end of each chapter, you can test your knowledge of the chapter’s rel-
evant topics by answering the review questions. (You’ll find the answers to the
review questions in Appendix A.)

4373book.fm Page xv Wednesday, July 21, 2004 12:24 AM

4373book.fm Page xvi Wednesday, July 21, 2004 12:24 AM

In This Chapter

Chapter

1

The History of Java

Way back in 1995, Sun Microsystems released the first version of the
Java programming language to the public. Since then, Java technology
has become an extremely popular language and has been adopted by mil-
lions of developers to create robust applications. Though Java applica-
tions can be executed in practically any environment, they are most
commonly used in networked environments such as an intranet or the
Internet.

Java technology can be seen as both a language and a platform. The
language is simple, secure, and powerful. Using it, you can write appli-
cations that can run on practically any device, including a PC, a personal
digital assistant (PDA), a cellular phone, or a television.

◆

Where Java technology came from

◆

The features of Java technology

◆

How Java compares with other
languages

◆

How to download and install Java

4373book.fm Page 1 Tuesday, July 13, 2004 3:44 PM

2

Chapter 1

Where Java Technology Came From

Back in 1991, some folks at Sun Microsystems were thinking about the future of
computing. Their research indicated the “next big thing” would be intelligent
consumer devices. A small group was formed under the code name “Green
Project” to create a prototype for a consumer device to try to get a jump on the
market. The Green Project was essentially a secret project inside Sun, and the
members of the group cut themselves off from the rest of the company to pursue
their goals.

The Green Project

After 18 months of hard work, the Green Project team emerged with a device
that they called Star7. Essentially, it worked like today’s PDA (though it was a
lot bigger) and had an animated, color touchscreen. It ran an application that
featured a character named Duke who reacted to user prompts to perform vari-
ous tasks. The Star7 device was only meant as a demonstration platform, how-
ever. The Green Team expected that the software running on the Star7 could be
deployed on dozens of platforms such as televisions, kiosks, and “smart” home
appliances. In other words, the real power of the Star7 was the programming
language that made it work.

One of the team members, James Gosling, created the language that made the
demo work. He called this language Oak after a large oak tree outside his office
window. The language was completely processor-independent so it could easily
be used on all the available consumer devices. A primary feature of this software
was that it could function nicely in a networked environment. The Green Project
team tried to convince some new industries, including digital cable companies,
that their creation was ideal. Unfortunately, at that time those industries were
young and had murky visions of the future, so the entire Green Project was
nearly dashed.

Enter the Web

In 1993, however, the World Wide Web exploded, something that proved to be
good fortune for the Green Project team and Sun. Because the language that they
created was designed to work over networks and provide dynamic content, the
Internet suddenly seemed like the perfect environment in which the language
could live. They immediately realized they had created a programming language
that had possibilities much larger than just the consumer devices market. In fact,
they had something that would change the way we use the Internet altogether.

4373book.fm Page 2 Tuesday, July 13, 2004 3:44 PM

The History of Java

3

In 1994, the Green Project began promoting their new programming lan-
guage as a language-based operating system and targeted the online multimedia
aspects of the Internet. They soon discovered that an obscure, existing program-
ming language was called Oak, so they had to change the name. Among others,
Neon, Pepper, Silk, and Lyric were suggested before Java finally became the offi-
cial name. Sun Microsystems began giving the language away on the Internet and
finally officially announced the language in May 1995.

Since that time, Java technology has become incredibly popular. We use it to
provide dynamic content on the Internet, but it also has become a powerful lan-
guage for developing large-scale enterprise applications and e-commerce appli-
cations. Java has even come full circle and is now embedded in many consumer
devices such as cellular phones, PDAs, and smart cards.

Remember Duke, the character on the original Star7 device? The Green Project team
so loved the little guy that they kept him around, and he has been the mascot for the
Java programming language all along. Hey, it isn’t every programming language that
has a mascot!

The Features of Java Technology

A long list of features makes Java an excellent programming language. Java can
be described as simple, object oriented, interpreted, portable, robust, secure,
multithreaded, and high performance. Beyond this, it also saves time and money
and solves some important problems.

Those are all excellent traits for a language, so it is no surprise that so many
people are excited about Java and that it has become adopted worldwide. The
next few sections discuss each of these features of the language and show you
why many people are so excited about programming with Java.

The Java platform is formed from two components:

◆

The Java application programming interface (Java API)

◆

The Java Virtual Machine (JVM)

The Java API is a set of libraries that you can use to accomplish tasks such as cre-
ating graphical user interfaces (GUIs), performing file input/output (I/O), and
establishing network communication. The JVM is in charge of executing your
code in a specific environment.

The father of Java technology, James Gosling, along with Henry McGilton, wrote the
official white paper on Java upon its original release in 1996. This paper discusses
the features of the language in detail. You can check it out at

http://java.sun
.com/docs/white/langenv/index.html

.

4373book.fm Page 3 Tuesday, July 13, 2004 3:44 PM

4

Chapter 1

Java Is Simple

object

A distinct unit of code in memory that,
when combined with other objects, can
form complete applications. Most pro-
grams will be composed of multiple
objects that communicate with one
another via methods.

Learning a new programming language is often a lot of hard work. I am not
about to tell you that you won’t face challenges in learning Java, but I can say
that because of the stylistic simplicity of the language, many people learn it
quickly. Java does not have a lot of clutter to get in the way, and because it was
built from the ground up with modern programming concepts in mind, those
who have worked with other languages will notice a degree of familiarity.

object-oriented

A programming methodology that orga-
nizes programs following a real-world
model. In the real world, objects are
often composed of smaller components.
In object-oriented development, this
same concept is applied, which leads to
flexible, reusable code.

One of the primary goals of the Java language developers was to remove any
aspects of languages such as C and C++ that were determined to be overly com-
plicated and extraneous. Java does not have a large number of constructs, and
thus it is small and simple to understand. However, do not equate simplicity with
inferiority; Java is a powerful language indeed—much like English. After all,
even though the English alphabet has only 26 letters, those letters can be com-
bined in virtually limitless ways!

state

The data of a program or an application.
For example, the balance of a bank
account is a state. Subsequent functions
can operate on that state. For example, a
method can calculate the interest on the
balance passed to the method.

Part of ensuring Java’s simplicity involved creating the syntax of the language
itself. Java looks much like C++, a language with which many developers are
familiar. If you are a JavaScript programmer, you will be comfortable writing
Java code because the syntax is similar. Don’t think for a minute that this sim-
plicity somehow results in a trivial language, though. Java is powerful, but its
simplicity makes for straightforward access. After all, programmers want to pro-
duce solid code without having to twist their mind into knots trying to under-
stand what they are doing. Java programs are easier to create than programs in
a comparable language such as C++, but the results can be equally robust. You
might even find yourself with a smile on your face once in a while when working
with Java!

Java Is Object Oriented

behavior

The collection of methods for a particular
class. The behavior of objects typically
manipulates their state.

The

object-oriented

 paradigm has risen in popularity and has become the de
facto standard for today’s software development. An

object

 is a model in soft-
ware and contains qualities of both state and behavior. In a program, you can use
objects to represent anything you want.

procedural code

This code is composed of a series of func-
tions that perform distinct units of work on
data passed to them. Procedural code is
often difficult to manage and extend,
though it is also generally easier to grasp
initially than object-oriented code.

For example, an object such as an airplane has qualities of

state

, such as the
number of seats in first class and coach, the amount of fuel the airplane holds,
and the movie that will be shown. The airplane also has qualities of

behavior

,
such as taking off, flying, turning, and landing. Object-oriented programming
focuses on the state and behavior of individual objects. These objects can com-
municate with one another to form the complex logic necessary in most of
today’s programs.

4373book.fm Page 4 Tuesday, July 13, 2004 3:44 PM

The History of Java

5

method

A unit of code that performs one or more
actions. For example, an object can have
a method named

print

 that sends a
document to a printer. In other lan-
guages, methods are sometimes called
functions, procedures, and operations.

Earlier programming languages often used more

procedural code

, meaning
that the focus was on the behavior and not so much on the state. In other words,
the state existed only to support the behavior. To model an airplane with proce-
dural code,

methods

 control the plane, making it take off, fly, turn, and land
instead of the plane doing these things on its own. The object-oriented approach
is much closer to how things work in the real world.

bytecode

The platform-independent format of
compiled Java code that executes in the
Java Virtual Machine.

If you have worked only with procedural programming before your venture
into the world of Java, you will probably find learning the object-oriented con-
cepts the most challenging aspect of your studies. Once your mind makes the par-
adigm shift to objects, though, you will see a whole new world of power and
possibilities.

If the concepts of objects and object-oriented programming are confusing, don’t
worry. You will learn more about this powerful methodology in Chapter 6, “Introduc-
tion to Object-Oriented Programming.”

Java Is Interpreted

Java Virtual Machine (JVM)

An abstract computing machine in which
all Java programs execute. The JVM is the
key to Java’s cross-platform nature
because it provides the same environ-
ment on any platform on which it actually
runs. The JVM is the intermediary
between your Java code and the actual
system on which the code executes.

Java source code is passed to a compiler that generates the

bytecode

. The byte-
code is not targeted at any specific platform. Instead, a

Java Virtual Machine
(JVM)

 interprets the bytecode at runtime and executes it. This means that only
the JVM itself is platform-dependent; the bytecode of your Java programs
remains platform-independent.

This approach is different from that of a truly compiled language such as C or
C++. In a compiled language, platform-dependent information must be linked
into the compiled code, forcing one compiled version for every target platform.
For example, if you write a program to calculate the distances of stars from each
other and want it to run on Microsoft Windows, Linux, Sun Solaris, and Mac-
intosh, you would have to compile it four times, once for each system.

Java HotSpot Virtual Machine (Java
HotSpot VM)

The Java HotSpot Virtual Machine is spe-
cially tuned to provide optimum perfor-
mance. It incorporates an adaptive
compiler that allows code to be opti-
mized as it executes. This means faster,
more efficient code at runtime than past
virtual machines have been able to
achieve.

The significant drawback with an interpreted language like Java is that code
being dynamically interpreted executes more slowly than code that is compiled
and native to a particular platform. Although this fundamental fact may be true,
the JVM has been augmented over the years to become the

Java HotSpot Virtual
Machine (Java HotSpot VM)

. The HotSpot VM contains an adaptive compiler
that allows performance hot spots to be detected at runtime and optimized while
your code is executing. This results in faster running code that still gains the ben-
efits of being interpreted. Nowadays, properly designed Java programs execute
at speeds comparable to similar programs written in C++. In essence, the one
black mark of being interpreted has been removed completely.

4373book.fm Page 5 Tuesday, July 13, 2004 3:44 PM

6

Chapter 1

Java Is Portable

applets

Executable modules that are automati-
cally downloaded to a user’s web browser
over a network such as the Internet.
Applets allow deployment to be simple
and provide a mechanism to add
advanced functionality to web pages.

In the past, portability was not as much of a concern as it has become today.
Most applications were fairly static in the sense that they were deployed on a
consistent platform and did not require a lot of changes and tinkering to keep
them running. However, in today’s systems it is not at all uncommon for many
components to be distributed across various hardware, operating systems, and
networks. This heterogeneousness would pose great problems for many lan-
guages, but not Java!

Java applications can run practically anywhere, which makes Java quite rev-
olutionary. Essentially anything that has some kind of processor can be Java-
enabled, from mainframes to personal computers to telephones and beyond.
Java programs are flexible enough to be local applications, web-based

applets

,
server-side applications, and embedded software. The application code does not
usually have to be changed to run on these different devices, either. This means
you can truly write the code once and run it anywhere you want.

strongly typed

When a language is strongly typed, it
imposes strict rules on the declarations
made in the code itself. Some languages
allow a variable to represent an unknown
data type, but languages such as Java
force you to declare all variables to be a
specific type before they can be used.

The key to this portability is the interpreted nature of the language. Because
code does not have to be compiled to specific platforms, your Java programs can
run anywhere that a JVM exists. The world does not run on one type of platform
alone, and new platforms are constantly being introduced. By being portable,
Java programs written today can still be viable tomorrow.

You can achieve this portability for your Java code only if you follow the
rules, though. Believe me, it is entirely possible to write some very nonportable
code if you are not careful. For this reason, Sun has introduced the 100% Pure
Java initiative, which allows you to ensure that your code is portable by running
it through a variety of test suites. Obviously, maintaining portability is consid-
ered extremely valuable; Java was designed with this important consideration in
mind. It is nice to know that the engineers at Sun are always working to make
your life a bit easier!

Java Is Robust

pointers

In languages such as C and C++, a
pointer represents a specific location in
memory that the code itself controls.
Pointers can lead to dangerous prob-
lems, including data corruption, if they
are not used correctly. Java removes the
whole notion of managing your own
pointers, which removes this often
unnecessary complexity.

Robust code is reliable code. Java has a few features that tend to make it more
robust than many other languages, thus easing the burden on developers attempt-
ing to avoid pitfalls. Specifically, Java is strongly typed, includes automatic mem-
ory management, utilizes garbage collection, and provides an exception-handling
mechanism. Let’s take a look at what these qualities mean.

Java is considered a

strongly typed

 language. This means that many checks are
made against the code to ensure that it correctly follows the rules of the language.
Java is strict about what is considered legal in code, and the compiler simply does
not allow you to make many of the mistakes that have plagued developers work-
ing in other languages for years. Essentially, the compiler enforces the rule that all
declarations in your code are explicitly given. You cannot use a variable called

4373book.fm Page 6 Tuesday, July 13, 2004 3:44 PM

The History of Java

7

fred

without declaring what

type

 fred

 actually is (perhaps an integer, a byte, or an
image). Similarly, you cannot invoke a method unless you have already defined
that method, and you cannot pass any parameters to that method unless you have
explicitly listed them.

garbage collection

Part of the Java Virtual Machine’s
responsibility is managing memory on
your behalf. When memory space you
have used in your code is no longer
needed, the garbage collection mecha-
nism kicks in and eventually clears that
memory automatically. Because of this
automatic procedure, there isn’t a stan-
dard way to manually clear memory from
within Java programs. The garbage col-
lection process is a great benefit
because it reduces both the amount of
code you need to create and, more
important, dangerous bugs that can
creep into your code if you could other-
wise mismanage memory.

The compiler is only half the solution, however. The JVM also plays a part in
ensuring robustness. All memory is managed for you automatically, and it is
impossible for Java code to stomp on your system memory, potentially corrupt-
ing parts of your data. The interpreted nature of the language allows the JVM to
take full control of memory management, freeing developers from having to han-
dle these complex details on their own. Java developers do not work with

point-
ers

 at all, thus immediately removing the possibility of many complex bugs.
The runtime also includes the

garbage collection

 mechanism. This is a part of
the JVM that monitors memory and determines if there is any “garbage” to clean
up. With C++, for example, you have to ensure that all objects you used were
removed from memory or risk the nasty business of a memory leak. With Java,
all this potentially complex memory cleanup and maintenance is handled for you
automatically.

Java also includes an extensible mechanism for

exception handling

, similar to
the system used in C++. Instead of creating simple error codes and passing these
around your programs, Java allows you to define exception types that signify
specific error conditions. For example, you might want to signify that a network
port is unavailable or that there are not enough items in an inventory to fulfill an
order. These possible error conditions can then be handled within the programs
that are attempting to perform these actions. These errors can even be overcome
without any user intervention whatsoever; the code can correct these errors while
it is running. In other words, the exception-handling aspect of the language
allows you to maintain robustness in your specific programs.

Java Is Secure

exception handling

A form of flow control that handles pro-
gram errors. In many other languages,
errors are reported as a code number of
some kind that is often cryptic and diffi-
cult to work with. Java uses exception
handling, which provides a more robust
method for trapping and recovering from
logical errors.

One of the top features for end users of a Java application is that it can be dynam-
ically downloaded from a remote location. Although this is indeed a powerful,
desirable feature, a lot of risk is inherent in the process. It does not seem wise to
download code from someone on the Internet and then just let it run at will on
your system, does it? This is how things such as viruses and other maliciousness
can invade your otherwise happy computer. Luckily, Java recognized these
potential threats and incorporated a multiphase approach to ensure a high level
of security.

To begin with, you just learned about the robustness of the language in regard
to its memory management and compile-time checking. These two features also
contribute significantly to Java’s security. Because the JVM is “in charge,” it is
impossible for normal Java code to cause a problem with system memory that
could lead to insecure or corrupted data. It also means that pure Java code is

4373book.fm Page 7 Tuesday, July 13, 2004 3:44 PM

8

Chapter 1

unable to install a virus or worm on your system because it cannot “touch” mem-
ory directly.

Java security also extends to so-called foreign code. Foreign code is not writ-
ten in another country, of course, but executes across a network. If you access
code over a network (as would be the case with a Java applet), the natural reac-
tion of Java is to not trust the code whatsoever. This does not mean that the code
cannot execute, but it does mean that the code cannot access your local file sys-
tem or devices such as printers and modems. The end user can override this secu-
rity, but the default behavior is to protect their systems from potential harm. This
is the type of security most users are immediately concerned with because it pre-
vents an invasion of their privacy.

Because Java technology is so prevalent on networks and in today’s enterprise
systems, its security aspects are absolutely vital. Because Java provides such
excellent security inherently, it is the perfect language to be used in these envi-
ronments and can be trusted not to cause more harm than good.

Security is never perfect. It is unwise to ever consider anything on a network com-
pletely secure. If hackers have enough motivation, they can defeat any security. The
true goal of any security scheme is to make it so difficult to breech that it becomes
practically pointless to continue trying. In all my years of working with security, I have
found the best way to thwart attacks is to force the miscreants to just give up and go
away. The Java language has established itself as being extremely secure, but this
does not mean that just because you use the language your programs are totally pro-
tected from attack.

Java Is Multithreaded

multithreaded

An application that can control individ-
ual threads to perform specific actions is
considered multithreaded. By divvying up
the processing across these threads, an
application can appear to be performing
multiple actions simultaneously. Java is
inherently multithreaded, making the
creation of these advanced programs
simpler than other languages.

If a program is

multithreaded

, it can do more than one thing at a time. Most
applications that you use are multithreaded, such as your web browser, for
instance. Imagine visiting a website that allows you to play a music clip while you
are scrolling through information on a page. Because you are probably working
on a machine with a single processor, only one thing can be done at a time. How-
ever, when an application is multithreaded, “lightweight processes” can execute
concurrently. These lightweight processes are still only executing one at a time,
but they are swapped out so quickly that it appears as if several things are hap-
pening simultaneously.

threads

Lightweight processes contained within
an actual process. Threads are the build-
ing blocks of multithreaded programs and
provide separate distinct processing.

These lightweight processes are called

threads

, and each thread can be
assigned a specific operation to perform for the master application. Because the
Java language is natively a multithreaded language, utilizing threads in your pro-
grams is a straightforward task.

Threads are an advanced concept and are not discussed further in this book. If you
are interested in learning more about threads and multithreading, I recommend

Java
Threads

by Scott Oaks and Henry Wong

.

4373book.fm Page 8 Tuesday, July 13, 2004 3:44 PM

The History of Java

9

Java Is High Performance

In the past, some performance issues generated concerns for Java’s viability, but
recent versions have performed at the speed that developers demand. The per-
ception that Java programs were slow was mainly because it is an interpreted lan-
guage. An interpreted language has to read every individual instruction and
compile it into instructions that are understood by the system on which the code
is executing. These added steps tend to slow down programs considerably. With
all the other great features the Java language provided, it was unfortunate, but
not surprising, that speed was the major drawback. Speed is, after all, usually
paramount on anyone’s list of importance in an application.

However, advancements in the way that the JVM works have made Java’s
speed comparable to the speed of C++ code in most situations. This increase in
horsepower was achieved without sacrificing any of the other important features
too! These improvements have made Java the perfect choice for today’s devel-
oper, especially when they are developing for the Internet and other networked
environments.

An important point to keep in mind about Java is that it performs wonderfully
in most applications, including GUI-based solutions and network code. Those
types of applications are not constantly executing but spend most of their time
waiting for input, processing data, and returning output. Although Java is not
a language designed to write low-level device drivers and the like, it is an excel-
lent language for almost every other type of application.

You may wonder why Java is not a good choice for writing device drivers. A device
driver should be targeted to specific hardware to allow it to take full advantage of
speed and free access to video cards, printer ports, and so on. Because Java is a
cross-platform language, it is best suited for higher-level applications that do not
directly access hardware-specific features. If you were hoping to write a Java video
driver, you might want to rethink your plans a bit!

Java Saves Time and Money

By using Java technology, you can often significantly reduce the cost of develop-
ment. Software development with Java is a much quicker process than with most
other languages. This is largely because of the platform independence and famil-
iarity of the language. Because the syntax is similar to popular languages such as
C/C++ and JavaScript, it is usually relatively simple for developers to learn how to
work with Java technology, and because of the widespread industry support, it is
often convenient to incorporate Java applications into an existing infrastructure.

Deployment costs are also lowered and often eliminated altogether. It is com-
mon for Java applications to be delivered dynamically over a network without
any user intervention whatsoever. This means the end user does not have to
install, configure, or otherwise tinker with the application that they want to use.

4373book.fm Page 9 Tuesday, July 13, 2004 3:44 PM

10

Chapter 1

Java Solves Important Problems

From the beginning, Java was designed for networking and security. Applica-
tions used over a public, insecure network such as the Internet pose problems.
Who would use online banking software that was not secure? What user wants
to install dozens of applications on their system to access online applications?
From the business perspective, how can you handle problems such as deploy-
ment and version control and also be sure that the code cannot be used in a dan-
gerous fashion to exploit your sensitive corporate information?

Java is perfect for solving many of these problems. Many businesses use the
public Internet backbone to deploy websites for their prospective consumers;
often these businesses want to provide enhanced functionality. This might
include account management at a bank, three-dimensional modeling of automo-
biles, or even a virtual desktop that allows employees to work from remote loca-
tions. All these types of applications—and many more—can be created with Java
technology.

How Java Compares with Other Languages

Though Java is a great language, it is one of the newer kids on the block. Other
languages such as C++, JavaScript, and Perl are also popular choices. Java has
commonality with each of these as well as many differences. In this section, you’ll
see how Java stacks up head to head with these languages and why Java might
be a better choice.

We can group programming languages into three categories. First are the
compiled languages such as C and C++ that are bound to each native platform,
making them high performance but not very portable. Second are the scripting
languages such as JavaScript and Python that are useful for portable processing
but have little to offer in the way of performance. Third, and somewhere in
between these first two categories, is the Java language itself. It combines the
portability and simplicity of the scripting languages, yet it can execute at speeds
comparable to the compiled languages. Because of this unique combination of
traits, Java can solve many problems in many different situations.

C++

An object-oriented version of the C pro-
gramming language that gained
immense popularity in the early 1990s.
C++ can be thought of as a close cousin
to the Java programming language.

Java and C++

C++

 is another popular, object-oriented language that can
be used to create high-performance code. In fact, most enterprise develop-
ment that is not being written in Java is probably being written in C++. As
a language, C++ is syntactically fairly simple, though it is not as user
friendly as Java tends to be. C++ is also truly compiled code, so it cannot
run on just any platform without a binary executable for the system.

Although both languages are classified as object oriented, Java was
designed with those concepts in mind from the beginning. This contributes
to Java’s flexibility, syntactic simplicity, and overall “friendliness.”

4373book.fm Page 10 Tuesday, July 13, 2004 3:44 PM

The History of Java

11

JavaScript

A scripting language developed by
Netscape to add interactivity to web doc-
uments. JavaScript is a programming lan-
guage but is simple to learn and use,
making it excellent for web content devel-
opers who don’t have backgrounds in
more complex programming languages.

Java and JavaScript

It has been said that the only thing that the Java and

JavaScript

 languages really have in common are their first four letters. That
is not exactly true, but it does indicate that the similarity is not as close as
you might think. Sun Microsystems created the Java programming lan-
guage, and Netscape created JavaScript. JavaScript is a scripting language
that is based on object-oriented concepts, but it does not treat objects
exactly the same way that a language such as Java does.

Common Gateway Interface (CGI)

A standard for interfacing external appli-
cations with HTTP servers on the Web.
CGI solutions are often used to provide
functionality to a website such as pro-
cessing forms, creating images, and gen-
erating dynamic HTML.

Java and Perl

Perl is another scripting language used in a variety of sce-
narios. Perl really became popular when it became known for extending
websites and allowing dynamic processing. Perl is a common implementa-
tion language for

Common Gateway Interface (CGI)

 solutions and is prev-
alent on the Internet. Perl is one of those languages that you either love or
hate. It is flexible and powerful, but it is also perceived as somewhat com-
plicated. Java can do anything that Perl can do functionally, but it was
designed to be more user friendly than Perl seems to those new to the
language.

How to Download and Install Java

Before you actually download and install Java on your system, let’s take a look
at some of the various available downloads.

The Java 2 Platform Standard Edition (J2SE)

The J2SE is the essential
download that you need to both develop and execute Java programs. It
contains the API libraries, the compiler used to produce bytecode, the JVM
and interpreter, and various other tools.

The Java 2 Runtime Environment, Standard Edition (J2RE)

The J2RE
is a trimmed-down version of the J2SE, basically. It does not contain the
compiler or other tools, but it still has the API libraries and the interpreter.
This download should be installed on a system that needs to execute Java
code only. It does not provide the mechanisms needed to create Java appli-
cations, only to run them.

Something called the Java Plug-in provides the runtime environment for most users
of online Java applications. Essentially, the Java Plug-in is an automatically deployed
version of the J2RE. If you download the J2SE, the Java Plug-in is included. You can
learn more about the Java Plug-in by going to

http://java.sun.com/products/
plugin

.

The Java 2 Platform, Enterprise Edition (J2EE)

J2EE is both a platform
and a technology, designed to simplify the creation of highly scalable enter-
prise applications. J2EE relies on various vendor-provided servers to

4373book.fm Page 11 Tuesday, July 13, 2004 3:44 PM

12

Chapter 1

provide the execution environment. Note that J2EE still requires the stan-
dard APIs found in the J2SE to operate.

JavaServer Web Development Kit (JSWDK)

The JSWDK is used for
writing and testing servlets or JavaServer Pages (JSP), which let you extend
a web server more powerfully than traditional CGI solutions.

The Java 2 Platform, Micro Edition (J2ME)

The J2ME is an optimized
and smaller version of the J2SE that is designed to produce programs capa-
ble of running on consumer devices such as smart cards, cell phones, and
PDAs. It supports networked as well as standalone applications, user inter-
faces, and security.

There are some other Java technology–related downloads, but these are the
five major bundles available. The remainder of this book deals only with the first
download, the J2SE itself. The good news is that every one of the other Java
downloads is built on the fundamentals you will learn in this book, so you will
eventually be able to investigate all of them.

Downloading the J2SE Software

Let’s get started! Be sure you are connected to the Internet. Then open
your browser and enter the URL

http://java.sun.com/j2se/1.5.0/
download.jsp

. You will find a list of downloads for Windows, Linux, and
Solaris, as shown here.

4373book.fm Page 12 Tuesday, July 13, 2004 3:44 PM

The History of Java

13

As you can see, there are multiple download options for each platform, includ-
ing the choice between the Java Runtime Environment (JRE) and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SDK). We are specifically interested in
the SDK choices.

After you select the file to download, you are taken to a license agreement.
After reading it, click the Accept button to open a page with a link to the down-
load itself. You can choose to either download the entire installation file or run
the installation over the network. Whichever you choose, just click the link and
wait until the download completes.

These downloads are rather large, so be sure that your Internet connection is avail-
able for the time required.

Once you have the download on your system, you are ready to install. I have pro-
vided directions for the Windows and Linux platforms in the following sections.

Instructions for installing J2SE on Solaris can be found at

http://java.sun.com/
j2se/1.5.0/install-solaris

.html.

Installing J2SE on Windows

The J2SE is supported on Windows 98, Windows Me, Windows XP, Win-
dows 2000 Professional, and Windows NT 4. Ensure that at least 120 megabytes
of space is available in your file system before you begin the following steps.

These directions are specific to Windows XP. The installation procedure is effectively
identical on all the supported versions of Windows, but small differences might
appear in some screens.

1.

After the executable extracts the required contents to a temporary folder,
another license agreement opens.

4373book.fm Page 13 Tuesday, July 13, 2004 3:44 PM

14

Chapter 1

2.

After you read the license, select “I accept the terms of the license agree-
ment” and click the Next button to open the first Custom Setup screen.

3. The Custom Setup screen lists the optional features that you can install. At
this point, all the options are selected, and you can just leave this section
alone. Toward the bottom of this window, you’ll see the installation folder.
If you want to choose your own folder, click the Change button. This will
open a window so you can choose a different installation directory.

4. Click Next to open a screen that displays the progress of the installation.
This will take some time.

4373book.fm Page 14 Tuesday, July 13, 2004 3:44 PM

The History of Java 15

When the next Custom Setup window pops up, continue to step 5.

5. This new screen displays the options for the Java Runtime Environment.
Once again, just stick with the defaults. You can change the installation
folder if you want as before. Once you are satisfied with the choices, click
Next to open the Browser Registration screen.

6. On the Browser Registration screen, you see the browser selections avail-
able on your system. You can deselect browsers on this screen if you do not
want the Java Plug-in to be automatically associated with them. Click Next
to begin the installation.

4373book.fm Page 15 Tuesday, July 13, 2004 3:44 PM

16 Chapter 1

As is typical, you see the progress bar as the files are installed on your
system.

7. When all the files are installed, you see the final screen indicating success.
Click the Finish button to complete the installation.

You have now installed the J2SE. Now you have to configure Java for your
environment.

Configuring the Installation on Windows
To use the Java compiler and runtime, you first need to update your PATH
environment variable. How you do so depends on your specific version of
Windows.

4373book.fm Page 16 Tuesday, July 13, 2004 3:44 PM

The History of Java 17

These configuration steps are specific to Windows XP. If you are using a different
version of Windows, you can find specific configuration instructions at http://
java.sun.com/j2se/1.5.0/install-windows.html.

1. On the Desktop, right-click the My Computer icon and choose Properties
from the shortcut menu to open the System Properties dialog box.

2. Click the Advanced tab, and then click the Environment Variables button
to open the Environment Variables dialog box.

4373book.fm Page 17 Tuesday, July 13, 2004 3:44 PM

18 Chapter 1

3. In the System Variables section, select the PATH environment variable,
and then click the Edit button to open the Edit System Variable dialog box.

4. In the Variable Value box, append the following line to your path
statement:

C:\Program Files\jdk1.5.0\bin

This may not be the exact path to your installation folder. Replace the installation
folder with whatever selection you made back in step 3 of the “Installing J2SE on
Microsoft Windows” section. Be sure to include the bin subdirectory in your path,
though.

5. Click OK to close the Edit System Variable dialog box, click OK to close
the Environment Variables dialog box, and finally click OK to close the
System Properties dialog box.

Congratulations! You have installed Java on your system, and the configura-
tion is now complete.

Installing J2SE on Linux
If you are running the Linux operating system, you do not have the advantage of
a wizard-based installation. Even so, the procedure is not difficult, and this sec-
tion should help you install and configure Java for your system.

These instructions are for the automatic installation provided via the Linux RPM file.
This installs Java to the /usr/java directory by default and requires you to become
root to complete the installation. If you need more control over which directory Java
installs to or you do not have root access, follow the instructions for installing a self-
extracting binary at http://java.sun.com/j2se/1.5.0/install-linux.html.

4373book.fm Page 18 Tuesday, July 13, 2004 3:44 PM

The History of Java 19

1. Download the Linux RPM in the self-extracting file from the download
location discussed at the beginning of the “Downloading the J2SE Soft-
ware” section. Be sure to select the SDK, not the JRE, because you want the
compiler installed as well.

This download is rather large, so be sure your Internet connection is available for the
time required.

2. Open a terminal window, and change to the directory where the RPM
download is located.

3. You need to make the file executable, so type the following command at
the prompt in your terminal window:

chmod a+x j2sdk-1_4_1_01-linux-i586-rpm.bin

4. To unpack the downloaded RPM, type the following in the terminal window:

./j2sdk-1_5_0-beta2-linux-i586-rpm.bin

This displays a license agreement. After you read the agreement and agree
with the terms, the RPM is extracted to the current directory.

5. You need to become the root user to continue, so switch to su now and
enter your root password when prompted.

6. To install the download automatically, type the following command in the
terminal window:

rpm -iv j2sdk-1_5_0-beta2-linux-i586-rpm.bin

7. You can verify that the installation was successful by checking the version
of the Java runtime. Type the following line in the terminal window:

/usr/java/j2sdk1.5.0/bin/java -version

This should return the version number of the download you installed (in
this case, the version will begin with 1.5.0).

Now you’re ready to configure your system.

Configuring the Installation on Linux
Now that Java is installed on your Linux system, you need to set your PATH
environment variable to include the directory where the Java tools are stored.

1. Open your shell’s startup script (for example, the .cshrc or .kshrc file).

2. Set up the JAVA_HOME environment variable. How you do this depends
on which Linux shell you are using, but the value of JAVA_HOME should
be set similar to the following:

/usr/java/j2sdk1.5.0

4373book.fm Page 19 Tuesday, July 13, 2004 3:44 PM

20 Chapter 1

The value in step 2 may be different if you installed the SDK to a different directory
or if you are using a different SDK version. If you are not sure what the exact value
should be, consult the online installation instructions.

3. Now add the PATH environment variable. Note that you may already
have a PATH set in your startup script. This command adds the required
path to the Java tools to your existing PATH environment variable. You
might want to check the installation instructions for setting this value, but
the value you need to add will be similar to the following:

$JAVA_HOME/bin:$PATH

4. Close your startup script, and restart your system. Once the system is
rebooted, your Java installation should be configured and ready to go.

If you are familiar with your Linux shell, you do not have to reboot the entire system.
Instead, you can run your startup script using the specific “source” command for your
system. Consult your system documentation for more information on refreshing your
startup script.

Terms to Know
applets method

behavior multithreaded

bytecode object

C++ object-oriented

Common Gateway Interface (CGI) pointers

exception handling procedural code

garbage collection state

Java HotSpot Virtual Machine
(Java HotSpot VM)

strongly typed

Java Virtual Machine (JVM) threads

JavaScript

4373book.fm Page 20 Tuesday, July 13, 2004 3:44 PM

The History of Java 21

Review Questions
1. Which two components form the Java platform?

2. What was the name of the internal project at Sun Microsystems that pro-
duced the first version of the Java programming language?

3. What are some types of applications for which Java is suited?

4. Who is considered the father of Java technology?

5. What does it mean for a language such as Java to be strongly typed?

6. What does the Java compiler produce from source code?

7. What is the engine that allows Java code to be platform independent?

8. To which of today’s development paradigms does the Java language adhere?

9. What is included in the Java 2 SDK Standard Edition?

10. On which language was Java syntax largely based?

4373book.fm Page 21 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 22 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

2

Java Fundamentals

Now that you have learned a little of Java’s history and should have
the JDK installed on your system, it is time to start concentrating on writ-
ing some code. We’ll begin with a simple example of a Java program, but
don’t let that simplicity fool you. Everything you learn in this chapter
lays the foundation for creating well-written and functional Java
programs.

◆

How to write a simple class and method

◆

How to compile and execute a Java
program

◆

The types of Java programs

◆

Which standard primitive types are
available

4373book.fm Page 23 Tuesday, July 13, 2004 3:44 PM

24

Chapter 2

Creating a Java Program

You need to take three distinct steps to create any Java program, and we inves-
tigate all three in this chapter. Here are brief descriptions of these three steps:

source code

The “human” language of Java. You write
the source code and eventually compile
it into the more cryptic bytecode needed
by the JVM. Source code is a high-level
view of a programming language.

Write the source code.

This is just plain text, but you need to write it fol-
lowing the Java programming language rules. The

source code

 is passed to
the compiler to produce the bytecode, but it can also be read by human
beings. When you can access the source code for a program, you can use
it to learn everything that the underlying code is designed to do.

Compile the source code.

After you finish writing the source code, you
must

compile

 it by passing it to a Java

compiler

, a tool that converts the
source code into a class file. Remember that a class file contains bytecode.

compile

The process of converting source code
into Java bytecode. The Java compiler
creates class files that can be inter-
preted by any JVM.

Execute the program.

You accomplish this using the Java

interpreter

,
which reads the bytecode instructions so that the program can perform its
functions. The interpreter reads an entire class file into memory and trans-
lates the standard bytecode into the real operating system instructions for
the target system.

These are the three stages of all Java programs, from the simplest types to the
extremely complex. So, without further delay, let’s actually perform all three of
these steps with our first program.

The HelloWorld Program

compiler

The tool that converts the source code
into class files. The compiler reads each
line of source code and makes sure that
you have followed all the rules. If the
compiler finds any problems, it reports
those errors to you on the command line.

Throughout the annals of programming books, one tradition has survived doz-
ens of years and hundreds of languages: the HelloWorld example. Although this
example is always a simple program that just prints a greeting to its creator, the
tradition exists for good reason. Essentially, it lets new developers get their hands
dirty quickly with simple but obvious results, instead of reading a bunch of the-
ory early in the game. In other words, those learning new languages often find
that it is more effective to see the working machinery before they learn how to
put it together.

interpreter

An interpreter parses and executes each
statement as it is found in a class file.
When you execute a Java program, you
use the

java

 command followed by the
class that you want to execute. This

java

 command is the interpreter.

Traditionally, developers start learning a new language by copying code and
playing with it, an approach I’m going to heartily advocate in this book. It is
probably best to type the code as you see it in the text first, but then you should
feel free to alter the code that you see in the following section or anywhere else
in the book. I can tell you from experience that the absolute best way to further
your knowledge of Java is to

play with it!

So let’s start playing.

4373book.fm Page 24 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals

25

Writing the HelloWorld Source Code

Writing code is not easy, especially when you are working with a new program-
ming language. Besides the logic that you need to construct top-notch code, there
are a host of other considerations. For instance, how do you terminate lines of
code? How do you define a method? Overall, how do you begin writing in the
first place?

Thus, the HelloWorld example was born. In a moment, you will find a Java ver-
sion of HelloWorld. Enter the code exactly as you see it into your editor. Java is a
case-sensitive language, so you cannot just type your code haphazardly. Be sure to
maintain capitalization throughout your source code because “HelloWorld” is

not

the same as “helloworld,” “Helloworld,” or “HELLOWORLD.” This is espe-
cially important if you commonly work on a Windows system, which is not typi-
cally concerned with case sensitivity.

You can use any text editor to write Java programs. If you are working on a Windows
system, you can use the Notepad program. On a UNIX system, you can use the stan-
dard text editor. In addition, you will find a lot of Java editors for all platforms avail-
able for Internet download; so make sure to find something that you are comfortable
with. Try searching for “Java Editor” at

www.download.com

 if you want something
more elaborate than a simple text editor. Although you are free to use any editor you
want, all the code examples in this book are based on simple text editors and com-
mand-line processing.

After you complete writing, compiling, and executing this program, you will
learn about the various sections of this program in detail as we walk through it
line by line.

/*

 * The traditional HelloWorld example

 */

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println(“Hello World!”);

 }

}

Not a lot of code, is it? This code results in the message “Hello World!” being
printed to your command line, so it is indeed simple. However, we can talk about
many things in this code that will help you begin learning the details of writing
Java programs. I’ll break down every line a bit later in this chapter.

4373book.fm Page 25 Tuesday, July 13, 2004 3:44 PM

26

Chapter 2

First, though, let’s save, compile, and execute this program. It is always better
to see something work than to just read about it!

Saving the HelloWorld Source Code

Now that you have the HelloWorld program entered in your chosen editor, you
must save it. All Java source code must be saved in files that end in the

.java

extension. You must also name the source file the same as the class name itself.
In this case, the class name is what follows the

class

 keyword. So, following
those rules, the resulting filename must be

HelloWorld.java

. You can save this
file to any directory that you want.

If you are using a text editor such as Window’s Notepad that automatically adds an
extension to your files, just put quotes around the entire filename when you save it.
This prevents extensions such as

.txt

 from being added to your Java source code.

Compiling the HelloWorld Source Code

Now that the source code is saved, we must compile the code into Java bytecode.
The tool that you use to compile Java code is

javac

. To compile, open a com-
mand prompt window (or a terminal window on a UNIX system) and move to
the same directory where you saved the source code.

To actually compile this code, you need Java downloaded and installed as discussed
in Chapter 1, “The History of Java.” If you have any problems with this section, be sure
you followed all the instructions in Chapter 1 for your particular system.

To actually compile the code, type

javac

 and just pass the source code file,
including the extension, to this tool. The command looks just like this:

javac HelloWorld.java

Help! The Code Will Not Compile!

It can be disconcerting to receive an error message after you try to compile the code.
However, in almost all cases, you will find that the error is simple to correct.

Essentially, you might receive any of three major error messages. The first occurs
when your system cannot find the compiler,

javac

. If you receive this message, your
PATH environment variable has not been updated. Check out the installation steps

Continues

in Chapter 1, specifically the configuration section for either Windows or Linux.

4373book.fm Page 26 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals

27

Don’t forget that Java is a case-sensitive language; be sure to always type names
exactly as you see them in print. Although in most Windows environments, the com-
piler works even without the correct case at all times, get used to case sensitivity
right from the beginning because you will have to follow these rules in your own
source code.

When the compilation completes, control will simply return to the com-
mand prompt. If you get there, you have successfully compiled your first Java
program!

Executing the HelloWorld Program

Can you hear that drum roll in your head? It is finally time to run your first Java
program. If you perform a listing of the directory in which you compiled the
source code, you should find a new file called

HelloWorld.class

. This file con-
tains the compiled bytecode, so don’t bother trying to read it yourself. It will look
like a bunch of nonsense to you, but it is just what the interpreter needs to run
your code. This is also the file that the JVM needs to make your program run.

The interpreter is a tool named

java

. All you have to do to run the Hello-
World program is type the following command at your prompt:

java HelloWorld

The interpreter automatically appends the

.class

 extension, so do not
include it on the command line. If you do, you will receive an error message tell-
ing you that the interpreter cannot find the specified class file.

The interpreter reads in the class file and follows the bytecode instructions
that the class contains. What you should see is the ever-friendly message, “Hello
World!” printed underneath this command.

The second common error is that the compiler cannot find the

HelloWorld.java

file. This could be simply because you are compiling in a directory that does not
contain your saved source code file, so make sure that is not the problem by chang-
ing to the correct directory. More likely, though, it is because the name of the
source file and the name specified on the command line do not match. Be sure all
cases match and try compiling again.

The third error is a syntax error. This might be a missing semicolon, a missing brace,
or a misspelled word in the program. You will learn more about these syntax errors
a bit later in this chapter. For now, just make sure your source code looks just like
the code in this chapter and try compiling again.

4373book.fm Page 27 Tuesday, July 13, 2004 3:44 PM

28

Chapter 2

Congratulations, you have completed your first Java program! Now that you
have gone through the process of writing, compiling, and executing this pro-
gram, it is time to take a closer look at the source code itself.

Examining the Source Code

The source code you created is mainly for the compiler to convert into a class
file. However, source code is also an invaluable resource for learning about the
Java language. If you think about it, the only part of this process that requires
your skill is the source code creation stage. The compiler and interpreter are just
tools that you use; the source code is how the programs get told what to do in
the first place.

Here is the HelloWorld source code again:

1 /*

2 * The traditional HelloWorld example

3 */

4 public class HelloWorld

5 {

6 public static void main(String[] args)

7 {

8 System.out.println(“Hello World!”);

9 }

10 }

Do

not

include the line numbers when you type this code into your editor. The line
numbers are present only to make referencing specific lines of code easier while you
read this book.

Including the four lines that contain just a single brace, the HelloWorld source
code is 10 lines long. Although that is a small piece of code, it still contains sev-
eral items that are found in almost all Java source code. Let’s investigate each sec-
tion of the code and discuss it in more detail.

Help! The Code Will Not Run!

If you receive an error message such as

NoClassDefFoundException

, the inter-
preter cannot find the

HelloWorld.class

 file. This could be because it is not in the
directory in which you are trying to execute it. Do a directory listing, and ensure that
the class file is indeed present in your current directory. If it is not, change to the cor-
rect directory.

4373book.fm Page 28 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals

29

Using Comments

comments

A special notation that you can add to
your source code to describe or explain
sections of code. Using comments is an
excellent practice because doing so
makes your source code much easier to
understand when it is referenced in the
future.

Including

comments

 in your source code is always a good idea. Often these com-
ments can help the developer understand why specific choices were made, who
wrote the code, and when it was written. They might also indicate the code’s ver-
sion or any information that explains or helps the developer maintain the code.

The compiler ignores comments, and nothing written in the comments will
end up in the class file. In other words, comments are only for the people reading
the code and contain information that only they would be interested in.

The first three lines of the HelloWorld source code are a comment:

/*

 * The traditional HelloWorld example

 */

Of course, only one of these lines actually contains any information, but it is
common to format comments like this so that they can be read easily.

It is also common to include comments at the beginning of source code to
specify standard information such as the author, contact information, and the
code’s version number. However, you can place comments throughout your
source code, and doing so is often a good idea.

Not long ago, a friend of mine was forced to revisit some Java source code
that he had written three years earlier. This code was much lengthier and more
complicated than the HelloWorld program, to be sure. However, my friend had
not added a single comment to the source code when he wrote it. Hey, at that
point, he felt it was just a waste of his time to comment on his own code. After
all, he would be the only one reading it. What he quickly discovered was that he
did not remember what certain sections of the code did and simply could not
make a great deal of sense of many of the lines he had written. Needless to say,
he was not happy that he made that decision three years before.

The lesson here is don’t fall into this trap. Use comments and use them liber-
ally. It can save you or someone else a lot of headaches in the future. For all I
know, my friend may

still

 be trying to figure out that code!

Three Styles Of Comments

The Java language allows three styles of comments in your source code. The first
two are similar to the comments used in C and C++. The third is a special form
of comment that allows for automatic documentation.

The Single Line Comment

If you just need to produce a quick comment that fits on one line in your source
code, this is the perfect kind of comment to use. The syntax is

//

, followed by
whatever comment text you want. You can use this style of comment before or
after a line of code.

4373book.fm Page 29 Tuesday, July 13, 2004 3:44 PM

30

Chapter 2

For example, you might add the following to the HelloWorld program to
explain what is happening on a particular line:

System.out.println(“Hello World!”);

// prints the message

The important thing to keep in mind is that this style of comment can be on
only one line. You cannot include a carriage return in this kind of comment. If
you do, every new line must be prefaced with

//

.

The Block Comment

This is the style of comment used in the HelloWorld source code we have been
working with in this chapter. This is an excellent comment to use when you want
a lengthier comment section that usually will include carriage returns.

The syntax for this comment is to start the block with

/*

 and end it with

*/

.
The compiler ignores everything between those two symbols. You have already
seen this style of comment in use:

/*

 * The traditional HelloWorld example

 */

Although each line in this example contains an asterisk (

*

), an asterisk is not
required. It needs to be included only with the opening of the comment (

/*

) and
the closing of the comment (

*/

). Common practice, however, is to include an
asterisk before each line of a block comment. This can help readily identify each
line as a part of a comment as opposed to an actual line of code.

You may find that the block comment style is handy to use in your source code. This
is a versatile comment to use because it can contain carriage returns. Nothing is
wrong with the

//

 style, but you can also use the

/* */

 pair on one line. Many devel-
opers find it much cleaner to stick to the latter style throughout their code. Another
plus of the block comment is that you can add new comment information to it when-
ever you want.

The Documentation Comment

This is a special form of block comment. You use it in conjunction with another
tool you received when you downloaded and installed Java—

javadoc

.
The syntax for the documentation comment is the same as that for the stan-

dard block comment, except you use an extra asterisk to open the block:

/**

 * This is a documentation comment.

 * @author Todd Greanier

 * @version 1.0

 */

4373book.fm Page 30 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals

31

The documentation comment also allows you to use special standard tags for
information such as the author of the code, the version, and other details. In the
preceding code, the

@author

 and @version tags are read by the javadoc com-
mand, and the values are included in the output.

So what exactly does javadoc output? Essentially, it produces HTML documents
that will be part of the documentation for your applications. It provides a series of
linked documents that you can view in any web browser. This type of automatic doc-
umentation is one of the underrated features of the Java programming language.

You can use this special form of comment to describe the entire program as
well as specific portions of the code itself.

A complete discussion of using the javadoc tool is beyond the scope of this book.
However, if you want to learn more about this tool and how to use it with documen-
tation comments, check out http://java.sun.com/j2se/1.4.1/docs/tooldocs/
javadoc/index.html.

Whichever kind of comment you choose to use, comment your code whenever
possible. You do not always need the documentation that you produce by using
the documentation comments, but it never hurts to just use them all the time.
Essentially, wherever you can use a normal block comment, you can use a doc-
umentation comment instead.

Using White Space
The fourth line of the HelloWorld program is just a blank line. When you are
writing code, it is always a good idea to format the code so that it is neat and
readable. You can make it more legible by inserting spaces, tabs, and completely
blank lines between certain elements of the code.

Although adding these extra white-space characters to your source code
increases the source code size, they do not increase the compiled class file size.
The Java compiler ignores all white space surrounding elements of your code.
When you compiled this program, the fourth line of the HelloWorld program
was ignored. If you go into the source file, remove that blank line, and recompile,
the size of the resulting class file is the same as before.

Of course, the only white space that is ignored are those spaces, tabs, and
blank lines between elements. For example, in the eighth line of the code, the
phrase “Hello World” is being printed. Because that phrase is enclosed in quo-
tation marks, the space separating the two words is preserved.

Defining the Class
The fourth line of this code looks like this:

public class HelloWorld

4373book.fm Page 31 Tuesday, July 13, 2004 3:44 PM

32 Chapter 2

class
The fundamental component of all Java
programs. A class is a template for a
user-defined type. From a single class,
several objects can be created.

This line declares a class named HelloWorld. Every Java program includes at
least one class definition. A class definition contains all the variables and meth-
ods that make the program work. The class is the fundamental component of all
Java programs.

Before we can really continue, we need to define exactly what a class is. Essen-
tially, a class is a template that details how code should execute. Classes are the
key components of an object-oriented language such as Java. A class defines a
specific set of variables and methods, and eventually objects are created from
these definitions.

variables
These can be defined in classes and
methods and hold values that can often
be changed through the course of a pro-
gram’s execution. Variables in Java are
either primitive types or reference types.

You probably have a television somewhere in your house. Your television
may even be made by the same vendor and be the same model as mine. However,
changing your channel obviously does not change the channel on my television,
does it? We both have the same make of television, but we do not have the same
specific television.

All this talk of televisions is a good analogy for how classes relate to objects.
Just as the schematics for a television can be used to create one or more real tele-
visions, a single class can be instantiated into one or more objects. These objects
are used to communicate with other objects in most cases, forming the logic of
your applications.

You will learn much more about objects and object-oriented programming in Chap-
ter 6, “Introduction to Object-Oriented Programming.”

objects
Objects are the runtime versions of
classes. Two objects built from the same
class are considered the same type, but
they are distinct from each other in mem-
ory. Changes to one object do not affect
the other. Objects make up the key data
structure of the Java language.

A class is composed of variables that hold data for each object and methods
that provide functionality. Usually those methods alter the value of the variables
in a particular object. For example, if we stick with the television analogy, we
might have a variable called poweredOn that can be set to either true or false.
To control the state of that variable, you can produce a method named some-
thing like togglePower() that contains the steps necessary to turn the television
on and off.

With classes, you should follow a certain convention. Whenever you define a
class, the name should begin with an uppercase letter, and each new word should
start with an uppercase letter. So you could have a class called HelloWorld,
Television, or JavaDeveloper.

The Public Keyword
instantiate
The process of creating a new object.
Instantiation is a relatively expensive
process, but it is required for every new
object used in a Java program. Once
instantiation has completed, the object
is accessible and ready for use.

The first word in the HelloWorld class definition is public. We discuss this
keyword in more detail in Chapter 3, “Keywords and Operators.” However,
you are probably curious about that keyword right now, so I will give you a
brief explanation.

4373book.fm Page 32 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 33

access modifier
A special Java keyword that controls the
visibility of classes, variables, and meth-
ods. There are four access modifiers in
the Java language: public,
private, protected, and
default.

The public keyword is actually an access modifier. There are four types of
access modification in Java, and they are all used to control the “visibility” of
classes, variables, and methods. The public modifier indicates a particular class
that is designed to be used by anyone, anytime, anywhere. Essentially, the
public keyword signifies that the entire world can use the code.

The alternative to public, as you will learn more about later, is restricting
access. Sometimes you want to ensure that specific code can be called by only a
controllable set of entities to provide some protection against misuse.

For example, if you are designing a bank account as a class, you might define
a variable to hold your current balance. Would you really want that variable to
be accessible, and therefore modifiable, by just anyone? Obviously that does not
make a great deal of sense. As you will see in Chapter 3, if you used the private
keyword instead of public, the balance can be altered only from within the
account class itself.

Remember that a lot of what you learn in this chapter is covered in more detail later.
If this discussion of access modifiers is a little confusing right now, hang in there. For
now, just use the public keyword whenever you see it in the example code.

The Braces
class body
Everything between the left and right
braces is considered part of the class
body (except comments). This includes
all variables and methods.

The fifth line of this code is a single character, the left brace ({). This indicates the
beginning of the class body, which contains any variables and methods that the
class needs. The left brace also indicates the beginning of a method body as well
(you can see this on line 7).

Placing the left brace character on its own line was purely a stylistic choice on
my part. The brace could also have gone at the end of the fourth line. The reason
I choose to place my braces on individual lines is that I think my code looks
neater and is more readable that way, and placing it there allows me to handle
what can be a frustrating problem in complex code: brace alignment.

For every left brace that opens a class or method, you need a corresponding
right brace to close the class or method. In the HelloWorld class, the right brace
on line 9 matches with the left brace on line 7, and the right brace on line 10
matches with the left brace on line 5. Those two right braces close the method
body and class body respectively.

Here is something you should commit to memory as soon as possible: a right
brace always closes its nearest left brace. That may sound simple, but I assure
you from years of developing code, tracking down unaligned braces can some-
times be painful to the point of sobbing!

Which style you choose to use for your braces, whether to put each brace on
its own line or whether to put the left brace on the same line as the class or
method declaration, is entirely up to you, of course. Neither is correct or incor-
rect. However, long ago I found my battle with brace alignment drastically less

4373book.fm Page 33 Tuesday, July 13, 2004 3:44 PM

34 Chapter 2

severe when I put braces on their own lines every time. Don’t forget, the compiler
ignores the newline characters, so your class file will be the same size either way.

Defining the Method
In most programming languages, there are sections of code called functions or
procedures. These provide a reusable set of instructions that can be “called”
whenever applications need them. For example, withdrawing money from the
bank is not as simple as debiting your balance and handing you cash. A number
of things must be done to fulfill your withdrawal request:

◆ The amount to withdraw has to be valid (not negative, for example).

◆ Your balance must be larger than the amount you are withdrawing.

◆ The withdrawal amount must be deducted from your balance.

◆ The entire withdrawal must be recorded in your transaction log.

When you go to the bank and request a withdrawal, however, you may not
even know that all these things are happening. Nor do you really need to. As far
as you’re concerned, you make a request (to withdraw money) and receive a
response (the money or an explanation of why you cannot withdraw that
amount). This request-response system is the basis for all method calls in any
programming language.

Java likes to be different, so these functions are called methods in Java code.
The definition is exactly the same, however. All methods in Java are composed
of the following elements:

◆ An access modifier (such as public)

◆ A return type (this is the “response” of the method)

◆ A name (such as withdraw or deposit)

◆ A parameter list (zero or more items needed to fulfill the “request”)

method signature
That part of a method that must be
unique in the scope of a class. Techni-
cally, a method signature is the name of
the method and its parameter list.

Later in this book, you learn how to create methods and choose return types
and parameters for them. For now, just remember that all methods have the four
elements in the preceding list. The name and parameter lists combine to form the
method signature. Every method must have a unique method signature within
the same class definition.

The main() Method
All Java programs include a special method called main(). This is the only
method defined in the HelloWorld class, and it is the method that makes a Java
program go. To execute this code, you typed the following line at your command
prompt:

java HelloWorld

4373book.fm Page 34 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 35

Whenever you invoke a program using java, the main() method is automati-
cally executed. Whatever you instructed the main() method to do is carried out at
that time. For that reason, the main() method can be called the bootstrap method
of all Java applications. It is the method that makes everything else execute.

The following main() method is found on line 6:

public static void main(String[] args)

A lot of information is contained in this method, so let’s take a look at each piece.

The public Keyword
The public keyword is the same access modifier that I discussed when analyzing
the class definition. The main() method must be public so that the interpreter
can invoke the method for you. If you forget to use the public modifier, the
interpreter will not be able to run the code.

The static Keyword
You will learn more about the static keyword in Chapter 3, but for now you
should know that it is a required part of the main() method. In this case, the
static keyword is needed so that the interpreter can access the method right
from the class instead of requiring an object. From the brief discussion of objects
so far, you should know that normally a class is just a template for individual
objects. A nonstatic method can be called only if an object has been created from
a class. A static method can be called without any objects being created.

Because the main() method is providing the bootstrap entry point into your
code, no objects are present yet. That is why you must always include the static
keyword in this method.

You can also use static with variables and other methods, so it is not solely for use
by the main() method. You learn how, why, and when to do this in Chapter 3.

The void Return Type
As you learned before, all methods require a return type. This can be a number,
a string of characters, or even another object altogether. However, in some cases,
you do not want to return anything at all. This is the case if a method simply per-
forms some task. Think of the return type of all methods as a container that has
whatever type you specify inside. So if you say that you are returning an integer,
the container is returned with one integer in it. Presumably, that integer would
be used by whomever called this method.

When you want to return nothing from a method, you need to do so with the
same container concept in mind. The difference is that, in this case, the container
has nothing in it! To indicate an empty container as your return type, you use the
special keyword void. Just remember that there is a difference between an empty
container and no container at all. The void keyword indicates an empty container.

4373book.fm Page 35 Tuesday, July 13, 2004 3:44 PM

36 Chapter 2

All methods must return something, though you now know that can be void. You will
learn in Chapter 6 about a special method called a constructor that returns nothing
at all, not even void. In other words, a constructor is the only type of method that
returns an “empty container.”

If you are familiar with languages such as C, you may be used to returning
numbers from methods to indicate error codes. That is not done in Java pro-
gramming. The main() method always returns void and can never return any-
thing else. If you try to return something other than void from the main()
method, your code will not run at all.

The Method Name, main
This method is called the “main() method” not just because it is the first method
to run in all Java applications. It just so happens that the actual name of the
method is main as well. All methods have a name, of course. Conventionally,
those names always start with a lowercase letter, and each new word in the name
begins with an uppercase letter. If you follow convention, you might create meth-
ods called togglePower(), orbitPlanet(), or learnJavaProgramming().

You may have noticed that whenever I refer to a method, the name ends with a pair
of parentheses. This is the syntax for referring to methods in Java. Variables do not
have parentheses at the end of their names when you refer to them. So you can
always tell that state is a variable and togglePower() is a method. All methods
have a list of parameters that are specified within parentheses. When the paren-
theses are empty, you are calling a method that requires no parameters.

Don’t forget that Java is a case-sensitive language. The main() method must
be named main with all lowercase letters. If you name it Main or MAIN or use any-
thing besides the lowercase letters m-a-i-n, the interpreter will not be able to
execute your code.

The compiler does not enforce these conventions. If you name the main() method
MAIN, your code will compile (assuming you have not made any other mistakes!). This
shows you the importance of learning and following the Java conventions. You can
find a list of code conventions for the Java language at http://java.sun.com/
docs/codeconv/html/CodeConvTOC.doc.html.

The Parameter List
All methods have zero or more parameters, separated by commas. These can be
any type: numbers, strings of characters, or other objects. If you do not require
parameters for a method, you do not use the void keyword. You use void only
as a return type, never for anything else. To indicate zero method parameters,
you simply leave the parentheses blank. Unlike return types, nothing really
means nothing when you are defining parameter lists!

4373book.fm Page 36 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 37

The main() method always takes one and only one parameter, an array of
strings. Essentially an array is just a collection of “things.” In this case, the
main() method takes an array of strings, so that array will contain zero or more
strings of characters.

The strings contained in this array are any arguments that you passed on the
command line. Later in this section, I show you how to work with this array to
process command-line arguments. Right now, though the interpreter is passing
the array automatically to this method when you execute the code, it is com-
pletely empty.

Remember that even if you are not accepting any command-line arguments, you
must have the array of strings as the parameter for this method. Otherwise it is not
a valid main() method and will not be invoked by the interpreter.

You may not be completely clear on how and why the main() method is
defined as it is, so for now just be sure to include it as you see here in any code
that you want the interpreter to invoke. This method will make more sense as
you continue your study of the language throughout this book. You will also
learn how to create and execute your own methods.

The Method Body
So far, you have learned how to define the method signature for the main()
method. Of course, it makes little sense to define a method that does not do any-
thing, does it? The method body is composed of a sequence of steps, just like the
functions and procedures of other languages. You can have an unlimited number
of steps in each method.

The main() method in the HelloWorld example has only a single line:

System.out.println(“Hello World!”);

statement
A complete unit of work in a Java pro-
gram. A statement is always terminated
with a semicolon and can span multiple
lines in your source code. Every state-
ment is executed in the order in which it
is found in the class or method.

This line is called a statement. A statement is a line of code that tells the inter-
preter to perform some action, such as adding two numbers together or turning
on the television. This statement tells the interpreter to print the “Hello World!”
string to the standard output.

The System.out portion of the statement actually refers directly to the stan-
dard output and is part of the standard Java class libraries. The standard output
on a Windows system is the command prompt. The standard output on a UNIX
system is the terminal window.

The println() part of the statement is a method that prints the subsequent
“Hello World!” parameter to the standard output. The println() method
automatically adds a newline to whatever it sends to the output. This is why your
prompt returns on a separate line after you run this code.

4373book.fm Page 37 Tuesday, July 13, 2004 3:44 PM

38 Chapter 2

terminating character
Whatever character or characters are used
in a programming language to indicate the
end of a statement. In Java, the terminat-
ing character is always the semicolon.

The final part of this statement is the semicolon (;). The end of every state-
ment that you write requires this character. The semicolon is a terminating
character that lets the interpreter know that it has reached the conclusion
of the statement. Without the semicolon, the interpreter would not know
when the statement ends, so the compiler enforces semicolons at the end of
all statements.

It is the semicolon, not a newline, that specifies the end of a statement. This means
you can often span multiple lines in your source code with one statement. As long as
the compiler finds the semicolon, the statement terminates correctly. Using a semi-
colon also allows you to format your code nicely so that anyone else who is looking
at it (human, that is) can read it easily. Because you will likely be reading your own
source code, this is something you should use often!

dot notation
Java uses a system of periods—the dots—
to refer to member variables and meth-
ods. The syntax object.method()
is typically how dot notation is used; this
denotes that the object “owns” the
method.

The entire line System.out.println(“Hello World!”) tells the interpreter
to send the string “Hello World!” to the println() method of the System.out
object.

Notice that every element is separated by a period (.). This syntax is known
as dot notation. To put it simply, what is to the right of the dot is “owned” by
what is to the left of the dot. So you can decipher this line as follows: “the
println() method is owned by the out object, which, in turn, is owned by the
System class.”

member
Something “owned” by a class or an
object. All variables and methods are
called members of their corresponding
object or class. Sometimes you will even
hear the term member variable to differ-
entiate those variables defined directly in
the class body from those defined in spe-
cific method bodies.

Dot notation is used constantly in Java code, so it is definitely something we
will be investigating throughout this book. The “owned” part—what is to the
right of the dot—is called a member. So finally, we can say the println()
method is a member of the out object, which, in turn, is a member of the
System class.

How do you know System is a class? This is another convention, and you
should always follow it. All classes, as you may recall, start with an uppercase
letter, whereas all methods and variables start with a lowercase letter. If you fol-
low the conventions (and the standard Java API, of course, follows them to the
letter), it is a simple matter to read code and quickly identify classes, methods,
and variables.

Wrapping Up the HelloWorld Program
You have finally written, compiled, and executed your first Java program.
Though this is an admittedly simple example, you have learned the key parts of
building a class, defining a method, and providing a method body with state-
ments. Everything we do for the remainder of this book stems from the basics
you have learned thus far.

Because of the importance of the syntax and process shown to you in this sec-
tion, be sure to refer to it if you ever find yourself confused. It is a lot to remem-
ber, so keep this simple introduction to writing Java code in mind as you progress

4373book.fm Page 38 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 39

through this book. The rest of the chapters introduce a lot more code for you to
work with and any new features or syntax are thoroughly explained at that time.
I assume, however, that you are comfortable with the following:

◆ Writing Java source code, including using comments, white space, and
braces that are aligned correctly

◆ Defining classes and methods

◆ Compiling your source code into class files using javac

◆ Executing your class files with java

Working with Arguments in the main() Method
Next, you will learn how to work with parameters in your main() method, learn
about some Java-predefined types (such as numbers and characters), and finally
take a look at the various types of Java programs that can be created.

The main() method always takes an array of strings as its sole parameter. The
strings contained in this array are any arguments that you passed on the com-
mand line. Command-line arguments allow you to pass information to your code
at runtime instead of hardcoding it in the source code itself. Passing command-
line arguments might be important for specifying information such as which serv-
ers to connect to, which files to work with, or other types of customization.

To show you how you might use this array, here is a new version of the
HelloWorld class that uses the first argument that you pass on the command line
as part of the output:

1 /*

2 * The HelloWorld2 Example

3 */

4 public class HelloWorld2

5 {

6 public static void main(String[] args)

7 {

8 System.out.println(“Hello, “ + args[0]);

9 }

10 }

Go ahead and type this code into your editor, save it, and compile it just as you
did earlier. Note that this time you should save the code as HelloWorld2.java.

Once you have compiled the code, execute it with the following line. Substi-
tute your name where mine is specified, if you like.

java HelloWorld2 Todd

4373book.fm Page 39 Tuesday, July 13, 2004 3:44 PM

40 Chapter 2

This time, the string “Todd” (or whatever you put there) is shoved into an
array of strings, and that array is passed to the main() method. Because you
passed something on the command line, you can now access it from within
your code as shown on line 8 of the HelloWorld2 example. Instead of just
“Hello World!” being printed to your window, you should now see
“Hello, Todd”.

The argument you passed on the command line is accessed via the array index.
Arrays contain any number of items, but there is only one item per index. There-
fore, the string “Todd” is in the first position of this string array. In Java, the first
index of all arrays is position zero, not one. To retrieve the argument stored
in the array, you use the syntax args[0]. The args is the name of the array, and
the [0] portion indicates the first index in that array.

You will be learning a lot more about arrays in Chapter 5, “Arrays,” including what
their syntax consists of, how to create them yourself, how to figure out how many
items are inside them, and how to add and remove items from them.

Working with Multiple Arguments
So far, you have passed just one string to the main() method. What if you want
to pass 2, 3, or 50 strings? Because the parameter to the main() method is an
array of strings automatically created and populated by the interpreter, it always
contains all the arguments that you pass. All you need to do is learn how to pass
them correctly and how to access them.

Passing them is easy. All arguments to your class are separated by spaces. If
you type the following line to execute the new HelloWorld2 class, the subse-
quent array parameter will contain all three strings:

java HelloWorld2 Fred Wilma Dino

Of course, without any changes to the source code, the output is simply as
follows:

Hello, Fred

To access all three parameters, you simply need to refer to each new index.
Remember that Java arrays always start with index zero. To access these three
arrays, you need to access index one and two as well.

Here is the third version of the code, called HelloWorld3, that processes all
three parameters:

1 /*

2 * The HelloWorld3 Example

3 */

4373book.fm Page 40 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 41

4 public class HelloWorld3

5 {

6 public static void main(String[] args)

7 {

8 System.out.print(“Hello “);

9 System.out.print(args[0] + “,”);

10 System.out.print(args[1] + “,”);

11 System.out.println(args[2] + “!”);

12 }

13 }

Compile this code and execute it like this:

Java HelloWorld3 Fred Wilma Dino

You should see output similar to the following on the command line:

Hello Fred, Wilma, Dino!

You have seen the use of the addition operator (+) in the past two examples to “add”
two strings together. This is a convenience provided by the Java language to simplify
appending one string to another. In Chapter 3, you learn more about the use of the
addition operator.

In lines 8–10, notice that there is a call to System.out.print instead of to
System.out.println. The difference is that System.out.print does not
append the newline to the output. This is why you see all the output on one line
in this example. Just keep in mind that the println method adds the newline but
the print method does not.

The Basic Java Data Types
Java has two forms of data types: primitive and reference. A primitive type
holds only a single value in memory, such as 9, 4573, or 4.67. A reference type
has an object as its value. Objects can contain several primitive types, so a ref-
erence type appears to represent multiple values. All objects are represented in
your system with a memory address, so a reference type “points” to that mem-
ory address.

The Java language has nine basic data types. The first eight are primitive
types, and the ninth is a reference type. Of all the items you use from the Java
API, you will surely use these nine data types much more than anything else.

4373book.fm Page 41 Tuesday, July 13, 2004 3:44 PM

42 Chapter 2

Let’s start with the eight primitive types. The following table lists each type by
name, gives the size of that type, and finally gives example values of each type.

If you have used other languages that have primitive types, you may be famil-
iar with having to determine the size of integers and floating-point numbers on
a system-by-system basis. Java removes that complexity altogether by mandating
the size of all types. When you program in the Java language, you know that an
integer is 32 bits in size on any system, anytime, anywhere. This is part of Java’s
promise to run on any system with a compliant JVM.

Earlier, I hypothesized the creation of a bank account as a class and said that
a balance could be defined in the source code. To do that, you could use the
float type to hold your balance. You could define the methods of the class so
that they read this float value when you require amount verification and write
a new value for the float when the balance changes.

These primitive types can be thought of as the building blocks of all Java
applications. If you take a complex application that might be composed of hun-
dreds or even thousands of objects and can unwrap it, you end up with a whole
bunch of primitive types with values that are assigned during the application’s
processing.

Literal Values
literal value
Any value that can be assigned directly to
a variable. Essentially, a literal value is a
“real” value and is not represented by a
variable, as in 123 or “Hello”.

Before you learn about each of the types mentioned in this section, you should
know about literal values. A literal value is a “real” value that is assigned to one
of the primitive data types. In other words, it is not a variable such as abc; it is
an actual value such as 100, 45.8 or ‘a’.

All the eight primitive data types can be assigned a literal value in your source
code whenever you see fit. In the following descriptions of each type, you will
see this term used quite a bit to explain some of the rules involved with these
primitives.

Name Size Examples

byte 8 bits –30, 1, 127

short 16 bits –30, 567, 15000

int 32 bits –30, 567, 987654

long 64 bits –30L, 567L, 987654L

float 32 bits –3.45F, 1.0F, 567.9876F

double 64 bits –3.45, 1.0, 567,9876

char 16 bits (unsigned) ‘a’, ‘B’, ‘4’

boolean – true, false

4373book.fm Page 42 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 43

The ninth basic type, the String, can also have a literal value assigned to it.
If this is the case, the literal value is a string of characters. In the three classes that
you have already created in this chapter, you have been using this type of literal
value without even knowing it!

There is technically another literal value in Java called null. This is meaningful only in
relation to objects, though, so I will bypass it for now and introduce it later in the book.

The Integer Types
The first four types—byte, short, int, and long—are all considered integer
types. In other words, they must be whole numbers with no decimal places at all.
The most common of these integer types is the int, the true Java integer type. A
byte is one quarter the size of an integer in memory, but it can also hold values
only from –128 to 127. A short is half the size of an int and can hold values
from –32,768 to 32,767. The int can hold any value from –2,147,483,648 to
2,147,483,647. The fourth integer type is the long, which is twice the size of an int,
coming in at 64 bits and able to represent values from –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807. That is big!

Notice that in the examples for the long type, the letter “L” is appended to
each number. This is so that Java can differentiate between a number such as
25,000 stored in a 32-bit int and the same value of 25,000 stored in a 64-bit
long. The literal value 25,000 could be either a 32-bit int or a 64-bit long
because 25,000 falls within the legal range of both numbers. However, if the “L”
is appended to the value, the compiler and the Java runtime know 64 bits should
be assigned in memory. Truthfully, because all int values are within the range
of the legal long values, you do not need to append the “L” unless you are per-
forming some arithmetic function (something you will be learning more about in
Chapter 3).

Using the Integer Types
In the following code, each of the four integer types is assigned a value, and then
they are printed to the console window. No arithmetic is being done at this point.

1 /**

2 * The integer data types

3 */

4 public class UsingIntegers

5 {

6 public static void main(String[] args)

7 {

8 byte b = 56;

9 short s = 5678;

4373book.fm Page 43 Tuesday, July 13, 2004 3:44 PM

44 Chapter 2

10 int i = 123456;

11 long g = 123456789L;

12

13 System.out.println(b);

14 System.out.println(s);

15 System.out.println(i);

16 System.out.println(g);

17 }

18 }

After you compile and execute the resulting class file,
UsingIntegers.class, you should see the following output:

56

5678

123456

123456789

You may be wondering why you have to specify only the special “L” charac-
ter for the long type but not for byte or short. Java handles the situation for
you in the latter two cases. Go ahead and change the value of the byte on line
8 to 567, and try to recompile the code. What happens?

You should get a message from the compiler that looks a lot like this:

UsingIntegers.java:8: possible loss of precision

found : int

required: byte

byte b = 567;

 ^

These lines means that on line 8 of the compiled code, an error was found that
forced the compiler to give up trying to create the class file. The error is with the
assignment of the value 567 to byte b. This should not shock you because you
have already seen that the maximum value of a byte is 127.

The error message continues by telling you the reason for the failure. The
“possible loss of precision” message indicates that the number you assigned to
this value is too big and that the Java compiler simply will not alter that value for
you. You must change it yourself in the source code. If you think about it, this
is a smart way to do things. Some languages allow programmers to make mis-
takes like this one, and such mistakes often lead to strange results and, even
worse, an often tedious process of chasing down and correcting bugs. The Java
compiler is a real stickler when it comes to following the rules of the language,
but that only serves to reduce the bizarre runtime errors that you might otherwise
discover.

4373book.fm Page 44 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 45

The same compile-time error appears if you try to assign a value that is too
large to any of the integer types, so it is not just the byte that is getting picked
on here!

The Floating Point Types
The float and the double primitive types are numerical types that can contain frac-
tional parts, represented with a decimal point and decimal places. A float holds a
32-bit value from –3.40292347E+38 to 3.40292347E+28, and a double holds a 64-
bit value from –1.79769313486231570E+308 to 1.79769313486231570E+308.

Whenever you specify a floating-point number in Java, it is automatically con-
sidered a double, not a float. It is always important to add the “F” to the end
of any floating-point number that is being assigned to a float. If you forget this
rule, you get a compile-time error that tells you once again that there is a possible
loss of precision. In these next two lines, the first line would cause a compile-time
error, and the second would not.

float wrong = 123.45; // compiling fails!

float right = 123.45F; // works like a charm!

The Character Type
unsigned
An unsigned data type can only contain
values that are zero or higher. In other
words, no negative numbers are allowed
as values to an unsigned data type. Java
has only one unsigned type, the char.

The char is the only Java primitive type that is unsigned. When a type is
unsigned, it cannot contain any negative numbers; everything is zero or higher.
Because the char type represents characters, it would make no sense for it to be
able to contain negative numbers.

The char holds a 16-bit character. If you have used the popular character set,
ASCII, you may know that those characters are 8 bits in size. So why is the Java
char twice as big?

Unicode
A character-encoding scheme that
defines a unique number for every char-
acter regardless of language or platform.

Because the char type is based on Unicode characters, not solely on ASCII
characters. Unicode characters are designed to hold any of the world’s lan-
guages. The extra size allows characters such as those found in the Chinese,
Hebrew, or Cherokee languages to be encoded in a single char type. This is
important because many of today’s applications require the ability to handle a
dynamic, global user base.

Of course, you can still use the normal ASCII codes in a Java char. Therefore,
unless you are using different characters directly in your application, the char
being a Unicode-based type does not really affect you. Just keep in mind that the
Java char type is twice the size of a normal ASCII character.

Even though the char is twice the size of a normal ASCII character, you are not nec-
essarily using twice the memory. Many virtual machines can optimize how char is
stored if the second eight bits are not used.

4373book.fm Page 45 Tuesday, July 13, 2004 3:44 PM

46 Chapter 2

The Boolean Type
The boolean type holds either a true or false value. Unlike some other lan-
guages, Java considers these values of true and false reserved words. You do
not (and cannot) use “1” to indicate true and “0” to indicate false as you can
with a language such as C. Also, no size is defined for the boolean type, though
it is most likely only a bit in size on most virtual machine implementations.

One of the most common tasks in programming logic is to determine whether
a condition is true or false and then take some appropriate action. The
boolean type is useful for making decisions in Java programs, something you
learn more about in Chapter 4, “Flow Control.”

Using the Primitive Types
The following is another piece of code that does not do a lot yet, but it does con-
tain all the primitive types and shows correct assignment of each one. Once you
learn about things such as operators and flow control, you can use these primi-
tive types in much more interesting ways.

/*

 * This code shows the Java primitive types

 * being declared and assigned legal values.

 */

public class PrimitivesInAction

{

 public static void main(String[] args)

 {

 byte aByte = 25;

 short aShort = 50;

 int anInteger = 100;

 long aLong = 1000L;

 float aFloat = 1.34F; // remember the ‘F’!

 double aDouble = 1.34;

 boolean aBoolean = true;

 System.out.println(“Byte: “ + aByte):

 System.out.println(“Short: “ + aShort);

 System.out.println(“Integer: “ + anInteger);

 System.out.println(“Long: “ + aLong);

 System.out.println(“Float: “ + aFloat);

 System.out.println(“Double: “ + aDouble):

 System.out.println(“Boolean: “ + aBoolean):

 }
}

4373book.fm Page 46 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 47

Go ahead and compile this code and execute it. Each of the assigned values
should print to your window.

These primitive types are definitely going to be important to almost every single
piece of Java code you write—especially the int, float, and boolean types. How-
ever, you have been using another important basic Java type since the beginning of
this chapter that you definitely need to learn about. That type is String.

The String Class
Unlike the eight primitive types, the String type is an object defined in a class
file. That is, individual String objects are used in your programs. These objects
hold strings of characters that can be used for anything you want. Common uses
include messages to the user, data pulled from a database, or perhaps a complete
web page stored in memory. A String can literally hold any series of characters
you want.

You can use String objects in the same simple fashion as you use primitives.
You can assign values to them, pass those values around in an application, and
eventually display them to a user or store them in a file. However, although using
the String type feels a lot like using a primitive type, it is not a primitive type.
It is a reference type. A reference type is more commonly called an object.

Consider this line of code:

String title = “Java”;

string literal
A special form of the literal that contains
a string of characters enclosed in double
quotes. Note that every string literal is
represented as an object in memory.

Although this line of code appears simple, in reality, a lot is happening here.
First, the variable title is being declared to be of type String. Then the equal
sign (=) is used to assign the value “Java” to the title variable. The string of
characters, “Java”, is a string literal. Whenever you use a string literal like this,
you are actually referring to an object in memory! The title variable references
that object.

Primitive Values versus Reference Values
Okay, by now, you are probably a little confused about what the difference
really is between a primitive value and a reference value. This is your first lesson
on the subject of objects and object-oriented programming, so what you learn
here will be discussed further later in this book.

To show you the difference between primitive and reference types, let’s look
at that char type, which holds a single character value, and the String type,
which holds an array of characters.

The char is a primitive type, which means it holds a single value in memory.
So the line

char theCharacter = ‘J’;

4373book.fm Page 47 Tuesday, July 13, 2004 3:44 PM

48 Chapter 2

might look something like this in memory:

In other words, the variable theCharacter directly holds the value, “J”.
Now, a String is an object that holds an array of characters in memory some-

where. Each element of that array is a primitive char type. Another way of look-
ing at the String is that it allows you to access a bunch of primitive characters
in a simple fashion.

Consider this line of code again:

String title = “Java”;

The variable title refers to the string of characters, “J”, “a”, “v”, and “a”.
However, the way the title variable appears in memory is much different from
the way the primitive char looked.

references
Java does not use direct pointers for a
variety of good reasons. A reference is
really a “pointer to a pointer.” This sys-
tem allows the JVM to manage the mem-
ory for you while still allowing you safe
access to the objects residing in that
memory.

Notice that this time, the title variable does not hold the string of characters
directly. Instead it holds a pointer to a memory address that knows where the
four characters are that form the string “Java”. In Java, these pointers are called
references.

To see a final demonstration of the beauty of using objects, compare the fol-
lowing two sections of code. Both achieve the same thing, but the second is much
cleaner and more logical.

First, here is one way you can print “Java” to the command line using only the
char type:

char one = ‘J’;

char two = ‘a’;

char three = ‘v’;

Variable Name

theCharacter

Actual Value

J

Variable Name

title

Actual Value

123456789

J

a

v

a

4373book.fm Page 48 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 49

System.out.print(one);

System.out.print(two);

System.out.print(three);

System.out.println(two);

Notice that the variable two is used twice in the print statements, once for the
second letter and once for the final letter. Because it is the same letter, there is no
reason to create a new variable.

Although the previous code works fine, the following code is an improvement:

String title = “Java”;

System.out.println(title);

Remember, the results are identical. The major difference is that title refers
to an object while each of the char variables holds the actual 16-bit value.

Working with String Literals
Any sequence of characters enclosed in double quotes is a string literal. In the
previous section, the string “Java” was the string literal. Whenever you are using
a string literal, you are actually referring to an object, though. You need to
understand a couple of important concepts about the String type in Java, how-
ever, before continuing to the next chapter.

Java Optimizes String Usage
lazy instantiation
There are two basic choices when it
comes to instantiation. The interpreter
could create all the objects that you
might use before the program even
begins executing, or it could delay object
creation until it is needed. This latter
approach is called lazy instantiation and
is the process used by the JVM.

Because every string literal refers to a String object in memory, you may be
wondering when these objects are actually created. Essentially, the first time a
string literal is encountered in the compiled code, it is created in memory for you.
It is not created until you need it, however. This is good because you may have
100 string literals throughout an application that could be holding error details,
labels for buttons, or whatever. However, it is possible that you will not need all
100 of these string objects during a particular execution of the program. It would
be a waste of memory to have them created and just sitting there going unused,
wouldn’t it? Java’s system of lazy instantiation helps minimize memory usage
until it is needed.

The other way Java optimizes string literals is by sharing the references. Look
at the following three lines of code:

String one = “Hello”;

String two = “Hello”;

String three = “Hello”;

How many String objects can possibly be created here?
If you said three, that is not a surprise. The answer, however, is one. Java

notices that the string literal “Hello” was created when the first statement

4373book.fm Page 49 Tuesday, July 13, 2004 3:44 PM

50 Chapter 2

executes, so the following two statements can just refer to the same object. The
following diagram shows you how this might look in memory:

As the picture shows, when the first statement is reached, the string literal
“Hello” is created, and the reference is stored in one. When the second and third
lines execute, they have the exact same reference stored in them because they
hold the same sequence of characters.

Don’t forget that Java is a case-sensitive language. The string literal “Hello” is not the
same object as the string literal “HELLO”.

Java optimizes String usage like this whenever possible. The end result is
much less memory usage for your programs.

String Objects Are Immutable
immutable
When a data type is immutable, it cannot
be changed at runtime. By default, both
String objects and arrays are immu-
table, but in different ways. A String
cannot have its contents changed, and
an array cannot have its length changed.

This may seem quite a shock to you. If String objects are immutable, they can
never be changed! Before you begin to think that the creators of Java were out
of their minds, let me explain this immutability.

You can say in your code something like this:

String title = “Java”;

title = “Java Foundations”;

This appears as if you changed the string itself, but you did not. Remember,
whenever Java “sees” a new string literal, it creates a new object. What is really
happening in the previous two lines of code is as follows:

1. The variable title is declared a String.

2. The new String object “Java” is created in memory.

3. This new String object’s reference is stored in the title variable.

4. The new String object “Java Foundations” is created in memory.

5. The reference to this new String object is stored in the title variable.

one

two

three

“Hello”
creates

refers

ref
ers

4373book.fm Page 50 Tuesday, July 13, 2004 3:44 PM

Java Fundamentals 51

After these two lines of code execute, only one String object is accessible. For
all intents and purposes, the first object (“Java”) is erased from memory com-
pletely because there is no more use for it. Hanging on to String objects that
nobody is using is not a good idea, so Java just throws them away.

If you are a C or C++ programmer, you may be wondering why you did not have to
delete the first String object from memory yourself. In Java, the garbage collector
handles memory cleanup like this for you. So, no, these two lines of code did not cre-
ate a memory leak!

You cannot change the value of a String object. However, you can change
the reference that your String variable holds. This amounts to the same thing,
but there is a subtle—and important—difference. Every single time you intro-
duce a new string literal into your code, you are potentially increasing memory
usage.

You learn more about String objects in Chapter 3 and much more about
objects and how they work later in this book.

Terms to Know
access modifier member

class method signature

class body objects

comments references

compile source code

compiler statement

dot notation string literal

immutable terminating character

instantiated Unicode

interpreter unsigned

lazy instantiation variables

literal values

4373book.fm Page 51 Tuesday, July 13, 2004 3:44 PM

52 Chapter 2

Review Questions
1. Which three types of comments are available when you are writing Java

source code?

2. What is the fundamental component of all Java applications?

3. How many primitive types are there in the Java language?

4. What is the significance of a semicolon in Java source code?

5. Name the two major places where the brace characters must be used in Java
source code.

6. What is the difference between a primitive type and a reference type?

7. How do you tell the difference between a char and a String in source code?

8. Why does Java use lazy instantiation of String objects?

9. What are the two primitive types in Java that do not hold numeric values?

10. What type is the literal value 3.45?

4373book.fm Page 52 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

3

Keywords and Operators

Learning the keywords of a programming language is like learning the
words of a spoken language, except that there are far fewer keywords to
master. Java is a fairly small language—it has only 50 keywords, and two
of those are not actually used! So the real total is just 48.

Beyond the keywords, you learn about several operators in this chap-
ter. You use these operators to deal with basic mathematics, assign val-
ues, concatenate strings, and work with binary numbers. You will be
using operators constantly in Java, so learning them early is important.

◆

How to create valid names in Java

◆

All the Java reserved keywords

◆

The major Java operators

◆

How to use the operators in practice

4373book.fm Page 53 Tuesday, July 13, 2004 3:44 PM

54

Chapter 3

Creating Valid Names in Java

In the previous chapter, you were introduced to a few Java classes, but all you
learned about were naming conventions. You should follow those conventions if
you want to be a top-notch Java developer, but they are indeed conventions, not
rules. You can break convention any time you want, and the compiler will
not care.

However, there are some rules for naming classes, methods, and variables in
Java. For example, all names in Java can contain

only

 a combination of letters,
numbers, underscores (

_

), or dollar signs (

$

). You can never create a class,
method, or variable with a name that does not follow this rule. Also, the first
character in a variable must never be a number; it can be only a letter, an under-
score, or a dollar sign.

As an example, here are some valid variable names that you can use in your
Java programs:

accountBalance

$firstName

_televisionSchedule

_$_yes_this_will_work_too

I am not suggesting that all these are

good

 variable names, just that they are
valid. I would not like to have to read the source code with variables such as the
last one!

In contrast, here are some invalid variable names. Put these in your code, and
you will get a compiler error every time:

8ball

hello!

never,never,land

Java names can be of any length. To decide on a length, keep this in mind:
names should be long enough to make clear what they are, but not so long that
you are typing a novel every time you try to change a value. Try to limit yourself
to 30 characters or fewer as a general rule. Anything longer should be for special
situations only.

Well-defined names are a great alternative or addition to comments. You comment
your code to explain portions that may not be abundantly clear, but you can often get
away without using them if you choose well-defined names. For example, if you are
modeling a bank account and choose

balance

 as a variable name, no one will have
any doubt about what that variable is for. If, however, you named that same variable

xyz_$

, its meaning is unclear.

4373book.fm Page 54 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators

55

The last rule is that you cannot give any of your classes, methods, or variables
the same name as any of the reserved words in the Java language. The next sec-
tion shows you the list of these restricted words.

The Keyword List

reserved words

Keywords that form part of the dictionary
of a programming language. Java defines
52 reserved keywords that can never be
used as names in your source code.

The Java language has 52 defined keywords. All these keywords are

reserved
words

, which means that you cannot use them as names of variables, methods,
or classes in any of your programs. Here are all the Java keywords.

The two reserved words

const

 and

goto

 have no function in the Java language.
These words exist only to prevent C and C++ developers from making the mistake of
using them. Just remember that you can never use them in your code as names and
that they do nothing otherwise.

This book will not discuss all these keywords. For more information about
each of these keywords, consult the online version of the Java Language Speci-
fication at

http://java.sun.com/docs/books/jls/

.

abstract assert boolean break

byte case catch char

class const continue default

do double else extends

false final finally float

for goto if implements

import instanceof int interface

long native new null

package private protected public

return short static strictfp

super switch synchronized this

throw throws transient true

try void volatile while

4373book.fm Page 55 Tuesday, July 13, 2004 3:44 PM

56

Chapter 3

The Primitive Type Keywords

In the previous chapter, you learned about the Java primitive types. The basic
primitive types account for 11 of the keywords: 9 are the actual types, and 2 are
values for the

boolean

 type.

◆

boolean

◆

char

◆

byte

◆

short

◆

int

◆

long

◆

float

◆

double

◆

false

◆

true

◆

void

Remember that

byte

,

short

,

int

, and

long

 are all integer types and decimal
places are never attached to them. The

float

 and

double

 types are for floating-
point numbers, and the

char

 type is for 16-bit Unicode characters.
The

boolean

 type holds either a

true

 or

false

 value. The list of keywords
includes both

true

 and

false

.
The

void

 keyword is in this list because it is similar to a primitive type. No,
you cannot create a variable of type

void

, but in the last chapter you learned
that you can return

void

 from a method. Returning

void

 means you are
returning an “empty” type.

If you have not yet read Chapter 2, “Java Fundamentals,” do so now to learn the
basics of using these primitive types. In the discussion of operators coming shortly in
this chapter, you will learn how to use these primitive types effectively in your code.

The Flow Control Keywords

flow control

Special constructs in a language that
allow simple or complex algorithms to be
defined. Essentially, these form the intel-
ligence of your code.

Eleven keywords relate to

flow control

. All the flow control keywords are dis-
cussed in detail in the next chapter. Alphabetically, the flow-control keywords
are as follows:

◆

break

◆

case

◆

continue

◆

default

4373book.fm Page 56 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators

57

◆

do

◆

else

◆

for

◆

if

◆

return

◆

switch

◆

while

You use the

if

,

else

,

switch

, and

case

 keywords for decision making, and
you use the

do

,

while

, and

for

 keywords to loop or iterate over a set of values.
You use the remaining four keywords in this list—

break

,

continue

,

default

,
and return—for branching control.

These 11 flow-control keywords form the basis for your programs’ intelli-
gence. Because I presume you will be writing code that does a lot more than say
“Hello,” these keywords are going to be important. Basic code is composed of a
series of statements that the interpreter processes sequentially. When you use
flow-control constructs, you can alter this simple, statement-by-statement pro-
cessing by adding conditional testing, iterations, looping, and other enhanced
logic. These constructs allow your code to make decisions and perform process-
ing based on dynamic runtime conditions.

Modification Keywords
Six keywords modify classes, methods, and/or variables:

◆ abstract

◆ final

◆ private

◆ protected

◆ public

◆ static

In the last chapter, you learned about the public keyword, which allows any-
one to access a particular code element (a class, method, or variable). I will now
describe the other five.

The private Modifier
encapsulation
An object-oriented concept that protects
data from uncontrolled access and mod-
ification. The mantra, private data, pub-
lic methods, is concerned with
encapsulation.

The private keyword is the opposite of public. If a method or variable is
marked private, it can be accessed only by the class that contains it. No exter-
nal access whatsoever is allowed. You will find that private is an important
access modifier and that you will use it frequently in your Java programs. As you

4373book.fm Page 57 Tuesday, July 13, 2004 3:44 PM

58 Chapter 3

will learn later in this book, using private adds to the encapsulation of your
classes, an important object-oriented concept.

The protected Modifier
subclass
Sometimes called a child class or a
derived class. If you use the extends
keyword, you are defining a subclass. A
subclass essentially inherits the nonpri-
vate members from the extended class.

The protected keyword allows less access than does public, but more access
than using private. Don’t be confused by the name, protected, though it does
sound restrictive. When a variable or method is marked protected, access from
code in the same package is allowed to access via a subclass. You learn a lot more
about subclasses later, so don’t worry too much about them now. When you
learn about subclasses, method overloading, and method overriding, we will
revisit the protected keyword.

One last note about the six access modifiers for now. Although the public modifier
can be used with classes, methods, and variables, private and protected cannot
be used with classes. Only variables and methods can be modified to be private or
protected.

The abstract Modifier
abstract method
A method that has its signature defined,
but leaves the implementation for sub-
classes. The method signature must
include the abstract keyword.
Abstract classes are meant to be imple-
mented in one or more subclasses.

The use of abstract is something you learn more about in the advanced discus-
sions of object-oriented programming in Chapter 6, “Introduction to Object-
Oriented Programming,” and Chapter 7, “Advanced Object-Oriented Program-
ming.” An abstract method is defined with no body and ends in a semicolon; its
body is defined in some other Java class. The idea is that you can define a method
that needs to be available, such as transferFunds(), without hardcoding the
method logic. If you make the transferFunds() method abstract, you or some-
one else is forced to provide that method logic in some other class.

Here is an example of this abstract method definition:

public abstract void transferFunds(float amount);

You can use the abstract keyword at the class level as well. In fact, if you
define even just one abstract method in your class, the entire class must be
abstract.

The use of abstract is tied in with the discussion later in this book on object-
oriented programming. I know it may be a bit hazy right now, but just keep in
mind that an abstract method means that the body is defined in some other sec-
tion of Java code.

The static Modifier
In the previous chapter, you saw this modifier as part of the main() method,
like so:

public static void main(String[] args)

4373book.fm Page 58 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 59

You learned that it must be marked static because the interpreter needs to
access the method directly from the class instead of through an object. Both
methods and variables can be marked static.

Marking a variable static is a little different. You can also access the vari-
able directly via the class, and you do not need an object instance to do so; but
if you want to do this, you will have only one variable in existence at any one
time. For example, consider the following class:

public class Counter

{

 public static int theCount;

}

The variable theCount can be accessed by anything in the current JVM. Per-
haps every time a new object is created, this variable is incremented by one, thus
allowing you to find out how many objects are in memory at a given moment. As
objects are removed, they can decrement this variable. Remember that a class
defines a kind of object and that an object is an actual instance of that type.

instance variable
A variable that can be accessed only
when an object exists. Instance vari-
ables are initialized upon instantiation,
and each object instance holds its own
copies of each variable, independent of
any other objects of the same type.

The point here is that the static variable is the same for everyone who accesses
it. This is in contrast to the other kind of variable defined in a class—the instance
variable. An instance variable exists once for each particular object instance,
hence its name. A static variable is sometimes referred to as a class variable
because it is bound to the class itself.

Basically, a static method or variable is the same for all objects of the class
type; an instance method or variable is particular to each individual object. In
a way, you can think of an ISBN number for a book as being static; all copies of
the same book have the same ISBN number. However, my copy of that book
could have a torn cover while the cover on your copy is in great shape. The con-
dition of each book cover is particular to each instance of the book.

The final Modifier
You can use the final modifier with classes, methods, or variables, and it means
semantically the same thing in all cases—no changes are allowed.

constant
A variable that has a fixed value that can-
not be changed at runtime. Typically,
constants are shared by many pieces of
code because they are read only.

When you use final with a variable, the value is fixed and can never be
changed. You will find this useful if you want to define a constant in your code.
For example, you might want to hardcode a minimum starting balance for all
new bank accounts of $5.00. You could define a variable for this value like this:

public final float minBalance = 5.00F;

By making this a final variable, you assure that nobody can change the value
to something other than 5.00 at runtime. Such a change is now possible only if
someone makes a physical change in the code itself and then recompiles the code.

4373book.fm Page 59 Tuesday, July 13, 2004 3:44 PM

60 Chapter 3

If you are a C or C++ developer, you are familiar with the const keyword. Essentially,
Java’s final keyword is the same as const. Remember that Java does define const
as a reserved word, but it does not do anything. If you want to define a constant in
Java, use final.

Class-Related Keywords
Six significant keywords are related to defining classes:

◆ class

◆ extends

◆ interface

◆ implements

◆ package

◆ import

These are described in detail in the following pages.

The class Keyword
The first (and most obvious) keyword in this list is the class keyword itself. A
class is an object template that defines an object’s variables and functionality. In
Chapter 2, you wrote your first class; you will write many more as you progress
through this book.

The extends Keyword
inheritance
An object-oriented concept that involves
a child class deriving structure and data
from a parent class. Inheritance is used
to create object hierarchies and form
complex relationships.

The extends keyword is used for a special situation called inheritance. Inherit-
ance allows you to create one class as a “child” of another class. When you
define a class to be a child class (or a subclass, as it is commonly referred to), you
use the extends keyword right in your class declaration. When you extend a
class, you have full access to all its public methods and variables.

You can extend only a single class in the Java language. You cannot inherit
from multiple classes, and if you try, the compiler gives you an error message.

For a quick example, consider this class definition that defines a generic
appliance:

public class Appliance

{

 public void powerOn()

 {

 System.out.println(“On”);

 }

 public void powerOff()

4373book.fm Page 60 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 61

 {

 System.out.println(“Off”);

 }

}

All appliances are powered somehow, so this class defines two methods:
powerOn() and powerOff(). This is the first time you have seen user-defined
methods in a class file, and as you can see, they follow the rules spelled out in
Chapter 2. Though this discussion concentrates only on the structure of a class,
you will learn how to create objects and call these methods shortly.

Okay, so we have created this Appliance. Think about it for a moment,
though. Do you have anything in your kitchen that is called an appliance? Do
you say, “Please get me some water from the refrigerator,” or do you say, “Please
get me some water from the appliance”? I would hope you chose the former! An
appliance is an abstract type. In other words, it is not a “real” thing, but only a
concept. The refrigerator is much more real.

So, if you want, you can create the refrigerator type in a class file. You can
also create a stove, a microwave, a dishwasher, a coffee maker, and a toaster. All
these are types of appliances, and they can all either be “powered on” or “pow-
ered off.” In other words, they all share some common traits. It is this set of traits
that makes them appliances as opposed to, say, shoes!

Take a look at another class, this one called Refrigerator. You could define
the class to have its own methods for power control, but it makes more sense for
this class to inherit from the original Appliance class. This is achieved using the
extends keyword:

public class Refrigerator extends Appliance

{

 /*

 * No method definitions are needed

 * because they are defined in our “parent”

 * class, Appliance

 */

}

Normally you refer to the Appliance class as the “superclass” or “parent” class and
the Refrigerator as the “subclass” or “child” class.

At first, it seems as if the Refrigerator class is empty, but in reality, it
already has two methods. Because Refrigerator extends the Appliance class,
and both of the two methods defined in Appliance are public, this subclass
automatically has both methods available. It is just as if you defined them right
inside this class!

4373book.fm Page 61 Tuesday, July 13, 2004 3:44 PM

62 Chapter 3

This brief description of inheritance and using extends is not meant to be complete.
The concepts are the important part right now. You learn more about the details and
the reasons for extending classes in Chapters 6 and 7.

The interface Keyword
concrete class
A class that has all its method bodies
defined and could be a standalone class,
requiring no further extension.

There are really two types of classes in Java. A concrete class has all method bod-
ies provided and is a complete, functional unit of code. An abstract class has one
or more undefined method bodies, thus making the class incomplete. For exam-
ple, in the previous example of the Appliance, two methods are defined for
power control that will be, presumably, shared by all specific appliance types
(refrigerators, stoves, toasters, and so on). It is agreed that all appliances require
some concept of power control, but how they provide that power control is spe-
cific to each appliance. The toaster is on only when you press the button; the
refrigerator is on as long as it is plugged in.

abstract class
A class that must be extended by a sub-
class. Typically, an abstract class con-
tains one or more abstract methods.
An abstract class must include the
abstract keyword in the class
declaration.

It might make more sense for the powerOn() and powerOff() methods in the
Appliance class to be abstract methods. Essentially, this means that the methods
signatures are defined, but the implementation of those methods is the responsi-
bility of any subclasses. In this case, the subclass is Refrigerator.

So what does all this have to do with interfaces? A lot, really. An interface is
a purely abstract class because all the methods defined in it must be abstract. No
method bodies whatsoever are allowed. When you define an interface, you are
simply defining a new type and declaring what methods need to be implemented
in the subclasses.

Here is another look at defining an appliance, this time using an interface to
define the appliance instead of a class:

public interface Appliance

{

 public void powerOn();

 public void powerOff();

}

Notice that the method signatures are defined the same way, but no bodies are
provided. Creating an interface such as this is like creating a contract. If any sub-
class of this interface does not define those two methods, the code will not even
compile.

However, the way a class “extends” an interface is not with the extends key-
word. Instead, another interface-specific keyword is used—implements. In the
next section, you learn about implements and see how the Refrigerator class
changes to fulfill the “contract” created with the Appliance interface.

If you compile an interface, it still ends up with an extension of “class” in your file sys-
tem. This is because an interface is a class; it is just a special form of class.

4373book.fm Page 62 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 63

The implements Keyword
multiple inheritance
The ability to inherit from more than one
parent. Java does not allow inheritance
of more than one class, but you can
implement more than one interface.

When a class “extends” an interface, the interface keyword must be used
instead of extends. Remember that each class can extend only one concrete class
in Java; you can implement any number of interfaces. The ability to implement
one or more interfaces is how Java provides multiple inheritance.

The previous section defined an interface named Appliance. You can now
create a new Refrigerator class, but with two major differences. First, you will
not use extends; you will use implements instead. Second, you now have to
define your own versions of the two methods, powerOn() and powerOff().

Here is the rewritten Refrigerator class that now implements the
Appliance interface:

public class Refrigerator implements Appliance

{

 /*

 * Must define both methods now since they

 * are undefined in our “parent” interface.

 */

 public void powerOn()

 {

 System.out.println(“Refrigerator is on.”);

 }

 public void powerOff()

 {

 System.out.println(“Refrigerator is off.”);

 }

}

You can be sure we will revisit this concept in the object-oriented discussions
(Chapters 6 and 7), but the concept should at least be clear right now. Basically,
an interface is completely abstract and defines only type and method signatures.
You must define the interface methods of any class that implements an interface
before you can compile and use it.

The package Keyword
package
A mechanism for grouping related
classes in the same namespace. Pack-
ages provide both class organization and
inherent protection.

A package lets you control the naming of your classes. For example, you have
already worked a little with one standard Java class, String. This class is actu-
ally located in a package named java.lang. So the full name of this class is
actually java.lang.String.

This is important because it provides an order of uniqueness to your class
files. For instance, if I wanted to model a guitar as a class, I might want a related

4373book.fm Page 63 Tuesday, July 13, 2004 3:44 PM

64 Chapter 3

class that models the guitar strings. Though I can choose any name I prefer, the
simple name String makes a lot of sense. But how can I create a class that
already exists?

fully qualified name
When you include the package name with
the class name, it is fully qualified. So
java.lang.String is a fully
qualified name while just String
is not.

This is where packages come into play. If you keep in mind that the fully qual-
ified name of the standard Java String class is actually java.lang.String, you
can begin to see the solution. In the case of guitar, all I have to do is create my
String class in a package of its own.

The following code snippet shows you how I might do this:

package music.guitar;

public class String

{

 /*

 * Variables and methods would be defined here.

 */

}

Even though I appear to have created a new class with the same name as an
existing Java class, in reality they are different names altogether. The Java class
is java.lang.String, and my class is music.guitar.String. They are com-
pletely separate from each other.

Notice that the package statement is the first line in this code. This is required;
only comments can come before the package statement. Also, because a class can
belong to only one package, only one package statement can exist in each source-
code file.

Every class in Java is in a package, even if you give no package statement. When you
do not specifically assign a class to a package with such a statement, it is in the
“default package,” which essentially means that it is in the directory where the class
file resides in your file system.

You have already learned that classes contain methods and variables. Pack-
ages are conceptually like containers that contain only classes. The statement we
have been using to print a message to the console window is
System.out.println(). You may recall that the dot notation in that line sig-
nifies ownership. The println() method is part of the out object that is part of
the System class.

The System class lives in the same package as String does—the java.lang
package. Therefore, the following is also a completely valid line of code:

java.lang.System.out.println(“Hello World!”);

4373book.fm Page 64 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 65

Here, the System class is “owned” by the lang subpackage of the ultimate java
package.

Compiling Classes Defined in Packages
The compilation process is a bit different when you define a class to be in a pack-
age. This is because the package structure is physically modeled in your file sys-
tem. So for the package music.instrument, eventually you will encounter a
directory somewhere named music that contains a subdirectory named
instrument. The instrument subdirectory holds the actual compiled class file.

To demonstrate this concept, let’s take our original HelloWorld class from
Chapter 2 and add a package statement. I have left out the comments in this
example for brevity:

package test;

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println(“Packaged Hello World!”);

 }

}

The standard Java compiler has a flag you can pass to ensure that the package
structure is correctly modeled on your file system. When you have a class with a
package statement, you should compile your code like this:

java -d /code TestClass.class

This line includes the -d flag to the compiler. This flag means “destination”
and is used to tell the compiler that the resulting compiled class file should be sent
to a location other than the current directory. You specify the destination that
you want right after the -d flag. In the preceding line, the destination is a direc-
tory named code. Consequently, the compiled class file actually ends up in that
directory.

If you try to do this process right now, be sure that the destination directory you pass
to the compiler (/code, in this example) actually exists. The compiler will not create
that directory for you, so if it does not exist, you will receive a compiler error.

Using the -d flag also does one other task that relates to packages. If your
source code includes a package statement, the compiler is sure that the pack-
age structure is mimicked in your file system when you use -d. Because the

4373book.fm Page 65 Tuesday, July 13, 2004 3:44 PM

66 Chapter 3

HelloWorld class is now defined to be in the package test, the resulting class
file is stored in /code/test/.

If you work on a Windows-based system, you usually use a backslash (\) as your path
separator. If you work on a UNIX-based system, you use a forward slash (/) as your
path separator. You can, however, use the system-specific separator on your com-
mand line because the compiler is smart enough to convert the slash for you. Thus,
even on a Windows system, you can type the command exactly as given.

Remember, if you use the package specified in the earlier code, the name of
the class is really test.HelloWorld now. In other words, to run this new version
of the HelloWorld class, you need to give the fully qualified name to the inter-
preter, and you also need to include the code directory in your classpath, like so:

java -classpath /code test.HelloWorld

In this command, the -classpath flag is passed to the interpreter; this allows
you to append other directories where the interpreter should look for class files. By
default, the interpreter looks only in the Java API classes and the local directory.
If you need to add other directories, you can do so on an application-by-applica-
tion basis with the -classpath interpreter flag as shown in the previous line.

You can also set the CLASSPATH environment variable if you want. If you do this, all
Java applications on that system will use the same CLASSPATH settings. See http://
developer.java.sun.com/developer/onlineTraining/new2java/program-
ming/learn/ for details on setting the CLASSPATH environment variable on your
specific operating system.

Import One or All: Which Is Better?

A common question among developers is, does importing everything hurt perfor-
mance? There is a lot of confusion about the answer, but the answer is, quite simply,
no. There is no runtime performance hit whatsoever.

The truth is that import statements are a compile-time feature only. When you
import from a package, you just tell the compiler that it can attempt to find the
classes in that package. The compiler actually prefixes all your short class names
with the correct package. So in the class files, it is as if you typed fully qualified
names for everything yourself.

If you import everything (as in import java.lang.*) instead of importing only what
you need (as in import java.lang.String), the compiler may have to work a bit
harder, but the interpreter will not know the difference.

4373book.fm Page 66 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 67

If you created this code with the message “Packaged Hello World!” as I did,
you can verify that this new version of the class is executing. If you see the stan-
dard “Hello World!” message, you are not accessing the correct class. This is
probably because you either did not compile it into a package or are not speci-
fying the fully qualified name on the command line.

The last thing to say about packages involves another Java coding convention.
The standard way to create a package name is to take your domain name, reverse
it, and append your specific package names. For example, I might create a pack-
age called com.sybex.test. The idea here is that if everyone follows this rule,
packages will be uniquely named.

The import Keyword
The import keyword is related to using packages. You can use one or more
import statements to “link” to a particular class or even to an entire package. To
be able to reference classes by their short name (such as String) instead of their
fully qualified name (such as java.lang.String) all the time, you must use
import statements.

You must place such import statements after any package statements and
before the class declaration. You can either specify a specific class or import an
entire package. If you want to import the java.lang.String class, you can use
either of the following import statements:

import java.lang.*;

import java.lang.String;

Both statements allow you to reference the java.lang.String class as sim-
ply String. The difference is that the first statement allows you to use the short
name for all the classes in the java.lang package (for example, the System class
as well), and the second statement allows you to do so only for the String class
itself.

The Special Package: java.lang
You might already be thinking that something is amiss here. You just read that
the only way to reference a class by its short name is if you have an import state-
ment in your source file. Yet the HelloWorld class includes references to both
System and String, but no import statement. How can you use those classes
like that without actually importing the java.lang package?

Well, the truth is the java.lang package has so many commonly used classes
that it is always imported automatically. Every piece of Java source code that you
write can reference any class in the java.lang package directly because the com-
piler adds the following line to your source file when it compiles it:

import java.lang.*;

4373book.fm Page 67 Tuesday, July 13, 2004 3:44 PM

68 Chapter 3

The compiler does not actually change your source code, mind you. This is
just a conceptual addition made by the compiler. The bottom line is that you
never need to import anything from the java.lang package explicitly because it
is always part of your import statements anyway.

Dealing with Subpackages
package private
If you give no access modifier whatsoever
to a class, method, or variable, it is
defined as package private. This means
that only classes defined within the same
package can gain access to the class,
method, or variable so defined.

The import statement can import only public classes from a package. If a class
does not have the public modifier attached to its declaration, it is considered
package private. This means that only other classes in the same package can
access non-public classes. No cross-package referencing to a non-public class
is possible.

Some developers have been confused by how to deal with subpackages. You
may already see the similarity between the way import statements reference
classes and the way you reference files in your file system. Something like
music.instrument.Guitar, which says “the Guitar class in the instrument
package in the music package,” looks much like what you would use to access
a file in a file system. Conceptually, this is as if the music package is the top-level
directory, instrument is a subdirectory within music, and Guitar is a file of
some kind.

Of course, this subpackage structure is a lot more than just a conceptual rela-
tionship. Packages, if you recall, are mapped to your file system when you com-
pile those classes (and use the -d flag). So for the package music.instrument,
there will indeed be a music directory that contains a subdirectory named
instrument in an appropriate location on your system.

Along with the rule that import statements can only import public classes,
there is a second point to remember. You can only import class files, and any sub-
packages are not automatically accessible. For example, a package in the stan-
dard Java classes named java.awt contains classes for creating user interfaces.
A subpackage is also defined named java.awt.event, and it contains classes
you need to handle mouse clicks and keyboard commands. If you are creating a
user interface for an application, you probably need classes from both these
packages.

However, just saying

import java.awt.*;

is not enough. Though this line allows you to access the classes you need to create
buttons and windows, it will not link to the java.awt.event subpackage. You
have to give both lines explicitly to access all the required classes:

import java.awt.*;

import java.awt.event.*;

4373book.fm Page 68 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 69

Object-Related Keywords
Five keywords relate to object-oriented programming, and we’ll look at these in
Chapters 6 and 7. All these keywords are meaningful only to an instantiated
object. Because all of them are discussed in greater detail in the object-oriented
chapters, only brief descriptions are given now.

◆ new

◆ instanceof

◆ null

◆ super

◆ this

The new Keyword
Classes are templates for creating objects, as you have learned already. However,
you have yet to actually create any objects. You create objects using the new key-
word. This is something you will do more and more throughout the remainder
of this book, so here is a quick introduction to how to use the new keyword.

The following class defines a robot:

public class Robot

{

 public String name;

}

This class defines just one variable called name. The relationship between the
Robot class and the Robot objects that we will create in a moment is the same as
in real life. A factory would have a schematic for creating a robot. In this sense,
all the robots created based on this schematic are alike, but each constructed
robot is a separate unit with separate characteristics, such as its name. The sche-
matic is like a class, and each robot is like an object.

Now you can make individual instances of this Robot class. To do this, use the
new keyword, which tells the interpreter to set aside the appropriate memory for
this particular object and return a reference. A reference is the “pointer” to the
memory address where the object is stored. The reference is stored in a variable,
just like primitive types are.

To demonstrate the basics of this process, here is a Java class that creates two
robots, gives them each a unique name, and then prints each name:

1 public class RobotUser

2 {

3 public static void main(String[] args)

4 {

4373book.fm Page 69 Tuesday, July 13, 2004 3:44 PM

70 Chapter 3

5 /*

6 * Create the two robots

7 */

8 Robot firstRobot = new Robot();

9 Robot secondRobot = new Robot();

10

11 /*

12 * Give each robot a unique name

13 */

14 firstRobot.name = “Harold”;

15 secondRobot.name = “Maude”;

16

17 /*

18 * Print out the robot names to prove there are

19 * two separate instances here

20 */

21

22 System.out.println(“There are two robots here.”);

23 System.out.println(“The first is named “ +
 firstRobot.name);

24 System.out.println(“The second is named “ +
 secondRobot.name);

25 }

26 }

In the main() method on lines 8 and 9, the two Robot objects are created.
Notice that the new keyword is being used, and note the syntax of the command.
The new keyword is followed by the name of the class and a pair of parentheses.
You can always tell that an object is being created when you see this new key-
word syntax.

What is really happening here is that a special portion of code, a constructor, is being
called. You will learn how to work with constructors later in Chapter 6. For now, just
know that whenever you create an object, a special method called a constructor is
always called first.

Jump down to lines 14 and 15. Here we are once again using dot notation. In
this case, the only member of the Robot class is the variable, name, which is a
String. On these two lines, we assign the value “Harold” to the first Robot
object and the value “Maude” to the second. At this point, there are two indi-
vidual objects based on the Robot class. This essentially means both of them have
a name variable. If we created 1,000 Robot objects, they would all have their own
copy of the name variable. However, each of them could have a completely

4373book.fm Page 70 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 71

different value for that name, just as the two objects in this code do. This is one
of the important keys to understanding objects: they are separate entities based
on the same class.

Lines 23 and 24 also use the objects and dot notation, this time to access the
stored values. These lines print the names of each Robot instance to the com-
mand line.

Compiling and Executing the Code
As always, you must first compile the code and correct any errors that you find.
Once the compilation is successful, you are ready to run the code and watch
those robots appear.

1. Compile both files with the following command:

javac Robot.java RobotUser.java

2. Run the RobotUser code with this command:

java RobotUser

You should see the following printed to your command line:

There are two robots here.

The first is named Harold

The second is named Maude

The instanceof Keyword
The instanceof keyword is for conditional testing between objects. With this
keyword, you can test an object to be sure that it is a specific type, like a String
or Robot. This is more like an operator than a keyword. The next section of this
chapter is all about the operators in Java; the instanceof keyword is addressed
further momentarily.

The null Keyword
The null keyword is used only with object references. When you assign null as the
value of an object reference, there is no reference. All object references start with
null as their default value. Until you assign a value to a reference, it is always null.

Let’s borrow the Robot class from the previous section for a moment. In the
following section of code, a variable named testRobot is created that is of type
Robot. Next, a new Robot object is instantiated and the reference is stored in
testRobot in the first line. Finally, the object is explicitly set to null, wiping out
the reference altogether.

Robot testRobot; // the value is null here

testRobot = new Robot(); // live reference created here

testRobot = null; // the reference is nullified here

4373book.fm Page 71 Tuesday, July 13, 2004 3:44 PM

72 Chapter 3

Effectively, setting an object reference to null ends the usefulness of that
object entirely and makes it eligible for garbage collection. Once an object is set
to null, it is gone forever. There is no resurrection from null! Note that the
variable itself can be used again, but only if a new object is assigned to it; the
original object that was set to null is no longer “alive.”

The previous example shows only a single variable referencing an object. If you have
multiple variables referencing the same object, setting one variable to null does not
nullify the object for the other variables.

In the next chapter, you learn how to test to see if an object is null before
using it. This is one of the most important tests that you will make in your Java
classes because it is illegal in Java to do anything with a null reference except
assign it a new object reference.

In C and C++, there is a constant called NULL that is equal to zero. Do not confuse
that NULL with the null found in Java.

The super Keyword
super class
Sometimes called a parent class or a
base class. The class listed to the right of
an extends clause is the super class.
The class to the left is the subclass.

Earlier in this chapter, you learned a little bit about the extends keyword and
how it relates to inheritance. When you have a child class, it is sometimes impor-
tant to be able to “talk” directly to the parent class. For example, you might
want to call a method of your parent class at some point in your own function-
ality. To do so, you must have a reference to your parent class. This reference is
always available to you and is always called super because your parent class is
also known as your super class.

The syntax for referencing a method named parentMethod from a child class
would simply be

super.parentMethod();

You can go up only one level to your direct super class. If your parent class also
extends another class, there is no way to directly access the “grandparent” class. A
call such as super.super.method() is not allowed.

The this Keyword
Much like super, the this keyword is a standard name for a reference that you
will need from time to time. In this case, the reference is not to any parent class,
but to yourself. In other words, when you use this, you are referring to this
instance.

You use the this keyword inside your method bodies in two different cases.
First, you can use it to clarify that the variables and methods being called belong

4373book.fm Page 72 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 73

to one particular instance. Second, you can pass it as a parameter to or a return
type from a method.

As a quick example of how this works, here is a modified version of the
Robot class. Notice that the name variable is now private and that there are two
new methods, one for setting the value of name and one for getting the value
of name.

1 public class Robot2

2 {

3 private String name;

4

5 public void setName(String name)

6 {

7 this.name = name; // cannot say name = name;

8 }

9

10 public String getName()

11 {

12 return name;

13 }

14 }

The Robot2 class works quite a bit differently from the original Robot class,
but the results are the same. Make a note of how this class looks because this is
well constructed. In the previous example, the name variable was declared as
public, which is perfectly legal but not good practice. Generally, all the vari-
ables defined in the class should be private so that no external users can modify
their value directly. Instead, you should provide one or more public methods
that handle access and modification of the variable. In Robot2, the setName()
method takes a String as a parameter that is then assigned to name, and the
getName() method returns this value to the caller.

scope
Scope refers to the accessibility of a vari-
able within a class. Everything in Java has
some form of scope. At the class level,
you can identify a scope by a matched
pair of braces. Whatever is between the
braces is in the same scope and cannot
be “seen” outside those braces. Each
new pair of nested braces is yet another
level of scope.

Line 7 is an example of why this is needed. In this case, it is a question of
scope. The parameter to the setName() method is called name and the variable
defined on line 3 is also called name. It would make no sense to provide the fol-
lowing method definition:

5 public void setName(String name)

6 {

7 name = name;

8 }

The reason that this makes no sense is that you are essentially assigning the
value of the name parameter to the name parameter. If the previous sentence con-
fuses you, that kind of proves the point, doesn’t it?

4373book.fm Page 73 Tuesday, July 13, 2004 3:44 PM

74 Chapter 3

This is an example of one of the fundamental rules of the Java language. It is
another rule you should memorize, because if you can rattle this off the top of
your head, you will find it much easier to understand what is going on in a par-
ticular piece of source code: Java always starts in the local scope and then looks
outward.

This rule relates directly to the braces surrounding method and class bodies.
Those braces define scope and, within the same scope, all variable names (and
method signatures when you talk about classes) must be unique. In the Robot2
code, the goal is to assign the value of the name parameter to the name variable
defined on line 3. The name variable is defined in the class scope, so all the meth-
ods defined in this class can access this variable. The name parameter on line 5 is
only “alive” for the duration of the method body. Once the statement on line 7
completes and the closing brace on line 8 is reached, the name parameter vanishes
into thin air. We call this vanishing act going out of scope.

Okay, so let’s wrap this up for now. When you put this in front of a vari-
able, you are saying that you want to access the instance variable, the variable
defined in the class scope. If you leave off the this keyword in this example and
just say name, Java thinks that you mean the name parameter because that is the
most local scope. That is obviously not a useful thing to do!

In Chapter 6, I’ll discuss some other uses for this. What you have learned so
far concerning this is a good start, though.

Wrapping Up the Keywords
Obviously, this lengthy discussion of keywords is a lot to handle all at once.
However, you should not feel you have to master all of them right now. As these
keywords come up in the rest of the book, you can always refer to this chapter
for a quick, friendly refresher on the basics. Also, as each keyword is used
throughout the book, especially if they are used differently from the simple
examples shown here, a full explanation will be given.

Once you feel comfortable with the immersion that you just received in the
Java keywords, move on to the final section of this chapter, which covers the
major operators in the Java language. Trust me, it is a much gentler topic to
handle!

The Java Operators
You have already seen the Java primitive types and some classes, including
String. Up to this point, you have not really done much with them, though. In
this section, you learn how to use the major operators found in the Java lan-
guage. These operators can be used with both primitive types and objects
themselves.

4373book.fm Page 74 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 75

You will learn about four major categories of operators:

◆ Arithmetic

◆ Assignment

◆ Relational

◆ Conditional

The Arithmetic Operators
One of the primary functions of code is to do math. After all, we do call it a com-
puter, don’t we? There are seven arithmetic operators, and most of them are
basic indeed.

The Binary Operators: +, –, *, and /
These are the four standard arithmetic operators that you would find in any pro-
gramming language. There is little to say about them because they do exactly
what you would expect, but next is a small class that demonstrates them in use.
You can use these operators with any integer or floating-point primitive.

public class MathDemo

{

 public static void main(String[] args)

 {

 int x = 6;

 int y = 3;

 System.out.println(x + y); // 9

 System.out.println(x - y); // 3

 System.out.println(x * y); // 18

 System.out.println(x/y); // 2

 }

}

One More Binary Operator: %
modulus operator
A special arithmetic operator that returns
the value of the remainder of division
between two numbers. If it returns 0, one
number is a power of the other.

The modulus operator is a lesser known, but still fairly common operator. This
operator divides the first number by the second and returns the remainder. This
can be used with integers and floating-point primitives.

To see how the modulus operator is used, you can change the existing
MathDemo class slightly:

public class MathDemo

{

4373book.fm Page 75 Tuesday, July 13, 2004 3:44 PM

76 Chapter 3

 public static void main(String[] args)

 {

 int x = 6;

 int y = 3;

 System.out.println(x + y); // 9

 System.out.println(x - y); // 3

 System.out.println(x * y); // 18

 System.out.println(x/y); // 2

 System.out.println(x % y); // 0

 x = x + 1;

 System.out.println(x % y); // 1

 }

}

Because 6/3 is 2 without any remainder, the first of these new statements
prints 0. In the next line, the x variable has 1 added to it, and then this new value
of 7 is used in the subsequent modulus operation, which prints 1. This is because
3 fits into 7 2 times, with 1 left over.

The Unary Arithmetic Operators
Some operators in Java do not require two operands, making them unary in
nature. Some of them have to do with arithmetic while others have to do with
logical operations. Here are the main unary operators:

◆ ++

◆ --

◆ -

The Increment Operator: ++
The unary operator is an increment operator and can be used before or after a
variable. When used before, it is called a preincrement operator; when used after,
it is called a postincrement operator.

Here is a code snippet that shows both the preincrement version and postin-
crement version of this operator in action:

int f = 10;

System.out.println(f++ + 2); // 12

System.out.println(++f + 2); // 14

The difference between these two forms of the increment operator is seen
in this example. The call to (f++ + 2) uses the postincrement operator. What

4373book.fm Page 76 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 77

happens here is that 2 is added to the current value of f (which is 10, as specified
on the previous line), and that is what is printed. However, the ++ operator
means to increase the value by one. Because this is a postincrement, the increase
is not actually carried out until the operation completes. In other words, the next
time the f variable is used, it will be 11, not 10.

This is further proven in the final line of the example. This time, the preincre-
ment operator is being used. In this case, the f variable should be incremented by
one before it is added to 2. So it is really saying ((11 + 1) + 2).

The Decrement Operator: --
The decrement operator works exactly the same as the increment operator,
including having both a postdecrement and predecrement version.

Here is an example of using this operator, though the process is just the oppo-
site of the increment operator previously discussed.

int f = 10;

System.out.println(f-- + 2); // 12

System.out.println(--f + 2); // 10

Remember that the postdecrement occurs after the operation completes and
the predecrement occurs before the operation completes. In this example, f starts
with a value of 10. On the next line, 2 is added to this value, so the printout is
12. However, the postdecrement operator executes, so f is 9 when the final state-
ment begins. The predecrement operator immediately drops the value to 8 and
then 2 is added to it, making the last printout 10.

The Unary - Operator
This is a simple one. All the unary form of the - operator does is negate a numeric
value. It is just like using a negative sign in algebraic equations.

int s = 100;

System.out.println(-s); // prints out -100

Here, this operator just negates the current value of a primitive, numeric type.
So after the printout, what is the value of s? The negation affects only the output,
not the variable itself. If you want to actually negate the value of the variable, you
need to add a line like this one:

s = -s;

The Parentheses Operator
This operator does not really fit into any single category, but it has two main
uses: grouping arithmetic operations and casting.

4373book.fm Page 77 Tuesday, July 13, 2004 3:44 PM

78 Chapter 3

Parentheses as a Grouping Operator
precedence
The predefined order in which operators
execute, enforced by the rules of Java.
Understanding precedence helps you
ensure that your operations function
exactly as you intend. Often, parentheses
are used to group expressions to better
control the precedence.

You can use parentheses to group an operation. This is important to avoid pre-
cedence issues. Precedence is the order in which operations execute. In Java,
precedence is clearly defined for every operator so that there should be no doubt
about which operations come first. It is not as simple as reading a statement from
left to right; certain operators take precedence over others. The parentheses oper-
ator is number one in precedence order. In other words, anything inside paren-
theses is calculated before everything not in parentheses.

For example, these two lines look similar, but the use of parentheses forces a
different result:

int a = 1 + 2 * 3; // this is 7

int b = (1 + 2) * 3; // this is 9

casting
Whenever you convert a variable of one
type to another type, you are casting. For
example, you might convert a float
value to an int value. You can cast
primitive number types between each
other, and you can cast objects back and
forth. Upcasting is converting one type to
a bigger type, for example, casting a
byte to an int. Downcasting is con-
verting one type to a smaller type, for
example, casting an int to a byte.
The only time you must explicitly cast is if
you are downcasting.

These are different because the * operator takes precedence over the + oper-
ator. So in the first line, the 2 * 3 happens first, then the 1 is added to give the
result of 7. In the second line, because parentheses surround the 1 + 2, the addi-
tion will occur first, followed by the multiplication. The resulting statement is
actually 3 * 3, which is, of course, 9.

You can also nest parentheses. In the following situation, the inner paren-
theses take precedence over the outer parentheses:

int a = ((1 + 2) * 3) + 4; // 13

int b = (1 + 2 * 3) + 4; // 11

In the previous lines, the first line has nested parentheses, so the 1 + 2 opera-
tion happens first. This result is multiplied by 3, and finally the resulting 9 is
added to 4. The second line contains only the single parenthetical pair, so normal
precedence takes over: the 2 is multiplied by 3, the result is added to the 1, and
then this result of 7 is added to 4.

Precedence is an important facet of the language to become accustomed to,
because not understanding it can lead to strange results in your code. You’ll find a
precedence chart at http://java.sun.com/docs/books/tutorial/java/nut-
sandbolts/expressions.html.

Parentheses as a Casting Operator
Casting is the process of converting from one type to another. Though you can
cast objects as well, for now you will only learn about casting primitive types.

Upcasting Is Always Safe
You may have an int variable that you wish to convert to a long. This is called
upcasting and is always allowed in Java without any special routines on your

4373book.fm Page 78 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 79

part. The concept is that there is no danger and no possible loss of information
if you are casting from a 32-bit int to a 64-bit long.

In other words, the following code would work just fine:

int small = 145;

long big = small;

The following list has the primitive numeric types in upcasting order. Every-
thing under a specific type can be cast to that type automatically.

◆ double

◆ float

◆ long

◆ int

◆ short

◆ byte

As you can see, the floating-point types are the highest on this list. Everything
can be upcast to a double, for example.

Downcasting Is Not Safe
The trouble arises when you want to take a 64-bit long value and shove it into
a 32-bit int value or when you want to put a floating-point number into a nor-
mal integer type. Neither of these actions is safe because you could lose data as
a result. For example, if you convert the number 4.567 to an integer, the .567
portion is lost. That is something the Java compiler does not allow unless you
specifically cast the value yourself.

To perform this casting, you simply wrap the target type in parentheses
and place it before the variable in question. In the following code, a float is
being converted to an int, something that would not be allowed without the
explicit cast:

float f = 1.567f;

int i = (int)f; // value is 1

Note that casting just chops off the decimal places; there is no automatic
rounding up as you might expect. You can cast any numeric type to another
numeric type in this fashion. However, you can never cast a number to a
boolean value; the compiler does not accept such a cast. When you are working
with primitives, casting works only on numbers.

Technically, the char type is a number, so it can be cast just like other numeric types.
This is rare, however.

4373book.fm Page 79 Tuesday, July 13, 2004 3:44 PM

80 Chapter 3

Automatic Casting
promotion
The upcasting of one primitive type to
another as the result of a mathematical
operation. Essentially, the biggest type
in an expression is how big the result
of that expression will be. All the vari-
ables in the expression are promoted
to the result type before the operation
completes.

Automatic casting is usually referred to as promotion. In the following lines of
code, the result of adding this int and this float is a float:

int x = 10;

float y = 5.5f;

float result = x + y; // 15.5

Essentially, this promotion system always makes the type of a result of an oper-
ation the same as the largest type in the operation. Because a float is technically
bigger than an int, the promotion now makes sense.

You can use the casting operator to downcast if you need to, even the result
of an entire operation:

int x = 10;

float y = 5.5f;

int result = (int)(x + y); // 15

Remember that whenever you downcast like this, you are willingly losing pre-
cision. Instead of the actual result of 15.5, this second example is only 15.
Because the cast needs to be performed on the result of the addition, the paren-
theses wrap the x + y.

The Assignment Operators
Six major assignment operators are defined. All do the same thing, of course:
assign a value. The difference is that five of them involve an extra step before
assignment occurs.

◆ =

◆ +=

◆ -=

◆ *=

◆ /=

◆ %=

The Basic Operator: =
You have been using this assignment operator since Chapter 2. The equal sign (=)
assigns a value to a variable. It is used for primitives and objects alike.

int x = 50;

Robot robot = new Robot();

4373book.fm Page 80 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 81

The single equal sign is used only to assign values and is never used for equality
checking. Equality checking is a conditional operation that will be discussed in the
next section.

The Combination Operators
The final five operators in the list of assignment operators all perform their
action (add/subtract/multiply/divide/modulus) on the value to the right of the
equal sign to the variable on the left. They are just shorthand; the same thing
could be said in a more verbose fashion. You are never required to use these five
combination operators, but you may find that they make your code more legible.

For example, both of the following two lines add 10 to the current value of x.
The first statement uses the combination assignment operator, which performs
the addition, and then the assignment. The second statement does exactly the
same thing, but in a more verbose fashion. Which form you use is your choice;
the JVM will execute both statements exactly the same way.

int x += 10;

int x = x + 10;

The remaining four combination assignment operators work exactly the same
way except that the actual operation changes.

The Relational Operators
Six operators determine the relationship between two operands. Each of these
operators returns either true or false. You will use conditional operators quite
a bit when you work with flow control in Chapter 4, “Flow Control.”

◆ ==

◆ >

◆ <

◆ >=

◆ <=

◆ !=

The Equality Test Operator: ==
When you want to test a variable to see if it is equal to a specific value, this is the
operator to use. This is sometimes called the “double equal” operator to differ-
entiate it from the “equal” operator (=) that you use for assignment only. You
can use this operator with both primitive types and reference types.

4373book.fm Page 81 Tuesday, July 13, 2004 3:44 PM

82 Chapter 3

Testing the Equality of Primitive Types
When you use this operator with primitive types, it just compares the value on
the right with the value on the left. If they are equivalent, true is returned.
Otherwise, false is returned.

int x = 100;

System.out.println(x == 100); // prints out “true”

System.out.println(x == 10); // prints out “false”

Testing the Equality of Reference Types
When you test reference types such as objects with this operator, it compares the
actual value of the memory addresses. If they match, the result is true. For the
memory addresses to exactly match, the two objects being tested must be the
same object.

Here is an example of this referential testing in action:

Robot one = new Robot(); // new object

Robot two = new Robot(); // new object

Robot three = one; // reference to the first Robot object

System.out.println(one == two); // prints out “false”

System.out.println(two == three); // prints out “false”

System.out.println(one == three); // prints out “true”

In this code, only two objects are created. Remember that whenever you see the
new keyword, a new object is being created. Because the third Robot object is not
using the new keyword to assign a reference, you know that it must point to the
same object as was defined on the first line.

The <, >, <=, and >= Operators
These operators test how two values relate. The < operator tests to see if the value
on the left is less than the value on the right. The > operator tests to see if the value on
the left is greater than the value on the right. The other two operators, <= and >=,
work the same way, but tests involving them return true if the values are equivalent
as well. Note that you can use these operators only with primitive numbers.

Here is a short example of these simple operators:

int a = 10;

int b = 10;

System.out.println(a < b); // prints out “false”

System.out.println(a > b); // prints out “false”

4373book.fm Page 82 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 83

System.out.println(a <= b); // prints out “true”

System.out.println(a >= b); // prints out “true”

As with the == operator, you use these operators extensively when working
with the flow-control constructs in the next chapter.

The Non-Equality Operator: !=
The “not equal” operator, !=, is simple to use; it tests to ensure that two values
are not equal. In this sense, it is the opposite of ==. If the two values involved are
not equal, the operation returns true. If they are equal, the operation returns
false. You can use this operator with both primitive types and reference types.

int a = 10;

int b = 10;

System.out.println(a != b) // prints out “false”

System.out.println(++a != b) // prints out “true”

The first operation returns false because the two values are equal. The sec-
ond operation returns true because the preincrement operator makes the value
of a equal to 11.

The Conditional Operators
You use the conditional operators to test for logical truth. Conditional operators
work by testing for truth in two operands. These operands are commonly the
result of relational operations that are used to form more complex algorithms.
There are six conditional operators: five are binary in nature, and one (!) is
unary.

◆ &&

◆ ||

◆ &

◆ |

◆ ^

◆ !

The && Operator
This operator tests the results of two operands and ensures that both are true. This
is sometimes called the Boolean AND operator and is often referred to as a
“short-circuit” operator, because it automatically returns false if the first test

4373book.fm Page 83 Tuesday, July 13, 2004 3:44 PM

84 Chapter 3

returns false. In other words, if the first test fails, this operator does not even
test the second operand.

Take a look at this operator being used in the following code:

int x = 9;

int y = 55;

boolean b = x < 10 && y > 20; // true

boolean c = x == 9 && y == 100; // false

boolean d = x == 10 && y == 55; // false

In the final line, the y == 55 operation is never executed because the x == 10
operation returned false.

The || Operator
This operator works a lot like the && operator, except that instead of performing
a Boolean AND test, it performs a Boolean OR test. If either of the operations
returns true, the || operator returns true. This is also a short-circuit operator
because if the first test passes, the second test is not even executed.

Take a look at this operator being used in the following code:

int x = 9;

int y = 55;

boolean b = x < 10 || y > 20; // true

boolean c = x == 9 || y == 100; // true

boolean d = x == 10 || y == 55; // true

Notice that all three tests pass in this case even though both relational operations
return true only in the first case.

The & Operator
The & operator is different from the && operator because it has no short-circuit
functionality. Both relational tests must pass for this conditional operation to
return true. Both relational operations are always executed with this operator.
This is commonly called the binary AND operator.

Here is an example of how this operator works:

int x = 9;

int y = 55;

boolean b = x < 10 & y > 20; // true

boolean c = x == 9 & y == 100; // false

boolean d = x == 10 & y == 55; // false

4373book.fm Page 84 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 85

In the final line, the y = 55 operation is executed even though the x == 10 oper-
ation already returned false. This is the difference between the & operator and
the && operator.

The | Operator
The | operator differs from the || operator because it has no short-circuit func-
tionality either. When you use this operator, you will find that one of the tests
must pass, but that both relational operations are always carried out. This is
commonly called the binary OR operator.

Here is the example code for the | operator:

int x = 9;

int y = 55;

boolean b = x < 10 | y > 20; // true

boolean c = x == 9 | y == 100; // true

boolean d = x == 10 | y == 55; // true

Though the results are the same as using the || operator in this case, keep in
mind that the big difference between | and || is that both relational operations
are executed regardless of the result of the first operation.

The ^ Operator
The ^ operator is used to ensure that one of the relational tests returns true
while the other does not. Another way of putting this is that the ̂ operator makes
sure the results are never equal—neither both true nor both false. This is usu-
ally called the exclusive OR operator.

Take a look at this operator being used in the following code:

int x = 9;

int y = 55;

boolean b = x < 10 ^ y > 20; // false

boolean c = x == 9 ^ y == 100; // true

boolean d = x == 10 ^ y == 55; // true

This operator always evaluates both operands, of course, because it has to
ensure that they never match.

The Unary Operator, !
This conditional operator does not use two operands. Instead, it is used to negate
a logical value. Earlier you learned about the arithmetic operator, -, that negated
the value of a number. The ! operator is similar, except that it is used only with
boolean values. The result is the opposite of the current boolean state. If it was
true, it becomes false. If it was false, it becomes true.

4373book.fm Page 85 Tuesday, July 13, 2004 3:44 PM

86 Chapter 3

Here are some examples of using this unary conditional operator:

int x = 9;

int y = 55;

boolean b = !(x == y); // true

boolean c = !(x < 10 && y == 100); // true

boolean d = !(y == 55); // false

boolean e = !b; // false

The operators covered in this chapter are just the most common. This is not an all-
inclusive list. Consult the Java Language Specification for a complete discussion
of all the Java operators. You can find the language specification discussion of
expressions and operators at http://java.sun.com/docs/books/jls/second_
edition/html/expressions.doc.html#44393.

Terms to Know
abstract class modulus operator

abstract method multiple inheritance

casting package

concrete class package private

constant precedence

encapsulation promotion

flow control reserved words

fully qualified name scope

inheritance subclass

instance variable super class

4373book.fm Page 86 Tuesday, July 13, 2004 3:44 PM

Keywords and Operators 87

Review Questions
1. Which of the following is not a Java keyword: sizeof or const?

2. What does the new keyword do?

3. Which of the following is not a valid name for a variable in Java:
licenseNumber, 34jump, $inTheMoney, or _$____?

4. What does making a variable final mean?

5. What are the characteristics of a static method?

6. How many interfaces can a class implement?

7. How many classes can a class extend?

8. Which operator tests equality of primitive types?

9. Name the two functions of the parentheses operator, ().

10. If x equals 6, what is the result of !((x < 7) ^ (x == 0))?

4373book.fm Page 87 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 88 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

4

Flow Control

So far, all the programs you have created have been composed of simple,
linear code. Most code requires some form of intelligence built into it so
that processing decisions can be made at runtime. This intelligence is cre-
ated with flow control.

Flow control allows you to conditionally execute statements, skip
statements, jump between statements, and perform looping. Most of
your code logic will be composed of combinations of flow-control state-
ments and regular statements.

◆

The details of application scope

◆

How to use the if/else statement

◆

How to use the tertiary operator

◆

How to use switch statements

◆

How to use for loops

◆

How to use the do/while loops

◆

How to use branching statements

4373book.fm Page 89 Tuesday, July 13, 2004 3:44 PM

90

Chapter 4

Application Scope

As you will see, the flow-control constructs involve the use of braces just as
classes and methods do. Before you begin “getting into the flow,” we need to
look at scope a little more. Scope refers to the “accessibility” of a class member,
whether a variable or a method. Essentially, anything defined within a pair of
braces is accessible only from within that same pair of braces. Another way to
say this is that a variable defined inside a pair of braces is

not

 accessible outside
those braces.

There are various levels of scope. The primary level is class scope, which refers
to everything defined between the class braces themselves. This, of course, refers to
everything defined in the class. Anything defined in the class scope is accessible
from anywhere within that class.

local variable

A variable whose scope is the body of a
method. Local variables are only “active”
while their containing method is being
invoked.

A narrower form of scope is method scope. This refers to all the declarations
inside a particular method body, enclosed by the pair of braces. Variables
defined within a method are accessible only from within that method body and
are not visible anywhere else in the class. A variable defined within a method
scope is often called a

local variable.

The basic rule of scope is the same everywhere. A pair of braces defines the scope.
Variables and methods defined within those braces are visible only in that scope. Vari-
ables and methods defined outside those braces are accessible as well.

In essence, a class file is just a series of nested scopes. The ultimate scope is the
class itself, and each method defines its own scope. You need to understand
scope and visibility so that you can be sure to define your class members
appropriately.

Along with classes and methods, there are other areas of scope. Any time you
see a pair of braces, you know that you are defining a new scope. When you use
flow-control statements, you use a pair of braces again, so you know that you
have created yet another scope. You will come across some examples of the
implications of this scope in this chapter as you learn about each of the flow-
control statements available in the Java language.

The

if

 Statement

The

if

 statement is the basic flow-control statement. Using the

if

 statement, you
can selectively execute other statements. In this sense, you use the

if

 statement to
make decisions in your code based on some criteria. You decide whether to execute
a section of code based on a test condition that will be either

true

 or

false

.
The

if

 statement works much like real, human logic. For example, you might
think something like this if you are deciding what to have for dinner:

If I am really hungry, I will make a large salad

.

4373book.fm Page 90 Tuesday, July 13, 2004 3:44 PM

Flow Control

91

Inherent in that statement, of course, is the contrary statement:

If I am not really hungry, I will not make a large salad.

pseudocode

Code written in a logical, natural lan-
guage style to express process or flow.
Pseudocode cannot be compiled; it is
used only to explain the steps required
for actual code to work.

The logic is clear and concise, and that is exactly how an

if

 statement works
in your code. Here is the

pseudocode

 for an

if

 statement:

if(expression is true)

{

 execute this block of code

}

wrapper class

Java provides classes that “wrap” around
primitive types. For example, the

Integer

 class contains a primitive

int

, but provides methods to process
or retrieve the “wrapped” primitive. All
primitive types have an associated wrap-
per class.

Okay, let’s see the

if

 statement in action. Before you look at the following
code, let me introduce you to a new class from the standard Java API:

java.lang.Integer

. This is a

wrapper class

, which means it matches a primi-
tive type. So for the primitive

int

, we have the class

Integer

; for the primitive

float

, we have the class

Float

, and so on.
These wrapper classes exist because primitive types are

not

objects. No meth-
ods are associated with them. The only thing you can functionally do with a prim-
itive is combine it with some of the operators you learned about in Chapter 3,
“Keywords and Operators.” However, when we “wrap” a primitive

int

 inside
an actual

Integer

 object, some methods are now available to use.
I’m introducing the

Integer

 class now so that I can present you with some
more interesting, useful code. After all, there are only so many times you need to
print out “Hello World”! In the following code, I am using the

Integer

 class to
convert the

String

 passed in on the command line into a primitive

int

. This is
accomplished by calling a

static

 method named

parseInt()

. This method
takes a

String

 as a parameter and, assuming

String

 actually contains a valid
integer value, returns the primitive

int

.
The following code expects you to pass in an integer, and when you do, it tells

you if that number is even. Notice how the

if

 statement works by evaluating the
expression passed to it for a

true

 or

false

 value. This expression uses the mod-
ulus operator that you learned about in Chapter 3.

1 public class EvenTest

2 {

3 public static void main(String[] args)

4 {

5 int number = Integer.parseInt(args[0]);

6 int mod = number % 2;

7 if(mod == 0)

8 {

9 System.out.println(“The number is even.”);

10 }

11 }

12 }

4373book.fm Page 91 Tuesday, July 13, 2004 3:44 PM

92

Chapter 4

When you run this code, you have to pass an integer as a command-line argu-
ment. Remember that these arguments you pass in are stored in the

String

array,

args

. The first argument is parsed into a primitive

int

 on line 5. Line 7
shows the

if

 statement that checks to see the results of the modulus operation
on line 6. If the number you pass in is divisible by 2, this expression evaluates to

true

, and line 9 executes, printing a message. Otherwise, there is no output,
which means that the number you passed in was simply not even.

If you forget to pass in something on the command line, you get a message from the
interpreter saying that you had an

ArrayIndexOutOfBoundsException

. This is
because nothing is there when line 5 attempts to access the value of

args[0]

! Also,
if you pass something that is not a valid integer (perhaps a

String

 or

float

), you
receive this message:

NumberFormatException

. This happens if the

String

 passed
to

Integer.parseInt

 does not contain a valid integer value. You learn how to
handle these problems gracefully in Chapter 5, “Arrays.”

Adding the

else

 Statement

So far, the

EvenTest

 code responds to you only if the number you provide is
divisible by 2. If you pass an odd number, you get no output. A complete version
of this code would have both options presented. In other words, you are told if
the number is even or if it is odd.

We can accomplish this by adding an

else

 statement to the code. If we incor-
porate

else

 into our original human logic about salad making, we could add
some more useful logic:

If I am really hungry, I will make a large salad

else

I will make a small salad

In other words, using

else

 is like saying “otherwise.” This way, you get to eat
either way, but you can adjust the amount you eat to your hunger level. Hey,
learning Java is cool, but you still have to eat! The pseudocode looks like the fol-
lowing when you add the

else

 statement to the mix:

if(expression is true)

{

 execute this block of code

}

else

{

 execute this other block of code

}

4373book.fm Page 92 Tuesday, July 13, 2004 3:44 PM

Flow Control

93

Let’s change the

EvenTest

 code to include an

else statement that guarantees
output:

1 public class EvenTest2

2 {

3 public static void main(String[] args)

4 {

5 int number = Integer.parseInt(args[0]);

6

7 int mod = number % 2;

8 if(mod == 0)

9 {

10 System.out.println(“The number is even.”);

11 }

12 else

13 {

14 System.out.println(“The number is odd.”);

15 }

16 }

17 }

Now when you run the code, it outputs a message to you either way, indicat-
ing whether the supplied number was even or odd. Notice that the code is actu-
ally making a decision here based on the if statement on line 8. This is much
more realistic code than the simple statements you have been working with up to
this point.

Working with Multiple else Statements
We are not done yet, however. This code is still not as smart as it should be. For
instance, if you pass in the number zero (0) on the command line, this code tells
you that the number is even. Zero is, of course, a special case that is neither even
nor odd, so this needs to be corrected. To do this, we need to add yet another
else statement.

You can “stack” else statements if you want to provide decision making
beyond the simple binary method shown here. To do this, you actually combine
else with another if. Every if and else statement must be based on unique cri-
teria. For example, in the EvenTest2 code, the if statement tests the truth of the
modulus operation, and the else statement assumes truth for everything else.
You can effectively read line 12 of the EvenTest2 code as “Otherwise, no matter
what the criteria, execute the following statement.”

This is perfectly fine, but if a second else statement is added, it must have cri-
teria of its own. The only way to test criteria here is with another if statement.

4373book.fm Page 93 Tuesday, July 13, 2004 3:44 PM

94 Chapter 4

What we need to do is test to see if the number is zero. If it is, we print a new
message. This adds a third decision point to the code and makes the code smarter
and able to handle any integer you pass on the command line.

1 public class EvenTest3

2 {

3 public static void main(String[] args)

4 {

5 int number = Integer.parseInt(args[0]);

6 int mod = number % 2;

7 if(number == 0)

8 {

9 System.out.println(“The number is zero.”);

10 }

11 else if(mod == 0)

12 {

13 System.out.println(“The number is even.”);

14 }

15 else

16 {

17 System.out.println(“The number is odd.”);

18 }

19 }

20 }

You should immediately notice that this code not only has a new else state-
ment, but it also has been reorganized. Now the initial test is whether the number
is zero, not the modulus operation. Why?

Because, when you work with flow-control statements, the first test that
returns true is where the logic stops. The original version of this code printed
that the number was even when the number was actually zero. If the modulus test
were still first, the test for the zero value would never even happen!

Another rule about using else statements is that if two or more of the statements
would return true for a given input, you must order your statements appropriately.
If you think of each else statement as a distinct option, you will understand that
only one such statement can ever execute in an if/else construct.

Testing the Array of Arguments
To make this code as robust as possible, let’s add one more example of using if
statements. In Chapter 5, you will learn a lot about arrays, but right now you will
learn how to determine if any arguments were passed in and, if so, how many.

4373book.fm Page 94 Tuesday, July 13, 2004 3:44 PM

Flow Control 95

All arrays have a length, and you can query by finding the value of the
property named length. This is not a method call; you use it just like you would
if it were a variable defined in all arrays. Assuming the array has been created
(which the argument to the main() method is guaranteed to have been), you
can always determine how many items are in the array. The value will be zero
or more.

The EvenTest code and all its variations assume that you are passing a
command-line argument. If you do not pass one, you receive a runtime error
message, the ArrayIndexOutOfBoundsException. This is because you are try-
ing to access an index in the array (in this case, the first index, 0) that does not
contain anything.

Another Style for else-if Statements

Though the EvenTest3 code example documents how most production code will
look, it can lead to some confusion. When you combine an else statement with an
if statement, you may occasionally find it difficult to keep those braces aligned.
You might be more comfortable writing code like the following instead.

if(number == 0)

{

 System.out.println(“The number is zero.”);

}

else

{

 if(mod == 0)

 {

 System.out.println(“The number is even.”);

 }

}

else

{

 System.out.println(“The number is odd.”);

}

This code executes exactly the same, but some people find that including all the
braces like this makes their code more legible. In all my years of Java development,
I have seen both styles used, so it really helps to be able to make sense of each of
them. Which style you prefer in your code is completely up to you; just use the style
that you find most comfortable.

4373book.fm Page 95 Tuesday, July 13, 2004 3:44 PM

96 Chapter 4

To handle this possible user error gracefully, just add yet another if state-
ment to test the value of length. If it is zero, you know that the user forgot to
pass in any arguments, and you can handle this right in the code.

1 public class EvenTest4

2 {

3 public static void main(String[] args)

4 {

5 if(args.length == 0)

6 {

7 System.out.println(“Usage: java EvenTest4
 <num>”);

8 System.exit(1);

9 }

10 int number = Integer.parseInt(args[0]);

11 int mod = number % 2;

12 if(number == 0)

13 {

14 System.out.println(“The number is zero.”);

15 }

16 else if(mod == 0)

17 {

18 System.out.println(“The number is even.”);

19 }

20 else

21 {

22 System.out.println(“The number is odd.”);

23 }

24 }

25 }

Line 5 makes the initial test to be sure that you did not call this code without
any command-line arguments. If you did, and the args.length is 0, a usage
message prints to remind you to pass an argument. On line 8, a new method call
allows you to exit the virtual machine altogether. This call to System.exit(1)
shuts down the application immediately. The parameter to this method is an
arbitrary error code. If you make a call to this method and it is a normal shut-
down not instigated by user error, it is conventional to pass 0. Otherwise, you
can assign a number of your choosing as the parameter.

4373book.fm Page 96 Tuesday, July 13, 2004 3:44 PM

Flow Control 97

The number passed to System.exit() is not meant to be used for error handling.
There is no way to recover from this method call. If you exit the virtual machine, no
more processing is possible. Later in this chapter, you learn how to handle logic errors
in your code.

The switch and case Statements
Another way to perform decision-oriented flow control is with the switch state-
ment. While if/else statements are used to process true and false results, the
switch statement is used to process integer results. This statement is used in con-
junction with a series of case statements. The switch statement has a condi-
tional expression associated with it, and each case statement is bound to one of
the possible values for that expression. Each case statement is followed by one
or more statements that are executed in order.

The switch statement can process only four primitive types: byte, short,
char, and int. No other types are allowed for evaluation in a switch statement.
Although char may not seem to be an integer, it is. The value it actually holds
is the Unicode value, which is a 16-bit integer value. It is represented in code nor-
mally as an actual character, of course.

Some languages (notably Visual Basic) allow you to associate strings with switch
statements. However, Java does not allow anything other than integer types.

This is a good time to explore a more complex piece of code. The SwitchDemo
class that follows is the most elaborate class you have seen so far in this book.
The concept of this code is that you select one of four arithmetic operations
(addition, subtraction, multiplication, or division) and provide two operands to
work with. When you execute this code, you must pass three command-line
arguments. The first argument is the code for the arithmetic operation that you
want to perform. You pass 1 to select addition, 2 to select subtraction, 3 to select
multiplication, and 4 to select division. The remaining two arguments are the
numbers that you want to use in the calculation. If you fail to pass all three argu-
ments, a usage message prints to the console window to remind you how to use
the code correctly. Nothing like a friendly reminder from time to time!

Take a look at the SwitchCommand class to familiarize yourself with the code.
As usual, a discussion of the class follows.

1 public class SwitchCommand

2 {

3 public static void main(String[] args)

4 {

5 if(args.length != 3)

6 {

4373book.fm Page 97 Tuesday, July 13, 2004 3:44 PM

98 Chapter 4

7 System.out.print(“Usage: java SwitchDemo
 (1)-add,“);

8 System.out.print(“(2)subtract,(3)multiply,”);

9 System.out.print(“(4)divide <num_one>
 <num_two>”);

10 System.out.println();

11 System.exit(1);

12 }

13 byte command = Byte.parseByte(args[0]);

14 float numOne = Float.parseFloat(args[1]);

15 float numTwo = Float.parseFloat(args[2]);

16 String output = “The result is “;

17

18 switch(command)

19 {

20 case 1:

21 // add operation

22 System.out.println(output + (numOne +
 numTwo));

23 break;

24 case 2:

25 // subtract operation

26 System.out.println(output + (numOne -
 numTwo));

27 break;

28 case 3:

29 // multiply operation

30 System.out.println(output + (numOne *
 numTwo));

31 break;

32 case 4:

33 // divide operation

34 System.out.println(output + (numOne/
 numTwo));

35 break;

36 default:

37 // unknown command

38 System.out.println(“Unknown command”);

39 }

40 }

41 }

4373book.fm Page 98 Tuesday, July 13, 2004 3:44 PM

Flow Control 99

A number of things are going on in this code. It starts on line 5 with an if state-
ment that tests the length of the parameter array. This is followed on lines 13–15
with statements that parse the input values into primitive types. The first parame-
ter is parsed into a byte, which represents the selected command. The second and
third parameters are both parsed into primitive float types.

Why use a byte for the first parameter? Because the value expected is between 1
and 4, numbers small enough to fit in the size of a byte. Using the smallest type pos-
sible takes less memory at runtime— always a good idea.

Earlier you learned how to use the Integer class to parse a String into a
primitive int. Much like the Integer class, the Byte and Float classes have
corresponding methods for parsing strings into the corresponding primitive
types. Both of the operand arguments are parsed into primitive floats, by the
way, because the division works much better if they are. If they were just prim-
itive int operands, the division would not have the correct precision. For exam-
ple, if you tried to divide the integer 9 by the integer 2, the result would print as
4 without any decimal places. Therefore, using the float type for the operands
is a better choice.

The Java API provides classes that match each of the primitive types. These classes
are commonly called wrapper classes. Besides just Integer, Float, and Byte, there are
the Character, Short, Long, Double, and Boolean classes. You will learn more
about these classes in Chapter 9, “Common Java API Classes.”

The code continues with a new String being created on line 16. This is the
prefix of all the output messages that show the arithmetic results.

Finally, the switch statement appears on line 18. Following the switch key-
word is the integer value that will be evaluated. Remember that this value must
be an int, a short, a char, or a byte. In this case, it is a byte because the menu
command is only a value in the range 1 through 4.

Lines 20–35 are the corresponding case statements. Each case statement
represents a possible value for the byte evaluated in the switch statement. For
example, if the first argument is a 1, the case statement on line 20 executes.
Line 22 prints the result of the addition of the two operands.

Line 23 is an important part of every case statement; it houses the break key-
word. You will learn more about this a bit later in this section, but let me sum
it up for you now. The break statement ends all processing in the switch state-
ment at the point it is executed. If you do not follow each case statement with
a break statement, the processing continues into the next case statement and
does not end until either a break statement is finally found or you reach the end
of the switch statement. This is called “falling through” the case statement and
is usually not desirable. I will show you a situation in which leaving out the
break statement can be useful later in this section.

4373book.fm Page 99 Tuesday, July 13, 2004 3:44 PM

100 Chapter 4

If you look at each of the four case statements, you will notice that they all
print the results of the arithmetic operation and include a break statement. Tech-
nically, the final case statement does not require a break statement because it
marks the end of the overall switch statement anyway. However, you might
want to add more case statements in the future, so it is not a bad idea to include
the break statement anyway.

The default Statement
Line 36 is a default statement. If you remember how an else statement works,
you get the idea of the default statement. It represents what to do in all other
cases. If none of the case statements match the value evaluated in the switch
statement, the default statement matches everything else.

In the SwitchCommand class, the default statement is triggered if you enter
a command that is not 1, 2, 3, or 4, and a message is output, indicating that the
input command is unknown. Including a default statement like this is always
a good idea because it can account for values that you do not want to handle or
are not prepared to handle.

Deciding between if/else and switch/case
The preceding code could have been written using if/else statements instead of
switch/case statements with the same results. The following is the same code
rewritten to work with if/else statements. Remember, the results are exactly
the same. The code is just stylistically different.

1 public class SwitchDemo

2 {

3 public static void main(String[] args)

4 {

5 if(args.length != 3)

6 {

7 System.out.print(“Usage: java SwitchDemo (1)-
 add,“);

8 System.out.print(“(2)subtract,(3)multiply,”);

9 System.out.print(“(4)divide <num_one> <num_
 two>”);

10 System.out.println();

11 System.exit(1);

12 }

13 byte command = Byte.parseByte(args[0]);

14 float numOne = Float.parseFloat(args[1]);

15 float numTwo = Float.parseFloat(args[2]);

4373book.fm Page 100 Tuesday, July 13, 2004 3:44 PM

Flow Control 101

16 String output = “The result is “;

17

18 if(command == 1)

19 {

20 // add operation

21 System.out.println(output + (numOne +
 numTwo));

22 }

23 else if(command == 2)

24 {

25 // subtract operation

26 System.out.println(output + (numOne -
 numTwo));

27 }

28 else if(command == 3)

29 {

30 // multiply operation

31 System.out.println(output + (numOne * numTwo))

32 }

33 else if(command == 4)

34 {

35 // divide operation

36 System.out.println(output + (numOne/numTwo));

37 }

38 else

39 {

40 // unknown command

41 System.out.println(“Unknown command.”);

42 }

43 }

44 }

Because you can write code that works exactly the same way using either if/
else or switch/case statements, how do you decide between the two? Essen-
tially the decision is arbitrary. Often the choice comes down to readability of the
code and the overall “elegance” of the processing. One difference between the
two types of statements is that if statements can process only conditional tests
that result in either true or false values and switch statements evaluate only
integers.

Personally, in my own coding, if I am processing a range of integer values, I
tend to use the switch/case statements. I find the code easier to maintain over
time. If my code is making decisions based on truth conditions, I rely on if/else

4373book.fm Page 101 Tuesday, July 13, 2004 3:44 PM

102 Chapter 4

statements. You will learn which statements you prefer in various situations as
you write more of your own code.

Processing a Range of Values
In the last section, I mentioned that if you leave out the break statement follow-
ing your case statement processing, a condition called “falling through” occurs.
For example, the following code prints both “Yes” and “No.”

int x = 1;

switch(x)

{

 case 1:

 System.out.println(“Yes”);

 case 2:

 System.out.println(“No”);

}

This happens because without a break statement to terminate the enclosing
switch statement, the Java interpreter has no way to know that it should stop.
This is an easy mistake to make and can lead to bugs that are difficult to track
down; so be sure to use your break statements correctly.

However, on some occasions you can leverage this “falling through” behavior
to your advantage. For example, you want to determine whether a character
argument is a vowel. The following code expects a single character to be passed
as an argument. Note that this is still input to the array as a String, so the char-
acter needs to be extracted from it.

1 public class VowelCheck

2 {

3 public static void main(String[] args)

4 {

5 if(args.length == 0)

6 {

7 System.out.println(“Usage: java VowelCheck
 <char>”);

8 System.exit(1);

9 }

10 char c = args[0].charAt(0);

11 switch(c)

12 {

13 case ‘a’:

14 case ‘A’:

4373book.fm Page 102 Tuesday, July 13, 2004 3:44 PM

Flow Control 103

15 case ‘e’:

16 case ‘E’:

17 case ‘i’:

18 case ‘I’:

19 case ‘o’:

20 case ‘O’:

21 case ‘u’:

22 case ‘U’:

23 System.out.println(c + “ is a vowel.”);

24 break;

25 case ‘y’:

26 case ‘Y’:

27 case ‘w’:

28 case ‘W’:

29 System.out.println(c + “ is sometimes a
 vowel.”);

30 break;

31 default:

32 System.out.println(c + “ is not a
 vowel.”);

33 }

34 }

35 }

Line 10 bears some explanation. The purpose of this line is to convert the
input String into a primitive char, so the method charAt() is called. This
method is defined in the String class. The parameter is the index of the charac-
ter to return. For example, if you have the String “Hello”, the character at
index 0 is ‘H’, the character at index 1 is ‘e’, the character at index 2 is ‘l’, and
so on. Unlike the other wrapper classes, the Character class has no method for
parsing a String into a primitive. Thus, this method is used to do the conversion
for us.

Because the charAt() method returns the primitive char at the specified index,
technically, you could pass more than one character on the command line, and this
code would still work. It would simply always use the first character in the provided
String argument.

The real key to this code is that lines 13–22 are all case statements, but only
the one on line 22 has a break statement. If any of the characters on lines 13–
22 are input, they will result in the same output. Namely, this output indicates
that the character is definitely a vowel. A similar situation exists on lines 25–28

4373book.fm Page 103 Tuesday, July 13, 2004 3:44 PM

104 Chapter 4

when ‘y’, ‘Y’, ‘w’, or ‘W’ is tested. The switch statement includes a default
statement to handle everything else.

The Ternary Operator
You learned a lot about operators in the previous chapter, but there is one more
that you may find useful in your programming. I’m introducing it in this chapter
because it is a special operator that works like an if/else statement, but in a
single line. This operator is called the ternary operator because it takes three
operands. The first is a conditional test, the second is the result if the conditional
test evaluates to true, and the third is the result if the conditional result evaluates
to false.

The syntax for the ternary operator is as follows:

test ? trueResult : falseResult

As an example, here is the EvenTest2 class rewritten using the ternary oper-
ator instead of if/else.

1 public class EvenTestTertiary

2 {

3 public static void main(String[] args)

4 {

5 int number = Integer.parseInt(args[0]);

6 int mod = number % 2;

7 String result = (mod == 0) ? “even.” : “odd.”;

8 System.out.println(“The number is “ + result);

9 }

10 }

Line 7 reads, “If the remainder is zero, set the value of result to ‘even.’ If the
remainder is not zero, set the value of result to ‘odd.’” The output from this is
exactly the same as that of the original EvenTest2 class, but processing the con-
ditional test requires only a single line.

The ternary operator can be used only for binary decisions. It cannot simulate
the action contained in EvenTest3, for example, which has multiple else
statements.

You might look at this operator and think that it is the ugliest thing you have
ever seen; many developers would readily agree with you. It is another matter of
stylistic choice. There is no reason you should use this operator instead of a stan-
dard if/else pair, but some developers feel this is a more elegant solution. Con-
sider it an option and use it at your whim.

4373book.fm Page 104 Tuesday, July 13, 2004 3:44 PM

Flow Control 105

The for Loop
Another kind of flow-control statement is the for loop. While the if/else state-
ments are used for decision processing, the for statement is used for looping.
This statement allows iteration over a range of values at runtime. The
pseudocode of a for loop is shown next.

for(initialization_exp; termination_exp; iteration_exp)

{

 //code

}

The initialization expression is executed only once before the loop begins.
This expression allows you to set up the starting conditions of a loop, which is
typically an integer value.

The termination expression must be a boolean expression. The code within
the for loop executes until the termination expression returns false. Note that
if this condition is false before the first iteration of the loop, the body of the for
loop never executes.

The iteration expression is executed after the last statement in the body of the
for loop executes. Immediately following this expression, the termination
expression executes again, and if that expression is still true, the body of the
loop executes again. The iteration expression alters the value of the initialization
expression, and then this new value is used by the termination expression.

Here is an example of using the for statement:

class ForDemo

{

 public static void main(String[] args)

 {

 for(int i = 0; i < 10; i++)

 {

 System.out.println(“The number is “ + i);

 }

 }

}

The output from this code is as follows:

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

4373book.fm Page 105 Tuesday, July 13, 2004 3:44 PM

106 Chapter 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

initialization expression
The portion of a for loop that is exe-
cuted only once when the loop starts. It
allows the setup of the starting condi-
tions of the loop.

In order, the portion in parentheses contains the initialization, the termina-
tion, and the iteration expressions. The initialization expression is used to
declare a variable called i with a starting value of 0. The termination expression
indicates the end point of the range and is separated from the initialization state-
ment by a semicolon. In this example, the termination expression is i < 10,
which means “as long as the variable i holds a value less than 10, execute the
statements in the body of the loop.” The iteration expression modifies the value i
that was defined in the initialization expression. This is done using the ++ oper-
ator; so every time this expression executes, i is increased by one.

termination expression
The portion of a for loop that tests the
value of the for loop for true or false. If
this expression returns false, the for
loop ends at that point.

This example prints the String ten times, stopping only when the variable i
finally equals 10. You can always determine the number of iterations that will be
performed if you subtract the value in the initialization expression (in this case,
0) from the value in the termination expression (in this case, 10). You can also
get ten iterations of a for loop with this code:

for(int i = 50; i < 60; i++)

{

 System.out.println(“The number is “ + i);

}

iteration expression
The portion of a for loop that is exe-
cuted after the last statement in the loop
executes. The value resulting from the
iteration is then checked by the corre-
sponding termination expression to
determine if the for loop should
continue.

The for loop is useful for iterations of known values. That is really what it is
designed for. The termination expression can be anything you like, perhaps the
length of an array. In fact, for loops are useful for processing arrays. I will show
you more about this in Chapter 5, but we already have an array we have been
using—the array passed to the main() method.

The following code shows you how to use a for loop to print all the command-
line arguments passed to a program.

public class ArrayLoop

{

 public static void main(String[] args)

 {

 for(int i = 0; i < args.length; i++)

 {

 System.out.println(args[i]);

 }

 }

}

4373book.fm Page 106 Tuesday, July 13, 2004 3:44 PM

Flow Control 107

If you compile and execute this code, you can pass any number of command-
line arguments, and they will all print. Not exactly mind-blowing, but it does
demonstrate how a for loop can be used to iterate through an array. If you pass
no arguments, you will not see any output because the termination expression
will return false immediately because the length of the array would be zero.
Code can be strange sometimes, but zero is still not less than zero!

Multiple Increment Steps
The iteration expression commonly adds or subtracts one from the variable
defined in the initialization expression. This is because you usually use for loops
to iterate through a series of values. However, you do have the flexibility to
increment or decrement by more than one. Imagine you have the dates of an
annual calendar that you want to process. You might want to add a note for a
meeting scheduled for every Wednesday of every week. You could accomplish
this by starting on the first Wednesday of the year and then use the iteration
expression to increment by seven days each time it executes. This would allow
you to skip the other six days each week and deal only with the specific day in
which you are interested.

Instead of actually trying to create a working calendar processor, the class
below simply decrements the i variable by 2 each time the loop executes. The
end result is that all the even numbers are printed in descending order, from
20 to 2.

public class MultiStepFor

{

 public static void main(String[] args)

 {

 for(int i = 20; i > 0; i -= 2)

 {

 System.out.println(“The number is “+ i);

 }

 }

}

The output from executing this code is as follows:

The number is 20

The number is 18

The number is 16

The number is 14

The number is 12

The number is 10

4373book.fm Page 107 Tuesday, July 13, 2004 3:44 PM

108 Chapter 4

The number is 8

The number is 6

The number is 4

The number is 2

The point is that you can add or subtract any value that you want from the
variable to control the steps in your iteration.

But wait, there is more! You are not limited to addition and subtraction; you
can do any type of arithmetic operation that you want. For example, the follow-
ing code actually uses the multiplication operator to double the variable i each
time the loop executes.

public class MultiplyFor

{

 public static void main(String[] args)

 {

 for(int i = 20; i < 100; i *= 2)

 {

 System.out.println(“The number is “ + i);

 }

 }

}

Here is the output of this code:

The number is 20

The number is 40

The number is 80

You can also do various operations in the termination expression. Normally,
the less-than (<) operator is used for the test, but you can perform any test that
returns true or false.

You can create countless examples of termination expressions, but I will show
you just one such possibility. In the following code, instead of checking to be sure
that the value of i<100, the code performs a division and checks to be sure that
the result is not 80. It returns false until the fourth iteration of the loop when
i*2 is 160.

public class ForTerminationDemo

{

 public static void main(String[] args)

 {

4373book.fm Page 108 Tuesday, July 13, 2004 3:44 PM

Flow Control 109

 for(int i = 20; i/2 != 80; i *= 2)

 {

 System.out.println(“The number is “ + i);

 }

 }

}

Also notice that the output is exactly the same as the last class, MultiplyFor.
In other words, the termination expressions can be different in function, but they
both terminate the loop at the same exact point (the fourth iteration).

The number is 20

The number is 40

The number is 80

Don’t be creative in your for loops needlessly. An old adage is perfect to have
burned into your memory as you write code: keep it simple. Good code is effi-
cient, logical, and maintainable and works as it is supposed to. Adding unneeded
complexity is never a good approach. Having said that, you should also keep in
mind that you are not “locked in” to one way of doing things. Whether it is for
loops or some other code construct, you have the power to be creative to solve
unique or unusual problems!

Beware the Infinite Loop
infinite loop
A looping construct that has a test con-
dition that always evaluates to true.
Infinite loops can be useful, but are often
dangerous bugs.

Have you ever seen the movie Groundhog Day? In that film, the main char-
acter keeps reliving the same day over and over again. This is the same thing that
happens if you create an infinite loop. However, in the movie our hero eventually
breaks out of the loop; an inadvertent infinite loop just keeps right on going. As
mentioned previously, the infinite loop is usually considered a problem. It is an
especially nasty bug if you are not careful when you define your for loops. For
example, consider the following example:

for(int i = 10; i > 0; i++)

{

 System.out.println(“Infinity!”);

}

If you execute this code, you see the word “Infinity!” printed to the command
line, well, infinitely. The termination expression will never evaluate to false.
The variable i is always going to be greater than zero in this example.

If you do execute this code, press Control-C in your terminal window to stop
execution of the program.

4373book.fm Page 109 Tuesday, July 13, 2004 3:44 PM

110 Chapter 4

The while Loop
A for loop is excellent when you need to execute a series of statements a fixed
number of times. However, what if you do not have a fixed limit before the loop
begins? Let’s compare two real-world examples. If you deposit some change into
a pay telephone and make a call, you know that you have a limited amount of
time available before the call is cut off. If you never add more change and do not
manually hang up the phone, the call terminates at some fixed time. A for loop
is best suited for situations like this when there is a predetermined number of
iterations.

Now consider making a call on your home telephone. Assuming that all your
bills are up-to-date, you can make that call and “iterate through a conversation”
until you or the other party hangs up. Notice that in both examples there is a
point at which the call ends. The difference is that on your home phone, no fixed
time limit is imposed; you continue the conversation as long as you want. A
while loop is better suited for situations like this in which the termination con-
dition can vary.

Just like the for loop, a while loop continually processes a series of state-
ments as long as a condition remains true. A for loop is usually used to loop
over a known range of values. A while loop is usually used to loop for an
unknown number of iterations. In the previous phone call example, the pay
phone had a fixed number of iterations before the call was even made (the
imposed length based on the amount of change you deposited). When you use
your home phone, there are an unknown number of iterations.

All right, enough about telephones. Let’s look at some real code that uses a
while loop. The following code takes an argument and loops until it finds the ‘!’
character. It prints everything that it finds up to that point. This provides a rudi-
mentary form of command processing in which every command ends with an ‘!’.

1 public class WhileDemo

2 {

3 public static void main(String[] args)

4 {

5 if(args.length == 0)

6 {

7 System.out.println(“Usage: java WhileDemo <str>”);

8 System.exit(1);

9 }

10 char [] chars = args[0].toCharArray();

11 int index = 0;

12 while (index < chars.length && chars[index] != ‘!’)

13 {

14 System.out.print(chars[index]);

4373book.fm Page 110 Tuesday, July 13, 2004 3:44 PM

Flow Control 111

15 index++;

16 }

17 }

18 }

After the argument is processed, line 10 shows the expression that converts a
String into a char array. The method toCharArray() is another method
defined in the String class. This method converts the entire String into a cor-
rectly sized char array.

So far in this chapter, you have seen some interesting methods defined in the String
class. There are a lot more useful methods in this class, and you will continue to
encounter them throughout this book.

Once the char array is derived from the argument, the processing can begin.
You need to “walk” through this array until you encounter either a ‘!’ character
or the end of the array itself. An int is defined on line 11 that represents the
index and is initialized to zero.

Finally, the while loop is defined. The conditional test is enclosed in the asso-
ciated parentheses. In this case, that conditional test is complex because it actu-
ally is designed to be sure that two facts are true. First, it makes sure that the end
of the array has not been reached. If the end has not been reached, the second
part of this conditional test executes. That second half of the test checks to see
whether the current char in the array is a ‘!’. If both tests return true, the cur-
rently indexed char is printed on line 14. Line 15 increments the index, and the
while loop begins the next iteration. This process continues until the conditional
test returns false.

The order of the two tests in the conditional expression is important. If you reverse
them, you’ll see an error message at runtime once the end of the array is reached.
Be careful when you define complex conditional expressions like this, and be sure the
order of each test is logical.

If you compile and run this code with the following command, the word
“Apple” prints to the console window:

java WhileDemo Apple!Tart

Comparing for and while Loops
In reality, anything you can do with a while loop, you can do with a for loop.
The choice between the two comes down to the type of processing. As men-
tioned, if you have a known, fixed range of iterations to perform, a for loop is

4373book.fm Page 111 Tuesday, July 13, 2004 3:44 PM

112 Chapter 4

usually more convenient. If you have an unknown or varying range of values (as
you do in the WhileDemo class), a while loop makes a lot of sense.

Here is code that works the same as the ForDemo code but uses a while loop.

public class WhileForComparison

{

 public static void main(String[] args)

 {

 int i = 0;

 while(i < 10)

 {

 System.out.println(“The number is “ + i);

 i++;

 }

 }

}

The output is exactly the same as before. Ten messages are printed, indicating
that the value of the number is 0–9. Because you can accomplish the same results
using either a for loop or a while loop, how do you decide which one is best in
a given situation?

One large difference between a for loop and a while loop is that the while
loop is associated with only a conditional test. Any variables used to control the
iterations must be defined outside the while loop and incremented or decre-
mented manually. Because the variable i is not ever used anywhere but inside the
body of the loop itself, a for loop probably makes more sense in the previous
code. Again, there is no rule necessarily; it is simply a matter of how the loop is
being used.

Both types of loops have something in common—the danger of creating an
infinite loop. It is easy to mistakenly turn a while loop into an infinite loop
because no automatic increment expression is provided. It is even easier to make
this mistake in a while loop than in a for loop. A while loop just keeps right
on processing as long as the conditional test remains true.

Take a look at the following code and notice that there is no way for this
while loop to ever stop.

int x = 0;

while(x < 10)

{

 System.out.println(“The number is “ + x);

}

x++;

4373book.fm Page 112 Tuesday, July 13, 2004 3:44 PM

Flow Control 113

This code prints “The number is 0” infinitely. Although the variable x is incre-
mented in the code, it is not done until after the while loop completes process-
ing. Because x is not ever incremented within the scope of the while loop, the
conditional test always returns true.

Let me stress again: be careful not to create infinite loops!

The do Statement
You can add the do statement to a while loop to alter the normal iterative
processing slightly. There is a big difference between a normal while loop and
a do/while loop. With a normal, standalone while loop, the statements defined
within the braces do not execute if the conditional test fails the first time. For
example, the following code does not output anything because the conditional
test returns false right away:

int x = 10;

while (x < 10)

{

 System.out.println(“Hello!”);

}

Now, if you use a do-while statement, things change because you are guar-
anteed that the statements between the braces execute at least once.

int x = 10;

do

{

 System.out.println(“Hello!”);

}

while(x < 10)

The reason for this difference is that with a do/while loop, the conditional
test comes after the block of code, not before, as it does with a normal while
loop. Even though the condition in the previous code fails the first time it is
tested, the message “Hello!” is printed once.

The choice of whether to use a while or do/while loop really comes down
to the type of processing. If you want to execute a series of statements one or
more times, use the do/while statement. If you want to execute a series of state-
ments zero or more times, use a standalone while statement.

4373book.fm Page 113 Tuesday, July 13, 2004 3:44 PM

114 Chapter 4

The Branching Statements
branching statements
Allow a change in the normal flow of a
flow-control statement. You can use
branching statements to escape from a
flow-control statement if the need arises.

The Java language provides three branching statements. A branching statement
allows you to interrupt the normal processing of flow-control statements. The
three branching statements are as follows:

◆ break

◆ continue

◆ return

Let’s take a look at each of these statements in detail.

The break Statement
You have already seen the basic break statement several times in this chapter—
first with the switch/case statements, specifically to prevent case statements
from “falling through.” You also saw the break statement in the discussion of
alternative switch for loops. In both cases, break was used to stop processing
and move on to the next statement after the flow-control block. In other words,
the statement following the closing brace of the flow-control block is the next
statement to execute.

You can actually use break statements in two ways, however. The first is by
themselves, as you have seen already. This use of break terminates processing in
a for, while, or do/while loop at the point that the statement is found and con-
tinues with the first statement following the closing brace. In the following code,
when i==5, the for loop is exited completely. This results in only the numbers
0–4 being printed.

for(int i = 0; i < 10; i++)

{

 if(i == 5)

 {

 break;

 }

 System.out.println(i);

}

Using break with a Label
label
A special identifier followed by a colon
that allows a continue or break
statement to escape to a specific loca-
tion in the code.

You can also use a break statement when it is associated with a label. A label
is an arbitrary word placed in your code that marks the location to which you
want to “break.” Using a label like this is useful if you have nested loops, for
example.

4373book.fm Page 114 Tuesday, July 13, 2004 3:44 PM

Flow Control 115

Here is an example of using a label with a break statement to terminate pro-
cessing in the inner for loop and return processing to the outer for loop:

1 public class NestedLoopsWithBreak

2 {

3 public static void main(String[] args)

4 {

5

6 test:

7 for(int i = 0; i < 3; i++)

8 {

9 int j = 0;

10 System.out.println(“Outer loop: “ + i);

11 while(true)

12 {

13 System.out.println(“Inner loop: “ + j);

14 if(j++ > 2)

15 {

16 break test;

17 }

18 }

19 }

20 System.out.println(“Out of both loops”);

21 }

22 }

The output from executing this class is the following:

Outer loop: 0

Inner loop: 0

Inner loop: 1

Inner loop: 2

Inner loop: 3

Out of both loops

Do you see why this is the output? Before you read the following explanation,
see if you can figure it out just by reading the code itself. I have reinforced my
understanding of several programming languages—including Java, of course—
by reading lots of source code and ensuring that I can understand exactly what
is happening.

For the answer, let’s walk through what actually happens in this code. First,
the label on line 6 marks the first for loop. This indicates which loop we want

4373book.fm Page 115 Tuesday, July 13, 2004 3:44 PM

116 Chapter 4

to escape to when the break statement is eventually reached on line 16. It
appears as if the outer for loop defined on line 7 iterates three times. The first
iteration results in the variable j being created and initialized to zero. Line 10
prints the first of the messages, “Outer loop: 0”.

On line 11, the code hits a new loop, this time a while loop that has true in
the parentheses. This would be an infinite loop if it were not for the test condi-
tion and break contained in the body of the loop itself. First, a message is printed
to indicate that the code is in the inner while loop and the current value of j. As
you can see from the output, this message prints four times. It stops only when
the if statement on line 14 returns true. This happens, of course, when j==3
and line 16 finally executes.

The break test statement means “break out of all the loops until you get to
the one labeled test.” When you find that particular loop, continue the process-
ing at the statement following that loop.” That statement is line 20, which prints
the message “Out of both loops”.

As a comparison, here is the same code without a label:

1 public class NestedLoopsWithBreak2

2 {

3 public static void main(String[] args)

4 {

5

6 for(int i = 0; i < 3; i++)

7 {

8 int j = 0;

9 System.out.println(“Outer loop: “ + i);

10 while(true)

11 {

12 System.out.println(“Inner loop: “ + j);

13 if(j++ > 2)

14 {

15 break;

16 }

17 }

18 }

19 System.out.println(“Out of both loops”);

20 }

21 }

This time, the output looks like this:

Outer loop: 0

Inner loop: 0

4373book.fm Page 116 Tuesday, July 13, 2004 3:44 PM

Flow Control 117

Inner loop: 1

Inner loop: 2

Inner loop: 3

Outer loop: 1

Inner loop: 0

Inner loop: 1

Inner loop: 2

Inner loop: 3

Outer loop: 2

Inner loop: 0

Inner loop: 1

Inner loop: 2

Inner loop: 3

Out of both loops

Notice that the outer loop completes all three of the iterations specified by the
termination expression. This is because the standalone break statement only
ends the processing of the inner loop. When line 15 is reached, processing returns
to where the outer for loop left off.

The continue Statement
Like break, the continue statement allows you to end the processing in a loop.
However, continue does not escape the loop. Instead, it returns processing to
the beginning of the loop and continues with the next iteration. In effect, then,
when a continue statement is found, it “skips” the rest of the processing for the
current iteration and jumps to the next one. You can use continue in while, do/
while, or for loops.

To demonstrate the use of continue, here is a class that counts the number
of vowels in the argument you pass on the command line. This is a more complex
piece of code, but a full explanation follows as usual.

1 public class Vowels

2 {

3 public static void main(String[] args)

4 {

5 if(args.length == 0)

6 {

7 System.out.println(“Usage: java Vowels <str>”);

8 System.exit(1);

9 }

10 String str = args[0].toLowerCase();

4373book.fm Page 117 Tuesday, July 13, 2004 3:44 PM

118 Chapter 4

11 char [] chars = str.toCharArray();

12 int count = 0;

13 for(int i = 0; i < chars.length; i++)

14 {

15 switch(chars[i])

16 {

17 case ‘a’:

18 case ‘e’:

19 case ‘i’:

20 case ‘o’:

21 case ‘u’:

22 count++;

23 break;

24 default:

25 continue;

26 }

27 }

28 System.out.print(args[0] + “ has “);

29 System.out.println(count + “ vowels.”);

30 }

31 }

On line 10, the input String stored in args[0] is converted to all lowercase
letters. This is accomplished by calling yet another method in the String class,
toLowerCase(). This step simplifies working with the case statements. Instead
of checking for both uppercase and lowercase forms of each of the five main
vowels (as was done in the VowelCheck class shown in the switch/case sec-
tion), only the five lowercase vowels need to be checked for. This new String
variable, str, is then converted into a char array so that each letter can be
inspected.

Line 12 defines a new int named count that stores the number of vowels
found in the input string.

Line 13 defines a for loop that iterates through the array until it reaches
the end.

The real work gets done in the switch statement (see line 15). Every character
in the array is evaluated, and if it is one of the five main vowels, the count vari-
able is post-incremented on line 22. This is followed by a break statement that
ends the switch statement processing and allows the for loop to process the
next iteration.

Line 24 is the default statement that triggers when anything other than a
vowel is found. Because you are not interested in anything except vowels, this is
where the continue statement comes into play. When line 25 is executed, the next

4373book.fm Page 118 Tuesday, July 13, 2004 3:44 PM

Flow Control 119

iteration of the for loop begins, and the next character (assuming that you have
not already reached the end of the array) is evaluated in the switch statement.

Once the entire array has been processed, lines 28 and 29 execute, outputting
a message that indicates how many vowels were found in the argument you
passed in. Notice that the original String stored in args[0] is used here, not the
converted version stored in str. This is because the printout should include the
actual, case-sensitive String originally passed in to the code.

If you run this code and pass the String “Apple”, you receive the following
output.

Apple has 2 vowels.

Go ahead and pass other arguments to this code to prove to yourself that it
works and, even more important, to ensure that you understand why it works.

Using continue with a Label
As with the break statement, you can associate a label with a continue statement
to allow control to pass to a specific outer loop. When the continue statement
executes, it returns control to the loop that has the label preceding it and contin-
ues the next iteration of that loop.

Here is similar code shown in the section on break statements and labels,
though it has been modified a bit. It uses continue instead, and the inner loop
is now a for loop instead of a while loop.

1 public class NestedLoopsWithContinue

2 {

3 public static void main(String[] args)

4 {

5

How Do I Pass Arguments That Contain Spaces?

When you pass command-line arguments, the interpreter considers each space
character as the separator. If you pass the String “Apple Pie” to this class, the
results are still “Apple has 2 vowels”. As far as the interpreter is concerned, you
passed two arguments on the command line, yet reference only the first one in
your code.

You can wrap your arguments in quotes if you want to pass full String arguments
that contains spaces, as in:

java Vowels “Apple Pie”

The output from the Vowels class in this case is “Apple Pie has 4 vowels”.

4373book.fm Page 119 Tuesday, July 13, 2004 3:44 PM

120 Chapter 4

6 test:

7 for(int i = 0; i < 3; i++)

8 {

9 System.out.println(“Outer loop: “ + i);

10 for(int j = 0; j < 10; j++)

11 {

12 System.out.println(“Inner loop: “ + j);

13 if(j == (i * 2))

14 {

15 continue test;

16 }

17 }

18 }

19 System.out.println(“Out of both loops”);

20 }

21 }

The output of this code is a bit different from when the break statement was
used on line 15 instead of continue. Here is the output; see if you can figure out
why this is the output before you read the explanation that follows.

Outer loop: 0

Inner loop: 0

Outer loop: 1

Inner loop: 0

Inner loop: 1

Inner loop: 2

Outer loop: 2

Inner loop: 0

Inner loop: 1

Inner loop: 2

Inner loop: 3

Inner loop: 4

Out of both loops.

The processing begins on line 7 with the first iteration of the outer for loop
that is associated with the test label. When the inner for loop is reached, i==0.
When line 13 is reached for the first time, the test condition in the if statement
is actually 0 == 0 * 2, which evaluates to true. Therefore, the body of the if
statement executes, and line 15 returns the processing to the outer for loop
because it specifies the label, test. On the next iteration of the outer loop, i==1
and the inner loop begins processing all over again, starting at 0. The if statement

4373book.fm Page 120 Tuesday, July 13, 2004 3:44 PM

Flow Control 121

on line 13 returns false the first time because 0 != 2 and also returns false on
the second iteration of the inner loop because 1 != 2. On the third iteration of the
inner loop, however, the if statement returns true because 2==2.

This process continues until the termination expression in the outer for loop
returns false and ends the processing, printing the final message “Out of both
loops.”

You might have to examine this code a few times to really be able to follow what is
happening, but stick with it. Nested loops and the ability to define complex process-
ing like this within them is a powerful technique that you can use in your own code.

The return Statement
The return statement is a little different from the other two because it does not
just exit a loop; it exits an entire method. The truth is that all methods defined
in Java classes must have a return statement. This is even true for the main()
method you have been using in all the code examples thus far. But wait! There
are no return statements in any of them! Is the main() method somehow
special?

The answer is no. What is happening is a compiler trick. When a method is
defined to return void, which essentially means that it returns nothing to the
caller of the method, the return statement can be left out for convenience. When
you compile your code, the Java compiler sticks in the return statement as the
last line of your method. This does not alter your source code, of course. The
return statement is simply added to the class file that the compiler creates.

This means that your main() methods could look like this:

public static void main(String[] args)

{

 // do your processing

 return;

}

Remember, you do not now have to start adding return statements to your
methods that return void (like the main() method does). The lesson right now
is that all methods have such a statement, whether you define it explicitly or not.

Typically, the last line is where you want your return statement because you do
not want to end method processing until the entire method body has been executed.
However, you can actually place return statements anywhere in a method body.
Just be sure you understand that when a return statement is reached, no code that
comes after the return actually executes. Also, if the compiler notices that code fol-
lowing a return statement can never be reached, you receive a compiler error forc-
ing you to fix your code.

4373book.fm Page 121 Tuesday, July 13, 2004 3:44 PM

122 Chapter 4

Returning Values from a Method
The only time that you do not have to explicitly define a return statement is if
the method is declared to return void. As you will learn in Chapter 6, “Intro-
duction to Object-Oriented Programming,” and Chapter 7, “Advanced Object-
Oriented Programming,” you can define methods to return any type. If the
return type is not void, the compiler issues an error message, stating that you
have to return the type defined in the method signature itself.

You have not yet learned how to create your own methods, but the following
code shows a quick working example of returning something other than void. In
this case, we return to our old friend, HelloWorld, but this time two methods are
defined in the class. The first is the main() method that we require to kick off the
processing. The second is named getMessage() and actually returns the String
that is printed in the main() method’s body. The output of the code is the same
as the original HelloWorld class.

1 public class HelloWorldRevisited

2 {

3 public static void main(String[] args)

4 {

5 String message = getMessage();

6 System.out.println(message);

7 }

8

9 public static String getMessage()

10 {

11 return “Hello World!”;

12 }

13 }

In this code, line 5 actually calls the getMessage() method defined on line 9.
There is only one statement in the method body, and that is the return state-
ment. Notice that this time a String is given right after the return keyword
itself. This is how you return a specific type. This method must return a String,
because the method signature on line 9 says that it does. If you leave out the
return statement on line 11, the compiler will tell you that it is missing.

The important point here is that every return statement you define must
return the same type that is defined in the enclosing method’s signature. If you
create a method that returns an int, the statement return “Hello World!” will
not compile. You have to return either an int variable or literal to fulfill the
“contract” specified by the method signature.

You will learn a lot more about defining methods and returning values from them in
Chapters 6 and 7, when I begin discussing classes and objects in more detail.

4373book.fm Page 122 Tuesday, July 13, 2004 3:44 PM

Flow Control 123

Terms to Know
branching statements local variable

infinite loop pseudocode

initialization expression termination expression

iteration expression wrapper class

label

4373book.fm Page 123 Tuesday, July 13, 2004 3:44 PM

124 Chapter 4

Review Questions
1. How do you define scope within a class, method, or flow-control statement?

2. What are the decision-making flow-control statements?

3. What is the rule that you must follow when using else statements with an if
statement?

4. What is the difference between a while and a do/while loop?

5. What statement is used to handle all other results not already associated with
case statements?

6. What does the break statement do?

7. What does the continue statement do?

8. If a method is defined as the following, is return 1987; a valid return
statement?

public static int getValue()

9. What is wrong with the following code?

for(int i = 0; i < 10; i++)

{

 if(i = 5)

 {

 System.out.println(“Found a 5!”);

 }

}

10. Typically, why should a break statement be the last line of all case
statements?

4373book.fm Page 124 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

5

Arrays

So far, you have learned about some of the simple data types in the Java
language and various flow-control constructs that you can use to build
logic into your programs. There is a lot more to this language than just
adding numbers together! You are getting closer and closer to leaping
into the world of objects.

Before you get immersed in this new topic, though, you will spend
some time in this chapter learning about a predefined object type called
an array. Arrays are useful for holding collections of similar items.
Instead of defining a variable to hold a single number, now you will be
able to define a variable that holds as many numbers as you like!

◆

What arrays are and their characteristics

◆

How to declare arrays

◆

How to initialize and populate arrays

◆

How to create multidimensional arrays

◆

How to sort arrays using the

java.util.Arrays

 class

4373book.fm Page 125 Tuesday, July 13, 2004 3:44 PM

126

Chapter 5

Understanding Arrays

array

An ordered collection of primitives or
objects. When you declare an array, you
specify the element type, and the result-
ing array can contain only elements of
that type.

If you have not used arrays before, this section is for you. An

array

 is a data struc-
ture that contains zero or more elements, and each element’s location is denoted
by an index. Once you have mastered how to use arrays, you have a powerful
addition to your growing number of skills with the Java language.

Simply put, an array is an object that contains multiple items. However, an
array can only hold items of the

same type

. In other words, you can put a bunch
of

int

 primitives in an array or a lot of

String

 objects, but you cannot mix the
two. That is your first lesson in this chapter: arrays can contain multiple items of
the same type.

Imagine a car dealership that has rows and rows of new and used cars on dis-
play. If you saw this while traveling somewhere, you would not think it strange
at all, right? This is because you

expect

 a car dealership to have those rows of
cars. If you think about this as an array of cars, you can begin to see the point
of the same-type-only rule. After all, if you saw this same car dealership, and cir-
cus animals were mixed in with all the cars, you would surely look twice. That
does not fit with the collection you expect to find.

This somewhat silly analogy serves to demonstrate why each array that you
create must always contain the same type of values. Don’t go trying to stick
giraffes in with the convertibles!

Java does provide other collection types that can hold a variety of types, unlike arrays.
You will learn about some of these in Chapter 9, “Common Java API Classes.”

Conceptually, an array looks like the following diagram.

The array in this diagram holds six

char

 primitives. Therefore, the length of
the array is six. At the bottom of the diagram are the indices of each element
in the array. Notice that the first index is 0, not 1. This is another important
point about arrays in the Java language—all arrays begin with index 0.

The number one error that new (and even veteran!) developers make is that
they forget that the first index of an array is 0 and that the last index is always
one less than the array length. In the previous diagram, you can see that the
length of the array is 6, but the last index in the array is 5. If you can find a place
to burn these rules into your head right now, you will be way ahead of the game
when you write your own code.

Length = 6

a b c d e f

0 1 2 3 4 5Index

4373book.fm Page 126 Tuesday, July 13, 2004 3:44 PM

Arrays

127

array element

Each item stored in an array is con-
sidered an element of the array.
Each array element must be the same
type as the array itself. For example,
an

int

 array contains some number
of

int

 array elements.

Each item in an array is called an

array element

. Therefore, you might refer to
the character

b

 in the diagram as “array element one” or “element one.” Don’t
forget, each of these elements is always the same type in a particular array.

Once an array is created and stored in memory, its length can never change.
In other words, all arrays are immutable. If you have an array with six elements
in it and you want it to hold seven, you must create a new array. An array is not
meant to be a dynamically sized collection type, so don’t try to use it that way.
Java provides other collection types that you can dynamically resize, and you will
be able to check these out in Chapter 9.

Think about the main method that you have been working with so far:

public static void main(String[] args)

Earlier, you learned that the parameter to this method is in fact an array of

String

 objects. Each element in this array is one argument passed on the com-
mand line to the class that holds this main method. What is the length of that
array? You have no way to answer that right now, do you? Until you actually
pass the command-line arguments, there is no way of telling. If you pass two
arguments, the length of

args

 will be two. If you pass zero arguments, the length
will be zero. This demonstrates an array’s length being determined at runtime.
Once the array length is determined, however, it cannot change.

A critical step is being left out of this discussion right now. Before an array can actu-
ally have contents or a length, it must be created. What really happens when you pass
command-line arguments is that the JVM creates a new array and populates it with
each of the arguments that you passed (if any). Make sure you read on a bit to find
out how to create arrays before you try to use them in your code.

Although you cannot change the array itself, you can change its contents.
You can replace the value of any element in the array whenever you want. Just
like the car dealer who makes a sale and replaces the sold car with new one, you
can change array contents as you need to in your code. Thus, an array is a use-
ful container for multiple elements that you can pass back and forth through-
out your code.

Regardless of the element type, all arrays are objects. This means that you
create them differently from the way you created the primitive types you already
learned about. If you review the brief introduction to objects at the beginning of
this book, you may be able to see why arrays are objects. Primitive types can hold
only a single value. Objects, on the other hand, can hold multiple values. Because
an array is meant to contain a collection of elements, it simply has to be an
object.

4373book.fm Page 127 Tuesday, July 13, 2004 3:44 PM

128

Chapter 5

This chapter focuses on arrays, of course, but you also get a basic introduction to cre-
ating and working with objects along the way. In Chapter 6, “Introduction to Object-
Oriented Programming,” and Chapter 7, “Advanced Object-Oriented Programming,”
you finally learn how to create your own classes and objects, but the techniques
that you learn in this chapter give you a little head start.

Let’s wrap up the important points in this section before we move on and
actually create and work with arrays.

◆

Arrays contain multiple items.

◆

Each item in an array is called an element.

◆

All the elements in an array must be the same type.

◆

The length of an array is determined at runtime.

◆

The length of an array can never change.

◆

The contents of an array can be changed dynamically.

◆

All arrays are objects, regardless of their content type.

◆

Array indexes start at zero and go to (length – 1).

Declaring Arrays

Just like all the other data types that you have learned about, arrays are always
bound to a variable you define. You use this variable to access the array as
needed throughout your code. All array declarations indicate the type of the ele-
ments, a pair of brackets (

[]

), and the variable name for the array.
The following are valid array declarations:

int [] ages;

An array of primitive

int

 values

String[] names;

An array of

String

 object references

float [] salaries;

An array of primitive

float

 values

The key difference between a normal variable declaration and an array vari-
able declaration is those brackets, of course. In source code, you can always iden-
tify an array by those brackets. If you do not include the brackets, you are simply
defining an individual variable; so be sure to remember using them. If you do not
and then later try to create an array for that variable, you get a compiler error.

Some people prefer to declare their array variable a little differently. The truth
is that the brackets can come before or after the variable name itself. In other
words, the three arrays declared previously could optionally be declared like this:

int ages [];

String names [];

float salaries [];

4373book.fm Page 128 Tuesday, July 13, 2004 3:44 PM

Arrays

129

Although this format is completely legal, I suggest using the earlier style, with
the brackets coming before the variable name. The reason is a purely logical one.
When you declare a variable, you always precede the name with the type, right?
So what is the type of the

ages

 variable in the first example? Is it an

int

? No, it
is an

int

 array. Because the type of the variable

ages

 is

int []

, that type should
precede the variable name. Which way you declare the arrays is entirely up to
you, but keeping the type-name for your variables consistent can make your code
much easier to read and maintain.

As I climb down off my soapbox, let me explain something else. So far, all you
have done is

declare

 arrays; you have not yet created any. Therefore, none of
these arrays have a length or any content whatsoever. As mentioned earlier, all
arrays are objects. When you declare an object as a class variable, it automati-
cally has a value of

null

. In Java, it is illegal to access a

null

 object or array, and
attempting to do so results in a runtime exception.

You have already read a bit about exceptions in this book, and you will read even
more in this chapter. At this point, you will learn only how to avoid exceptions, but
later, you learn how to handle them elegantly at runtime and how to keep your code
from crashing when exceptions are discovered.

When you declare a simple, single value variable as a class member, it automat-
ically defaults to a valid value. For example, if you define the variable

int age;

at the class level, it has a value of zero. All the numeric primitive types default to
a zero value when they are declared. However, when you declare an array variable
such as

int [] ages;

, there are no contents to initialize yet. Remember, declaring
an array (or any object) and creating it are two different tasks.

Up to this point, you have only been declaring variables inside a method. In this chap-
ter, you continue working only inside methods. The “automatic initialization” rule
applies only to those variables defined at the class level. No initialization is per-
formed on variables defined inside a method unless you do it explicitly. I touch on this
subject again in the next chapter, in which you begin creating your own classes and
objects.

Creating Arrays

All right, you have learned how to declare arrays, and now it is time to actually
create them. As with all variables, you give a variable a value to hold when
you create it. With primitive types, you accomplish this with just the assignment
operator (

=

) and a literal value. This does not work for objects such as arrays,
however. Instead, you need to use the

new

 keyword.
Way back in Chapter 3, “Keywords and Operators,” you were introduced to

the

new

 keyword, and you saw a short example of how it worked. To refresh

4373book.fm Page 129 Tuesday, July 13, 2004 3:44 PM

130

Chapter 5

your memory, when you use

new

, the interpreter sets aside the appropriate mem-
ory for an object and returns a reference. Recall that this reference is the pointer
to the memory address where the object is stored. When you use the

new

 key-
word with an array, you “turn on the power” so to speak; you make it ready to
use in your code.

instantiation

The process of creating an object. This
usually involves using the

new

 keyword.
Instantiation results in the JVM setting
aside memory for the created object’s
contents. An object’s members cannot
legally be accessed until it has been
instantiated.

The

new

 keyword works the same way with arrays; this should not be at all
surprising because arrays are in fact objects. The JVM performs a secondary step
in this process, however; it initializes all the array elements to their default value.
Using

new

 to create an object is called

instantiation

. When you instantiate an
array, it becomes a valid, live object, and you can access and change the elements
to new values at your whim.

You

must

 specify the size of the array as part of the array-creating process;
you cannot create an array with an unknown size in Java code. The size must be
a valid, nonnegative

int

 value. Remember, this number defines the length of the
created array for its entire life cycle—arrays’ lengths cannot be changed at run-
time. You put this

int

 inside the brackets on the right side of the expression.
To see how this is done, let’s take the three arrays introduced in the last sec-

tion and add the appropriate code to instantiate them.

int [] ages = new int [5];

String[] names = new String[10];

float [] salaries = new float[100];

Now we are talking! Once these three lines of code execute, you have three
references to arrays in memory. All of them initialize their elements to their
default values. Therefore, the

ages

 array currently holds 5

int

 elements, all with
a value of zero. The

salaries

 array holds 100

float

 elements with a value of
zero. The

names

 array holds

String

 elements (which are objects, remember), so
each of these

String

 elements currently has a value of

null

.
Note that you have to specify a size when you create an array. There is no way

around this rule. Code such as the following is illegal:

int [] ages = new int[];

In some languages, you can use code like this without a problem if you create a
dynamically sized array, but not in Java. The compiler will not even let code like
this pass.

Getting the Length of an Array

After you create an array, you can access its length. In essence, all arrays have a
member variable named

length that you can query to find out how many ele-
ments a particular array holds.

You learned earlier that all objects have a class file that contains all the vari-
ables and methods that can be called using that object. Arrays are a strange case

4373book.fm Page 130 Tuesday, July 13, 2004 3:44 PM

Arrays 131

because they do not have a class that we can actually look at. Although the
length variable is always part of any array you create, this is the only member
available to you. Just think of all arrays as having a class that is controlled and
hidden by the JVM itself, and keep this length variable in mind, because it will
be immensely useful to you when you write your own code.

If you have jumped ahead, you may have realized that all arrays also have access to
all the methods defined in the ultimate java.lang.Object class. Although this is
absolutely true, it is not overly relevant right now, so I do not discuss it at this time.
You will learn more about the Object class in Chapter 7.

Not surprisingly, the value of the length variable is the actual length of the
array in question. You might wonder why you would ever need this in the first
place. After all, you have to pass a size to the array when you create it, so surely
you know how big it is, right?

That is not necessarily true in most code. Sure, if you are hardcoding the size
when you create the array, you know the length, but you often create arrays
using an int variable as the length, not a hardcoded literal. If you do this in code,
the length variable becomes important because using it is the only way that you
can determine how many elements are in the array.

A common example of this occurs when you are processing command-line
arguments. So far, all our code has assumed that you pass the correct arguments
when arguments are required. If you do not, you receive an exception, and your
program crashes. Wouldn’t it be much nicer if you could handle this problem
dynamically and give the user a helpful message?

The following code is simply a variation of HelloWorld, but this time it makes
sure that you pass an argument on the command line. If you do not, a message
prints, explaining how the code should be executed.

public class EnforcedArg

{

 public static void main(String[] args)

 {

 if(args.length == 0)

 {

 System.err.println(“Usage: java EnforcedArg
<arg>”);

 System.exit(1);

 }

 System.out.println(“Hello “ + args[0]);

 }

}

4373book.fm Page 131 Tuesday, July 13, 2004 3:44 PM

132 Chapter 5

Go ahead and compile and execute this code, but do not pass any arguments.
You will receive the message that tells you how to run the code. The <arg> sim-
ply represents an argument that should be passed, and it holds no special signif-
icance to the JVM itself; it is only for human viewing.

So far you have been using System.out.println() to output messages to the com-
mand line. When you output error messages, you should normally use System.err
.println() instead. This outputs the message to the standard error of your system.
This is normally just the command line, but using System.err ensures that all error
messages go to the right place.

The key to making this code work is that the if statement checks to see if the
length of the array is zero. If it is, you know right away that no arguments were
passed. This works because the array argument to the main method is always
instantiated, even if you do not pass any arguments at all. If no arguments are
passed, the JVM creates the array like this:

String[] args = new String[0];

Although it may seem strange to create an array with no size that can there-
fore never hold any elements, it is perfectly legal. You will probably never do it
yourself, but it is a good thing that you and the JVM can because it allows elegant
argument processing code as shown in the EnforcedArg class to be created!

Be sure you understand the big difference between an array created with a
length of zero and an array that is not created at all. If the JVM only created the
array if you passed arguments, code like that shown in the EnforcedArg example
would not work. Why? Because the args array would be null. Remember that it
is illegal to try to access the members of a null object reference, so you would not
be able to access args.length without causing an exception that would crash
your code…and that is what you were trying to avoid in the first place!

Just like the array itself, the length variable is immutable. It is illegal to write
a statement such as the following:

int [] stuff = new int[10];

stuff.length = 20; // illegal!

If you try to do this in your code, you get a compiler error because the length
variable is defined as final. You will use the length variable later in this chap-
ter when you begin iterating through arrays.

Populating an Array
Typically, after creating an array, the next step is to populate it with more useful
values than the defaults of zero or null. To help demonstrate this, let’s take one
of the arrays that we have seen so far—the names array.

4373book.fm Page 132 Tuesday, July 13, 2004 3:44 PM

Arrays 133

You might want to maintain a list of names in an address book and be able
to access and modify them at your convenience. Typically, the names are read
from some file stored on a computer system somewhere, but we will cheat a bit
and put the values right in our code. We will create an array that holds six names.

The syntax for accessing an array element is arrayName[x], in which x is the
index of the element you are after. Don’t forget that the first element in an array
is always at index zero, and the last is always at (arrayName.length - 1). So
for the following six-element array, the last index is 5.

Take a look at the code that populates the names array:

public class AddressBook

{

 public static void main(String[] args)

 {

 String[] names = new String[6];

 names[0] = “Kelby”;

 names[1] = “Suzanne”;

 names[2] = “Georgianna”;

 names[3] = “Kathy”;

 names[4] = “Lee”;

 names[5] = “Sean”;

 System.out.println(“There are “ + names.length +

 “ names in the address book.”);

 }

}

Granted, this code does not do much right now, but we will add to it as we move
though the remainder of this chapter. Right now, let’s concentrate on the population
of the array itself. The output tells you there are six elements in the array.

The first element in the array is now “Kelby” (located in names[0]), and the
last element is “Sean” (located in names[5]). Any index value given to this array
other than those shown in this code would cause an exception at runtime. The
compiler, however, would not care even a little if you tried to access names[900],
so you cannot rely on it to warn you of mistakes like that.

Using Array Initializers
array initializer
A special variation to creating an array that
does not require you to explicitly set the
length. Instead, the contents of the array
are put right inside a pair of braces ({}),
and a comma separates each element. The
resulting array’s length equals the number
of elements listed between the braces.

Although you can manually add the elements of an array with a known size, you
may often find it more convenient to use a special syntax called an array initial-
izer. This time, you do not have to explicitly use the new keyword and give a
length because those things are automatically provided in a list of elements. The
number of elements you provide becomes the array length, and the elements are
contained in the array in the same order in which you give them.

4373book.fm Page 133 Tuesday, July 13, 2004 3:44 PM

134 Chapter 5

Here is an example of adding names using this syntax:

public class AddressBook

{

 public static void main(String[] args)

 {

 String[] names = {“Kelby”, “Suzanne”,

 “Georgianna”, “Kathy”, “Lee”, “Sean”};

 System.out.println(“There are “ + names.length +

 “ names in the address book.”);

 }

}

The braces identify the list of elements that you want to add to the array. The
results of this code are equivalent to those of the previous example, but as you
can see, this method requires less coding on your part.

Array initializers are only useful if you know the exact number and the values
of the elements in an array at compile time, of course. This is a useful technique
when you want to hold a known range of values because you can add and
remove them from the list in your source code and recompile them to have a dif-
ferent array length and new contents at runtime.

There is one caveat to this, however. You can only do this type of array ini-
tialization on the same line of code. Don’t be thrown off by the fact that the
source code actually spans two lines; Java ignores white space, and it is written
this way only for readability. As far as Java is concerned, the entire array initial-
ization statement is on one line.

As usual, though, there is another option…

An Array Initializer Variation
You can actually combine the two forms of initialization that you have seen so
far. The syntax is somewhat strange, but if you read it closely, you will see
exactly what is happening. Take a look at this variation, and then I will explain
what is going on:

public class AddressBook

{

 public static void main(String[] args)

 {

 String[] names;

 // do some other work perhaps

4373book.fm Page 134 Tuesday, July 13, 2004 3:44 PM

Arrays 135

 names = new String[]{“Kelby”,

 “Suzanne”,

 “Georgianna”,

 “Kathy”,

 “Lee”,

 “Sean”};

 System.out.println(“There are “ + names.length +

 “ names in the address book.”);

 }

}

Once again, you are using the new keyword, but this time you are not explic-
itly giving a length inside the brackets. Instead, the same list of values in the
braces that you used before follow the brackets. This results, once again, in all
six elements being put into the array. This is useful if you need to declare an array
in one location but populate it in another while still taking advantage of the array
initializer. You probably will not use it often, but it is there when you need it. In
my own development, I have found this to be a useful syntax indeed on more
than a few occasions.

Accessing Array Elements
subscript
The syntax for specifying the element
of an array that you want to access. A
subscript is shown as a pair of brackets
containing an int that represents
an index. For example, the statement
names[2] refers to the third element
in the array called names.

Of course, an array is really useful only if you can access the contents. You do
so with something called a subscript. The subscript syntax consists of a pair of
brackets that follow the array name with a valid array index inside them. So,
to access the first element of the names array, you would say names[0]. By
using the subscript, you can retrieve the value of the element in an array if it is
a primitive, or you can retrieve a reference to the element in the array if it is an
object.

You have already used this form of array access every time you worked with the array
passed to the main method of your classes.

There is an important difference between an array of primitive types and an
array of objects, however. Remember that when you create an array of primi-
tives, all the elements are initialized to the default value of zero (or ‘\0’ in the case
of a char array) or null if the element is an object. Immediately after you create
the array, you can access the value of the elements, and they will all be zero.
When you create an array of objects such as a String[], the elements are not ini-
tialized; all the elements of the array default to null. Sure, you can access those
values if you really want to, but they will not typically do you a lot of good! Be

4373book.fm Page 135 Tuesday, July 13, 2004 3:44 PM

136 Chapter 5

sure your arrays are fully initialized with correct, meaningful values before you
access the elements.

Here is the AddressBook class once again, this time with code added to print
the contents of the array itself. Notice the use of subscripts to access each element.

public class AddressBook

{

 public static void main(String[] args)

 {

 String[] names;

 // do some other work perhaps

 names = new String[]{“Kelby”,

 “Suzanne”,

 “Georgianna”,

 “Kathy”,

 “Lee”,

 “Sean”};

 System.out.println(“There are “ + names.length +

 “ names in the address book.”);

 System.out.println(names[0]);

 System.out.println(names[1]);

 System.out.println(names[2]);

 System.out.println(names[3]);

 System.out.println(names[4]);

 System.out.println(names[5]);

 }

}

When you execute this code, all the names in the array are printed. Don’t for-
get that the last element of an array is always one less than the length of the array.
That is why the final printout is of names[5].

The previous example explicitly accesses the exact subscripts of the array.
This is fine if you know the exact length of the array before runtime, but that is
often not the case. Here, our old friend, the for loop, comes into play. Using for
loops with arrays is extremely common because they provide the perfect iteration
mechanism with which to access each element of the array.

The following code uses a for loop for array access. The class AddingMachine
allows you to pass two or more numbers as arguments, and then it adds them up
for you. When the addition is complete, the final sum is printed. Notice in this

4373book.fm Page 136 Tuesday, July 13, 2004 3:44 PM

Arrays 137

code that because there is no way to know the length of the array until runtime,
the for loop handles the iteration for you.

public class AddingMachine

{

 public static void main(String[] args)

 {

 if(args.length < 2)

 {

 System.out.println(“Pass at least two numbers”);

 System.exit(1);

 }

 int sum = 0;

 for(int i = 0; i < args.length; i++)

 {

 sum += Integer.parseInt(args[i]);

 }

 System.out.println(“The sum is “ + sum);

 }

}

Every time the for loop executes, the array index increases by one. The only
line in the body of the loop adds the number you passed in to sum. The entire
array processing takes just three lines. As you work more with arrays in the Java
language, you will find that for loops are a great help when you need to access
elements such as this.

Multidimensional Arrays
multidimensional array
An array that contains other arrays as its
elements. The most common type of mul-
tidimensional array is the two-dimensional
array. In Java, all multidimensional arrays
are just arrays of arrays.

So far, you have worked with simple arrays that contain a range of elements,
and you have accessed each element with a single subscript. However, you
have already learned two facts that allow you to create more complex arrays.
First, arrays can contain objects. Second, all arrays are objects. It is therefore
completely logical for an array to contain other arrays, which creates a multi-
dimensional array.

Java does not truly have multidimensional arrays such as those found in some other
languages. In Java, a multidimensional array is simply an array of arrays. There is no
rule that says each of the subarrays must have the same length.

4373book.fm Page 137 Tuesday, July 13, 2004 3:44 PM

138 Chapter 5

Think of the data stored in a table. The table has rows and columns, and at
any specific coordinate, there is a piece of data. When working with tabular data
like this, you can refer to the location of each piece of data by its row number and
column number. For instance, in the following diagram, a set of letters is stored
in a table. The numbers running down the left side of the table signify the row
number, and the numbers running across the top of the table signify the column
number. Oh, and just for consistency with our array discussions, I have chosen
to begin the first row and column index with zero.

When you look at data in table form like this, you can say things like, “The
letter B is at column 1, row 0” or “The letters A, B, C, D are in row 0, columns 0
through 3.” You can map any row and column index to a specific piece of data,
which is the whole beauty of tabular data.

Now imagine that each row of data is a single char []; in this case, you end up
with four such arrays. Those four arrays could then be added to another array to give
you the tabular form of the data. This final array would be a two-dimensional array.

You define a two-dimensional array by simply adding another set of brackets
to the declaration. To declare the two-dimensional array in this case, we must
first determine the arrays type. Because it will be holding the four simple char
arrays as its elements, the two-dimensional array will be “an array of character
arrays.” Such an array would be declared as char [] [] table;.

You can create arrays with as many dimensions as you like, but it is unusual to have
anything beyond two or three dimensions. Anything beyond that is most likely need-
lessly complex and should be avoided.

Okay, we have the array declaration. Now we need to populate it. If you keep
in mind that each element of the table array is in fact a char array, this should
not be as complex as you might think. All you have to do is create each of the
four simple arrays and add them one by one to the table array.

The best way to see how this works is to jump right into the code, so let’s do
it. The following class creates the two-dimensional array and models the table of
data that you looked at before. When you run the code, you specify a coordinate

Columns

A B C D

E F G H

I J K L

M N O P

(0)

(1)

(2)

(3)

(0) (1) (2) (3)

R
o
w
s

4373book.fm Page 138 Tuesday, July 13, 2004 3:44 PM

Arrays 139

(row and column in that order), and the letter found at that location prints. You
can use the previous graphic as a point of reference to be sure that the code is
working correctly.

public class TwoDimArray

{

 public static void main(String[] args)

 {

 if(args.length < 2)

 {

 System.out.println(“Enter the coordinates!”);

 System.exit(1);

 }

 char [] row0 = {‘A’, ‘B’, ‘C’, ‘D’};

 char [] row1 = {‘E’, ‘F’, ‘G’, ‘H’};

 char [] row2 = {‘I’, ‘J’, ‘K’, ‘L’};

 char [] row3 = {‘M’, ‘N’, ‘O’, ‘P’};

 char [] [] table = new char[4][4];

 table[0] = row0;

 table[1] = row1;

 table[2] = row2;

 table[3] = row3;

 int row = Integer.parseInt(args[0]);

 int column = Integer.parseInt(args[1]);

 if(row >= table.length || column >= table.length)

 {

 System.out.println(“Invalid coordinates: “ + row +

 “, “ + column);

 System.exit(1);

 }

 System.out.println(“The data at “ + row +

 “,” + column + “ is “ + table[row][column]);

 }

}

The TwoDimArray class first ensures that you have entered two coordinates. The
simple, one-dimensional char arrays are created next. These four arrays represent
each row in the table. Of course, they also implicitly define the columns as well. Just
like the previous diagram, there are four rows and four columns. All four of these
char arrays are then added in order to the two-dimensional array named table.

4373book.fm Page 139 Tuesday, July 13, 2004 3:44 PM

140 Chapter 5

Do you see what is happening here? Just as before, we specify the index in
question by using a subscript. The result is that each of the table array’s ele-
ments is actually a one-dimensional char []. The result is a two-dimensional
array that holds four one-dimensional arrays and exactly models the diagram of
the table this section started with.

A quick check is made by the initial if statement to be sure that you entered
valid coordinates to avoid any exceptions. It is easy to enter the wrong coordinates
because you will be inclined to say that the character ‘P’ is located at row 4, col-
umn 4. Remember that the final row and column in this array is 3, not 4.

When you execute this code and enter a pair of coordinates, it prints the letter
found there. For example, if you start the program with java TwoDimArray 2 2,
the following message prints:

The data at 2,2 is K

As with simple arrays, you access the contents of a two-dimensional array
with subscripts. If you give just a single subscript, you are accessing the entire
array element itself. If you pass the two arguments just mentioned in the printed
message, you are accessing table[2][2]. This translates to “give me the char
[] at index 2 of the table array, and then give me the primitive char contained
in that char array at index 2.”

Two-Dimensional Array Initializers
In the TwoDimArray code, the four one-dimensional arrays are created using the array
initializer syntax that you learned earlier. You can do the same thing with multidi-
mensional arrays. Instead of using the four lines required to add each individual char
array to the two-dimensional array, you can alter the code to look like the following.

 char [] row1 = {‘A’, ‘B’, ‘C’, ‘D’};

 char [] row2 = {‘E’, ‘F’, ‘G’, ‘H’};

 char [] row3 = {‘I’, ‘J’, ‘K’, ‘L’};

 char [] row4 = {‘M’, ‘N’, ‘O’, ‘P’};

 char [] [] table = {row1, row2, row3, row4};

The results are exactly the same as before, but there are fewer lines of code.
At the least, this code is easier to read.

Let’s take a look at yet another way to do this initialization. There is no reason
you cannot just use array initializers for everything to produce the same two-
dimensional array. This may seem a bit complex at first, but give it a look.

char [] [] table = { {‘A’, ‘B’, ‘C’, ‘D’},

 {‘E’, ‘F’, ‘G’, ‘H’},

 {‘I’, ‘J’, ‘K’, ‘L’},

 {‘M’, ‘N’, ‘O’, ‘P’} };

4373book.fm Page 140 Tuesday, July 13, 2004 3:44 PM

Arrays 141

If you remember how you did this array initialization with a simple array, this
should make sense. The first pair of braces denotes the boundaries of the table
array itself. The contents of the table array are declared to be four simple char
arrays, right? So all you do is define these arrays with their own braces, separated
by commas. This is exactly the same syntax as you would use to initialize any
simple array. The only thing that makes it seem complicated is that the comma-
separated elements are themselves arrays!

Whichever style you choose to use to initialize your arrays, whether simple or multi-
dimensional, you will not see any great performance gains in the JVM. The choice is
purely a stylistic one for the most part, so choose whichever style you prefer and run
with it!

Nonrectangular Arrays
nonrectangular array
A multidimensional array whose sub-
arrays are not all the same length. This
type of array requires some special care
because you will usually have to deter-
mine the length of each subarray before
you can process its elements.

A nonrectangular array is a multidimensional array that does not contain equally
sized array elements. You might have a two-dimensional array that contains
three other arrays, but those three arrays can all be of different lengths. Although
it is far more common to have a completely even two-dimensional array that is
logically like a table, you are not forced to follow this rule.

When you define a two-dimensional array, you are only required to specify
the length in the first subscript. The second subscript can remain empty until you
initialize each of the subarray elements. As an example, imagine a company that
owns three soft drink vending machines around town. At any given time, each
machine has a specific set of soft drinks contained in it, but each probably has a
different selection. This situation can be modeled with a nonrectangular, two-
dimensional array as follows.

String[] [] machines = new String[3][];

machines[0] = new String[] {“Root Beer”, “Orange”, “Cola”};

machines[1] = new String[] {“Cola”, “Lemon-Lime”};

machines[2] = new String[] {“Root Beer”, “Orange”, “Grape”,
“Cola”};

The resulting two-dimensional array, machines, contains three array ele-
ments. The first has a length of three, the second a length of two, and the third
a length of four. You access the elements just as before with the subscript pair,
but now the range of the index for each simple String[] representing each soft
drink machine is different.

Note that the first subscript in the machines array can never be empty; you
absolutely have to define a length for the machines array. The second subscript
can be empty until later because each of the subarrays can be of a different length.

4373book.fm Page 141 Tuesday, July 13, 2004 3:44 PM

142 Chapter 5

The java.util.Arrays Class
Let me introduce you to a helpful class, java.util.Arrays. Remember that the
java.util portion of the name refers to the package in which the Arrays class
resides. You learn more about a lot of useful classes in the java.util package
later in Chapter 9. When you are working with arrays, though, the Arrays class
can be useful indeed.

I want to discuss three main method types in this class. These three methods
let you search an array for a value, sort an array, and automatically fill an array.
If you look at the Arrays class documentation, you will find several versions of
each method. These multiple versions allow you to work with all the different
types of arrays possible (the primitive types and arrays of objects). I am not going
to go through each and every method here, but I will show you how all three
methods work and how to use them with a specific array type.

All the methods in the Arrays class are declared as static, so you can just call the
methods using the class itself. The syntax is always Arrays.methodname.

Filling an Array
When you create an array, you already know that the contents are initialized to
their default values. If you want to change these values, you must assign the new
value to each element of the array. If the elements can each hold a different initial
value, you still have to do that processing yourself. However, sometimes you just
want to create an array that contains all the same values initially. This is where
the Arrays.fill() method comes in handy.

The following code creates an int [] and then uses the Arrays.fill()
method to set all the contained elements to 100. Notice the required import
statement so that you can use the Arrays class in the code.

import java.util.Arrays;

public class FillArray

{

 public static void main(String[] args)

 {

 int [] numbers = new int[10];

 Arrays.fill(numbers, 100);

 for(int i = 0; i < numbers.length; i++)

 {

 System.out.println(“Index “ + i + “=” + numbers[i]);

 }

 }

}

4373book.fm Page 142 Tuesday, July 13, 2004 3:44 PM

Arrays 143

The Arrays.fill method takes two parameters. The first is the array that
you want to fill, and the second is the value to which you want all the elements
set. Of course, the type of the second parameter must match the element type
of the array in the first parameter. As mentioned, various versions of this
method work with all the array types that you might have, including arrays of
objects.

When you run this code, you will see that every element of the numbers array
is set to 100. Of course, you can still change the value of each element as you need
to in your code. All the Arrays.fill() method does is provide you with an ini-
tial value that is different from the default of zero.

Sorting an Array
natural ordering
A process used in sorting algorithms to
determine how a specific set of data
should be ordered. This is normally an
ascending order for numbers and alpha-
betic order for characters and strings.

At one time, sorting arrays was often a challenge for new developers. Hey, it was
also often a pain in the neck for us experienced developers! Well, not anymore.
You now have another method available to you: the Arrays.sort method. This
method sorts the contents of an array according to its natural ordering, which is
essentially the common ordering that you would expect. Numbers are sorted in
increasing order, and String objects are sorted alphabetically. You will find this
method helpful when you have a String array that you want to ensure is in
alphabetic order.

All you have to pass to the Arrays.sort() method is the array you want to
sort. Once again, you can pass any type of array. The following code creates a
String[] and then sorts it alphabetically.

import java.util.Arrays;

public class SortArray

{

 public static void main(String[] args)

 {

 String[] names = {“Kelby”, “Suzanne”, “Kathy”,~CR

 “Georgianna”, “Lee”, “Sean”};

 Arrays.sort(names);

 for(int i = 0; i < names.length; i++)

 {

 System.out.println(names[i]);

 }

 }

}

4373book.fm Page 143 Tuesday, July 13, 2004 3:44 PM

144 Chapter 5

When you run this code, you will see the names printed in alphabetic order
like this:

Georgianna

Kathy

Kelby

Lee

Sean

Suzanne

With this method, it is that easy to sort arrays, and the performance is quite
acceptable as well. Of course, the larger the array, the more time it is going to
take to sort it; so don’t expect an array of 1,000 elements to sort as fast as an
array of 6. Using this method sure beats writing your own sort algorithms for
simple sorting like this!

Searching an Array
The Arrays class also gives you the ability to search an array. This allows you
to find out if a particular array contains a specified element value or reference.
You can search any type of array using the Arrays.binarySearch() method.

You have to be careful, though. This method is guaranteed to work correctly only
if the array being searched has already been sorted. So you have to be sure to use the
Arrays.sort() method before you try your search. If you do not sort the array, the
results may not be what you expect, so don’t forget: sort before you search!

The Arrays.binarySearch() method takes two parameters: the array it
should search and the element for which it should search. The method returns an
int that will be either the index of the element if it was found or a negative num-
ber if no matching element was found. You simply need to retrieve this int and
find out the value to determine if the search was successful and, if it was, where
in the array the element was found.

Let’s take the code from the sorting example and add searching to it. Now you
can specify a name on the command line, and if it is found, you will be told the
index where it was discovered in the array.

import java.util.Arrays;

public class SearchArray

{

 public static void main(String[] args)

 {

 if(args.length == 0)

 {

4373book.fm Page 144 Tuesday, July 13, 2004 3:44 PM

Arrays 145

 System.out.println(“Give me a name!”);

 System.exit(1);

 }

 String[] names = {“Kelby”, “Suzanne”, “Kathy”,

 “Georgianna”,~CR”Lee”, “Sean”};

 Arrays.sort(names); // must do this!!!

 int index = Arrays.binarySearch(names, args[0]);

 if(index < 0)

 {

 System.out.println(args[0] + “ was not found.”);

 }

 else

 {

 System.out.print(args[0] + “ was found at “);

 System.out.println(“index “ + index);

 }

 }

}

If you run this code and enter one of the names in the array, you receive a mes-
sage telling you the index where it was found. Remember, the array is being
sorted first, so if you search for “Georgianna”, you will be told it is at index 0,
not index 3 as it appears in the code.

Don’t forget that Java is a case-sensitive language. The name “Georgianna” and
“GEORGIANNA” are two different things entirely. In this case, the former will be found;
the latter will not be found.

Terms to Know
array multidimensional array

array element natural ordering

array initializer nonrectangular array

instantiation subscript

4373book.fm Page 145 Tuesday, July 13, 2004 3:44 PM

146 Chapter 5

Review Questions
1. What is the starting index of all created arrays?

2. What is the last index of all created arrays?

3. What is the value at index 2 of the following array?

String[] names = new String[10];

4. Is the following code snippet legal?

int [] points;

points = new int[900];

5. Is this a legal array declaration?

float f [10];

6. Is the following array created legally?

int [][] points = new int[5][];

7. What kind of arrays can you search using the Arrays.binarySearch()
method?

8. Which method should you always call before you use the
Arrays.binarySearch() method?

9. In the following array, what is the length of points?

int [][] points = new int[10][5];

4373book.fm Page 146 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

6

Introduction to
Object-Oriented
Programming

You have learned a lot about the Java language already, but so far we
have paid little attention to objects and object-oriented programming.
To unleash the power of the language completely, you need to know
about this methodology. Except for the primitive types, everything in the
Java language is an object. Obviously then, understanding how objects
work and why they are so beneficial is an important stage of learning the
language.

I was first introduced to the object-oriented paradigm many years ago.
It was downright challenging to learn! You may find yourself in a similar
situation, but trust me; you

will

 understand objects if you keep plugging
away at the concepts introduced in this chapter.

◆

What an object really is

◆

How objects and classes relate

◆

How to create your own classes and
objects

◆

How to instantiate objects

◆

How to invoke methods on objects

◆

How to use the

this

 keyword

◆

What constructors are and how to use
them to your benefit

4373book.fm Page 147 Tuesday, July 13, 2004 3:44 PM

148

Chapter 6

The Object-Oriented Paradigm

Up to this point, all the code you have written has been completely contained in
a single method, the

main()

 method. This method is

static

, which means it
does not need an object to be invoked. The

main()

 method is a special method
because it is the entry point for the interpreter.

messaging

In object-oriented programming, mes-
saging is the way that two objects com-
municate. This messaging is realized by
invoking instance methods on objects
within a program.

Truthfully, putting all the code for a program inside a single method like this
is normally not a good idea. Instead, you usually create programs from one or
more objects. Each object can communicate with other objects to provide the
complex logic and functionality that today’s programs so often require. This
form of object-to-object communication is often termed

messaging

. Messaging is
actually accomplished by calling the methods of your objects. Each of these
methods typically alters the internal state of an object (though that is not a
requirement by any means). The state of an object is represented by the variables
defined in the class itself.

Objects are created based on the methods and variables defined in an under-
lying class. A class is like a blueprint for your objects, and all objects that are
built from that class share the same basic characteristics. However, each object
maintains its own private state; two objects that share the same class type are
independent of each other when it comes to state.

This may be a bit confusing, so think back to the primitive types that you have
already learned about. If you create two variables,

int x

 and

int y

, both of them
share the same basic characteristics. They can hold both positive or negative num-
bers (or, of course, zero). Neither can have any decimal places; they can hold whole
numbers only. Addition, subtraction, and all the other mathematical operations
can be performed on them. In that sense, the two variables are the same.

However, what if we assign a value to each variable? Let’s say

x=10

 and

y=20

.
Although they still share the same basic characteristics, they obviously are not
the same anymore. Both of them are still

int

 primitives, but they have different
values. Does changing the value of

x

 also change the value of

y

? Of course not!
They are separate variables with their own particular values. The only thing they
will always have in common is their basic nature as integer types.

Now, an object is not a primitive, but the concept is exactly the same. All
objects are based on a particular type, however, just like primitives. In the case
of objects, the type is a class definition. You have already been using one type of
object in particular, the

String

 object. All

String

 objects are based on the stan-
dard

String

 class. Therefore, all

String

 objects have the same characteristics
(they are all immutable sequences of characters) and share the same behavior
(such as converting all the characters to lowercase or uppercase, finding specific
characters, or retrieving substrings). All this common behavior is defined in the

String

 class, yet there can surely be two

String

 objects in memory with com-
pletely different values.

As you progress through this chapter and begin defining your own classes and
instantiating your own objects, these concepts become clearer.

4373book.fm Page 148 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming

149

Real-World Objects

The concept of objects and classes in programming is essentially the same as its
corollary in the real world. The world is full of types of things, such as lamps,
chairs, and books. These are abstract concepts because they are only a

kind

 of
thing. Of course, luckily for us, the world is also full of particular instances of
those types. It is these particular instances of the abstract types that we interact
with daily. After all, it is not the

idea

 of a chair you sit in; it is an actual

realiza-
tion

 of a chair!
Take a look around the room you are in right now, and you will find a slew of

objects. You are holding a book. You might be sitting in a chair. Probably a lamp
of some kind will be either on or off at the moment. The book, the chair, and the
lamp…even

you

…can all be considered distinct objects. Each is a unique entity
with specific characteristics, and each object can have some set of actions per-
formed on it. You

read

 the book, you

sit

 in the chair, and you

turn on

 the lamp.
Those actions are akin to the methods that you create in a Java class definition.

Consider just a lamp for a moment. What is it? How would you describe a lamp
to someone who had no idea what it was? You might say it has a lightbulb, a shade,
a base, a power cord, and a switch. You might describe what it does; namely, it pro-
vides light when the switch is on. This is not the perfect definition perhaps, but it
captures the basic construct of a lamp and gives a brief detail of its purpose.

Now consider

your

 lamp for a moment. It probably shares most of the same
characteristics as the generic lamp, but you can go into much more detail. For
example, my lamp has a brown, ceramic base, a tan shade, and a three-way light-
bulb, and the switch is on the base itself. Those specific details are the

state

 of my
lamp, and it is probably different from the state of your lamp. They are different
instances of the same abstract type.

In the Java language, the abstract type of the lamp would be a class definition.
Your lamp and my lamp, with their own particular state, would be different
objects based on that lamp class. It is important to understand this difference
between classes and objects. A class is an abstract type; an object is a realization
of that type.

object reference

Whenever a variable holds an object, its
value is actually a reference to that
object. The reference essentially equates
to a pointer to the memory address of the
object. While you use the reference, the
JVM is responsible for both assigning it
and maintaining it at runtime.

Objects are independent of each other once they are created. When I turn off
my lamp, your room does not suddenly go dark. You can throw your lamp away
and replace it with a new one; mine stays right where it is. Each lamp belongs to
one of us, and each individual controls the lifetime of their lamp.

Software objects behave in a similar fashion. Each object is “owned” by a
particular reference. An

object reference

 is basically the memory address of an
object. Altering the state of one object does not alter the state of all objects of that
type because each reference is pointing to one object.

It is possible to have multiple references to the same object, however. This would be
the same situation as if you and a roommate owned one lamp. If one of you turned
it on, the other would benefit from the light.

4373book.fm Page 149 Tuesday, July 13, 2004 3:44 PM

150

Chapter 6

We are not quite done with this lamp analogy. Consider your lamp again.
How does it work? How does the electricity get passed from the wall outlet to the
lamp to the bulb to the filament of the bulb? How does the filament produce
light? How does the switch control that electricity flow? These may be interest-
ing questions to investigate some day, but do you need to know all those details
to operate the lamp? Certainly not! If you were a guest in my house and I asked
you to turn on the lamp in the living room, would you freeze, confused and
unable to perform the task? No, you would walk over to the lamp, find the
switch, and presto! Light appears. The point I am making is that the internal
workings of the lamp are not critical to your use of the lamp. If the lamp is in
good working order, you simply turn it on and off and occasionally replace a
blown lightbulb. The lamp hides the working details from you and provides a
simple, standard interface to allow you to use it.

Software objects also hide details. A software object can often be seen as
a “black box” because the details of how the object functions are not usually
evident. Instead, you call a method, and the method takes care of the details.
A well-designed class provides a standard interface composed of

public

 meth-
ods that you invoke. Everything that happens after that invocation is up to the
object. All you normally care about is the results of the method call, not how it
works. This concept is called encapsulation. Encapsulation is also referred to as
information hiding, and it is an essential part of well-designed objects.

Defining a Class

Okay, it is time to take that lamp discussion and try to use those concepts in your
own code. Because we have been talking about lamps so much, you will create
a class to describe a lamp. Eventually, you will use this class to create individual
objects that you can control.

Following is a simple class called

Lamp

. It is not really complete yet, but it
is a good starting point. You will add more detail as you get deeper into this
chapter.

1 public class Lamp

2 {

3 private boolean on;

4

5 public void turnOn()

6 {

7 if(on)

8 {

9 System.out.println(“The lamp is already on!”);

4373book.fm Page 150 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming

151

10 }

11 else

12 {

13 on = true;

14 System.out.println(“The lamp is on.”);

15 }

16 }

17

18 public void turnOff()

19 {

20 if(!on)

21 {

22 System.out.println(“The lamp is already off!”);

23 }

24 else

25 {

26 on = false;

27 System.out.println(“The lamp is off.”);

27 }

28 }

29 }

Line 3 defines a single variable. Because this variable is created at the class
level and is not contained in any methods, it is called an instance variable.
Instance variables represent the state of particular objects. Notice that this vari-
able is declared

private

. Although this is not required, it is almost always a
good idea. If you recall, any class member that is declared

private

 cannot be
accessed by anything other than instances of that class. In other words, because
this variable represents whether the lamp is “on” or “off,” it needs to be con-
trolled by the

Lamp

 itself so that any details of this process can be taken care of.

instance method

A method that can be invoked only via an
object reference. This is opposed to a

static

 method that can be invoked
via the class name alone.

Line 5 is the first of the two methods defined. These methods do not have

static

 as part of their definition because they can be used only by object
instances. A method that is not defined to be

static

 is technically called an

instance method

. The set of

public

 instance methods that you define compose
the interface for your objects.

You are not limited to creating only

public

 instance methods. You can also use the

private

,

protected

, and default access modifiers on instance methods. Typically,
any method that can be invoked from outside the object is defined as

public

, how-
ever. Truthfully, the two most common access modifiers are

public

 (full access
allowed) and

private

 (no access allowed outside instances of the class).

4373book.fm Page 151 Tuesday, July 13, 2004 3:44 PM

152

Chapter 6

The

turnOn()

 method first checks to see if the

on

 instance variable is set to

true

, which would indicate that the lamp is already on. If it is, a message is
printed. Otherwise, the

on

 variable is set to

true

, which indicates that the lamp
is now on, and then a message is printed.

The

turnOff()

 method does just the opposite. If the

on

 variable is already

false

, an informational message is output. Otherwise,

on

 is set to

false

, and an
appropriate message is printed to your command line.

You learned earlier that a class could be considered a blueprint for objects of
that class type. That is what the

Lamp

 class accomplishes. When you want to cre-
ate individual

Lamp

 objects, you instantiate the objects, and then you can call
methods on them. Note that you can never call the instance methods

turnOn()

and

turnOff()

 without an instance of the

Lamp

 class. They are not accessible via
the class alone as

static methods are.

You have seen two terms in this section: object and instance. The two terms are inter-
changeable. An object is just the normal term for an instance of a class.

Instantiating and Using Objects
Now that you have the Lamp class definition, you can create objects of this type
and invoke the instance methods on them. The following code is a simple class
that provides only a main() method, just like the classes that you have worked
with in previous chapters. Remember, you need the main() method to give the
interpreter an entry point into your program. Whereas all the previous programs
you have written have been composed of a single class, this program is composed
of two classes. The first is the Lamp class that you just created, and the second is
the LampTest class shown here:

1 public class LampTest

2 {

3 public static void main(String[] args)

4 {

5 Lamp lampOne = new Lamp();

6 Lamp lampTwo = new Lamp();

7

8 lampOne.turnOn();

9 lampTwo.turnOn();

10 lampOne.turnOn();

11 lampTwo.turnOff();

12 lampOne.turnOff();

13 }

14 }

4373book.fm Page 152 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 153

The first thing the LampTest code does is create two Lamp objects on lines 5
and 6. The syntax is the same as when you created primitive types or arrays. On
the left of the assignment operator (=), you give the type and variable name.
On the right, you provide the value. In the case of objects, the “value” is the ref-
erence that the JVM creates automatically for you. You trigger this reference cre-
ation by instantiating an object using the new keyword. Notice that after the new
keyword, you give the type name again (in this case, Lamp), followed by a pair of
parentheses. This is the basic syntax for instantiating an object.

The parentheses make this look like a method call, but it is not truly a method call
at all. The parentheses actually signify something called a constructor, which you will
learn about later in this chapter. Essentially, a constructor works much like a method
and allows you to perform some initialization functions before a valid reference is
returned and the object can be used.

Once lines 5 and 6 complete, there are two Lamp objects in memory. They
share the same structure provided by the Lamp class, but their state can be altered
independently. Of course, because no methods have been called on either object
yet, their state is exactly the same (the variable on holds the default value of
false). The difference between the two objects is the reference that was returned
by the JVM. Each object is located in a distinct area of your system’s memory.

Lines 8–12 call methods on each of the objects so that you can see what hap-
pens. First, the turnOn() method is invoked via the lampOne object. This results
in the variable on changing to true and a brief message being printed because
that is the logic provided back in the Lamp class. The same thing occurs on line 9,
but with the lampTwo object. On line 10, the turnOn() method is called again,
but this time the state is not changed because the on variable is already set to
true. Finally, on lines 11 and 12, both lamps have their turnOff() method
invoked.

The output from running the LampTest code looks like this:

The lamp is on.

The lamp is on.

The lamp is already on!

The lamp is off.

The lamp is off.

A Closer Look at a Lamp Object
It might help at this point to have a visual of a Lamp object. Traditionally, an
object is diagrammed as a circle with compartments for each method around the

4373book.fm Page 153 Tuesday, July 13, 2004 3:44 PM

154 Chapter 6

circumference, and a smaller compartment inside the circle for the variables. A
Lamp object would look something like the following diagram.

What this diagram is showing you is that the turnOn() and turnOff() meth-
ods are accessible to outside callers and that the on instance variable is hidden.
This should make sense because you defined the two methods to be public and
the lone instance variable to be private. You could say that the methods sur-
rounding the instance variables are the interface of your object. The diagram
clearly shows the encapsulation inherent in a Lamp object; the only way to alter
the state of the on variable is by invoking one of the provided methods.

This concept of a clearly defined interface is important. Imagine that your
real-world lamp has a warranty. If you turn on the lamp and a short circuit ends
up blowing a fuse in your house, you should be able to return the lamp to the
store that you bought it from and get a new one. This is because the lamp did not
work as it is supposed to. However, if you had previously taken the lamp apart
in a fit of insatiable curiosity and messed around with the wiring and then the
short circuit occurred, the store might refuse your request for a new lamp. In the
second case, you voided the warranty by directly accessing the internals of the
lamp instead of using the standard interface it provides you.

This warranty concept is the same with your object interfaces. Your object
should work “as advertised” when the public instance methods are invoked
correctly, and you should make every effort to prevent direct access to your
object’s state. When you define private variables, you practically guarantee
that your variables are protected from illegal access. Probably the only way that
someone could alter them directly would be if you provided them with the source
code. (And you would not do that, right?)

This brings up one of the mantras of object-oriented programming: “private
data, public methods.” If you adhere to that advice, you will find yourself cre-
ating encapsulated objects without even trying!

turnOff

turnOn

A Lamp Object

isOn

4373book.fm Page 154 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 155

Sharing a Reference
Before we move on, you should know that the only way you can create an object
is with the new keyword. If you do not use new, no instantiation takes place
whatsoever. Take a look at the following class.

public class AClass

{

 private int number;

 public void setNumber(int n)

 {

 number = n;

 }

 public int getNumber()

 {

 return number;

 }

}

Now imagine that the following lines of code are executed in another class.
How many objects exist when these four lines complete? What is the value of
number for each reference?

AClass one = new AClass();

AClass two = one;

AClass three = two;

AClass four = new AClass();

one.setNumber(10);

System.out.println(“one: “ + one.getNumber());

System.out.println(“two: “ + two.getNumber());

System.out.println(“three: “ + three.getNumber());

System.out.println(“four: “ + four.getNumber());

The answer to the first question is that two objects are created. The first line
creates a new AClass object and assigns the reference to one. The second line
does not create a new object, but simply assigns the reference stored in one to
two. The third line does the same thing, assigning the single existing reference to
three. The fourth line actually instantiates a new AClass object and assigns the
reference to four. Because the new keyword is used only twice, only two objects
can be in memory.

4373book.fm Page 155 Tuesday, July 13, 2004 3:44 PM

156 Chapter 6

The second question essentially asked what the printouts would be. If you ran
this code somewhere, you would see the following output:

one: 10

two: 10

three: 10

four: 0

Do you see why? Because one, two, and three all refer to the same object in
memory, the value of number is the same for all three. Because four is a new object
but that object never changed the default value of number, the value is zero.

The point is that a single object can have multiple references. The implication
is that if any of those references change the state of their object, all the references
to that object see this new state. This can be both powerful and dangerous,
depending on the care you take in designing your code.

Object Messaging: Adding a Lightbulb
Q: How many programmers does it take to change a lightbulb?

A: It depends on how well the class is defined.
The Lamp class is workable, but not really complete. A lamp is not really a self-

contained object if you think about it. The lamp itself provides only the structure
and electrical system to supply light. To actually get the light, you usually need
a lightbulb. When you design software objects, you often model real-world
counterparts. So, to really capture a lamp in software, you need a lightbulb.

Another way to look at this is that when you define classes, you essentially
model the world of your program as you want it to be. The Lamp class defined
earlier says that to be a lamp, you must be able to be turned on and off. Of
course, a more realistic lamp might include color, size, and a shade—you get the
idea. The point is, a Lamp as defined right now is a simplified, workable version
of a real-world lamp. However, lamps are of many types. Some run on electricity,
some on gas, and some are really just candleholders. It is up to you to define the
details and the flexibility of your class types. For our current purposes, we will
stick to the electrical lamp style, but later in this chapter and in the next one, you
will learn how to define a more generic “lamp” that could provide any type of
light source.

The following LightBulb class provides a simple view of a real-world light-
bulb. Eventually, the Lamp class itself will be altered a bit to work with this new
LightBulb type. Like the Lamp class, it defines only one instance variable to indi-
cate whether the bulb is lit or unlit. Two methods are defined that allow you to
set the state and get the current state of the bulb.

1 public class LightBulb

2 {

4373book.fm Page 156 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 157

3 private boolean lit;

4

5 public void setLit(boolean param)

6 {

7 if(lit && param)

8 {

9 System.out.println(“The bulb is already lit!”);

10 }

11 else if(!lit && !param)

12 {

13 System.out.println(“The bulb is already unlit!”);

14 }

15 else

16 {

17 lit = param;

18 String str = lit ? “lit.” : “unlit.”;

19 System.out.println(“The bulb is “ + str);

20 }

21 }

22

23 public boolean isLit()

24 {

25 return lit;

26 }

27 }

mutator method
A method that sets the value of a
portion of an object’s state. This state
is typically stored in a private
instance variable. By convention, a
mutator method begins with set and is
followed by the instance variable name.
So, for an instance variable named
value, the mutator method would be
called setValue(). Mutator meth-
ods take a parameter that is the same
type as the instance variable with which
it is associated. This parameter holds the
new value to which the instance variable
should be set.

Line 3 defines the lone boolean instance variable, lit. Line 5 houses
the method that is called whenever the bulb’s state changes, setLit(). This
method takes a boolean parameter that indicates the desired action to take. If
the parameter is true, the bulb should be lit; if the parameter is false, the bulb
should be unlit. Line 7 performs a boolean AND (&&) on the instance variable
and the parameter to determine if both of them are true. If they are, you are
trying to light an already-lit bulb, and only a message prints. The opposite test is
made on line 11 to ensure that both variables are not false. Finally, on line 15,
the code is provided that executes if the state of the LightBulb object actually
changes. On line 17, the instance variable is given the value of the param
parameter, and on line 18, the ternary operator is used to create a String that
holds the state of the object, either “lit” or “unlit.” Line 19 tells a message to
print to the command line to show you the current state of the object. The
setLit() method is often called a mutator method because it can potentially
alter the state of the object.

4373book.fm Page 157 Tuesday, July 13, 2004 3:44 PM

158 Chapter 6

accessor method
A method that returns the value that is
part of an object’s state. This state is typ-
ically stored in a private instance
variable. By convention, accessor
method names start with get and end
with the instance variable name. For
example, if you have an instance variable
named value, the accessor method
should be called getValue(). The
return type of an accessor method is the
same as the type of the instance variable
that it returns.

Line 23 defines the second method, isLit(). This method returns a boolean,
not void, as setLit() does. This is because the instance variable is defined to
be private; it cannot be directly accessed from outside the object. However,
once you incorporate a LightBulb object with a Lamp object, the Lamp object
may need to know the state of the LightBulb object. This is why the isLit()
method exists. It simply returns the value of the instance variable to the caller.
The isLit() method is often called an accessor method because it returns a
value pertaining to the object’s state.

To use this new class, we must rework the original Lamp class. Now, the basic
idea is that turning on the lamp calls the LightBulb object. For this to work,
the Lamp class needs to declare a reference to a LightBulb that you pass in to the
Lamp object. You will also find that both the turnOn() and turnOff() methods
have changed. Check out the LampWithBulb class that follows.

1 public class LampWithBulb

2 {

3 LightBulb bulb;

4

5 public void setLightBulb(LightBulb b)

6 {

7 bulb = b;

8 }

9

10 public void turnOn()

11 {

12 if(bulb == null)

13 {

14 System.out.println(“There is no lightbulb!”);

15 }

16 else if (bulb.isLit())

17 {

18 System.out.println(“The lamp is already on!”);

19 }

20 else

21 {

22 bulb.setLit(true);

23 System.out.println(“The lamp is on.”);

24 }

25 }

26

27 public void turnOff()

28 {

29 if(bulb == null)

4373book.fm Page 158 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 159

30 {

31 System.out.println(“There is no lightbulb!”);

32 }

33 else if(!bulb.isLit())

34 {

35 System.out.println(“The bulb is already off!”);

36 }

37 else

38 {

39 bulb.setLit(false);

40 System.out.println(“The lamp is off.”);

41 }

42 }
43 }

The LampWithBulb class declares a LightBulb object on line 3. This object
is given a valid reference when the setLightBulb() method defined on lines 5–
8 is called. You will be instantiating a LightBulb and passing it to a
LampWithBulb object in the LampWithBulbTest class that you define next.

Line 10 begins the new version of the turnOn() method. On line 12, the if
statement checks to see if a LightBulb object is already created. If no such object
exists, the method prints a message to let you know that no further action can be
taken. Line 16 contains the first else statement, which checks to see if the
LightBulb is already “lit.” If it is, the message on line 18 prints. The final else
statement on line 20 contains the block of code that calls the setLit() method
of the LightBulb object. The turnOff() method is similarly altered to support
the addition of the LightBulb object to the logic of the code.

delegation
The process of invoking a method in
another object from a method in the cur-
rent object. This allows complex logic to
be handled by separate objects to form
the overall logic of your program.

This process of one method invoking another method is called delegation
because the object is delegating responsibility to another method in another
object. Delegation is a common approach in object-oriented programming that
provides the logic of your code.

The following code is the final class you will need, the LampWithBulbTest
class. This class contains just a main() method to make things go. First, a
LightBulb is instantiated, and then a LampWithBulb object is instantiated.
The LightBulb object is passed to the LampWithBulb object, and then some
calls are made to demonstrate how the two objects work together.

1 public class LampWithBulbTest

2 {

3 public static void main(String[] args)

4 {

5 LightBulb bulb = new LightBulb();

6 LampWithBulb lamp = new LampWithBulb();

7 lamp.turnOn();

4373book.fm Page 159 Tuesday, July 13, 2004 3:44 PM

160 Chapter 6

8 lamp.setLightBulb(bulb);

9 lamp.turnOn();

10 lamp.turnOn();

11 lamp.turnOff();

12 }

13 }

If you compile all three classes and execute the LampWithBulbTest class, you
should see the following output to your command line:

There is no lightbulb!

The bulb is lit.

The lamp is on.

The lamp is already on!

The bulb is unlit.

The lamp is off.

This is a simple example, to be sure, but it demonstrates some important concepts
that you need to understand when you are working with objects and methods.

Passing by Value
pass by value
The pass-by-value semantics mean that
parameters and return types are copied
when they are passed to and from meth-
ods. All primitive types in Java follow the
pass-by-value rule.

You can pass parameters and return types to methods in the Java language in two
ways: by value and by reference (which is discussed in the next section). When
you pass by value, you pass a primitive type to a method as a parameter or from
a method as a return type. The term pass by value means that the value of the
variable passed is copied to or from the method.

Copying the value has an important implication. Take the following code
example. First, a simple method is defined and takes an int as a parameter. A
second method is then defined and is called by the first one. Printouts show you
the value of the parameter before it is passed, after it is passed, and after both
methods change the value.

public class PassByValueTest

{

 public void methodOne()

 {

 int x = 100;

 methodTwo(x);

 System.out.println(“methodOne: x == “ + x);

 x = 200;

 System.out.println(“methodOne: x == “ + x);

 }

4373book.fm Page 160 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 161

 public void methodTwo(int x)

 {

 System.out.println(“methodTwo: x == “ + x);

 x = 500;

 System.out.println(“methodTwo: x == “ + x);

 }

 public static void main(String[] args)

 {

 PassByValueTest test = new PassByValueTest();

 test.methodOne();

 }

 }

Run this code and you will see the following output:

methodTwo: x == 100

methodTwo: x == 500

methodOne: x == 100

methodOne: x == 200

The point of this class is to show you how a parameter to a method is a copy
of the original value: methodTwo() changes the value of the parameter to 500,
but this does not affect the original variable defined in methodOne(). The two
values are completely distinct from each other.

If the body of the main() method confuses you because it is actually instantiating an
instance of the class in which it is defined, hold tight. The reason is that static meth-
ods cannot call instance methods without an object reference. You will learn why this
is the case later in this chapter. For now, just use the code as provided here.

Let me show you another, slightly different example. This time, an instance
variable is involved instead of just local variables inside the methods. See if you
can predict the two outputs from each method.

public class PassByValueTest2

{

 private int x = 50;

 public void methodOne()

 {

 System.out.println(“methodOne: x == “ + x);

 methodTwo(x);

4373book.fm Page 161 Tuesday, July 13, 2004 3:44 PM

162 Chapter 6

 System.out.println(“methodOne: x == “ + x);

 }

 public void methodTwo(int y)

 {

 System.out.println(“methodTwo: y == “ + y);

 y = 100;

 System.out.println(“methodTwo: y == “ + y);

 }

 public static void main(String[] args)

 {

 PassByValueTest2 test = new PassByValueTest2();

 test.methodOne();

 }

}

Can you see what happens here? First, the value of x is 50, the value it is given
when it is declared. This value is then passed to methodTwo(). When the first
printout happens in methodTwo(), the value is still 50. The next line then
changes this value to 100, and the output reflects this change.

When methodTwo() completes, control returns to methodOne(), and a final
printout results. The printed value is 50, not 100. This is because primitive types
are passed by value, so the change made inside methodTwo() is seen only during
the scope of methodTwo(). The value of the original instance variable never
changes in this code.

The output is as follows:

methodOne: x == 50

methodTwo: y == 50

methodTwo: y == 100

methodOne: x == 50

Passing by Reference
pass by reference
Instead of copying the values of parame-
ters and return types like you do with
primitive types, only the reference of
objects is passed. This allows one object
to be referred to from many points in an
application and ensures that state and
behavior are consistent.

The other way that parameters and return types can be passed is by following the
rule of pass by reference. This happens only if you are passing an object. Objects
are always passed by reference; primitives are always passed by value. Passing by
reference can lead to some interesting situations, so it is important that you
understand what this implies.

Let’s take code similar to what you found in the previous section when you
learned about passing by value. This time, you pass an object that is based on a

4373book.fm Page 162 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 163

simple class called IntHolder, which is defined in the following code. This class
holds only one instance variable and a pair of methods to mutate and access the
value of that variable.

public class IntHolder

{

 private int x = 100;

 public void setX(int newX)

 {

 x = newX;

 }

 public int getX()

 {

 return x;

 }

}

In the following PassByRefTest class, you now create an instance of the
IntHolder class and pass it to methodOne().

1 public class PassByRefTest

2 {

3 public void methodOne(IntHolder h)

4 {

5 System.out.println(“methodOne: h.x == “ + h.getX());

6 methodTwo(h);

7 System.out.println(“methodOne: h.x == “ + h.getX());

8 }

9

10 public void methodTwo(IntHolder h)

11 {

12 System.out.println(“methodTwo: h.x == “ + h.getX());

13 h.setX(500);

14 System.out.println(“methodTwo: h.x == “ + h.getX());

15 }

16 public static void main(String[] args)

17 {

18 PassByRefTest test = new PassByRefTest();

19 IntHolder h = new IntHolder();

4373book.fm Page 163 Tuesday, July 13, 2004 3:44 PM

164 Chapter 6

20 test.methodOne(h);

21 }

22 }

Here is the output from running this code. Take a look at it, and then I will
explain.

methodOne: h.x == 100

methodTwo: h.x == 100

methodTwo: h.x == 500

methodOne: h.x == 500

The first two printouts on lines 5 and 7 should not be surprising because this
code did not change the original value of x inside the IntHolder object. Line 6
calls methodTwo(), passing the IntHolder object as a parameter. methodTwo()
(on line 10) then changes the value of x by calling the setX() method and pass-
ing 500. methodTwo() (on line 14) prints this new value correctly.

What might seem strange is that the final methodOne() (back on line 7)
does not print the original 100; instead, it prints the new value of 500 set in
methodTwo(). This is because you are passing an object reference, not a prim-
itive value. The value of h is not 100, 500, or any integral value; the value
of h is the object reference that the JVM assigned when the IntHolder object
was created. In a sense, when you pass an object by reference, all its current
state is passed along with it. Because the state of the object h was changed
in methodTwo() on line 13, you see the new value of h.x on the last line of
methodOne().

The key here is that when you pass an object, you are passing the entire ref-
erence to the object. Any state that the object holds is the same for everyone who
sees that reference. In the PassByValueTest and PassByValueTest2 code, a
primitive was copied to another method, and the changes that took place did not
reflect the original caller. In the PassByRefTest code, an object is passed to
another method, and the value is reflected.

The truth is that everything—both objects and primitive types—is passed by value.
For a primitive type, the value is whatever was assigned to the primitive before it was
passed. For an object, the value is the actual object reference. All object references
in the JVM are just 32-bit integers that the JVM maps to memory addresses.

In the LampWithBulbTest code, a LightBulb object was passed to the Lamp
object via the setLightBulb() method. This LightBulb object was passed by
reference. The LampWithBulb object then queried the state of the LightBulb
object via the isLit() method, which returned a boolean that was passed by
value.

4373book.fm Page 164 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 165

The this Keyword
Another keyword that you may find useful when it comes to objects is the this
keyword. You use this to refer to the specific instance that is currently active.

Think of how you refer to yourself. If you are telling me that you are a Java
programmer, you probably do not use your name in the sentence. Instead, you
say something like, “I am a Java programmer.” Your use of the word “I” means
you are talking about yourself, not some other person. I may say in response to
you, “A Java programmer? Me too!” In that response, the word “me” refers spe-
cifically to, well, me. In a sentence like that, you have no doubts about whom I
am referring to.

That is exactly what this means to an object. You use the this reference to
refer to the current object. For the most part, you can use this just as you would
use any other object reference.

You cannot try to assign a new value to this. The compiler will not allow this to
appear on the left side of an assignment expression.

Take the following code as an example. The first version looks like something
you may have written in this book already. The second version adds the this
keyword everywhere it makes sense. The important point to keep in mind right
now is that the two classes are identical in functionality.

public class ClassWithoutThis

{

 private int x;

 private float f;

 public void first()

 {

 x = 100;

 f = 10.0F;

 }

 public void second()

 {

 float z = x + f;

 z += 100;

 }

}

public class ClassWithThis

{

4373book.fm Page 165 Tuesday, July 13, 2004 3:44 PM

166 Chapter 6

 private int x;

 private float f;

 public void first()

 {

 this.x = 100;

 this.f = 10.0F;

 }

 public void second()

 {

 float z = this.x + this.f;

 z += 100;

 }

}

The functionality is exactly the same, but the second version of the class adds
the this keyword whenever it uses the instance variables x and f. Whenever you
use this, you are accessing instance members (either a variable or a method).
Notice that in the second() method, the variable z is local, so using the this
keyword on the second line would result in a compiler error because there is no
instance variable named z.

Bypassing Local Variables Using this
You use the this keyword in the body of your instance methods to refer to the
current object. That “current object” is the actual object in which the method is
contained. However, you might be wondering what the point is in the first place.
After all, if the two classes defined previously are exactly the same, why use this
confusing keyword at all?

The answer is that sometimes you need to ensure that you are talking to the cur-
rent instance’s variables or methods. One such case is if you have the same variable
name defined both as an instance variable and as a local variable in a method. The
most common case in which this happens is when you are using method parameters.

Many developers, myself included, like to name method parameters the same
as the instance variables they relate to (if any). This practice is not required by
any means, but I find that it adds to the “self-documenting” function of my code.
It is easy for me to look at a method that I defined months or years ago and see
that a particular method has some relation to an instance variable because I used
the exact same name.

If you define a variable named fred as an instance variable, and you also
define a variable with the same name inside a method of that class, the scoping
rules of the Java language kick in. If you simply say fred inside the method, the

4373book.fm Page 166 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 167

local variable is used, and the instance variable is “hidden.” However, if you say
this.fred, you are definitely accessing the instance variable.

Here is an example. In the following class, the main() method instantiates an
instance of the class and then calls a method to perform an addition. The sum of this
addition is stored in the instance variable of the object and is eventually retrieved
when all the calculations are complete. Notice that the method parameters have the
same names as the two instance variables. Because of this, I use the this keyword to
set the value of my instance variables. If I did not, I would be setting the value of the
local variables of the same name, which would mean the sum of all the calculations
would always be zero (the default value of the instance variables).

1 public class SumItUp

2 {

3 private int x;

4 private int y;

5

6 public void addToX(int x)

7 {

8 this.x += x;

9 }

10

11 public void addToY(int y)

12 {

13 this.y += y;

14 }

15

16 public int getSum()

17 {

18 return this.x + this.y;

19 // could use return x + y here!

20 }

21

22 public static void main(String[] args)

23 {

24 SumItUp sum = new SumItUp();

25 sum.addToX(100);

26 sum.addToY(50);

27 sum.addToX(35);

28 sum.addToY(15);

29 System.out.println(“Sum: “ + sum.getSum());

30 }

31 }

4373book.fm Page 167 Tuesday, July 13, 2004 3:44 PM

168 Chapter 6

The final printout on line 29 will be 200 because every time you add a value,
it is stored in the corresponding instance variable. Because the parameter to each
method is the same name as an instance variable, the this keyword ensures that
you are talking to the instance variables when you should be.

Passing a Reference Using this
You can also use the this keyword to pass a reference to an object from within
that object. Just like any other object reference, you can pass this as a parameter
or return type from any method. It is not at all uncommon to return this from
a method to simplify multiple method calls on the same object.

The following class takes a starting value and then provides a method to dou-
ble that value every time it is called. Notice that the implementation of the
doubleIt() method returns an instance of itself.

public class Doubler

{

 private int number;

 public void setNumber(int number)

 {

 this.number = number;

 }

 public int getNumber()

 {

 return number;

 }

 public Doubler doubleIt()

 {

 number *= 2;

 return this;

 }

 public static void main(String[] args)

 {

 Doubler d = new Doubler();

 d.setNumber(10);

 d.doubleIt().doubleIt().doubleIt();

 System.out.println(“The value is “ + d.getNumber());

 }
}

4373book.fm Page 168 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 169

Because the doubleIt() method returns a reference to the object itself, you can
repeat the method call multiple times on the same line. This is because the syntax
for dot notation with instance method calls is objectReference.methodName().
Because the return of the doubleIt() method is in fact the object reference itself,
the method can be called again. If the doubleIt() method returned an int (which
could be the actual doubled value of number), you could not make these multiple
method calls on a single line like this. If you tried, you would get a compiler error
because you would be attempting to invoke an instance method on a primitive
type. That is simply not possible.

As mentioned, you can also pass this as a parameter to a method. This creates a
callback situation that allows the invoked method to access the instance methods of
the object parameter.

Static Methods Have No this Reference
You have seen a couple of cases in this chapter in which the main() method actu-
ally instantiated an object of the class in which the main() method is defined. For
example, this was true in the previous example, the Doubler class. This is often
confusing for new Java developers, so let’s take a look at the reason this is required.

All instance methods essentially have a hidden parameter named this that is
always the same type as the object itself. That is why you can use the this ref-
erence any time you want inside an instance method. However, static methods
have no such concept. If you think about it, that makes complete sense. Remem-
ber that a static method does not require an object to be invoked; normally,
static methods are invoked using the ClassName.staticMethodName() syn-
tax. Because a static method can be invoked with no object instance whatso-
ever, how could there be a this reference?

The rule is that static methods (like the main() method) can never access
instance methods or instance variables; static methods can invoke only other
static class members directly. Another way to say this is that you cannot
invoke an instance method or access an instance variable without an object
instance.

The following code example will not even compile because you are attempting
to access an instance variable from the main() method.

public class Test

{

 private int value;

 public static void main(String[] args)

 {

 value = 10; // no object reference!!!

4373book.fm Page 169 Tuesday, July 13, 2004 3:44 PM

170 Chapter 6

 }

}

The only way to make this work is to change the code like this:

public class Test

{

 private int value;

 public static void main(String[] args)

 {

 Test t = new Test(); // create object reference

 t.value = 10; // access variable via reference

 }

}

The best way to keep this straight as it relates to the main() method is to think
of the main() method as having no concept of the class in which it actually
resides. This is not technically true, but because most of the classes that you cre-
ate will be based on instance members, creating a little mental separation like this
may help you understand what is happening. The only way that the main()
method can invoke instance methods is to have an object reference, so you have
no choice but to create that object right inside the method itself.

I don’t want to belabor the point, but if you are still confused about this, here
is a final thought that might help. The rule in the Java language is that no method
can access an instance method or a variable without an object reference, whether
that method is static or not. The trick is that all your instance methods auto-
matically have the this reference associated with any instance members you
specify that are not otherwise hidden by local variables. However, as you just
learned, static methods do not have the benefit of the automatic this refer-
ence. As a result, you have to create the object reference yourself.

Although static methods cannot access instance members, instance methods can
access static members. However, it is good practice to always access your static
members using the ClassName.staticMemberName() syntax, even if an object
exists at the time. This helps to make your code more understandable. If you see that
syntax, there is no doubt in your mind that the accessed member is static.

Constructors
constructor
A special method that is automatically
executed when a new instance of a class
is created. A constructor is used to ini-
tialize an object to a desired state.

You will learn a whole lot more about constructors in Chapter 7, “Advanced
Object-Oriented Programming,” but this section gets you started on the right
foot. A constructor is a special method that allows an object to initialize itself
before the reference is ready to be used. When you instantiate an object, all the

4373book.fm Page 170 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 171

instance variables are automatically set to their default values. If you provide a
constructor, it is called as part of the instantiation process, and you can initialize
these variables to the specific values you want.

The term “constructor” is really a misnomer. A constructor has nothing at all
to do with the actual construction of an object but is used solely to initialize an
object’s state. When you create a new object, the JVM sets aside the required
memory and then initializes all the instance variables to their default values.
Only after these two steps (when the object is already “constructed”) is the con-
structor called. However, you cannot have a valid object reference until the
constructor completes. In short, a constructor guarantees that your object is in
a specific state before it can actually be used.

Constructors syntactically look a lot like normal instance methods. However,
constructors cannot have a return type. Remember, that is not the same thing as
saying that they return void. Constructors simply have no return type. In addi-
tion, constructors always have the same name as the class in which they reside.
For a class named HelloWorld, a valid constructor could look like this:

public HelloWorld()

{

 // do initialization

}

You have already instantiated some objects in this chapter and have seen the
syntax of new ClassName(). The parentheses following the class name actually
signify a call to a constructor. You can create constructors that take zero or more
parameters. If your constructor does take parameters, you pass them within
those same parentheses that follow the class name.

You may be wondering how your objects have successfully instantiated in this chap-
ter so far because you have not provided any constructors in your classes. Your code
has worked so far because, if you provide no constructors of your own, the compiler
automatically add a default constructor to all classes. We’ll look at this process more
closely in Chapter 7.

Let’s create a constructor to see what all the fuss is about, shall we? The following
class is a reworked version of the LampWithBulb class. In the previous version of this
code, you had to create a LightBulb object, create a LampWithBulb object, and then
pass the LightBulb to the LampWithBulb via the setLightBulb() method. This
time a constructor is provided that takes a LightBulb as a parameter. This makes
more sense because it ensures that all LampWithBulb references have a LightBulb
associated with them before they can be used.

1 public class LampWithBulb2

2 {

4373book.fm Page 171 Tuesday, July 13, 2004 3:44 PM

172 Chapter 6

3 LightBulb bulb;

4

5 public LampWithBulb2(LightBulb bulb)

6 {

7 this.bulb = bulb;

8 }

9

10 public void turnOn()

11 {

12 if (bulb.isLit())

13 {

14 System.out.println(“The lamp is already on!”);

15 }

16 else

17 {

18 bulb.setLit(true);

19 System.out.println(“The lamp is on.”);

20 }

21 }

22

23 public void turnOff()

24 {

25 if(!bulb.isLit())

26 {

27 System.out.println(“The bulb is already
off!”);

28 }

29 else

30 {

31 bulb.setLit(false);

32 System.out.println(“The lamp is off.”);

33 }

34 }

35 }

Lines 5–8 form the constructor for this class. The name of the constructor is
exactly the same as the class, and it returns nothing. In this case, the constructor
actually takes a parameter, namely the LightBulb object that will be associated
with this lamp during its lifetime. You should also notice changes in both the
turnOn() and turnOff() methods because a check is no longer made in either
of them to be sure that bulb is not null. I removed this code because there is no
way the bulb can be null once it has been set in the constructor.

4373book.fm Page 172 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 173

Truthfully, bulb could be null still if that is the value passed into the constructor in
the first place. You will learn how to control situations like this when you learn more
about exceptions in Chapter 8, “Exception Handling.”

Here is the class that demonstrates how the new LampWithBulb2 class works.

1 public class LampWithBulb2Test

2 {

3 public static void main(String[] args)

4 {

5 LightBulb bulb = new LightBulb();

6 LampWithBulb2 lamp = new LampWithBulb2(bulb);

7 lamp.turnOn();

8 lamp.turnOn();

9 lamp.turnOn();

10 lamp.turnOff();

11 }

12 }

The lamp reference on line 6 cannot even be created unless the bulb object
was passed to the constructor. In the previous version of this code, you created
the lamp object by saying:

LampWithBulb lamp = new LampWithBulb();

If you try to create the lamp this time with the empty parentheses, the com-
piler will tell you that there is no such constructor. This is true because the con-
structor takes a LightBulb object as a parameter and is now the only way to
instantiate a LampWithBulb2 object.

Multiple Constructors
You are not limited to a single constructor in your classes, however. In fact, it is
much more common to have multiple constructors so that you have more flexi-
bility when you create objects. If you provide more than one constructor, each
will have a different set of parameters. The different parameters are the only way
that constructors can be uniquely defined because the rest of their signature is
always the same (the class name and no return type).

Providing a constructor that takes zero parameters along with any other
constructors you create is usually a good idea. Note that this is not a require-
ment, just a good idea most of the time. Essentially, by providing a standard,
no-argument constructor all the time, you allow your classes to be instantiated
in some default manner.

4373book.fm Page 173 Tuesday, July 13, 2004 3:44 PM

174 Chapter 6

Before we add a new constructor to the LampWithBulb2 class, let’s look at a
new version of the LightBulb class called ColoredLightBulb. The only change
is a new String instance variable that holds the desired color and a method for
setting this value.

1 public class ColoredLightBulb

2 {

3 private boolean lit;

4 private String color = “white”;

5

6 public ColoredLightBulb(String color)

7 {

8 this.color=color;

9 }

10

11 public void setLit(boolean param)

12 {

13 if(lit && param)

14 {

15 System.out.println(“The bulb is already lit!”);

16 }

17 else if(!lit && !param)

18 {

19 System.out.println(“The bulb is already unlit!”);

20 }

21 else

22 {

23 lit = param;

24 String str = lit ? “lit” : “unlit”;

25 System.out.print(“The bulb is “ + str);

26 System.out.println(“ and the bulb is + color
 + “.”);

27 }

28 }

29

30 public boolean isLit()

31 {

32 return lit;

33 }

34

35 public void setColor(String color)

4373book.fm Page 174 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 175

36 {

37 this.color = color;

38 }

39 }

When you instantiate a ColoredLightBulb, you can either accept the default
value of white or pass a color of your own choosing to the constructor (shown
on line 6). The printout on line 26 now includes the lightbulb color as well.

Now let’s add a standard, no-argument constructor to the LampWithBulb2
class along with the already-existing constructor. The new class will be called
LampWithBulb3. Adding this new constructor allows you to create LampWith-
Bulb3 objects without passing in a LightBulb object. The benefits of this are
discussed after you take a look at the new version of the code.

1 public class LampWithBulb3

2 {

3 ColoredLightBulb bulb;

4

5 public LampWithBulb3(ColoredLightBulb bulb)

6 {

7 this.bulb = bulb;

8 }

9

10 public LampWithBulb3()

11 {

12 bulb = new ColoredLightBulb();

13 }

14

15 public void turnOn()

16 {

17 if (bulb.isLit())

18 {

19 System.out.println(“The lamp is already on!”);

20 }

21 else

22 {

23 bulb.setLit(true);

24 System.out.println(“The lamp is on.”);

25 }

26 }

27

28 public void turnOff()

4373book.fm Page 175 Tuesday, July 13, 2004 3:44 PM

176 Chapter 6

29 {

30 if(!bulb.isLit())

31 {

32 System.out.println(“The bulb is already off!”);

33 }

34 else

35 {

36 bulb.setLit(false);

37 System.out.println(“The lamp is off.”);

38 }

39 }

40 }

Lines 10–13 define the added constructor. Now you can create a new
LampWithBulb3 object, and it automatically creates a new ColoredLightBulb
for you instead of your having to pass it in manually. The logic is that most lamps
have white lightbulbs, so the no-argument constructor creates one for you. In the
special cases in which you want a different colored lightbulb, you can use the sec-
ond constructor that takes the ColoredLightBulb parameter.

Finally, here is the code that demonstrates how these constructors can be used.

1 public class LampWithBulb3Test

2 {

3 public static void main(String[] args)

4 {

5 ColoredLightBulb bulb = new ColoredLightBulb();

6 bulb.setColor(“red”);

7 LampWithBulb3 lampOne = new LampWithBulb3(bulb);

8 LampWithBulb3 lampTwo = new LampWithBulb3();

9 lampOne.turnOn();

10 lampTwo.turnOn();

11 lampOne.turnOff();

12 lampTwo.turnOff();

13 }

14 }

Line 5 creates a new ColoredLightBulb object, and line 6 sets the color to
red. This object is then passed to the constructor on line 7 to create the lampOne
object. The lampTwo object is created on line 8 when you call the no-argument
constructor, resulting in a white LightBulb object being created for you. Exe-
cuting this code results in the following output:

The bulb is lit and the color is red.

4373book.fm Page 176 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 177

The lamp is on.

The bulb is lit and the color is white.

The lamp is on.

The bulb is unlit and the color is red.

The lamp is off.

The bulb is unlit and the color is white.

The lamp is off.

Constructor Chaining
constructor chaining
Constructors can be “chained” together,
allowing one constructor to invoke
another and so on until an “ultimate con-
structor” executes. To chain construc-
tors, you use the this keyword to
represent the constructor invocation.

Another technique that you can use with constructors is a process called con-
structor chaining. This basically translates to invoking a constructor from within
another constructor. You chain constructors with the this keyword.

Calling a constructor directly by name is illegal, but you can use the this key-
word to manually invoke another constructor. Normally, you invoke a construc-
tor as an implicit part of the call to new, but with constructor chaining, you can
have one or more constructors called automatically for you. This can make your
code much simpler to write and maintain because it produces a logical flow to
the construction process.

If you think about it, you should always create an object the same way.
Though you might not yet know all the possible values for instance variables, the
process of creating objects is really the same. The Java language provides a spe-
cial syntax using the this keyword that allows you to avoid duplicating behav-
ior in multiple constructors. Instead, all constructors can end up calling an
ultimate constructor that does the initialization work every time.

As an example, let’s modify the ColoredLightBulb class a bit. In the current
version, no constructors are provided. However, including constructors makes
some sense because the color instance variable should always be set. The code
works fine as it is written now, but you can improve it by making the color selec-
tion part of the instantiation process.

It is probably best that I show you this constructor chaining in action before
we discuss this, so here is the revised ColoredLightBulb2 class:

1 public class ColoredLightBulb2

2 {

3 private boolean lit;

4 private String color;

5

6 public ColoredLightBulb2()

7 {

8 this(“white”);

9 }

4373book.fm Page 177 Tuesday, July 13, 2004 3:44 PM

178 Chapter 6

10

11 public ColoredLightBulb2(String color)

12 {

13 this.color = color;

14 }

15

16 public void setLit(boolean param)

17 {

18 if(lit && param)

19 {

20 System.out.println(“The bulb is already
 lit!”);

21 }

22 else if(!lit && !param)

23 {

24 System.out.println(“The bulb is already
 unlit!”);

25 }

26 else

27 {

28 lit = param;

29 String str = lit ? “lit” : “unlit”;

30 System.out.print(“The bulb is “ + str);

31 System.out.println(“ and the bulb is “ +
 color + “.”);

32 }

33 }

34 }

Line 8 shows the special constructor-chaining syntax. Because you can never
invoke a constructor by its name, you use this as a placeholder for the construc-
tor name. After this, you provide the parameters to the constructor that you
want to call. Whether you create a ColoredLightBulb2 object with or without
a parameter to the constructor, the second constructor on lines 11–14 always
executes.

You can provide as many constructors as you want in your classes, and you
can use constructor chaining to ensure a logical and convenient construction
process. However, keep in mind two important rules. First, if you do invoke
another constructor in this fashion, that invocation must come on the first line
of your constructor. It would be illegal to provide a constructor like this:

public ColoredLightBulb2()

{

4373book.fm Page 178 Tuesday, July 13, 2004 3:44 PM

Introduction to Object-Oriented Programming 179

 System.out.println(“In constructor”);

 this(“white”);

}

The second rule of constructor chaining is that you can explicitly call only
one constructor from within another constructor. It is illegal to call another
constructor more than once. You could expand the first rule to say that you can
invoke another constructor only on the first line and never again in the same
constructor body.

The reasons for these rules are explained in full in Chapter 7 when you begin
learning about inheritance and how it affects your constructors.

You can use this special syntax only inside a constructor. It is illegal to associate
parentheses with this anywhere but in a constructor.

Terms to Know
accessor method messaging

constructor mutator method

constructor chaining object reference

delegation pass by reference

instance method pass by value

4373book.fm Page 179 Tuesday, July 13, 2004 3:44 PM

180 Chapter 6

Review Questions
1. Is the following line of code legal?

double d = new double(10);

2. How many objects exist after the following code completes?

Lamp lampOne = new Lamp();

Lamp lampTwo = new Lamp();

Lamp lampThree = lampOne;

lampTwo = lampOne;

3. Why can the main() method not directly access instance methods and
variables?

4. Why should instance variables normally be private?

5. What composes the interface of an object?

6. What is the return type of a constructor?

7. Will the following line of code compile correctly?

this = new Lamp();

8. If you have multiple constructors, what differentiates them from one another
in your class?

9. What is the keyword used to invoke another constructor in the same class
from within an existing constructor?

10. Assume that you are in the constructor for a class that takes no parameters.
Write the line of code that invokes another constructor in your class that
takes an int parameter, and give this parameter a value of 100.

4373book.fm Page 180 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

7

Advanced Object-Oriented
Programming

In the previous chapter, you learned about classes and objects at a basic
level. In this chapter, it is time to investigate more fully the power that
object-oriented programming can bring to you. Just because this chapter
is called an “advanced” look at object-oriented programming, do not
think that it is optional material. The additional aspects discussed in this
chapter will prove vital to your code.

◆

The details of inheritance and the

extends

 keyword

◆

The secrets of polymorphism

◆

How the special

instanceof

keyword works

◆

How to write more elaborate
constructors

◆

When to use abstract classes

◆

How to use interfaces

4373book.fm Page 181 Tuesday, July 13, 2004 3:44 PM

182

Chapter 7

Claiming Your Inheritance

In the previous chapter, you were introduced to the process of defining classes
and instantiating objects based on those classes. It is now time to up the stakes
a little and introduce inheritance. Inheritance is a feature of object-oriented pro-
gramming that allows you to reuse existing programs. Instead of always creating
a completely new class to capture a specific type, you can define a class that is
based on an existing class. This allows variables and methods of the existing class
to become part of the newly defined class automatically.

Inheritance basically means that you can make the nonprivate methods and
variables defined in one class available to another class. You do so by defining
a relationship between the classes. The class that already contains the methods
and variables you want to share is called the superclass, and the new class is
called the subclass. Generally, the subclass provides additional methods that
are specific to its needs or that alter the behavior of existing methods in the
superclass.

In the previous chapter, you defined the

Lamp

 class, which had a couple of
methods that could be used to turn it on and off. If you think about it, all lamps
have this ability, right? However, there are different kinds of lamps. You might
have a reading lamp by your chair, a heat lamp by your shower, and a pair of
headlights on your car. All these are types of lamps, but each of them possess
their own specific characteristics. The reading lamp really only emits light, the
heat lamp is designed to provide heat, and the car’s headlights have high-beam
functionality. In this case, the lamp is a generalized concept, and the various
types of lamps are specializations of that concept.

This chapter expands on this lamp concept so that it includes other electrical
machines. In your home, you probably have several electrical machines—a tele-
vision, a toaster, and a computer, as well as others. All these are based on the
same concept of turning on and turning off, but all of them obviously have dif-
ferent specific functions. As you continue through this chapter, you will model
various machines in your code.

Let’s jump right in by defining a new class called

Machine

 that contains the
basic functionality required for all the electrical machines you will model. This
is a basic class that contains methods for setting and getting a name for the
machine, methods for turning on and off the machine, and a method for query-
ing the state of the machine.

public class Machine

{

 private String name;

 private boolean on;

 public void setName(String name)

 {

4373book.fm Page 182 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming

183

 this.name = name;

 }

 public String getName()

 {

 return name;

 }

 public void turnOn()

 {

 if(!on)

 {

 on = true;

 System.out.println(name + “ is on.”);

 }

 }

 public void turnOff()

 {

 if(on)

 {

 on = false;

 System.out.println(name + “ is off.”);

 }

 }

 public boolean isOn()

 {

 return on;

 }

}

You could instantiate this class, but logically that does not really make a lot
of sense. Think about it. Do you wake up in the morning and put bread into a
machine? It is more accurate to say that you put that bread into a toaster, which
is a

type

 of machine. In other words, you do not own anything that is simply
called

machine

; instead, you own various items that are all machines by nature.
This is another way of saying that all your machines share the same basic traits.

Because a

Machine

 object is not useful by itself, why create it? Because of the
power of inheritance. You can reuse this base

Machine

 class and expand on it to
model specific types of machines. To do so, you use another Java keyword,

extends

.

4373book.fm Page 183 Tuesday, July 13, 2004 3:44 PM

184

Chapter 7

Using the

extends

Keyword

The

extends

 keyword is the secret to inheritance in Java classes. When you
declare a class to extend another class, you are creating the superclass-subclass
relationship. Following is a version of the

Lamp

 class that extends from the
generic

Machine

 class.

public class Lamp

extends Machine

{

 public Lamp()

 {

 this(“Lamp”);

 }

 public Lamp(String name)

 {

 setName(name);

 }

}

Wait a minute! This class has nothing in it except two constructors; so what
is the use? Though it may appear that no functionality is defined in this class, it is
not really devoid of content. By extending

Machine

, you inherit the four methods
defined in that class. It is as if you took the contents of

Machine

 and pasted them
right into the Lamp class. This is code reuse in action!

Also, take a look at the two constructors that are provided. The first is the default
constructor that takes no parameters. It simply calls the second constructor, which
takes a

String

 parameter that should be a name describing this object. You might
pass items such as “Reading Lamp” or “Kitchen Light.” If you choose to use the
default constructor, the simple name “Lamp” is passed. The second constructor
actually invokes a method named

setName()

, which is defined in

Machine

, the
superclass in this relationship. Remember that even though you did not redefine the

setName()

 method in the

Lamp

 class, it

is

 available because you extend

Machine

.
As a quick proof of this concept, here is a little class that creates a

Lamp

 object
and calls some of the methods on it.

public class LampTest

{

 public static void main(String[] args)

 {

 Lamp lamp = new Lamp();

 lamp.turnOn();

 lamp.turnOff();

 }

}

4373book.fm Page 184 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming

185

When you run the

LampTest

 code, you see the following output:

Lamp is on.

Lamp is off.

The value “Lamp” is stored because the

Machine

 class takes care of that for
us. The

Lamp

 class need not maintain its own copy of the name because the super-
class handles those details for us.

The relationship a subclass has with its superclass is often referred to as an “is
a” relationship. This is because it is always valid to say that a

Lamp

is a

Machine

.
However, this is only a one-way a relationship. It is not correct to say that a

Machine

 is a

Lamp

 because not all

Machine

 objects are actually

Lamp

 objects.

The Rules of Inheritance

You must follow several inheritance rules in the Java language. As long as you
follow these rules, you can extend any class.

Only one class can be extended.

In object-oriented languages, there are
two types of inheritance: single and multiple. With single inheritance, only
one class can be extended. With multiple inheritance, one or more classes
can be extended. The Java language allows only single inheritance. This is
largely because multiple inheritance is fairly complex for a language to
implement, and quite honestly, it is not a feature that is as useful as you
might think. It can be confusing to maintain code that derives functionality
from multiple classes, so sticking with a single inheritance model makes a
great deal of sense. Because of this rule, you can have only one class name
following the

extends

 keyword.

The Java language does support multiple inheritance when you are using interfaces,
a special form of class that you will learn about later in this chapter in the “Interfaces”
section.

You cannot extend a

final

 class.

You can use the

final

 keyword with
classes, methods, and variables. In all three cases, you cannot change the
corresponding entity when you use

final

. Basically, if a class is declared
to be

final

, the class cannot be subclassed. An example of a

final

 class
is the standard

java.lang.String

 class. If you try to extend

String

, you
receive a compiler error. If you want to create a class that can never be
altered with subclassing, make it

final

 with a declaration such as

public
final class MyClass

. You will learn more about

final

 methods later
in this chapter when I discuss method overriding.

Not all members are inherited.

When you extend a class, the only meth-
ods and variables that you inherit are nonprivate, nonfinal instance

4373book.fm Page 185 Tuesday, July 13, 2004 3:44 PM

186

Chapter 7

methods and variables. These inherited members always include any explic-
itly declared as

public

 or

protected

. However, these members might also
include members that have no specified access modifier provided, which is
the indicator of default or “package private” access control.

There are four access modifiers, and you automatically inherit any members
declared as

public

 or

protected

. When you assign the

protected

 modi-
fier to a method or a variable, other methods in the class, any subclasses, and
any other classes in the same package can access that variable or method.
When you do not provide an access modifier, the member is considered
“package private,” meaning that the class and other classes in the same
package can access the member. This does not necessarily mean subclasses
can access a “package private” method; you can extend a class that belongs
to one package and have the subclass exist in a completely different package.

Table 7.1 details the access rules for each of the four levels of access avail-
able to you.

Members with the same name are not inherited.

If you define a variable
in your subclass with the same name as a variable in your superclass, the
superclass variable is hidden. This can lead to hard-to-find errors, so be
careful about doing this. The JVM always uses the variable that is the
“most local” to the object. If a variable

x

 is defined in both the superclass
and the subclass, a subclass instance “sees” only its own variable.

Hiding variables can lead to some interesting bugs. You learn more about how vari-
able inheritance works in the section “Reference Types versus Runtime Types.”

Methods work effectively the same way. If you define a method with the
same name and parameters in both the superclass and subclass, the sub-
class “sees” only its own method. However, having the same exact method
signature in both the superclass and the subclass is a common practice
called method overriding that is discussed in detail later in this chapter.

T ab le 7 .1

Access Modifier Rules

Modifier Class Package Subclass Anything

public

Yes Yes Yes Yes

protected Yes Yes Yes No

“default” Yes Yes No* No

private Yes No No No

* Subclasses are not guaranteed access unless they are in the same package.

4373book.fm Page 186 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 187

You can actually force access to the superclass member by using the super keyword,
which is discussed later in this chapter in the section “The super Keyword.”

Reference Types versus Runtime Types
Now check out the following code. In this version, the type of the lamp variable
is the generic Machine instead of the more specific Lamp. What do you think hap-
pens when you run this code?

public class LampTest2

{

 public static void main(String[] args)

 {

 Machine lamp = new Lamp();

 lamp.turnOn();

 lamp.turnOff();

 }

}

runtime type
The actual instance type stored in mem-
ory. The runtime type need not be the
same type as the variable that refers to it;
it can be a subclass of the reference type
instead. The runtime type is the “real”
type of an object reference.

What happens is exactly the same thing as what happened in the previous
LampTest example. This may seem a bit strange to you, so let me define some
useful terms. The first line of the main() method creates a new Lamp object using
the new keyword and assigns this reference to a variable of type Machine. The
portion to the right of the assignment operator is called the runtime type. The
runtime type is the actual class that is instantiated when the code executes. In this
case, the runtime type is a Lamp object. The portion of this statement to the left
of the assignment operator is called the reference type. The reference type is a
class that is either the same as the runtime type or a superclass of the runtime
type. In this example, the reference type is Machine, which is valid because
Machine is a superclass of the runtime type, Lamp. It is just like saying, “A lamp
is a machine.” In that statement, you are “assigning” the specific concept of a
lamp to the generic concept of a machine.

reference type
The class name of the variable in which
an object reference is stored. The refer-
ence type must be either the same as the
runtime type or a superclass.

By now, you are probably asking why on earth you would ever confuse the
matter like this. Why not just make the reference type always the same as the
runtime type? To demonstrate the power that this separation of types can bring
you, let’s add a new class called Toaster.

public class Toaster extends Machine

{

 public Toaster()

 {

 this(“Toaster”);

 }

4373book.fm Page 187 Tuesday, July 13, 2004 3:44 PM

188 Chapter 7

 public Toaster(String name)

 {

 setName(name);

 }

}

Like the Lamp class, the Toaster class defines only two constructors, opting to
simply inherit all its functionality from the superclass. Because Toaster also
extends Machine, it can pick up the same usage of reference type and runtime type.

All right, now for the payoff. The AllMachines code that you will see shortly
defines an array that is meant to hold all the machines owned by a person. This
would include anything that could be considered a machine. For our purposes,
only two specific machines are defined, but that is enough to work with.

Think about what you learned about arrays earlier in this book. An array
must always contain elements of the same type. I think it is fair to say that a Lamp
is not a Toaster, so initially it would seem that there is no way to store both
types of objects in the same array. However, because both Lamp and Toaster
inherit from the Machine class, there is a way to store them after all. The array
can only hold elements that share the same reference type; the runtime type does
not have to be the same. This is just like what happens when you have an array
of int primitives, if you think about it. Although you are guaranteeing that such
arrays can hold only legal int values, those values certainly do not all have to be
the same. For arrays of objects, the reference type stored in an array simply dic-
tates the base type of each element; the element values (their runtime type) can
be different.

The following code is an example of a generic array of Machine elements that
actually holds two Lamp objects and one Toaster object. Once the array is pop-
ulated, each element is turned on and off to show you that everything is working
just as you would expect.

public class AllMachines

{

 public static void main(String[] args)

 {

 Machine [] machs = new Machine[3];

 Machine machOne = new Lamp(“Reading lamp”);

 Machine machTwo = new Toaster(“4-slice Toaster”);

 Machine machThree = new Lamp(“Kitchen light”);

 machs[0] = machOne;

 machs[1] = machTwo;

 machs[2] = machThree;

 for(int i = 0; i < machs.length; i++)

4373book.fm Page 188 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 189

 {

 machs[i].turnOn();

 machs[i].turnOff();

 }

 }

}

As far as the machs array is concerned, everything that it holds is of type
Machine. It really does not care if the element is a Lamp or a Toaster, only that
both classes are extensions of the base Machine class. However, all three objects
still encapsulate their own state, so the output from this code is as follows:

Reading lamp is on.

Reading lamp is off.

4-slice Toaster is on.

4-slice Toaster is off.

Kitchen light is on.

Kitchen light is off.

What is happening here is something called virtual method invocation. This
complex-sounding term really means that the JVM decides which specific ver-
sion of a method to call at runtime. This is essential because of the difference
between a reference type and a runtime type. The JVM always invokes the
instance method of the runtime type, no matter the actual reference type. Thus,
in the previous example, the turnOff() method is invoked on the runtime type
of each element in the array, not on the Machine class itself.

Only instance methods are involved with virtual method invocation. Any static
methods you create are always bound to the reference type. Because static meth-
ods are class methods, this is logical.

Variables Are Bound to the Reference Type
virtual method invocation
The JVM uses this process to ensure that
the method definition closest to the run-
time type is called. This is sometimes
referred to as “late binding” because the
instance methods are not linked at com-
pile time. Instead, a virtual method table
is created in memory for each object
instance, and the JVM selects the appro-
priate version of a method at runtime.

Although methods can take advantage of virtual method invocation, variables
cannot. Variables are always bound to the reference type. This is important to
understand if you provide the same variable name in both a superclass and a
subclass.

The best way to see what I mean is to look at a short example. It is not typical
to define public variables, but in this case, it should hammer the point home
nicely. Both of following two classes define a String variable named s. When you
execute the subclass’s main() method, though, you see the value of the String in
the printed superclass printed, not in the subclass, as you might expect.

 public class SuperVariableDemo

 {

4373book.fm Page 189 Tuesday, July 13, 2004 3:44 PM

190 Chapter 7

 public String str = “Superclass”;

 }

 public class SubVariableDemo extends SuperVariableDemo

 {

 public String str = “Subclass”;

 public static void main(String[] args)

 {

 SuperVariableDemo sd = new SubVariableDemo();

 System.out.println(sd.str);

 }

}

The output will always be Superclass even though the runtime type is
SubVariableDemo. Remember that instance methods are always bound to the
runtime type, and instance variables are always bound to the reference type. If
you commit this to memory right now, you will avoid some strange and pesky
bugs in the future!

Of course, if the reference type in the previous example was SubVariableDemo,
Subclass would have been printed. Superclass was printed only because the ref-
erence type was a superclass.

Expanding the Subclasses
So far, you have simply inherited all the code you needed in the two subclasses,
Lamp and Toaster. However, it is much more common for subclasses to provide
functionality beyond the basic methods captured in the superclass. For example,
a toaster does not just turn on and off; it also heats up, cools down, and has a
temperature. You can capture these toaster-specific characteristics by expanding
the Toaster class as shown in the following new Toaster2 class.

public class Toaster2 extends Machine

{

 private int temp;

 private int maxTemp = 280;

 private int minTemp = 70;

 public Toaster2()

 {

 this(“Toaster”);

4373book.fm Page 190 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 191

 }

 public Toaster2(String name)

 {

 this(name, 70, 280);

 }

 public Toaster2(String name, int minTemp, int maxTemp)

 {

 setName(name);

 this.minTemp = minTemp;

 this.maxTemp = maxTemp;

 this.temp = this.minTemp;

 }

 public void heatUp()

 {

 System.out.println(getName() + “ is heating up.”);

 while(temp != maxTemp && isOn())

 {

 System.out.println(getName() + “ is now “ +

 temp + “ degrees.”);

 temp += 35;

 }

 System.out.println(getName() + “ heated to “ +

 temp + “ degrees.”);

 }

 public void coolDown()

 {

 System.out.println(getName() + “ is cooling down.”);

 while(temp != minTemp)

 {

 System.out.println(getName() + “ is now “ +

 temp + “ degrees.”);

 temp -= 35;

 }

 System.out.println(getName() + “ cooled to “ +

 temp + “ degrees.”);

 }

}

4373book.fm Page 191 Tuesday, July 13, 2004 3:44 PM

192 Chapter 7

A third constructor is added to this class that accepts a minimum and maxi-
mum temperature. These variables are stored in each object so that you can have
various temperature ranges if you desire. This adds to the flexibility of the
Toaster2 class and also demonstrates how a subclass can maintain state beyond
what is stored in the superclass.

This class inherits the turnOn() and turnOff() methods from the Machine
class, but it then adds two methods of its own. The heatUp() method adds 35
degrees to the temperature until it reaches the maximum temperature. The
coolDown() method reduces the temperature by 35 degrees until it reaches the
minimum temperature, whether the toaster is on or off.

A more realistic model of a toaster would probably not hardcode the temperature
increment of 35. It would be better to capture this as a variable as well. This was not
done in this example to keep the example short.

The following code uses a Toaster2 object by calling methods of the super-
class as well as those defined inside the Toaster2 class itself.

public class Toaster2Test

{

 public static void main(String[] args)

 {

 Toaster2 t = new Toaster2();

 t.turnOn(); // defined in Machine

 t.heatUp(); // defined in Toaster2

 t.coolDown(); // defined in Toaster2

 t.turnOff(); // defined in Machine

 }

}

When you run this code, you see the following output:

Toaster is on.

Toaster is heating up.

Toaster is now 70 degrees.

Toaster is now 105 degrees.

Toaster is now 140 degrees.

Toaster is now 175 degrees.

Toaster is now 210 degrees.

Toaster is now 245 degrees.

Toaster heated to 280 degrees.

Toaster is cooling down.

Toaster is now 280 degrees.

4373book.fm Page 192 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 193

Toaster is now 245 degrees.

Toaster is now 210 degrees.

Toaster is now 175 degrees.

Toaster is now 140 degrees.

Toaster is now 105 degrees.

Toaster cooled to 70 degrees.

Toaster is off.

Once the Toaster2 object is created, the turnOn() method is invoked,
and then the heatUp() method is called. This is followed by the coolDown()
method, and finally the toaster is turned off via the turnOff() method.

The calls to turnOn() and turnOff() are possible because they are defined in the
Machine superclass. The other two method invocations are possible only because
they are defined in the Toaster2 class itself. The result is that the Toaster2 class is
more detailed than the Machine superclass. This makes sense because the concept of
a “toaster” is much more detailed than the concept of a “machine.”

The Class Hierarchy
When you are inheriting from classes, it is a good idea to picture the resulting
relationships in a treelike hierarchy. In this chapter, you have already created
some classes, including Machine, Lamp, and Toaster2. These classes form a hier-
archy, as shown here:

The diagram clearly shows that Lamp and Toaster2 are lower in the hierarchy
than the Machine class. This is a visual representation of the superclass-subclass
relationship. By looking at this diagram, you can draw some specific conclusions
such as the following, even if you could not see the source code itself.

◆ A Lamp is always a Machine.

◆ A Toaster2 is always a Machine.

◆ A Machine is not a Lamp or a Toaster2.

◆ A Lamp is not a Toaster2 (thank goodness!).

There is no relationship between the Lamp and Toaster2 classes except that
they are siblings in the hierarchy. Siblings in a hierarchy always share a common
superclass, as shown in this diagram. When you have a large collection of classes

Machine

Lamp Toaster2

4373book.fm Page 193 Tuesday, July 13, 2004 3:44 PM

194 Chapter 7

defined, it is often useful to create a diagram such as this so that you can readily
identify superclasses and subclasses.

Up to now, your subclasses have had only a single class above them in the
hierarchy. However, this is not an enforced limitation. You can extend from a
class that extends from another and so on. The result is a larger hierarchy.

The more superclasses you have, the more memory you will need when you instan-
tiate your object. This is because the instance members of every class above yours
in a hierarchy must be initialized by the JVM. The amount of memory required is not
typically a problem, but keep this in mind when you create class hierarchies.

The Object Class
The previous hierarchy diagram is not really complete, however. Another class
is involved here that you did not define yourself—the java.lang.Object class.
Every class eventually extends the Object class; Object is the ultimate class in
every object hierarchy. Here is a more complete view of the diagram.

You did not extend the Object class when you defined Machine, so how can it
be the superclass of Machine? Well, the truth is that all classes you define directly
extend Object unless you explicitly provide your own extends clause (as you did
for both Lamp and Toaster2). The only class you will ever see in the Java language
that does not extend from another class is the ultimate class, Object.

So the following two class declarations are equivalent:

public class Machine

public class Machine extends Object

Because the Object class is always part of your class hierarchy, you can
always use Object as a reference type. For instance, you can create a generic
array that holds any type of object with the following code.

Object [] anyObjects = new Object[10];

Machine

java.lang.object

Lamp Toaster2

4373book.fm Page 194 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 195

The anyObjects array can hold any combination of objects you choose
because every object descends from the Object class. The only elements that you
cannot add to this array are primitive types.

Remember that classes called wrapper classes map to each of the primitive types.
If you want to store a primitive int in the anyObjects array, you can simply use the
Integer class. Chapter 9, “Common Java API Classes,” shows examples of how to
use these wrapper classes.

You will learn more about the Object class and how it can be used later in
this chapter when you learn about method overriding.

The Reference Type Rule for Methods
A few pages ago, you learned that the reference type of an object does not have
to be the same as the runtime type. The reference type can be the same as the
runtime class, or it can be a superclass. Although this ability to refer to an object
via the superclass can be useful, I have left out an important detail until now that
imposes limits on the methods you can directly invoke. The rule is that if you try
to call a method via an object reference, that method must be defined in the class
of the reference type to begin with. You simply cannot directly call a method
solely defined in a subclass if you reference that object with the superclass type.

In the Toaster2 class, four methods are defined only in the subclass. Thus, if
you try to do the following, what will happen?

Machine mach = new Toaster2();

mach.turnOn();

mach.heatUp();

If you said the second method call will not work, you are right. This code
would not even compile because the compiler sees that no heatUp() method
is defined in the Machine class. It does not matter that the method exists in the
subclass because the reference type is not Toaster2. The first method call to
turnOn() is fine, though, because that method is defined in the Machine class.

If you look back at the AllMachines code in which an array of Machine
objects was created, you will quickly conclude that you are severely limited in the
methods that you can call. Although it is possible to call turnOn() on both a
Lamp and Toaster2 object, it would be impossible to actually use the Toaster2
object fully.

Obviously, there has to be a way to “talk” to the runtime type directly even
if it is originally referenced by a superclass. This is accomplished with the
instanceof operator and a process called object casting, which we will look at
in the next section.

4373book.fm Page 195 Tuesday, July 13, 2004 3:44 PM

196 Chapter 7

The instanceof Operator and Object Casting
Okay, it is time once again to introduce a new operator (please hold your
applause). The instanceof operator is a special operator that you can use only
with objects. It is conceptually similar to the == operator that you might use to
check the value of an int or float, but instead of checking for a specific value,
it checks for a specific runtime type. By using this operator, you can verify the
runtime type of an object, no matter what the reference type happens to be.

The following code demonstrates how you can use the instanceof operator
with the Lamp and Toaster2 class. Once again, an array is created that holds
Machine types, but then inside the for loop, a check is made using an if state-
ment to determine the runtime type of each object in the array. For now, a simple
printout shows you which runtime type was found.

public class InstanceChecker

{

 public static void main(String[] args)

 {

 Machine [] machs = new Machine[4];

 machs[0] = new Lamp();

 machs[1] = new Toaster2();

 machs[2] = new Toaster2();

 machs[3] = new Lamp();

 for(int i = 0; i < machs.length; i++)

 {

 System.out.print(“Element “ + i + “ is a “);

 if(machs[i] instanceof Lamp)

 {

 System.out.println(“Lamp object.”);

 }

 else if(machs[i] instanceof Toaster2)

 {

 System.out.println(“Toaster2 object.”);

 }

 }

 }

}

Once the code creates the array and populates it with the four objects, the for
loop processes each element. The instanceof expressions return either true or
false, so they are commonly found as the conditions of an if statement. This
code queries each element for its runtime type and prints an appropriate message

4373book.fm Page 196 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 197

to tell you what type is found. You will see the following output if you run
this code:

Element 0 is a Lamp object.

Element 1 is a Toaster2 object.

Element 2 is a Toaster2 object.

Element 3 is a Lamp object.

Object Casting
Earlier in this book, you learned how to cast primitive types. For example, to cast
a float variable named x to an int, you wrote code such as the following:

int y = (int)x;

This code narrows the floating-point number to a whole integer, effectively
chopping off everything after the decimal point. You always have to use the cast
operator for primitives if you are downcasting.

You can also perform casting on objects in a similar fashion. The concept is
the same. If you have a reference to a Machine but the runtime type is actually
Toaster2, you can use casting to gain access to the Toaster2-specific methods.
Just like the situation with primitive casting, you must perform a cast if you are
narrowing from a superclass to a subclass. You do not ever have to explicitly cast
if you are widening from a subclass to a superclass.

The following code shows you what I mean. Only the first statement actually
works without generating an error.

Machine m = new Toaster2(); // upcasting, works fine

Toaster2 t = new Machine(); // downcasting, fails

The first line works fine because you are upcasting from a Toaster2 to
the Machine superclass. This works because all Toaster2 objects are Machine
objects as well. However, the second line fails because you are trying to shove
a Machine object into a Toaster2 reference. This is not possible because not all
Machine objects are Toaster2 objects.

The rule is that you can always assign a subclass object to a superclass refer-
ence, but you cannot do the opposite unless you perform an explicit cast.

The syntax for casting objects is the same as for casting primitives. You simply
put the reference type inside the parentheses and place this right before the object
you want to cast. The following revised code now works in both cases.

Machine m = new Toaster2(); // upcasting, works fine

Toaster2 t = (Toaster2)m; // casting makes this work now

4373book.fm Page 197 Tuesday, July 13, 2004 3:44 PM

198 Chapter 7

You have to be careful when you cast objects like this, however. The compiler
cannot catch all possible errors, so your code may compile fine but generate an
exception at runtime. If you try to cast an object and it is not actually that type,
you get a ClassCastException at runtime.

The compiler cannot always trap potential ClassCastExceptions because it
might be possible that the object is the type you are trying to cast it to; there is
often no way for the compiler to be sure. For example, trying to cast a Machine
to a String causes a compiler error because it is impossible for Machine to be
a subclass of String; the String class is a final class and cannot be extended.
However, if you try to cast a Machine reference to a Toaster2 reference, it is
possible for it to work. This is because there is an inheritance relationship
between the two classes; Toaster2 is a subclass of Machine. The compiler has
no choice but to let the cast attempt go and leave it up to the JVM to report any
runtime casting errors.

When you are performing object casting, the best practice is to incorporate the
instanceof operator into your code. First, use instanceof to be sure that the
target object is the type you expect; only then should you perform the cast. This
ensures that you are never trying to cast an object illegally, and you can be sure
to avoid those pesky runtime errors.

The following code is a full example of casting that uses the instanceof
operator to ensure that only legal casting is attempted.

public class Casting

{

 public static void main(String[] args)

 {

 Machine [] machs = new Machine[4];

 machs[0] = new Lamp();

 machs[1] = new Toaster2();

 machs[2] = new Lamp();

 machs[3] = new Toaster2();

 for(int i = 0; i < machs.length; i++)

 {

 machs[i].turnOn();

 if(machs[i] instanceof Toaster2)

 {

 Toaster2 t = (Toaster2)machs[i];

 t.heatUp();

 t.coolDown();

 }

4373book.fm Page 198 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 199

 machs[i].turnOff();

 }

 }

}

The for loop turns on any Machine element it finds, but then it checks to see
if the element is actually a Toaster2 object. If it is, an object cast is performed to
convert the generic Machine into a more specific Toaster2 reference. This allows
you to successfully invoke the heatUp() and coolDown() methods because you
are now working with the correct object reference. Once this section of code com-
pletes, the Machine element (whether it is a Lamp or Toaster2) is turned off.

The output from running this code is not given here because it is fairly long.
Go ahead and run the code and be sure that you understand the output you see.

Introducing Polymorphism
polymorphism
The ability to have many forms of the
same object. An object can always be
referred to by its own class type or any of
its superclasses. This allows the refer-
ence type and the runtime type to be
separated. The instance methods of a
runtime type that are also defined in the
reference type will always be invoked
because of virtual method invocation.

Polymorphism literally means “being able to assume different forms.” When you
are talking about object-oriented programming, polymorphism is the ability to
process objects in a hierarchy differently depending on their actual class type.
You have already seen a bit of polymorphism at work between the Machine,
Lamp, and Toaster2 classes. When you create an array of Machine elements and
then execute methods on each of those elements, polymorphism is the feature
that allows the variation of runtime types from the base reference type.

Polymorphism is an important and powerful concept in object-oriented pro-
gramming. Because of polymorphism, you can easily create extensible classes. You
can look at an object as a Machine (one form) or a Toaster2 (another form).

When you extend a class, you inherit a group of methods automatically. This
allows you to reuse code defined in a single class instead of having to constantly
copy and paste. However, two powerful polymorphic concepts are often useful
when you define a class: method overloading and method overriding.

Method Overloading
method overloading
A convenience in object-oriented pro-
gramming that allows multiple methods
with the same name to exist. These meth-
ods must have different parameter lists
and might also have different return
types. It is not enough to only have vari-
ance in return type, however; the param-
eter lists must be different for a method
to be overloaded.

In the Java language, a method is uniquely identified by its name and a list of
parameters. Therefore, it is perfectly legal to define two methods with the exact
same name, but with different parameters. Method overloading allows you to
reuse the same method name repeatedly, but with varying parameters and results.

Method overloading is actually not limited to use with inheritance. You can
overload methods in the same class, and you can overload methods defined in a
superclass. You have been calling an overloaded method since the early chapters
of this book. The println() method you call via the System.out variable is an
overloaded method. Ten versions of this method are defined, each with a differ-
ent parameter type. There is a println() method for six primitive types (char,

4373book.fm Page 199 Tuesday, July 13, 2004 3:44 PM

200 Chapter 7

int, long, float, double, and boolean), one for a char [], one for a String,
one for generic objects, and one that takes no parameters at all. Every version of
the println() method prints the parameter that you pass to it and adds a car-
riage return to the end. The method always works the same, but it handles the
different parameters uniquely.

The alternative to this approach is to define a method for each possible type.
A printString(), printInt(), and printChar() method can be defined. Do
you see the benefit of method overloading now? Without it, you would have to
memorize all those methods to print data. However, because overloading does
exist, you do not have to know the specific type that you are passing; you can just
call println() and pass anything you wish, and some output will appear.

For the versions of this method that print generic objects, the output is the encoded
reference itself. This is not particularly useful, but you will learn how to handle this
problem when I discuss the java.lang.Object class in detail in the next section,
“Method Overriding.”

You will find method overloading useful when you want to create a collection
of methods that perform essentially the same function, but work under varying
conditions. Those conditions are typically embodied in the parameters passed to
each version of the method. The following class has three methods defined; all of
them are overloaded versions of one another.

public class Overloaded

{

 public void sayHello()

 {

 System.out.println(“Hello”);

 }

 public void sayHello(String name)

 {

 System.out.println(“Hello “ + name);

 }

 public void sayHello(String name, int count)

 {

 for(int i = 0; i < count; i++)

 {

 sayHello(name);

 }

 }

}

4373book.fm Page 200 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 201

All three methods have the same name, sayHello(), but each of them takes
a different set of parameters. This lets you call any one of them and still get
some output. If you call the first one with no parameters, a simple “Hello”
message prints. If you call the second version, passing your name, a friendlier
greeting prints that includes your name. Calling the third method and passing
your name and an integer greets you as many times as you indicated. This third
method actually calls the second version of the method instead of redefining
that logic. This is yet another example of reusing existing logic instead of
always redefining it.

The three methods effectively do the same thing (issue a greeting), but all of
them work with different parameters. Here are the important facts concerning
overloaded methods.

◆ When you overload a method, the name must be exactly the same, and the
parameter list must be different. There is no escaping this rule.

◆ Although you can have a different return type, it is not enough to only have
a different return type.

◆ Keep in mind that you can overload methods defined in the same class or
any superclass.

◆ A final method can be overloaded.

◆ A static method can be overloaded.

Method Overriding
method overriding
An object-oriented concept that allows a
method in a superclass to be redefined
completely in a subclass. The return type,
name, and parameter list must be
exactly the same in the two classes for
overriding to work. If the parameter list is
different, you are overloading the
method, not overriding it. If the return
type is the only thing different, you will
get a compiler error. Overriding allows
polymorphism to exist in your classes
because you can provide refined func-
tionality for a method throughout an
object hierarchy.

Method overriding is used only between a subclass and a superclass. You have
already learned that when you extend a class, you inherit the nonprivate methods
defined in that class. It is often useful to alter the behavior of these inherited
methods to suit the needs of your subclass, however. Being able to modify the
behavior of an inherited method is the purpose of method overriding.

As you learned earlier, the JVM uses a process called virtual method invoca-
tion, which makes method overriding possible. Virtual method invocation guar-
antees that the version of an instance method closest to the runtime type in the
hierarchy is invoked. In other words, if a method is never overridden, the original
version executes because it is inherited. If it is overridden in a superclass, that ver-
sion is inherited and executed. If it is overridden in the subclass, that version is
invoked. Don’t forget that virtual method invocation guarantees that the
instance method of the runtime type executes, no matter the reference type.

Overloading is another form of polymorphism, but there are some major dif-
ferences between this process and method overloading.

◆ An overridden method must have exactly the same name, parameter list,
and return type as the method in the superclass. If the parameter list differs,
you are performing method overloading, not method overriding.

4373book.fm Page 201 Tuesday, July 13, 2004 3:44 PM

202 Chapter 7

◆ Because the name and parameter list must be the same, a class can have
only one version of an overridden method; it is not legal to define a method
with the same name and parameter list in the same class definition.

◆ In essence, an overridden method replaces the method defined in a super-
class. If you have a method named go() in your superclass and redefine
this method in a subclass, any calls to go() on an object of the subclass
type execute the subclass’s method only.

◆ You can override any inherited method from any of the classes above it in
the hierarchy, all the way up to Object.

◆ An overridden method cannot have more restricted accessibility than the
method defined in the superclass. In other words, a public method in the
superclass cannot be redefined as protected in the subclass. However,
you can make a method less restrictive if you desire.

◆ You can override only instance methods that you inherit. Because you
never inherit private methods, they cannot be overridden.

◆ A final method cannot be overridden even though it is inherited.

Overriding Methods in Object
referential equality
If two object variables contain the exact
same reference (and thus point to the
same object in memory), they are consid-
ered to have referential equality. You can
always test references for equality by
using the == operator.

To demonstrate how method overriding works, let’s revisit the Object class
that you learned about earlier in this chapter. You will often use two key meth-
ods in this class in your own code: public boolean equals(Object o) and
public String toString().

public boolean equals(Object o) To check the value of a primitive type,
you use the equivalency operator (==); the result will be either true or
false. Often it is also necessary for you to determine if two object refer-
ences are equivalent. You can do this in two ways, but there is an impor-
tant difference between the two approaches.

logical equality
The equals() method is defined in
the Object class and can therefore be
overridden in any subclass. Overridden
versions of this method can return
true to indicate that two objects are
logically the same even if they are not
physically the same object reference. For
example, the two String objects
“Hello” and “Hello” are logically equiva-
lent, but might not actually have the
same reference in memory.

The first way to test object equivalency is with the same operator that you
use for primitive types. You use the == operator to test for referential
equality. (You learned how this operator works back in Chapter 3, “Key-
words and Operators.”) If two references point to the same object in mem-
ory, they have referential equality.

The second way to test object equivalency is to use the equals() method
inherited from the Object class. This method takes a single parameter of
type Object. The Object parameter can be checked against the object
being called. By default, this method works exactly the same way as the ==
operator. However, this is a full-blown method and can therefore be over-
ridden in your own classes. This allows you to alter what equivalency
means for your own objects. As a result, the equals() method can be
overridden to test for logical equality. For example, the Integer class
overrides this method to return true if two Integer objects contain exactly

4373book.fm Page 202 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 203

the same primitive value, even if they are not physically the same object in
memory.

public String toString() The toString() method is extremely useful for
controlling what is output when an object is passed to the System.out
.println() method. By default, the output is rather strange looking. This
is actually the reference code used by the JVM. It would be much nicer if
you could output something meaningful to the user of your code.

The Object class has more than just these two methods, but these are so commonly
overridden that this section concentrates on these two.

Here is a class named Record that contains some basic information about an
individual. It contains variables for the first name, the last name, and the account
number. Perhaps a utility company would use Record objects to maintain their
accounts.

public class Record

{

 private String first;

 private String last;

 private String acctNum;

 public Record(String first, String last, String acctNum)

 {

 this.first = first;

 this.last = last;

 this.acctNum = acctNum;

 }

 public String getName()

 {

 return first + “ “ + last;

 }

 public String getAcctNum()

 {

 return acctNum;

 }

 public boolean equals(Object o)

 {

4373book.fm Page 203 Tuesday, July 13, 2004 3:44 PM

204 Chapter 7

 if(o instanceof Record)

 {

 Record r = (Record)o;

 return getName().equals(r.getName()) &&
acctNum.equals(r.getAcctNum());

 }

 return false;

 }

 public String toString()

 {

 String s = “Account: “ + acctNum + “\n” + getName();

 return s;

 }

}

The “\n” is a special code that allows you to manually insert a carriage return within
a String.

This basic class accepts three parameters in the constructor and provides two
methods for reading this information. The remaining two methods are the over-
ridden methods from the Object class.

First, the equals() method checks to see if the parameter is in fact a Record
object. If it is, you cast the parameter to a Record so the accessor methods can
be called. If all three variables match exactly, the two objects are considered
equal. This is logical equality, not referential equality. In this case, you provide
the definition of what equality means for the Record object.

Notice that the logic of the equals() method actually involves calling the
equals() method defined in the String class for the name and account number.
The String class also overrides the equals() method and provides logic to
determine if two String objects have exactly the same characters in the same
order and with the same case. If they do, then the two String objects are con-
sidered equal.

Second, you override the toString() method to allow a useful output for the
System.out.println() method. You then create a String that includes the
account number and the name, formatted nicely for readability.

To see how these two overridden methods can be used, execute the following
RecordChecker class. This class expects you to pass in a first name, a last name,
and an account number as command-line arguments. When you do, these values
are wrapped into a new Record object. An array of Record objects is created that
holds three unique instances, and then a check is made to see if the arguments

4373book.fm Page 204 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 205

that you passed and any of the array elements match; this is done when you call
the equals() method. If there is a match, the matched record is printed, which
automatically invokes the toString() method.

public class RecordChecker

{

 public static void main(String[] args)

 {

 if(args.length != 3)

 {

 System.err.println

 (“Usage: java Record <first> <last>
<acctnum”);

 System.exit(1);

 }

 Record one = new Record(“Ella”, “Mentary”, “12345”);

 Record two = new Record(“Sue”, “Nami”, “94586”);

 Record three = new Record(“Frank”, “Enstein”,
“48735”);

 Record [] recs = {one, two, three};

 Record rec = new Record(args[0], args[1], args[2]);

 boolean matched = false;

 for(int i = 0; i < recs.length; i++)

 {

 if(rec.equals(recs[i]))

 {

 matched = true;

 System.out.println(“Found a match:”);

 System.out.println(recs[i]);

 }

 }

 if(!matched)

 {

 System.out.println(“No matches found.”);

 }

 }

}

4373book.fm Page 205 Tuesday, July 13, 2004 3:44 PM

206 Chapter 7

If you execute this code, you will see the corresponding output:

java RecordChecker Ella Mentary 12345

Found a match:

Account: 12345

Ella Mentary

The super Keyword
You use the super keyword when you want to access nonprivate members of a
superclass. You can use it much like the this keyword that you were introduced
to in Chapter 6, “Introduction to Object-Oriented Programming,” but super is
meant to represent an object of your superclass type. You use super both to
directly access members and to perform chaining within constructors.

By this point, you know that you can inherit nonprivate methods of a super-
class and invoke them as if they were defined in the subclass. Now you have also
learned how to override these methods to fully redefine their functionality. How-
ever, a third option provides you with the ability to augment inherited methods.
Sometimes you want to allow a superclass’s method to execute and then perform
some additional functionality. At other times, you might want to perform addi-
tional processing before you even invoke the superclass’s method. However, if
you override a method, the overridden method is effectively hidden. This is
where super comes into play.

You will find a more detailed example of using super in the next section when
you learn about overriding constructors, but the following example shows you
the basics and uses two simple classes. The first class, SuperPrinter, prints the
sum of two variables via the printOut() method. The second class is a subclass
of SuperPrinter named, appropriately, SubPrinter, that overrides the
printOut() method. The overridden method first invokes the parent method
and then prints the results of multiplying the two input numbers.

public class SuperPrinter

{

 public void printOut(int x, int y)

 {

 System.out.println(“x + y = “ + (x + y));

 }

}

public class SubPrinter extends SuperPrinter

{

 public void printOut(int x, int y)

 {

4373book.fm Page 206 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 207

 super.printOut(x, y);

 System.out.println(“x * y = “ + x * y);

 }

}

The first line of the subclass’s printOut() method calls the superclass’s
printOut() method, and the sum of the two numbers prints. It then adds an
extra step that prints the results of multiplying the same two numbers. You can
see this work with the following code.

public class PrintTest

{

 public static void main(String[] args)

 {

 SubPrinter sub = new SubPrinter();

 sub.printOut(10, 20);

 }

}

When you execute the PrintTest code, you see the following two lines of
output.

x + y = 30

x * y = 200

You can invoke a parent instance method using super any time you want.
You might perform a conditional check, for example, and if the condition is
true, you invoke the parent method. If the condition is false, you can ignore
the parent method logic altogether. Using super like this allows you to add
to the logic of an existing method and create polymorphic classes.

“Overriding” Constructors
When you learned about the this keyword, you learned how to chain your con-
structors. Whenever the first line of a constructor is this(), the corresponding
constructor in the same class is invoked. The constructor to invoke is determined
by parameters passed to the this() invocation.

Often you will want to control the initialization of a superclass as well. You
can do so by using super() in a similar fashion to using this(). Whenever
super() is the first line of a constructor, it calls the corresponding constructor
with the same parameters in the superclass. This allows you to chain construc-
tors up the hierarchy as well.

However, constructors are a special form of method. One important difference
between a constructor and a normal method is that constructors are never inher-
ited. Thus, you cannot truly override them. If your superclass defines a constructor

4373book.fm Page 207 Tuesday, July 13, 2004 3:44 PM

208 Chapter 7

that takes a String but the subclass does not, it is impossible to create an instance
of the subclass by passing a String. This is demonstrated here:

public class SuperClass

{

 public SuperClass(String s)

 {

 System.out.println(“Superclass: “ + s);

 }

}

public class SubClass extends SuperClass

{

 public SubClass()

 {

 // do something

 }

}

Given these two classes, the following statement would cause a compiler error:

SubClass sc = new SubClass(“Hello”);

This fails because there is no constructor that takes a String in SubClass.
Remember, constructors are never inherited.

So what do you do? First, you need to provide a second constructor that takes a
String in SubClass, and then you need to call the corresponding constructor in
SuperClass by using the super() syntax. Here is the correct version of SubClass:

public class SubClass

{

 public SubClass()

 {

 this(“Default”);

 }

 public SubClass(String s)

 {

 super(s);

 System.out.println(“Subclass: “ + s);

 }

}

4373book.fm Page 208 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 209

The following code snippet instantiates a SubClass object

SubClass sc = new SubClass(“Hello”);

and then shows you this output:

Superclass: Hello

Subclass: Hello

As with the this() syntax, you must make the super() call the first line in
your constructor if you provide it at all. With constructor chaining, you can
chain several constructors within the same class by using this() and then a final
constructor that you use to call super() with whatever parameters you need.

Because you are not truly overriding constructors, the parameters list does not have
to be the same between the subclass and superclass. The parameters that you pass
with the super() invocation determine which parent constructor to invoke. In a
sense, this is like overloading a constructor.

The “Automatic” Constructor
Before you see a more elaborate example of using super both with constructors
and regular instance methods, let me tell you a tiny secret. In the last chapter, you
learned about the default constructor, a constructor that takes no parameters.
The truth is that if you do not provide any constructors, the compiler sticks one
in for you. That’s right, no matter what you do, at least one constructor will be in
every class you define.

This automatic constructor looks like this:

public ClassName()

{

 super();

}

Note that this default constructor is added to your code automatically if you
do not provide your own constructors. If you provide even one constructor—
even if it takes parameters—the compiler does not add a default constructor.

If the compiler adds a default constructor, it alters only the .class file. The source
code does not change.

Wait, I have yet another secret for you! The first line of every constructor must
call another constructor. If you do not explicitly call another constructor with
this() or super(), he compiler always makes super() with no parameters the

4373book.fm Page 209 Tuesday, July 13, 2004 3:44 PM

210 Chapter 7

first line of a constructor. In other words, the following two constructors produce
the exact same class files.

public ClassName()

{

 System.out.println(“Hello!”);

}

public ClassName()

{

 super();

 System.out.println(“Hello!”);

}

This happens because it is essential that your superclass be initialized before
your subclass. Think about yourself, for instance. You could not exist without your
parents existing first. Your parents could not exist without their parents existing
first. This same logic applies to objects in the Java language. Eventually, of course,
all objects spawn from the ultimate Object class that resides at the top of the
hierarchy.

Usually, be sure that your class contains a default constructor. This allows a class to
be instantiated in a standard fashion. You are not required to provide such a con-
structor, but it is not a bad habit to acquire.

The Return of the Toaster
For a more complete example of both method and constructor overriding, let’s
take a look at the Toaster2 class once again. When you slip bread into a toaster
and hit the switch to turn it on, the heating process begins immediately. You do
not turn on the toaster and then flip some switch to begin the heating. Therefore,
it would make a lot more sense if you captured that functionality in your soft-
ware model of a toaster as well.

A subclass of Toaster2 called MyToaster is shown in the following code. To
alter the basic functionality provided by the Machine class, the two methods
turnOn() and turnOff() are overridden in this version. Also notice that con-
structor chaining is included in this class between the two classes so that the
superclass can maintain the correct values.

public class MyToaster extends Toaster2

{

 public MyToaster()

 {

 this(“Toaster”);

4373book.fm Page 210 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 211

 }

 public MyToaster(String name)

 {

 super(name);

 }

 public void turnOn()

 {

 super.turnOn();

 heatUp();

 }

 public void turnOff()

 {

 super.turnOff();

 coolDown();

 }

}

The second constructor is always called, and it simply passes the String
parameter to the superclass. This allows the Toaster2 class to maintain this
state for us. You do not need to store the name parameter in a new instance vari-
able inside MyToaster.

The MyToaster class inherits all the methods that it needs, but it overrides the
turnOn() and turnOff() methods to include extra functionality. When you call
the turnOn() method, first the original turnOn() method defined in Toaster2
is invoked. You then call the heatUp() method inherited from Toaster2. Sim-
ilarly, in the turnOff() method, you invoke the overridden turnOff() method
and then call coolDown().

The following class lets you test the MyToaster class. Notice that the output
from executing this class is the same as the original example that used Toaster2.
This should not surprise you because you have not changed any of the original
method logic, only how and when those methods are invoked. Because the out-
put is exactly the same, I have not repeated it here.

public class MyToasterTest

{

 public static void main(String[] args)

 {

 MyToaster mt = new MyToaster();

 mt.turnOn();

4373book.fm Page 211 Tuesday, July 13, 2004 3:44 PM

212 Chapter 7

 mt.turnOff();

 }

}

This model is much closer to a real-world toaster. Instead of your having to
heat it up and cool it down explicitly, the MyToaster class encapsulates those
details. Polymorphism is also evident with the turnOn() and turnOff() meth-
ods. These methods effectively do the same thing as any Machine (which is still
one of our superclasses in the hierarchy, remember), but now they include spe-
cific functionality for a toaster.

Abstract Classes and Methods
If you really think about it, the Machine class can never really do anything useful
in the turnOn() and turnOff() methods. Sure, all the electrical machines you
own do turn on and off, but not all machines do this in the same way. It would
be fair to say that all machines must be able to turn on and off, but they do not
need to follow a specific routine to do so. For instance, a lamp brightens and
dims a bulb, a toaster heats and cools its elements, a car starts and stops its
engine, and so on. These examples are all semantically the same procedure,
though the specific steps are certainly different. So it would make more sense for
the Machine class to ensure that all its subclasses provide this functionality but
allow each subclass to define the implementation logic on its own.

Luckily, this is fairly simple. You will need to use a new keyword, the modifier
abstract. You can make both classes and methods abstract. An abstract
method provides only the method signature and can never have a body. An
abstract class is simply a class that contains one or more abstract methods. If
you make a method abstract, you are forcing any subclasses to override that
method before they can be instantiated.

The following is a rewritten version of the Machine class called
AbstractMachine. The same five methods are defined as before, but this time
the turnOn() and turnOff() methods are declared abstract. Also, this ver-
sion uses a new method, setOn(), that subclasses will call to change the state as
needed. Because this class now contains abstract methods, the
AbstractMachine class itself must also be declared as abstract.

public abstract class AbstractMachine

{

 private String name;

 private boolean on;

 public void setName(String name)

 {

4373book.fm Page 212 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 213

 this.name = name;

 }

 public String getName()

 {

 return name;

 }

 public abstract void turnOn();

 public abstract void turnOff();

 public void setOn(boolean on)

 {

 this.on = on;

 }

 public boolean isOn()

 {

 return on;

 }

}

As you can see, the syntax for an abstract method should provide the access
modifier, the abstract modifier, the return type, the method name, the param-
eter list, and then a semicolon. The concept is that you define the method signa-
ture, but you do not provide any logic at this time. The subclasses that must
override the abstract method are responsible for the appropriate logic. In a
sense, an abstract method is the exact opposite of a final method. You can
never override a final method, but you must override an abstract method.

Also notice that an abstract class can contain fully defined methods as well.
These methods are inherited as normal, but they do not have to be overridden
(though they still can be, of course). This lets you provide some standard func-
tionality while still forcing subclasses to provide specific logic for any abstract
methods.

It might help your understanding to contrast two types of classes. A normal
class that provides no abstract methods can be called a concrete class. A class
that provides one or more abstract methods is an abstract class. A concrete class
can be instantiated; an abstract class cannot. Therefore, a subclass is responsible
for overriding any abstract methods to become a full-fledged, concrete class.

Technically, an abstract class does not have to contain any abstract methods.
This is rather unusual, but in such a case, the class simply cannot be instantiated.

4373book.fm Page 213 Tuesday, July 13, 2004 3:44 PM

214 Chapter 7

Here is a new version of the Lamp class called MyLamp. Because this
class extends from AbstractMachine, it must provide both the turnOn() and
turnOff() methods.

public class MyLamp extends AbstractMachine

{

 public MyLamp()

 {

 this(“Lamp”);

 }

 public MyLamp(String name)

 {

 setName(name);

 }

 public void turnOn()

 {

 if(!isOn())

 {

 setOn(true);

 System.out.println(getName() + “ is on.”);

 }

 }

 public void turnOff()

 {

 if(isOn())

 {

 setOn(false);

 System.out.println(getName() + “ is off.”);

 }

 }

}

The MyLamp class correctly overrides both abstract methods it inherited
from AbstractMachine, so it is a concrete class and can be instantiated. If you
created a subclass of AbstractMachine named MotorCycle, you would again
override these two methods to provide the specific logic required for that class.

If the MyLamp class did not override both methods, it also must be declared an
abstract class. If you try to compile the MyLamp class without overriding both

4373book.fm Page 214 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 215

abstract methods, the compiler alerts you to this and tells you to either override
them or declare this class abstract as well.

Here is a summary of the important points about abstract methods and
classes:

◆ An abstract method provides no body whatsoever.

◆ An abstract method is designed to be overridden by one or more sub-
classes.

◆ Any class that contains one or more abstract methods must be declared
an abstract class.

◆ An abstract class can never be instantiated.

◆ No abstract methods can be declared as private, final, or static.

Interfaces
An interface is a special type of construct. You can think of an interface as a
“pure” abstract class because it can contain only methods that are both public
and abstract. No implemented methods are allowed in an interface. Whereas
classes allow you to define type and method functionality, interfaces allow you
to define only type and method declarations.

You do not actually have to include public or abstract in the method declarations of
an interface. The compiler automatically adds both modifiers for you in the .class file.

interface
A completely abstract class that contains
only abstract methods. An interface is a
construct that captures the public
methods of a type. All the methods
defined in an interface are abstract and
must be overridden by implementing
classes.

Interfaces are defined much like classes, but instead of using the keyword
class with them, you use a new keyword, interface. Although you use
extends to inherit from a class, you use implements to inherit from an inter-
face. One important difference between interfaces and classes is that you can
extend only one class, but you can implement any number of interfaces. Another
way of saying this is that you can have multiple inheritance with interfaces, but
only single inheritance with classes.

To familiarize you with interfaces, I have provided the following small
interface named LightSource. I have defined only two methods, brighten()
and dim().

public interface LightSource

{

 public abstract void brighten();

 public abstract void dim();

}

When you compile an interface, the extension will still be .class.

4373book.fm Page 215 Tuesday, July 13, 2004 3:44 PM

216 Chapter 7

Of course, by itself, this interface is not particularly useful because it, like an
abstract class, cannot be instantiated. But you can now implement this inter-
face. When you implement an interface, once again you must override the
abstract methods provided in the interface. Here is a new class named MyLamp2
that extends MyLamp and implements the LightSource interface.

public class MyLamp2 extends MyLamp

 implements LightSource

{

 public MyLamp2()

 {

 this(“Lamp”);

 }

 public MyLamp2(String name)

 {

 super(name);

 }

 public void brighten()

 {

 System.out.println(getName() + “ is brightened.”);

 }

 public void dim()

 {

 System.out.println(getName() + “ is dimmed.”);

 }

}

Granted, the MyLamp2 class does not really do anything interesting in the
brighten() and dim() methods, but you can add whatever logic you want. The
point is that the MyLamp2 class successfully implements the LightSource inter-
face because it overrides the two methods defined in that interface.

Before we continue, let’s talk a bit about the type that an interface brings to
your classes. The MyLamp2 class can actually be referenced by no less than five
types! The following five lines of code are all completely valid.

MyLamp2 lamp = new MyLamp2();

MyLamp lamp = new MyLamp2();

AbstractMachine lamp = new MyLamp2();

Object lamp = new MyLamp2();

LightSource lamp = new MyLamp2();

4373book.fm Page 216 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 217

The first four lines all have classes as the reference type and are given in increas-
ing order of the hierarchy. The last line uses the LightSource interface itself as the
reference type. You cannot instantiate an interface, but you can certainly use it as
a reference type. The advantages to this are the same as if you used a superclass as
the reference type. You can refer to any class that implements an interface by that
interface name. It all depends on how specific you want your reference type.

Of course, as with classes, the only methods that you can call on the resulting
lamp variable are brighten() and dim(); for example, you cannot call the
turnOn() method because the LightSource reference knows nothing about this
method. As before, though, you can always cast the reference to a more specific
reference when necessary.

Let’s take a look at another interface that could be implemented by a class such
as MyToaster. The HeatSource interface actually defines the same two methods
originally found in the parent class Toaster2, heatUp() and coolDown().

public interface HeatSource

{

 public abstract void heatUp();

 public abstract void coolDown();

}

Although you may not see a clear advantage to implementing this interface in
the Toaster2 class itself, you will see the real power of interfaces in a brand new
class that I am about to show you.

In many people’s bathrooms, you will find a heat lamp to keep you warm
when you get out of the shower. A heat lamp combines aspects of a lamp, by pro-
viding some measure of light, with aspects of a heat source. In a sense, a heat
lamp is what would result if you combined a lamp and a toaster! Because you can
implement multiple interfaces, you can model a heat lamp with a class such as the
following:

public class HeatLamp extends AbstractMachine

 implements LightSource, HeatSource

{

 public HeatLamp()

 {

 this(“Heat Lamp”);

 }

 public HeatLamp(String name)

 {

4373book.fm Page 217 Tuesday, July 13, 2004 3:44 PM

218 Chapter 7

 super.setName(name);

 }

 /* methods from the AbstractMachine class */

 public void turnOn()

 {

 System.out.println(getName() + “ turned on.”);

 brighten();

 heatUp();

 }

 public void turnOff()

 {

 dim();

 coolDown();

 System.out.println(getName() + “ turned off.”);

 }

 /* methods from the LightSource interface */

 public void brighten()

 {

 System.out.println(getName() + “ brightened.”);

 }

 public void dim()

 {

 System.out.println(getName() + “ dimmed.”);

 }

 /* methods from the HeatSource interface */

 public void heatUp()

 {

 System.out.println(getName() + “ heated up.”);

 }

 public void coolDown()

 {

 System.out.println(getName() + “ cooled down.”);

 }

}

4373book.fm Page 218 Tuesday, July 13, 2004 3:44 PM

Advanced Object-Oriented Programming 219

The first thing you should notice is that you implement multiple interfaces by
simply separating the interface names with commas after the implements key-
word. As a result of implementing in this fashion, you must provide overridden
implementations of all methods found in both interfaces. Again, you are not pro-
viding any interesting logic here, but the printouts will show you what is hap-
pening. Although it would be impossible to extend two classes to combine
behavior like this, such interfaces give you the power to combine types into
entirely new classes.

Here is a summary of the important facts about interfaces:

◆ An interface can contain only public abstract methods.

◆ An interface can actually contain variables, but they must be both static
and final.

◆ An interface is implemented with the implements keyword.

◆ A class can implement multiple interfaces but can extend only a single
class.

◆ A class that implements an interface must override all the interface meth-
ods or declare itself an asbtract class.

◆ Interfaces can never be instantiated, but they can be used as reference
types.

Terms to Know
interface reference type

logical equality referential equality

method overloading runtime type

method overriding virtual method invocation

polymorphism

4373book.fm Page 219 Tuesday, July 13, 2004 3:44 PM

220 Chapter 7

Review Questions
1. Which two access modifiers guarantee that a method will always be inherited

by a subclass?

2. If you override a method, which keyword do you use to call the superclass
method from the subclass?

3. Does the following class have a superclass? If so, name it.

public class Vehicle{}

4. Does the return type have to be the same in the overloaded version of a
method?

5. Given the following class declaration

public class Car extends Vehicle

is the following statement legal?

Vehicle v = new Car();

6. What is the return type of all constructors?

7. Can you instantiate an abstract class?

8. What kind of methods does an interface contain?

9. True or False: You can overload methods within the same class or a
superclass.

10. True or False: Instance methods are bound to the reference type.

4373book.fm Page 220 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

8

Exception Handling

In a perfect world, none of your programs would ever result in runtime
errors. You would always create wonderfully bug-free code, and users of
your programs would never make a mistake. Let’s face it though; this is
not a perfect world, and errors do happen. These can include incorrect
user input, missing resources such as network connections or files, or
even just logic errors that remain in your code. The good news is that the
Java language provides an excellent way to handle these unexpected
errors called exception handling.

◆

How to handle exceptions in your code

◆

How to use

try/catch

 blocks

◆

When to use the

finally

 keyword

◆

How to define your own exceptions

◆

When to use the

throw

 and

throws

 keywords

4373book.fm Page 221 Tuesday, July 13, 2004 3:44 PM

222

Chapter 8

The Method Call Stack

method call stack

All method calls made during runtime are
stored on a stack by the JVM. This allows
the JVM to maintain information about
all the methods that are currently active
at a particular moment of runtime. The
information in the method call stack is
often reported when an exception or
error occurs.

Before we venture into all the details of exceptions, it is a good idea to learn some
more about how the JVM handles method calls. Although this is not going to be
an abundantly technical discussion, I will show you the key concepts of some-
thing called the

method call stack

.
Let’s begin with the concept of a stack. A stack is a common data structure in

programming that represents a last-in-first-out (LIFO) collection of objects. Per-
haps the best way to grasp this concept fully is to imagine a stack of dirty dinner
plates that you are going to wash. At some point, there was a single plate, then
another was placed on top of that one, then another, and so on. In the end, you
have a stack of eight plates to wash. Which plate will you wash first? Of course,
you’re going to grab the plate on top; that only makes sense. This is an example
of the LIFO concept. The last plate added to the stack is the first one taken off.

In the Java language, a stack does not hold your dirty dishes but objects. Any
number of objects can be stacked on top of each other, and then the topmost
object can be removed from the stack when it is needed. When we talk about a
stack in this sense, we usually say an object is pushed onto the stack when it is
added and

popped off of the stack when it is removed.
The JVM uses a stack of objects that hold information about methods during

runtime. When you execute a program, you call the

main()

 method. The JVM
pushes the

main()

 method onto the method call stack. If the

main()

 method cre-
ates an object of type

MyClass

 and thus calls the

MyClass

 constructor, that con-
structor becomes the next “method” on the stack. If the

MyClass

 constructor
calls yet another method named

go()

, that method is pushed onto the stack. The
following diagram shows you a conceptual view of the resulting stack as the
JVM would see it.

Every time a new method is called, the JVM pushes it onto the stack. Every
time a method completes, its information is popped off the stack. By using a
stack like this, the JVM knows not only which method is currently being called,
but all the method calls that led to it. This ability is important for many reasons;
one of those reasons is exception handling.

go ()

new MyClass ()

main()

Calls

Calls

4373book.fm Page 222 Tuesday, July 13, 2004 3:44 PM

Exception Handling

223

stack trace

When an exception or error occurs, the
JVM can output the current state of
the method call stack. This stack trace
includes all the classes, objects, and
methods currently active and usually
includes the line numbers in the source
code where the exception occurred.
You can print this stack trace using the
inherited method

printStack-
Trace()

 located in the

Throwable

 class.

When a problem occurs during the execution of a particular method, the JVM
can report the current information on the stack with something called a

stack
trace

. A stack trace allows you to determine the exact process flow at the time of
the problem. For example, if a problem was found in the

go()

 method described
earlier, the stack trace would contain not just the details of the problem, but also
a list of every method currently on the stack. You would be able to determine
that the problem is in the

go()

 method, which was called by the

MyClass

 con-
structor, which in turn was called by the

main()

 method. Stack traces can be
extremely useful for debugging your code.

That should be enough information about the method call stack to get you
rolling in this chapter. As you learn more about exception handling, you will also
see more details about how stacks and stack tracing are used.

Exception Noted

exception

An object that is used at runtime to indi-
cate that a strange, incorrect result
occurred from a method call. A success-
ful method call returns its declared
return type, but an unsuccessful method
call returns an exception that is usually
handled either within the code or by
requesting user input.

In the previous section, the generic term

problem

 was used to describe some
unexpected condition in a method call. The actual term used in the Java language
for a problem of this sort is an

exception

. An exception is an object that is created
to indicate a failure of some kind in a program. This failure could be serious
(such as running out of memory) or something easily remedied (such as forget-
ting to enter a username). In this book, you have already come across a few cases
in which you were warned that an exception might occur if you do not provide
the correct command-line arguments. For example, take a look at the following
simple class file.

public class Echo

{

 public static void main(String[] args)

 {

 System.out.println(args[0]);

 }

}

Here, the

Echo

 class compiles without any problems, but if you fail to pass an
argument on the command line, upon execution you will receive a message indi-
cating that an

ArrayIndexOutOfBoundsException

 has occurred. This output
will look a lot like the following:

Exception in thread “main”
java.lang.ArrayIndexOutOfBoundsException: 0

 at Echo.main(Echo.java:12)

4373book.fm Page 223 Tuesday, July 13, 2004 3:44 PM

224

Chapter 8

This message is an example of a stack trace that indicates a single
method existing on the stack. The stack trace tells you that an exception was
found in the “main thread,” which simply means the process in which your
code was running. This is followed by the specific exception name,

ArrayIndexOutOfBoundsException

, which includes the index that is “out
of bounds.” The value “0” indicates that the exception occurred when you
tried to access the first element of the array. That makes sense because you
provided no first element in the example. The final portion of the message
indicates where in the source code the exception was found.

Now, as you may recall, you have already seen how to prevent this particular
exception from happening in the first place. You add an

if

 statement that checks
the length of the array and then outputs a friendly message informing the user
how to execute this code correctly. Whenever possible, ensure that your code
does everything it can to prevent exceptions in the first place.

However, in some situations, outside forces (such as the user of your pro-
gram) may inadvertently cause an exception. A critical exception-handling
concept is not only recognizing exceptions, but also deciding what happens

after

 they are found. This is where the exception-handling mechanism
becomes so useful. You can create robust code that “traps” exceptions as they
happen and then handles them any way you see fit. You might prompt the
user for input, perform some processing of your own that attempts to correct
the problem, or even log the exceptions somewhere. The point is that the
exception-handling mechanism puts the control where it belongs—in the
developer’s hands.

Exceptions are bound to methods only. Any method can have a special clause
added to it that indicates the potential exceptions that can occur inside the
method body. This includes methods defined in the standard application pro-
gramming interface (API) as well as your own methods. When a method includes
an exception clause, the caller of that method is forced to handle the exception
somehow. This is what exception handling really means; you will learn all the ins
and outs of this syntax as you forge ahead through this chapter.

The Exception Hierarchy

All exceptions are defined as classes. Four classes define the generic exception
types available in Java programs; all these classes are found in the

java.lang

package, and they form the core hierarchy for all exception types. Of course, the
highest class in the hierarchy is

java.lang.Object

, so the following diagram
actually shows five classes.

4373book.fm Page 224 Tuesday, July 13, 2004 3:44 PM

Exception Handling

225

The remaining classes in this hierarchy are discussed next.

standard error

The location where error messages are
output. Typically, this is the same as the
standard output where normal messages
are printed. Sometimes the standard
error of a system is a log file or a printer
somewhere. Whenever you call the

System.err.println()

method, the provided message will typi-
cally be sent to the standard output of
the system on which the code is running.

java.lang.Throwable

This class contains methods that all exception
types will share. The most commonly used method defined in this class is

printStackTrace()

, which prints the exception information to the

stan-
dard error

. Another method defined in this class is

getMessage()

, which
returns a

String

 object that often contains a more “user-friendly” mes-
sage than the standard stack trace. This class defines two constructors. The
first takes no arguments, and the second takes a

String

 parameter. The
second constructor allows you to set whatever message you want to be
returned from the

getMessage()

 method.

java.lang.Error

This class (and any subclass) indicates a serious

error

condition that you really cannot do anything about from within your pro-
gram. This is usually some internal JVM problem. An example of an

Error

subclass is the

java.lang.OutOfMemoryError

, which occurs when no
more memory is available for a program to use. Obviously, if you run out
of memory, there is not much you can do about it! Normally, when an

Error

 is created, the program terminates completely.

error

An object that indicates that a severe
condition has arisen in the JVM. An error
is not something that can usually be cor-
rected on the fly at runtime, such as run-
ning out of memory.

java.lang.Exception

You will primarily focus on this class in your own
exception handling. This class or subclasses of it indicate logical problems
found during code execution. In many cases, your code can recover from an
exception either through user intervention or with logic that you include
within the code itself. The standard API includes a host of

Exception

 sub-
classes. The occurrence of such an exception does not necessarily mean the
program can no longer execute; this is not necessarily a critical problem. As
you continue through this chapter, you will learn how to handle exceptions
of this type.

java.lang.Throwable

java.lang.Object

java.lang.Error java.lang.Exception

java.lang.RuntimeException

4373book.fm Page 225 Tuesday, July 13, 2004 3:44 PM

226

Chapter 8

checked exception

An exception that the compiler
forces code to handle. You can usually
accomplish this by using a

try

/

catch

 block. All checked exceptions
inherit from the

java.lang
.Exception

 class but do not extend
the

java.lang.Runtime-
Exception

 class.

Such classes are considered

checked exception

s. This means that you are
forced to address them (and typically attempt to correct them!) right in the
code. This approach ensures that your code does not let potential problems
slip by. These exceptions are called checked exceptions because the compiler
“checks” to be sure that you are handling them appropriately in your code.

Checked exceptions indicate that some logical, recoverable failure has
occurred during program execution. For example, if a username is
required before a program can be run, an exception might be generated
that triggers a prompt to the user to enter the username.

How does the compiler perform this trick? It simply analyzes any method
that you call from your code, and if that method indicates that a checked
exception could occur, the compiler informs you that you have to deal with
it. How you actually deal with these potential exceptions is discussed in the
next section, “Handling Those Exceptions.”

unchecked exception

Any exception that extends from

RuntimeException

 is consid-
ered an unchecked exception.
Unchecked exceptions do not have to be
handled in a

catch

 block, though they
can be. The compiler never forces you to
handle unchecked exceptions.

java.lang.RuntimeException

This class is a special subclass of

Exception

 that indicates an

unchecked exception

. An unchecked excep-
tion does not have to be directly handled in your code, though it certainly
can be. Unlike the way it handles checked exceptions, the compiler does
not ensure that you are handling these potential exceptions in your code.
This type of exception still indicates a logical error that you could poten-
tially handle. An example of this type of exception is the

java.lang
.NullPointerException

, which occurs if you attempt to access a mem-
ber of an object that has not yet been instantiated. Because this could hap-
pen almost anywhere in your code, it would be messy to handle a potential

NullPointerException

 inside every single method.

Runtime exceptions typically indicate a problem at the source-code level
itself. For example, although it is possible that a

NullPointerException

could happen anywhere that an object reference is used, well-written,
robust code ensures that this condition never arises.

Handling Those Exceptions

All right, let’s get down to it, shall we? You now know that all exceptions are
actually objects, but now it is time to learn how to handle them in your code. The
first thing we will concentrate on is how to handle some of the standard excep-
tions defined in the Java API. Once you have mastered these procedures, you will
learn how to create your own exception types.

You provide exception handling by using the keywords

try

 and

catch

 to form

try

/catch blocks. In some cases, you can also use another keyword, finally.
This section starts with the try and catch keywords to get you familiar with the
most common approach to exception handling and then it adds the finally key-
word to the mix to complete the discussion.

4373book.fm Page 226 Tuesday, July 13, 2004 3:44 PM

Exception Handling 227

Using try and catch
protected code
The code inside a try block is consid-
ered “protected” because the JVM is
monitoring the results of each statement.
If an exception occurs, the JVM attempts
to find a matching catch block that
can process the exception appropriately.

The try and catch keywords are aptly named. The try keyword is used to form
a try block. It is inside this block that you call any methods that could result in
an exception. In other words, a try block tells the JVM, “Try to execute these
statements, and if an exception happens, let me know.” The code inside a try
block is called the protected code because the JVM checks any code within such
a block at runtime to determine if an exception occurs. Each try block usually
has one or more catch blocks associated with it. As the name suggests, a catch
block is used to “catch” an exception that was “thrown” in the corresponding
try block. In other words, if a statement in the try block results in an exception,
the code defined in a catch block is triggered. A catch block is how the JVM lets
you know about any generated exceptions.

The general syntax of a try/catch block is shown here.

try

{

 // method calls

}

catch(ExceptionClass name)

{

 // code to execute when this exception type is thrown

}

Notice that an exception type wrapped in parentheses immediately follows
the catch keyword. This can be called the “catch parameter” because it acts
much like a parameter passed to a method. Technically, the class specified as the
parameter must be a subclass of java.lang.Throwable. However, more often
than not, it is a direct subclass of java.lang.Exception. Although this excep-
tion can certainly be of the unchecked variety (that is, a class that extends from
RuntimeException), it is more common to catch checked exceptions.

Don’t forget that the braces ({}) indicate scope for both the try and catch blocks.
Any variable declared inside a try or catch block can be accessed only from within
that same block of code.

The catch parameter can be referred to anywhere within the scope of the
catch block itself. This parameter is a reference to an object of the associated
exception type, so any public methods defined or inherited by this class type can
be called. The two most common methods called are printStackTrace() and
getMessage(), both of which are inherited from java.lang.Throwable.

The process works quite simply. When a method call contained in a try block
results in an exception, the JVM takes over the processing and creates a new
instance of the particular exception type. The JVM then looks for a matching

4373book.fm Page 227 Tuesday, July 13, 2004 3:44 PM

228 Chapter 8

catch block associated with the try block. To be considered a match, a catch
block must have a parameter that is the same type as the generated exception
object or one of the exception’s superclasses.

Let’s look at more complete example. Earlier in this book, you used the
Integer.parseInt() method to extract a primitive int value from within a
String object. At that time, you were told that if the characters in the String
object did not actually form a valid integer value, you would receive a java
.lang.NumberFormatException. Although NumberFormatException is really
a runtime (and therefore unchecked) exception, it is not uncommon for you to
provide code as shown here to handle invalid input.

1 public class SquareIt

2 {

3 public static void main(String[] args)

4 {

5 if(args.length != 1)

6 {

7 System.err.println(“Usage: java SquareIt
 ➥<number>”);

8 System.exit(1);

9 }

10

11 int num;

12 try

13 {

14 num = Integer.parseInt(args[0]);

15 }

16 catch(NumberFormatException nfe)

17 {

18 num = 1;

19 }

20

21 System.out.println(num + “ squared is “ + (num *
 ➥num));

22 }

23 }

The first thing this code does is ensure that an argument was passed on the
command line. Note that this is done to avoid any possibility of an Array-
IndexOutOfBoundsException. Avoid potential exceptions whenever possible
because the exception-handling mechanism does add some overhead to code
processing. In simple terms, any code inside a try block executes more slowly
than code not contained in a try block because code in a try block has to be

4373book.fm Page 228 Tuesday, July 13, 2004 3:44 PM

Exception Handling 229

closely monitored by the JVM so that any resulting exceptions can be passed to
a corresponding catch block.

Do not use exception handling just because you can. Often, you may find it more effi-
cient to perform some tests of your own instead of always using exceptions. Really,
you should use exception handling only to handle conditions that you cannot effec-
tively control within the code.

Lines 12–19 form the try/catch block that checks to be sure that the supplied
argument is a valid integer. If it is, the code in the try block executes normally,
and the resulting parsed value is stored in the num variable. If the argument value
is not a valid integer value, a NumberFormatException is created and passed to
the catch block on line 16. The body of this block simply assigns the literal value 1
to the num variable. The end result is that whether an exception occurs or not,
num has a valid value.

Let’s go back to the case where an exception did not occur. Obviously, in such a
case, you do not need to execute the code contained in the catch block. If line 14
works without exception, the next line of code that the interpreter executes is line
21—it prints the squared value of num. On the other hand, if line 14 does result in a
NumberFormatException, the body of the catch block executes (line 18), and then
the squared result prints (line 21).

The following code shows two examples of executing the SquareIt code. The
first example executes without exception; the second example causes an excep-
tion. However, because you are using a try/catch block, the code executes with-
out incident using the value of 1.

java SquareIt 10

10 squared is 100

java SquareIt Hello

1 squared is 1

How Exceptions Change Process Flow
Now check out the following revised version of the SquareIt code. The only dif-
ference is an extra printout on line 15 that follows a successful parsing of the sup-
plied argument. This is a key difference, though. If line 14 results in an exception,
does line 15 execute?

1 public class SquareItAgain

2 {

3 public static void main(String[] args)

4 {

5 if(args.length != 1)

4373book.fm Page 229 Tuesday, July 13, 2004 3:44 PM

230 Chapter 8

6 {

7 System.err.println(“Usage: java

 ➥SquareItAgain <number>”);

8 System.exit(1);

9 }

10

11 int num;

12 try

13 {

14 num = Integer.parseInt(args[0]);

15 System.out.println(“No problem!”);

16 }

17 catch(NumberFormatException nfe)

18 {

19 num = 1;

20 }

21

22 System.out.println(num + “ squared is ‘ + (num *
 ➥num));

23 }

24 }

To find the answer, let’s run the SquareItAgain code. As before, the first
execution does not cause an exception, and the second execution does.

java SquareItAgain 10

No problem!

10 squared is 100

java SquareItAgain Hello

1 squared is 1

As you can see, only the message “No problem!” prints in the first case. This
is because of the way processing works in a try block. Once an exception occurs,
control immediately passes to the catch block. Any remaining statements con-
tained in the try block are skipped entirely and are not executed again. Instead,
the body of the catch block executes (line 19, which sets the value of num to 1),
and then the next line following the catch block executes (line 22, which prints
the result).

Adding More catch Blocks
Although a try/catch block will have only one try statement, you can have mul-
tiple catch blocks. This is an important concept because it is possible that a try

4373book.fm Page 230 Tuesday, July 13, 2004 3:44 PM

Exception Handling 231

block can throw more than one exception. You will see a realistic example of this
when you learn how to create your own exception types in the “Creating Your
Own Exception Type” section later in this chapter, but the general syntax is shown
here. Note that the method and exception class names are examples only.

try

{

 methodA(); // might generate OneException

 methodB(); // might generate AnotherException

}

catch(OneException oe)

{

 // handle OneException

}

catch(AnotherException ae)

{

 // handle AnotherException

}

This pseudocode has two catch blocks associated with the try statement. If
the call to methodA() results in the OneException, the first catch block exe-
cutes. If methodB() results in the AnotherException, the second catch block
executes. Only one catch block will ever execute when you run this portion of
code. Multiple catch blocks cannot execute in this example because only one
exception can ever be active. As soon as an exception occurs, that is the end of
all the “normal” processing; the exception-handling mechanism kicks in and
immediately passes control to the appropriate catch block.

Ordering the Exceptions Correctly
The first catch block that matches a given exception type is the only one that
executes. Because both checked and unchecked exceptions extend from the
generic Exception class, you have to consider the order in which you place your
catch blocks.

Take a look at the following code snippet. Which catch block executes if a
OneException is generated by the call to methodA()?

try

{

 methodA();

}

catch(Exception ex)

{

 System.err.println(ex.getMessage());

4373book.fm Page 231 Tuesday, July 13, 2004 3:44 PM

232 Chapter 8

}

catch(OneException oe)

{

 System.err.println(oe.getMessage());

}

In this example, the first catch block always executes. In fact, regardless of
the actual exception type, the first catch block is the only block to execute. This
is because the generated exception object is a subclass of the Exception class. In
Chapter 7, “Advanced Object-Oriented Programming,” you learned that an
object type is either its actual class type or any of its superclasses. So, because the
initial catch block traps any class that subclasses Exception, it is the only block
to execute.

It is not uncommon to have multiple catch blocks in your code like this, so
you have to remember to order those blocks appropriately. If you change the
code as shown in the following example, the code will trap any OneException
objects in the first catch block and any other exceptions in the second.

try

{

 methodA();

}

catch(OneException oe)

{

 System.err.println(oe.getMessage());

}

catch(Exception ex)

{

 // catches everything except OneException

 System.err.println(ex.getMessage());

}

Always order your catch blocks from the most specific to the most generic to
ensure that the correct blocks execute when they should. Remember, only one catch
block ever executes, and it is the one that first matches a given exception type. In the
preceding code, if methodA() results in a OneException, the first catch block exe-
cutes. If methodA() throws an ArrayIndexOutOfBoundsException, the second
catch block executes instead.

Using a finally Clause
As mentioned at the start of this section, a third keyword can be used in relation
to exception handling. If you need to ensure some processing, whether there was

4373book.fm Page 232 Tuesday, July 13, 2004 3:44 PM

Exception Handling 233

an exception or not, you will find a finally clause useful. Most often, you use
a finally clause to free some external resource. For example, you might open a
file and then attempt to write a few lines of data to the file. This newly written
data could work fine, but it could also cause an exception. A finally clause can
close the file regardless of whether the new code worked correctly.

Of course, you have not learned how to open and write to files, so it would
do you little good to show such code now. Instead, the following SquareIt-
Finally code demonstrates how the finally clause works.

1 public class SquareItFinally

2 {

3 public static void main(String[] args)

4 {

5 if(args.length != 1)

6 {

7 System.err.println(“Usage: java

 ➥SquareItFinally <number>”);

8 System.exit(1);

9 }

10

11 int num;

12 try

13 {

14 num = Integer.parseInt(args[0]);

15 System.out.println(“No problem!”);

16 }

17 catch(NumberFormatException nfe)

18 {

19 num = 1;

20 }

21 finally

22 {

23 System.out.println(“This always prints out.”);

24 }

25

26 System.out.println(num + “ squared is “ + (num *
 ➥num));

27 }

28 }

4373book.fm Page 233 Tuesday, July 13, 2004 3:44 PM

234 Chapter 8

If you compile and execute the SquareItFinally code just as you did in the
previous two examples, you will see the following output. Notice that the print-
out inside the finally block always executes.

java SquareItFinally 10

No problem!

This always prints out.

10 squared is 100

java SquareItFinally Hello

This always prints out.

1 squared is 1

As you can see, using finally is fairly straightforward. However, there is
something special about a finally clause—it always executes, no matter what.
Look at the following code snippet from the SquareItFinally code; I have
altered it to show you an example of what I mean by “always.”

try

{

 num = Integer.parseInt(args[0]);

 return;

}

catch(NumberFormatException nfe)

{

 num = 1;

}

finally

{

 System.out.println(“This always (and I mean always)
prints out!”);

}

If you add that return statement to the code, you might expect that if the
Integer.parseInt() method works successfully, processing immediately
returns to the calling method. After all, that is what return does, right? Well,
normally, I would say yes, but not this time. In this case, what actually happens
is that the integer is parsed, the message in the finally clause is printed, and
then control is returned to the caller of this code. The same concept applies to
break and continue as well.

4373book.fm Page 234 Tuesday, July 13, 2004 3:44 PM

Exception Handling 235

Bypassing a return statement as described here is not common, but you should be
sure that you understand the implications of using finally, or you could be quite
surprised at the results! The only way that a finally block will not execute is if a call
to System.exit() is made; this ends all processing altogether.

Creating Your Own Exception Type
Although the Java API provides many exception classes, you can also create your
own exceptions. You can create various types of exceptions that indicate specific
problems in your code. Luckily for us, creating exceptions is a simple process. All
you usually have to do is subclass the Exception class and perhaps override a
single method.

To see how to create a custom exception type, you will define a new class
named NoSuchEntryException, which you will then use with a personal phone
book application that I introduce in the next section. The concept is that if you
search for a particular entry in the phone book and you cannot find it, this excep-
tion indicates the failure.

This section defines only the NoSuchEntryException class. In the next section,
where you learn how to use throw and throws, you actually use this exception in a
complete program.

Usually when you define your own exception type, you want it to be a
checked exception so that the compiler can ensure that you are handling the
exception appropriately. To create a new checked exception, simply subclass the
Exception class. If you think about it, you are just adding a new exception class
to the exception hierarchy that we discussed earlier in this chapter in the section
“The Exception Hierarchy.”

Whenever you create your own exceptions, you follow some common steps.
Although you can certainly add your own methods and variables, it is more com-
mon to simply use the inherited methods defined in your superclasses. First, you
want to define at least two constructors: a default, no-argument constructor, and
a constructor that accepts a String object as a parameter. The latter constructor
allows you to pass the message that you want this exception type to return from
the getMessage() method. Normally, all these constructors do is invoke the
superclass constructors, located in Exception.

The Exception class also provides these two forms of constructors; they simply
invoke the constructors in its superclass, Throwable.

Here is the initial version of the NoSuchElement class:

public class NoSuchEntryException extends Exception

{

4373book.fm Page 235 Tuesday, July 13, 2004 3:44 PM

236 Chapter 8

 public NoSuchEntryException()

 {

 super();

 }

 public NoSuchEntryException(String message)

 {

 super(message);

 }

}

Hey, I wasn’t kidding when I said it was simple! Remember that your class
inherits the key methods getMessage() and printStackTrace() from the
Throwable class, so you do not need to redefine them unless you want to add
some new functionality.

However, you might often want to augment the existing functionality with
your own information. Let’s expand this class to make it a bit more useful.
Because we are going to use it with a phone book application to indicate a failed
search, it might make a lot of sense to include the information being searched for
in the output message. To make this happen, you simply override the
getMessage() method, add a third constructor, and define an instance variable.

Here is the final version of the NoSuchEntryException that includes these
modifications:

public class NoSuchEntryException extends Exception

{

 private String searchDetails;

 public NoSuchEntryException()

 {

 super();

 }

 public NoSuchEntryException(String message)

 {

 this(message, “”);

 }

 public NoSuchEntryException(String message, String
searchDetails)

 {

 super(message);

4373book.fm Page 236 Tuesday, July 13, 2004 3:44 PM

Exception Handling 237

 this.searchDetails = searchDetails;

 }

 public String getMessage()

 {

 String msg = super.getMessage();

 msg += “\nNo match for: “ + searchDetails;

 return msg;

 }

}

The third constructor allows you to pass the details of the search as a single
String object. Notice that the message parameter is still passed to the super-
class, but the new searchDetails parameter is completely contained within the
NoSuchEntryException class. In this code, the getMessage() method has also
been overridden. First, this method calls the getMessage() method of the super-
class, and then it appends a message that indicates the search details that failed.

Be sure to notice that no “new” methods are defined in the NoSuchEntry-
Exception class. The getMessage() method is a standard exception method;
you are simply overriding it in this class. This means that users of this exception
do not have to learn any new methods; they simply rely on the standard methods
they expect to find. This is another example of polymorphism, as discussed in
Chapter 6, “Introduction to Object-Oriented Programming,” and Chapter 7,
“Advanced Object-Oriented Programming.”

Now that you have created the exception, go ahead and compile it to be sure
that you have no syntax errors. In the next section, you will use this exception in
a complete program.

You can extend from the generic Exception class or any of its subclasses. If an
exception class is already defined and you simply want to expand on it, inherit directly
from this class instead.

Throwing Exceptions
Up to now, you have learned how to catch any exceptions and how to create
your own exception classes. Now it is time to actually throw these exceptions,
the final piece of the exception puzzle.

Throwing exceptions involves two aspects. The first is defining your methods
so they indicate that they might generate an exception. The second is including
logic to determine if an exception should occur and then actually creating it and
“throwing” it from within the method.

4373book.fm Page 237 Tuesday, July 13, 2004 3:44 PM

238 Chapter 8

Using the throws Keyword
throws clause
Any method declaration can include the
throws keyword followed by a list of
one or more exceptions that might result
from calls to the method. If a method
throws any checked exceptions within its
body, those exceptions must be listed in
the throws clause.

If you define a method that can generate an exception, you use the throws key-
word followed by the list of possible exceptions. This can be referred to as a
throws clause. You place the throws clause immediately after the parameter list,
as shown here:

public void methodA() throws OneException{…}

This method declaration adds a throws clause that indicates it is possible that
a OneException could occur as a result of calling this method.

Adding a throws clause indicates only that a method could generate an exception, not
that it actually will. In fact, most of the time, one would hope that no exception occurs.

If you want to throw a checked exception from a method, you must provide a
throws clause with that exception (or a superclass of it) in the list of exceptions.
If a method can throw more than one exception, separate each exception type with
a comma. This example shows a method that can throw two exceptions.

public void methodB() throws OneException,
AnotherException{…}

You have to list only the checked exceptions that you might throw from within a method
body. Although you can list unchecked exceptions (such as NullPointerException),
doing so is an uncommon practice. You can throw all unchecked, runtime exceptions
from any method without listing those exceptions in the throws clause.

The “Declare or Handle” Rule
One result of declaring methods with a throws clause that contains checked
exceptions is that it forces any code calling this method to deal with the potential
exception. The calling method can deal with an exception in two ways: by
“handling” the exception, or by “declaring” it.

You handle an exception by providing a try/catch block, as you have
already seen. This is the most common approach. Declaring an exception is the
other option. In this case, you do not provide a try/catch block; instead, you
add a throws clause that lists the same exception type (or types) to the calling
method. For example, the following example shows how the “declare” portion
of the “declare or handle” rule works.

public void testMethod() throws OneException

{

 methodA():

}

4373book.fm Page 238 Tuesday, July 13, 2004 3:44 PM

Exception Handling 239

Because no try/catch block is provided, testMethod() provides a throws
clause of its own. The end result is that the caller of testMethod() has to either
“declare” or “handle” the exception. Normally, one of the methods that ends up
in the call stack provides a try/catch block.

The bottom line is that if you write code that calls a method with a throws
clause that includes checked exceptions, the compiler forces you to either declare
or handle that exception. This eliminates the possibility of creating code that is
ignorant of potential runtime problems.

Remember, only checked exceptions must follow the “declare or handle” rule. You
should normally also deal with any unchecked exceptions, of course, but the compiler
does not enforce this behavior. If an unchecked exception occurs and is never caught,
your program will crash and dump the stack trace to the command prompt.

Because you cannot really write a complete version of the phone book code
until you read the next section, you will create only an interface at this point. In
Chapter 7, you learned that an interface defines all the methods that any imple-
menting class must override. You will implement this interface in the next section.

public interface PhoneBook

{

 public void addEntry(String first, String last, String
number);

 public String search(String criteria) throws
NoSuchEntryException;

}

The PhoneBook interface defines two methods: The addEntry() method
allows new entries to be added to the phone book; you can use the search()
method to search the entries based on the criteria provided. The search() method
also specifies that it can throw a NoSuchEntryException.

Throwing Exceptions in a Subclass
If you override a method and that method includes a throws clause, you have to
follow a simple rule. The overridden version of the method can only throw the
same exception types or subclasses of those exceptions as defined in the super-
class version of the method. You cannot throw any other exception from an
overridden method.

If you recall the discussion about overriding methods and polymorphism, this
rule will make complete sense. If a subclass method could throw different excep-
tions than the overridden superclass method, the JVM could get confused. If you
accessed the method via the parent class, that method could generate some set of
exceptions. If you accessed the method via the subclass, an entirely different set

4373book.fm Page 239 Tuesday, July 13, 2004 3:44 PM

240 Chapter 8

of exceptions could be thrown. Because this causes confusion, it is a good thing
that you simply cannot break this rule!

An overridden method can, however, throw fewer exceptions than the
method defined in the superclass. The only thing you cannot do is expand the list
of exceptions thrown by the overridden method.

The throw Keyword
The second aspect of throwing exceptions is to actually do the throwing, of course.
You accomplish this by creating a new instance of the exception class, and then
you use the throw keyword. Think of the throw keyword as a special form of the
return statement that returns only exceptions. Once a throw statement executes,
the method stops executing immediately, and the exception object is passed back
to the previous method in the call stack. As you just learned, the method receiving
the thrown exception object must now either declare it or handle it.

Don’t confuse the throw and throws keywords. The throws keyword is used right in
the method declaration, whereas the throw method is used within the method body.

You can use a conditional expression, usually an if statement, to determine
if an exception should be thrown. Here is a pseudocode example of this process:

public void methodA() throws OneException

{

 boolean okay = checkSomeCondition();

 if(okay)

 {

 // do whatever processing you like

 }

 else

 {

 // condition failed, throw the exception

 throw new OneException(“Oops!”);

 }

}

Of course, the checkSomeCondition() method call in this code is completely
made up, but assume that it performs some test and returns a boolean result. If
the result is true, everything is working fine, and whatever processing that needs
to be done can continue. However, if the result is false, an exception should be
thrown. Notice that an object of the required exception type follows the throw
keyword. Once this statement executes, methodA() terminates, and control is
immediately passed to the next method in the call stack.

4373book.fm Page 240 Tuesday, July 13, 2004 3:44 PM

Exception Handling 241

The Complete Phone Book Application
Okay, you have now seen examples of everything you need to write a complete
class that generates exceptions and can handle them appropriately. It is time to
put together all you have learned in the final phone book application. The phone
book application is a little more involved than many of the other examples that
you have seen thus far, but if you spend some time reading the code and the
descriptions that follow each class, it should be clear.

The first class you will need is the Entry class, which holds the details of a
phone book entry. This class is defined as follows:

public class Entry

{

 private String first;

 private String last;

 private String number;

 public Entry(String first, String last, String number)

 {

 this.first = first;

 this.last = last;

 this.number = number;

 }

 public String getFirst()

 {

 return first;

 }

 public String getLast()

 {

 return last;

 }

 public String getNumber()

 {

 return number;

 }

 public String getDetails()

 {

 return first + “ “ + last + “ “ + number;

 }
}

4373book.fm Page 241 Tuesday, July 13, 2004 3:44 PM

242 Chapter 8

The Entry class contains three instance variables that hold the first name, last
name, and phone number. The constructor sets the values of these three vari-
ables. The first three methods are accessor methods, one for each variable. The
final getDetails() method is a convenience method that returns all the values
in a single String object.

Next, the MyPhoneBook class implements the PhoneBook interface that
you have already created. Both of the methods in the PhoneBook interface
are overridden, and a simple String array is used to store the elements. Note
that because an array must have a consistent length, a length is specified in the
constructor.

It would be a lot more useful if you could store the phone book entries in a structure
that could actually change its size rather than in a fixed-size array. In Chapter 9,
“Common Java API Classes,” you will learn about some different types that allow you
to create those kinds of structures. For now, you will stick to using a simple array so
that the code remains as clear as possible.

public class MyPhoneBook implements PhoneBook

{

 private Entry [] entries;

 private int index;

 public MyPhoneBook()

 {

 // default to a size of 10

 this(10);

 }

 public MyPhoneBook(int size)

 {

 entries = new Entry[size];

 }

 public void addEntry(String first, String last, String
 ➥number)

 {

 Entry entry = new Entry(first, last, number);

 try

 {

 entries[index++] = entry;

 }

4373book.fm Page 242 Tuesday, July 13, 2004 3:44 PM

Exception Handling 243

 catch(ArrayIndexOutOfBoundsException ae)

 {

 System.err.println(“Unable to add entry.”);

 System.err.println(“The phone book is full.”);

 }

 }

 public String search(String criteria) throws
 ➥NoSuchEntryException

 {

 String details = “”;

 for(int i = 0; i < entries.length; i++)

 {

 Entry entry = entries[i];

 if(entry.getFirst().equalsIgnoreCase(criteria) ||

 ➥entry.getLast().equalsIgnoreCase(criteria) ||

 ➥entry.getNumber().equals(criteria))

 {

 details += entry.getDetails() + “\n”;

 }

 }

 if(details.equals(“”)) {

 throw new NoSuchEntryException(“No entry found”,
 ➥criteria);

 }

 else

 {

 return details; }

 }

}

Here I have used the constructors to initialize the array of Entry objects,
either to the default size of 10 or to the value passed into the second constructor.
The addEntry() method attempts to add a new Entry object using the param-
eter values passed to it. Notice that in this method, I have used a try/catch block
to handle an ArrayIndexOutOfBoundsException. In addition, I have used the
instance variable index to add a new Entry to the array, and then I have incre-
mented the index variable by one. So, if you attempt to add an Entry object to
the array beyond the fixed size, the catch block will trap the ArrayIndexOut-
OfBoundsException.

4373book.fm Page 243 Tuesday, July 13, 2004 3:44 PM

244 Chapter 8

The logic of the addEntry() method could be improved a bit. For simplicity, I have
not made any checks to ensure that the three parameters actually hold logical val-
ues. As a result, once you have completed this code, you might want to tinker with
it a bit to validate the input values.

The search() method iterates through the entries array, checking to see if
any of the variables match the given criteria. I achieved this using the “Boolean
OR” (||) operator. You will also notice that instead of the standard equals()
method, I used the equalsIgnoreCase() method to test the first and last name.
The equalsIgnoreCase() method is defined in the String class so that you can
compare the two String objects without worrying about case sensitivity.

If a match is found by the search() method, the details of the Entry object are
appended to the details variable. Once the entire array has been checked, the
method reaches the if statement that performs the conditional test to see if any
entries were found. If the details variable still has its default value of “”, no
matches were found, and the exception should be triggered. You can accomplish
this by using the throws keyword followed by a new NoSuchEntryException
object. If the details variable holds an actual value, indicating that some matches
were found, the details variable is returned.

The last class that you need is one that uses a MyPhoneBook object and allows
you to search for entries. The TestPhoneBook class that follows expects you to
pass an argument that it will use to search the created phone book.

public class TestPhoneBook

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.err.println

 ➥(“Usage: java TestPhoneBook <criteria>”);

 System.exit(1);

 }

 MyPhoneBook book = new MyPhoneBook(4);

 book.addEntry(“Joe”, “Smith”, “999-555-1000”);

 book.addEntry(“Fred”, “Jones”, “888-555-2000”);

 book.addEntry(“Sally”, “Cortez”, “777-555-3000”);

 book.addEntry(“Nancy”, “Smith”, “444-555-4000”);

 try

 {

 System.out.println(book.search(args[0]));

4373book.fm Page 244 Tuesday, July 13, 2004 3:44 PM

Exception Handling 245

 }

 catch(NoSuchEntryException ne)

 {

 ne.printStackTrace();

 }

 }

}

After ensuring that you passed an argument, the main() method creates a new
MyPhoneBook object and adds four entries. Finally, the code searches the phone
book using the argument you provided. Because the search() method is defined
to throw a NoSuchEntryException, a try/catch block handles this potential
exception. If the call to book.search() works without a problem, the entries that
were found in the phone book are printed. However, if no matching entries were
found, a NoSuchEntryException is passed to the catch block.

The logical thing to do with the catch block is call the standard exception
method, printStackTrace(). This outputs a detailed message about the excep-
tion that occurred. It first includes the output of the getMessage() method, and
then it includes the methods currently in the call stack, usually with the line num-
ber where the error occurred.

Let’s run this code and see what happens. First, it searches for an entry that
exists so that you can see the code work correctly. After all, code that works cor-
rectly is usually the idea!

java TestPhoneBook Smith

The output from this execution is as follows:

Joe Smith 999-555-1000

Nancy Smith 444-555-4000

Great, everything seems to be working wonderfully. Now it is time to inten-
tionally search for an entry that does not exist.

java TestPhoneBook Williams

This time the output is the stack trace of the thrown exception:

NoSuchEntryException: No entry found

No match for: Williams

 at MyPhoneBook.search(MyPhoneBook.java:54)

 at PhoneBookTest.main(PhoneBookTest.java:26)

The first two lines are the results of calling getMessage(). The last two
lines contain the stack trace information. The first of these lines indicates the
current method in the call stack, which will always be the last method where

4373book.fm Page 245 Tuesday, July 13, 2004 3:44 PM

246 Chapter 8

the exception was thrown. In this case, that is the MyPhoneBook.search
method. It includes (in parentheses) the source file and the line number where
the exception occurred. If you look at the line number that the exception indi-
cates in the MyPhoneBook source file, you will see that it is the following line:

throw new NoSuchEntryException(“No entry found”, criteria);

Well, that sure makes a lot of sense, doesn’t it? That is definitely the line where
the exception was thrown. Normally, it is the first method listed in the stack
trace that is of most concern to you for debugging purposes.

The last line indicates the main() method, which is the last method in the call
stack. A line number is given for this method as well:

System.out.println(book.search(criteria));

Again, this makes sense because it is the call to the search method that gen-
erated the exception in the first place.

Sometimes the output of a stack trace will not have the source file and line number
in the parentheses. Instead, it will say “(Compiled code)”. This happens if no source
file is available.

So what have you learned with this phone book application? You now know
how to define your own exception type, which you did with the NoSuchEntry-
Exception class. You also learned how to test for an exceptional condition and
throw an exception accordingly by implementing the search() method in the
MyPhoneBook class. In the TestPhoneBook class, you provided a try/catch
block to handle a possible exception. Finally, you learned how to analyze a stack
trace to track down a problem in the source code so you can fix it.

Terms to Know
checked exception stack trace

error standard error

exception throws clause

method call stack unchecked exception

protected code

4373book.fm Page 246 Tuesday, July 13, 2004 3:44 PM

Exception Handling 247

Review Questions
1. What type of exception is a NullPointerException?

2. From which class do all exception and error types inherit?

3. Which method do exception classes use to output the current method call
stack information?

4. If a method call results in a user-defined exception that directly extends an
Exception named TestException, is the following catch block legal?

catch(Exception ex){}

5. Which keyword is used to indicate a method that might result in an
exception?

6. Which keyword do you use to ensure that certain code always executes
whether an exception occurs or not?

7. True or false: A method in a subclass that overrides a method in a superclass
that can throw a TestException must also throw the TestException.

4373book.fm Page 247 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 248 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

9

Common Java API Classes

I have a large toolbox in my basement that has gotten quite full over the
years. As different projects around my house come up, I sometimes have
to buy special tools to get the jobs done right. Of course, once I am fin-
ished with each job, the new tool ends up right in the toolbox so that I
can use it again if the need arises. As time has passed, I have made many
fewer trips to the hardware store because I know I can reach into my
toolbox most of the time and grab the tools that I need.

The Java API is much like a toolbox; it provides a huge number of
classes that you can use in specific situations. Instead of having to write
the code to do a specific task, you will often find classes in the Java API
that you can use instead. In fact, so many classes are provided that there
is no way I can cover them all. In this chapter, I will show you some of
the common, useful classes that are available.

◆

More features of the

java
.lang.String

 class

◆

How to use the j

ava.lang
.StringBuffer

 class

◆

The features of the

java
.lang.Math

 class

◆

How to read input from the command line

◆

The details of the wrapper classes

4373book.fm Page 249 Tuesday, July 13, 2004 3:44 PM

250

Chapter 9

The

java.lang.String

 Class

Let’s start with a class that you are already familiar with, the

java.lang
.String

 class. Objects of this class contain an immutable text string, meaning
the contents can never be changed. You learned the basics of this immutability
back in Chapter 2, “Java Fundamentals.” This section provides some more of the
hardcore details of this immutability and shows how the JVM uses it to reduce
memory usage.

You will find three terms used throughout this section:

String

 object, string literal,
and text string. These terms are often used interchangeably for discussion purposes.

Up to this point, you have created a reference to a

String

 object with code
such as the following.

String message = “Hello World!”;

string pool

A special portion of memory set aside by
the JVM to store string literals.

String

objects in the string pool can be reused
throughout the life of a program, which
allows the JVM to conserve memory
usage. As always, all

String

 objects
in the pool are immutable.

This is the typical way to create a text string in the Java language. Let me
explain what is really happening in that statement, though. If this line is the first
time that the text string “Hello World!” has been assigned to a variable in your
code, the JVM adds this text string to the internal

string pool

. If another

String

variable is assigned the exact same text string, the JVM uses the existing text
string in the pool. Essentially, this reduces the amount of memory required. After
all, because

String

 objects are immutable, you don’t need copies of the same
text string in the pool!

A quick piece of code may better explain what I mean. The

StringDemo

 class
that follows assigns the same text string to two variables, and then one of those
variables is assigned a brand new string. Take a look at the code and then the fol-
lowing explanation. Don’t forget, the line numbers are just for reference.

1 public class StringDemo

2 {

3 public static void main(String[] args)

4 {

5 String one = “Hello World!”;

6 String two = “Hello World!”;

7 one = “Goodbye!”;

8 System.out.println(one);

9 System.out.println(two);

10 }

11 }

4373book.fm Page 250 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes

251

Earlier in this book, you saw similar code and were asked how many

String

objects exist after line 7 executes. The answer is two because of the way the JVM
optimizes

String

 object by using the string pool. You do not need to know all
the internals of the JVM, but you should reinforce your understanding of how the
JVM works with

String

 objects.
Let’s start back on line 5. This line adds “Hello World!” to the string pool and

stores a reference to it in the

one

 variable. When the JVM reaches line 6, it dis-
covers that “Hello World!” already exists in the string pool, so it skips the cre-
ation step and simply assigns a reference to it, stored in the variable

two

. At this
point, only one

String

 object exists even though there are two references to it.
On line 7, a new text string is discovered that does not already exist in the pool.
The JVM creates a new

String

 object that contains the text string “Goodbye!”
and shoves it into the pool. The JVM also changes the original reference stored
in the

one

 variable to a new reference to the “Goodbye!” text string.
If you run this code, you will see the following output.

Goodbye!

Hello World!

The key point here is that the

String

 object referred to by

one

 does

not

 actu-
ally change at all. The JVM is simply reassigning the reference to a new

String

object.

Common

String

 Methods

The

String

 class provides several convenient methods that allow you to trans-
form a string, analyze the contents of a string, and compare two strings. This sec-
tion introduces you to some of these methods and shows you how to use them
with simple code examples. There is not a lot to say about each particular
method, so I only briefly explain the methods and how they can be used. As this
section progresses, you will see more involved code that accomplishes more
interesting results.

This is not a complete list of all the methods in the

String

 class, only the most com-
mon and useful ones.

Determining the Length of a String

The

length()

 method simply returns the number of characters in a

String

object. The character count is returned as a primitive

int

. You will probably not
use this method often because normally

String

 objects are just used as is. How-
ever, an example of using this method is shown in the following

4373book.fm Page 251 Tuesday, July 13, 2004 3:44 PM

252

Chapter 9

CharacterCounter

 code. Just give this program a command-line argument, and
it will tell you how many characters it finds.

public class CharacterCounter

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.err.println(“Please give an argument.”);

 System.exit(1);

 }

 int count = args[0]

.length()

;

 System.out.print(“The string “ + args [0]);

 System.out.println(“ has “ + count + “ characters.”);

 }

}

Whatever argument you provide is printed with the total number of charac-
ters it contains.

Do not confuse the

length()

 method in the

String

 class with the

length

 variable
available to array objects. Semantically both of them do the same thing, but

String

object length is determined via the method call, not by accessing an instance variable
as you do with an array object.

Converting the Case of a String

It is often useful to be able to convert a

String

 object to either all uppercase
characters or all lowercase characters. This is something I do quite a lot to gain
more control over user input. For example, if I expect a user to enter a command,
it is nice if I do not force the user to follow the natural case-sensitivity inherent
in

String

 objects. In a recent project I worked on, the user could enter a com-
mand named “search”. Of course, I have no control over how that user actually
enters that command, do I? They could type “search”, “Search”, “SEARCH”, or
any number of other combination of case. It would have been painful indeed if
I tried to write code that checked for any of the possible inputs.

To solve the problem, I used one of the transformation methods available to me,
the

toLowerCase()

 method. This method coverts all the characters of a

String

object to lowercase characters and returns a new

String

 object. The

String

 class
also provides the

toUpperCase()

 method that does just the opposite. These two
methods guarantee that a given input is in a specific case, which makes my job
of checking for the actual command entered much easier.

4373book.fm Page 252 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes

253

The following

StringConverter

 class demonstrates how to use both of these
transformation methods. Whatever argument you pass is printed as you entered
it, and then it prints again in both lowercase and uppercase.

public class StringConverter

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.err.println(“You must enter a string”);

 System.exit(1);

 }

 String str = args[0];

 String lower =

str.toLowerCase();

 String upper =

 str.toUpperCase();

 System.out.println(“Original: “ + str);

 System.out.println(“Lowercase: “ + lower);

 System.out.println(“Uppercase: “ + upper);

 }

}

Compile and run this code, passing whatever you like as an argument. If you
run this code and pass “Hello” as the command-line argument, the output looks
like this:

Original: Hello

Lowercase: hello

Uppercase: HELLO

As you can see, these methods are simple to use. Just remember that both
methods actually return an entirely new

String

 object.

Removing Unneeded Spaces Around a String

Another transformation method is available to you—the

trim()

 method. This
method removes all the leading and trailing spaces from a given text string. I have
also used this method to handle the user commands in the aforementioned
project. If, for some reason, there are extra spaces around a text string, this
method removes them automatically and returns a new

String

 object.
To see how this method works, check out the following

SpaceTrimmer

 code.

public class SpaceTrimmer

4373book.fm Page 253 Tuesday, July 13, 2004 3:44 PM

254 Chapter 9

{

 public static void main(String[] args)

 {

 String one = “Hello “;

 String two = “ World!”;

 System.out.println(one + two);

 one = one.trim();

 two = two.trim();

 System.out.println(one + two);

 }

}

The output from the SpaceTrimmer code follows.

Hello World!

HelloWorld!

Notice that the first printout has two spaces between “Hello” and “World!”
This is because those spaces are explicitly provided in the string literals assigned
to the variables one and two. No surprises there.

The next two lines remove any spaces from around the text strings. In this
case, these transformed String objects are reassigned to the original variables.
Finally, the two String objects are printed, but this time the output contains no
spaces whatsoever. The trim() method removes only the white space around a
text string; any spaces contained within a text string are not removed.

Verifying the Prefix and Suffix of a String
A pair of methods allow you to determine the beginning or end of a text string:
startsWith() and endsWith(). Both return a boolean to indicate if a match
is found. Both methods work in the normal case-sensitive fashion, so you will
often find that it helps to convert the characters of a text string to the same case
first. The CheckPrefix class that follows demonstrates how to use the
startsWith() method.

public class CheckPrefix

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.out.println(“You must give an argument.”);

4373book.fm Page 254 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 255

 System.exit(1);

 }

 String str = args[0].toLowerCase();

 if(str.startsWith(“hello”))

 {

 System.out.println(“Hello back!”);

 }

 }

}

If you run this code and pass an argument that begins with “hello” (with any
mixing of case you want), you will get a friendly little printed response. Hey, it
is not exactly artificial intelligence, but what do you expect in 15 lines of code?

Of course, the endsWith() method works in a similar fashion. I will let you
write the code that checks the ending of a text string.

Checking String Equality
Earlier in this book, you learned about the equals() method that all objects
inherit from the java.lang.Object class. You learned then that you can over-
ride this method to return true to represent logical equality. Specifically, you
will find this method handy when you use it to compare two String objects.
Remember, comparing two objects using the == operator returns true only if
both references point to the exact same object in memory. The equals() method
in the String class returns true if the two String objects contain the exact
same sequence and case of characters.

Another method in the String class, the equalsIgnoreCase(), also checks
for equality. It works exactly the same as the standard equals() method, but (as
the method name implies) it ignores case-sensitivity rules. So “Hello” and
“HELLO” are considered equal if you use the equalsIgnoreCase() method.

The following StringEquality class demonstrates these equality concepts in
action. Pass two arguments, and the code checks them for equality and prints the
results.

public class StringEquality

{

 public static void main(String[] args)

 {

 if(args.length != 2)

 {

 System.err.println(“You must give two

 ➥arguments to test.”);

 System.exit(1);

4373book.fm Page 255 Tuesday, July 13, 2004 3:44 PM

256 Chapter 9

 }

 boolean equal = args[0].equals(args[1]);

 boolean equalNoCase =
➥args[0].equalsIgnoreCase(args[1]);

 System.out.println(“Equal? “ + equal);

 System.out.println(“Equal (ignore case)? “ +
equalNoCase);

 }

}

Searching a String for Content
On another recent project, one of the requirements was to extract the domain
name from an e-mail address. This really just meant grabbing all the text follow-
ing the @ sign. How did I pull off this wonderful feat? Quite easily, actually. After
all, one of the mantras among developers is “A lazy developer is a good devel-
oper.” That does not mean lazing around on the couch munching pretzels is the
way to development excellence, of course; it means that a good developer solves
a problem the easiest way possible. The Java language is excellent at allowing
you to be lazy indeed!

substring
 Any portion of a complete text string can
be considered a substring. For example,
in the text string “Madam, I am Adam”,
the phrase “I am Adam” is a substring.

To fulfill the project requirement, I had to do two things. First, I had to locate
the @ sign in the text string that contained the e-mail address. Once I found that,
I simply had to extract all the text after that point. In this section, I show you how
to find the location of a character sequence in a String object, and in the next
section, I show you how to extract the substring.

Two methods allow you to find the location of a sequence of characters in a
string: indexOf() and lastIndexOf(). Four overloaded versions of each
method work with various combinations of parameters. The indexOf() method
returns the first match (if any), and the lastIndexOf() returns the last match (if
any). I am going to concentrate on only one version of indexOf() in this sec-
tion—the one that takes a primitive char as a parameter.

The four overloaded versions of each method have the same set of parameter
choices. You can pass a single char, a String object, a char and a position to start
searching from, or a String and a position to start searching from.

Both methods return a primitive int that is either the index in the text string
where the character was found or –1 if the character was not found. As with
arrays, the index starts at zero for the first character and increments by one for
each character that follows in the text string. Once you have that index, you can
use it to extract the substring, as I show in the next section.

4373book.fm Page 256 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 257

Take a look at the following DomainRipper code. I will complete this code in
the next section to give you a fully working version.

public class DomainRipper

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.out.println(“Pass an e-mail address.”);

 System.exit(1);

 }

 int index = args[0].indexOf(‘@’);

 if(index >= 0)

 {

 System.out.println(“Found at index “ + index);

 }

 else

 {

 System.out.println(“Not found”);

 }

 // extract substring in next section

 }

}

If you run this code and pass a correctly formatted e-mail address, it prints a
message telling you a match has been found. Otherwise, you are told that no
match was found.

Now that you can find the index, you are ready to move on and actually
extract the domain name as a substring.

Extracting Part of a String
The method you can use to extract part of a String object is aptly named
substring(). There are two overloaded versions of this method. The first takes
a single index where the extraction should start. The second version takes two
indexes: the point from which to start the extraction and a point at which to end
it. First, I will show you how to complete the DomainRipper code using the sin-
gle index, and then I will expand on this a bit.

4373book.fm Page 257 Tuesday, July 13, 2004 3:44 PM

258 Chapter 9

Here is the DomainRipper code with the actual extraction of the substring
that will be the domain name.

public class DomainRipper

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.out.println(“Pass an e-mail address.”);

 System.exit(1);

 }

 int index = args[0].indexOf(‘@’);

 if(index >= 0)

 {

 System.out.println(“Found at index “ + index);

 }

 else

 {

 System.out.println(“Not found”);

 System.exit(0);

 }

 // extract the domain name

 String domain = args[0].substring(index + 1);

 System.out.println(“Domain Name: “ + domain);

 }

}

Did you notice that the index variable increases by one when it is passed to
the substring() method? This is because the substring() method includes the
character at the given index by default. Because a domain name does not start
with @, you have to be sure to start at the next character in the text string.

Run this code, pass your e-mail address, and you should see your domain
name printed. For example, you could run the code as follows and see the asso-
ciated output.

java DomainRipper zero@foobar.com

Found at index: 4

Domain Name: foobar.com

4373book.fm Page 258 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 259

This code can be refined even more if you want. Instead of just extracting the
domain name, it might be handy to simply grab the host name itself. This is
something a system administrator might do to track the usage of various hosts in
a network. To accomplish this, use the lastIndexOf() method to find the final
dot (.) in the domain name. Everything from there on in the text string will be
something like “.com” or “.net”, so those portions can be removed because they
are not part of the host name. Once you have the correct index, all you have to
do is make another call to the substring() method.

The DomainHostRipper code works the same as the DomainRipper code, but
it adds the logic that you need to extract just the host name as well.

public class DomainHostRipper

{

 public static void main(String[] args)

 {

 if(args.length != 1)

 {

 System.out.println(“Pass an e-mail address.”);

 System.exit(1);

 }

 int index = args[0].indexOf(‘@’);

 if(index >= 0)

 {

 System.out.println(“Found at index “ + index);

 }

 else

 {

 System.out.println(“Not found”);

 System.exit(0);

 }

 // extract the domain name

 String domain = args[0].substring(index + 1);

 System.out.println(“Domain Name: “ + domain);

 // extract just the host name now

 int lastIndex = domain.lastIndexOf(‘.’);

 String host = domain.substring(0, lastIndex);

 System.out.println(“Host Name: “ + host);

 }

}

4373book.fm Page 259 Tuesday, July 13, 2004 3:44 PM

260 Chapter 9

Once the code finds the last index, the second version of the substring()
method is called. This version takes a starting index—0, in this case, because we
want to start at the beginning. It also takes an ending index, which is the index
found via the call to lastIndexOf(). This time, there is no reason to add one to
the lastIndex variable because the extraction stops at the character just before
that index.

So if you run this code:

java DomainHostRipper zero@foobar.com

you will see this output:

Found at index: 4

Domain Name: foobar.com

Host Name: foobar

As you can see, combining finding the index of specific characters and extracting
substrings is fairly simple. Remember that the indexOf() and lastIndexOf()
methods can also work with more than a single character if you pass a String
object.

The java.lang.StringBuffer Class
By now, I have made it clear that all String objects are immutable. If you do not
remember that, this might be a good time to take a break to review earlier chap-
ters. However, another class is available to you, java.lang.StringBuffer.
This class differs from the standard String class in that its text string contents
can change without a new object being created every time. For example, you
might use the StringBuffer class to create a text string based on varying user
input. As the user provides more input, you can add this new text to an existing
StringBuffer object. If you tried to do this with a standard String object, a
new object would be created every time you added the new text.

A StringBuffer object does not just have a sequence of characters and a
length (as the standard String class does); it also has the concept of capacity.
When you create a StringBuffer, you can specify a maximum size for the text
string that it will contain. As long as you do not add more characters than the
defined capacity, a new object will not be created. However, a StringBuffer
will automatically resize itself if you go beyond the capacity. In other words, the
capacity is not an enforced limit on the size of the text string; it is a buffer that
can grow if needed.

Many of the same methods available in the String class are available in
StringBuffer as well. You will find methods such as indexOf(), lastIndexOf(),
and length(). Instead of rehashing those methods, the StringBufferDemo method

4373book.fm Page 260 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 261

that follows uses some new methods found only in the StringBuffer class. Check
out the code itself, and then read on for all the details.

1 public class StringBufferDemo

2 {

3 public static void main(String[] args)

4 {

5 StringBuffer buffer = new StringBuffer(10);

6 buffer.append(“help world”);

7 showInfo(buffer);

8

9 buffer.append(“?”);

10 showInfo(buffer);

11

12 buffer.insert(3, “lo”);

13 showInfo(buffer);

14

15 int index = buffer.indexOf(“?”);

16 int length = buffer.length();

17

18 buffer.replace(index, length, “!”);

19 showInfo(buffer);

20

Take Care with the StringBuffer

When you create a StringBuffer, specify a capacity that you think is big enough
to handle any text that might be added to it. If you are constantly going beyond the
specified capacity, the StringBuffer has to do more work and use more memory
to create the space required. This is because the StringBuffer actually contains
a char [] and the length of that array is equivalent to the capacity you specified.

For example, if you create a StringBuffer and specify a capacity of 10, a char []
is automatically created with a length of 10. You already know that an array can
never change its size once it is created, right? Trying to add an 11th character forces
the StringBuffer to create a new array and copy the contents of the original array
into it.

A StringBuffer will double in size every time you go beyond the current capacity.
For example, if you have a capacity of 10 and you add 11 characters, the new capac-
ity will be 22. Note that the size is based on doubling the total number of characters
after the new characters are added.

4373book.fm Page 261 Tuesday, July 13, 2004 3:44 PM

262 Chapter 9

21 buffer.delete(5, 6);

22 showInfo(buffer);

23

24 buffer.reverse();

25 showInfo(buffer);

26 }

27

28 public static void showInfo(StringBuffer buffer)

29 {

30 System.out.println(buffer.toString());

31 System.out.println(“Capacity: “ + buffer.capacity());

32 System.out.println(“Length: “ + buffer.length());

33 }

34

35 }

As you can see, a lot is going on in this code. Let me walk you through it. First,
on line 5, a new StringBuffer object is created with an initial capacity of 10.
You do not have to pass a capacity if you do not want to. If you do not pass a
capacity to this constructor, it defaults to 16. On line 6, the method append()
is called, passing the string literal “help world”. You use the append() method
to add new characters to the StringBuffer, and it always adds those characters to
the end of the current contents. Because on line 6 the StringBuffer contains no
characters at all, the given text string becomes the entire content.

Line 7 calls a utility method, which is defined on line 28. The showInfo()
method prints the details of the StringBuffer object for us. First, the
showInfo() method prints the contents of the StringBuffer by calling the
toString() method. Remember, a StringBuffer is not a String; it only con-
tains one. To get the internal char [] as a String object, you have to call this
method. On line 31, the capacity of buffer is printed, and on line 32, the length
of buffer is printed. In this case, both the length and the capacity are 10.

Once line 7 executes, the output is as follows:

help world

Capacity: 10

Length: 10

Line 9 appends “?” to buffer, which will be the 11th character in the text
string. This causes the capacity to be exceeded, so the internal array will double in
size. Once the showInfo() method is called on line 10, the output is as follows:

help world?

Capacity: 22

Length: 11

4373book.fm Page 262 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 263

Notice that the capacity has changed and that the length is now 11. In this
output, you can clearly see that the capacity is larger than the length. This is the
whole beauty of a StringBuffer; you could add 11 more characters to buffer
without a new object being created.

The code continues on line 12 when the insert() method is called. This line
inserts the text string, “lo”, at the third index of the internal char []. This effec-
tively pushes the existing characters from index 3 onward up by two. Note that
if this ends up exceeding the capacity, the StringBuffer doubles the capacity
again. The results of the call to showInfo() are shown here:

hellop world?

Capacity: 22

Length: 13

On lines 15 and 16, the index of the ‘?’ character is found, as is the total length
of buffer. The indexOf() method returns the index of the character if it is
found or –1 if it is not found.

The values found on lines 15 and 16 are used on line 18 to replace the ? with the
! character. This is done using the appropriately named replace() method, which
takes a starting index, an ending index, and the new text string with which to replace
the existing content. The output of the call to showInfo() looks like this:

hellop world!

Capacity: 22

Length: 13

That text string does not make much sense right now, so the code continues
on line 21 with a call to the delete() method. This method also takes a starting
and an ending index. The characters from the starting index to one less than the
ending index are deleted. The call to showInfo() results in this output:

hello world!

Capacity: 22

Length: 12

If you give a negative index or an index that is beyond the final character in the text
string to the insert(), replace(), or delete() methods, you receive a
StringIndexOutOfBoundsException.

My, that output looks familiar, doesn’t it? However, with the call to
reverse() on line 24, our friendly greeting gets completely messed up. As you
can probably guess, this method just reverses the entire text string. You can see
the results in the corresponding call to showInfo().

!dlrow olleh

4373book.fm Page 263 Tuesday, July 13, 2004 3:44 PM

264 Chapter 9

Capacity: 22

Length: 12

The whole point of a StringBuffer is that all the manipulation of buffer is
done on the same object. This reduces memory usage and allows you to complete
some more interesting manipulation than is readily available in the standard
String class. However, keep in mind that you have to explicitly call toString()
when you want to extract the String object itself. It bears repeating—a
StringBuffer contains a String but is not a String itself.

The java.lang.Math Class
It is not just a coincidence that a typical computer science class involves a lot of
math. After all, when you get down to it, programming is basically just a bunch
of mathematical functions that make GUIs display, websites appear in browsers,
and all those cool games that keep you up late at night. Conveniently, the Java
API includes a useful class named java.lang.Math. This class includes a slew of
methods that you can use to calculate various results. In this section, I show you
many of these methods and how to use them.

The Math class contains only static methods, so you never actually make an
instance of this class. In fact, it is impossible to create a Math object because the
constructor is declared private. This means that it is not even accessible for you
to call it! Instead, you use the Math class by giving the class name followed by the
method you need, as in Math.methodName().

I am not going to turn this into a lecture on mathematics, so don’t worry. All
the methods in the Math class are self-explanatory, so I am just going to show you
some code that uses many of them. Following the MathDemo code is a brief dis-
cussion of the details.

1 public class MathDemo

2 {

3 public static void main(String[] args)

4 {

5 double x = 10;

6 double y = 20.5;

7 double z = -30;

8

9 double abs = Math.abs(z); // 30

10 double ceil = Math.ceil(y);

11 double floor = Math.floor(y);

12 double log = Math.log(x);

13 double max = Math.max(x, y);

14 double min = Math.min(x, y);

4373book.fm Page 264 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 265

15 double pow = Math.pow(x, 2);

16 long round = Math.round(y);

17 double sqrt = Math.sqrt(x);

18 double cos = Math.cos(y);

19 double sin = Math.sin(y);

20 double tan = Math.tan(y);

21

22 System.out.println(“Math.abs(z) = “ + abs);

23 System.out.println(“Math.ceil(y) = “ + ceil);

24 System.out.println(“Math.floor(y) = “ + floor);

25 System.out.println(“Math.log(x) = “ + log);

26 System.out.println(“Math.max(x,y) = “ + max);

27 System.out.println(“Math.min(x,y) = “ + min);

28 System.out.println(“Math.pow(x,2) = “ + pow);

29 System.out.println(“Math.round(y) = “ + round);

30 System.out.println(“Math.sqrt(x) = “ + sqrt);

31 System.out.println(“Math.cos(y) = “ + cos);

32 System.out.println(“Math.sin(y) = “ + sin);

33 System.out.println(“Math.tan(y) = “ + tan);

34 }

35 }

The output from running this code follows.

Math.abs(z) = 30.0

Math.ceil(y) = 21.0

Math.floor(y) = 20.0

Math.log(x) = 2.302585092994046

Math.max(x,y) = 20.5

Math.min(x,y) = 10.0

Math.pow(x,2) = 100.0

Math.round(y) = 21

Math.sqrt(x) = 3.1622776601683795

Math.cos(y) = -0.07956356727854007

Math.sin(y) = 0.9968297942787993

Math.tan(y) = -12.528721729997956

Let me just make some brief comments about this code to eliminate any confu-
sion you might have. Eleven methods are called that perform various mathematical
functions. Line 9 returns the absolute value of z. Line 10 returns the ceiling of y,
which means it returns the smallest integer value that is not lower than the given
parameter. Line 11 returns the floor of y, which does the opposite—it returns the

4373book.fm Page 265 Tuesday, July 13, 2004 3:44 PM

266 Chapter 9

highest integer value that is not greater than the parameter. Line 12 returns the log-
arithm of x. Line 13 returns the higher of the two parameters, and line 14 returns
the lower of the two numbers. When you call Math.max() and Math.min(), that
value is returned if both parameters are equal.

The code continues on line 15 by raising x to the power of 2; this does expo-
nential calculations, in other words. Line 16 rounds y following the normal rules
of rounding. (If the decimal is 5 or higher, it rounds up; otherwise, it rounds
down.) Note that this is different from just casting a double to an int; in that
case, the decimal places are chopped off with no actual rounding taking place.
Line 17 calculates the square root of x.

The next three lines deal with the kind of math that you either loved or hated:
trigonometry. I hated it, so I am glad that I can rely on Java to do this work for
me! Line 18 calculates the cosine of y, line 19 returns the sine of y, and line 20
calculates the tangent of y.

Calculating a Random Number
One other really interesting method in the Math class allows you to create a ran-
dom number. A call to Math.random() returns a number between 0.0 and 1.0.
Usually, you will multiply this number by some larger number to create a suitable
value for your needs.

I/O classes
A set of classes found in the java.io
package that allows files to be read from
and written to. There are I/O classes that
read and write both binary and textual
data.

Let me show you an example of using Math.random() with a program that
simulates a simple guessing game. However, to really make this game work right,
I first need to show you how to supply input to a program interactively while it
is executing. You may find reading input interactively from the command line
useful in the future, so learning how to do it sure can’t hurt.

Interacting with a Program via the Command Line
output stream
Writes bytes to an output source such as
a file. Bytes are passed in via method
calls. An output stream is a low-level
structure lets you send bytes out from a
program.

Up to this point, any time you needed to pass information to a program, you
passed it as a command-line argument. Doing this is fine when you want to pass
some information once when you first run a program, but what if you want to
give more information to a program while it is executing? Admittedly, most of
today’s programs use some sort of graphical window to allow you to provide this
input, but we do not cover graphics in this book. Therefore, the logical solution
is to create an interactive program that receives your input via the command line.

input stream
Reads bytes from an input source such
as a file and returns those bytes via
method calls. An input stream is the low-
level structure that you need to receive
input from an external source into a
program.

The first thing you have to do to read live input from the command line is
import a new package called java.io. This package contains all the file I/O
classes. I/O stands for input/output, and the classes in this package allow you to
read and write to files as well as to and from the command line. You have already
been using parts of this package every time you call System.out.println(). The
out variable is actually an output stream, which is a special data structure that

4373book.fm Page 266 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 267

sends characters to a specific destination. In the case of System.out.println(),
that destination happens to be the command line.

binary input stream
An input stream that allows you to read
binary data. This data will typically be
received in 8-bit chunks. Although it can
be used to read text, it is best suited for
nontextual data.

To input values to a running program, you need just the opposite, an input
stream. An input stream reads data from some location, such as a file on your local
system, a server on the Internet, or the command line. Whereas the System.out
variable outputs characters to the command line, the System.in variable inputs
characters from the command line. You will be working with the System.in
variable to grab input from the command line.

character reader
A special input stream that reads 16-bit,
text-based data. All the characters read
are Unicode characters, potentially
allowing any written language in the
world to be read.

However, there are really two types of input streams in the Java language,
binary input streams and character readers. A binary input stream contains only
8-bit bytes and is best suited for handling nontext content. A character reader
is a special type of input stream that can read 16-bit Unicode characters, so it is
the best choice for text-based input. Unfortunately, the System.in variable is a
reference to a binary input stream, not a character reader. Luckily for us, the
java.io package provides a useful class called InputStreamReader that can be
used to convert the 8-bit input stream to a 16-bit character reader.

 The java.io package includes a lot of streams, readers, and writers (which are used
to output 16-bit characters). None of these are covered in this book. However, as you
work more with the Java language, you will find these classes useful. You can learn
how to use the various I/O classes by checking out the Java Tutorial at http://
java.sun.com/docs/books/tutorial/essential/io/index.html.

After you create the InputStreamReader, you can wrap it inside another I/O
class named BufferedReader. This class contains a useful method, readLine(),
that returns the text entered after a carriage return is found. This is perfect for us
because we want to be able to type our guess, press Enter, and see if we were
right.

The Guessing Game
All right, enough talk, let’s see some action, huh? Here is the complete
GuessingGame code; I will explain its key points immediately following it. This
code is involved, so be prepared!

1 import java.io.*;

2 public class GuessingGame

3 {

4 public static void main(String[] args)

5 {

6 double random = Math.random() * 10;

7 int number = (int)(random + 1);

4373book.fm Page 267 Tuesday, July 13, 2004 3:44 PM

268 Chapter 9

8

9 InputStreamReader isr = new
 ➥InputStreamReader(System.in);

10 BufferedReader input = new BufferedReader(isr);

11 String line = “”;

12 int numberOfGuesses = 1;

13 String prompt = “Make a guess: “;

14 System.out.print(prompt);

15 try

16 {

17 while(true)

18 {

19 line = input.readLine();

20 int guess = Integer.parseInt(line);

21 if(guess == number)

22 {

23 System.out.println(“You got it!”);

24 System.out.println(“Number of

 ➥guesses: “ + numberOfGuesses);

25 System.exit(0);

26 }

27 else

28 {

29 System.out.println(“Wrong!”);

30 System.out.print(prompt);

31 numberOfGuesses++;

32 }

33

34 }

35 }

36 catch(IOException ex)

37 {

38 ex.printStackTrace();

39 }

40 catch(NumberFormatException ex)

41 {

42 System.err.println(“That is not a valid guess.”);

43 }

40 }

41 }

4373book.fm Page 268 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 269

The java.io package is imported on line 1 to allow access to the I/O classes
required. On line 6, the Math.random() method is called. As mentioned, this
method returns a number greater than or equal to 0.0 and less than 1.0. Instead
of this program forcing you to guess numbers with decimal points, it makes more
sense to convert this to a primitive int. However, if you cast a number between
0.0 and 1.0 to an integer type, it will always result in zero. That would make for
a pretty easy game! So the results of the call to Math.random() are multiplied by
10, ensuring that the result is between 0 and 9.

On line 7, the random double is cast to an int and increased by one. This
ensures that number is a value somewhere between 1 and 10. Feel free to increase
that range if you want a bigger challenge, of course!

On line 9, the code creates an InputStreamReader by passing the System.in
stream to the constructor. One line 10, this object is passed to the constructor for
BufferedReader, and the newly created object is stored in the variable input. The
input variable is used in this code to read your guesses in via the command line.

Line 11 creates the String object that will be used to hold your inputs. Line 12
defines a variable that will count how many times you had to guess before you
got the right number. Line 13 defines a String object that will serve as a nice
prompt on the command line.

Line 15 opens a try block. This is required because the BufferedReader
method that you will call to accept your guesses is declared to throw an
IOException. The IOException is the standard exception type that many of the
I/O class methods can generate if a problem occurs. You can see the matching
catch block on line 36 that simply prints the stack trace if a problem does occur.

Line 17 might surprise you a bit because it defines an infinite loop. I told you
back in Chapter 4, “Flow Control,” that you should generally avoid creating
infinite loops. Well, that is the beauty of the word “generally”; it leaves you the
option of breaking that rule if you have a good reason! In this case, you want to
continually allow guesses until the right answer is given. However, jump ahead
for a moment to line 25, the call to System.exit(). Because this statement ter-
minates the JVM, it obviously also ends the infinite loop. So, though an infinite
loop appears to exist, the loop actually ends as soon as you guess correctly.

Okay, let’s go back to line 19, which calls input.readLine(). You use this
method call to read input from the command line. Every time line 19 is reached,
the readLine() method is called, and this “blocks” the remaining execution.
Until you press Enter, the readLine() method just sits there, waiting patiently.
As soon as you press Enter, the characters you typed are shoved into the line
variable, and the code continues.

Line 20 parses the String object, as you have seen earlier in this book. Note
that if you do not input a valid integer, a NumberFormatException will be
thrown and handled by the catch block on line 40. However, no provision is
made to ensure that your guess is actually within the range of possible correct
guesses. I leave that logic for you to add at another time.

4373book.fm Page 269 Tuesday, July 13, 2004 3:44 PM

270 Chapter 9

Line 21 checks to see if guess is equal to number. If it is, you win, and a mes-
sage prints, telling you the number of guesses that it took you to find the right
number. Finally, the program ends with the call on line 25. If the two numbers
on line 21 do not match, “Wrong!” prints, the prompt is given again, and
numberOfGuesses is incremented by one. Because all this is taking place in the
while loop defined back on line 17, the process starts all over again and contin-
ues until you finally win the game.

Whew! After all that, you deserve some playtime. Compile and run this code,
and see how long it takes you to guess correctly. When you finally tire of this
game (which probably will not take long), you can come back and finish the rest
of this chapter.

The Wrapper Classes
In our spare time, a friend and I run a large baseball-oriented website. In addition
to looking at the massive number of statistics and essays that the site contains,
many people purchase a CD we sell that contains all the statistics for every player
in history. As the orders come in, we grab a CD, throw it in a case, and mail it
to the purchaser.

But I left out an important step in this description. When we mail that CD, we
do not just put it in a case and drop it in the mail. First, we have to put it in an
envelope, provide the mailing address and a return address, and attach the
proper postage. If we just dropped a CD in the mailbox, it is going to end up in
a garbage can somewhere, not in the hands of a baseball fan. The envelope and
all its trimmings are the correct way to wrap our CD so that it can be processed
correctly. Although the baseball fan did not order an envelope, that is really what
we send him. Of course, when the order arrives, the envelope is opened, and the
CD is finally delivered completely.

The envelope wraps its contents (the CD) so that it can travel through the
mail. This is generally how the wrapper classes in the Java API work (except that
you don’t have to pay for postage!). Every wrapper class contains a specific prim-
itive type that can be extracted when needed. As you can see in the following,
there is a wrapper class that corresponds to every primitive type.

Primitive Type Wrapper Class

boolean Boolean

byte Byte

char Character

short Short

int Integer

4373book.fm Page 270 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 271

The main difference in naming is that the primitive types are all lowercase and
the wrapper classes all start with an uppercase letter. Also two primitive types do
not match their wrapper class name exactly: char maps to Character, and int
maps to Integer.

So why on earth do these classes exist? For two main reasons. First, the wrap-
per classes allow you to create an object that contains the matching primitive
type. This is something that is going to become more important in Chapter 10,
“The Collections Framework.” However, I will show you an example shortly
that demonstrates how you might use wrapper classes such as this with an array.

The other reason wrapper classes are useful is that they provide a variety of
methods that allow you to find information about the wrapped primitive. For
example, you can use the Character class to easily determine if a primitive char
is a letter or a digit. I will show you examples of some methods in each wrapper
class as well.

Creating Wrapper Objects
The best way to introduce you to wrapper classes is to show you how to create
instances of them. This is because the creation process (shown here) is essentially
the same for the eight wrapper classes.

1 public class WrapperDemo

2 {

3 public static void main(String[] args)

4 {

5 int myInt = 1000;

6 Integer myIntObject = new Integer(myInt);

7

8 byte myByte = 10;

9 Byte myByteObject = new Byte(myByte);

10

11 short myShort = 50;

12 Short myShortObject = new Short(myShort);

13

14 long myLong = 20000L;

15 Long myLongObject = new Long(myLong);

Primitive Type Wrapper Class

long Long

float Float

double Double

4373book.fm Page 271 Tuesday, July 13, 2004 3:44 PM

272 Chapter 9

16

17 char myChar = ‘A’;

18 Character myCharObject = new Character(myChar);

19

20 float myFloat = 10.5F;

21 Float myFloatObject = new Float(myFloat);

22

23 double myDouble = 100.5;

24 Double myDoubleObject = new Double(myDouble);

25

26 boolean myBoolean = true;

27 Boolean myBooleanObject = new Boolean(myBoolean);

28 }

29 }

As you can see, creating an instance of each wrapper class is quite simple. It
is essentially the same process for every class except for the types involved.

You can create seven of these classes in another way, however. Instead of
passing the matching primitive type to the constructor, you can pass a String
object. This provides you with a handy way to convert a text string to a partic-
ular wrapper class type. The only class that you do not have this option with is
the Character class; the Character class provides only one constructor, and it
takes a primitive char as a parameter.

The following code details how to create the other seven primitive types by
passing String objects to the constructors.

1 public class WrapperDemoWithStrings

2 {

3 public static void main(String[] args)

4 {

5 Integer myIntObject = new Integer(“100”);

6

7 Byte myByteObject = new Byte(“10”);

8

9 Short myShortObject = new Short(“50”);

10

11 Long myLongObject = new Long(“20000”);

12

13 Float myFloatObject = new Float(“10.5”);

14

15 Double myDoubleObject = new Double(“100.5”);

16

4373book.fm Page 272 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 273

17 Boolean myBooleanObject = new Boolean(“True”);

18 Boolean myOtherBooleanObject = new Boolean(“Java”);

19 }

20 }

Lines 5–15 all work the same way. The String object passed to the constructor
is converted into the matching primitive type and then stored in the object. However,
in all six of the examples from lines 5 through 15, a NumberFormatException can
be thrown. You will receive this exception if the String object cannot be converted
successfully to the primitive type.

The final two statements (lines 17 and 18) create two Boolean objects. This
is done to show you a slight difference between the constructor in the Boolean
class and the other wrapper classes. The Boolean constructor accepts any
String that you want to pass. If that String contains the value “True” (ignor-
ing case), the wrapped primitive will also be true. Any other String passed will
result in a primitive with a value of false wrapped inside the object.

You do not need to append an F to the end of the text string value when creating a
Float object, though you certainly can if you want.

One important point about wrapper classes: the wrapped values are immuta-
ble. Absolutely no methods are provided to change the value of the primitive
stored inside a wrapper object.

Common Wrapper Methods
All the wrapper classes define four methods. Though the names of the methods
are sometimes different based on the particular class you are using, all four meth-
ods work the same way in every class with some minor exceptions, which I will
note as they come up.

The equals() Method This method is inherited from the Object class
and is overridden in each of the wrapper classes. This method returns true
only if both the value of the wrapped primitive in each object and the class
type of each object are the same. The following code shows an example of
using this method with two of the wrapper classes:

public class WrapperEqualityDemo

{

 public static void main(String[] args)

 {

 Integer intObjectOne = new Integer(10);

 Integer intObjectTwo = new Integer(10);

4373book.fm Page 273 Tuesday, July 13, 2004 3:44 PM

274 Chapter 9

 Long longObject = new Long(10);

 boolean equal = intObjectOne.equals(intObjectTwo);

 System.out.println(equal);

 equal = intObjectOne.equals(longObject);

 System.out.println(equal);

 }

}

This code outputs two values. The first value is true because the primitive
values are equivalent and the object types are equivalent. The second value
is false even though the actual primitive values are the same because the
object types are different.

The toString() Method This method is also inherited from the Object
class and overridden in each of the wrapper classes. When this method is
called, the primitive value is returned as a String object. As always, this
method is called automatically whenever you make a System.out
.println() call. Of course, you can call this method any time you want
to grab a text string representation of the wrapped value.

The valueOf() Method This static method is defined in each wrapper
class (except the Character class) to allow you to easily convert a String
object into a wrapper class object. This is essentially an alternative to pass-
ing the String to a constructor. Simply pass a String object to this
method, and an instance of that wrapper type will be constructed. Note
that this method can throw a NumberFormat exception if the parameter
cannot be parsed by this method successfully. Check out the quick example
that follows.

public class WrapperValueOfDemo

{

 public static void main(String[] args)

 {

 Long longObject = Long.valueOf(“1000”);

 Float floatObject = Float.valueOf(“10.5”);

 }

}

The important point here is that this is a static method, so no instance
needs to be created manually. The returned wrapper object looks and feels
just like one you created by calling the constructor.

4373book.fm Page 274 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 275

The parseXXX() Methods Every wrapper class except Character and
Boolean provides at least one version of a parsing method. Each parsing
method takes a String object as a parameter and parses it into the appro-
priate primitive type. These methods always follow the convention of the
word “parse” followed by the primitive type the parameter is being parsed
into. So, as you have seen earlier in this book, the Integer class defines the
parseInt() method that takes a String object and returns a primitive
int. Along these same lines, the Double class defines the parseDouble(),
the Byte class defines parseByte(), and so on.

However, some wrapper classes contain more than one version of these
parsing methods. Think about a long primitive for a moment, and you will
see why. A long is the largest of the integer types, so it can contain a 64-
bit long value, a 32-bit int value, a 16-bit short value, or an 8-bit byte
value. So the Long class defines four parsing methods: parseLong(),
parseInt(), parseShort(), and parseByte(). The methods available
to each wrapper class follow.

Class Methods

Byte parseByte()

Short parseShort()

 parseByte()

Integer parseInt()

 parseShort()

 parseByte()

Long parseLong()

 parseInt()

 parseShort()

 parseByte()

Float parseFloat()

 parseInt()

 parseShort()

 parseByte()

Double parseDouble()

 parseFloat()

4373book.fm Page 275 Tuesday, July 13, 2004 3:44 PM

276 Chapter 9

You have already seen how to use these methods previously with the
Integer.parseInt() method, but check out the following
WrapperParsingDemo code to reinforce your understanding.

public class WrapperParsingDemo

{

 public static void main(String[] args)

 {

 int intVal = Integer.parseInt(“100”);

 float floatVal = Float.parseFloat(“100.5”);

 byte byteVal = Double.parseByte(“70”);

 double doubleVal = Double.parseDouble(“70.8”);

 }

}

The first two statements in the main() method should not be surprising to
you. The third statement parses a byte by using the Double class. The
return from this method call is 70 because the parsing method automati-
cally casts the provided value into a byte for you. The final statement
parses the same value into a double in the normal fashion.

The Character Class
Most of the wrapper classes work about the same way, but the Character class
defines some interesting methods of its own. These methods allow you to readily
determine details or alter the case of a primitive char. All the methods discussed
in this section are static methods, so you do not need an instance to perform
these queries and conversions. The following CharacterDemo class demon-
strates how you can use some of these methods:

public class CharacterDemo

{

 public static void main(String[] args)

 {

Class Methods

 parseLong()

 parseInt()

 parseShort()

 parseByte()

4373book.fm Page 276 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 277

 char c = ‘a’;

 boolean digit = Character.isDigit(c);

 boolean letter = Character.isLetter(c);

 boolean either = Character.isLetterOrDigit(c);

 boolean upper = Character.isUpperCase(c);

 boolean lower = Character.isLowerCase(c);

 boolean white = Character.isWhitespace(c);

 char d = Character.toUpperCase(c);

 char e = Character.toLowerCase(d);

 System.out.println(“Digit: “ + digit);

 System.out.println(“Letter: “ + digit);

 System.out.println(“Either: “ + either);

 System.out.println(“Uppercase: “ + upper);

 System.out.println(“Lowercase: “ + lower);

 System.out.println(“Whitespace: “ + white);

 System.out.println(“c = “ + c);

 System.out.println(“d = “ + d);

 System.out.println(“e = “ + e);

 }

}

When you run this code, you will see the following output:

Digit: false

Letter: true

Either: true

Uppercase: false

Lowercase: true

Whitespace: false

c = a

d = A

e = a

The isDigit() method returns true if the value is a number, which it is not
in this example. The isLetter() method returns true if the value is a letter of
the alphabet. So, the isLetterOrDigit() method returns true if either
isDigit() or isLetter() returns true.

Both isUpperCase() and isLowerCase() methods verify the case of the
provided char. The isWhitespace() method returns true if the char is a tab,
a carriage return, or a space.

4373book.fm Page 277 Tuesday, July 13, 2004 3:44 PM

278 Chapter 9

The toUpperCase() and toLowerCase() methods obviously alter the case of
the supplied primitive char. The returns type from both of these methods is a
new char; the original primitive is unchanged. In other words, the value of the
original primitive is copied and then converted to the new case.

Wrapping It Up
Here is a summary of the points specific to the wrapper classes that you should
remember.

◆ Every primitive in the Java language has a corresponding wrapper class.

◆ All wrapper classes can be instantiated by passing the corresponding prim-
itive type to a constructor.

◆ All the classes except Character can have a String passed instead of the
primitive type. For the six numeric-oriented wrapper classes, a
NumberFormatException will be thrown if the provided String object
does not contain a value that is valid.

◆ The wrapped values inside a wrapper class are immutable.

◆ You can test two wrapper objects of the same type for equality using the
equals() method. Both the object type and wrapped value must match for
this method to return true.

◆ All the wrapper classes except Boolean and Character provide one or
more parsing methods.

◆ The Character class provides a bunch of static utility methods that you
can use to find the details and change the case of a primitive char.

Terms to Know
binary input stream output stream

character reader string pool

I/O classes substring

input stream

4373book.fm Page 278 Tuesday, July 13, 2004 3:44 PM

Common Java API Classes 279

Review Questions
1. Where does the JVM store most string literals?

2. How do you determine the length of a String object stored in a variable
named str?

3. What is the index of the letter ‘a’ in the text string, “Staple”?

4. Which method allows you to add content to the end of a StringBuffer?

5. Assume that a StringBuffer has a capacity of 10 and contains the text
string “1234567890”. What will the capacity be if you append “A” to the
object?

6. Assume that you have a StringBuffer, buffer, that contains the text string
“abde”. How would you add the character “c” after the character “b”?

7. What method do you use to calculate the cosine of a number?

8. What is the range of values returned by a call to Math.random()?

9. Which wrapper class cannot have a String passed to a constructor?

10. How do you change the value stored in a wrapper object?

4373book.fm Page 279 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 280 Tuesday, July 13, 2004 3:44 PM

In This Chapter

Chapter

10

The Collections Framework

You may often need to group related objects to use them in your pro-
grams. For example, you might have a number of AddressBookEntry
objects that you want to store in a collection so that you can sort, search,
add, remove, and replace those objects over time. The collections frame-
work provides an assortment of classes and interfaces that allow you to
create containers for objects that can be either sorted or unsorted in
nature.

◆

What a framework is

◆

The details of the

Collection

interface

◆

About the

List

,

Set

, and

Map

interfaces

◆

How to use an

ArrayList

◆

How to use the

HashSet

 class

◆

How to use the

HashMap

 class

◆

How to work with iterators

4373book.fm Page 281 Tuesday, July 13, 2004 3:44 PM

282

Chapter 10

Defining a Framework

framework

A framework includes a group of classes
and interfaces that define the most com-
mon behavior. Normally, when you work
with a framework, you do not concern
yourself with the actual implementation
types, only the interfaces that are imple-
mented. This makes it easy to swap dif-
ferent implementations of a framework
in and out without changing how you
access them.

A simple and correct definition of a

framework

 is a set of classes that you can
extend to provide specific implementations by overriding methods. A framework
typically defines one or more generic classes (usually

abstract

 classes), and
you can extend these classes to provide customized behavior. The results are
a group of classes that share a set of common methods but can still provide
specific customization.

Perhaps a real-world example will help clarify this. Think of an omelet recipe
as a framework. All omelets contain some basic ingredients—some number of
eggs and usually some other ingredients such as cheeses, meats, and vegetables.
Obviously a cheese omelet is different from a spinach-and-tomato omelet once it
is prepared. However, the basic steps are essentially the same. You crack some
eggs into a bowl, whip them with a whisk, and pour the eggs into a hot frying
pan. At some point, you add your chosen ingredients and eventually shape the
omelet so that it can be put on a plate.

However, there are some major differences between the variety of omelets you
might create. For example, if you decide to add ham to an omelet, you might
want to dice and cook it before you add it to the eggs in the pan. If you add mush-
rooms, you might choose to add them raw. In essence, the choices you make rep-
resent a difference in the implementation details even though the steps are
essentially the same for all omelets.

collection

A generic collection contains elements
but imposes no order or constraints on
those elements. An array is a simple type
of collection. More elaborate collections,
such as those you find in this chapter,
include methods that let you add, insert,
remove, and search elements.

Now that I have got you good and hungry, let’s get back to the collections
framework. A

collection

 is simply a data structure that contains zero or more
objects and provides some mechanisms for manipulating those objects. Each of
the contained objects is called an element. All the collections in Java serve the
same basic purpose: they let you add, remove, replace, sort, and retrieve values
from each collection type. The generic collection types define the methods, and
the subclasses provide the appropriate implementations of those methods.

The good news is that you will rarely have to provide these method imple-
mentations yourself. Not only does the collections framework provide the
generic constructs, but it also provides some useful implementations. See, and
you were beginning to think you had a lot of work in your future, huh?

For years before Java burst onto the scene, developers had to create their own
collection types to order, much like a short-order cook dishing out omelets.
Java’s huge support for collections is a great benefit for creating powerful pro-
grams without cracking quite as many eggs.

list

A specific type of collection that imposes
rules guaranteeing some form of logical
order to its elements. Lists also do not
enforce uniqueness of their elements; in
other words, duplicates are allowed. Ele-
ments in a list are typically accessed via
an index.

The remainder of this chapter shows you many of these collection types and
how to use them effectively. And I promise, no more omelet analogies!

The

java.util.Collection

 Interface

Several types of collections are available. One type is called a

list

, which allows
an ordered sequence of data and allows duplicate elements to exist.

4373book.fm Page 282 Tuesday, July 13, 2004 3:44 PM

The Collections Framework

283

The rules for the ordering of the elements in a list might be controlled by the list itself
or by some external mechanism. The most common ordering is based on the natural
order that you learned about back in Chapter 5, “Arrays.”

set

A refined form of a collection that
imposes no ordering rules. A set makes
sure that all its elements are unique by
not allowing any duplicates to be added.
No indexing of elements is typically done
with a set.

A more refined version of a list is a

set

 that enforces rules that prevent a data
type from being added more than once; it does this by preventing duplicate ele-
ments from being added. A set also does not usually enforce a specific order on
its elements, unlike a list. You could model a poker hand with a set because no
hand can ever have two of the exact same card present at one time.

The

java.util.Collection

 interface defines the basic framework for the
more specific collection types. This interface defines the methods that allow add-
ing, removing, finding, and counting the elements stored in a collection. Both
lists and sets require these basic methods, so the

Collection

 interface provides
a convenient superclass for most of the major collection classes. The

Collection

 interface is a representation of a group of objects, and just as with
an array, those contained objects are called elements.

Many methods are defined in this interface, all of which relate directly to
maintaining a collection. The following are some of the more common methods.

public boolean add(Object o)

This method lets you add a new element
to a collection. If the specific collection that you are working with allows
the

Object

 parameter to be added, it is added, and this method returns

true

. On the other hand, if the collection class does not allow the supplied
parameter to be added,

false

 is returned, and no addition is made to the
collection. For instance, if the collection class does not allow duplicates
and the parameter that you supply is already contained in the collection,
this method returns

false

.

public void clear()

You use this method to remove all the elements in a
collection. The size of the collection after this method is called is zero.

public boolean contains(Object o)

Use this method if you need to deter-
mine whether a collection contains a specific object. Under the hood, the

Object

 parameter is compared with each of the elements in the collection
using the standard

equals()

 found in the

Object

 class. If one or more ele-
ments match the supplied parameter, this method returns

true

.

public boolean isEmpty()

This method returns

true

 if a particular col-
lection contains no elements.

public boolean remove(Object o)

This method lets you remove a specific
element from a collection. If the passed

Object

 is found and then removed,
this method returns

true

. If there is no matching element (determined
again by using the

equals()

 method) or if the collection does not allow
elements to be removed, this method returns

false

.

public int size()

This method returns a count of the number of elements
contained in a collection.

4373book.fm Page 283 Tuesday, July 13, 2004 3:44 PM

284

Chapter 10

You will come across other methods in this chapter, but these six provide the
basic control that most collections provide.

Only the

isEmpty()

 and

size()

 methods are guaranteed to be available in all imple-
mentations of the

Collection

 interface. The remaining four methods are all consid-
ered optional. This simply means that a collection does not have to provide the
specified functionality. However, as you will see throughout this chapter, the major
collection types provide all these methods. If you call an optional method that has not
been implemented, you receive a

java.util.UnsupportedOperationException

.

The collections framework provides no classes that directly implement the

Collection

 interface. This may seem strange, but there is a good explanation.
The

Collection

 interface is extended by some other, more specific interfaces.
As always, this means that all the methods defined in

Collection

 are inherited
by the subinterfaces, and more specific methods can be provided within those
subinterfaces. The two main subinterfaces of

Collection

 are

◆

java.util.List

◆

java.util.Set

As you continue through this chapter, you will learn more about

List

 and

Set

 and will see implementations of them in action. Another collection-oriented
interface,

Map

, does not extend from

Collection

; you will learn all about the

Map

 interface as well.

Understanding Lists

All lists maintain an ordered collection of elements and allow duplicate elements
to exist. A list can contain zero or more

null

 elements along with actual objects.
The basic rule for ordering the elements is to simply keep them in the order in
which they were added. You might use a list to contain the steps of a recipe, for
example.

The

java.util.List

 Interface

All the list types in the collections framework implement the

java.util.List

interface. This interface defines a whole bunch of methods that all lists can use
by providing their own implementations. Most of these methods are inherited
from the

Collection

 interface, so only the methods specific to

List

 follow.

public void add(int index, Object o)

Adds a new element to a

List

 at
the specified index.

public Object get(int index)

Retrieves the element at the specified index.
This method always returns a generic

Object

.

4373book.fm Page 284 Tuesday, July 13, 2004 3:44 PM

The Collections Framework

285

public int lastIndexOf(Object o)

Returns the index of the last occur-
rence of the specified element or returns –1 if no matching element is
found.

public Object remove(int index)

Removes the specified

Object

 from a

List

 and returns that

Object if you want to keep a reference to it.

public Object set(int index, Object o) Replaces the element at the spec-
ified index with the new Object. The element that was replaced is returned
if you want to maintain a reference to it.

The java.util.ArrayList Class
To demonstrate how a List implementation works, I’ll spend some time discuss-
ing the details of the java.util.ArrayList class. This is a common collection
to use, so it is an excellent class to learn more about.

Back in Chapter 5, you learned a lot about arrays. You discovered that an
array cannot have its size changed and can contain only elements of the same
type. Although this is perfectly fine in many cases, you often want to define an
arraylike collection that can actually grow if you need it to and that can contain
a variety of elements. Think of a program in which a user enters one or more
e-mail addresses to send a message to multiple people in an office building. Having
an array to hold these addresses would be convenient, but you have no way of
knowing beforehand how many addresses your user might need. This is a good
case for using an ArrayList instead of a normal array.

The ArrayList class implements the List interface, so you know its elements
are ordered and that it can contain duplicates. An ArrayList object contains an
Object [] as the main part of its state. However, the ArrayList class brings
two important features to the mix that make it different from a simple array.
First, an ArrayList can grow if you add elements beyond its current length, and
it can shrink if elements are removed. Second, because an ArrayList can hold
any Object, you can add anything you want to an ArrayList except primitive
types.

Remember all that discussion of the wrapper classes in Chapter 9, “Common Java
API Classes”? They become useful when you work with collections because they can
represent primitive values that you need to store in a collection such as an
ArrayList.

Before you get too excited though, let’s get something clear right now. The
array an ArrayList maintains for you is still a normal array that has to follow
the basic rules. This means, of course, that the Object [] an ArrayList main-
tains cannot actually be resized. When you add elements beyond the length of
that array, the ArrayList is forced to create a brand new array and copy the
contents of the original array into the new one. Mechanisms are provided to

4373book.fm Page 285 Tuesday, July 13, 2004 3:44 PM

286 Chapter 10

repeat this resizing as few times as possible, but it is a good idea to remember that
every time the array is resized, the JVM must access and use more memory.

All ArrayList objects have a length and a capacity. The length is the number
of elements currently stored in the ArrayList. The capacity is the space avail-
able for more elements to be added. You can specify an initial capacity when you
create an ArrayList, and it will increase the capacity as needed.

Enough talk, let’s see it work. The following class is a simple example of cre-
ating an ArrayList and manipulating its contents using some of the standard
methods.

1 import java.util.*;

2 public class ArrayListDemo

3 {

4 public static void main(String[] args)

5 {

6 ArrayList list = new ArrayList();

7 boolean empty = list.isEmpty();

8 System.out.println(“Empty: “ + empty);

9

10 list.add(“One”);

11 list.add(“Two”);

12 list.add(“Four”);

13 list.add(2, “Three”);

14 System.out.println(“Size: “ + list.size());

15

16 boolean found = list.contains(“Four”);

17 System.out.println(“Found: “ + found);

18

19 boolean removed = list.remove(“Four”);

20 System.out.println(“Removed: “ + removed);

21 System.out.println(“Size: “ + list.size());

22

23 Object element = list.get(0);

24 String str = (String)element;

25 System.out.println(“Index 0 is “ + str);

26

27 list.clear();

28 System.out.println(“Size: “ + list.size());

29 }

30 }

4373book.fm Page 286 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 287

The ArrayListDemo class starts on line 6 by creating the ArrayList. When
you instantiate a new ArrayList, you can pass either nothing (as shown in this
code) or an int that represents the desired starting capacity. If you pass nothing,
the capacity defaults to 10. This means that this ArrayList does not have to
resize itself until you exceed that capacity.

Line 7 calls the isEmpty() method, which returns true because nothing has
been added to the ArrayList yet. A quick message is printed to show you the
status of list.

Lines 10–12 add String objects to the ArrayList. Remember that you do
not have to add the same type of elements; the only requirement is that the ele-
ments you add must be objects, not primitives. You will see mixtures of objects
in a collection as you progress through this chapter. The add() method appends
each String to the end of the ArrayList.

However, line 13 does something a little different. Instead of adding the text
string “Three” to the end of the ArrayList, this overloaded version of the add()
method specifies a location in the ArrayList where the new element should be
inserted. As with arrays, the starting index of a collection is zero. To insert the
element “Three” so that it comes before the element “Four”, you pass 2 as the
first parameter. The second parameter is the element that you want to add.

On line 14, a message prints to show you the current size of the ArrayList
that was retrieved by the call to the size() method. The size of an ArrayList
is the number of elements that it currently contains.

Line 16 demonstrates the use of the contains() method. This method
searches the ArrayList for the specified object and returns true if a matching
element is found. Because an element matches the parameter “Four”, the print-
out on line 17 indicates this fact.

Line 19 uses the remove() method to delete the “Four” element from the
ArrayList. This method returns true if the delete is successful. The remove()
method does return false is if no such element is found. The printout on line 20
shows you that the “Four” element was indeed deleted.

You can combine the logic of the contains() method with the remove() method if
you want. You first determine if a collection (such as an ArrayList) contains a spe-
cific element, and, if so, only then call remove().

Line 21 prints the size of the ArrayList again to show how the removal of the
“Four” element changed things. The new size at this point is 3.

Line 23 shows you how to retrieve a specific element from the ArrayList.
The parameter of 0 indicates that the first element should be retrieved. Note that
the get() method always returns a generic Object. If you need to, you can cast
this Object to its real type with a cast operator as shown in line 24. Line 25
prints the element that was retrieved.

4373book.fm Page 287 Tuesday, July 13, 2004 3:44 PM

288 Chapter 10

You do not actually have to cast the Object to a String on line 24. Remember that
whenever you pass an object to the System.out.println() method, the object’s
toString() method is automatically called. Because of polymorphism, this method
is always called on the runtime type of the object, which in this case is a String. The
cast on line 24 is done simply to show you a step you might need if you want to call
methods specific to the object retrieved.

Line 27 empties the entire ArrayList by calling the clear() method. The
results of this call are shown in the printout on line 28 that indicates the
ArrayList has a size of zero.

Here is the complete output from running this code:

Empty: true

Size: 4

Found: true

Removed: true

Size: 3

Index 0 is One

Size: 0

Three More ArrayList Methods
The methods that you used in the ArrayListDemo class are the major methods
you are going to need. However, you won’t find three other interesting methods
in the List interface. These methods are specific to the ArrayList class.

public void ensureCapacity(int capacity) Use this method to force an
ArrayList to increase its capacity instead of waiting for it to do so itself.
This is a good method to call if you know you are going to add a large

The java.util.Vector Class

Another collection type, java.util.Vector, is the predecessor to the ArrayList
class, and it works essentially the same way, though in most cases, the ArrayList
works a bit faster. The methods available in both classes are virtually identical, so
you could literally substitute Vector for ArrayList in the ArrayListDemo class,
and everything would work the same.

There is no reason to discuss the Vector class in this chapter because of its strong
similarity to the ArrayList class. However, you might find Vector used a lot in code
you come across that has not been updated to the new ArrayList. If you just keep
in mind that the two classes work the same, you should have little trouble working
with the Vector class.

4373book.fm Page 288 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 289

number of elements in your code. For example, if you know you will be
adding 100 elements to an ArrayList, it might be a good idea to ensure
that the capacity of the ArrayList is at least 100. This can limit the num-
ber of resizing operations, which in turn reduces memory use.

One thing to remember is that an ArrayList cannot have a capacity that is
less than its size. That is abundantly logical, as I am sure you will agree. After
all, how could an ArrayList contain 100 elements but have a capacity of
only 50? This means that the parameter you pass to the ensureCapacity()
method is really a minimum capacity. If the size is greater than the capacity
you pass, the capacity ends up being equal to the size.

public void trimToSize() This method trims the capacity to match the
current size of an ArrayList. This is useful to ensure that the smallest
amount of memory is being used. If you have added all your elements and
plan to add no more, a quick call to this method never hurts.

public int indexOf(Object o) This method works much as it does with
the String and StringBuffer classes. Whereas the contains() method
tells you if an ArrayList contains a specific element, the indexOf()
method actually returns the index of an element if it is found.

The following ArrayListAgain class uses some of the other methods available.

1 import java.util.*;

2 public class ArrayListAgain

3 {

4 public static void main(String[] args)

5 {

6 ArrayList list = new ArrayList();

7 list.add(new Integer(0));

8 list.add(“Hello”);

9 list.add(new Integer(20));

10

11 Object replaced = list.set(1, new Integer(10));

12 System.out.println(“Replaced “ + replaced);

13

14 System.out.println(“Size: “ + list.size());

15

16 list.ensureCapacity(20);

17 for(int i = 30; i < 100; i+=10)

18 {

19 list.add(new Integer(i));

20 }

21 System.out.println(“Size: “ + list.size());

4373book.fm Page 289 Tuesday, July 13, 2004 3:44 PM

290 Chapter 10

22

23 Integer num = new Integer(50);

24 int index = list.indexOf(num);

25 System.out.println(“Found at index “ + index);

26

27 Object removed = list.remove(index);

28 System.out.println(“Removed “ + removed);

29

30 list.trimToSize();

31 System.out.println(“Capacity and size are “ +
 list.size());

32 }

33 }

The ArrayListAgain class kicks off on line 6 with a new ArrayList and
then proceeds to add three elements on lines 7–9. Notice that two of these ele-
ments are Integer objects and the other is a String object. This proves the
point that collections such as an ArrayList can contain any type of object.

On line 11, the String object is replaced, however. The call to the set()
method replaces the element at index 1 (the String object) with a new Integer
object. The return of the set() method is the object that was replaced. This
object is printed on line 12.

Line 14 prints out the size of the ArrayList just to show you where things
stand at this point. The size printed is 3.

Line 16 forces the ArrayList to provide enough space for at least 20 objects.
If the capacity is less than 20, this call to ensureCapacity() guarantees that the
ArrayList ends up with a current capacity of 20. However, if the capacity is
already more than 20, no change is made. Remember, the ensureCapacity()
method specifies a minimum capacity only.

Lines 17–20 add seven more elements to the end of the ArrayList. These ele-
ments are all Integer objects. Notice that the for loop is incrementing by 10 here.
This means that each of the resulting Integer objects contain a value between 30
and 90, counting by tens.

Line 21 is another quick printout of the size, which is now 10 because of the
new elements added.

Line 23 creates a new Integer object that will be used in a search operation.
On line 24, the indexOf() method is called to determine not only if there is a
matching element, but the exact location of that element. Because there is an
Integer object containing the value 50 in the ArrayList, that index is returned
and printed on line 25.

On line 27, an overloaded version of the remove() method takes a specific
index as a parameter. See, and I bet you thought that the index you got back on

4373book.fm Page 290 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 291

line 24 was never going to be used! This version of the remove() method returns
the object that was replaced, and that object is printed on line 28.

On line 30, the trimToSize() method is called, making the capacity and the
size equivalent. Again, this is a good method to call if you want to ensure that an
ArrayList is only as big as it needs to be. The final printout on line 31 shows
you the current size and capacity, both of which equal 9 in this case because one
of the elements was deleted.

Summarizing Lists
Before you move on to the next section of this chapter, here is a summary of the
important facts about classes that implement the List interface.

◆ The List interface extends from the Collection interface.

◆ A list maintains ordered elements.

◆ A list does not reject duplicates.

◆ Elements can usually be added to the end of a list or at a specific position.

ArrayList is not the only class that implements List. You will also see the Vector class
and the LinkedList class using it. Neither of these classes is covered in this chapter, but
if you want to learn more about them, you can check out Mastering Java 2, J2SE 1.4, by
John Zukowski (Sybex, 2002).

Understanding Sets
A set is the opposite of a list because it does not have to maintain ordered ele-
ments and does not allow duplicates. Because no two elements in a set can be the
same, a maximum of one null element is allowed. A set might be useful if you
want to hold a unique group of e-mail addresses in memory because the set will
never contain duplicate addresses.

The java.util.Set Interface
All sets in the collections framework are identified by the java.util.Set inter-
face. The Set interface extends the generic Collection interface and adds no
new methods. Just think, no new methods to learn!

However, you need to concern yourself with one major change stipulated in the
Set interface. Because a set should not contain duplicates, there are special guide-
lines for the add() method. The method signature is exactly the same as defined in
Collection, but implementations of Set should include logic in their add()
method to add an element only if it is not already in the set. In other words, it is
the add() method’s responsibility to ensure that there are no duplicates.

4373book.fm Page 291 Tuesday, July 13, 2004 3:44 PM

292 Chapter 10

If you are wondering how an interface can enforce a rule like Set does with the add()
method, the answer is, it can’t. The stipulation made in the Set interface should be
followed in any implementations, but there is no way to ensure that the rule is fol-
lowed. Luckily for us, implementations in the collections framework follow the rule to
the letter!

The java.util.HashSet Class
To see how a set works, let’s look at the java.util.HashSet class. This is the
only concrete class in the collections framework that directly implements the Set
interface. Because the Set interface does not define any methods beyond those
that it inherits from Collection, this is a fairly simple class to demonstrate.

Here is the HashSetDemo class. As you read the source code, notice that an
attempt is being made to add a duplicate element. The add() method defined in
HashSet returns false if you attempt to add an element that it already contains.

1 import java.util.*;

2 public class HashSetDemo

3 {

4 public static void main(String[] args)

5 {

6 HashSet set = new HashSet();

7

8 for(int i = 0; i < 10; i++)

9 {

10 set.add(“Element “ + i);

11 }

12

13 System.out.println(“Size: “ + set.size());

14

15 boolean added = set.add(“Element 5”);

16 System.out.println(“Added: “ + added);

17 System.out.println(“Size: “ + set.size());

18

19 added = set.add(“New Element”);

20 System.out.println(“Added: “ + added);

21 System.out.println(“Size: “ + set.size());

22

23 set.clear();

24 System.out.println(“Size: “ + set.size());

25 }

26 }

4373book.fm Page 292 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 293

First take a look at the output from executing this class, and then we’ll look
at the details.

Size: 10

Added: false

Size: 10

Added: true

Size: 11

Size: 0

Line 6 creates a new HashSet. You can pass a variety of parameters to this
constructor, one of which is an initial capacity. A HashSet expands automati-
cally, much like an ArrayList does, though usually more efficiently. If you do
not pass an initial capacity, the capacity will be 16.

Lines 8–11 define a for loop that adds some String objects to the HashSet.
Because all these String objects are different, all are added without a problem.

Line 13 prints the size, which equals 10.
Line 15 attempts to add an element that already exists. Note that this does not

generate an exception even though there is a duplicate String object in the
HashSet. If the call to add() cannot complete because a duplicate is found,
false is returned. You can see in the printout on line 16 that the addition failed
and on line 17 that the size is still 10.

Line 19 plays nice and tries to add an element that does not exist. Obviously,
this does not cause a problem, so the printout on line 20 indicates the return was
true. Line 21 prints the size, which is now 11 because of the element added on
line 19.

Line 23 empties the HashSet with a call to the clear() method. This works
just like it does for all collection types. As a result, the final printout on line 24
indicates a size of 0.

As you can see from the HashSetDemo class, using a set is simple. However,
there is only one add() method and no way to insert an object at a specific loca-
tion. Likewise, you cannot remove a specific element by giving an index; there
are simply no methods provided in Set that work with a specific index. This is
logical because ordering is never guaranteed in a Set.

However, I should mention another interface that exists in the collections
framework named java.util.SortedSet. This specialized form of a set
includes methods that allow its elements to be ordered while still not allowing
duplicates. I am not going to discuss the SortedSet any further, but you can find
the details of this interface by firing up your browser and going to http://
java.sun.com/j2se/1.4.1/docs/api/java/util/SortedSet.html.

4373book.fm Page 293 Tuesday, July 13, 2004 3:44 PM

294 Chapter 10

Summarizing Sets
Before you continue to the next section, take a look at the following summary of
key details about sets.

◆ A set usually has no ordering mechanism.

◆ A set does not allow any duplicates.

◆ A set does not allow access to elements by index.

Understanding Maps
map
A special type of collection that includes
both keys and values. Each key relates to
one and only one value. There are no
indexes in a map because all access is
made via the individual keys. A map is
the simplest form of a database.

Recently I had to create an online application that allowed users to log in and
view their travel itineraries. To make this work, I realized it would make a lot of
sense to somehow bind the username to the itinerary details. In essence, I needed
to create a rudimentary database that could relate a unique username to an
assortment of outstanding itineraries. To accomplish this, I used a map from the
collections framework.

A map is a collection that matches keys to values. Every value in a map has a
unique key associated with it. In the itinerary application, the key is the user-
name, and the itinerary information is the value. Although there can be no dupli-
cate keys, it is perfectly fine to map duplicate values to other keys. However, each
key can refer to a single value at most. Different implementations of a map may
allow or deny null keys and values.

A map implementation can enforce ordering of its elements, but this is not
required. A map can also have its contents extracted into a different collection
type such as a set or a generic collection.

The java.util.Map Interface
All maps in the collections framework are implementations of the java
.util.Map interface. This interface does not extend the Collection interface,
however. This does not mean it is not part of the collection framework, of
course. The Map interface actually provides a few methods that exactly match
methods found in the Collection interface, but no others. For this reason, it
does not extend Collection; it would have been messy to handle all those extra-
neous methods.

The following list does not contain every method defined in Map, but it con-
tains most of them. The first three methods are duplicates of methods in the
Collection interface, so their descriptions will seem somewhat familiar.

public void clear() Removes all the elements in a collection. The size of
the collection after this method is called will be zero.

4373book.fm Page 294 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 295

public boolean isEmpty() Returns true if a particular collection con-
tains no elements.

public int size() Returns a count of the number of elements contained in
a collection.

public boolean containsKey(Object key) Returns true if the specified
key is found in the Map. This is determined by calling the equals() method
to compare it against each element until a match is found or until there are
no more keys to check. There can be at most one key that matches.

public boolean containsValue(Object value) Returns true if the
specified value is found in the Map by using the equals() method for
comparison.

public Object get(Object key) Returns the element that maps to the
specified key. The return value could be null, but this does not necessarily
mean that no matching key was found because a value could itself be null.
If you need to determine whether a key actually exists, call the
containsKey() method first.

public Set keySet() Lets you grab just the keys from a Map, returned as a
Set implementation. Because there can be no duplicate keys, using a Set
to contain them makes a lot of sense. You can use this Set to iterate
through the keys. You can even remove keys from the Set, and the match-
ing keys are automatically removed from the Map itself. How cool is that?

public Object put(Object key, Object value) Lets you add new entries
to a Map. If the specified key does not exist, the new mapping is added to
the Map. If the key does already exist, the currently associated value is
replaced with the new value (indicated by the second parameter to this
method).

public Object remove(Object key) Deletes the specified key and the
associated value from the Map. It returns the value to which the parameter
key mapped. If no such key exists, this method returns null. Again, if you
need to determine whether a key exists, call the containsKey() method
first.

public Collection values() Returns all the values in a Map as a generic
Collection object. The actual implementation of this collection is imma-
terial; just use the methods defined in the Collection interface to manip-
ulate these values. Note that no keys are returned by this method, only the
values themselves.

As I said, there are some more methods, but this list is plenty to get you
started. After all, that is why you are reading this book!

4373book.fm Page 295 Tuesday, July 13, 2004 3:44 PM

296 Chapter 10

The java.util.HashMap Class
Several classes implement the Map interface, but we will concentrate on the
java.util.HashMap class. This class is essentially the same as one of the oldest
classes in the Java API, the java.util.Hashtable. The two classes are practi-
cally identical except for one important difference. Whereas a HashMap allows
both a null key and null values, a Hashtable never allows a null key or value.
Just as with the Vector class that I mentioned earlier in this chapter, you will no
doubt come across code that uses a Hashtable instead of the HashMap. Because
both Hashtable and HashMap implement the Map interface, what you learn in
this section (except for those null values!) will work the same with either class.

Let’s jump right into it. The HashMapDemo class shows you how to use all the
methods discussed in this section. As always, I discuss everything following the
code listing.

1 import java.util.*;

2 public class HashMapDemo

3 {

4 public static void main(String[] args)

5 {

6 HashMap map = new HashMap();

7 map.put(“Name”, “Todd”);

8 map.put(“Hair Color”, “Brown”);

9 map.put(“Shoe Size”, new Integer(13));

10 map.put(“Favorite Author”, “Philip Heller”);

11

12 System.out.println(“Size: “ + map.size());

13

14 map.put(“Favorite Author”, “William Shakespeare”);

15 Object author = map.get(“Favorite Author”);

16 System.out.println(“Favorite Author: “ + author);

17

18 boolean containsKey = map.containsKey(“Shoe Size”);

19 System.out.println(“Has Key (Shoe Size): “ +
 containsKey);

20 Object removed = map.remove(“Shoe Size”);

21 System.out.println(“Removed: “ + removed);

22 System.out.println(“Size: “ + map.size());

23

24 Set set = map.keySet();

25 System.out.println(“Key Set size: “ + set.size());

26 boolean removedFromSet = set.remove(“Hair Color”);

4373book.fm Page 296 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 297

27 System.out.println(“Removed: “ + removedFromSet);

28 System.out.println(“Size: “ + map.size());

29

30 Collection values = map.values();

31 System.out.println(“Collection size: “ +
 values.size());

32

33 }

34 }

The class begins by creating a new HashMap object. You can specify an initial
capacity by passing an int to the constructor, but if you pass nothing as shown
in line 6, the capacity defaults to 16.

Lines 7–10 add four key-value pairs to the HashMap. These values probably
tell you more about me than you really care to know, but they will serve our
needs for now.

Line 12 prints the size, which is 4 at that point.
I regard Philip Heller as a dear friend and an outstanding author, but I am

going to be honest about my favorite author. It is William Shakespeare, by far.
So line 14 replaces the value “Philip Heller” associated with the key “Favorite
Author” with a new value, namely “William Shakespeare”. My apologies, Phil!

To prove that this replacement worked, line 15 calls the get() method to
retrieve the value mapped to the specified key. This value is then printed to show
you the current value (which is none other than Shakespeare, of course).

On line 18, the containsKey() method is called to determine if the key “Shoe
Size” exists in the HashMap. The results of this method call are printed on line 19,
which indicates that the key was found.

Because I have embarrassingly large feet, I think I should just erase that from
the record! Now that it has been proven that the key exists, the code can go
ahead and remove the key-value pair entirely. The call to remove() deletes the
mapping and returns the value that was there. The message printed on line 21
indicates that the value of 13 was removed. This is the result of calling
toString() on the Integer object that was stored in the HashMap.

Line 22 prints the new size, which is now 3 after the deletion on line 20.
Line 24 shows you how the keySet() works. The return of this method is a

Set implementation. A message is printed on line 25 that indicates the size,
which equals 3. That makes sense because there should be just as many keys in
the Set as key-value pairs in the HashMap.

An interesting thing is happening on line 26. Once again, the remove()
method is called, but this time it is called on the Set containing the keys. As I
mentioned earlier, this results in the same key being removed from the HashMap
itself. The printout on line 27 indicates that the element “Shoe Size” was deleted
from the Set. On line 28, the size of the HashMap prints again. This time, that size
has reduced to 2.

4373book.fm Page 297 Tuesday, July 13, 2004 3:44 PM

298 Chapter 10

Line 30 calls the values() method, which returns a Collection. Only the
size is printed on line 31 because there is not much we can really do with this
Collection right now. Later in this chapter when you learn about iterators, I
will show you how you might use the collection of values retrieved from a
HashMap.

Summarizing Maps
Here are the main points that you should keep in mind concerning maps.

◆ A map is a collection of key-value pairs.

◆ The Map interface does not inherit from the Collection interface.

◆ All keys must be unique in a map.

◆ A map can contain duplicate values.

◆ There can be at most one value for each key.

◆ The key controls all access to a map’s values; no indexes are used in a map.

Working with Iterators
So far in this chapter, you have learned how to add, retrieve, remove, and count
the contents of a collection. What you have not yet learned is how to iterate over
an entire collection instead of retrieving individual elements explicitly. You
already performed a simple form of iteration when you worked with arrays back
in Chapter 5. You learned then that a common way of iterating through an array
involves using a for loop and accessing the elements of the array by index.

iterator
A data structure that is associated with a
list or a set. You use an iterator to
traverse a group of elements in a collec-
tion (perhaps all the elements or a sub-
set of the elements). An iterator can
always move forward through a sequence
of elements but might also provide meth-
ods for moving backward.

The collections framework provides a standard and more elaborate mechanism
using an iterator. Simply put, an iterator is a special data structure that represents the
contents of a collection and allows you to walk through that collection. An iterator
can optionally let you add, insert, and remove elements. Any elements removed from
the iterator will also be removed from the collection that it represents.

Here is a real-world example of an iterator in action. My digital cable service
provides me with an online channel guide that I can scroll through to find some-
thing to watch. Because I get more than 200 channels, this can take a fair amount
of time. When I pop up the channel guide, it always starts on the channel I am
currently watching. For example, if the current channel is 57 and I want to see
what is on channel 58, I press the Up arrow on my remote. If I want to see what
is on channel 56, I press the Down arrow.

Now let’s think about the available channels as a collection and the channel
guide as an iterator. I have no idea how the details of each channel and upcoming
programs are stored in my cable box, and I do not need to know. The channel
guide iterator provides me with a simple, standard view of the collection of chan-
nels. I can move forward or backward through the channel list, view the details

4373book.fm Page 298 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 299

of each channel, and even remove channels from the display altogether. Those
abilities are similar to what an iterator can offer when you are working with the
collections framework.

Not all iterators provide the same functionality. Some allow you to only move forward
through a collection; others might allow you to move bidirectionally. Some will allow
you to remove elements; others might even allow you to add new elements. You will
learn about two iterators in this section that each provide some set of the possible
functionality.

The java.util.Iterator Interface
All Collection, List, and Set interfaces define a method named iterator(),
which returns an object that implements java.util.Iterator. The Iterator
interface actually contains elements from a particular collection, so in that sense,
it is a form of a collection itself. However, an Iterator implementation hides
the details of the underlying collection. This means that you use all Iterator
implementations the same way, no matter the actual collection type. This makes
the Iterator interface completely polymorphic.

The Iterator interface defines just three methods:

public boolean hasNext() Call this method to determine if there are any
more elements in the Iterator. If this method returns true, you will nor-
mally call the next() method (defined next). Once this method returns
false, you know that there are no more elements.

public Object next() If there are elements remaining in the Iterator,
this method returns the next element as a generic Object. You should nor-
mally call the hasNext() method first to ensure that at least one more ele-
ment is available. If you call next() when there are no more elements
remaining, you receive a java.util.NoSuchElementException.

The NoSuchElementException is a runtime exception, so you are not forced to han-
dle it. If you always precede a call to next() with a call to hasNext(), you should
never have this exception thrown.

public void remove() This method removes the last retrieved element
from the collection represented by this Iterator. You can call this method
only once following each call of the next() method. If you fail to call
next() before each call to remove(), you will receive a java.lang
.IllegalStateException.

This method is optional; not all Iterator implementations have to implement
this method. If you call remove() on an Iterator that does not implement this
method, you will receive a java.lang.UnsupportedOperationException.

4373book.fm Page 299 Tuesday, July 13, 2004 3:44 PM

300 Chapter 10

As you can see, a standard Iterator allows you to only move forward through
a series of elements. There are no provisions for moving backward using the
standard interface. You will learn about a subinterface named ListIterator
a bit later in this section. But first, let’s look at a code example that uses an
Iterator.

1 import java.util.*;

2 public class IteratorDemo

3 {

4 public static void main(String[] args)

5 {

6 HashSet set = new HashSet();

7 set.add(new Integer(2));

8 set.add(new Integer(4));

9 set.add(new Integer(1));

10

11 System.out.println(“Size: “ + set.size());

12

13 Iterator iter = set.iterator();

14 while(iter.hasNext())

15 {

16 Object o = iter.next();

17 System.out.println(o);

18 iter.remove();

19 }

20 System.out.println(“Size: “ + set.size());

21 }

22 }

If you execute this code, you will see output similar to this:

Size: 3

2

4

1

Size: 0

The order of your output may not match exactly because the HashSet is not sorted.
This is normal behavior for a set because the order is not guaranteed in any way.

4373book.fm Page 300 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 301

In the IteratorDemo class, a HashSet is created on line 6 and populated with
three Integer objects on lines 7–9. Line 11 prints the size once the HashSet has
been built. (The size is 3 in this case.)

On line 13, an Iterator is returned by a call to the iterator() method. The
Iterator provides a view of the collection data without your needing intimate
knowledge of the collection itself.

Line 14 uses a while loop that loops as long as iter.hasNext() returns
true. You will almost always use a while loop when you are iterating over an
entire collection like this. Because a while loop continues until the associated
boolean expression returns false, this makes a great deal of sense.

The call to iter.next() on line 16 returns the next element in the Iterator
as a generic Object. In this simple class, that element is simply printed on line 17.
You could of course cast this Object to its real type (Integer, in this case) and
use it any way you see fit.

Line 18 demonstrates how to remove an element from the underlying collec-
tion. The call to remove() deletes the same element returned in line 16 from the
collection. Note that calling remove() on the Iterator is the only way to
remove elements from a collection safely during an iterative process like this.
Because remove() is called every time the while loop executes, all the elements
are deleted from the HashSet.

Do not remove elements directly from a collection while using an Iterator. Always
use the remove() method defined in the Iterator itself. If you break this rule, the
results are not guaranteed to work correctly, and you may lose or corrupt your data.

Using the Iterator interface is not difficult, which is its main benefit. No
matter how complex a collection, an Iterator will always be simple and pro-
vide you with a standard way to process the elements of a collection.

The java.util.ListIterator Interface
Remember my channel guide analogy at the start of this section? If you think about
it, the standard Iterator interface would not be a good choice for implementing
my guide. A standard Iterator can only move forward through the elements.
This would mean that if I were on channel 57 and wanted to get to channel 56, I
would have to cycle forward through all the other channels instead of just moving
backward one channel. Obviously, that would not be a good system.

The collections framework includes a specialized iterator named java.util
.ListIterator. As you can tell from its name, you use this iterator only with
List objects. Besides just the iterator() method, the List interface also defines
a method named listIterator() that returns a ListIterator instance. The

4373book.fm Page 301 Tuesday, July 13, 2004 3:44 PM

302 Chapter 10

ListIterator inherits the three methods defined in Iterator and adds six new
methods that provide more elaborate control over the elements, as shown next.

public void add(Object o) With this method, you can actually add a new
element to the underlying collection via a ListIterator instance. The ele-
ment is added immediately before the element that is returned by a call to
next(). This is an optional method for a ListIterator to implement,
and if the method is not implemented, you receive an Unsupported-
OperationException.

public void hasPrevious() This method works just like hasNext(), but
in the opposite direction. This method always returns true as long as you
are not at the beginning of the list of elements.

public int nextIndex() Use this method to find the index of the next ele-
ment in the list. If there are no more elements, this method returns the size
of the list itself.

public Object previous() This method returns the element before your
current position in a ListIterator. You should call hasPrevious()
beforehand to be sure that an element is actually available. If there is not,
you receive a NoSuchElementException.

public int previousIndex() This method returns the index of the previous
element in the list. If you are at the beginning of the list, this method
returns –1.

public void set(Object o) This method replaces the last element returned
by either previous() or next() with the Object parameter. You can call
this method only once after calling either previous() or next(). Further,
you cannot call this method if you have already called either add() or
remove(). This is an optional method for a ListIterator to implement,
and if the method is not implemented, you receive an Unsupported-
OperationException.

Obviously the ListIterator provides more elaborate control when compared
with a standard Iterator implementation. The following ListIteratorDemo
class shows it in action.

1 import java.util.*;

2 public class ListIteratorDemo

3 {

4 public static void main(String[] args)

5 {

6 ArrayList list = new ArrayList();

7 list.add(“One”);

8 list.add(“Two”);

4373book.fm Page 302 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 303

9 list.add(“Three”);

10

11 System.out.println(“Size: “ + list.size());

12

13 ListIterator listIter = list.listIterator();

14 while(listIter.hasNext())

15 {

16 int index = listIter.nextIndex();

17 Object o = listIter.next();

18 String str = (String)o;

19 System.out.println(“Index: “ + index + “ is “
 + str);

20 listIter.set(str.toUpperCase());

21 }

22

23 listIter.add(“FOUR”);

24 System.out.println(“Size: “ + list.size());

25

26 while(listIter.hasPrevious())

27 {

28 int index = listIter.previousIndex();

29 Object o = listIter.previous();

30 System.out.println(“Index: “ + index + “ is “
 + o);

31 }

32 }

33 }

Here is the output from running this code:

Size: 3

Index: 0 is One

Index: 1 is Two

Index: 2 is Three

Size: 4

Index: 3 is FOUR

Index: 2 is THREE

Index: 1 is TWO

Index: 0 is ONE

Except for the new ListIterator methods, this code should look familiar to
you by now. An ArrayList is created and populated on lines 6–9, followed by
a printout of the size at that point (which is 3).

4373book.fm Page 303 Tuesday, July 13, 2004 3:44 PM

304 Chapter 10

Line 13 grabs the ListIterator for this ArrayList by calling the
listIterator() method.

Lines 14–19 define a while loop that has an associated call to listIter
.hasNext(). Line 16 extracts the index of the next element via the nextIndex()
method call. Line 17 calls the next() method to get the next element available,
and line 18 casts this generic Object to a String. Line 19 prints the index and
value of each element as the loop executes. Line 20 calls the set() method
defined in the ListIterator interface. In this case, every String element in the
ArrayList is replaced with an uppercase version.

Once the while loop completes, the call to add() on line 23 adds a new
element to the underlying ArrayList. Because the ListIterator has walked
through the entire list already, this new element becomes the last element in
the ArrayList. The printout on line 24 shows you that the new size of the
ArrayList is 4.

Another while loops appears on lines 26–31. This time, the hasPrevious()
method is called, allowing you to traverse the elements in reverse order. Line 28
gets the index of each element using the previousIndex() method (so the first
index it returns is 3 and the last is 0). Line 29 calls the previous() method to
get the previous element, and, finally on line 30, the index and element are
printed.

You can move forward and backward through the same ListIterator as
often as you want. With the standard Iterator interface, you can only move
forward, so you would have to call your collection’s iterator() method again
to be able to work with elements you have already processed.

Iterators and Maps
The Map interface does not define any methods for getting an Iterator, so how do
you iterate through a Map? If you recall, the Map interface defines some methods
that allow you to grab a Set of keys (by calling keySet()) or a Collection of val-
ues (by calling values()). As you just learned, both the Set and Collection
interfaces define the iterator() method. So once you have grabbed either the
keys or the values, you can use a standard Iterator to process the data.

The Map interface also defines a method named entries() that also returns a Set.
Each resulting Set element is a special construct that contains both the key and
value for each entry in the Map.

Let’s take a quick look at how you might iterate over a Map. Remember that a
Map is different from other collections because you use keys for all access to the ele-
ment values. A common situation you may find yourself in is how to grab all the
values from a Map without having to explicitly provide each key. For example, in
the itinerary management application that I discussed earlier in this chapter, it

4373book.fm Page 304 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 305

might make sense for someone to see all the upcoming trips for all employees.
Instead of forcing the user to enter each employee name manually, it would make
a lot more sense to simply grab all the keys and values.

The MapIterationDemo class is a simplified version of that itinerary manage-
ment application. Each username is a key, and the value associated with it is the
destination city for the traveler. The code gets the Set of keys and processes them
using an Iterator. As each element in the Iterator is found, it is used to get
the associated value in the Map. Take a look at the logic for this class.

1 import java.util.*;

2 public class MapIterationDemo

3 {

4 public static void main(String[] args)

5 {

6 HashMap map = new HashMap();

7 map.put(“Todd”, “Boston”);

8 map.put(“Don”, “New York City”);

9 map.put(“Sophie”, “Miami”);

10 map.put(“Bill”, “Dallas”);

11

12 Set keySet = map.keySet();

13 System.out.println(“Number of keys: “ +
 keySet.size());

14

15 Iterator iter = keySet.iterator();

16 while(iter.hasNext())

17 {

18 Object o = iter.next();

19 String user = (String)o;

20 Object city = map.get(user);

21 System.out.println(user + “: “ + city);

22 }

23 }

24 }

The output from running this code is similar to this:

Number of keys: 4

Todd: Boston

Don: New York City

Sophie: Miami

Bill: Dallas

4373book.fm Page 305 Tuesday, July 13, 2004 3:44 PM

306 Chapter 10

Don’t forget that the order may be different because the Set of keys is not sorted.

After the HashMap is created on lines 6–10, the Set of keys is retrieved on line 12.
This Set contains all the usernames because those are the keys in the HashMap.
Line 13 prints the number of keys, which is just the size of keySet. It should come
as no surprise that the size is 4, because that is the size of the HashMap itself.

The implementation of the Set is hidden from you because you really have no need
to know what it is. All access is via the methods defined in the Set interface.

Line 15 calls the iterator() method, which is used with the while loop
defined on lines 16–22. This is just the standard Iterator, so you can only move
forward through the elements.

Line 18 retrieves the next element, and line 19 casts this into its real type,
String. The variable user is one of the keys, so you pass this value to the get()
method on line 20. Although you already learned that you should never change
the contents of a collection when you are iterating, it is perfectly fine to retrieve
values from the collection. The call to map.get() returns the value associated
with each key in turn.

Finally on line 21, the username (the key) and the destination city (the value)
is printed on the command line.

Terms to Know
collection list

framework map

iterator set

4373book.fm Page 306 Tuesday, July 13, 2004 3:44 PM

The Collections Framework 307

Review Questions
1. What is a framework?

2. What is a collection?

3. Which interface is extended by both List and Set?

4. Which of the collection interfaces does not extend the Collection interface?

5. What is a list?

6. What is a set?

7. What is a map?

8. Which method is used to retrieve an Iterator from a Set?

9. Which method is used to retrieve a ListIterator from a List?

10. How many null elements can a Set contain?

4373book.fm Page 307 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 308 Tuesday, July 13, 2004 3:44 PM

Appendix

A

Answers to Review Questions

Chapter 1

1.

Which two components form the Java platform?

Answer:

The Java Application Programming Interface (Java API) and the Java Virtual Machine (JVM)

2.

What was the name of the internal project at Sun Microsystems that produced the first version of the Java
programming language?

Answer:

The Green Project

3.

What are some types of applications for which Java is suited?

Answer:

Providing dynamic content on the Internet, developing large-scale enterprise applications, creating
e-commerce applications, and it can be embedded in many consumer devices.

4.

Who is considered the father of Java technology?

Answer:

James Gosling

5.

What does it mean for a language such as Java to be strongly typed?

Answer:

Both the compiler and the runtime check the code to ensure that it follows the basic rules of the
language, preventing against illegal execution.

6.

What does the Java compiler produce from source code?

Answer:

Bytecode

7.

What is the engine that allows Java code to be platform independent?

Answer:

The Java Virtual Machine

8.

To which of today’s development paradigms does the Java language adhere?

Answer:

Object-oriented development

9.

What is included in the Java 2 SDK Standard Edition?

Answer:

A compiler, the API libraries, the interpreter, and other tools

10.

On which language was Java syntax largely based?

Answer:

C++

4373cA.fm Page 309 Wednesday, July 21, 2004 12:23 AM

310

Appendix A

Chapter 2

1.

Which three types of comments are available when you are writing Java source code?

Answer:

The single-line comment, the block comment, and the documentation comment

2.

What is the fundamental component of all Java applications?

Answer:

A class definition

3.

How many primitive types are there in the Java language?

Answer:

Eight (

byte

,

short

,

int

,

long

,

float

,

double

,

char

,

boolean

)

4.

What is the significance of a semicolon in Java source code?

Answer:

The semicolon is the character that terminates the statement. It essentially tells the interpreter when
a statement is complete.

5.

Name the two major places where the brace characters must be used in Java source code.

Answer:

You must have opening and closing braces in your class definition and around all of your method
bodies.

6.

What is the difference between a primitive type and a reference type?

Answer:

A primitive type just holds a single value directly. A reference type holds a memory address that can,
in turn, “hold” lots of other types.

7.

How do you tell the difference between a

char

 and a

String

 in source code?

Answer:

A

char

 is enclosed in single quotes and is one character in length. A

String

 contains zero or more
characters in double quotes and usually contains several characters.

8.

Why does Java use lazy instantiation of

String

 objects?

Answer:

This is mainly because it optimizes memory usage, avoiding many objects being created that may
never be used.

9.

What are the two primitive types in Java that do

not

 hold numeric values?

Answer:

The

char

 and

boolean

 do not hold numerical values. The

char

 type holds Unicode characters and
the

boolean

 type holds either

true

 or

false

.

10.

What type is the literal value 3.45?

Answer:

The answer is

double

. Remember that

all

 floating-point numbers are considered

double

s unless
you append an ‘F’ or an ‘f’ to the end of the numeral, making it a

float

 instead.

Chapter 3

1.

Which of the following is not a Java keyword:

sizeof

 or

const

?

Answer:

There is no need for a

sizeof

 keyword because all of the sizes of types are predefined in Java. Even
though

const

 is not used at all in the Java language, it is actually a keyword.

4373cA.fm Page 310 Wednesday, July 21, 2004 12:23 AM

Answers to Review Questions

311

2.

What does the

new

 keyword do?

Answer:

It creates a new instance of a class. This is called instantiation and means the JVM will create an
object in memory.

3.

Which of the following is not a valid name for a variable in Java:

licenseNumber

,

34jump

,

$inTheMoney

,
or

_$____

?

Answer:

34jump

. A variable cannot start with a digit, though it can contain digits anywhere else in the name.
Believe it or not,

_$____

is a completely legal name…though a really lousy one!

4.

What does making a variable

final

 mean?

Answer:

It means the value of the variable cannot be modified at runtime. It creates a constant.

5.

What are the characteristics of a

static

 method?

Answer:

A

static

 method can be accessed directly via the class itself. No object is required, though you can
actually call

static

 methods via an object as well.

6.

How many interfaces can a class implement?

Answer:

There is no limit to how many interfaces can be implemented by a single class. This is because Java
allows multiple inheritance with interfaces.

7.

How many classes can a class extend?

Answer:

A class can only extend one other class. This is because Java only allows single inheritance with
classes. The class being extended is called the superclass and the inheriting class is called the subclass.

8.

Which operator tests equality of primitive types?

Answer: The == operator tests for equality of primitive types and can also be used to test object reference
equivalency.

9. Name the two functions of the parentheses operator, ().

Answer: Parentheses can be used to group expressions together to override default precedence. They can also
be used to perform casting of primitive types and objects.

10. If x equals 6, what is the result of !((x < 7) ^ (x == 0))?

Answer: The answer is false. The ^ operator returns true if the two operands do not match. In this case,
the first operand is true while the second is false, so the ^ operator returns true at that point. Then the
! operator returns the opposite value, false.

Chapter 4
1. How do you define scope within a class, method, or flow-control statement?

Answer: Everything defined with an open brace ({) and closing brace (}) is within a unique scope.

2. What are the decision-making flow-control statements?

Answer: Both if and switch statements work with conditional tests to allow decision making in your code.
The for and while statements are used for looping.

4373cA.fm Page 311 Wednesday, July 21, 2004 12:23 AM

312 Appendix A

3. What is the rule that you must follow when using else statements with an if statement?

Answer: When you add else statements to an if, every one should match a unique test case. It would make
no sense if two else-if statements made the same test because only the first one would actually execute.

4. What is the difference between a while and a do/while loop?

Answer: A do/while loop always executes the statements that it contains at least once, no matter what the
test condition evaluates to, because this test is not made until after each iteration of the loop. A while loop
performs the test first and then executes the body of the loop only if the test returns true.

5. What statement is used to handle all other results not already associated with case statements?

Answer: The default statement matches all other conditions not already met by defined case statements
in a switch. It is always a good idea to provide a default statement.

6. What does the break statement do?

Answer: The break statement is used to exit a block of code like any of the looping statements or a case
statement. The break statement by itself exits the code block it is found in and returns control to the next
statement following that code block.

7. What does the continue statement do?

Answer: When a continue statement is found, all remaining statements are skipped and the enclosing loop
moves on to the next step in the iteration.

8. If a method is defined as the following, is return 1987; a valid return statement?

public static int getValue()

Answer: Yes. The return statement must return the same type indicated in the method signature.

9. What is wrong with the following code?

for(int i = 0; i < 10; i++)

{

 if(i = 5)

 {

 System.out.println(“Found a 5!”);

 }

}

Answer: The test condition for an if statement must return true or false. What this code is trying to do
is check to see if the current value of i is 5. This is done with the == equality operator, not the = assignment
operator. This is a common error many developers make in their code, so watch out for it! If you do make
this mistake, the compiler is nice enough to report it to you.

10. Typically, why should a break statement be the last line of all case statements?

Answer: To prevent “falling through” into subsequent case statements. You do not have to have a break
statement in each case, but if you do not, it means the next case statement is also triggered. Be sure that you
understand the process flow you desire and include a break statement when you need one.

4373cA.fm Page 312 Wednesday, July 21, 2004 12:23 AM

Answers to Review Questions 313

Chapter 5
1. What is the starting index of all created arrays?

Answer: All arrays in Java start at index 0 with no exceptions.

2. What is the last index of all created arrays?

Answer: Because all arrays begin at index 0, the final index is always one less than the length of the array.

3. What is the value at index 2 of the following array?

String[] names = new String[10];

Answer: Although all primitive array elements default to zero or the equivalent, elements of an object array
always default to null.

4. Is the following code snippet legal?

int [] points;

points = new int[900];

Answer: Yes. The second line of code creates a new array with a length of 900.

5. Is this a legal array declaration?

float f [10];

Answer: No, because you cannot specify the length of the array in the declaration.

6. Is the following array created legally?

int [][] points = new int[5][];

Answer: Although it may seem counterintuitive, you do not have to provide a length for the subarrays in a
two-dimensional array like this. This allows you to create a non-rectangular array where the subarrays are
of varying lengths.

7. What kind of arrays can you search using the Arrays.binarySearch() method?

Answer: All arrays have access to just the single variable length that returns the actual runtime length of
the array.

8. Which method should you always call before you use the Arrays.binarySearch() method?

Answer: You must call one of the Arrays.sort() methods before performing a binary search.

9. In the following array, what is the length of points?

int [][] points = new int[10][5];

Answer: The points array contains 10 subarrays. Each of these subarrays has a length of 5, but the points
array itself has a length of 10.

4373cA.fm Page 313 Wednesday, July 21, 2004 12:23 AM

314 Appendix A

Chapter 6
1. Is the following line of code legal?

double d = new double(10);

Answer: No. All strings are objects and all arrays are objects. The code appears to create an object, but
double is a reserved word for a primitive type.

2. How many objects exist after the following code completes?

Lamp lampOne = new Lamp();

Lamp lampTwo = new Lamp();

Lamp lampThree = lampOne;

lampTwo = lampOne;

Answer: The first line creates a new Lamp object. The second line also creates a new object. At this point, two
objects are available in memory. The third line assigns the reference of lampOne to lampThree. The fourth
line reassigns the lampTwo reference to the lampOne reference. This essentially eliminates the second object
that was created, leaving only one available.

3. Why can the main() method not directly access instance methods and variables?

Answer: Only instance methods have access to the this reference, which allows them to directly access other
instance members. The main method cannot access any instance members unless a new instance of the class
is created inside the main method.

4. Why should instance variables normally be private?

Answer: This aids in achieving encapsulation. Encapsulation is an important part of object-oriented pro-
gramming because it prevents direct access to variables from outside the object in which they live. This
ensures that only the object can change the values, presumably in a logical and legal manner.

5. What composes the interface of an object?

Answer: The interface for an object is the collection of public methods defined in the class the object is
based on. Normally, only the public instance methods are meant to be invoked by callers.

6. What is the return type of a constructor?

Answer: Though a constructor looks a lot like a normal instance method, it never has a return type.

7. Will the following line of code compile correctly?

this = new Lamp();

Answer: No, you can never assign a new value to this. It is always the reference to the object in which it
resides.

8. If you have multiple constructors, what differentiates them from one another in your class?

Answer: The only thing that differentiates one constructor from another is the list of parameters (sometimes
called arguments) associated with it. All constructors have no return type and are always the same name as
the class in which they reside.

4373cA.fm Page 314 Wednesday, July 21, 2004 12:23 AM

Answers to Review Questions 315

9. What is the keyword used to invoke another constructor in the same class from within an existing constructor?

Answer: You invoke another constructor using the this keyword.

10. Assume that you are in the constructor for a class that takes no parameters. Write the line of code that
invokes another constructor in your class that takes an int parameter, and give this parameter a value
of 100.

Answer: this(100);. Remember that you can only invoke another constructor by using the this keyword.
The JVM figures out which constructor you wish to call by the parameter list you provide.

Chapter 7
1. Which two access modifiers guarantee that a method will always be inherited by a subclass?

Answer: Only public and protected instance methods are always inherited.

2. If you override a method, which keyword do you use to call the superclass method from the subclass?

Answer: The super keyword references your superclass and can be used to directly invoke nonprivate meth-
ods of classes above you in the hierarchy.

3. Does the following class have a superclass? If so, name it.

public class Vehicle{}

Answer: If you do not explicitly extend another class, you automatically extend from java.lang.Object.

4. Does the return type have to be the same in the overloaded version of a method?

Answer: No. Java identifies methods by name and parameter list. An overloaded method has the same name,
but different parameters. Although the return type can be different, it is not enough to only have a different
return type. Like an overridden method, an overloaded method can be more accessible than the method in
the superclass, but never less accessible.

5. Given the following class declaration

public class Car extends Vehicle

is the following statement legal?

Vehicle v = new Car();

Answer: Yes. The reference type is valid, and a Car “is a” Vehicle and an Object, so the statement is legal.

6. What is the return type of all constructors?

Answer: Constructors return nothing.

7. Can you instantiate an abstract class?

Answer: No.

4373cA.fm Page 315 Wednesday, July 21, 2004 12:23 AM

316 Appendix A

8. What kind of methods does an interface contain?

Answer: An interface contains only abstract methods. Remember, an interface cannot contain any con-
crete, implemented methods.

9. True or False: You can overload all methods in the same class or a superclass.

Answer: False. Methods defined within a class can be overloaded in that same class and nonprivate methods
defined in superclasses can be overloaded.

10. True or False: Instance methods are bound to the reference type.

Answer: False. Because of virtual method invocation, all instance methods are bound to the runtime type.
Conversely, all instance variables are resolved based on the actual reference type even if the runtime type
defines the same variable.

Chapter 8
1. What type of exception is a NullPointerException?

Answer: NullPointerException is an example of an unchecked exception.

2. From which class do all exception and error types inherit?

Answer: Besides the Object class, all exception and error types inherit from the Throwable class.

3. Which method do exception classes use to output the current method call stack information?

Answer: Exception classes use the printStackTrace() method to output the current call method stack
information.

4. If a method call results in a user-defined exception that directly extends an Exception named
TestException, is the following catch block legal?

catch(Exception ex){}

Answer: Yes. This catch statement will match any checked or unchecked exception, including the thrown
TestException.

5. Which keyword is used to indicate a method that might result in an exception?

Answer: To indicate a method that might result in an exception, you define a throws clause using the
throws keyword followed by the list of potential exception class names.

6. Which keyword do you use to ensure that certain code always executes whether an exception occurs or not?

Answer: Use the finally keyword. The only way that the code within a finally block will not execute is
if you shut down the JVM as it would be if you made a call to System.exit().

7. True or false: A method in a subclass that overrides a method in a superclass that can throw a
TestException must also throw the TestException.

Answer: False. The overridden version of the method can choose to throw no exception or throw
TestException or a subclass of it.

4373cA.fm Page 316 Wednesday, July 21, 2004 12:23 AM

Answers to Review Questions 317

Chapter 9
1. Where does the JVM store most string literals?

Answer: The JVM stores most string literals in the string pool.

2. How do you determine the length of a String object stored in a variable named str?

Answer: The str.length() method returns the length of a String object. Don’t confuse this with the
length variable used to determine the length of an array.

3. What is the index of the letter ‘a’ in the text string, “Staple”?

Answer: The index of ‘a’ is 2. Remember, the first index in the text string starts at 0.

4. Which method allows you to add content to the end of a StringBuffer?

Answer: The append() method allows you to add content to the end of a StringBuffer.

5. Assume that a StringBuffer has a capacity of 10 and contains the text string “1234567890”. What will
the capacity be if you append “A” to the object?

Answer: The capacity will be 22 because after you add the “A” there are 11 characters in the text string. A
StringBuffer doubles in size when you exceed capacity and the size is based on the number of characters
after the appending takes place.

6. Assume that you have a StringBuffer, buffer, that contains the text string “abde”. How would you add
the character “c” after the character “b”?

Answer: You would use buffer.insert(2, ‘c’);. This will end up changing the contents of the
StringBuffer to “abcde”.

7. What method do you use to calculate the cosine of a number?

Answer: Math.cos() calculates the cosine of a number.

8. What is the range of values returned by a call to Math.random()?

Answer: The value will be equal to or greater than 0.0 and less than 1.0.

9. Which wrapper class cannot have a String passed to a constructor?

Answer: The Character class does not provide a constructor that accepts a String object.

10. How do you change the value stored in a wrapper object?

Answer: You cannot change the value wrapped in a wrapper object. All such values are immutable.

Chapter 10
1. What is a framework?

Answer: A framework is a group of related and generic classes (usually abstract classes); you can extend
these classes to provide the customized behavior you desire.

4373cA.fm Page 317 Wednesday, July 21, 2004 12:23 AM

318 Appendix A

2. What is a collection?

Answer: A collection is a data structure that contains zero or more elements and provides methods for
manipulating those elements.

3. Which interface is extended by both List and Set?

Answer: The java.util.Collection interface is extended by both List and Set. This is the base interface
for the common collection types.

4. Which of the collection interfaces does not extend the Collection interface?

Answer: The java.util.Map does not extend the Collection interface. A map is a special type of collec-
tion that stored values mapped to unique keys.

5. What is a list?

Answer: A list is a collection that maintains an ordered sequence of elements and allows duplicate elements
to exist.

6. What is a set?

Answer: A set is a collection that does not usually maintain order on its elements and does not allow dupli-
cate elements to exist.

7. What is a map?

Answer: A map is a collection that associates keys with values. Each key must be unique, and there is a one-
to-one relationship between a key and a value.

8. Which method is used to retrieve an Iterator from a Set?

Answer: The iterator() method is used to retrieve an Iterator from a Set.

9. Which method is used to retrieve a ListIterator from a List?

Answer: The listIterator() method is used to retrieve a ListIterator from a List.

10. How many null elements can a Set contain?

Answer: One null element at the most is allowed. This is because a Set cannot contain any duplicates. A
set also does not guarantee any specific order of its elements.

4373cA.fm Page 318 Wednesday, July 21, 2004 12:23 AM

Glossary

abstract class

A class that must be extended by a
subclass. Typically, an abstract class contains one or
more abstract methods. An abstract class must include
the

abstract

 keyword in the class declaration.

abstract method

A method that has its signature
defined but leaves the implementation for subclasses.
The method signature must include the

abstract

keyword. Abstract classes are meant to be imple-
mented in one or more subclasses.

access modifier

A special Java keyword that con-
trols the visibility of classes, variables, and methods.
There are four access modifiers in the Java language:

public

,

private

,

protected

, and

default

.

accessor method

A method that returns the value
that is part of an object’s state. This state is typically
stored in a

private

 instance variable. By conven-
tion, accessor method names start with

get

 and end
with the instance variable name. So if you have an
instance variable named

value

, the accessor method
should be called

getValue()

. The return type of an
accessor method is the same as the type of the
instance variable that it returns.

applets

Executable modules that are automatically
downloaded to a user’s web browser over a network
like the Internet. Applets allow deployment to be
simple and provide a mechanism to add advanced
functionality to web pages.

array

An ordered collection of primitives or
objects. When you declare an array, you specify the
element type and the resulting array can contain only
elements of that type.

array element

Each item stored in an array is con-
sidered an element of the array. Each array element
must be the same type as the array itself. So an

int

array contains some number of

int

 array elements.

array initializer

A special variation to creating an
array that does not require you to explicitly set the
length. Instead, the contents of the array are put right
inside a pair of braces (

{}

) and a comma separates
each element. The resulting array’s length is equal to
the number of elements listed between the braces.

assertion

A special expression that can be used to
ensure that a specific condition is met in the code.
Assertions are useful for debugging code and can be
ignored completely in production code. Assertions
should never be used to control program logic, only
for testing code and tracking bugs.

behavior

The collection of methods for a particular
class. The behavior of your objects typically manip-
ulates their state.

binary input stream

An input stream that allows
you to read binary data. This data is received in 8-bit
chunks. Although it can be used to read text, it is best
suited for nontextual data.

branching statements

Allows a change in the
normal flow of a flow control statement. Branching
statements can be used to escape from a flow control
statement if the need arises.

bytecode

The platform-independent format of
compiled Java code that executes in the Java Virtual
Machine.

C++

An object-oriented version of the C program-
ming language that gained immense popularity in the
early 1990s. C++ can be thought of as a very close
cousin to the Java programming language.

casting

Whenever you convert a variable of one
type to another type, you are casting. For example,
you might convert a

float

 value to an

int

 value.
You can cast primitive number types between each
other and you can cast objects back and forth.

4373book.fm Page 319 Tuesday, July 13, 2004 3:44 PM

320

Glossary

Upcasting is converting one type to a bigger type, for
example, casting a

byte

 to an

int

. Downcasting is
converting one type to a smaller type, for example,
casting an

int

 to a

byte

. The only time you must
explicitly cast is if you are downcasting.

character reader

A special input stream that reads
16-bit, text-based data. All of the characters read are
Unicode characters, potentially allowing any written
language in the world to be read.

checked exception

An exception that the com-
piler forces code to handle. You can usually accom-
plish this by using a

try

/

catch

 block. All checked
exceptions inherit from the

java.lang.Exception

class but do not extend the

java.lang
.RuntimeException

 class.

class

The fundamental component of all Java pro-
grams. A class is a template for a user-defined type.
From a single class, several objects can be created.

class body

Everything between the left and right
braces is considered part of the class body (except
comments). This includes all variables and methods.

collection

A generic collection contains elements
but imposes no order or constraints on the elements
it contains. An array is a very simple type of collec-
tion. More elaborate collections include methods
that allow adding, inserting, removing, and
searching of elements.

comments

A special notation that you can add to
your source code to describe or explain sections of
code. Using comments is an excellent practice
because it makes your source code much easier to
understand when it is referenced in the future.

Common Gateway Interface (CGI)

A standard for
interfacing external applications with HTTP servers
on the World Wide Web. CGI solutions are often
used to provide functionality to a website like form
processing, image creation, and dynamic HTML
generation.

compile

The process of converting source code
into Java bytecode. The Java compiler creates class
files that can be interpreted by any JVM.

compiler

The tool that converts the source code
into class files. The compiler reads each line of source
code and makes sure that you have followed all the
rules. If any problems are found, the compiler reports
those errors to you on the command line.

concrete class

A class that has all of its method
bodies defined and could be a standalone class,
requiring no further extension.

constant

A variable that has a fixed value that
cannot be changed at runtime. Typically, constants
are shared by many different pieces of code because
they are read only.

constructor

A special method that is automatically
executed when a new instance of a class is created. A
constructor is used to initialize an object to a desired
state.

constructor chaining

Constructors can be
“chained” together, allowing one constructor to
invoke another and so on until an “ultimate con-
structor” executes. This is accomplished by using
the

this

 keyword to represent the constructor
invocation.

delegation

The process of invoking a method in
another object from a method in the current object.
This allows complex logic to be handled by separate
objects to form the overall logic of your program.

dot-notation

Java uses a system of periods—the
dots—to refer to member variables and methods.
The syntax

object.method()

 is typically how dot-
notation is used; this denotes that the object “owns”
the method.

encapsulation

An object-oriented concept that
protects data from uncontrolled access and modifi-
cation. The mantra,

private data, public methods

, is
concerned with encapsulation.

4373book.fm Page 320 Tuesday, July 13, 2004 3:44 PM

Glossary

321

error

An object that indicates that a severe condi-
tion has arisen in the JVM. An error is not something
that can usually be corrected on the fly at runtime,
like running out of memory.

event handling

The process of handling user inter-
action with a GUI application. For example, if a user
clicks a button, this typically kicks off an event han-
dling mechanism that performs some logic. Without
event handling, all those GUIs in the world would
not do much of anything!

exception

An object that is used at runtime to indi-
cate that a strange, incorrect result occurred from a
method call. A successful method call returns its
declared return type, but an unsuccessful method call
returns an exception that is usually handled either
within the code or by requesting user input.

exception handling

A form of flow control that is
used to handle program errors. In many other lan-
guages, errors are reported as a code number of some
kind that is often cryptic and difficult to work with.
Java makes use of exception handling, which pro-
vides a more robust method for trapping and recov-
ering from logical errors.

flow control

Special constructs in a language that
allow simple or complex algorithms to be defined.
Essentially, these form the intelligence of your code.

framework

A framework includes a group of classes
and interfaces that define the most common behavior.
Normally, when you work with a framework, you do
not concern yourself with the actual implementation
types, only the interfaces that are implemented. This
makes it easy to swap different implementations of a
framework in and out without changing how you
access them.

fully qualified name

When you include the
package name with the class name, it is fully quali-
fied. So

java.lang.String

 is a fully qualified name
while just

String

 is not.

garbage collection

Part of the Java Virtual
Machine’s responsibility is managing memory on

your behalf. When memory space that you have used
in your code is no longer needed, the garbage collec-
tion mechanism kicks in and eventually clears that
memory automatically. Because of this automatic
procedure, there is not a standard way to manually
clear memory from within Java programs. The gar-
bage collection process is a great benefit because it
reduces both the amount of code you need to create
and, more importantly, dangerous bugs that can
creep into your code if you could otherwise mis-
manage memory.

I/O classes

A set of classes found in the

java.io

package that allows files to be read from and written
to. There are I/O classes that read and write both
binary and textual data.

immutable

When a data type is immutable, it
cannot be changed at runtime. By default, both

String

 objects and arrays are immutable, but in dif-
ferent ways. A

String

 cannot have its contents
changed and an array cannot have its length
changed.

infinite loop

A looping construct that has a test
condition that always evaluates to

true

. They can be
useful, but are often dangerous bugs.

inheritance

An object-oriented concept that
involves a child class deriving structure and data
from a parent class. Inheritance is used to create
object hierarchies and form complex relationships.

initialization expression

The portion of a

for

 loop
that is executed only once when the loop starts. It
allows the setup of the starting conditions of the loop.

inner class

A special class that is defined within
another class. This allows you to include a class
closer to where it is going to be used. Whether or not
you ever use inner classes is completely your choice.

input stream

Reads bytes from an input source
like a file and returns those bytes via method calls.
An input stream is the low-level structure that you
need to receive input from an external source into a
program.

4373book.fm Page 321 Tuesday, July 13, 2004 3:44 PM

322

Glossary

instance method

A method that can only be
invoked via an object reference. This is opposed to a

static

 method that can be invoked via the class
name alone.

instance variable

A variable that can be accessed
only when an object exists. Instance variables are ini-
tialized upon instantiation and each object instance
holds its own copies of each variable, independent of
any other objects of the same type.

instantiation

The process of creating an object. This
usually involves using the

new

 keyword. Instantiation
results in the JVM setting aside memory for the cre-
ated objects contents. An object’s members cannot
legally be accessed until it has been instantiated.

interface

A completely abstract class that contains
only abstract methods. An interface is a construct
that captures the

public methods of a type. All of
the methods defined in an interface are abstract and
must be overridden by implementing classes.

interpreter An interpreter parses and executes each
statement as it is found in a class file. When you exe-
cute a Java program, you use the java command fol-
lowed by the class that you wish to execute. This
java command is the interpreter.

iteration expression The portion of a for loop
that is executed after the last statement in the loop
executes. The value resulting from the iteration is
then checked by the corresponding termination
expression to determine if the for loop should
continue.

iterator A data structure that is associated with a
list or set. You use an iterator to traverse a group of
elements in a collection (perhaps all of the elements
or a subset of the elements). An iterator can always
move forward through a sequence of elements but
might also provide methods for moving backward.

Java HotSpot Virtual Machine (Java HotSpot VM)
The Java HotSpot Virtual Machine is specially tuned
to provide optimum performance. It incorporates an

adaptive compiler that allows code to be optimized as
it executes. This means faster, more efficient code at
runtime than past virtual machines have been able to
achieve.

Java Virtual Machine (JVM) An abstract com-
puting machine that all Java programs execute in.
The JVM is the key to Java’s cross-platform nature
because it provides the same environment on any
platform it actually runs on. The JVM is the interme-
diary between your Java code and the actual system
on which the code executes.

JavaScript A scripting language developed by
Netscape to add interactivity to web documents. Java-
Script is a programming language but is very simple
to learn and use, making it excellent for web content
developers who may not have backgrounds with
more complex programming languages.

label A special identifier followed by a colon that
allows a continue or break statement to escape to a
specific location in the code.

lazy instantiation There are two basic choices
when it comes to instantiation. The interpreter could
create all the objects you might use before the pro-
gram even begins executing. or it could delay object
creation until it is needed. This latter approach is
called lazy instantiation and is the process used by
the JVM.

list A specific type of collection that imposes rules
guaranteeing some form of logical order to its ele-
ments. Lists also do not enforce uniqueness of their
elements; in other words, duplicates are allowed. Ele-
ments in a list are typically accessed via an index.

literal value Any value that can be assigned
directly to a variable. Essentially, a literal value is a
“real” value and is not represented by a variable, as
in 123 or “Hello”.

local variables Any variable whose scope is the
body of a method. Local variables are only “active”
while their containing method is being invoked.

4373book.fm Page 322 Tuesday, July 13, 2004 3:44 PM

Glossary 323

logical equality The equals() method is defined
in the Object class and can therefore be overridden in
any subclass. Overridden versions of this method
can return true to indicate that two objects are log-
ically the same even if they are not physically the
same object reference. For example, the two String
objects “Hello” and “Hello” are logically equiva-
lent, but might not actually have the same reference
in memory.

map A special type of collection that includes both
keys and values. Each key relates to one and only one
value. There are no indexes in a map because all
access is made via the individual keys. A map is the
simplest form of a database.

member Something “owned” by a class or object.
All variables and methods are called members of
their corresponding object or class. Sometimes you
will even hear the term “member variable” to differ-
entiate those variables defined directly in the class
body from those defined in specific method bodies.

messaging In object-oriented programming, mes-
saging is how two objects communicate with each
other. This messaging is realized by invoking
instance methods on objects within a program.

method A unit of code that performs one or more
actions. For example, an object may have a method
named print that sends a document to a printer. In
other languages, methods are sometimes called func-
tions, procedures, and operations.

method call stack All method calls made during
runtime are stored on a stack by the JVM. This
allows the JVM to maintain information about all
the methods that are currently active in a particular
moment of runtime. The information in the method
call stack is often reported when an exception or
error occurs.

method overloading A convenience in object-
oriented programming that allows multiple methods
with the same name to exist. These methods must
have different parameter lists and might also have

different return types. It is not enough to only have
variance in return type, however; the parameter lists
must be different for a method to be overloaded.

method overriding An object-oriented concept
that allows a method in a superclass to be redefined
completely in a subclass. The return type, name, and
parameter list must be exactly the same in the two
classes for overriding to work. If the parameter list is
different, you are overloading the method, not over-
riding it. If the return type is the only thing different,
you will get a compiler error. Overriding allows
polymorphism to exist in your classes because you
can provide refined functionality for a method
throughout an object hierarchy.

method signature That part of a method that must
be unique in the scope of a class. Technically, a
method signature is the name of the method and its
parameter list.

modulus operator A special arithmetic operator
that returns the value of the remainder of division
between two numbers. If it returns 0, it means one
number is a power of the other.

multidimensional array An array that contains
other arrays as its elements. The most common type
of multidimensional array is the two-dimensional
array. In Java, all multidimensional arrays are just
arrays of arrays.

multiple inheritance The ability to inherit from
more than one parent. Java does not allow inherit-
ance of more than one class, but you can implement
more than one interface.

multithreaded An application that can control indi-
vidual threads to perform specific actions is consid-
ered multithreaded. By divvying up the processing
across these threads, an application can appear to be
performing multiple actions simultaneously. Java is
inherently multithreaded, making the creation of these
advanced programs simpler than other languages.

mutator method A method that sets the value of a
portion of an object’s state. This state is typically

4373book.fm Page 323 Tuesday, July 13, 2004 3:44 PM

324 Glossary

stored in a private instance variable. By conven-
tion, a mutator method begins with set and is fol-
lowed by the instance variable name. So, for an
instance variable named value, the mutator method
would be called setValue(). Mutator methods take
a parameter that is the same type as the instance vari-
able with which it is associated. This parameter
holds the new value to which the instance variable
should be set.

natural ordering A process used in sorting algo-
rithms to determine how a specific set of data should
be ordered. This is normally ascending order for num-
bers and alphabetical order for characters and strings.

nonrectangular array A multidimensional array
whose subarrays are not all the same length. This
type of array requires some special care because you
will usually have to determine the length of each sub-
array before you can process its elements.

object-oriented A programming methodology that
organizes programs following a model of the real
world. In the real world, objects are often composed
of smaller components. In object-oriented develop-
ment, this same concept is applied. This paradigm
leads to flexible, reusable code.

object reference Whenever you have a variable
that holds an object, its value is actually a reference
to that object. The reference essentially equates to a
pointer to the memory address of the object. While
you use the reference, the JVM is responsible for
both assigning it and maintaining it at runtime.

objects Objects are the runtime versions of classes.
Two objects built from the same class are considered
the same type, but they are distinct from each other
in memory. Changes to one object do not affect the
other. Objects make up the key data structure of the
Java language.

output stream Writes bytes to an output source
like a file. Bytes are passed in via method calls. An
output stream is a low-level structure that lets you
send out bytes from a program.

package A mechanism for grouping related classes
together in the same namespace. Packages provide
both class organization and inherent protection.

package private If you give no access modifier
whatsoever to a class, method, or variable, it is
defined as package private. This means that only
classes defined within the same package can gain
access to the class, method, or variable so defined.

pass by reference Instead of copying the values of
parameters and return types like you do with primi-
tive types, objects only have their reference passed.
This allows one object to be referred to from many
different points in an application and ensures that
state and behavior are consistent.

pass by value The pass by value semantics mean
that parameters and return types are copied when
they are passed to and from methods. All primitive
types in Java follow the pass by value rule.

pointers In languages like C and C++, a pointer
represents a specific location in memory that is con-
trolled by the code itself. Pointers can lead to dan-
gerous problems, including data corruption, if they
are not used correctly. Java removes the whole
notion of managing your own pointers, which
removes this often unnecessary complexity.

polymorphism The ability to have many forms of
the same object. An object can always be referred to
by its own class type or any of its superclasses. This
allows the reference type and the runtime type to be
separated. The instance methods of a runtime type
that are also defined in the reference type will always
be invoked because of virtual method invocation.

precedence The predefined order in which opera-
tors execute, enforced by the rules of Java. Under-
standing precedence helps you ensure that your
operations function exactly as you intended them.
Often, parentheses are used to group expressions
together to better control the precedence.

procedural code This code is composed of a series
of functions that perform distinct units of work on

4373book.fm Page 324 Tuesday, July 13, 2004 3:44 PM

Glossary 325

data passed to them. Procedural code is often diffi-
cult to manage and extend, though it is easier than
object-oriented code to grasp initially.

promotion The upcasting of one primitive type to
another as the result of a mathematical operation.
The biggest type in an expression is how big the
result of that expression will be. All of the variables
in the expression are promoted to the result type
before the operation completes.

protected code The code inside a try block is con-
sidered “protected” because the JVM is monitoring
the results of each statement. If an exception occurs, the
JVM attempts to find a matching catch block that
can process the exception appropriately.

pseudocode Code written in a logical, natural lan-
guage style to express process or flow. Pseudocode
cannot be compiled; it is used only to explain the
steps required for actual code to work.

reference type The class name of the variable in
which an object reference is stored. The reference
type must be either the same as the runtime type or a
superclass.

references Java does not use direct pointers for
a variety of good reasons. A reference is really a
“pointer to a pointer.” This system allows the
JVM to manage the memory for you while still
allowing you safe access to the objects residing in
that memory.

referential equality If two object variables contain
the exact same reference (and thus point to the same
object in memory), they are considered to have refer-
ential equality. You can always test to references for
equality by using the == operator.

reserved words Keywords that form part of the
dictionary of a programming language. Java has 52
reserved keywords defined that can never be used as
names in your source code.

runtime type The actual instance type stored in
memory. The runtime type need not be the same type

as the variable that refers to it; it can be a subclass of
the reference type instead. The runtime type is the
“real” type of an object reference.

scope Scope refers to the accessibility of a variable
within a class. Everything in Java has some form of
scope. At the class level, you can identify a scope by
a matched pair of braces. Whatever is between the
braces is in the same scope and cannot be “seen” out-
side of those braces. Each new pair of nested braces
is yet another level of scope.

set A refined form of a collection that imposes no
ordering rules. A set makes sure all of its elements are
unique by denying any duplicates being added. No
indexing of elements is typically done with a set.

sockets An endpoint in network communication.
When you connect a client to a server, sockets are the
constructs that represent that connection on each
system. Sockets include streams so that you can both
read and write data across the connection as well.

source code The “human” language of Java. You
write the source code and eventually compile it into
the more cryptic bytecode needed by the JVM.
Source code is a high-level view of a programming
language.

stack trace When an exception or error occurs, the
JVM can output the current state of the method call
stack. This stack trace includes all of the classes,
objects, and methods currently active and usually
includes the line numbers in the source code where the
exception occurred. You can print out this stack trace
using the inherited method printStackTrace()
located in the Throwable class.

standard error The location where error messages
are output. Typically, this is the same as the standard
output where normal messages are printed. Some-
times the standard error of a system might be a log
file or a printer somewhere. Whenever you call the
System.err.println() method, the provided mes-
sage is typically sent to the standard output of the
system that the code is running on.

4373book.fm Page 325 Tuesday, July 13, 2004 3:44 PM

326 Glossary

state The data of a program or application. For
example, the balance of a bank account is a state.
Subsequent functions can operate on that state. For
example, a method can calculate the interest on the
balance passed to the method.

statement A complete unit of work in a Java pro-
gram. A statement is always terminated with a semi-
colon and may span multiple lines in your source
code. Every statement is executed in the order in
which it is found in the class or method.

string literal A special form of the literal that con-
tains a string of characters enclosed in double quotes.
Note that every string literal is represented as an
object in memory.

string pool A special portion of memory set aside
by the JVM to store string literals. String objects in
the string pool can be reused throughout the life of a
program, which allows the JVM to conserve memory
usage. As always, all String objects in the pool are
immutable.

strongly typed When a language is strongly typed,
it means that it imposes strict rules on the declara-
tions made in the code itself. Some languages allow a
variable to represent an unknown data type, but lan-
guages like Java force you to declare all variables to
be a specific type before they can be used.

subclass Sometimes called a child class or a
derived class. If you use the extends keyword, you
are defining a subclass. A subclass inherits all of the
nonprivate members from the extended class.

subscript The syntax for specifying the element
of an array that you wish to access. A subscript is
shown as a pair of brackets containing an int that
represents an index. For example, the statement
names[2] refers to the third element in the array
called names.

substring Any portion of a complete text string
can be considered a substring. In the text string
“Madam, I am Adam”, the phrase “I am Adam” is a
substring.

super class Sometimes called a parent class or a
base class. The class listed to the right of an extends
clause is the super class. The class to the left is the
subclass.

terminating character Whatever character or
characters are used in a programming language to
indicate the end of a statement. In Java, the termi-
nating character is always the semicolon.

termination expression The portion of a for loop
that tests the value of the for loop for true or false. If
this expression returns false, the for loop ends at
that point.

threads Lightweight processes contained within an
actual process. Threads are the building blocks of
multithreaded programs and provide separate dis-
tinct processing.

throws clause Any method declaration can
include the throws keyword followed by a list of one
or more exceptions that might result from calls to the
method. If a method throws any checked exceptions
within its body, those exceptions must be listed in the
throws clause.

unchecked exception Any exception that extends
from RuntimeException is considered an
unchecked exception. Unchecked exceptions do not
have to be handled in a catch block, though they can
be if you desire. The compiler never forces you to
handle unchecked exceptions.

Unicode A character-encoding scheme that defines
a unique number for every character regardless of
language or platform.

unsigned An unsigned data type can only contain
values that are zero or higher. In other words, there
are no negative numbers allowed as values to an
unsigned data type. Java has only one unsigned type,
the char.

variables These can be defined in classes and
methods and hold values that can often be changed
through the course of a program’s execution.

4373book.fm Page 326 Tuesday, July 13, 2004 3:44 PM

Glossary 327

Variables in Java are either primitive types or refer-
ence types.

virtual method invocation The JVM uses this pro-
cess to ensure the method definition closest to the
runtime type is called. This is sometimes referred to
as “late binding” because the instance methods are
not linked at compile time. Instead, a virtual method
table is created in memory for each object instance

and the JVM selects the appropriate version of a
method at runtime.

wrapper class Java provided classes that “wrap”
around primitive types. For example, the Integer
class contains a primitive int, but provides methods
to process or retrieve the “wrapped” primitive. All
primitive types have an associated wrapper class.

4373book.fm Page 327 Tuesday, July 13, 2004 3:44 PM

4373book.fm Page 328 Tuesday, July 13, 2004 3:44 PM

Index

Note to the reader:

 Throughout this index

boldfaced

 page numbers indicate primary discussions of a topic.

A

abs method, 264–265
absolute value, 264–265
abstract classes

characteristics of, 62
defined, 319
pure, 215
working with,

212–215

abstract methods
characteristics of, 58
defined, 319
working with,

212–215

abstract modifier,

58

, 212
AbstractMachine class, 212–213
access modifiers

in class definitions, 33
defined, 319
in inheritance, 186
keywords for,

57–60

for methods,

35

accessibility, scope in, 90
accessing array elements,

135–137

accessor methods
characteristics of, 158–159
defined, 319

AClass class, 155–156
add method

in Arraylist, 287
in Collection, 283
in HashSet, 292–293
in List, 284
in ListIterator, 302
in Set, 291

addEntry method
in MyPhoneBook, 242–244
in PhoneBook, 239

AddingMachine class, 136–137
addition, 75
AddressBook class, 133–136
addToX method, 167

addToY method, 167
Advanced tab, 17
AllMachines class, 188–189
ampersands (&) in conditional operators,

83–85

AND operators,

83–85

API classes,

249

java.lang.Math
methods in,

264–266

for random numbers,

266–270

wrapper classes in,

270–278

java.lang.String,

250–251

methods in,

251–260

package for, 63–64
working with,

47

java.lang.StringBuffer,

260–264

key terms for, 278
review questions for, 279

append method, 262
applets

characteristics of, 6
defined, 319

Appliance class, 60–61
Appliance interface, 62
application scope,

90

arguments
in main method,

39–41

spaces in, 119
testing,

94–97

arithmetic operators,

75

binary,

75–76

unary,

76–77

ArrayIndexOutOfBoundsException class, 92, 95,
223–224, 228

ArrayList class,

285–291

ArrayListAgain class, 289–290
ArrayListDemo class, 286–287
ArrayLoop class, 106–107
arrays,

125

of arguments,

94–97

creating,

129–130

declaring,

128–129

4373Indx.fm Page 329 Wednesday, July 21, 2004 11:00 PM

330

Arrays class – bytecode

defined, 319
elements in

accessing,

135–137

data types for, 126–127
defined, 319
searching for,

144–145

filling,

142–143

initializers for
defined, 319
for two-dimensional arrays,

140–141

working with,

133–135

java.util.Arrays class,

142

key terms for, 145
length of, 126–127,

130–132

multidimensional
defined, 323
initializers for,

140–141

non-rectangular,

141

working with,

137–140

operation of,

126–128

populating,

132–133

review questions for, 146
sorting,

143–144

Arrays class,

142

ASCII code for char type, 45
assertions, 319
assignment operators,

80–81

for array elements, 129
combination,

81

asterisks (*)
for comments, 31
for multiplication, 75

automatic casting,

80

automatic constructors,

209

B

backslashes (\) in paths, 66
behaviors

defined, 319
object, 4

binary input streams
defined, 319
purpose of, 267

binary operators
arithmetic,

75–76

conditional, 84–85

binarySearch method, 144
binding variables,

189–190

block comments,

30

bodies
classes

contents of, 33
defined, 320

methods, 33,

37–38

Boolean class, 270
boolean data type

characteristics of,

46

keyword for, 56
size of, 42

Boolean operators
AND,

83–85

OR,

84–85

braces ({})
for array elements, 134, 141
for class bodies,

33–34

for scope, 74, 90
for try/catch blocks, 227

brackets ([]) for arrays, 128–129
branching statements,

114

break,

114–117

continue,

117–121

defined, 319
return,

121–122

break keyword, 57
break statement,

114

labels with,

114–117

in switch statements, 99–100
brighten method

in HeatLamp, 218
in LightSource, 215
in MyLamp2, 216–217

Browser Registration screen, 15
bypassing local variables,

166–168

Byte class
parsing methods for, 99, 275
purpose of, 270

byte data type
keyword for, 56
size of, 42–43
upcasting, 79

bytecode, 5
compiling,

26–27

defined, 319

4373Indx.fm Page 330 Wednesday, July 21, 2004 11:00 PM

C++ language – clear method

331

C

C++ language
defined, 319
vs. Java, 10

capitalization, 25
carets (^) in conditional operators,

85

case keyword, 57
case of strings, converting,

252–253

case-sensitive languages
names in, 27
source code editing in, 25

case statements in switch/case,

97

default statement,

99–100

vs. if/else,

100–102

ranges of values in,

102–104

casting,

78

automatic,

80

defined, 319–320
downcasting,

79

instanceof operator for,

197–199

upcasting,

78–79

Casting class, 198–199
catch blocks in try/catch blocks,

227–229

multiple,

230–232

process flow with,

229–230

ceil method, 264–265
ceiling of numbers, 264–265
CGI (Common Gateway Interface)

defined, 320
Perl for, 11

chaining constructors,

177–179

, 320
char data type

keyword for, 56
size of, 42
working with,

45

Character class
methods in,

276–278

purpose of, 270
character readers

defined, 320
purpose of, 267

CharacterCounter class, 252
CharacterDemo class, 276–277
charAt method, 103
checked exceptions

defined, 320
handling, 226

CheckPrefix class, 254–255
child classes, 58, 60–61
.class extension, 27
class keyword, 60
class scope, 90
ClassCastException class, 198
classes

abstract
characteristics of, 62
defined, 319
pure, 215
working with,

212–215

API.

See

 API classes
bodies of

contents of, 33
defined, 320

compiling,

65–67

concrete
vs. abstract, 62, 213
defined, 320

defined, 320
defining

HelloWorld,

31–34

Lamp,

150–152

hierarchy of,

193–195

keywords for,

60

class,

60

extends,

60–62

implements,

63

import,

67–68

interface,

62

package,

63–67

for objects, 148
wrapper, 91, 99,

270

Character,

276–278

creating,

271–273

defined, 327
methods in,

273–276

summary,

278

ClassName class, 209–210
CLASSPATH environment variable, 66
-classpath flag in java, 66
ClassWithoutThis class, 165
ClassWithThis class, 165–166
clear method

in Arraylist, 288
in Collection, 283
in HashSet, 293
in Map, 294

4373Indx.fm Page 331 Wednesday, July 21, 2004 11:00 PM

332

code – data types

code.

See

 source code
Collection interface,

282–284

collections framework,

281–282

defined, 320
iterators,

298–299

defined, 322
java.util.Iterator interface,

299–301

java.util.ListIterator interface,

301–304

and maps,

304–306

java.util.Collection interface,

282–284

key terms for, 306
lists,

284

defined, 322
java.util.Arraylist class,

285–291

java.util.List interface,

284–285

summary,

291

maps,

294

defined, 322
and iterators,

304–306

java.util.HashMap class, 296–298
java.util.Map interface, 294–295
summary, 298

review questions for, 307
sets, 291

defined, 325
java.util.HashSet class, 292–293
java.util.Set interface, 291–292
summary, 294

colons (:) in ternary operator, 104
ColoredLightBulb class, 174–175
ColoredLightBulb2 class, 177–179
columns in multidimensional arrays, 138–140
combination operators, 81
command line

in main arguments, 39
working with, 266–267

comments, 29
block, 30
defined, 320
documentation, 30–31
single line, 29–30

Common Gateway Interface (CGI)
defined, 320
Perl for, 11

compiled languages, 10
compilers

defined, 320
purpose of, 24

compiling
classes, 65–67
defined, 320
process, 24
source code, 26–27

concrete classes
vs. abstract, 62, 213
defined, 320

conditional operators, 83–86
const keyword, 55, 60
constants

defined, 320
modifier for, 59–60

constructors, 153
chaining, 177–179, 320
creating, 170–173
defined, 320
multiple, 173–177
overriding, 207–210

contains method
in Arraylist, 287
in Collection, 283

containsKey method
in HashMap, 297
in Map, 295

containsValue method, 295
continue statement, 57, 117–121
converting case of strings, 252–253
coolDown method

in HeatLamp, 218
in HeatSource, 217
in Toaster2, 191–192

cos method, 265
cosine method, 265
creating Java programs, 24
curly braces ({})

for array elements, 134, 141
for class bodies, 33–34
for scope, 74, 90
for try/catch blocks, 227

Custom Setup screen, 14–15

D
-d flag in java, 65
data types, 41

for array elements, 126–127

4373Indx.fm Page 332 Wednesday, July 21, 2004 11:00 PM

decimal points (.) in floating types – Environment Variables window 333

boolean, 46
casting, 78

automatic, 80
downcasting, 79
instanceof operator for, 197–199
upcasting, 78–79

character, 45
floating point, 45
integer, 43–45
literal values, 42–43
primitive types, 42

keywords for, 56
vs. reference values, 47–51
testing equality of, 82
working with, 46–47

size of, 42
String class, 47

decimal points (.) in floating types, 45
declarations

array, 128–129
in strongly typed languages, 6–7

declare or handle rule, 238–239
decrement operator, 77
default array element values, 129, 132, 135–136
default constructors, 209–210
default modifier, 186
default packages, 64
default statement

keyword for, 57
in switch/case, 100

defining
classes

HelloWorld, 31–34
Lamp, 150–152

methods, 34–38
delegation

defined, 320
in invoking methods, 159

delete method, 263
derived classes, 58
device drivers, 9
dim method

in HeatLamp, 218
in LightSource, 215
in MyLamp2, 216–217

directories for installation, 14
division, 75
do statement, 57, 113

documentation comments, 30–31
DomainRipper class, 258–260
dot-notation

defined, 320
for methods, 38

Double class
parsing methods for, 275
purpose of, 271

double data type
keyword for, 56
size of, 42, 45
upcasting, 79

double quotes (")
for arguments, 119
for strings, 49

doubleIt method, 168–169
Doubler class, 168
downcasting, 79
downloading java, 11–13
drivers, 9

E
Echo class, 223
Edit System Variable dialog box, 18
editors, 25
elements, array

accessing, 135–137
data types for, 126–127
defined, 319
filling, 142–143
initializers for, 133–135
in multidimensional arrays, 137–141
searching for, 144–145
sorting, 143–144

else statement, 57, 92–94
encapsulation

benefits of, 150
defined, 320
modifier for, 58

endsWith method, 254–255
EnforcedArg class, 131–132
ensureCapacity method, 288–290
entries method, 304
Entry class, 241–242
environment variables, 16–20
Environment Variables window, 17

4373Indx.fm Page 333 Wednesday, July 21, 2004 11:00 PM

334 equal signs (=) – floor of numbers

equal signs (=)
for array elements, 129
for assignment, 80–81
for combination operators, 81
for equality tests, 81–82
for non-equality operator, 83
for relational operator, 82–83

equality
operator for, 81–82
of references, 202
of strings, 255–256

equals method
in Object, 202–203
in Record, 203–204
in String, 255
for wrapper classes, 273–274

equalsIgnoreCase method, 255
Error class, 225
error objects, 225
errors and error messages

compiler, 26–27
defined, 321
exceptions. See exception handling
printing, 132

event handling, 321
EvenTest class, 92
EvenTest2 class, 93
EvenTest3 class, 94
EvenTest4 class, 96
EvenTestTertiary class, 104
Exception class, 225, 227
exception handling, 7, 221

creating exception types, 235–237
defined, 321
hierarchy in, 224–226
key terms for, 246
messages for, 223–224
method call stacks in, 222–223
review questions in, 247
throwing exceptions, 237

in subclasses, 239–240
throw keyword, 240
throws clauses, 238–240, 326

try/catch blocks, 227–229
finally clauses, 232–235
multiple catch blocks in, 230–232
process flow with, 229–230

exceptions, 321
exclamation points (!)

in conditional operator, 85–86
in non-equality operator, 83

exclusive OR operator, 85
executing programs, 24, 27–28
exit method, 96–97
expanding subclasses, 190–193
exponential calculations, 264–265
extends keyword, 60–62, 184–185
extracting substrings, 257–260

F
false keyword, 56
false values, 46
features of Java, 3

high performance, 9
in installation, 14
interpreted source code, 5
multithreaded programs, 8
object orientation, 4–5
portability, 6
problem solving, 10
robustness, 6–7
security, 7–8
simplicity, 4
time and money savings, 9

fill method, 142–143
FillArray class, 142–143
filling arrays, 142–143
final classes, 185
final modifier, 59–60
finally clauses, 232–235
first method

in ClassWithoutThis, 165
in ClassWithThis, 166

Float class, 99
parsing methods for, 275
purpose of, 271

float data type
keyword for, 56
size of, 42, 45
upcasting, 79

floating point data types, 45
floor method, 264–265
floor of numbers, 264–265

4373Indx.fm Page 334 Wednesday, July 21, 2004 11:00 PM

flow control – HelloWorld program 335

flow control, 89
break statement, 114–117
continue statement, 117–121
defined, 321
do statement, 113
for loops, 105–107

infinite loops from, 109
multiple increment steps in, 107–109
vs. while, 111–113

if statement, 90–92
else statement, 92–94
vs. switch/case, 100–102
for testing array of arguments, 94–97

key terms for, 123
keywords for, 56–57
return statement, 121–122
review questions for, 124
switch and case statements, 97

default statement, 100
vs. if/else, 100–102
ranges of values in, 102–104

ternary operator, 104
while loops, 110–113

for loops, 105–107
infinite loops from, 109
keyword for, 57
multiple increment steps in, 107–109
vs. while, 111–113

ForDemo class, 105–106
foreign code, 8
ForTerminationDemo class, 108–109
forward slashes (/)

for comments, 30–31
for division, 75
in paths, 66

frameworks
collections. See collections framework
defined, 321
defining, 282

fully qualified names
defined, 321
packages in, 64

G
garbage collection

defined, 321
operation of, 7

get method
in Arraylist, 287
in List, 284
in Map, 295, 306

getAcctNum method, 203
getDetails method, 241–242
getFirst method, 241
getLast method, 241
getMessage method

in HelloWorldRevisited, 122
in NoSuchEntryException, 235–237
in Throwable, 225, 227, 245

getName method
in AbstractMachine, 213
in Machine, 183
in Record, 203
in Robot2, 73

getNumber method
in AClass, 155
in Doubler, 168
in Entry, 241

getSum method, 167
getX method, 163
going out of scope, 74
Gosling, James, 2–3
goto reserved word, 55
greater than signs (>) as relational operator, 82–83
Green Project, 2–3
grouping operator, 78
GuessingGame class, 267–270

H
HashMap class, 296–298
HashMapDemo class, 296–297
HashSet class, 292–293
HashSetDemo class, 292–293
hasNext method, 299, 301
hasPrevious method, 302, 304
HeatLamp class, 217–219
HeatSource interface, 217
heatUp method

in HeatLamp, 218
in HeatSource, 217
in Toaster2, 191–192

HelloWorld.class file, 27–28
HelloWorld program, 24

executing, 27–28

4373Indx.fm Page 335 Wednesday, July 21, 2004 11:00 PM

336 HelloWorld2 class – instantiation

source code for
compiling, 26–27
examining, 28
writing, 25–26

HelloWorld2 class, 39
HelloWorld3 class, 41
HelloWorldRevisited class, 122
hiding information

benefits of, 150
modifier for, 58
variables, 186

hierarchies
of classes, 193–195
in exception handling, 224–226

high performance in Java, 9
history of Java, 1–3

I
I/O classes

defined, 321
in java.io, 266–269

if keyword, 57
if statement, 90–92

else statement, 92–94
vs. switch/case, 100–102
for testing array of arguments, 94–97

IllegalStateException class, 299
immutable data types

arrays, 127
defined, 321
String, 50–51

implements keyword, 63
import keyword, 67–68
importing, 67–68
in variable, 267
increment operator, 76–77
indexes

for array elements, 126–127
for multiple arguments, 40

indexOf method
in Arraylist, 289–290
in String, 256, 260
in StringBuffer, 261, 263

infinite loops
defined, 321

for loops, 109
while loops, 112–113

information hiding
benefits of, 150
modifier for, 58
variables, 186

inheritance, 60–61, 182–183
class hierarchy in, 193–195
defined, 321
extends keyword for, 184–185
instanceof operator for, 196–199
multiple, 63, 185
reference type rule for methods, 195
reference types vs. runtime types in, 187–190
rules of, 185–187
subclass expansion in, 190–193

initialization expressions
defined, 321
in for loops, 105–106

initializers for arrays
defined, 319
two-dimensional, 140–141
working with, 133–135

inner classes, 321
input streams

defined, 321
purpose of, 267

InputStreamReader class, 267
insert method, 263
installing J2SE

on Linux, 18–20
on Windows, 13–18

instance methods, 157
defined, 322
purpose of, 151

instance variables
characteristics of, 59
defined, 322
purpose of, 151

InstanceChecker class, 196
instanceof operator, 71, 196–199
instantiation, 32, 152–153

of arrays, 130
defined, 322
Lamp class, 152–153
lazy, 49
in sharing references, 155–156

4373Indx.fm Page 336 Wednesday, July 21, 2004 11:00 PM

int data type – java.util.List interface 337

int data type
keyword for, 56
size of, 42–43
upcasting, 79

Integer class, 91
parsing methods for, 275
purpose of, 270

integer types, 43–45
interface keyword, 62
interfaces

defined, 322
working with, 215–219

interpreted source code, 5
interpreters

defined, 322
for HelloWorld, 27–28
purpose of, 24

IntHolder class, 163
IOException class, 269
isDigit method, 277
isEmpty method

in Arraylist, 287
in Collection, 283–284
in Map, 295

isLetter method, 277
isLetterOrDigit method, 277
isLit method

in ColoredLightBulb, 174
in LightBulb, 157–158, 164

isLowerCase method, 277
isOn method

in AbstractMachine, 213
in Machine, 183

isUpperCase method, 277
isWhitespace method, 277
iteration expressions in for loops, 105–106
Iterator interface, 299–301
IteratorDemo class, 300
iterators, 298–299

defined, 322
java.util.Iterator interface, 299–301
java.util.ListIterator interface, 301–304
and maps, 304–306

J
J2EE (Java 2 Platform, Enterprise Edition), 11–12

J2ME (Java 2 Platform, Micro Edition), 12
J2RE (Java 2 Runtime Environment, Standard

Edition), 11
J2SE (Java 2 Platform Standard Edition), 11

downloading, 12–13
installing

on Linux, 18–20
on Windows, 13–18

Java API (Java Application Programming Interface), 3
java.awt.event package, 68
java compiler, 65–66
JAVA_HOME environment variable, 19
Java HotSpot Virtual Machine (Java HotSpot VM)

defined, 322
for performance, 5

java interpreter, 27–28
java.io package, 266–269
java.lang package, 64

in exception hierarchy, 224–225
importing, 67–68

java.lang.Error class, 225
java.lang.Exception class, 225, 227
java.lang.IllegalStateException class, 299
java.lang.Integer class, 91
java.lang.Math class

methods in, 264–266
for random numbers, 266–270
wrapper classes in, 270–278

java.lang.NumberFormatException class, 227–228
java.lang.Object class, 131

in class hierarchy, 194–195
overriding methods in, 202–206

java.lang.RuntimeException class, 226
java.lang.String class, 250–251

methods in, 251–260
package for, 63–64
working with, 47

java.lang.StringBuffer class, 260–264
java.lang.System class, 64–65
java.lang.Throwable class, 225, 227
Java Plug-in, 11
java.util.Arrays class, 142
java.util.Collection interface, 282–284
java.util.HashMap class, 296–298
java.util.HashSet class, 292–293
java.util.Iterator interface, 299–301
java.util.List interface, 284–285

4373Indx.fm Page 337 Wednesday, July 21, 2004 11:00 PM

338 java.util.Map interface – literal values

java.util.Map interface, 294–295
java.util.Set interface, 291–292
java.util.SortedSet interface, 293
java.util.UnsupportedOperationException class, 284
java.util.Vector class, 288
Java Virtual Machine (JVM), 3, 5

defined, 322
virtual method invocation in, 189, 201

javac compiler, 26
javadoc tool, 30–31
JavaScript language

defined, 322
vs. Java, 11

JavaServer Web Development Kit (JSWDK), 12
JVM (Java Virtual Machine), 3, 5

defined, 322
virtual method invocation in, 189, 201

K
keys, mapping to values, 294
keySet method

in HashMap, 297
in Map, 295

keywords
class-related, 60

class, 60
extends, 60–62
implements, 63
import, 67–68
interface, 62
package, 63–67

for flow control, 56–57
key terms for, 86
list of, 55–56
for modification, 57–60
for objects, 69

instanceof, 71
new, 69–71
null, 71–72
super, 72
this, 72–74

for primitive types, 56
review questions for, 87
summary, 74

L
labels

with break, 114–117
with continue, 119–121
defined, 322

Lamp class, 150–154, 184
LampTest class, 152–153, 184–185
LampTest2 class, 187
LampWithBulb class, 158
LampWithBulb2 class, 171–172
LampWithBulb2Test class, 173
LampWithBulb3 class, 175–176
LampWithBulb3Test class, 176
LampWithBulbTest class, 159–160
last-in-first-out (LIFO) stacks, 222
lastIndexOf method

in List, 285
in String, 256, 259–260
in StringBuffer, 261

lazy instantiation
defined, 322
for memory usage, 49

left braces ({) for class bodies, 33–34
length

of arrays, 126–127, 130–132
of strings, 251–252

length method
in String, 251–252
in StringBuffer, 261

less than signs (<) as relational operator, 82–83
license agreements, 13–14, 19
LIFO (last-in-first-out) stacks, 222
LightBulb class, 156–157, 164
LightSource interface, 215
Linux, installing J2SE on, 18–20
List interface, 284–285
ListIterator interface, 301–304
ListIteratorDemo class, 302–303
lists, 282–284

defined, 322
java.util.Arraylist class, 285–291
java.util.List interface, 284–285
summary, 291

literal values
characteristics of, 42–43
defined, 322
string, 47

4373Indx.fm Page 338 Wednesday, July 21, 2004 11:00 PM

local scope – methods 339

local scope, 74
local variables

bypassing, 166–168
defined, 322
scope of, 90

log method, 264–265
logical equality of objects

defined, 323
testing for, 202

Long class
parsing methods for, 275
purpose of, 271

long data type
keyword for, 56
size of, 42–43
upcasting, 79

loops
for, 105–107

infinite loops from, 109
keyword for, 57
multiple increment steps in, 107–109
vs. while, 111–113

while
vs. for, 111–113
working with, 110–111

M
Machine class, 182–183
main method

arguments in, 39–41
operation of, 34–35

Map interface, 294–295, 304
MapIterationDemo class, 305–306
maps, 294

defined, 323
and iterators, 304–306
java.util.HashMap class, 296–298
java.util.Map interface, 294–295
summary, 298

Math class
methods in, 264–266
for random numbers, 266–270
wrapper classes in, 270–278

MathDemo class, 75–76, 264–266
max method, 264–266
McGilton, Henry, 3

members
defined, 323
in dot-notation, 38

messages
defined, 323
in exception handling, 223–224
in object-oriented programming, 148, 156–160

passing by reference, 162–164
passing by value, 160–162

method call stacks
defined, 323
in exception handling, 222–223

method scope, 90
method signatures

characteristics of, 34
defined, 323

methodOne method
in PassByRefTest, 163–164
in PassByValueTest, 160–161
in PassByValueTest2, 161–162

methods, 5
abstract

characteristics of, 58
defined, 319
working with, 212–215

access modifiers for, 35
accessor, 158–159, 319
bodies of, 33, 37–38
in class definitions, 32
defined, 323
defining, 34–38
instance, 151, 157
main, 34–35
mutator, 157
names for, 34, 36
for objects, 148
overloading, 199–201, 323
overriding, 201–202

constructors, 207–210
defined, 323
in MyToaster, 210–212
in Object, 202–206
super keyword in, 206–207

parameter lists for, 34, 36–37
reference types for, 195
returning values from, 122
virtual invocation of, 189, 201
void return type for, 35–36

4373Indx.fm Page 339 Wednesday, July 21, 2004 11:00 PM

340 methodTwo method – object-oriented programming

methodTwo method
in PassByRefTest, 163–164
in PassByValueTest, 160–161
in PassByValueTest2, 162

min method, 264–266
minus signs (-)

for decrement operators, 77
for negation, 77
for subtraction, 75

modification, keywords for, 57–60
modulus operator

defined, 323
operation of, 75–76

money savings, 9
multidimensional arrays

defined, 323
initializers for, 140–141
non-rectangular, 141
working with, 137–140

multiple arguments, 40–41
multiple constructors, 173–177
multiple else statements, 93–94
multiple increment steps in for loops, 107–109
multiple inheritance

defined, 323
implements keyword for, 63
limitations of, 185

multiple lines, spanning, 37
multiplication, 75
MultiplyFor class, 109
MultiStepFor class, 107–109
multithreaded programs

characteristics of, 8
defined, 323

mutator methods
defined, 323–324
purpose of, 157

MyLamp class, 214–215
MyLamp2 class, 216–217
MyPhoneBook class, 242–243
MyToaster class, 210–211
MyToasterTest class, 211–212

N
names

in case-sensitive languages, 27

of constructors, 171
creating, 54–55
in inheritance, 186
for methods, 34, 36
in overriding methods, 201–202
for packages, 67
for source files, 26

natural ordering
defined, 324
in sorting, 143

negation
in conditional tests, 85–86
operator for, 77

nested scopes, 90
NestedLoopsWithBreak class, 115
NestedLoopsWithBreak2 class, 116
NestedLoopsWithContinue class, 119–120
new Keyword, 69–71
next method, 299, 301
nextIndex method, 302, 304
NoClassDefFoundException class, 28
non-equality operator, 83
non-rectangular multidimensional arrays

defined, 324
working with, 141

NoSuchElementException class, 299
NoSuchEntryException class, 235–237
null keyword, 71–72
null values

for array elements, 129, 132, 135–136
as literals, 43

NullPointerException class, 226
NumberFormatException class, 227–228, 269, 273

O
Oak language, 2–3
Object class, 131

in class hierarchy, 194–195
overriding methods in, 202–206

object-oriented programming, 4–5, 147, 181
abstract classes and methods in, 212–215
constructors in

chaining, 177–179, 320
creating, 170–173
multiple, 173–177

defined, 324

4373Indx.fm Page 340 Wednesday, July 21, 2004 11:00 PM

objects – passing 341

defining classes in, 150–152
inheritance in. See inheritance
instantiating and using objects, 152–153
interfaces in, 215–219
key terms for, 179, 219
object messaging in, 156–160

passing by reference, 162–164
passing by value, 160–162

object-oriented paradigm, 148
polymorphism in, 199

method overloading in, 199–201
method overriding in. See overriding methods

real-world objects, 149–150
review questions for, 180, 220
sharing references in, 155–156
this keyword in, 165–166

for bypassing local variables, 166–168
passing references with, 168–169
with static methods, 169–170

objects, 4, 148
arrays as, 127–128
casting, 197–199
class definitions for, 32
defined, 324
instantiating and using, 152–153
keywords for, 69

instanceof, 71
new, 69–71
null, 71–72
super, 72
this, 72–74

references to, 69, 149
100% Pure Java initiative, 6
operators, 74–75

arithmetic, 75
binary, 75–76
unary, 76–77

assignment, 80–81
for array elements, 129
combination, 81

conditional, 83–86
key terms for, 86
parentheses, 78
relational, 81–83
review questions for, 87

optimization of string usage, 49–51
OR operators, 84–85

ordering
exceptions, 230–232
in sorting, 143

out variable, 267
OutOfMemoryError class, 225
output streams

defined, 324
purpose of, 266–267

Overloaded class, 200–201
overloading methods

defined, 323
working with, 199–201

overriding methods, 201–202
constructors, 207–210
defined, 323
in MyToaster, 210–212
in Object, 202–206
super keyword in, 206–207

P
package keyword, 63–67
package private

characteristics of, 68
defined, 324

packages, 63–65
compiling classes defined in, 65–67
defined, 324
names for, 67
subpackages, 68

parameter lists
for methods, 34, 36–37
in overriding methods, 201–202

parent classes, 60–61
parentheses ()

for casting, 78–80
for constructors, 153
for grouping, 78
for methods, 36

parseInt method, 91
parseXXX Methods, 275–276
parsing strings, 99
PassByRefTest class, 163–164
PassByValueTest class, 160–161
PassByValueTest2 class, 161–162
passing

multiple arguments, 40–41

4373Indx.fm Page 341 Wednesday, July 21, 2004 11:00 PM

342 PATH environment variable – question marks (?) in ternary operator

by reference
defined, 324
in object messaging, 162–164
using this, 168–169

by value
defined, 324
in object messaging, 160–162

PATH environment variable, 16–20
percent signs (%) for modulus operator, 75–76
performance, 9
Perl language, 11
PhoneBook interface, 239
plus signs (+)

for addition, 75
for increment operator, 76–77

pointers, 6
defined, 324
for references, 48

polymorphism, 199
defined, 324
method overloading in, 199–201
method overriding in, 201–202

constructors, 207–210
in MyToaster, 210–212
in Object, 202–206
super keyword in, 206–207

pools, string, 250–251
popping objects off stacks, 222
populating

arrays, 132–133
initializers for, 133–135

portability of Java, 6
postincrement operators, 76–77
pow method, 265
powerOff method

in Appliance, 60–62
in Refrigerator, 63

powerOn method
in Appliance, 60–62
in Refrigerator, 63

precedence
defined, 324
in operations, 78

prefixes of strings, 254–255
preincrement operators, 77
previous method, 302, 304
previousIndex method, 302, 304

primitive data types, 42
keywords for, 56
vs. reference values, 47–51
testing equality of, 82
working with, 46–47

PrimitivesInAction class, 46–47
print method, 42
println method, 37–38

for error messages, 132
in System, 64

printOut method
in SubPrinter, 206
in SuperPrinter, 206–207

printStackTrace method, 223, 225, 227, 236, 245
PrintTest class, 207
private modifier

in inheritance, 186
purpose of, 57–58

procedural code
characteristics of, 5
defined, 324–325

process flow with try/catch blocks, 229–230
processes, 8
promotion

data type, 80
defined, 325

protected code
defined, 325
in try blocks, 227

protected modifier
in inheritance, 186
purpose of, 58

pseudocode
defined, 325
purpose of, 91

public modifier
in class definitions, 32–33
in inheritance, 186
for methods, 35

pure abstract classes, 215
pushing objects onto stacks, 222
put method, 295

Q
question marks (?) in ternary operator, 104

4373Indx.fm Page 342 Wednesday, July 21, 2004 11:00 PM

quotes (") – setLit method 343

quotes (")
for arguments, 119
for strings, 49

R
random method, 266–270
random numbers, 266–270
ranges of values in switch and case statements, 102–

104
readLine method, 269
real-world objects, 149–150
Record class, 203–204
RecordChecker class, 205–206
reference data types, 41

binding variables to, 189–190
defined, 325
equality of

defined, 325
testing, 82, 202

for methods, 195
vs. primitive, 47–51
vs. runtime types, 187–190

references, 48
defined, 325
to objects, 69, 149
passing

defined, 324
in object messaging, 162–164
using this, 168–169

sharing, 155–156
Refrigerator class, 61, 63
relational operators, 81–83
remainder operator, 75–76
remove method

in Arraylist, 287, 290–291
in Collection, 283
in HashMap, 297
in Iterator, 299, 301
in List, 285
in Map, 295

removing spaces in strings, 253–254
replace method, 263
reserved words

defined, 325
list of, 55

return statement, 57, 121–122
return types in overriding methods, 201

returning values from methods, 122
Robot class, 69
Robot2 class, 73
RobotUser class, 69–70
robustness of Java, 6–7
round method, 265
rounding, 265
rows in multidimensional arrays, 138–140
RPM files, 19
rules of inheritance, 185–187
runtime types

defined, 325
vs. reference types, 187–190

RuntimeException class, 226

S
saving source code, 26
sayHello method, 200–201
scope

application, 90
defined, 325
with this, 73–74

scripting languages, 11
search method

in MyPhoneBook, 243–244
in PhoneBook, 239

SearchArray class, 144–145
searching

arrays, 144–145
for substrings, 256–257

second method
in ClassWithoutThis, 165
in ClassWithThis, 166

security, 7–8
semicolons (;) for statements, 37–38
Set interface, 291–292
set method

in Arraylist, 290
in List, 285
in ListIterator, 302, 304

setColor method, 174–175
setLightBulb method, 158–159
setLit method

in ColoredLightBulb, 174
in ColoredLightBulb2, 178
in LightBulb, 157–158

4373Indx.fm Page 343 Wednesday, July 21, 2004 11:00 PM

344 setName method – StringBufferDemo class

setName method
in AbstractMachine, 212–213
in Machine, 182–183
in Robot2, 73

setNumber method
in AClass, 155
in Doubler, 168

setOn method, 213
sets, 283, 291

defined, 325
java.util.HashSet class, 292–293
java.util.Set interface, 291–292
summary, 294

setX method, 163
sharing references, 155–156
short-circuit operators, 83–84
Short class

parsing methods for, 275
purpose of, 270

short data type
keyword for, 56
size of, 42–43
upcasting, 79

showInfo method, 262–263
signatures, method, 34
simplicity of Java, 4
sin method, 265
sine method, 265
single inheritance, 185
single line comments, 29–30
size

of arrays, 130–132
of data types, 42
of names, 54

size method
in Arraylist, 287
in Collection, 283–284
in Map, 295

slashes (/)
for comments, 30–31
for division, 75
in paths, 66

sockets, 325
sort method, 143
SortArray class, 143–144
SortedSet interface, 293
sorting arrays, 143–144

source code, 24
compiling, 26–27
defined, 325
examining, 28
interpreted, 5
procedural, 5
writing, 25–26

spaces
in arguments, 119
for multiple arguments, 40
removing from strings, 253–254

SpaceTrimmer class, 253–254
spanning multiple lines, 37
sqrt method, 265
square brackets ([]) for arrays, 128–129
square roots, 265
SquareIt class, 228–229
SquareItAgain class, 229–230
SquareItFinally class, 233–234
stack traces

defined, 325
in exception handling, 223

standard errors
defined, 325
in exception handling, 225

Star7 device, 2–3
startsWith method, 254
state of objects, 148
statements

characteristics of, 37–38
defined, 326

states
defined, 326
of objects, 4

static modifier and methods, 35
this keyword with, 169–170
working with, 58–59

streams, 266–267
String class, 250–251

methods in, 251–260
package for, 63–64
working with, 47

string pools
defined, 326
purpose of, 250–251

StringBuffer class, 260–264
StringBufferDemo class, 261–263

4373Indx.fm Page 344 Wednesday, July 21, 2004 11:00 PM

StringConverter class – throwing exceptions 345

StringConverter class, 253
StringDemo class, 250–251
StringEquality class, 255–256
strings

converting case of, 252–253
equality of, 255–256
extracting substrings from, 257–260
length of, 251–252
literals in

assigning, 43
defined, 326
working with, 49–51

in main arguments, 40
parsing, 99
removing spaces from, 253–254
searching for content in, 256–257
verifying prefixes and suffixes of, 254–255

strongly typed languages
declarations in, 6–7
defined, 326

styles of comments
block, 30
documentation, 30–31
single line, 29–30

SubClass class, 208–209
subclasses, 58, 60–61

in casting, 197
defined, 326
expanding, 190–193
throwing exceptions in, 239–240

subpackages, 68
SubPrinter class, 206–207
subscripts

for arrays, 135
defined, 326

substring method, 257–260
substrings

defined, 326
extracting, 257–260
searching for, 256–257

subtraction, 75
suffixes of strings, 254–255
SumItUp class, 167–168
super keyword

in overriding methods, 206–207
for parent classes, 72

SuperClass class, 208

superclasses, 60–61
in casting, 197
defined, 326
referencing, 72

SuperPrinter class, 206
SuperVariableDemo class, 189–190
switch and case statements, 97

default statement, 100
vs. if/else, 100–102
ranges of values in, 102–104

switch keyword, 57
SwitchCommand class, 97–99
SwitchDemo class, 97, 100–102
syntax errors, 27
System class, 64–65
System Properties window, 17

T
tables, multidimensional arrays for, 137–140
tan method, 265
tangent method, 265
terminating characters

defined, 326
for statements, 37–38

termination expressions in for loops, 105–106
ternary operator, 104
Test class, 169–170
testing

arrays of arguments, 94–97
equality

of primitive types, 82
of reference types, 82, 202

TestPhoneBook class, 244–245
text editors, 25
this keyword

for bypassing local variables, 166–168
passing references with, 168–169
with static methods, 169–170
working with, 72–74, 165–166

threads
characteristics of, 8
defined, 326

throw keyword, 240
Throwable class, 225, 227
throwing exceptions, 237

in subclasses, 239–240

4373Indx.fm Page 345 Wednesday, July 21, 2004 11:00 PM

346 time savings – void keyword

throw keyword, 240
throws clauses, 238–240, 326

time savings, 9
Toaster class, 187–188
Toaster2 class, 191–192
Toaster2Test class, 192–193
toCharArray method, 111
toLowerCase method

in Character, 277–278
in String, 118, 252

toString method
in Record, 204
in String, 203
in StringBuffer, 262, 264
for wrapper classes, 274

toUpperCase method
in Character, 277–278
in String, 252

trigonometric methods, 264–265
trim method, 253–254
trimToSize method, 289, 291
true keyword, 56
true values, 46
try/catch blocks, 227–229

finally clauses, 232–235
multiple catch blocks in, 230–232
process flow with, 229–230

turnOff method
in AbstractMachine, 213
in HeatLamp, 218
in Lamp, 151–154
in LampWithBulb, 158–159
in LampWithBulb2, 172
in LampWithBulb3, 175–176
in Machine, 183
in MyLamp, 214
in MyToaster, 211–212

turnOn method
in AbstractMachine, 213
in HeatLamp, 218
in Lamp, 150–154
in LampWithBulb, 158–159
in LampWithBulb2, 172
in LampWithBulb3, 175
in Machine, 183
in MyLamp, 214
in MyToaster, 211–212

two-dimensional arrays, 138–140
TwoDimArray class, 139–140
types. See data types

U
unary arithmetic operators, 76–77
unchecked exceptions

defined, 326
handling, 226

Unicode
for char type, 45
defined, 326

unsigned data types
characteristics of, 45
defined, 326

UnsupportedOperationException class, 284
upcasting, 78–79
UsingIntegers class, 43–44

V
valid names, 54–55
value, passing by

defined, 324
in object messaging, 160–162

valueOf method, 274
values, mapping keys to, 294
values method

in HashMap, 298
in Map, 295

variables
binding, 189–190
in class definitions, 32
defined, 326–327
environment, 16–20
hiding, 186
instance, 59, 151
local, 90
for objects, 148

Vector class, 288
verifying string prefixes and suffixes, 254–255
vertical bars (|) in conditional operators, 85
virtual method invocation

defined, 326
purpose of, 189, 201

void keyword, 56

4373Indx.fm Page 346 Wednesday, July 21, 2004 11:00 PM

void return type – WrapperValueOfDemo class 347

void return type, 35–36, 121–122
VowelCheck class, 102–103
Vowels class, 117–118

W
warranty concept, 154
Web, 2–3
while keyword, 57
while loops, 110–113
WhileDemo class, 110–111
WhileForComparison class, 112
whitespace, 31

Windows, installing J2SE on, 13–18
wrapper classes, 91, 99, 270

Character, 276–278
creating, 271–273
defined, 326
methods in, 273–276
summary, 278

WrapperDemo class, 271–272
WrapperDemoWithStrings class, 272–273
WrapperEqualityDemo class, 273–274
WrapperParsingDemo class, 276
WrapperValueOfDemo class, 274

4373Indx.fm Page 347 Wednesday, July 21, 2004 11:00 PM

	Java Foundations
	Cover

	Contents
	Introduction
	Chapter 1 The History of Java
	Where Java Technology Came From
	The Green Project
	Enter the Web

	The Features of Java Technology
	Java Is Simple
	Java Is Object Oriented
	Java Is Interpreted
	Java Is Portable
	Java Is Robust
	Java Is Secure
	Java Is Multithreaded
	Java Is High Performance
	Java Saves Time and Money
	Java Solves Important Problems

	How Java Compares with Other Languages
	How to Download and Install Java
	Downloading the J2SE Software

	Terms to Know
	Review Questions

	Chapter 2 Java Fundamentals
	Creating a Java Program
	The HelloWorld Program
	Writing the HelloWorld Source Code
	Compiling the HelloWorld Source Code
	Executing the HelloWorld Program

	Examining the Source Code
	Using Comments
	Using White Space
	Defining the Class
	Defining the Method
	Wrapping Up the HelloWorld Program
	Working with Arguments in the main() Method

	The Basic Java Data Types
	Literal Values
	The Integer Types
	The Floating Point Types
	The Character Type
	The Boolean Type
	Using the Primitive Types
	The String Class
	Primitive Values versus Reference Values

	Terms to Know
	Review Questions

	Chapter 3 Keywords and Operators
	Creating Valid Names in Java
	The Keyword List
	The Primitive Type Keywords
	The Flow Control Keywords
	Modification Keywords
	Class-Related Keywords
	Object-Related Keywords
	Wrapping Up the Keywords

	The Java Operators
	The Arithmetic Operators
	The Assignment Operators
	The Relational Operators
	The Conditional Operators

	Terms to Know
	Review Questions

	Chapter 4 Flow Control
	Application Scope
	The if Statement
	Adding the else Statement
	Testing the Array of Arguments

	The switch and case Statements
	The default Statement
	Deciding between if/else and switch/case
	Processing a Range of Values

	The Ternary Operator
	The for Loop
	Multiple Increment Steps
	Beware the Infinite Loop

	The while Loop
	Comparing for and while Loops
	The do Statement

	The Branching Statements
	The break Statement
	The continue Statement
	The return Statement

	Terms to Know
	Review Questions

	Chapter 5 Arrays
	Understanding Arrays
	Declaring Arrays
	Creating Arrays
	Getting the Length of an Array

	Populating an Array
	Using Array Initializers
	An Array Initializer Variation

	Accessing Array Elements
	Multidimensional Arrays
	Two-Dimensional Array Initializers
	Nonrectangular Arrays

	The java.util.Arrays Class
	Filling an Array
	Sorting an Array
	Searching an Array

	Terms to Know
	Review Questions

	Chapter 6 Introduction to Object-Oriented Programming
	The Object-Oriented Paradigm
	Real-World Objects

	Defining a Class
	Instantiating and Using Objects
	A Closer Look at a Lamp Object
	Sharing a Reference

	Object Messaging: Adding a Lightbulb
	Passing by Value
	Passing by Reference

	The this Keyword
	Bypassing Local Variables Using this
	Passing a Reference Using this
	Static Methods Have No this Reference

	Constructors
	Multiple Constructors
	Constructor Chaining

	Terms to Know
	Review Questions

	Chapter 7 Advanced Object-Oriented Programming
	Claiming Your Inheritance
	Using the extends Keyword
	The Rules of Inheritance
	Reference Types versus Runtime Types
	Expanding the Subclasses
	The Class Hierarchy
	The Reference Type Rule for Methods

	The instanceof Operator and Object Casting
	Object Casting

	Introducing Polymorphism
	Method Overloading
	Method Overriding

	Abstract Classes and Methods
	Interfaces
	Terms to Know
	Review Questions

	Chapter 8 Exception Handling
	The Method Call Stack
	Exception Noted
	The Exception Hierarchy

	Handling Those Exceptions
	Using try and catch
	Using a finally Clause

	Creating Your Own Exception Type
	Throwing Exceptions
	Using the throws Keyword
	The throw Keyword

	Terms to Know
	Review Questions

	Chapter 9 Common Java API Classes
	The java.lang.String Class
	Common String Methods

	The java.lang.StringBuffer Class
	The java.lang.Math Class
	Calculating a Random Number

	The Wrapper Classes
	Creating Wrapper Objects
	Common Wrapper Methods
	The Character Class
	Wrapping It Up

	Terms to Know
	Review Questions

	Chapter 10 The Collections Framework
	Defining a Framework
	The java.util.Collection Interface
	Understanding Lists
	The java.util.List Interface
	The java.util.ArrayList Class
	Summarizing Lists

	Understanding Sets
	The java.util.Set Interface
	The java.util.HashSet Class
	Summarizing Sets

	Understanding Maps
	The java.util.Map Interface
	The java.util.HashMap Class
	Summarizing Maps

	Working with Iterators
	The java.util.Iterator Interface
	The java.util.ListIterator Interface
	Iterators and Maps

	Terms to Know
	Review Questions

	Appendix A Answers to Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Glossary
	Index
	Team DDU

