

What readers are saying about Rails for Java Developers

Every Java developer should be exposed to ideas from different lan-

guages, and Ruby/Rails is a wellspring of good ideas. Read this

book—it will help you learn Ruby and Rails, and give you new ideas

transferable to Java.

David Bock

Technical Director, Federal and Commercial Division, FGM

Inc.

Stuart and Justin have pulled off what I once thought was an impos-

sible feat: consolidating all the knowledge that a Java developer needs

to understand Ruby on Rails. Until this book, you would have to read

at least three books (and thousands of pages) to get the same under-

standing encapsulated in this excellent text. They clearly understand

both sides of the equation (RoR and Java), which allows them to cut

through irrelevancies and hone in on the important topics. This book

should be required reading for more than just the people learning

Rails: every Java developer will benefit from learning the important

lessons that Rails teaches.

Neal Ford

Application Architect/Developer, Thoughtworks

If you are a Java developer and you want to explore Ruby on Rails,

this is the book to get. Justin and Stu do a masterful job of revealing

the intricacies of Ruby and Ruby on Rails from a Java developer’s per-

spective. Not only that, this book is extremely well written, and is a

pleasure to read.

David Geary

Author of Graphic Java Swing and co-author of Core

JavaServer Faces

Stu and Justin offer the Java developer the unique opportunity to

“get” Rails by presenting the Rails stack from a perspective that’s

familiar and comfortable. In doing so, they prove that Rails and Java

don’t have to be mutually exclusive.

Ted Neward

Author of Effective Enterprise Java

If you are a Java developer trying to learn Rails, this book is the place

to start. There is no better resource for quickly coming up to speed

with Rails, Ruby, Rake, and ActiveRecord.

Mark Richards

Senior IT Architect, IBM

To hear some tell it, there’s tension and rivalry between the Java and

Rails web development camps, but that’s hard to see from where I

stand. Most of the happy Rails developers I know have a long history

as Java programmers, and while we love Java for what it does well,

web development in Java leaves a lot to be desired. Rails is a delight-

ful breath of fresh air, and I’m confident this book will open the eyes

of a lot of other Java developers who are looking for a nicer way to

build web applications.

Glenn Vanderburg

Independent Ruby and Java consultant

Rails for Java Developers

Stuart Halloway

Justin Gehtland

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9776166-9-X

ISBN-13: 978-0-9776166-9-5

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, February, 2007

Version: 2007-2-12

http://www.pragmaticprogrammer.com

Contents
Foreword 11

Preface 13

1 Getting Started with Rails 20

1.1 Setting Up Ruby and Rails 20

1.2 Rails App in Fifteen Minutes 21

1.3 The Rails Development Cycle 25

1.4 Finding Information in Online Documentation 28

1.5 Editors and IDEs . 29

1.6 Running the Samples . 30

1.7 Rails Environments . 32

1.8 How Rails Connects to Databases 35

1.9 Rails Support Scripts . 36

2 Programming Ruby 38

2.1 Primitive Types . 38

2.2 Strings . 41

2.3 Objects and Methods . 44

2.4 Collections and Iteration 47

2.5 Control Flow . 51

2.6 Defining Classes . 57

2.7 Identity and Equality . 63

2.8 Inheritance . 65

2.9 Controlling Access with Access Specifiers 67

2.10 Raising and Handling Exceptions 69

3 Ruby Eye for the Java Guy 72

3.1 Extending Core Classes 72

3.2 Mutable and Immutable Objects 74

3.3 Packages and Namespaces 76

3.4 Deploying Code . 79

3.5 Delegation . 83

CONTENTS 8

3.6 Polymorphism and Interfaces 85

3.7 Duck Typing . 89

3.8 Mixins . 90

3.9 Functions . 92

4 Accessing Data with ActiveRecord 96

4.1 Getting Connected . 97

4.2 Managing Schema Versions with Migrations 100

4.3 Mapping Data to Classes 103

4.4 Create, Read, Update, and Delete: Access Patterns . . . 106

4.5 Validating Data Values 113

4.6 Lifecycle Callbacks . 116

4.7 Associations and Inheritance 119

4.8 Transactions, Concurrency, and Performance 125

4.9 Conserving Resources with Connection Pooling 131

4.10 Resources . 132

5 Coordinating Activities with ActionController 133

5.1 Routing Basics: From URL to Controller+Method 134

5.2 List and Show Actions: The R in CRUD 136

5.3 Create, Update, and Delete Actions 140

5.4 Tracking User State with Sessions 144

5.5 Managing Cross-Cutting Concerns with Filters and Verify 147

5.6 Routing in Depth . 151

5.7 Logging, Debugging, and Benchmarking 153

5.8 Resources . 166

6 Rendering Output with ActionView 167

6.1 Creating Basic .rhtml Files 168

6.2 Minimizing View Code with View Helpers 169

6.3 Writing Custom Helpers 170

6.4 Reuse with Layouts and Partials 172

6.5 Building HTML Forms . 174

6.6 Building HTML with Markaby 178

6.7 Caching Pages, Actions, and Fragments 180

6.8 Creating Dynamic Pages with Ajax 184

6.9 Rendering JavaScript with RJS 191

6.10 Black-Box Testing with Selenium 192

6.11 Conclusions . 196

6.12 Resources . 197

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=8

CONTENTS 9

7 Testing 198

7.1 Getting Started with Test::Unit 199

7.2 Rails Testing Conventions 206

7.3 Rails Extensions to Test::Unit 212

7.4 Integration Testing . 216

7.5 Rails Testing Examples 218

7.6 Measuring Code Coverage with rcov 222

7.7 Testing Interactions with Mock Objects 225

7.8 Reducing Dependencies with Stub Objects 229

7.9 Advanced Considerations 230

7.10 Resources . 231

8 Automating the Development Process 233

8.1 Rake Basics . 234

8.2 Setting Rake Options: It’s Just Ruby 236

8.3 Custom Rake Tasks: It’s Just Ruby 238

8.4 Using Rake in Rails Applications 240

8.5 Continuous Integration with Cerberus 243

8.6 Resources . 245

9 Creating and Invoking Web Services 247

9.1 RESTful Web Services . 248

9.2 SOAP Web Services . 255

9.3 YAML and XML Compared 261

9.4 JSON and Rails . 265

9.5 XML Parsing . 266

9.6 Ruby XML Output . 275

9.7 Creating XML with Builder 276

9.8 Curing Your Data Headache 278

9.9 Resources . 281

10 Security 282

10.1 Authentication with the acts_as_authenticated Plugin . 283

10.2 Authorization with the Authorization Plugin 285

10.3 Testing Authentication and Authorization 290

10.4 Preventing the Top-Ten Web Security Flaws 293

10.5 Resources . 302

A Java to Ruby Dictionary 303

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=9

CONTENTS 10

B Bibliography 306

C Structure of a Rails Project 307

Index 309

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=10

Foreword
The first time I met Stuart, several years ago at this point, he was giving

a presentation about the internals of the Java classloader. At the time,

I had recently completed my work at Sun with the Java Servlet spec-

ification and Tomcat. In that work, I’d become very familiar with the

subject of class loading and learned that it is full of subtle interactions.

These interactions are quite complex and sometimes lead to surprising

results. Even most Java experts don’t have a deep grasp of some of the

issues that are at the heart of the classloader. In fact, up until the point

I was watching Stu present, I hadn’t heard anyone outside of the core

Java team get all of the interactions right. Stu, however, nailed it and

filled his presentation with realistic examples that communicated the

depths of the subject in a clear and easy-to-grasp manner.

After that presentation, I went up and congratulated Stu on nailing his

subject. And ever since then, I’ve made sure to go to any presentation

that he gives. Every one has been insightful and entertaining at the

same time. Justin, who I met much later, is the same way. He brings

passion and knowledge to the subjects he touches, and then brings his

explanations to life in a way that is sometimes spontaneous and always

humorous.

One hundred years ago, Justin and Stuart would have been the guys

tinkering with the latest internal combustion engines, trying to eke

more performance out of them while making them simpler. They’d have

figured out the best way to flow air into and out of the engine, and

probably have invented fuel injection in the process. At the same time,

they’d be featured in Popular Mechanics with articles titled “Optimizing

the Fuel-Air Mixture to Increase Your Horsepower.” In today’s world,

they spend their time delving into the hot-rod technology of today: soft-

ware. They dive in, rip it apart, see what makes it tick, and then show

you how it works with a sparkle in their eye.

FOREWORD 12

Five years ago, these two were shoulder-deep in Java, figuring out how

it ticked and then making sure that they knew how it all worked so that

they could explain their findings to others, as well as build solutions on

top of it. They’ve brought that same approach to Rails. They’ve gone

deep into the code to figure out what makes Rails tick. When asked a

tough question, they know just where to look in the codebase to find

the answer and then present a prototypical solution.

I have to say that every time I watch Justin and Stuart talk about either

Rails and Java, it always makes me laugh—sometimes with a cringe—

as they’ve been on the same path from Java to Rails as I have been.

Everything that I’ve experienced along my journey from Java to Ruby

and Rails, they’ve run into as well.

I can’t think of anyone better to be your guide to bridge the gap between

Java and Rails. Even better, they’ve got the ability to help you make the

jump yourself, and they’ll do so in a way that really lives up to the name

of Chapter 3: Ruby Eye for the Java Guy. It’s a silly title for a chapter,

but it embodies just the way in which they work. They’ll give you the

essence of what you need to be a competent Rails programmer without

changing who you are. In other words, you’re in good hands.

James Duncan Davidson

December 2006

Creator of Apache Ant and Apache Tomcat

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=12

Preface
Ruby on Rails is a full-stack framework for developing web applications.

Rails embraces many good ideas that are familiar in the Java world: the

Model-View-Controller (MVC) pattern, unit testing, agile development,

the ActiveRecord pattern, and many others. At the same time, Rails

challenges many standard practices: Instead of miles of XML configu-

ration files, Rails relies on conventions where possible. Rails is built

with Ruby, a dynamic language, and is deployed as source code.

But forget the technical points for a moment. The reason that any of

this matters is that Rails programmers are getting things done, and

fast. Rails programmers have made (and substantiated) some amazing

claims about developer productivity. They are having a lot of fun, too.

Should Java programmers be alarmed by this upstart? Absolutely not.

Java programmers are uniquely positioned to take advantage of Ruby

on Rails. This book will explain how to get started.

Who Should Read This Book?

This book is for all Java programmers. OK, let us narrow that down a

little. This book is for two subsets of Java programmers:

• Those who want to program in Ruby and Rails

• Those who do not

To the first group: We wrote this book because we love Java, and we

love Rails. We believe that Java programmers are uniquely qualified to

take advantage of Rails, because Java programmers have lived through

a lot of the struggles behind the good (and sometimes controversial)

ideas in Rails.

To the second group: Rails is not for everything, just like any other tool

isn’t. However, Rails is such an interesting tool, and Ruby is different

PREFACE 14

from Java in so many fascinating ways, that we think it is the single

best complement you can learn to round out your skill set.

To both groups: We have had a great time writing this book, because

we share a common language with you, our readers. By assuming a

common vocabulary of the Java language and patterns, we are able to

move quickly to the meat of topics. We believe that, page for page, this

is a much better book for Java developers than a general-purpose book

can ever be. Yes, that’s bragging, and we are boasting about you, our

fellow Java developers. Thanks for all the work you have put in to build

a baseline of industry knowledge on which we hope to build.

Why This Rails Book?

A lot of Rails books exist. One aspect that sets this book apart is our

Java background. We focus on the parts of Rails that will be different,

new, and interesting to a Java developer.

The second aspect that sets this book apart is our emphasis on Rails

as an ecosystem, not just as a framework. As a Java developer, you are

accustomed to having an enormous ecosystem around your program-

ming language. You have great IDEs, monitoring tools, and widgets

for every situation. Rails has an ecosystem too—not as big as Java’s

but important nevertheless. In this book, we spend less time hashing

through every random API detail in Rails. Instead, we demonstrate the

key points and then move into the ecosystem to show how those key

points are used, extended, and sometimes even replaced.

Who Should Read Some Other Book?

This book is a reference for experienced Java programmers who want to

learn Ruby and Rails. This is not a tutorial where each chapter walks

you through building some sample application. For a tutorial, plus a

general introduction to the Ruby language, we recommend Program-

ming Ruby [TFH05]. For a tutorial and introduction to Rails, we recom-

mend Agile Web Development with Rails [TH06].

This book is not a comparison of Java and Ruby for managers consider-

ing a Ruby project. For that, we recommend From Java to Ruby: Things

Every Manager Should Know [Tat06].

This book is not an introduction for nonprogrammers; for that we rec-

ommend Learn to Program [Pin06].

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=14

PREFACE 15

Why Ruby on Rails?

Rails is making programmers productive and happy. Plus, we are find-

ing that using Ruby exercises our minds more than any other main-

stream language. If you want to start a watercooler conversation about

the merits of Ruby and Rails, here are a few talking points:

• Full-stack web framework. Rails includes everything you need:

Model-View-Controller, O/RM, unit testing, and build and deploy-

ment automation. Because everything is tightly integrated, it is

ridiculously easy to get started.

• Opinionated software. Rails is not designed to let you do anything.

It is designed to help you do the right things.

• Convention over configuration. The danger of both the previous

points is that you might not be able to customize the framework to

meet your needs. Rails avoids this with convention over configura-

tion. All of Rails’ moving parts are held together by convention, but

you can override those conventions whenever you need to do so.

You get to pay as you go, relying on conventions where necessary

and overriding only exactly what you need.

• One language for application and configuration. Rails uses Ruby

for configuration as well as for application code. Ruby is easier to

manage than XML and much more powerful when configuration

becomes complex.

• The secret sauce is Ruby. Ruby is powerful and elegant, and it

has become the language we think in most of the time. Ruby

includes good ideas from mainstream programming languages. As

a Java programmer, you will have a head start in understanding

Ruby’s approach to classes, objects, inheritance, and polymor-

phism. Ruby also includes many features of Smalltalk and Lisp

that are missing from mainstream languages. As a Java program-

mer, you will be delighted to discover how blocks, closures, duck

typing, metaprogramming, and functional programming can make

your code more expressive and maintainable. Rails is the gateway

drug; Ruby is the addiction.

How to Read This Book

All readers should read the entirety of Chapter 1, Getting Started with

Rails, on page 20. The chapter includes instructions for quickly setting

up your environment so you can follow along with all the example code.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=15

PREFACE 16

Next you have a choice: Ruby first or Rails first? If you are a bottom-

up learner who cannot pass by a line of code without understand-

ing it completely, start with the Ruby chapters (Chapter 2, Program-

ming Ruby, on page 38 and Chapter 3, Ruby Eye for the Java Guy,

on page 72). Ruby is radically different from Java, even more than the

syntax suggests. Your investment will pay for itself quickly.

If you are the “getting things done” type, jump straight into Rails, which

begins with Chapter 4, Accessing Data with ActiveRecord, on page 96

and continues through the rest of the book. When you see Ruby idioms

that interest you, you can always return to the chapters about the Ruby

language. (If you don’t know the Ruby name for something, just use

Appendix A, on page 303. The dictionary is organized by Java terminol-

ogy and includes pointers to relevant sections in the book.)

Other than that, feel free to skip around. The book is extensively cross-

referenced throughout, so you cannot get too lost.

Make sure you follow the instructions in the next section for download-

ing the sample code. Ruby and Rails enable an interactive development

experience, and you will learn much more if you follow along with the

examples.

How to Get Sample Code

The sample code for the book uses Rails version 1.1.6 or newer1 and

Ruby version 1.8.4 or newer. All the sample code for the book is avail-

able as a single zip file online.2

The sample code includes two Rails applications, named People and

Rails XT. The People application is extremely simple and demonstrates

how to use Rails to create a front end for a single database table. We

build the entire People application from scratch as we go through the

book. Section 1.2, Rails App in Fifteen Minutes, on page 21 has instruc-

tions to set up the People application.

Rails XT stands for “Rails Exploration Testing.” The Rails XT appli-

cation doesn’t have a unified feature set that addresses some problem

domain. Instead, Rails XT is a holding tank for dozens of fragments that

1. A few examples rely on features in Rails 1.2, which is still under development as of

this writing. These examples are noted in the text as they occur.
2. See http://pragmaticprogrammer.com/titles/fr_rails4java/code.html

http://pragmaticprogrammer.com/titles/fr_rails4java/code.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=16

PREFACE 17

demonstrate Rails’ capabilities. Because of its heterogeneous nature,

Rails XT requires a bit more setup. You don’t need to set up Rails XT

to get started. When you need to do so, you can find instructions in the

sidebar on page 98. Here is a quick overview of the sample directory

structure:

rails_xt

This contains the Rails exploration tests (see Section 1.6, Run-

ning the Unit Tests, on page 32) and the Quips sample application.

Throughout the book, Ruby examples should be executed from

this directory unless otherwise noted.

java_xt

You will use the Java exploration tests throughout the book.

appfuse_people

You will use the Java People application throughout the book.

junit4

You will find any tests that require JUnit4 here.

Rake

This includes Rake and Ant examples from Chapter 8, Automating

the Development Process, on page 233.

hibernate_examples

This includes Hibernate examples from Chapter 4, Accessing Data

with ActiveRecord, on page 96.

The Java examples are split into several directories to simplify class-

path management. That way, you can install just the libraries you need.

For example, you don’t need to install Struts, Hibernate, and so on, to

run the language examples in java_xt.

How We Developed the Java Examples

This is a book about two worlds: the world of Java programming and the

world of Rails programming. Whenever worlds collide, you can expect

to hear statements like “Java sucks, and Rails rocks...” (or the reverse).

You won’t hear that tone here. To us, that is like a carpenter saying

“Hammers suck, and saws rock.” Carpenters use many tools, and pro-

grammers should too. More important, the confrontational approach

limits an important opportunity. When you have multiple ways to solve

a problem, you can learn a lot by comparing them.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=17

PREFACE 18

Our goal in visiting this new world (Rails) is to learn by comparison

with our shared history (Java). But what exactly is our shared history?

Ruby on Rails is a web framework, which means you could compare

it to about a gazillion things in the Java world. Should we look at

Java? Plain servlets? Servlets plus JSP? Aged MVC frameworks such

as Struts? Rich component frameworks such as Tapestry? Java EE

standard architectures such as JSF? Or all of these?

When we needed a Java baseline to compare with Rails, we chose

Struts, Hibernate, and Axis. We picked these because our careful sta-

tistical research indicated these were best-known among Java develop- (We asked a lot of

people.)
ers. Moreover, we limit our Java usage to techniques that are typical in

applications we have seen in the field. As a result, the Java code in this

book should look familiar to most Java web developers.

The downside of this approach is that “typical” and “familiar” Java code

is not necessarily best practice. So although this approach is useful

for teaching Rails, it does not provide a comprehensive review of Java

best practices. (That’s a whole ’nother book.) Where we have skipped

interesting Java approaches for reasons of space, we have included

margin notes and references at the ends of the chapters.

Many of the Java examples are built starting with Matt Raible’s excel-

lent AppFuse (http://www.appfuse.org). AppFuse is a metaframework that

allows you to quickly jump-start a web application using the frame-

works of your choice. If you want to compare Rails to Java frameworks

not covered in this book, AppFuse is a great place to start.

Acknowledgments

We would like to thank our wives. Joey and Lisa, none of this would

have happened, or would have meant as much, without you. We would

also like to thank our extended families. Without your love and support,

this book would have been stalled until at least 2025.

Thanks to our reviewers: David Bock, Ed Burns, Scott Davis, Mark

Richards, Ian Roughley, Brian Sletten, Venkat Subramaniam, Bruce

Tate, and Glenn Vanderburg. We would never have believed that such a

talented, busy group of people could devote so much time and attention

to this project. Thank you; this book is immeasurably better for it.

To the Pragmatic Programmers: Thank you for building the kind of pub-

lishing company that can produce a book like this, on this timeline. You

are consummate professionals.

http://www.appfuse.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=18

PREFACE 19

To the Relevance Gang: We are in for an exciting ride. Thanks for your

smarts, thanks for your excellent work, but thanks most for the fun

environment.

To the Pragmatic Studio: Thanks for leading the way in getting Ruby

and Rails people together, all over the country. We can’t wait for the

first Rails Edge.

To the No Fluff, Just Stuff Gang: Thanks for sharing our secret lives.

Our ideas about Java (and Ruby) are sharpened every weekend at our

semiclandestine encounters.

To Jay Zimmerman: Thanks for building a community around excellent

people and around excellence in software development.

To James Duncan Davidson: Thanks for spreading the Mac meme.

To Neal Ford: Thanks for the cross-the-board expertise, from agility and

DSLs all the way to food and fashion. Who says we have to specialize?

To Bruce Tate: Thanks for helping kick-start our Rails consulting busi-

ness and for being a companion in our professional journey. You were

country when country wasn’t cool.

To Dave Thomas: You make everything around you better, and you have

fun doing it. Thanks for your inestimable contributions to Ruby, to

Rails, and to our work.

To Jim Weirich: Thanks for the just-in-time technical support on Flex-

Mock questions.

To Al von Ruff: Thanks for your work on the Internet Speculative Fiction

Database.3 We have enjoyed it as readers, and we particularly appreci-

ate you making the schema and data available for some of the examples

in this book.

To Matt Raible: Thanks for AppFuse. Without it we’d still be in a bot-

tomless pit of XML configuration files.

To the folks at Coke, Pepsi, Red Bull, Macallan, and Lagavulin: Thank Yes, we drink both Coke

and Pepsi. And we like

both Java and Ruby.you for the beverages that fueled this book. Bet you can’t guess which

drinks go with which chapters!

3. http://www.isfdb.org

http://www.isfdb.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=19

Chapter 1

Getting Started with Rails
In this chapter, we show how to install Rails and quickly build a small

web application. Rails is famous for being simple and easy, so pay at-

tention to what you don’t have to do in this chapter. There is no XML

configuration to write (and very little configuration of any kind). For

simple database applications, you don’t have to write much code, either.

At the same time, “easy” does not mean “not serious” or “compromising

on quality.” Take note of the quality orientation that every Rails project

has from the start. You will see that even the simplest Rails application

begins life with automated testing, documentation, and other product

automation already in place. When your Rails application starts to get

complicated, you will already have the tools you need.

1.1 Setting Up Ruby and Rails

Setting up Ruby and Rails is straightforward on all the major operat-

ing systems. If you like building your software tools from scratch, you

can certainly do that with Ruby and Rails. But you do not have to do

so. Rails enthusiasts have created prepackaged solutions that install

everything you need to get started.

On Windows

On Windows, Instant Rails1 provides a self-contained Rails environ-

ment. Instant Rails includes Ruby, Rails, Apache, and MySQL, all in a

sandbox separate from anything else installed on your machine. Instant

1. http://instantrails.rubyforge.org

http://instantrails.rubyforge.org

RAILS APP IN FIFTEEN MINUTES 21

Rails is a perfect, no-risk environment for trying out the code in this

book. Thanks to Curt Hibbs and everyone else involved in making

Instant Rails.

On the Mac

On the Mac, Locomotive2 is a self-contained Rails environment. Like

Instant Rails on Windows, Locomotive includes everything you need to

run the code in this book and keep it isolated from everything else on

your box. Thanks very much to Ryan Raaum for this tool.

Rails depends on Ruby, and the current version of Mac OS X includes

a slightly dated version of Ruby, version 1.8.2. Sooner or later most

developers install a more recent version. When you decide to upgrade

your Ruby install, MacPorts3 provides an easy way to build more recent

versions of Ruby.

The next version of Mac OS X, 10.5 (Leopard), will have Rails already

installed. W00t!

On Linux

If you are running Linux, you know how to suck bits off the Web. Start

with the Rails Wiki,4 and find instructions for your flavor of Linux.

All the examples in the book will assume MySQL as a database. Both

Locomotive and Instant Rails install an isolated MySQL instance for

you. If you are on Linux, the instructions listed at the Rails Wiki show

how to set up the database.

1.2 Rails App in Fifteen Minutes

With Rails you can build an simple web application nearly instantly,

using the scaffold code generator. This section will walk you through

creating a functioning web app in about fifteen minutes. You’ll create

a simple, form-based application for creating, reading, updating, and

deleting people. We won’t explain the steps in detail here—that’s what

the rest of this book is for—but you can find pointers at the end of this

section to the chapters that discuss each aspect of the following code

example in more detail.

2. http://locomotive.raaum.org

3. http://www.macports.org/

4. http://wiki.rubyonrails.com/rails/pages/GettingStartedWithRails

http://locomotive.raaum.org
http://www.macports.org/
http://wiki.rubyonrails.com/rails/pages/GettingStartedWithRails
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=21

RAILS APP IN FIFTEEN MINUTES 22

Start in some temporary directory and create a Rails application named

people:

$ cd ~/temp

$ rails people

create

create app/controllers

create app/helpers

(...dozens more create lines...)

create log/development.log

create log/test.log

Change to the people directory. All the Rails support scripts assume

you are at the top-level directory of your Rails project, so you should

stay in the people directory for all subsequent steps:

$ cd people

Create two databases, named people_development and people_test.5

$ mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 4.1.12-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database people_development;

Query OK, 1 row affected (0.30 sec)

mysql> create database people_test;

Query OK, 1 row affected (0.30 sec)

mysql> exit

Bye

Create an ActiveRecord model object. (Note that on Windows you will

need to explicitly name the Ruby interpreter, such as ruby script/generate

instead of simply script/generate.)

$ script/generate model Person

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/person.rb

create test/unit/person_test.rb

create test/fixtures/people.yml

create db/migrate

create db/migrate/001_create_people.rb

5. Warning: The following instructions assume MySQL, with no password on the

root account. You could translate these instructions to some other database/account/

password combo, but please don’t! Setting up a database can be harder than starting

with Rails, so this will be easier if you follow the script exactly.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=22

RAILS APP IN FIFTEEN MINUTES 23

Notice how the model file is named person but the fixture file (which

may contain more than one person) is named people. Rails works hard

to sound like the way people talk and automatically uses the singular

or plural form of words where appropriate.

Edit the db/migrate/001_create_people.rb file so the setup section looks

like this:

def self.up

create_table :people do |t|

t.column :first_name, :string

t.column :last_name, :string

end

end

Back at the console, update the database by running the rake db:migrate

task. Rake is an automation tool similar to Java’s Ant:

$ rake db:migrate

(in /Users/stuart/temp/people)

== CreatePeople: migrating ============================

-- create_table(:people)

-> 0.1449s

== CreatePeople: migrated (0.1462s) ===================

Generate a scaffold:

$ script/generate scaffold Person

exists app/controllers/

(...lots of output snipped...)

create public/stylesheets/scaffold.css

Run your application:

$ script/server

=> Booting lighttpd (use 'script/server webrick' to force WEBrick)

=> Rails application started on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server (see config/lighttpd.conf for options)

Now browse to http://localhost:3000/people. You should see a simple,

form-based application for creating, reading, updating, and deleting

people, as in Figure 1.1, on the following page.

Try it for a few minutes, and make sure everything is working. The

scaffold isn’t pretty, but it provides a lot of functionality for little work.

If you review the steps you just went through, there were only two lines

of code, and those were to create the model object. If you already had a

database schema, those two lines would go away, and you would have

a web application up and running with zero lines of handwritten code.

http://localhost:3000/people
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=23

RAILS APP IN FIFTEEN MINUTES 24

Figure 1.1: The Rails scaffold

Now, let’s run the automated tests for your application:

$ rake

(in /Users/stuart/temp/people)

/bin/ruby -Ilib:test [snip] "test/unit/person_test.rb"

Loaded suite [snip]

Started

.

Finished in 0.093734 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

/bin/ruby -Ilib:test [snip] "test/functional/people_controller_test.rb"

Loaded suite [snip]

Started

........

Finished in 0.337262 seconds.

8 tests, 28 assertions, 0 failures, 0 errors

That is interesting, since we didn’t write any tests yet. When you ran

script/generate scaffold, Rails generated some tests for you. Earlier, when

you first ran rails people, Rails created a build script (rakefile) that would

automatically run the tests under rake. Rails helps you test your project

by putting testing in place on day one.

We do not want to oversell the scaffold, because it is only a small part

of Rails. But the icing on the cake is the part you taste first. The rest

of this book is about the cake itself: the elegant Model-View-Controller

design, the tasteful use of convention over configuration, and a series of

design choices and approaches that make Rails incredibly productive.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=24

THE RAILS DEVELOPMENT CYCLE 25

Joe Asks. . .

Is Rails Yet Another Code Generator?

If you have seen any brief demonstrations of Rails, you
have probably seen somebody generate the Rails scaffolding
before. Because scaffolding makes good demoware, it would
be easy to assume that Rails is primarily about generating
code. Nothing could be further from the truth. Although scaf-
folding can help you get the skeleton of your app up and run-
ning quickly, it will most likely be gone by the time your appli-
cation is complete. In fact, many experienced Rails developers
do not use the scaffolding at all.

If any of the steps we just zipped through particularly intrigued you,

here is a guide to where they are covered in more detail:

rails people

Section 1.1, Setting Up Ruby and Rails, on page 20

create database people_development

Section 1.7, Rails Environments, on page 32

script/generate model Person

Chapter 4, Accessing Data with ActiveRecord, on page 96

editing db/migrate/001_create_people.rb

Section 4.2, Managing Schema Versions with Migrations on

page 100

rake db:migrate

Section 4.2, Managing Schema Versions with Migrations on

page 100

script/server

Section 1.9, Rails Support Scripts, on page 36

rake Chapter 8, Automating the Development Process, on page 233

1.3 The Rails Development Cycle

In Rails, the development cycle is carefully designed to minimize inter-

ruption. You change your code and refresh your browser to see the

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=25

THE RAILS DEVELOPMENT CYCLE 26

changes. That’s all. There is no compile, deploy, or server bounce nec-

essary. This simple cycle has two huge impacts on productivity. First,

work goes faster. Since you do not have to wait to see the results of a

change, you do more changing and less waiting. Second, and more sub-

tly, you learn more as you go. In Rails it is easy to just “try things” and

do little experiments as you go. In environments with a more compli-

cated development cycle, these little experiments simply do not happen.

To see this in action, let’s make a few improvements to the People appli-

cation. If you do not still have the application running, start it again

with script/server. We will leave the application running continuously as

we make a series of changes.

Our People application does no data validation. If you create a per-

son with an empty first name and last name, it will happily store a

bogus record in the database. Validation is critical to web applications,

and Rails makes validation simple. To add validation, open the file

app/models/person.rb. Edit the file to look like this:

Download code/people/app/models/person.rb

class Person < ActiveRecord::Base

validates_presence_of :first_name, :last_name

end

The validates_presence_of part requires that both the first name and the

last name be present; that is, they should not be nil. Now, take your

browser to http://localhost:3000/people/new, and try to create a man with

no name. When you click Create, you will see an error message like the

one in Figure 1.2, on the following page.

When you add validations to a model, their effects automatically prop-

agate to the view, with no additional work necessary. Validations are

covered in detail in Section 4.5, Validating Data Values, on page 113.

Next, let us make a change to the people list view. If you browse to

http://localhost:3000/people/list, you should see a list of people. We could

make the list more useful by adding a search box. Open the file

app/views/people/list.rhtml, and insert the following code right after

<h1>Listing people</h1>:

Download code/people/app/views/people/list.rhtml

<%= start_form_tag('', :method=>'get') %>

People named:

<%= text_field_tag 'search', @search %>

<%= submit_tag 'Find'%>

<%= end_form_tag %>

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/models/person.rb
http://localhost:3000/people/new
http://localhost:3000/people/list
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/views/people/list.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=26

THE RAILS DEVELOPMENT CYCLE 27

Figure 1.2: Form validation

The code inside the <%= %> is embedded Ruby, which we will cover in

Chapter 6, Rendering Output with ActionView, on page 167. For now, if

you refresh your browser to http://localhost:3000/people/list, you should

see a search form like the one shown in Figure 1.3, on the next page.

Of course, the search form doesn’t change the behavior of the appli-

cation. No matter what you search for, the list will show all people (or

the first ten, anyway). To change the behavior of the application, you

will need to modify an action method in the controller. Open the file

app/controllers/people_controller.rb, and find the list method:

def list

@person_pages, @people = paginate :people, :per_page => 10

end

If the user specifies no search term, the method should continue to

work as is. If there is a search term, we’ll be nice and compare against

both first and last names. Replace list with this expanded version:

Download code/people/app/controllers/people_controller.rb

def list

@search = params[:search]

if @search.blank?

@person_pages, @people = paginate :people, :per_page => 10

else

query = ['first_name = :search or last_name = :search',

{:search=>@search}]

@person_pages, @people = paginate :people,

:per_page => 10, :conditions=>query

end

end

http://localhost:3000/people/list
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=27

FINDING INFORMATION IN ONLINE DOCUMENTATION 28

Figure 1.3: Search form

Now, refresh your view of http://localhost:3000/people/list, and add a few

people if you haven’t already. Then try some search terms. The list

should automatically contract to show only the matching names. Con-

trollers are covered in detail in Chapter 5, Coordinating Activities with

ActionController, on page 133.

As is so often the case with Rails, the important aspect is what isn’t

here. We didn’t have to do anything to test our changes, other than

refresh the browser. Our changes themselves were minimal and to the

point. We didn’t have to tell Rails how to convert URLs into controller

methods, how to connect models to views, or how to find the right view

for a controller action. Almost everything in Rails has a default, and

you need configuration only when you want to override the defaults.

1.4 Finding Information in Online Documentation

All Rails developers should bookmark these documentation sites:

http://api.rubyonrails.org

Up-to-date documentation for the entire Rails API.

http://www.ruby-doc.org/

Ruby documentation metasite. Pointers to library docs, books,

training, and more.

http://www.ruby-doc.org/core

Ruby Core documentation (roughly analogous to java.lang, java.io,

and java.util).

http://localhost:3000/people/list
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=28

EDITORS AND IDES 29

http://www.ruby-doc.org/stdlib/

Ruby Standard Library documentation. It is roughly analogous to

everything in the JDK not in the packages listed previously.

Ruby API documentation is usually presented in RDoc format. RDoc

is similar to Javadoc; both tools build documentation by reading the

source code and embedded comments.

Rails includes Rake tasks to build documentation files on your local

machine. From any Rails project, you can build the documentation by

running rake doc:app. This will create a top-level documentation file

at doc/app/index.html within your project. We cover Rake in detail in

Chapter 8, Automating the Development Process, on page 233.

1.5 Editors and IDEs

GUI tools (such as IDEs) for Ruby and Rails are primitive compared to

their Java counterparts. But they are better than Notepad. Here are a In 1997, Java IDEs were

primitive compared to

their C++ counterparts.few pointers:

TextMate (Mac only)

If you are willing to spend money, get TextMate.6 It has most of

the power and customizability of Emacs, plus the GUI savvy of a

native Mac application.

Radrails (cross-platform, open source)

Radrails (http://www.radrails.org/) is built on top of Eclipse,7 so it

runs almost everywhere. It is a perfect choice if Eclipse is already

your IDE of choice for Java.

IntelliJ IDEA (cross-platform)

IntelliJ IDEA8 is expected to have Rails support via an IDEA 6.0

plugin. We haven’t used it yet, but we have high hopes. IDEA is

our preferred IDE for Java development.

Old school...

There is a good Rails plugin for vim.9 There is also a Rails minor

mode for Emacs.10

6. http://macromates.com/

7. http://www.eclipse.org

8. http://www.jetbrains.com/idea/

9. http://www.vim.org/scripts/script.php?script_id=1567

10. http://rubyforge.org/projects/emacs-rails/

http://www.radrails.org/
http://macromates.com/
http://www.eclipse.org
http://www.jetbrains.com/idea/
http://www.vim.org/scripts/script.php?script_id=1567
http://rubyforge.org/projects/emacs-rails/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=29

RUNNING THE SAMPLES 30

1.6 Running the Samples

Instructions for downloading the sample code are on page 16. The sam-

ple code in this book appears in three forms:

• Very small examples that can be run directly in irb, the Ruby inter- irb

active shell

• Stand-alone Ruby programs that can be run using the ruby com- ruby

mand

• Rails applications and support scripts that can be launched using

the various script/* commands, which are automatically included script/*

in every Rails project

Detailed instructions for running each type of sample appear in the

following sections. We strongly encourage you read this book with a

working environment close at hand. One of Ruby’s greatest strengths

is the ease of trying it yourself.

Running irb Samples

irb is the interactive Ruby shell. Given a working Ruby installation (see

Section 1.1, Setting Up Ruby and Rails, on page 20), you can start the

interactive shell by typing irb. You will be greeted with a prompt where

you can enter Ruby code. This prompt is configurable, but the default

on your system will probably look like this:

$ irb

irb(main):001:0>

From the irb prompt, you can enter Ruby code, such as puts("hello"):

Download code/rails_xt/sample_output/hello.irb

irb(main):001:0> puts("hello")

hello

=> nil

The previous shell is displaying the following:

• Ruby code as you type it (line 1)

• Console interaction (line 2)

• The return value from the last statement (line 3)

Unless otherwise noted, the irb examples in the book are all self-con-

tained and show all the Ruby code you need to type. For the sake of

brevity, we frequently omit console output and return values where

they are irrelevant to the point being made.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/hello.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=30

RUNNING THE SAMPLES 31

It is possible to type longer blocks, such as this three-line if...end block:

irb(main):002:0> if true

irb(main):003:1> puts "tautology"

irb(main):004:1> end

tautology

=> nil

If you make as many typing mistakes as we do, you can also paste

multiple lines of code into irb. When code starts to be long enough that

it is unwieldy to enter into irb, you will want to switch to full Ruby

programs.

Running Ruby Samples

All the Ruby samples for the book are from the rails_xt/samples direc-

tory, unless otherwise noted in the text. So, if you see the following

command:

$ ruby foo.rb

you can execute the same command within the rails_xt/samples directory

after you unzip the sample code.

Running Rails Samples

The samples include a Rails application in the rails_xt directory. All Rails

commands should be run from this directory, unless otherwise noted.

When you see a command that begins with script, such as script/console

or script/server, run that command from the rails_xt directory.

The script/console command is particularly important. It gives you an

interactive Ruby shell with Rails and your application’s environment

already loaded. Try running script/console from the rails_xt directory in

the sample code.

$ script/console

Loading development environment.

>> puts "Hello"

Hello

This is just like irb, except you can also now call Rails API methods. For

example, you could ask what database Rails is using:

>> ActiveRecord::Base.connection.current_database

=> "rails4java_development"

The default prompt in script/console is >>. When you see this prompt in

the book, you should be able to run the same code using script/console

in the rails_xt directory.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=31

RAILS ENVIRONMENTS 32

Running the Unit Tests

We wrote much of the code in this book as exploration tests. Exploration exploration tests

tests are unit tests written for the purpose of learning, teaching, and

exploring. Sample code should be tested for the same reason people

unit test anything else: It is easy for us (and you!) to quickly verify that

the code works correctly.

You don’t need to run the unit tests to follow along in the book (except

in the testing chapter!), and we typically do not clutter the prose by

including them. For example, here is the code from Section 4.8, Pre-

venting the N+1 Problem, on page 130, demonstrating a solution to the

N+1 problem in Hibernate:

Download code/hibernate_examples/src/TransactionTest.java

Criteria c = sess.createCriteria(Person.class)

.setFetchMode("quips", FetchMode.JOIN);

Set people = new HashSet(c.list());

That’s the code you will see in the book, which demonstrates the point

being made. Notice that the listing begins with the filename. If you go

to that file in the sample code, you will find the code is followed imme-

diately by assertions that prove the code works as intended:

assertEquals(2, people.size());

sess.close();

for (Iterator iterator = people.iterator(); iterator.hasNext();) {

Person p = (Person) iterator.next();

assertEquals(25, p.getQuips().size());

}

For more about exploration testing, also known as learning tests, see learning tests

“How I Learned Ruby”11 and “Test Driven Learning.”12

1.7 Rails Environments

Web applications run in three distinct environments:

• In a development environment, there is a developer present. Code

and even data schemas tend to change rapidly and interactively.

Data is often crufted up by the developer, such as John Smith at

Foo Street.

11. http://www.clarkware.com/cgi/blosxom/2005/03/18#RLT1

12. http://weblogs.java.net/blog/davidrupp/archive/2005/03/test_driven_lea.html

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/TransactionTest.java
http://www.clarkware.com/cgi/blosxom/2005/03/18#RLT1
http://weblogs.java.net/blog/davidrupp/archive/2005/03/test_driven_lea.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=32

RAILS ENVIRONMENTS 33

• In a test environment, automated tests run against prepackaged

sample data. A developer may or may not be present. Data sche-

mas are regularly trashed and rebuilt to guarantee a consistent

starting state for the tests.

• In a production environment, code and schemas change much

more rarely. The database data is real and valuable, and develop-

ers are rarely present.

In Java web frameworks, environments have historically been ad hoc:

Each team evolves its own, using a collection of scripts and Ant tasks

to manage environments and move code and data between them.

In Rails, environments are a first-class concept. Each application starts

life with the three environments in place. Rails environments are used

to select databases, log file destinations, policies for loading code, and

more. Here are some of Rails’ environmental defaults:

Development:

• The log file is log/development.log.

• The database is {appname}_development.

• The breakpoint server is enabled.

• Web pages show error stack traces.

• Classes reload for each page.

Test:

• The log file is log/test.log.

• The database is {appname}_test.

• The breakpoint server is disabled.

• Web pages show generic error messages.

• Classes load once at start-up.

Production:

• The log file is log/production.log.

• The database is {appname}_production.

• The breakpoint server is disabled.

• Web pages show generic error messages.

• Classes load once at start-up.

You can change environmental defaults by editing the appropriate envi-

ronment file. Environment files are named for the environment they

control, such as config/environments/development.rb for the development

environment. (You can even create new environments simply by adding

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=33

RAILS ENVIRONMENTS 34

files to the config/environments directory.) There is a top-level environ-

ment file named config/environment.rb that contains settings common to

all environments.

It is worth reading through the environment files to get a sense of the

automation that Rails provides. Here is a snippet:

Download code/people/config/environments/development.rb

Log error messages when you accidentally call methods on nil.

config.whiny_nils = true

Enable the breakpoint server that script/breakpointer connects to

config.breakpoint_server = true

Show full error reports and disable caching

config.action_controller.consider_all_requests_local = true

config.action_controller.perform_caching = false

The most noticeable aspect is that the configuration is just Ruby. In a

Java web application, code is one language (Java), and configuration

is in another (XML). In Rails applications, Ruby is often used for both

code and configuration.13

Let’s try modifying the Rails environment. Although Rails’ knowledge of

English grammar is pretty good, you might decide it is not good enough.

To experiment with Rails, you can run script/console from any Rails

project, such as the People application at code/people in the sample

code.

$ script/console

Loading development environment.

>> "emphasis".pluralize

=> "emphases"

>> "focus".pluralize

=> "focus"

The Rails environment includes a pluralization rule smart enough for

emphasis but not for focus. We can add our own pluralization rules to

the environment. We’ll edit config/environment.rb (that way our rule will

be available in all environments):

Download code/people/config/environment.rb

Inflector.inflections do |inflect|

inflect.irregular 'focus', 'foci'

end

13. Other parts of Rails configuration use YAML (YAML Ain’t Markup Language), which is

intended to be easier to read than XML. We cover YAML in Section 9.3, YAML and XML

Compared, on page 261.

http://media.pragprog.com/titles/fr_r4j/code/code/people/config/environments/development.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/config/environment.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=34

HOW RAILS CONNECTS TO DATABASES 35

Now you should be able to pluralize() your focus:

$ script/console

Loading development environment.

>> "focus".pluralize

=> "foci"

Rails support scripts and Rake tasks automatically select the envi-

ronment most likely to be right. For example, script/console defaults

to development, and rake test defaults to test. Many scripts report the

environment they are working in so you don’t forget:

$ script/console

Loading development environment.

It is easy to override the environment for a command. Simply prepend

RAILS_ENV=envname. For example, you might need to open a console

against a production server to troubleshoot a problem there:

$ RAILS_ENV=production script/console

Loading production environment.

1.8 How Rails Connects to Databases

Rails programs access relational data through the ActiveRecord library

(see Chapter 4, Accessing Data with ActiveRecord, on page 96). Under-

neath ActiveRecord, there is a driver layer. You will rarely call down into

the driver layer yourself, but you may need to configure the driver for

your application.

The database driver configuration is in the file config/database.yml. This

file is in YAML format.14 The top-level names in database.yml are Rails

environments—by default, they are the three environments discussed

in Section 1.7, Rails Environments, on page 32. Each top-level name

introduces a collection of indented, name/value pairs to configure the

driver for a particular environment.

Rails chooses database names based on your application name plus

the environment name. For an application named Whizbang, the initial

config/database.yml would look like this:

development:

adapter: mysql

database: whizbang_development

...more driver settings ...

14. See Section 9.3, YAML and XML Compared, on page 261 for more about YAML.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=35

RAILS SUPPORT SCRIPTS 36

test:

adapter: mysql

database: whizbang_test

...more driver settings ...

production:

adapter: mysql

database: whizbang_production

...more driver settings ... Don’t put anything too

important in the test

database, since Rails

blows this database

away as part of running

unit and functional tests.

You can override the database names as you see fit by editing the con-

figuration file. One common override is to strip the _production part from

the production database name.

In this book, we are connecting to MySQL as the root user with no

password, because that is the exact setting that a new Rails application

generates by default.

1.9 Rails Support Scripts

Every new Rails application includes a script directory, with a set of

supporting Ruby scripts. script is similar to the bin directory in many

Java projects. These scripts are run from the top directory of a Rails

project, like this:

stuthulhu:~/myproj stuart$ script/server

Do not navigate into the script directory and run scripts from there. Rel-

ative paths in Rails are always considered from the top project direc-

tory, available within Rails as RAILS_ROOT.

You have already seen several scripts in this chapter: script/console,

script/server, and script/generate. All the scripts are summarized here:

script/about

Describes the Rails environment: Rails library versions,

RAILS_ROOT, and RAILS_ENV

script/breakpointer

Is an interactive Ruby shell that will take control of a Rails appli-

cation when a breakpoint statement is encountered

script/console

Is an interactive Ruby shell with access to your Rails app

script/destroy

Destroys code created by script/generate (be careful!)

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=36

RAILS SUPPORT SCRIPTS 37

script/generate

Creates starter code from a template called a generator generator

script/performance/benchmarker

Runs a line of Ruby code n times and reports execution time

script/performance/profiler

Runs a line of Ruby code n times and reports relative time spent

in various methods

script/plugin

Installs and manages plugins (third-party extensions)

script/runner

Runs a line of code in your application’s environment

script/server

Launches the web server and Rails application

You now know the basic structure of a Rails application, plus some of

the tools you can use to manage the development process. You will not

use all this information at once, though. Instead, use this chapter as a

road map as you move through the book.

In the next chapter, we will take you on an extended tour of Ruby. Take

the time now to learn a bit of Ruby, and the rest of the book will be a

snap.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=37

Chapter 2

Programming Ruby
Ruby syntax looks pretty foreign to a Java programmer. The mission

of this chapter is to explain Ruby syntax and the underlying concepts

this syntax supports. You will be happy to find that many of the under-

lying concepts are shared with Java: Ruby’s strings, objects, classes,

identity, exceptions, and access specifiers are easily mapped to their

corresponding numbers in the Java world.

2.1 Primitive Types

Java divides the world into primitive types and objects. The primitive

types represent numeric values of various ranges and precision (some-

times interpreted in non-numeric ways, for example as text characters

or true/false). Objects represent anything they want to and are com-

posed of behaviors (methods) and state (other objects and/or primi-

tives). This section introduces the primitive types and their Ruby coun-

terparts.

Consider the Java primitive type int:

Download code/java_xt/src/TestPrimitives.java

public void testIntOverflow() {

int TWO_BILLION = 2000000000;

assertEquals(2, 1+1);

//Zoinks -- Not four billion!

assertEquals(-294967296 , TWO_BILLION + TWO_BILLION);

}

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/TestPrimitives.java

PRIMITIVE TYPES 39

Three factors are immediately evident in this simple example:

• Java variables are statically typed. On line 2, the keyword int indi-

cates that TWO_BILLION must be an int. The compiler will enforce

this.

• Java takes advantage of a syntax we all know: infix math. To eval-

uate one plus one, you can say the obvious 1+1 (line 3), rather

than something annoying such as 1.plus(1).

• On line 5, two billion plus two billion does not equal four billion.

This is because Java’s primitives are confined to a specific number

of bits in memory, and four billion would need too many bits.

To represent arbitrarily large integers, Java uses the BigInteger class:

Download code/java_xt/src/TestPrimitives.java

public void testBigInteger() {

BigInteger twobil = new BigInteger("2000000000");

BigInteger doubled = twobil.multiply(new BigInteger("2"));

assertEquals(new BigInteger("4000000000"), doubled);

}

In this example, BigInteger differs from int in three ways:

• You cannot create a BigInteger instance with literal syntax. Instead

of BigInteger b = 10;, you say BigInteger b = new BigInteger("10") (line 2).

• You cannot use infix mathematical notation. On line 3, you have

to say a.multiply(b) instead of a*b.

• On line 4, two billion multiply two does equal four billion.

Ruby also knows how to manipulate integers. Like Java, Ruby needs to

do the following:

• Enforce type safety

• Provide a convenient syntax

• Deal smoothly with the human notion of integers (which is infinite)

inside a computer (which is finite)

Ruby takes a radically different approach to achieving these goals:

irb(main):010:0> 1+1

=> 2

irb(main):001:0> TWO_BILLION = 2*10**9

=> 2000000000

irb(main):002:0> TWO_BILLION + TWO_BILLION

=> 4000000000

• Everything in Ruby is an object, and types are usually not declared

in source code. So instead of int TWO_BILLION=..., you simply say

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/TestPrimitives.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=39

PRIMITIVE TYPES 40

TWO_BILLION=.... There is no compiler to make sure TWO_BILLION is

really an integer.

• Ruby allows infix math syntax (2+2) for integers and any other

types that want it.

• Two billion plus two billion does equal four billion, as expected.

Behind the scenes, Ruby deals with integers of unusual size by manag-

ing two different types: Fixnum for small integers that have a convenient

representation and Bignum for larger numbers. It is possible to find out

which type is actually being used:

irb(main):016:0> 1.class

=> Fixnum

irb(main):017:0> TWO_BILLION.class

=> Bignum

Most of the time you will not care, because Ruby transparently uses

the appropriate type as needed:

irb(main):004:0> x = 10**9

=> 1000000000

irb(main):005:0> x.class

=> Fixnum

irb(main):006:0> x *= 100

=> 100000000000

irb(main):007:0> x.class

=> Bignum

Notice that x smoothly shifts from Fixnum to Bignum as necessary.

We could repeat the previous comparison for the other Java primitives,

but this would be a waste of space, because the underlying story would

be mostly the same as for int. Here are a few other factors to remember

when dealing with numeric types in Ruby:

• Numeric types are always objects in Ruby, even when they have a

literal representation. The equivalents for methods such as Java’s

Float.isInfinite are instance methods on the numerics. For example:

irb(main):018:0> 1.0.finite?

=> true

irb(main):019:0> (1.0/0.0).finite?

=> false

Note that the question mark at the end of finite? is part of the

method name. The trailing question mark has no special meaning

to Ruby, but by convention it is used for methods that return a

boolean.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=40

STRINGS 41

• Like Java, Ruby will coerce numeric types in various reasonable

ways:

irb(main):024:0> (1 + 1).class

=> Fixnum

irb(main):025:0> (1 + 1.0).class

=> Float

If you try something unreasonable, you will know soon enough

because Ruby will throw an exception:

irb(main):027:0> (1.0/0)

=> Infinity

irb(main):028:0> (1/0)

ZeroDivisionError: divided by 0

For information about character types, see Section 2.2, Strings, below.

For booleans, see Section 2.5, Control Flow, on page 51.

2.2 Strings

In Java, strings are commonly represented as double-quoted literals.

The implementation of Java String is a class, with methods, fields, and

constructors.

However, because string concatenation is so fundamental to many pro-

gramming tasks, String also has some special abilities. The most impor-

tant of these is concatenation with the + sign:

Download code/java_xt/src/DemoStrings.java

String name = "Reader";

print("Hello, " + name);

The Ruby syntax is similar:

irb(main):001:0> name = "Reader"

=> "Reader"

irb(main):002:0> "Hello, " + name

=> "Hello, Reader"

Java Strings also have a format method, which uses sprintf-like format

specifiers:

print(String.format("Hello, %s", name.toUpperCase()));

Ruby offers a different approach for formatting, using a literal syntax

called string interpolation. Inside a double-quoted string, text between string interpolation

#{ and } is evaluated as Ruby code.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoStrings.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=41

STRINGS 42

This is similar to ${} property expansion in Java’s Ant. You could write

the preceding example with string interpolation:

Download code/rails_xt/sample_output/interpolation.irb

irb(main):005:0> "Hello, #{name.upcase}"

=> "Hello, READER"

In Java, you can use backslash escapes to represent characters:

print(String.format("Hello, \"%s\"\nWelcome to Java", name));

Ruby also uses backslash escapes:

irb(main):008:0> puts "Hello, \"#{name}\"\nWelcome to Ruby"

Hello, "Reader"

Welcome to Ruby

In both the previous Ruby and Java examples, we escaped the double-

quote character inside the string (\") to avoid terminating the string.

This kind of escaping can be confusing to read if you escape a lot of

characters:

irb(main):009:0> puts "\"One\", \"two\", and \"three\" are all strings."

"One", "two", and "three" are all strings.

In Ruby, you can get rid of all these backslash escapes. You simply pick

an alternate string delimiter such as {} by prefixing a string with %Q:

Download code/rails_xt/sample_output/quoting.irb

irb(main):011:0> puts %Q{"One", "Two", and "Three" are strings"}

"One", "Two", and "Three" are strings"

In Java, individual characters are represented by single quotes. You

can pull individual characters from a string via the charAt method:

Download code/java_xt/src/TestStrings.java

public void testCharAt() {

assertEquals('H', "Hello".charAt(0));

assertEquals('o', "Hello".charAt(4));

}

}

Ruby handles individual characters differently. Character literals are

prefixed with a question mark:

irb(main):015:0> ?A

=> 65

irb(main):016:0> ?B

=> 66

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/interpolation.irb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/quoting.irb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/TestStrings.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=42

STRINGS 43

Ruby also handles extraction differently. For example, you could call a

method named slice, but Ruby programmers would typically prefer to

use the [] syntax instead:

irb(main):019:0> ?H == "Hello".slice(0)

=> true

irb(main):020:0> ?H == "Hello"[0]

=> true

The really cool part of using slice/[] is that it performs reasonable tasks

with all kinds of arguments. You can count from the back of a string

with negative offsets:

irb(main):022:0> ?o == "Hello"[-1]

=> true

You can take substrings by passing two arguments:

irb(main):025:0> "Hello"[1,4]

=> "ello"

Asking for a character past the end of a string returns nil:

irb(main):026:0> "Hello"[1000]

=> nil

But, attempting to set a character past the end of a string throws an

exception:

irb(main):009:0> "Hello"[1000] = ?Z

IndexError: index 1000 out of string

Although interpolation is useful, you will not want it in all cases. To

turn off string interpolation, use a single-quoted string instead of a

double-quoted one:

irb(main):028:0> "Hello, #{name.upcase}"

=> "Hello, READER"

irb(main):029:0> 'Hello, #{name.upcase}'

=> "Hello, \#{name.upcase}"

In Java, you can create multiline strings by embedding \n characters:

print("one\ntwo\nthree");

The embedded backslashes are legal Ruby too, but there is an easier

way. Ruby provides an explicit syntax for multiline strings called a here

document, or heredoc. heredoc

A multiline string begins with <<, followed by a string of your choice.

That same string appears again at the beginning of a line to terminate

the heredoc:

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=43

OBJECTS AND METHODS 44

Download code/rails_xt/sample_output/heredoc.irb

irb(main):035:0> puts <<MY_DELIMITER

irb(main):036:0" one

irb(main):037:0" two

irb(main):038:0" three

irb(main):039:0" MY_DELIMITER

one

two

three

Regular expressions provide a powerful syntax for finding and modi-

fying ranges of characters within Strings. For example, here is a Java

method that uses a regular expression to bleep out any four-letter

words that appear in a String:

Download code/java_xt/src/Bowdlerize.java

public static String bleep(String input) {

return input.replaceAll("\\b\\w{4}\\b", "(bleep)");

}

}

Ruby uses a literal syntax for regular expressions, delimiting them with

//. As a result, a Ruby programmer might bleep like this:

Download code/rails_xt/sample_output/regexp.irb

irb(main):041:0> 'Are four letter words mean?'.gsub(/\b\w{4}\b/, "(bleep)")

=> "Are (bleep) letter words (bleep)?"

The gsub method replaces all matches of its first argument with its

second argument.

Notice that the regular expression itself looks slightly different in the

Ruby and Java versions. Where you see a single backslash in the Ruby

version, the Java version has a double backslash. The Java regular

expression is built from a Java string, and the paired backslashes

translate to single backslashes after the string is parsed. The Ruby

regular expression does not pass through a temporary “string phase,”

so the single backslashes are represented directly.

2.3 Objects and Methods

In this section, we will show how to use objects by calling their methods.

In Section 2.6, Defining Classes, on page 57, we will show how to define

your own classes of objects.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/heredoc.irb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/Bowdlerize.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/regexp.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=44

OBJECTS AND METHODS 45

You have already seen some examples of objects and methods in Sec-

tion 2.2, Strings, on page 41. Strings are just a kind (class) of object: A

method is code that is defined by an object to manipulate the object,

return a result value, or both. To invoke a method on a string, or any

other object, append a dot (.), the name of the method, and parenthe-

ses, as in (). For example, to get the lowercased version of a string in

Java, you use the following:

Download code/java_xt/src/DemoMethods.java

print("HELLO".toLowerCase());

Ruby is similar, except the parentheses are optional:

irb(main):047:0> "HELLO".downcase()

=> "hello"

irb(main):048:0> "HELLO".downcase

=> "hello"

Methods often have arguments: one or more pieces of additional infor-

mation that the object uses. For example, Java has a Math object, with

a cos method that takes a single argument, the angle in radians:

Download code/java_xt/src/DemoMethods.java

print(Math.cos(0));

In this case, the Ruby version can match exactly, since Ruby also pro-

vides a Math object.

irb(main):051:0> Math.cos(0)

=> 1.0

In Ruby, you can omit the parentheses around arguments, if the syntax

is otherwise unambiguous:

irb(main):051:0> Math.cos 0

=> 1.0

In Java, objects are type-safe. Objects know what they are capable of, type-safe

and you cannot ask them to perform methods they do not have. The

following code will fail in Java, since strings do not have a cos method:

Download code/java_xt/src/DemoMethods.java

print("hello".cos(0));

Ruby objects are also type-safe:

irb(main):057:0> "hello".cos 0

NoMethodError: undefined method ‘cos' for "hello":String

from (irb):57

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoMethods.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoMethods.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoMethods.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=45

OBJECTS AND METHODS 46

Type Safety Does Not Ensure Correctness

Type safety is a very weak assurance that your program actually
works as intended. Type safety says that your pieces fit together,
not that you have chosen all the right pieces. Imagine your
car’s lubrication system filled with orange juice. It is “type-safe”
in that the lubrication system contains the right “type” (a liquid),
but we wouldn’t recommend driving it.

Returning to our math example, what if you thought Math.cos

expected degrees instead of radians?

irb(main):067:0> Math.cos 180
=> -0.598460069057858

There is nothing in the previous Ruby code, or its Java equiva-
lent, to tell that your result is radically different from what you
intended:

irb(main):069:0> Math.cos Math::PI
=> -1.0

In September 1999, a “little problem” similar to this one
destroyed the Mars Climate Orbiter. A miscalculation based on
English instead of metric units caused the orbiter to pass too
close to Mars, where it was destroyed by the atmosphere.

One approach to these type-safety issues is to add even more
type safety. Instead of using primitive types, you could create
value types with embedded units in an enumeration. Without
first-class language support, this makes code more cumber-
some. A more likely approach in Ruby is to have good auto-
mated tests.

Although both Ruby and Java are type-safe, they achieve type safety in

different ways. Ruby uses dynamic typing. Objects carry type informa-

tion with them, and that information is used at runtime to determine

the set of legal methods for the object. Java also provides static typing:

Variables have types that are enforced at compile time by the Java com-

piler. Both approaches have their merits, and the difference will crop

up several times throughout this book.

We believe that type safety can never be perfect. No matter how rigor-

ously you enforce typing, type errors can still occur. See the sidebar on

the current page for a few examples.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=46

COLLECTIONS AND ITERATION 47

2.4 Collections and Iteration

Computer science is filled with all manner of esoteric collections (data

structures). Being general-purpose languages, Java and Ruby can han-

dle any of these, but daily use often boils down to three concerns:

• Ordered collections such as arrays accessed by numeric index

• Fast mappings from keys to values, also known as dictionaries or

hashes

• Iteration, the generic traversal of any collection or stream of data

The following sections cover these most common usages of collections

and iteration.

Arrays

Java deals with collections in two ways: arrays and collection classes.

Arrays are a language construct, and they hold a fixed-size collection of

some primitive type or object.

The collection classes work with objects, and they implement a wide

variety of different data structures. Here’s a simple example that loops

over the array of program arguments, printing them to the console:

Download code/java_xt/src/PrintArgs.java

public class PrintArgs {

public static void main(String[] args) {

for (int n=0; n<args.length; n++) {

System.out.println(args[n]);

}

}

}

Here is the Ruby equivalent:

Download code/rails_xt/samples/print_args.rb

ARGV.each {|x| puts x}

Running the program produces the following:

$ ruby samples/print_args.rb one two three

one

two

three

Let’s start by talking about what isn’t in the Ruby version:

• The Ruby version does not have an equivalent to the Java PrintArgs

class. Ruby programs begin life with an implicit top-level object,

so simple programs do not need to define any classes at all.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/PrintArgs.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/print_args.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=47

COLLECTIONS AND ITERATION 48

• The Ruby version does not have a main method. Ruby executes

any code it encounters, so simple programs do not need to define

any methods either.

• Ruby’s puts is (roughly) equivalent to Java’s System.out.println. The

call to puts does not need an explicit object; it is invoked on the

implicit top-level object.

Now, back to the one line of code. Here is the Ruby equivalent:

ARGV.each {|x| puts x}

Ruby populates ARGV as an array of command-line arguments. The rest

of the line does the following: “Take each element from ARGV, one at a

time. Assign it to x. Then perform the block of code between the curly block

braces (and after the |x|).” If you want to spread a block over multi-

ple lines, you can use do...end. Here’s the argument-printing program,

using do...end:

Download code/rails_xt/samples/print_args_long.rb

ARGV.each do |x|

puts x

end

Ruby arrays have a literal syntax, so they can easily be created inline:

irb(main):009:0> ['C', 'Java', 'Ruby'].each {|lang| puts "#{lang} is fun!"}

C is fun!

Java is fun!

Ruby is fun!

=> ["C", "Java", "Ruby"]

If each item in the array is a word, there is an even shorter syntax, the

%w shortcut:

irb(main):002:0> ['C', 'Java', 'Ruby'] == %w{C Java Ruby}

=> true

Ruby arrays respond in a reasonable way to mathematical operators:

Download code/rails_xt/sample_output/array_literals.irb

irb(main):002:0> [1,2] + [3]

=> [1, 2, 3]

irb(main):003:0> [1,2,3] * 2

=> [1, 2, 3, 1, 2, 3]

irb(main):004:0> [1,2,1] - [2]

=> [1, 1]

irb(main):005:0> [1,2] / 2

NoMethodError: undefined method ‘/' for [1, 2]:Array

from (irb):5

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/print_args_long.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/array_literals.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=48

COLLECTIONS AND ITERATION 49

Ruby arrays are resizable and can use push and pop to act like stacks:

irb(main):006:0> skills = ['C', 'Java']

=> ["C", "Java"]

irb(main):007:0> skills.push 'Ruby'

=> ["C", "Java", "Ruby"]

irb(main):008:0> skills.pop

=> "Ruby"

Java Map and Ruby Hash

Java has several implementations of Maps, which are collections that

manage key/value pairs. One such collection is the environment vari-

ables. Here, then, is a simple program that enumerates the environ-

ment variables:

Download code/java_xt/src/PrintEnv.java

import java.util.*;

public class PrintEnv {

public static void main(String[] args) {

Map map = System.getenv();

for (Iterator it = map.entrySet().iterator(); it.hasNext();) {

Map.Entry e = (Map.Entry) it.next();

System.out.println(String.format("%s: %s", e.getKey(), e.getValue()));

}

}

}

Here is the Ruby equivalent:

Download code/rails_xt/sample_output/hashes.irb

irb(main):032:0> ENV.each {|k,v| puts "#{k}: #{v}"}

TERM_PROGRAM: Apple_Terminal

TERM: xterm-color

SHELL: /bin/bash

ANT_HOME: /users/stuart/java/apache-ant-1.6.2

...lots more...

Ruby sets ENV to the environment variables. After that, iteration pro-

ceeds with each. This time, the block takes two parameters: k (key) and

v (value). Blocks are a completely general mechanism and can take any

number of arguments. Functions that use blocks for iteration tend pass

one or two parameters to the block, as you have seen.

Most Ruby objects that manage key/value pairs are instances of Hash.

Like arrays, hashes have a literal syntax:

irb(main):037:0> dict = {:do => "a deer", :re => "a drop of golden sun"}

=> {:do=>"a deer", :re=>"a drop of golden sun"}

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/PrintEnv.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/hashes.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=49

COLLECTIONS AND ITERATION 50

Curly braces introduce a hash. Keys and values are separated by =>,

and pairs are delimited by commas. You can get and set the values in

a hash with the methods fetch and store:

irb(main):013:0> dict.fetch(:do)

=> "a deer"

irb(main):014:0> dict.store(:so, "a needle pulling thread")

=> "a needle pulling thread"

But Ruby programmers prefer to use the operators [] and []=:

irb(main):015:0> dict[:so]

=> "a needle pulling thread"

irb(main):016:0> dict[:dos] = "a beer"

=> "a beer"

The [] and []= operators are easy to remember, because they borrow

from mathematical notation. They are also more compact than the

named methods fetch and store.

Better Than For, and More Than Each

Java 5.0 introduced a more expressive syntax for iteration. The fol-

lowing example uses Java 5.0’s For-Each loop to enumerate first the

command-line arguments and then the environment variables:

Download code/java_xt/src/ForEach.java

import java.util.Map;

public class ForEach {

public static void main(String[] args) {

for (String arg: args) {

System.out.println(arg);

}

for (Map.Entry entry: System.getenv().entrySet()) {

System.out.println(

String.format("%s : %s", entry.getKey(), entry.getValue()));

}

}

}

This is nice! Notice that Java arrays and collections can now both be

handled with a parallel syntax.

Also, Ruby uses each and blocks to do much more than we have shown

here. For example, you can perform a transformation on each item in a

collection using collect:

irb(main):017:0> [1,2,3,4,5].collect {|x| x**2}

=> [1, 4, 9, 16, 25]

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/ForEach.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=50

CONTROL FLOW 51

Or, you can find all the items that match some criterion by passing

find_all, a block that is interpreted as a boolean:

irb(main):021:0> [1,2,3,4,5].find_all {|x| x%2==0}

=> [2, 4]

We want to make two important points from these examples:

• Languages evolve and improve over time. Usually improvement

comes not from thin air but from ideas that have already been

explored elsewhere. Java’s For-Each syntax was inspired by other

languages that have similar features. The programmers who facil-

itate this kind of cross-pollination are those who become fluent in

multiple programming languages.

• Languages evolve at many levels. Runtimes can change, language

syntax can change, and libraries can change. In Java, iteration

changes like the addition of For-Each are language changes. Sim-

ilar changes in Ruby are library changes, since each et. al. are

method calls. Library changes are easier to make than language

changes. (Many developers write libraries, few developers write

languages, and language evolution tends to be retarded by stan-

dards bodies, backward compatibility, and so on.) Merely pointing

out that Java and Ruby enable different approaches to change is

not a value judgment. However, it may lead to value judgments

in a specific context (which you must provide). What parts of your

system need to change? On what timeline, and under whose direc-

tion? Conversely, what parts need to stay rock-solid stable and be

guaranteed to work in the same fashion across different projects

over time?

2.5 Control Flow

Ruby’s if and while are similar to Java’s but have alternative forms that

are shorter in some circumstances. Instead of a for loop, Ruby uses

Range#each. Where Java has switch, Ruby provides a more general case.

Each is described in the following sections.

if

Java’s if statement, with optional else, allows programs to branch based

on the truth value of an expression:

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=51

CONTROL FLOW 52

Download code/java_xt/src/DemoControlFlow.java

if (n > 5) {

print("big");

} else {

print("little");

}

Ruby also has an if statement. Instead of using curly braces to delimit

the optional code, Ruby uses newlines and end:

Download code/rails_xt/samples/control_flow.rb

if n>5

puts "big"

else

puts "little"

end

Everything in Ruby has a return value, so instead of putting the puts

inside both branches of the if statement, you can hoist it out:

puts(if (n>5)

"big"

else

"little"

end)

The if inside parentheses looks odd to us, and we wouldn’t usually code

Ruby this way. A more compact form exists. The ternary operator works

just as it does in Java:

puts n>5 ? "big" : "little"

Java will not automatically coerce values to create booleans for a con-

ditional. To check whether an object exists, you cannot say this:

Download code/java_xt/src/DemoControlFlow.java

if (o) {

print("got o");

}

You must explicitly compare the object to null:

if (o != null) {

print("got o");

}

Ruby will automatically coerce values to booleans. The following code

produces false

Download code/rails_xt/samples/control_flow.rb

o = nil

puts o ? true : false

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoControlFlow.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/control_flow.rb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoControlFlow.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/control_flow.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=52

CONTROL FLOW 53

Only false/nil is false. Even zero coerces to true. The following code pro-

duces true.

o = 0

puts o ? true : false

Often, the body of a control statement is a single expression. Ruby can

pack multiple statements on one line separated by semicolons, so you

might be tempted to replace this:

if lines > 1

puts "you have more than one line"

end

with the following:

if lines > 1; puts "you have more than one line"; end

Or maybe not—that’s a bit ugly. Fortunately, Ruby provides a short

form called a statement modifier. The following code is equivalent to the statement modifier

two preceding snippets:

puts "you have more than one line" if lines > 1

Sometimes you want to take action if a condition is not true. As a con-

venience, you can use unless, which is the opposite of if. The following

statements are equivalent:

puts "you've got lines" if lines != 0

puts "you've got lines" unless lines == 0

while

Java’s while loop is like if, except it repeats as long as the condition

remains true. The following code prints the squares of numbers from

one to five:

int n=1;

while (n<=5) {

print(n*n);

n++;

}

Ruby also does while:

i=1

while (i<5)

puts i*i

i+=1 # no ++ in Ruby

end

The opposite of while is until, which repeats as long as a condition stays

false:

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=53

CONTROL FLOW 54

i=1

until (i>5)

puts i*i

i+=1

end

Like with if, you can use while and unless as statement modifiers. The

following program runs an input loop, shouting back everything passed

via stdin:

Download code/rails_xt/samples/short_while.rb

line = ""

puts "Shouting back #{line.upcase}" while line=gets

Ranges

Is it possible to use the statement modifier form of while to implement

our number-squaring example in a single line of code? Yes, but it isn’t

pretty:

irb(main):026:0> i=1; puts(i*i) || i+=1 while i<=5

1

4

9

16

25

The ugliness here comes from using the boolean operator || to shoehorn

two statements into one to conform to the requirements of the state-

ment modifier form. We would not write code like this, and fortunately

you do not have to in Ruby. The preferred one-line implementation is

as follows:

Download code/rails_xt/sample_output/range.irb

irb(main):029:0> (1..5).each {|x| puts x*x}

1

4

9

16

25

The expression (1..5) is a literal for a Ruby type: the Range. Ranges make

it easy to represent repetitive data, such as “the numbers one through

five” in this example.

The call to each and the block syntax work exactly as they did for arrays

and hashes back in Section 2.4, Java Map and Ruby Hash, on page 49.

That is, the block is invoked once for each item in the range, with x

assigned to the value of the item.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/short_while.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/range.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=54

CONTROL FLOW 55

Ranges include their first element. The last element is included if you

use (1..10) but excluded if you add another dot, as in (1...10):

irb(main):014:0> (1..10).max

=> 10

irb(main):015:0> (1...10).max

=> 9

irb(main):016:0> (1..10).exclude_end?

=> false

irb(main):017:0> (1...10).exclude_end?

=> true

Ranges are not just for numbers:

("A".."C").each {|x| puts x*5}

AAAAA

BBBBB

CCCCC

You can conveniently step through Ranges, skipping some elements:

Download code/rails_xt/sample_output/range_step.irb

irb(main):003:0> ('A'..'I').step(2) {|x| print x}

ACEGI

case

Java provides a switch statement that can branch to different actions

by testing equality with different values. Although you could imple-

ment the same logic using if, switch results in cleaner code if quite a few

branches are possible.

Here is an example that calculates a number grade from a letter grade:

Download code/java_xt/src/DemoSwitch.java

public static int numberGrade(char letter) {

switch(letter) {

case 'a':

return 100;

case 'b':

return 90;

case 'c':

return 80;

case 'd':

return 70;

case 'e':

case 'f':

return 0;

}

return 0;

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/range_step.irb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoSwitch.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=55

CONTROL FLOW 56

Ruby’s answer to switch is case:

Download code/rails_xt/samples/case.rb

def number_grade(letter)

case letter

when 'A': 100

when 'B': 90

when 'C': 80

when 'D': 70

else 0

end

end

Now let’s turn the example around and write a function that returns

a letter grade for a number or letter grade. This will demonstrate the

power of case:

Download code/rails_xt/samples/case.rb

def letter_grade(x)

case x

when 90..100: 'A'

when 80..90: 'B'

when 70..80: 'C'

when 60..70: 'D'

when Integer: 'F'

when /[A-F]/: x

else raise "not a grade: #{x}"

end

end

As this example shows, case does not do a standard equality compar-

ison. It does something much more powerful. Ruby defines an opera-

tion called case equality. Case equality is a special comparison that is case equality

done in case statements. This allows different types to define their own

notion of how to match in a case statement. The letter_grade example

shows how case equality works for several different classes:

• Ranges such as 90..100 define case equality to mean “match any

number in the range.”

• Classes such as Integer define case equality to mean “match any

object of this type.”

• Regular expressions such as /[A-F]/ define case equality to mean

“match this regular expression.”

The case completes as soon as it encounters a true when, so you should

list more specific matches first:

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/case.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/case.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=56

DEFINING CLASSES 57

irb(main):018:0> case('John')

irb(main):019:1> when('John'): 'a name'

irb(main):020:1> when(String): 'a word'

irb(main):021:1> end

=> "a name"

You can also invoke the case equality operator directly; it is written as

a triple equals (===):

irb(main):002:0> (90..100) === 95

=> true

irb(main):003:0> (90..100) === 95.5

=> true

irb(main):004:0> (90..100) === 0

=> false

irb(main):005:0> Integer === 95

=> true

irb(main):006:0> Integer === 95.5

=> false

2.6 Defining Classes

In both Java and Ruby, classes encapsulate behavior and state. Sim-

ple classes typically contain the constructs shown in Figure 2.1, on

page 59. To demonstrate these constructs, we will build Java and Ruby

versions of a Person class. These Persons have simple state: a first name

and a last name. They also have simple behavior: They can marry

another Person, resulting in both Persons sharing a hyphenated last

name. The next sections build Persons one step a time; for complete

listings, see Figure 2.2, on page 62, and see Figure 2.3, on page 63.

Declaring Fields

The Java Person begins with a class declaration and some fields:

Download code/java_xt/src/Person.java

public class Person {

private String firstName;

private String lastName;

Fields are usually marked private so they can be accessed only from

within the class. This way, you can change the underlying representa-

tion later. For example, you could store the entire name in a fullName

field, and only other code that might change would be within the class

itself.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/Person.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=57

DEFINING CLASSES 58

The Ruby Person begins simply with a class declaration:

Download code/rails_xt/samples/person.rb

class Person

That’s it. There is no need to declare instance variables (the Ruby equiv-

alent of fields) because they come into existence automatically when

they are used.

The other attributes of a declaration (types and protection modifiers) are

irrelevant in Ruby. Ruby instance variables do not need a type such

as String, because they accept any type. Ruby instance variables are

implicitly private, so this designation is unneeded as well.

Defining Constructors

The Java definition continues with a constructor that sets the initial

values of the fields:

public Person(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

Constructors have the same name as their class and are often marked

public so that all other classes can use them. Notice that the constructor

arguments share the same names as the private fields: firstName and

lastName. To disambiguate, you explicitly prefix the instance variables

with this. The convention of having

constructor arguments

with the same names as

fields is confusing but

well established. Most

programmers use IDEs

to autogenerate

constructors, reducing

the potential for error.

The Ruby declaration also continues with a constructor that sets the

initial value of instance variables:

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

In Ruby, the “constructor” is just a method named initialize. Method

definitions begin with def and end with end (duh). In Ruby, instance

variables must begin with a @, so there is no danger of a name collision

with method parameters.1

1. Ruby has a different name collision problem; it’s between local variables and method

calls. See Section 2.6, Defining Accessors, on the following page.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/person.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=58

DEFINING CLASSES 59

Java name Ruby name Meaning

Fields Instance variables State that is owned/managed by

an instance of the class

Methods Methods Functions that are called “on” an

instance of the class and have

access to that instance’s state

Constructors Initializers Special creation functions that are

called once per new instance to set

and validate the instance’s initial

state

Figure 2.1: What’s in a class?

Defining Accessors

The Java definition continues with accessor methods. Accessors are accessor methods

methods that allow callers to read and write properties of an object:

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public String getFullName() {

return String.format("%s %s", firstName, lastName);

}

As you can see, methods divide into getters (methods that read a prop- getters

erty) and setters (methods that write a property). Some getters, such as setters

the ones for getFirstName and getLastName, may directly return private

fields.

Other “computed” accessors, such as getFullName, may do more work

to compute a value based on one or more fields. Setters can also be

more complicated than those shown here and perform tasks such as

validating their arguments.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=59

DEFINING CLASSES 60

Ruby also has accessor methods:

attr_accessor :first_name, :last_name

def full_name

"#{first_name} #{last_name}"

end

The attr_accessor method makes getter and setter methods for a comma-

delimited list of names. This greatly reduces lines of code, since you do

not have to type (or use IDE magic to create) boilerplate getters and set-

ters. Ruby also provides attr_reader and attr_writer if you want read-only

or write-only properties. Accessors that actually do something must

still be coded by hand, as in the case of full_name.

Ruby’s naming convention for accessors does not use get and set pre-

fixes. Given the definition of Person, you would access attributes in this

way:

Download code/rails_xt/samples/demo_person.rb

p.first_name = 'Justin'

p.last_name = 'Gehtland'

puts "Hello from #{p.first_name}"

To a Java eye, this looks like direct access to the fields first_name and

last_name, but in Ruby these are method calls. Even the punctuation (=)

is part of a method name. To make this clearer, here is a hand-coded

version of the accessors:

don't do this--use attr_accessor!

def first_name

@first_name

end

def first_name=(new_name)

@first_name = new_name

end

Creating Behavioral Methods

We are using the name behavioral methods to describe methods that

actually make an object do something, other than simply managing

properties. Here’s the Java implementation of marry:

public void marry(Person other) {

String newLastName =

String.format("%s-%s", getLastName(), other.getLastName());

setLastName(newLastName);

other.setLastName(newLastName);

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/demo_person.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=60

DEFINING CLASSES 61

Note that some of the accessor method calls are prefixed with an object

reference (other.), and other accessor calls are not. Methods not prefixed

by an explicit object reference are invoked on this, the object whose

method is currently executing.

Here’s the Ruby marry:

def marry(other)

other.last_name = self.last_name = "#{self.last_name}-#{other.last_name}"

end

Since Ruby methods always return the last expression evaluated, writer

(setter) methods return the new value set. This means that multiple

setters can be chained together, as in other.last_name = self.last_name =

.... Note that the Ruby setter methods being called in marry are prefixed

by an object, either other or self. Ruby’s self is the equivalent of Java’s

this. The explicit use of self here is important. In Ruby, last_name="X" is

ambiguous. Depending on the context, this might mean “Create a local

variable named last_name with value "X"” or “Call the method last_name=,

passing the parameter "X".” Using self makes it clear that you want the

“method” interpretation.

If you forget to prefix a setter with self, you may create hard-to-find

bugs. Java does not suffer from this ambiguity, so be careful.

Creating Static Methods

Sometimes methods apply to a class as a whole, instead of to any par-

ticular instance of a class. In Java these are called static methods: static methods

public static String getSpecies() {

return "Homo sapiens";

}

In Ruby, these methods are called class methods: class methods

def self.species

"Homo sapiens"

end

For purposes of this book, we can pretend that Java static methods and

Ruby class methods are similar beasts.2

2. The Ruby story is actually a good bit more complex than this. Unlike Java meth-

ods, Ruby class methods are polymorphic. There are at least five alternate syntaxes

that you can use to define a Ruby class method. There is a good RubyGarden dis-

cussion on class methods at http://www.rubygarden.org:3000/Ruby/page/show/ClassMethods.

In addition, Ruby also has class variables, but we think you should avoid them. See

http://www.relevancellc.com/archives/2006/11.

http://www.rubygarden.org:3000/Ruby/page/show/ClassMethods.
http://www.relevancellc.com/archives/2006/11
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=61

DEFINING CLASSES 62

Download code/java_xt/src/Person.java

public class Person {

private String firstName;

private String lastName;

public Person(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public String getFullName() {

return String.format("%s %s", firstName, lastName);

}

public void marry(Person other) {

String newLastName =

String.format("%s-%s", getLastName(), other.getLastName());

setLastName(newLastName);

other.setLastName(newLastName);

}

public static String getSpecies() {

return "Homo sapiens";

}

}

java_xt/src/Person.java

Figure 2.2: A Java Person

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/Person.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=62

IDENTITY AND EQUALITY 63

Download code/rails_xt/samples/person.rb

class Person

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

attr_accessor :first_name, :last_name

def full_name

"#{first_name} #{last_name}"

end

def marry(other)

other.last_name = self.last_name = "#{self.last_name}-#{other.last_name}"

end

def self.species

"Homo sapiens"

end

end

rails_xt/samples/person.rb

Figure 2.3: A Ruby Person

2.7 Identity and Equality

Java distinguishes object identity and object equality. Object identity Object identity

asks the question “Are two objects at the same location in memory?”

Testing object identity is the responsibility of the runtime, which man-

ages memory. Object equality asks the question “Do two objects have Object equality

state that is semantically equivalent?” Testing object equality is the

responsibility of the implementer of a class. This short Java example

illustrates the difference:

Download code/java_xt/src/TestEquals.java

public void testEquals() {

String s1 = "Java rocks!";

String s2 = s1;

String s3 = new String("Java rocks!");

assertTrue(s1 == s2);

assertFalse(s1 == s3);

assertTrue(s1.equals(s3));

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/person.rb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/TestEquals.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=63

IDENTITY AND EQUALITY 64

The == operator tests for identity. Strings s1 and s2 are == because they

point to the same object. Strings3 is not== to the others. It contains the

same characters, but it is at a different location in memory.

The equals method tests equality, which Java strings define to mean

“containing the same characters.” Thus, string s3.equals the others.

Ruby also distinguishes between identity and equality. Each unique

object has an object_id. Two objects are identical if they have the same

object_id, and the equal? method tests for this:

Download code/rails_xt/sample_output/identity.irb

irb(main):001:0> s1 = s2 = "Ruby rocks!"

=> "Ruby rocks!"

irb(main):002:0> s1.object_id

=> 190400

irb(main):003:0> s2.object_id

=> 190400

irb(main):004:0> s2.equal? s1

=> true

To test equality, Ruby provides two equivalent methods: == and .eql?.3

Like Java’s equals, these methods can be overridden by class implemen-

tors to compare semantic equality. Ruby’s strings define these methods

to return true if two strings have the same characters, regardless of

identity:

Download code/rails_xt/sample_output/equality.irb

irb(main):006:0> s3 = "Ruby rocks!"

=> "Ruby rocks!"

irb(main):007:0> s4 = "Ruby rocks!"

=> "Ruby rocks!"

irb(main):008:0> s3==s4

=> true

irb(main):009:0> s3.eql? s4

=> true

irb(main):010:0> s3.equal? s4

=> false

Even though the concepts are roughly the same, you need to be careful

when switching between Java and Ruby in your mind. Some of the

terminology gets reversed: Java’s == tests for identity, while Ruby’s ==

usually tests for equality.

3. Why two methods? See the sidebar on the next page.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/identity.irb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/equality.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=64

INHERITANCE 65

Why Does Ruby Have Two Methods for Object Equality?

Ruby has two different methods for testing object equality: ==

and eql?. In fact, Ruby often has two (or even more) methods
that perform the same task. Ruby’s approach is often called
“There’s more than one way to do it” (TMTOWDI, pronounced
“Tim Toady”). This contrasts with Java, which falls more in line
with Bertrand Meyer’s belief that “A programming language
should provide one good way of performing any operation of
interest; it should avoid providing two.”

Martin Fowler uses the term humane interface to describe the
approach taken in, for example, Ruby, Perl, and Lisp; he uses
the term minimal interface for the approach in, for example,
Java, Python, and Eiffel. You can find plenty of information to
support both sides in Martin’s Bliki:

http://www.martinfowler.com/bliki/HumaneInterface.html as well as
http://www.martinfowler.com/bliki/MinimalInterface.html.

2.8 Inheritance

Java provides single implementation inheritance. (See Section 3.6, Poly- single implementation

inheritance
morphism and Interfaces, on page 85.) This means a class can extend a

extend
single other class.

Download code/java_xt/src/Programmer.java

public class Programmer extends Person {

In Ruby the keyword extends is replaced by <:

Download code/rails_xt/samples/programmer.rb

class Programmer < Person

In the previous two examples, the Programmer class is extending the

Person, previously introduced in Figure 2.2, on page 62, as well as Fig-

ure 2.3, on page 63. The extending class Programmer is called a subclass

or derived class. The class being extended (Person) is called a base class

or superclass. A derived class can have its own members:

private String favoriteLanguage;

public String getFavoriteLanguage() {

return favoriteLanguage;

}

http://www.martinfowler.com/bliki/HumaneInterface.html
http://www.martinfowler.com/bliki/MinimalInterface.html
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/Programmer.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/programmer.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=65

INHERITANCE 66

public void setFavoriteLanguage(String favoriteLanguage) {

this.favoriteLanguage = favoriteLanguage;

}

The Ruby version is as follows:

attr_accessor :favorite_language

Derived classes methods and constructors can call the base class mem-

ber with the same name, using the super keyword. This is commonly

used in constructors:

public Programmer(String firstName, String lastName, String favoriteLanguage) {

super(firstName, lastName);

this.favoriteLanguage = favoriteLanguage;

}

Here it is in Ruby:

def initialize(first_name, last_name, favorite_language)

super(first_name, last_name)

@favorite_language = favorite_language

end

The power of subclassing comes from that derived classes get to use

their own members plus the members of their base class(es):

Download code/java_xt/src/DemoProgrammer.java

Programmer p = new Programmer("David", "Gosling", "Java");

//do Person things:

System.out.println(p.getFirstName());

System.out.println(p.getLastName());

//do Programmer thing:

System.out.println(p.getFavoriteLanguage());

Again, the Ruby version is similar:

Download code/rails_xt/samples/programmer.rb

p = Programmer.new "James", "Hansson", "Ruby"

do Person things

puts p.first_name

puts p.last_name

do Programmer thing

puts p.favorite_language

Neither Ruby nor Java supports multiple implementation inheritance.

For situations where you wish you had multiple inheritance, see Sec-

tion 3.5, Delegation, on page 83 and Section 3.8, Mixins, on page 90.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoProgrammer.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/programmer.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=66

CONTROLLING ACCESS WITH ACCESS SPECIFIERS 67

Specifier Access Level Commonly Used For

private Access only by same class Fields

(Not specified) Access by any class in the

same package

Closely collaborating

classes

protected Access by any class in the

same package or any sub-

class

Base class methods

public Everybody Client interface

Figure 2.4: Java access specifiers

2.9 Controlling Access with Access Specifiers

Java has four access specifiers, shown in Figure 2.4.

The “Not specified” case is called package private but has no corre- package private

sponding keyword. Access specifiers are applied per method, field, or

constructor. For example:

Download code/java_xt/src/AccessMe.java

import java.util.*;

public class AccessMe {

private String name;

private List stuff;

public AccessMe(String name) {

this.name = name;

stuff = new ArrayList();

}

public String getName() {

return name;

}

protected List getStuff() {

return stuff;

}

private void clear() {

name = null;

stuff = null;

}

}

Ruby does not have any equivalent for package private but supports

public, protected, and private:

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/AccessMe.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=67

CONTROLLING ACCESS WITH ACCESS SPECIFIERS 68

Download code/rails_xt/test/examples/access_test.rb

class AccessMe

def initialize(name)

@name = name

@stuff = []

end

attr_accessor :name

protected

attr_accessor :stuff

private

def clear

@name = @stuff = nil

end

end

An access control method call appearing alone on a line defines the

access level for subsequent methods. The initial default is public. So,

AccessMe’s name accessors are public, the stuff accessors are protected,

and so on.

Although access control specifiers set a general rule for how you can

use a class, the general rule may need to bend in some circumstances.

For example, an object serializer may bypass protection modifiers to

access all of an object’s state. In Ruby, you can bypass access control

specifiers with send:

Download code/rails_xt/test/examples/access_test.rb

a = AccessMe.new("test")

a.send :stuff=, 'some stuff'

puts a.send(:stuff)

The first argument to send is the symbol for the method to invoke, and

subsequent arguments are passed on to the method. The following two

lines do the same thing:

Download code/rails_xt/test/examples/access_test.rb

a.send :stuff=, 'other stuff'

a.stuff = 'better not try this'

Well, they would do the same thing, except the second line will fail

because stuff= is protected.

Access control methods can also take arguments. When called with

arguments, access control methods expect symbol parameters. These

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/examples/access_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/examples/access_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/examples/access_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=68

RAISING AND HANDLING EXCEPTIONS 69

symbols look up methods and set their access levels. You can invoke

the access control methods more than once for the same symbol. At first

glance this may seem silly—why would a class want to have different

levels of access control at different times? One possibility is temporarily

setting methods public so that unit tests can test them:

Download code/rails_xt/test/examples/access_test.rb

def test_clear

AccessMe.send :public, :clear, :stuff

a = AccessMe.new("test")

a.clear

assert_nil a.stuff

end

This sample uses only techniques we have covered thus far. You can

use cleaner ways to set methods public for the duration of a test. One

approach is to use the extend method, described in Section 3.8, Mixins,

on page 90.

2.10 Raising and Handling Exceptions

Java programs typically use exceptions to indicate errors. Some excep-

tions are checked exceptions. Checked exceptions must be explicitly checked

handled, either by using a catch block or by adding the exception to the

method signature, which passes the buck to the caller. Here’s a method

that may fail with a checked exception:

Download code/java_xt/src/DemoException.java

static void methodThatOpensFile()

throws FileNotFoundException {

new FileInputStream("nonexistent.file");

}

FileNotFoundException must appear in the throws clause, providing an

indication to potential callers of a possible failure mode. Callers can

also use a throws keyword, but eventually some caller must take respon-

sibility for dealing with the problem in a catch block:

try {

methodThatOpensFile();

} catch (FileNotFoundException fnfe) {

System.out.println("File not found " + fnfe);

} catch (Exception e) {

System.out.println("Caught " + e);

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/examples/access_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoException.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=69

RAISING AND HANDLING EXCEPTIONS 70

You can provide more than one catch, in which case the first matching

catch is invoked.

Ruby’s exception handling implements almost all of the same ideas but

with different terminology:

Download code/rails_xt/samples/demo_exception.rb

Line 1 begin
- File.read 'nonexistent'
- rescue SystemCallError => e
- puts 'system call failed'
5 rescue Exception => e
- puts 'generic failure of some kind'
- else
- puts 'nothing failed'
- ensure

10 puts 'this always executes'
- end

• line 1: begin instead of try

• line 3: rescue instead of catch

• line 9: ensure instead of finally

As in Java, specific exceptions should be listed first, followed by more

general exceptions such as Exception (line 5). Ruby also has a rarely

used else clause (line 7), which executes if no exception occurred.

The most noticeable difference is there are no checked exceptions in

Ruby, and throws clauses are thus not used. Ruby exceptions are more

like Java’s unchecked exceptions, which do not need to be declared. The

following Java code throws a java.lang.ArithmeticException but doesn’t

declare the possibility since ArithmeticException is unchecked:

static void methodThatDividesByZero() {

int z = 0;

int ten = 10;

int in = ten/z;

}

Java exceptions include an error message and the call stack at the time

of the exception:

try {

methodThatDividesByZero();

} catch (Exception e) {

System.out.println(e.getMessage());

e.printStackTrace();

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/demo_exception.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=70

RAISING AND HANDLING EXCEPTIONS 71

Checked Exceptions: Feature or Flaw?

Checked exceptions are controversial. Advocates for checked
exceptions see them as a distinguishing benefit of Java, and
detractors believe the opposite. For further reading, check out
Java expert Bruce Eckel’s perspective.∗

∗. http://www.mindview.net/Etc/Discussions/CheckedExceptions

Ruby provides the same:

begin

1/0

rescue Exception => e

puts "Message " + e.message

puts "Backtrace " + e.backtrace.join("\n")

end

Ruby also has a throw/catch syntax that is intended for unwinding the

stack in nonerror conditions, as a means of control flow. This feature is

rarely used and has no analog in Java, so don’t be confused by the ter-

minology. For error handling, stick with begin...end, rescue, and ensure.

As you have seen in this chapter, Ruby and Java have much in com-

mon. Once you get past a few syntax differences, you will find that

your knowledge of object-oriented programming in Java is directly rel-

evant for programming in Ruby as well. But that is only half the story.

Ruby also supports a number of idioms that are different from Java

programming. These idioms are borrowed from many places, including

Perl, Smalltalk, and Lisp. In the next chapter, you will learn how to use

these idioms to do more work with less code, and you will learn how to

write Ruby that is expressive and beautiful.

http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=71

Chapter 3

Ruby Eye for the Java Guy
After the last chapter, you can speak Ruby, but with the awkward ac-

cent of someone learning a second language by rote. In this chapter, you

will improve your accent by learning idioms more particular to Ruby.

3.1 Extending Core Classes

Programmers often need to add methods to classes that are part of the

language runtime itself. Subclassing is typically not an option here,

since the method needs to be available to instances of the base class

itself. For example, neither Java nor Ruby have a method that tells if a

String is blank, in other words, null, empty, or just whitespace. A blank-

testing method is useful, because many applications want to treat all

blank inputs in the same way. For both Java and Ruby, the open source

community has provided methods that test for blankness. Here is a

Java implementation of isBlank() from Apache Commons Lang:

Download code/Language/IsBlank.java

public class StringUtils {

public static boolean isBlank(String str) {

int strLen;

if (str == null || (strLen = str.length()) == 0) {

return true;

}

for (int i = 0; i < strLen; i++) {

if ((Character.isWhitespace(str.charAt(i)) == false)) {

return false;

}

}

return true;

}

}

http://media.pragprog.com/titles/fr_r4j/code/code/Language/IsBlank.java

EXTENDING CORE CLASSES 73

Since methods cannot be added to core classes, Commons Lang uses a

standard Java idiom, collecting extensions methods as static methods

in another class. The implementation of isBlank() lives inside a StringUtils

class.

Callers of isBlank() prefix each call with the helper class name StringUtils:

Download code/java_xt/src/TestStringUtils.java

import junit.framework.TestCase;

import org.apache.commons.lang.StringUtils;

public class TestStringUtils extends TestCase {

public void testIsBlank() {

assertTrue(StringUtils.isBlank(" "));

assertTrue(StringUtils.isBlank(""));

assertTrue(StringUtils.isBlank(null));

assertFalse(StringUtils.isBlank("x"));

}

}

Ruby classes are open—you can modify them at any time. So, the Ruby open

approach is to add blank? to String, as Rails does:

Download code/rails/activesupport/lib/active_support/core_ext/blank.rb

class String

def blank?

empty? || strip.empty?

end

end

Here are some calls to blank?:

Download code/rails_xt/test/examples/blank_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class BlankTest < Test::Unit::TestCase

def test_blank

assert "".blank?

assert " ".blank?

assert nil.blank?

assert !"x".blank?

end

end

What about null?

The Java version of isBlank() uses a helper class, StringUtils, for a second

reason. Even if you could hang the method isBlank() on String, in Java

you would not want to do so. Calls to isBlank() need to return false for

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/TestStringUtils.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails/activesupport/lib/active_support/core_ext/blank.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/examples/blank_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=73

MUTABLE AND IMMUTABLE OBJECTS 74

null Strings. In Java, calling any method on null will cause a NullPoint-

erException. By testing the first parameter to a static StringUtils method,

you avoid the trap of trying to write a String method that (nonsensically)

compares this to null. Why doesn’t the Ruby approach work this way as

well?

Ruby nil Is an Object

The Ruby equivalent of Java null is nil. However, nil is an actual object.

You can call methods on nil, just like any other object. More important

to the task at hand, you can add methods to nil, just like any other

object: The following code causes nil.blank? to return true.

Download code/rails/activesupport/lib/active_support/core_ext/blank.rb

class NilClass #:nodoc:

def blank?

true

end

end

Rails provides reasonable definitions of blank? for several other objects

too: true, false, empty arrays or hashes, numeric types, and even the

Object class.

3.2 Mutable and Immutable Objects

Most programmers probably think first in terms of mutable objects mutable

(objects whose state can change). However, immutable objects (objects immutable

whose state never changes after creation) have many uses. Immutable

objects have many desirable properties:

• Immutable objects are thread-safe. Threads cannot corrupt what

they cannot change.

• Immutable objects make it easier to implement encapsulation. If

part of an object’s state is stored in an immutable object, then

accessor methods can return that object to outside callers, with-

out fear that those callers can change the object’s state.

• Immutable objects make good hash keys, since their hash codes

cannot change.

Java supports immutability with the final keyword. A field marked final

can never be changed. To make an entire object immutable, all of its

fields would be marked final.

http://media.pragprog.com/titles/fr_r4j/code/code/rails/activesupport/lib/active_support/core_ext/blank.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=74

MUTABLE AND IMMUTABLE OBJECTS 75

Ruby takes a very different approach. Mutability is a property of an

instance, not of an entire class. Any instance can become immutable

by calling freeze:

Download code/rails_xt/sample_output/immutable.irb

irb(main):005:0> a = [1,2]

=> [1, 2]

irb(main):006:0> a.push 3

=> [1, 2, 3]

irb(main):007:0> a.freeze

=> [1, 2, 3]

irb(main):008:0> a.push 4

TypeError: can't modify frozen array

from (irb):8:in ‘push'

from (irb):8

Once you decide to make an object immutable, you have several other

issues to consider:

• An object needs to be fully initialized before becoming immutable.

In Java, this means the object must initialize all fields in every

constructor. In Ruby, the implementation is up to you, since the

timing of freeze is at your discretion.

• Setter methods are illegal for an immutable object. In Java, this

is enforced at compile time, so immutable classes will not have

setter methods. In Ruby, the implementation is up to you—but

writer methods will throw an exception if called on an immutable

object.

Immutable objects also make an important demand on their users:

“Modifier” methods cannot change an immutable object and so must

return a new object. Callers must remember to capture this return

value. The following code does not behave as intended:

Download code/java_xt/src/DemoImmutable.java

String s = "Go go Java String!";

s.toUpperCase();

System.out.println("Shouting: " + s);

The call to toUpperCase does not modify s. It cannot—Java strings are

immutable. String methods like toUpperCase return a new object, which

must be captured, as in this corrected version:

Download code/java_xt/src/DemoImmutable.java

String s = "Go go Java String!";

s = s.toUpperCase();

System.out.println("Shouting: " + s);

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/immutable.irb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoImmutable.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/DemoImmutable.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=75

PACKAGES AND NAMESPACES 76

Ruby strings are not automatically immutable, but the same issue can

occur anyway:

irb(main):001:0> s = "Go Ruby String!"

=> "Go Ruby String!"

irb(main):002:0> s.upcase

=> "GO RUBY STRING!"

irb(main):003:0> p "Shouting: #{s}"

"Shouting: Go Ruby String!"

Ruby methods often provide a hint via the method name. In addition

to upcase, there is also upcase!. By convention, method names ending

with the bang are mutators, while the same name without the bang

leaves the object unchanged, returning a new object. So, one possible

option for fixing the preceding code is this:

Download code/rails_xt/sample_output/bang.irb

irb(main):004:0> s = "Go Ruby String!"

=> "Go Ruby String!"

irb(main):005:0> s.upcase!

=> "GO RUBY STRING!"

irb(main):006:0> p "Shouting: #{s}"

"Shouting: GO RUBY STRING!"

3.3 Packages and Namespaces

The number of possible class names based on human-language words

is large. Nevertheless, name collisions and ambiguity are likely, partic-

ularly for common words. If we create a User class, and you do too, how

will anyone tell them apart?

Java solves this problem with packages. Package names are lower-

case and dot-delimited. They typically begin with your domain name

in reverse and can then have other portions meaningful within your

organization. Since domain names are supposed to be globally unique,

name collisions are unlikely. The package name appears separately, at

the top of the class definition:

Download code/java_xt/src/com/codecite/User.java

package com.codecite;

public class User {

private String name;

public User(String name) {

this.name = name;

}

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/bang.irb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/com/codecite/User.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=76

PACKAGES AND NAMESPACES 77

This similar-looking class is totally different, because it belongs to a

different package, com.relevancellc:

Download code/java_xt/src/com/relevancellc/User.java

package com.relevancellc;

public class User {

private String name;

public User(String name) {

this.name = name;

}

}

When you use one of the two previous classes, you must specify its full

name, with the package plus the class name. For example:

Download code/java_xt/src/UseBoth.java

public class UseBoth {

public static void main(String[] args) {

com.codecite.User u1 = new com.codecite.User("Stu");

com.relevancellc.User u2 = new com.relevancellc.User("Justin");

}

}

Most of the time you will not have two names in collision. If this is the

case, you can import a package. You can write imported packages in

their short form (class name only), and Java uses the import statement

to determine the class to which you are referring:

Download code/java_xt/src/UseCodeciteUser.java

import com.codecite.User;

public class UseCodeciteUser {

public static void main(String[] args) {

User u = new User("Stu");

}

}

Ruby programs use modules to create namespaces. The two following modules

User classes are in separate modules:

Download code/rails_xt/samples/user.rb

module Relevance

class User

def initialize(name); @name=name; end

attr_accessor :name

end

end

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/com/relevancellc/User.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/UseBoth.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/UseCodeciteUser.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/user.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=77

PACKAGES AND NAMESPACES 78

Why Doesn’t Ruby Specify a Naming Scheme for Modules?

Java programmers are strongly encouraged to begin pack-
age names with domain names reversed. So, for example,
code in the Apache Commons Lang project begins with
org.apache.commons.lang. Ruby has no such guideline, so mod-
ules tend to be named for what they do or for branding reasons.
For example, the Rails MVC controller code lives in the Action-

Controller module. Ruby programmers worry less about naming
collisions for three reasons:

• Name collisions at the class or module level are easy to
work around. Ruby’s type safety depends on duck typing
(Section 3.7, Duck Typing, on page 89), which has almost
no reliance on class or module names.

• Duck typing does depend on method names, so you
might expect name collisions to reappear at this level.
However, Ruby makes it easy to rename or undefine meth-
ods, so method name collisions cause few problems in
practice.

• Ruby has fewer name collisions because Ruby programs
use fewer names to begin with. Dynamically typed lan-
guages tend to be more terse, both in lines of code and in
number of names used, than statically typed languages.

It is also worth noting that neither Java nor Ruby is dogmatic
about namespace names. Some popular Java packages did
not get the memo about domain names (think junit.framework).
We sometimes use Relevance as a top-level namespace in Ruby
programs. It isn’t exactly our domain name, but it is based on
our organization name. Guess it’s the Java influence. . . .

module Codecite

class User

def initialize(name); @name=name; end

attr_accessor :name

end

end

As with Java, you can specify which module you are referring to with a

prefix. In Ruby, the prefix is followed by the scope operator, ::, and then

the class name.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=78

DEPLOYING CODE 79

Download code/rails_xt/samples/user.rb

u1 = Relevance::User.new("Justin")

u2 = Codecite::User.new("Stu")

Also as with Java, you can use the short form of the name, so you

do not have to keep typing module prefixes. Ruby programs will often

include a module:

Download code/rails_xt/samples/user.rb

include Relevance

u3 = User.new("Jared")

puts "u3 is a #{u3.class}"

Although we are using include as an analog of Java’s import, their true

natures are radically different. Java’s import is a compile-time concept

and is used to look up the “real” package-qualified name. Compiled

Java bytecodes never use the short form of a name. Ruby’s include

changes the object model at runtime, inserting a module into the inheri-

tance hierarchy of the current object self. You can watch the inheritance

hierarchy change by calling the ancestors method before and after a call

to include:

Download code/rails_xt/samples/user.rb

puts "Before: #{self.class.ancestors.join(',')}"

include Codecite

puts "After: #{self.class.ancestors.join(',')}"

which prints the following:

⇒ Before: Object,Kernel

After: Object,Codecite,Kernel

Since include changes the object model, it has uses far beyond just

namespacing. See Section 3.8, Mixins, on page 90 for more possibilities

for include.

3.4 Deploying Code

In Java, you can manage deployment directly by setting the classpath: classpath

a local list of directories to search for compiled classes. At a higher level,

you can deploy components or applications over the network using the

Java Network Launch Protocol (JNLP). Ruby deployment offers rough

analogs to these via the Ruby load path and RubyGems.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/user.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/user.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/user.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=79

DEPLOYING CODE 80

The Load Path

In Java, source code files are compiled into classes. These classes are

usually (but not always) then aggregated into JAR files.

When a Java program runs, an object called a class loader automati- class loader

cally loads the classes the program needs from the appropriate .jar or

.class files. It finds these files by searching the classpath. Consider the

following simple program:

Download code/java_xt/src/ImplicitLoading.java

import com.relevancellc.User;

public class ImplicitLoading {

public static void main(String[] args) {

User u = new User("John");

}

}

When the ImplicitLoading class prepares to call new User, the User class is

not yet loaded. Java’s class loader searches the classpath for a User. In classpath

the simplest case, the classpath is an environment variable, containing

a list of JAR files and directories. The following command line sets the

classpath:

$ java -cp helpers.jar:classes ImplicitLoading

Given this command, Java’s class loader will execute the following

steps, stopping when the User class is found:

1. Look inside helpers.jar for a file with path name com/relevancellce/

User.class.

2. Look inside the classes directory for the same path name, in other

words, classes/com/relevancellc/User.class.

As you can see, Java class loading relies on a couple of conventions.

First, classes usually live in .class files of the same name. Second, pack-

age names are converted into directories and subdirectories; for exam-

ple, a package named com.relevancellc becomes the directory named

com/relevancellc.

In Ruby, code loading is almost totally different. In place of Java’s class-

path, Ruby has a load path, with a terse name a Perl programmer would load path

love: $:.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/ImplicitLoading.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=80

DEPLOYING CODE 81

Here is a typical load path from an irb session, formatted to fit the page:

Download code/rails_xt/sample_output/classpath.irb

irb(main):001:0> $:

=> ["/opt/local/lib/ruby/site_ruby/1.8",\

"/opt/local/lib/ruby/site_ruby/1.8/powerpc-darwin8.2.0",\

"/opt/local/lib/ruby/site_ruby", "/opt/local/lib/ruby/vendor_ruby/1.8",\

"/opt/local/lib/ruby/vendor_ruby/1.8/powerpc-darwin8.2.0",\

"/opt/local/lib/ruby/vendor_ruby", "/opt/local/lib/ruby/1.8",\

"/opt/local/lib/ruby/1.8/powerpc-darwin8.2.0", "."]

Unlike Java, Ruby is not class-oriented. A particular source file might

contain a single class, but it might just as well contain several classes

or none. So it would not make sense to make classes the unit of code

loading. Instead, the source files are the units of code loading. To load

a source file, you require it. The .rb suffix is not necessary:

Download code/rails_xt/samples/explicit_load.rb

require 'super_widget'

w = new SuperWidget("phlange")

The call to require ’super_widget’ searches the load path for the file

super_widget.rb. In this case, super_widget.rb does contain the code for

the class SuperWidget:

Download code/rails_xt/samples/super_widget.rb

class SuperWidget

attr_accessor :name

def initialize(name); @name=name; end

end

The naming convention implied by the preceding example is common:

class names LikeThis and associated source files like_this.rb. But don’t

assume this will always hold; it is not required by the Ruby language.

RubyGems

Loading individual files with require is fine for small Ruby programs

(much as .class files are fine for small Java programs). Large programs

will want to work with larger chunks. In Ruby these chunks are called

RubyGems. RubyGems provide mechanisms to do the following:

• Group related Ruby files into a gem

• Build documentation files

• Serve gems over the Web

• Manage multiple versions of the same gem over time

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/classpath.irb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/explicit_load.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/super_widget.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=81

DEPLOYING CODE 82

Building and serving gems is usually not necessary in a Rails applica-

tion and is beyond the scope of this book. Our focus will be on acquiring

and using gems. To see what gems you have on your system, use the

following arguments to the gem command:

$ gem list --local

*** LOCAL GEMS ***
(lots of gems omitted to save a dead tree or two...)

pdf-writer (1.1.3)

A pure Ruby PDF document creation library.

(more gems omitted)

One of the gems on our system is pdf-writer. That sounds pretty useful;

many web applications may want to offer PDF as one possible download

format. Let’s load this gem and write a PDF. If you don’t already have

pdf-writer on your system, no problem—just run the following com-

mand. If you are on *nix, you may need to prefix the gem command

with sudo.

$ gem install pdf-writer

Attempting local installation of 'pdf-writer'

Local gem file not found: pdf-writer*.gem

Attempting remote installation of 'pdf-writer'

Updating Gem source index for: http://gems.rubyforge.org

Successfully installed pdf-writer-1.1.3

Installing RDoc documentation for pdf-writer-1.1.3...

Now you can use the gem mechanism to load pdf-writer and create a

PDF document:

Download code/rails_xt/samples/write_pdf.rb

require 'rubygems'

require_gem 'pdf-writer'

pdf = PDF::Writer.new

pdf.select_font "Times-Roman"

pdf.text "Hello, Ruby.", :font_size => 72, :justification => :center

pdf.save_as("hello.pdf")

The call to require ’rubygems’ loads the gem mechanism, and then the

call require_gem ’pdf-writer’ loads the pdf-writer gem.1

1. As of RubyGems 0.9.0.8, require_gem is deprecated in favor of the more accurate name

gem. Since most code, including Rails, still uses the require_gem form, that is what we

show in the main text.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/write_pdf.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=82

DELEGATION 83

One of the most tedious aspects of software development is coping with

multiple versions of the same library. On Windows this is known as DLL

Hell, and in Java it is sometimes called JAR Hell. RubyGems provides

some help with this problem. If you need a particular version of a gem,

you can ask for it by name:

Download code/rails_xt/samples/write_pdf_future.rb

require 'rubygems'

require_gem 'pdf-writer', '= 2.0.0'

If the particular version your code needs is not available, RubyGems

will raise an exception:

$ ruby write_pdf_frozen.rb

/lib/ruby/site_ruby/1.8/rubygems.rb:204:in ‘report_activate_error':\

RubyGem version error: pdf-writer(1.1.3 not = 2.0.0) (Gem::LoadError)

You can even install Rails using gems, so it’s easy to guarantee your

application gets the specific version of Rails it needs. You can request

your Rails applications to use a specific version of their gems or even a

specific checkout from the Rails source repository. Binding your appli-

cation to a specific version of Rails is called freezing. Rails includes freezing

Rake tasks to freeze and unfreeze your application; see Section 8.4,

Controlling Which Version of Rails You Use, on page 241 for details.

3.5 Delegation

Inheritance is not the only mechanism for reuse in Java. Objects often

delegate work to other objects. For example, the following Manager del-

egates all interesting method calls to instances of Programmer or Tester:

Download code/java_xt/src/del/Manager.java

public class Manager {

private Programmer programmer;

private Tester tester;

public void debug(int hours) {

programmer.debug(hours);

}

public void code(int hours) {

programmer.code(hours);

}

public void writeTestPlan(int hours) {

tester.writeTestPlan(hours);

}

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/write_pdf_future.rb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/del/Manager.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=83

DELEGATION 84

How Does require_gem Work?

When you call require_gem, new modules and classes become
available. Behind the scenes, gems accomplish this by modify-
ing the load path and by using require to load Ruby source files.
A little reflection in irb will catch require_gem in the act. Here’s
the world before a call to require_gem ’pdf-writer’:

irb(main):001:0> require 'rubygems'
=> true
irb(main):002:0> $:.size
=> 9
irb(main):003:0> ObjectSpace.each_object(Class) {}
=> 429

And now, after requiring the gem, here’s the code:

irb(main):004:0> require_gem 'pdf-writer'
=> true
irb(main):005:0> $:.size
=> 15
irb(main):006:0> ObjectSpace.each_object(Class) {}
=> 539

If you compare the size of $: before and after, you will see that
loading the pdf-writer gem adds six directories to the load path.
Likewise, the calls to ObjectSpace show that loading the gem
brought in 110 new classes.

Incidentally, this little example demonstrates how easy it is to
explore Ruby interactively. The combination of irb and reflective
objects such as ObjectSpace is powerful, and it encourages a
“try it and see” approach to learning Ruby.

public void runTests(int hours) {

tester.runTests(hours);

}

//getters and setters follow...

Callers do not have to know that a programmer or tester is behind the

scenes. They can simply talk to the manager:

Download code/java_xt/src/del/DemoManager.java

Manager m = getManager();

m.writeTestPlan(5);

m.code(3);

m.runTests(6);

m.debug(2);

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/del/DemoManager.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=84

POLYMORPHISM AND INTERFACES 85

Ruby objects can also delegate. Here is an equivalent Manager:

Download code/rails_xt/samples/delegate.rb

require_gem 'rails'

class Manager

attr_accessor :programmer, :tester

delegate :code, :debug, :to=>:programmer

delegate :write_test_plans, :run_tests, :to=>:tester

end

Note that delegate is not part of Ruby proper; it is added by Rails. The

call to require loads Rails, which extends Ruby’s object model to include

delegation2. As with Java, callers need to talk only to the manager:

Download code/rails_xt/samples/delegate.rb

m.write_test_plans 5

m.code 3

m.run_tests 6

m.debug 2

3.6 Polymorphism and Interfaces

When you write a program, you specify by name some method that

you want to invoke. At runtime, the actual method chosen depends

not just on the name but also on the specific object through which

the invocation occurs. Method calls are dynamically dispatched to a dynamically dispatched

specific implementation, based on the type the object used to call the

method. Here is a Java example:

Download code/java_xt/src/poly/Demo.java

Employer e1 = new Company("Hal");

Employer e2 = new BusinessPerson("Steve", "Startup");

Person stu = new BusinessPerson("Stu", "Halloway");

Employee stillStu = (Employee) stu;

e1.addEmployee(stillStu);

e2.addEmployee(stillStu);

In this example, e1 and e2 are of the same type, Employer. However, they

have different implementations of addEmployee(). When you call addEm-

ployee(), Java selects the correct implementation at runtime based on

the actual type of the variable, in this case either a Company or a Busi-

nessPerson.

2. The Ruby Standard Library also includes a Delegator class. It does not matter much

which library provides delegation support. The important thing is that the Ruby language

is open enough that delegation can be a library feature, not a language feature.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/delegate.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/delegate.rb
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/Demo.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=85

POLYMORPHISM AND INTERFACES 86

This little bit of indirection enables many good features. You (or any

other programmer) can use an Employer class without knowing any spe-

cific details about how it works.

You can create new implementations of Employer in the future, and well-

crafted programs can take advantage of these new implementations

without recompilation. You can assemble new applications out of parts

(classes) that have never met before, and they “just work.” When objects

have different types, allowing them to respond to the same methods in

different ways, it is called polymorphism. polymorphism

Polymorphism works with implementation inheritance, which is cov-

ered in Section 2.8, Inheritance, on page 65. But it is more interesting,

and more powerful, with interfaces. In the previous example, Employer

is an interface:

Download code/java_xt/src/poly/Employer.java

package poly;

public interface Employer {

int employeeCount();

Employee[] getEmployees();

void addEmployee(Employee e);

void removeEmployee(Employee e);

}

An interface lists methods without implementations, and classes then

implement the interface by providing bodies for each method: implement

Download code/java_xt/src/poly/EmployerImpl.java

package poly;

import java.util.ArrayList;

public class EmployerImpl implements Employer {

private ArrayList employees;

public EmployerImpl() {

employees = new ArrayList();

}

public int employeeCount() {

return employees.size();

}

public Employee[] getEmployees() {

return (Employee []) employees.toArray(new Employee[employees.size()]);

}

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/Employer.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/EmployerImpl.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=86

POLYMORPHISM AND INTERFACES 87

public void addEmployee(Employee e) {

Employer previous = e.getEmployer();

if (previous != null) {

previous.removeEmployee(e);

}

employees.add(e);

e.setEmployer(this);

}

public void removeEmployee(Employee e) {

employees.remove(e);

e.setEmployer(null);

}

}

The power of interfaces comes from being able to implement more than

one. Where classes can extend only one other class, they can implement

any number of interfaces.

The BusinessPerson class from the previous example actually implements

three interfaces:

Download code/java_xt/src/poly/BusinessPerson.java

public class BusinessPerson

implements Person, Employee, Employer {

Here are all three interfaces in use:

Download code/java_xt/src/poly/Demo.java

Employer e1 = new Company("Hal");

Employer e2 = new BusinessPerson("Steve", "Startup");

Person stu = new BusinessPerson("Stu", "Halloway");

Employee stillStu = (Employee) stu;

e1.addEmployee(stillStu);

e2.addEmployee(stillStu);

((Employer)stu).addEmployee(stillStu);

In the last line, you cannot call addEmployee() via the stu variable.

Instead, you must cast stu to a Employer first. This line represents a

two-step process.

First, you see a cast to Employer, which does a runtime check to make

sure stu actually is an Employer. Then, you see a call to the addEm-

ployee() method, which is guaranteed to exist at compile time.

If stu cannot addEmployee(), then the failure will occur at runtime dur-

ing the first step, the cast to Employee.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/BusinessPerson.java
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/Demo.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=87

POLYMORPHISM AND INTERFACES 88

Since Ruby does not have a compile time, you can bet that Ruby’s

approach to polymorphism will look different:

Download code/rails_xt/samples/poly_demo.rb

e1 = Company.new("Hal")

e2 = BusinessPerson.new("Steve", "Startup")

me = BusinessPerson.new("Stu", "Halloway")

e1.add_employee(me)

e2.add_employee(me)

me.add_employee(me)

In the Ruby version, BusinessPerson is again a Person, an Employee, and an

Employer. However, Ruby does not have any interface keyword, and no

cast is necessary. Ruby is type-safe at method granularity, not interface

granularity. In the Ruby version, an object can either add_employee or

cannot. If you try to add_employee to an object that does not implement

an add_employee method, Ruby will throw a NoMethodError.3 For exam-

ple, the following similar program uses a nonemployer Person instead of

a BusinessPerson:

Download code/rails_xt/samples/non_employer.rb

require 'poly_demo'

e1 = Company.new("Hal")

me = Person.new("Stu", "Halloway")

me.add_employee(e1)

Executing this code results in the following:

$ ruby non_employee.rb

non_employee.rb:4: undefined method ‘add_employee' ... (NoMethodError)

Both Java and Ruby are polymorphic and type-safe, but they differ in

priorities and implementation. Since Java programs enforce type safety

by casting to some interface or class, Java programmers tend to talk

about type safety at the coarse granularity of who you are: “Jim cannot

hire people because Jim is not an employer.” Ruby programs enforce

type safety at the finer granularity of what you can do: “Jim cannot

hire people because Jim has no add_employee method.”

Both languages can simulate the approach of the other. Java program-

mers regularly create interfaces with one method only to approximate

3. We have simplified a bit here. Individual objects can add, change, or remove method

implementations at runtime. Objects can also implement method_missing and choose

to handle arbitrary methods. See the Joe Asks. . . on page 110 for an example of

method_missing.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/poly_demo.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/non_employer.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=88

DUCK TYPING 89

method granularity (think Runnable). Ruby programmers could do more

up-front type checking by calling kind_of?. For example:

Download code/rails_xt/samples/poly_demo.rb

class Object

def must_be(*types)

types.each {|type| raise "Must be #{type}" unless self.kind_of?(type)}

end

end

Programs can call must_be with any number of types (classes or mod-

ules) that an object must support:

Download code/rails_xt/samples/poly_demo.rb

me = BusinessPerson.new("Stu", "Halloway")

me.must_be(Person, Employer, Employee)

Although Ruby programmers could develop idioms such as must_be,

they rarely do. Instead, they embrace duck typing.

3.7 Duck Typing

Duck typing means an object type is defined by what it can do, not Duck typing

by what it is. “If it walks like a duck and talks like a duck, then to

the interpreter, it is a duck.” Duck typing allows you to plug in new

implementations without a lot of busywork. Simply write an object that

implements the methods you need, and then drop it into your system

in place of some other object. In practice, this saves time (and code) in

three major ways:

• It is easy to write stub objects for unit tests. If you need a dummy

version of some object in a unit test, duck typing makes this

trivial—implement only exactly the methods needed by the test.

• Duck typing knocks down artificial boundaries that lead to repet-

itive code.

• Duck typing makes it easier to refactor from specific relationships

to more general ones.

Duck typing also has one notable disadvantage: It is more difficult

(although not impossible) for automated tools to guess the possible

methods associated with a variable. Because of this (and the lack of

investment to date), Ruby IDEs do not offer nearly the level of code

completion and refactoring that the best Java IDEs do.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/poly_demo.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/poly_demo.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=89

MIXINS 90

3.8 Mixins

In Section 3.6, Polymorphism and Interfaces, on page 85, you learned

how polymorphic methods are called in Java. Often, multiple polymor-

phic implementations are similar, and they delegate to the same under-

lying code.

For the Employer implementations, we chose to have both Company and

BusinessPerson delegate to a helper class EmployerImpl. Here’s the code

from Company, and we’ll spare you the nearly identical code in Busi-

nessPerson:

Download code/java_xt/src/poly/Company.java

package poly;

public class Company implements Employer {

private String name;

private EmployerImpl employerImpl;

public Company(String name) {

this.name = name;

this.employerImpl = new EmployerImpl();

}

public int employeeCount() {

return employerImpl.getEmployees().length;

}

public Employee[] getEmployees() {

return employerImpl.getEmployees();

}

public void addEmployee(Employee e) {

employerImpl.addEmployee(e);

}

public void removeEmployee(Employee e) {

employerImpl.removeEmployee(e);

}

}

This could be translated directly into Ruby, or it could be improved as

shown in Section 3.5, Delegation, on page 83.

Ruby mixins provide still another approach: Code is written once and mixins

can be mixed into any number of classes or modules as needed. Here

is Employer as a module intended for mixin use:

Download code/rails_xt/samples/employer.rb

module Employer

def employees

@employees ||= []

end

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/poly/Company.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/employer.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=90

MIXINS 91

def add_employee(employee)

employee.employer.remove_employee(employee) if employee.employer

self.employees << employee

employee.employer = self

end

def remove_employee(employee)

self.employees.delete employee

employee.employer = nil

end

end

Classes such as BusinessPerson can then pick up Employer functionality

by calling include Employer:

Download code/rails_xt/samples/business_person.rb

class BusinessPerson < Person

include Employer, Employee

end

Now the BusinessPerson class can call any Employer methods:

irb(main):001:0> require 'business_person'

=> true

irb(main):002:0> boss = BusinessPerson.new("Justin", "Gehtland")

=> #<BusinessPerson:0x54394 @first_name="Justin", @last_name="Gehtland">

irb(main):003:0> drone = BusinessPerson.new("Stu", "Halloway")

=> #<BusinessPerson:0x4f9d4 @first_name="Stu", @last_name="Halloway">

irb(main):004:0> boss.add_employee(drone)

=> etc.

The fact that include is a method call has interesting implications. The

object model is not static, and you could choose to have BusinessPerson

include Employer under some circumstances and not others. In fact,

you can make object model decisions per instance instead of per class.

The extend method works like include but on a specific instance. So, a

specific person could become an Employer at runtime:

irb(main):001:0> require 'business_person'

=> true

irb(main):002:0> p = Person.new("Stu", "Halloway")

=> #<Person:0x5490c @first_name="Stu", @last_name="Halloway">

irb(main):003:0> class <<p; ancestors; end

=> [Person, Object, Kernel]

irb(main):004:0> p.extend Employer

=> #<Person:0x5490c @first_name="Stu", @last_name="Halloway">

irb(main):005:0> class <<p; ancestors; end

=> [Employer, Person, Object, Kernel]

The variable p starts life as a “plain old Person” with class ancestors

[Person, Object, Kernel]. The extend Employer call turns p into an Employer

as well, and the ancestor list changes appropriately. The odd-looking

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/business_person.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=91

FUNCTIONS 92

statement class <<p accesses the singleton class of p. A singleton class singleton class

might better be known as an instance-specific class. You have modified

the inheritance hierarchy of p, so it is not “just a Person.” It now has its

own instance-specific class, which tracks its unique ancestors list.

3.9 Functions

Strictly speaking, neither Java nor Ruby has functions. Nevertheless,

it is reasonable to talk about functions: Sometimes a function can be

handy, and both Java and Ruby have important idioms for these situ-

ations. Consider this simple example, a program that reads a bunch of

lines from stdin and then prints them back sorted:

Download code/java_xt/src/SortWords.java

import java.io.*;

import java.util.*;

public class SortWords {

public static void main(String[] args)

throws IOException {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

List al = new ArrayList();

String line = null;

while (null != (line = br.readLine())) {

al.add(line);

}

Collections.sort(al);

System.out.println("sorted:");

for (Iterator it = al.iterator(); it.hasNext();) {

System.out.println(it.next());

}

}

}

Here is an equivalent program in Ruby:

Download code/rails_xt/samples/sort_words.rb

puts readlines.sort.unshift("sorted:\n").join

Both programs produce output like this:

$ ruby samples/sort_words.rb

quick

brown

fox (close stdin here with Ctrl-D or equivalent...)

sorted:

brown

fox

quick

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/SortWords.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/sort_words.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=92

FUNCTIONS 93

Fine so far. But what if you wanted to sort by some other criteria, such

as word length or preponderance of vowels? If you can imagine lots of

different criteria, or if new criteria might turn up at runtime, you will

quickly want a general solution that might look like this:

Collections.sort(al, sortByWordLength);

In English, this might read as “Sort the collection al using the function

sortByWordLength() to compare words.” And, in fact, Java works exactly

like this—except without the f-word.4 Instead of using a function, you

can build a function-like object out of pieces you do have: interfaces

and inheritance. Java’s collections API provides a Comparator interface:

public interface Comparator {

int compare(Object o, Object o1);

}

You can write your own class that implements Comparator and com-

pares strings by some criteria you care about. Return a negative num-

ber if the first object is lesser, 0 if the objects are equal, and a positive

number if the second object is the lesser of the two. Creating an entirely

new class just to specify a sort order is often a big diversion, so Java

provides a shortcut called the anonymous inner class. Using an anony-

mous inner class, you can specify the sort “function” directly inside the

call to sort:

Download code/java_xt/src/SortWords2.java

Collections.sort(al, new Comparator() {

public int compare(Object o, Object o1) {

return ((String)o).length() - ((String)o1).length();

}

});

Java’s anonymous inner classes, when used in this way, are functions

in everything but name. Having an ordering function return negative, 0,

or positive is common to Java and Ruby (and many other languages).

In Ruby, you can use a block to implement the sort “function”:

Download code/rails_xt/samples/sort_words_2.rb

sorted = readlines.sort {|x,y| x.length-y.length}

puts "sorted:\n#{sorted.join}"

The block syntax (curly braces or do...end) is the same syntax you exam-

ined in Section 2.4, Collections and Iteration, on page 47. In Ruby, you

will typically use a block whenever you want to “pass a function to a

4. The seven-letter f-word. Shame on you.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/SortWords2.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/sort_words_2.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=93

FUNCTIONS 94

method.” Function passing turns out to be a very common idiom, both

in Java and in Ruby. Other obvious examples in Java include event

handling in Swing, scheduling Callables using the concurrency API, and

enforcing security constraints on a PrivilegedAction. In Ruby and Rails,

this idiom is even more common.

Blocks are useful to implement wrappers for tasks. For example, sup-

pose you wanted to call a function that you expect to raise an exception.

You could write a wrapper like this:

Download code/rails_xt/samples/expect_exception.rb

def expect_exception(type)

begin

yield

rescue type => e

return

end

raise "Expected exception: #{type}"

end

Ruby’s yield statement executes the code in a block, if one was passed yield

to the function. The expect_exception works as follows: “Call the block

that was passed in, and return if an exception of type is raised. Other-

wise, raise an exception.” Given this definition for expect_exception, the

following code returns untroubled:

Download code/rails_xt/samples/expect_exception.rb

expect_exception(ZeroDivisionError) {10/0}

The code in the block (10/0) is executed when expect_exception hits yield.

The following call fails with an Expected exception: ZeroDivisionError:

Download code/rails_xt/samples/expect_exception.rb

expect_exception(ZeroDivisionError) {}

There is a second syntax for calling blocks. Instead of using yield, you

can capture a block, if there is one, with an explicit parameter. The

block parameter must be listed last and be prefixed with an ampersand:

Download code/rails_xt/samples/expect_exception_2.rb

def expect_exception(type, &blk)

begin

blk.call if block_given?

rescue type => e

return

end

raise "Expected exception: #{type}"

end

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/expect_exception.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/expect_exception.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/expect_exception.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/expect_exception_2.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=94

FUNCTIONS 95

Regardless of which syntax you choose, you can call block_given? to

determine whether a block was actually passed to the method. (In the

case of expect_exception, passing no block would represent extreme

paranoia—presumably doing nothing will not raise an exception!)

Blocks are incredibly common in Ruby programming and are one of

the biggest syntactic stumbling blocks for Java programmers. Remem-

ber, blocks provide a terse syntax for performing the same actions you

would use an interface+anonymous inner class to accomplish in Java.

The Ruby idioms in this chapter, plus some more advanced techniques,

can greatly reduce the burden that repetitive code places on an applica-

tion. One of the most repetitive tasks in web development is converting

between objects and the database rows that (often) stand behind them.

In the next chapter, you will see how ActiveRecord puts Ruby idioms to

use to create a data access API that is lean and elegant.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=95

Chapter 4

Accessing Data with ActiveRecord
Martin Fowler, during his keynote at RailsConf 2006, described Rails’

ActiveRecord as the best and most complete implementation of the

“Active Record” pattern that he had ever seen. The pattern and the

library expose persistence-related behavior on the objects that model

the data directly. Other technologies choose to offload this knowledge of

the data store to other layers (DAOs and data facades and the contain-

ers themselves). By embedding this knowledge in the domain objects,

ActiveRecord creates a tight coupling between the models and the data-

base beneath them. This tight coupling is made transparent through a

series of assumptions about how models map to data schemas. When

people talk about Rails as being “opinionated software,” they are often

talking about ActiveRecord and its particular ideas about the mapping

between domain objects and data tables.

Although ActiveRecord is part of Rails, you can also install it as a free-

standing gem:

gem install activerecord

We will compare ActiveRecord to Hibernate (http://www.hibernate.org), a

high-quality O/RM framework that is probably the most popular choice

in the Java world. As you will see throughout this chapter, ActiveRecord

and Hibernate differ in one deep, fundamental way: Hibernate supports

caching, where ActiveRecord does not. As a result, Hibernate has bet-

ter performance characteristics for some common usage patterns, but

ActiveRecord is easier to use.

Of course, O/RM caching is possible in Ruby, and lighter-weight solu-

tions are possible in Java. We have selected the most popular frame-

work because that’s the one you are most likely to know.

http://www.hibernate.org

GETTING CONNECTED 97

For much of this chapter, we will use the ActiveRecord gem directly.

This is useful for comparison with Hibernate, which is also a freestand-

ing library. Also, you may find Ruby to be a good language for automat-

ing database tasks and choose to use ActiveRecord outside of Rails web

applications. Of course, we’ll also show how ActiveRecord fits into Rails.

Most of the example code in this chapter (and for the remainder of

the book) refers to the Rails XT sample application. Make sure you

read the sidebar on the next page, called “Configuring the Rails XT

App”; perform the steps in the sidebar so you can follow along with the

examples.

4.1 Getting Connected

Most Java applications interact with relational databases, almost al-

ways via JDBC. Each RDBMS has a different API; JDBC hides these

distinctions by providing a standardized API. JDBC providers act as the

bridge between JDBC and the specific RDBMS you are targeting. Your

job, as a Java developer, is to install the appropriate driver, instantiate

it, and feed it to the JDBC library for use during your application.

ActiveRecord likewise uses a provider model, but refers to the providers

as adapters. An adapter can be a pure Ruby implementation or a hybrid adapters

Ruby/C extension. From your application code, you need to specify only

the name of the adapter you want to use; ActiveRecord will provide the

Ruby bridge code and worry about loading the native extension (if nec-

essary). If the adapter is not provided, or cannot be loaded, ActiveRe-

cord will raise an exception detailing the problem.

You can either configure ActiveRecord programmatically or configure

Ruby via a configuration file. To configure the connection programmat-

ically, call the establish_connection method on ActiveRecord::Base:

Download code/rails_xt/samples/activerecord/connecting.rb

require 'rubygems'

require_gem 'activerecord'

ActiveRecord::Base.establish_connection(

:adapter=>:mysql,

:database=>:rails4java_development

)

In addition to specifying an adapter and a database, you will also spec-

ify connection settings such as username and password. However,

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/connecting.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=97

GETTING CONNECTED 98

Configuring the Rails XT App

The Rails XT application has some initial setup requirements,
because it demonstrates several third-party extensions to the
Rails platform. The setup steps are listed next, and we explain
them in more detail as they come up in the course of the book.

1. Install the third-party gems that Rails XT requires:

gem install mocha
gem install flexmock
gem install selenium
gem install markaby

2. The Rails XT application demonstrates features of Rails 1.2.
At the time of this writing, Rails 1.2 has not been released.
Until the official release, you can follow the instructions on
the Rails website∗ and install the most recent Release Can-
didate.

3. Create the application databases. If you are using the
MySQL console, use this:

$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version:
4.1.12-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database rails4java_development;
Query OK, 1 row affected (0.30 sec)
mysql> create database rails4java_test;
Query OK, 1 row affected (0.30 sec)
mysql> exit
Bye

4. After you have downloaded the code, you can run a
Rake task to create the database tables:

cd rails_xt
rake migrate

If this command fails, verify that you have a working
MySQL install with no password for the root user. (This is the
default setup for MySQL.)

∗. Follow the link to Rails 1.2 at http://www.rubyonrails.org/

http://www.rubyonrails.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=98

GETTING CONNECTED 99

ActiveRecord will default arguments wherever possible, so the previ-

ous connection will use root/no password, which is MySQL’s standard

initial setup. In a Rails application, you do not have to establish the

connection yourself. Rails automatically reads the connection settings

from config/database.yml. By default, database.yml contains settings for

the development, test, and production environments:

development:

adapter: mysql

database: rails4java_development

username: root

password:

host: localhost

test:

adapter: mysql

database: rails4java_test

username: root

password:

host: localhost

production looks similar

This file is in YAML (YAML Ain’t Markup Language). As you can see, the

configuration is repetitive. If you want, you can DRY1 this out by using

YAML’s aliases and anchors. The ampersand introduces an alias, and aliases

anchorsthen an asterisk creates an anchor that refers to the alias.

irb(main):004:0> YAML.load "[&foo 1, *foo, *foo]"

=> [1, 1, 1]

Applying an alias to the common portion of a Rails database configura-

tion yields the following:

Download code/rails_xt/config/database.yml

common: &shared

adapter: mysql

username: root

password:

host: localhost

development:

database: rails4java_development

<<: *shared

1. DRY stands for Don’t Repeat Yourself. We use DRY as both a noun and a verb, so to

“DRY your code” is to eliminate repetition. See The Pragmatic Programmer [HT00] for an

in-depth discussion of why DRY is so important.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/database.yml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=99

MANAGING SCHEMA VERSIONS WITH MIGRATIONS 100

What about Multiple Databases?

By default, Rails assumes that all models come from the same
database. If you need to pull different models from different
databases, you can override establish_connection() on a spe-
cific model class. In addition, ActiveRecord respects these set-
tings in a hierarchy of types. Every model class uses the con-
nections settings applied most proximally to it in the hierarchy;
thus, if the model itself has custom settings, they will be used.
Next, its direct parent class’s settings will be used, and so on,
until it gets back to ActiveRecord::Base.

test:

database: rails4java_test

<<: *shared

production:

database: rails4java_production

<<: *shared

The ’<<’ is called a merge key, and it inserts one mapping into another. merge key

So, all three database configurations share all the values in common.

4.2 Managing Schema Versions with Migrations

What makes code agile, that is, able to change? Most developers would

answer “automated testing and version control.” Unfortunately, data

schemas do not get the same love that code does. Even development

teams that are agile in adapting their code struggle with frozen, un-

changing schemas.

Enter migrations. Migrations are Rails’ way of creating, modifying, and

versioning your data schema. With migrations, your schema can be

(almost) as agile as your code base.

An individual migration associates a schema change with a particular

point in time, and Rails provides scripts to run the clock forward and

backward over your schema. We are not going to compare migrations to

any specific Java approach, because there isn’t anything approaching

a standard convention in Java.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=100

MANAGING SCHEMA VERSIONS WITH MIGRATIONS 101

A migration is a piece of Ruby code that can perform two tasks: change

a database schema in some way and reverse that change (if possible).

We will now show how we used migrations to create the data schema

for the sample application. Our first model object is a Quip, which is

some witty saying in the blogosphere. To create the quip, we ran this:

> script/generate migration create_quips

This creates a new migration named db/migrate/001_create_quips.rb. We

then edited the migration file to look like this:

Download code/rails_xt/db/migrate/001_create_quips.rb

class CreateQuips < ActiveRecord::Migration

def self.up

create_table :quips do |t|

t.column :text, :text

t.column :author_id, :int

end

end

def self.down

drop_table :quips

end

end

The self.up() method tells how to create the quips table, and self.down()

tells how to reverse that process. Notice that the table creation is done

with Ruby, not raw SQL. This allows migrations to be portable across

different databases. It is also possible to use raw SQL, if you need

to access a database-specific capability or do something not currently

supported in the Migrations API.

You can execute migrations by running rake migrate:

$ rake migrate

(in /Users/stuart/FR_RAILS4JAVA/Book/code/rails_xt)

== CreateQuips: migrating ============================

-- create_table(:quips)

-> 0.3117s

== CreateQuips: migrated (0.3133s) ===================

Now your database has a quips table. You can also run migrations with

a specific version number. All migrations include a filename prefix that

is a version number, such as 001_create_quips.rb. When you migrate to

a specific version, Rails will check the current version of the schema.

If you ask for a more recent (higher-numbered) version, Rails will call

the appropriate up() methods. If you ask for an older (lower-numbered)

version, Rails will works its way backward, calling down() methods.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/db/migrate/001_create_quips.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=101

MANAGING SCHEMA VERSIONS WITH MIGRATIONS 102

Schema Versioning in Java

For many Java applications, data schema maintenance is
overlooked. In our experience, it is rare to find data schemas
managed by a source control system, let alone in such a
way that versions of the schema can be easily tracked. Some
libraries provide solutions for this; Hibernate and Kodo, for exam-
ple, provide tools for generating schema from metadata, or
vice versa, and this leads to an automated strategy for keeping
track of the changes to the database over time.

With Hibernate, if you have made changes to your business
objects and want to manage the schema update, you could
specify the new properties in the .hbm.xml files and then run
the SchemaUpdate tool provided by Hibernate. This will attempt
to retrieve the current schema and diff it against the values in
the latest .hbm files. Any differences that can be handled by
the current JDBC driver will be written to the database. This
is convenient but has two major drawbacks: First, if the driver
can’t handle the change, the change won’t be made. Sec-
ond, there is no automated way to reverse the process. Like-
wise, Kodo provides the Mapping Tool to ensure that the data
schema is up-to-date with the current object model but does
not provide an automated strategy for managing the schema
independently and focuses only on one-way transitions.

Since CreateQuips is our first migration, the only number we can go

down to is 0, or back to the beginning:

$ rake migrate VERSION=0

(in /Users/stuart/FR_RAILS4JAVA/Book/code/rails_xt)

== CreateQuips: reverting ============================

-- drop_table(:quips)

-> 0.2387s

== CreateQuips: reverted (0.2401s) ===================

Rails uses an extra table in the database to track the migration version.

If you look at a Rails application, you will see a table called schema_info.

This table has one column, called version, and one row, which contains

the current version number of the schema.

Rolling forward and backward through a single migration as we have

done here is hardly worth the trouble. Where migrations become pow-

erful is in situations where you have a series of database modifications

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=102

MAPPING DATA TO CLASSES 103

over time. For example, imagine that you need to change the schema of

an app that is already in production. You can build and test your migra-

tions in the development and test environment and then run them in

production once you are confident that everything works properly. If

you make a mistake, you can always run a down migration to get your

schema back to its last known good state.

Because these migrations are written in Ruby, not SQL, they rely on

the database adapter to generate the appropriate SQL statements to

make the desired modifications. As long as you stick to the pure Ruby

API, you could run this migration against MySQL as easily as against

Oracle. One of the interesting features of migrations that enables this

is the autogeneration of the primary key field. Notice that we never

specified an id column when creating the quips table. For the users and

roles tables, ActiveRecord creates a column called id automatically and

uses the current database’s default method for managing the value of

the column.

Migrations can be used outside of Rails. In fact, the migration approach

to schema versioning is so useful that we use it for all of our Java

projects as well. If you live in a multilanguage environment like we do,

migrations can provide a good way to get some practice with Ruby by

using it to support an existing Java project.

We have built the sample application in an agile fashion, extending the

schema incrementally as necessary. Take a look through the migrations

in db/migrate to get a feel for what migrations have to offer.

4.3 Mapping Data to Classes

In Hibernate, JDO, EJB, and other Java persistence libraries, map-

ping has historically been done in a separate XML or properties file.

For Hibernate, there’s hibernate-configuration.xml plus the assortment

of .hbm.xml files. In Kodo, there’s the persistence.xml file. With EJBs,

there are all the descriptor files. Lately, with the release of Java 5.0

annotations, the Jakarta Commons Annotations project, and Spring’s

metadata support, inline configuration is becoming more and more the

norm.

ActiveRecord relies on convention over configuration. Wherever possi-

ble, ActiveRecord guesses the correct configuration by reflecting against

the data schema. When you do need a specific override, you specify the

override directly in your model class.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=103

MAPPING DATA TO CLASSES 104

Conventions

Given a schema, here is the process for creating a Hibernate model

class. First, create a Plain Old Java Object (POJO) with reasonably

named fields:

Download code/hibernate_examples/src/Person.java

private long id;

private String firstName;

private String lastName;

private String middleName;

private String bio;

private String url;

Create JavaBean accessors for those fields:

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

// repeat for each field

Then create a mapping that tells Hibernate how to associate database

columns with object properties:

Download code/hibernate_examples/config/person.hbm.xml

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="Person" table="people">

<id name="id" type="java.lang.Long">

<generator class="native"/>

</id>

<version name="version" column='lock_version'/>

<property name="firstName" type="string" column="first_name"/>

<property name="lastName" type="string" column="last_name"/>

<property name="middleName" type="string" column="middle_name"/>

<property name="bio" type="string" column="bio"/>

<property name="url" type="string" column="url"/>

<set name="quips" inverse="true" cascade="all">

<key column="author_id"/>

<one-to-many class="Quip"/>

</set>

</class>

</hibernate-mapping>

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Person.java
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/person.hbm.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=104

MAPPING DATA TO CLASSES 105

The ActiveRecord approach requires exactly one line of Ruby code and

no YAML or XML. Simply create a class with the right name:

class Person < ActiveRecord::Base; end

That’s it. ActiveRecord scans the database metadata, looking for a table

named people (the plural of the class name Person). It then automati-

cally generates all the necessary constructors, fields, accessor methods,

and even finder methods.

Overriding Defaults

Convention over configuration looks great when it guesses everything

right. The true test is what happens when you need to customize a bit.

Let’s assume you have class names and table names that don’t follow

the Rails convention. For your people table, you want to have a Peeps

class. No problem:

$ script/console

>> class Peeps < ActiveRecord::Base

>> set_table_name :people

>> ended<

The set_table_name() class method overrides Rails’ regular naming rules.

Other conventions have their own override methods, so you are never

stuck with “the Rails way.” Note also that this configuration is Ruby

code, inside the class definition. This differs markedly from most Java

configuration, which is usually XML living in a separate file.

We executed the previous Peeps example inside a script/console session.

We do not usually write model code in an interactive session like this,

but it is a satisfying demonstration of how simple and dynamic Rails is

in responding to your intention. With just the previous three lines, you

now have full-functioning access to the people table:

>> Peeps.create :first_name=>'Dave', :last_name=>'Thomas'

=> #<Peeps:0x2459e0c ...>

>> Peeps.count

=> 3

>> Peeps.find(:all, :order=>'first_name asc').map(&:first_name)

=> ["Dave", "Justin", "Stuart"]

We’ll see how these and other CRUD (Create, Read, Update, and Delete)

methods work in the next section.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=105

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 106

4.4 Create, Read, Update, and Delete: Access Patterns

Once you have a database schema and some object mappings, you

are ready to access data. Since ActiveRecord is an Object/Relational

Mapping (O/RM) framework, you generally access the data via object-

oriented APIs.

However, as is the case with any O/RM framework, these methods are

not always suitable for the task at hand. When necessary, you can dip

beneath the object-oriented veneer and directly utilize SQL statements

to do what you need with the database.

Loading Data

In Hibernate, the sole mechanism for loading data is through the Ses-

sion object. To load individual objects from the database, you use ses-

sion.load, and to load collections of objects, you use session.find or ses-

sion.criteria_query. Let’s take the simplest form, which is loading a single

object by its ID:

Download code/hibernate_examples/src/AccessPatterns.java

Quip quip = null;

Session sess = null;

try {

sess = factory.openSession();

quip = (Quip)sess.get(Quip.class, new Long(1));

} finally {

sess.close();

}

Hibernate wants to ensure that your persistent classes are POJOs.

Therefore, the persistent objects know nothing2 about Hibernate. The

actual API for persistence is provided through a Hibernate object, the

Session.

Persistence methods are called on the Session, and the requested persis-

tent type is passed in. This snippet also demonstrates the holy template

for using Hibernate: Always use a finally block to close the session as

soon as possible.3

2. Purists might say “almost nothing” since the classes know about their IDs in the

database.
3. Don’t make “close the session” into a pattern for copy/paste reuse. Instead, use some-

thing such as Spring’s HibernateTemplate.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=106

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 107

ActiveRecord is more intrusive, requiring that persistent types extend

a common ancestor: ActiveRecord::Base. In return, models provide per-

sistence directly, with no need for anything like the Session. Here’s the

ActiveRecord version:

Download code/rails_xt/samples/activerecord/access_patterns.rb

q = Quip.find(1)

Persistent behaviors are part of the persistent classes themselves, not a

third entity. So, you call find() directly on Quip. Connection management

is entirely implicit, so you do not need to close the connection. Here’s

one way that Hibernate might load all Quips. Now that we have

mentioned the need to

close the session, we

aren’t going to keep

showing that code in the

text.

Download code/hibernate_examples/src/AccessPatterns.java

quips = sess.createCriteria(Quip.class).list();

In here it is with ActiveRecord:

Download code/rails_xt/samples/activerecord/access_patterns.rb

quips = Quip.find(:all)

Again, Hibernate is nonintrusive, placing the lookup method on the Ses-

sion, while ActiveRecord uses Quip directly. There is another difference

here as well. Where Hibernate’s session has tons of different meth-

ods, ActiveRecord tends to use a smaller set of methods with a vari-

ety of optional arguments, such as the previous :all. This difference

stems directly from the type system differences. Java APIs need differ-

ent methods to handle different return types.

Next, let’s apply some conditions to limit the results of the query. Hiber-

nate exposes an object-oriented Criteria API to access the various con-

ditions. For example, let’s load some Persons, but only those with a first

name of Justin. Sort them by last name, of course:

Download code/hibernate_examples/src/AccessPatterns.java

people = sess.createCriteria(Person.class)

.add(Expression.eq("firstName", "Justin"))

.addOrder(Order.asc("lastName"))

.list();

Instead of method chaining, ActiveRecord applies the standard Ruby

technique of allowing a hash of options:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find(:all,

:conditions => "first_name = 'Justin'",

:order => "last_name ASC")

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=107

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 108

Both of the previous code examples assume you are issuing a query

using hard-coded conditions (“Justin” is a literal and is unchange-

able by the user). If you need to query based on user input, the pre-

vious approaches are unsafe, because of the potential for SQL injection

attacks.

The easiest way to avoid SQL injection attacks is to use explicitly para-

meterized queries instead of creating SQL statements through string

concatenation. Assuming that name is an “unsafe” variable from user

input, you would have the following:

Download code/hibernate_examples/src/AccessPatterns.java

Criterion c = Restrictions.sqlRestriction("{alias}.first_name = ?",

name,

Hibernate.STRING);

p = sess.createCriteria(Person.class).add(c).list();

In ActiveRecord, as you would now expect, this is accomplished with

an optional parameter to find():

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find(:all,

:conditions => ["first_name = :fname", {:fname=>name}])

The :conditions option is set to an array of values. The first value in the

array is the parameterized SQL fragment; it can contain any number of

named parameters of the form :paramname. The rest of the array is a

Ruby hash containing key/value pairs to set the parameters.

Several other options exist that we will not cover in detail. For example,

you can specify :first instead of :all to return only the first result. If you

can pass an array of indices as the first parameter, ActiveRecord will

find all instances of the class whose primary key is in that list.

ActiveRecord also allows you to search for records via properties. For

example, you can say this:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find_by_first_name('Justin')

ps = Person.find_all_by_first_name('Justin')

ActiveRecord creates a query automatically while still properly escaping

the value of the condition. These finder methods are available for all

properties, and all combinations of properties, on the object. They also

take all the same options as the regular find method.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=108

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 109

So you can also say this:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find_by_first_name_and_last_name('Justin', 'Gehtland')

p = Person.find_by_first_name('Justin', :order=>'last_name ASC')

Persisting Data

Saving changes to the database implies a lot of complexity, much of

which we will cover later in this chapter. For example, how do you

wrap your changes in a transaction (Section 4.8, Transactions, Con-

currency, and Performance, on page 125)? When are validation rules

applied (Section 4.5, Validating Data Values, on page 113)? How are

changes cascaded across relationships (Section 4.7, Transitive Persis-

tence, on page 121)? For now, we are going to focus on the simple task

of communicating a simple change to a database row.

Inserting a New Record

In Hibernate, the path to creating a new record is fairly straightforward.

Simply create an instance of the desired class. Since Hibernate works

with POJOs, it does not matter how you create an object.

You can call a constructor, invoke a factory, or get the object from

some other framework. The important task is to eventually associate

the object with a session, such as by calling save():

Download code/hibernate_examples/src/AccessPatterns.java

Person p = new Person();

p.setFirstName("Dave");

p.setLastName("Thomas");

sess = factory.openSession();

sess.save(p);

sess.flush();

ActiveRecord allows a similar approach, but you call save() directly on

the model object:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.new

p.first_name = 'Dave'

p.last_name = 'Thomas'

p.save

The save() method is configured to return false if the record could not

be saved. If you prefer to have an exception thrown in the case of fail-

ure, use the save!() method instead. (We’ll look at getting more specific

information about a failure in Section 4.5, Validating Data Values, on

page 113.)

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=109

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 110

Joe Asks. . .

Where Do All Those Finders Come From?

ActiveRecord finders appear to have a near infinite number
of methods, once you take into account all combinations of
possibilities:

Person.find_by_first_name
Person.find_by_last_name
Person.find_by_middle_name
Person.find_by_first_name_and_middle_name
Person.find_by_first_name_and_last_name
etc. etc.

The trick is method_missing(). If a Ruby class implements
method_missing(), it will be called for any method name that
does not match any specific method. For example, this code:

Download code/rails_xt/samples/activerecord/do_anything.rb

class DoAnything
def method_missing(name, *args)

puts "I can do anything, even #{name}"
end

end

d = DoAnything.new
d.jump
d.dance
d.find_by_first_name_and_last_name

will output the following:

I can do anything, even jump
I can do anything, even dance
I can do anything, even find_by_first_name_and_last_name

The method_missing approach is similar to writing an Invocation-

Handler in Java and using the handler to create a dynamic
proxy. Like InvocationHandlers, method_missing should be used
sparingly. Programs that rely heavily on method_missing() can
easily confound both developers and developer tools.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/do_anything.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=110

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 111

Joe Asks. . .

Why Doesn’t ActiveRecord Have to Reattach to the Ses-
sion?

You cannot “reettach to the session” because, um, there is no
session.

Why can’t Hibernate be equally simple? Hibernate’s session is
not just a connection to the database; it is also a cache scope.
The complexity of Hibernate’s session buys you something: the
features of a cache, including the write-behind for updates we
mentioned earlier. This is a straight-up trade-off: Do you want
simplicity, or do you want a cache?

Hibernate uses write-behind for SQL inserts. Rather than writing to the

database immediately, Hibernate accumulates pending updates and

does them all in one round-trip, where possible. ActiveRecord does not

offer this level of abstraction; calls such as save() do what they say

immediately.

You never need to write an initializer for an ActiveRecord object. Active-

Records always accept a hash of properties, so you can create and ini-

tialize objects in a single line of code:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.new :first_name=>'Dave', :last_name=>'Thomas'

p.save

If that still looks like too much code, you can combine new() and save()

in a single step by calling create() or create!():

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.create :first_name=>'Dave', :last_name=>'Thomas'

You can even combine find() and create() in a single step. Methods that

begin with find_or_create will find an existing record, if possible, and

create one otherwise:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find_or_create_by_first_name_and_last_name 'Dave', 'Thomas'

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=111

CREATE, READ, UPDATE, AND DELETE: ACCESS PATTERNS 112

Updating an Existing Record

The most common pattern for data modification, Hibernate style, is

simple. Retrieve a record from the database, detach from the session,

allow a user to make modifications, then persist those modifications:

Download code/hibernate_examples/src/AccessPatterns.java

//p is a Person detached from a prior session

sess = factory.openSession();

sess.saveOrUpdate(p);

p.setMiddleName("Brian");

sess.flush();

The slightly tricky part here is remembering to attach to the session.

Several methods do this; saveOrUpdate() is the easiest to use because

you do not have to know if the object already exists in the database.

ActiveRecord reuses the save() method for simple updates. Just as with

Hibernate’s saveOrUpate(), ActiveRecord’s save() “does the right thing,”

choosing to insert or update based on whether the object already exists

in the database:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p is a person from somewhere

p.middle_name = 'Brian'

p.save!

ActiveRecord provides a shortcut method for updating a specific record

when you don’t have the instance hanging around. Instead of loading

the entity, updating its values, and then saving it, you can call update(),

which takes an ID and a hash of properties and values to save:

Person.update(2, :middle_name=>'Brian')

A similar approach is to call update_attributes(). Given an instance, this

method will set several attributes and commit the change to the data-

base. This is convenient in a Rails controller method:

Download code/rails_xt/app/controllers/people_controller.rb

@person = Person.find(params[:id])

if @person.update_attributes(params[:person])

update succeeded...

Here you see the simplicity that results from an end-to-end naming

convention. In a single line of code, parameters are extracted from a

web form, assigned to an object, and committed to the database.4

4. Direct conversion from form parameters to model attributes raises a security issue.

We show how Rails addresses this issue in Section 10.4, #1. Unvalidated Input, on

page 293.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=112

VALIDATING DATA VALUES 113

Deleting a Record

Hibernate provides a single simple mechanism for deleting an object.

Call session.delete(), and pass in the persistent object you want to delete:

Download code/hibernate_examples/src/AccessPatterns.java

sess = factory.openSession();

Person p = (Person) sess.get(Person.class, new Long(2));

sess.delete(p);

sess.flush();

Hibernate will, upon session flush, issue the delete statement to remove

that record from the database. Without issuing a custom query, this is

the sum total of available options for deleting records in Hibernate.

ActiveRecord, on the other hand, provides many different strategies for

deleting records. The most obvious is to call destroy() on the instance

you want deleted. This causes ActiveRecord to immediately issue the

delete statement required to remove the record:

Download code/rails_xt/samples/activerecord/access_patterns.rb

p = Person.find(2)

p.destroy

This eliminates the underlying record, but the in-memory instance p

is still around if you need to reference the original values. The in-

memory instance is frozen so you will not accidentally mistake it for a

live object. (See Section 3.2, Mutable and Immutable Objects, on page 74

for a description of Ruby freezing.)

There is a parallel class-level destroy() method that takes an ID or an

array of IDs as its argument.

For each ID passed, destroy() first loads the given object and then calls

its destroy() method. This may seem like overkill, but this gives lifecycle

callbacks the chance to run. For example, you might have a filter that

prevents deletion because of some security constraint. (See Section 4.6,

Lifecycle Callbacks, on page 116.)

4.5 Validating Data Values

Declarative validation is a powerful addition to an object model. Instead

of writing code, you can simply declare constraints, which can then be

enforced at various points in the object’s life cycle. For example, here

are some model constraints declared using the Hibernate Validator:

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/AccessPatterns.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/activerecord/access_patterns.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=113

VALIDATING DATA VALUES 114

Download code/hibernate_examples/src/User.java

@NotNull

@Length(min=3,max=40)

public String getLogin() {

return login;

}

Even if you have never used Java 5 annotations, it is pretty obvious

what these validation rules do. The login property cannot be null and

must have a length from 3 to 40 characters.

Here is a similar validation in ActiveRecord:

Download code/rails_xt/app/models/user.rb

validates_presence_of :login, :email

validates_length_of :login, :within => 3..40

Again, login cannot be nil and must have a length from 3 to 40 charac-

ters.

Hibernate validations are declared immediately before the property they

reference. ActiveRecord validations explicitly name the properties they

reference, so the previous code can constrain both login and email from

the same line. ActiveRecord validations can be declared anywhere in

the model class but are usually declared at the top.

Once you have declared some validations, you can explicitly validate an

object. In Hibernate, ClassValidator.getInvalidValues() will return an array

of all the invalid values on an object:

Download code/hibernate_examples/src/Validations.java

User u = new User();

ClassValidator v = new ClassValidator(User.class);

InvalidValue[] errors = v.getInvalidValues(u);

In ActiveRecord, validation methods such as errors are invoked on the

model objects themselves:

$ script/console

Loading development environment.

>> u = User.new

>> u.valid?

=> false

>> u.errors[:login]

=> ["is too short (minimum is 3 characters)", "can't be blank"]

Calling valid?() populates the errors hash. Keys are property names, and

values are the validation errors.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/User.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/user.rb
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Validations.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=114

VALIDATING DATA VALUES 115

Which Layer Does Validation?

When writing a web application in Java, you can tackle valida-
tion in one of two ways:

• You can validate form input on the way in from the client.

• You can validate persistent properties.

Examples of form validation include the Spring Validator. At the
persistence layer, you might use Hibernate’s Validator. Unfortu-
nately, these layers are not connected. If you need to do similar
validations in both layers, you will have to explicitly invoke the
validator. For example, Hibernate’s Validator can be applied
automatically at the data object level but must be invoked
manually in the web tier. (This could easily be improved with
AOP, and we hope to remove this paragraph in a future release
of the book.)

Rails, as a unified development stack, gives you a single, stan-
dard place to express your validation rules. These rules are
described in your model classes, applied at persistence time,
and reported all the way back to the web view layer.

In addition to explicit validation, O/RM frameworks should do implicit

validation before saving a record. In Hibernate, trying to save an invalid

object throws an exception:

Download code/hibernate_examples/src/Validations.java

assertThrows(PropertyValueException.class, new Callable() {

public Object call()

throws Exception {

User u = new User();

return sess.save(u);

}

});

In ActiveRecord, save() will return false for an invalid object, and save!()

will throw an exception:

>> u.save

=> false

>> u.save!

ActiveRecord::RecordInvalid: Validation failed: ...

At the time of this writing, ActiveRecord validation has a significant

limitation. Error messages are reported in English, and there is no

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Validations.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=115

LIFECYCLE CALLBACKS 116

internationalization facility in Rails. Teams adopting Rails either pull

in a third-party internationalization library or accept the cost of rolling

their own internationalization.

See http://wiki.rubyonrails.org/rails/pages/Internationalization for advice to get

started.

4.6 Lifecycle Callbacks

Most of the time, model classes are used like any other classes. In

particular, model instances do not need to be constantly aware of the

O/RM layer. However, in certain circumstances, objects may actually

want to know what the O/RM layer is doing. For example, the Rails XT

application’s User class needs to take special care with its password-

related properties. Users edit their passwords, but the database does

not store passwords. To improve security, the database stores only the

hashes of passwords.

At some point in time, a User needs to convert its password into a hash

and discard the password. When should this happen? This should hap-

pen immediately before saving the User. But Users have no idea when

they are about to be saved—that is the O/RM framework’s job.

Enter lifecycle interfaces. O/RM frameworks provide a variety of life-

cycle interfaces so that objects can receive notification of container

events. Hibernate provides several different lifecycle techniques. For

example, Hibernate’s event system can hook into any of Hibernate’s

session methods. Here’s how you could use events to manage Users’s

passwords and hashes:

Download code/hibernate_examples/src/UserEventListener.java

Line 1 public class UserEventListener extends DefaultSaveOrUpdateEventListener {
- public void onSaveOrUpdate(SaveOrUpdateEvent event)
- throws HibernateException {
- Object o = event.getObject();
5 if (o instanceof User) {
- try {
- ((User) o).hashPassword();
- } catch (NoSuchAlgorithmException e) {
- throw new HibernateException(e);

10 }
- }
- super.onSaveOrUpdate(event);
- }
- }

http://wiki.rubyonrails.org/rails/pages/Internationalization
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/UserEventListener.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=116

LIFECYCLE CALLBACKS 117

Consistent with Hibernate’s philosophy, the lifecycle callback is not on

the User model itself. Instead, a SaveOrUpdateEventListener interface acts

as a hook for all save or load events on the session. (Similarly named

interfaces exist for the other session methods.) Since the hook will see

load and save events for all model types, we use an if statement to

narrow down to Users (line 5). The actual business of the event listener

is simply to ask the model object to hash its password (line 7), and

the remaining code is boilerplate. Hibernate event listeners must be

registered. There is an API for this, but it is more common to use the

XML configuration file. For example:

Download code/hibernate_examples/config/hibernate.cfg.xml

<event type="save-update">

<listener class="UserEventListener"/>

</event>

In ActiveRecord, lifecycle methods are usually added to the model clas-

ses themselves:

Download code/rails_xt/app/models/user.rb

before_save :encrypt_password

The before_save method is invoked directly on the User class and takes

the name of a method to be called before a save. (Similarly named meth-

ods exist for all the other interesting methods in the persistence life

cycle). In fact, the before_save takes several other forms as well. You

can also pass a block:

before_save do

#encrypt here

end

Instead of calling the class method before_save, you can implement an

instance method, also named before_save:

def before_save

#encrypt here

end

With any of the previous techniques, saving a user will automatically

hash the password. You can easily verify this in script/console:

>> u = User.new

>> u.login = 'Tom'

>> u.password = u.password_confirmation = 'wombat'

>> u.email = 'contact@relevancellc.com'

>> u.crypted_password => nil

>> u.save

>> u.password => nil

>> u.crypted_password => "81f8a1a1c0f9b92d74c5f65c8d0d5164772fc60a"

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/hibernate.cfg.xml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/user.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=117

LIFECYCLE CALLBACKS 118

ActiveRecord will also let you decouple lifecycle methods, moving the

lifecycle methods into a class separate from the model class. We don’t

think this is necessary for the User class, so we have not made this

change in the Rails XT application.

But, it is easy enough to make a temporary change in script/console and

see how external lifecycle methods work. Just pick an arbitrary class,

and have it define before_save(). Since we are outside the model class,

the method will take a model argument:

>> class SomeLifecycleCallback

>> def before_save(model)

>> puts "about to save instance of #{model.class}"

>> end

>> end

Now, we can associate SomeLifecycleCallback with a User by using yet

another variant of before_save():

>> class User; before_save SomeLifecycleCallback.new; end

To verify that SomeLifecycleCallback is called, simply save a (valid!) User:

>> u = User.find(:first)

>> u.save

about to save instance of User

What if you want to register a callback for all models, more like Hiber-

nate’s event system? Easy. Simply add SomeLifecycleCallback to

ActiveRecord::Base:

>> class ActiveRecord::Base; before_save SomeLifecycleCallback.new; end

Now all kinds of model objects get SomeLifecycleCallback:

>> p = Person.find(:first)

>> q = Quip.find(:first)

>> p.save

about to save instance of Person

>> q.save

about to save instance of Quip

ActiveRecord’s lifecycle callbacks are a pleasure to use. They are simply

Ruby code and require no separate configuration.

Lifecycle callbacks are naturally loosely typed and loosely coupled. As

a result, lifecycle callbacks feel natural in dynamic languages such as

Ruby.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=118

ASSOCIATIONS AND INHERITANCE 119

4.7 Associations and Inheritance

Throughout this chapter so far, we have made a simple association: One

row in one table implies one instance of one class. Nontrivial systems

are more complex. On the database side, databases are normalized and

different tables are linked by foreign keys. On the object side, classes

are related by inheritance and aggregation.

A major task of any O/RM framework is to make relationships in the

data model accessible to the object model, even if the metaphors and

terminology are different. The following sections describe some of the

most common database relations and how they become visible in Hiber-

nate and ActiveRecord objects.

One-to-Many Relationships

In a one-to-many relationship, a single row in one table is associated

with an arbitrary number of rows in a second table. The second table

has a foreign key column that refers to the primary key in the first

table.

The Rails XT application has a one-to-many relationship from people

to quips. The quips table has an author_id column that references the id

column in the people table.

To expose this relationship at the object level in Hibernate, we start by

creating JavaBeans properties that associate Quips with Persons:

Download code/hibernate_examples/src/Quip.java

private Person author;

public Person getAuthor() {

return author;

}

public void setAuthor(Person author) {

this.author = author;

}

And the opposite direction, here is Persons to Quips:

Download code/hibernate_examples/src/Person.java

private Set quips;

public Set getQuips() {

return quips;

}

public void setQuips(Set quips) {

this.quips = quips;

}

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Quip.java
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Person.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=119

ASSOCIATIONS AND INHERITANCE 120

Next, we tell Hibernate about the relationships. On the “one” side, we

add lines to person.hbm.xml:

Download code/hibernate_examples/config/person.hbm.xml

<set name="quips" inverse="true" cascade="all">

<key column="author_id"/>

<one-to-many class="Quip"/>

</set>

For the “many” side, we update quip.hbm.xml:

Download code/hibernate_examples/config/quip.hbm.xml

<many-to-one name="author" column="author_id" class="Person"/>

In ActiveRecord, the relationship between Quips and People is declared

directly in the model source code. A Person has many Quips:

Download code/rails_xt/app/models/person.rb

has_many :quips, :foreign_key=>'author_id'

The ActiveRecord code reads almost like documentation. The foreign_key

key specifies that the foreign key for the join is author_id. In keeping

with Rails’ preference for convention, there is a reasonable default for

foreign_key: the singular name of the table plus _id. If we had named the

database column person_id instead of author_id, the foreign_key option

could have been omitted. In the Hibernate implementation, we wrote

bean accessors to traverse the relationships. In ActiveRecord, these

methods are generated dynamically based on the has_many declaration.

At runtime we can say things like this:

Download code/rails_xt/sample_output/has_many.irb

>> p = Person.create :first_name=>'Justin', :last_name=>'Gehtland'

=> (...description of p...)

>> p.quips

=> []

>> q = p.quips.create :text=>'Have fun storming the castle!'

=> (...description of q...)

>> p.quips.empty?

=> false

>> p.quips

=> [(...description of q...)]

>> p.quips.find(:first)

=> (...description of q...)

We did not write any code for the quips, create, empty?, or find methods.

These convenience methods, plus several others, are created automat-

ically by has_many.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/person.hbm.xml
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/quip.hbm.xml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/person.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/has_many.irb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=120

ASSOCIATIONS AND INHERITANCE 121

On the Quip side, we declare the relationship in the opposite direction

using belongs_to:

Download code/rails_xt/app/models/quip.rb

belongs_to :author, :class_name=>'Person', :foreign_key=>'author_id'

Again, the foreign_key is necessary to override the default setting. In this

case a second override is also needed. ActiveRecord guesses the class

name for the owning instance from the foreign_key, which leads to the

class name Author. The class_name overrides this and selects the correct

class, Person.

Just as with has_many, ActiveRecord automatically creates a set of ac-

cessor methods for a belongs_to relationship. In the previous example,

the calls to the author, nil?, and create_author methods demonstrated

some of the methods that belongs_to has added to Quip.

Transitive Persistence

Here is some code that exercises the one-to-many relationship between

Persons and Quips.

Download code/hibernate_examples/src/Relationships.java

Line 1 sess.beginTransaction();
- Person person = new Person();
- person.setFirstName("John");
- Quip q = new Quip();
5 q.setText("A stitch in time...");
- q.setAuthor(person);
- HashSet hs = new HashSet();
- hs.add(q);
- person.setQuips(hs);

10 sess.save(person);
- sess.getTransaction().commit();

The usage of the Person and Quip classes is straightforward. Notice that

we did need to set the association in both directions: setAuthor in line

6 and setQuips in line 9. Since the objects are POJOs, setting up the

relation in both directions is our responsibility.

The call to save(person) poses an interesting question. What should

actually get saved? A literal-minded O/RM would simply save the per-

son, implicitly forgetting the associated quips. Another alternative is

transitive persistence: when you save an object, the framework saves transitive persistence

all related objects.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/quip.rb
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Relationships.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=121

ASSOCIATIONS AND INHERITANCE 122

In Hibernate, either alternative is possible—but you cannot tell which

by looking at the code. In our sample project, saving a person will

also save any quips, thanks to the following configuration line in per-

son.hbm.xml:

<set name="quips" inverse="true" cascade="all">

The cascade property can take various values so that different opera-

tions cascade differently. Moreover, cascade can be set differently for

different relationships. For bidirectional relationships, cascade can be

different in one direction than in the other. Finally, if you don’t want

to worry about the cascade settings, you can always call session.save

explicitly for each object.

ActiveRecord’s approach to transitive persistence is simpler and less

flexible. Each relationship type has a cascade rule, and these rules are

fixed. A save operation will cascade from one to many:

>> p = Person.new :first_name=>'Lewis'

>> p.add_quips Quip.new(:text=>'Twas brillig...')

>> p.save

>> p.quips[0].new_record? => false

Saving the Person saved the Quip automatically. But saves will not cas-

cade from the many to the one:

>> p = Person.new :first_name=>'Mr.'

>> p.add_quips Quip.new(:text=>'I pity the fool...')

>> p.quips[0].save

>> p.new_record? => true

Hibernate’s support for transitive persistence is superior, although its

usage can be confusing.

One-to-One, Many-to-Many, Polymorphic, and Through

Associations

The one-to-many discussion in the previous section is representative of

the general approach to associations, both in Hibernate and in Active-

Record. Rather than fell more trees, we’ll sum up and offer a few prac-

tical observations:

• In Hibernate, associations are described in XML, and then appro-

priate getter and setter methods are coded into POJOs.

• In ActiveRecord, associations are described in Ruby code in the

model classes themselves. That’s all you have to do; ActiveRecord

will create accessor methods for you.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=122

ASSOCIATIONS AND INHERITANCE 123

• With Hibernate, you have to do a lot of repetitive work. You end

up describing an association in three places: the data schema, the

model classes, and the Hibernate configuration. Hibernate devel-

opers often use code generation to reduce the amount of repetition

involved, or developers on Java 5 may choose to use annotations.

• With ActiveRecord, there is less repetition: You create only the

data schema and the model classes. The “configuration” is in a

more appealing language: Ruby instead of XML. However, more

consolidation is still possible. ActiveRecord could infer much more

from the schema. We hope that future versions of both ActiveRe-

cord and Hibernate will infer more from the database schema.

In addition to one-to-many, ActiveRecord also supports the other com-

mon associations: one-to-one and many-to-many. And ActiveRecord

supports through associations that pass through an intermediate join through associations

table. ActiveRecord also support polymorphic associations, where at polymorphic associations

least one side of the association allows more than one concrete class.

For more about these relationship types, see Agile Web Develpment with

Rails [TH06].

Modeling Inheritance in the Data Tier

In previous sections, we discussed associations—relationships from the

data world that O/RM tools propagate into the object world. We can also

go in the opposite direction. Inheritance is a concept from the object

world that O/RM frameworks can map to the data world.

Since inheritance is used to model hierarchy, we will use a hierarchy

you may remember from grade school: celestial bodies. Under the base

class CelestialBody, one might find Star and Planet, to name a few. Here

is a simplified table definition:

Download code/rails_xt/db/migrate/005_create_celestial_bodies.rb

create_table :celestial_bodies do |t|

shared properties

t.column :name, :string

t.column :type, :string

star properties

t.column :magnitude, :decimal

t.column :classification, :char

planet properties

t.column :gas_giant, :boolean

t.column :moons, :int

end

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/db/migrate/005_create_celestial_bodies.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=123

ASSOCIATIONS AND INHERITANCE 124

The schema defines only one table, but our associated object model has

three classes. How can the O/RM layer know which type to create?

The easiest solution is to add a discriminator column to the table sche-

ma. The discriminator column simply tells the O/RM which concrete

class to instantiate for a particular data row. In Hibernate, you declare

the discriminator in the configuration file:

Download code/hibernate_examples/config/celestialbody.hbm.xml

<discriminator column="type" type="string"/>

Then, certain values of the discriminator associate with a particular

subclass and its properties:

<subclass name="Planet" discriminator-value="Planet">

<property name="moons" type="integer"/>

<property name="gasGiant" column="gas_giant" type="boolean"/>

</subclass>

You define Planet and Star as you would any other persistent class. (You

do not have to declare a property for the discriminator.) The only novelty

is that queries against CelestialBody may return a variety of different

concrete classes:

//List may contain Stars or Planets

List list = sess.createQuery("from CelestialBody").list();

ActiveRecord will store an object’s class name in the type column, if

one exists. When retrieving objects from the database, ActiveRecord

uses the type to create the correct class:

>> s = Star.new :name=>'Sol', :classification=>'G'

>> s.save

>> o = CelestialBody.find_by_classification 'G'

>> o.name => "Sol"

>> o.class => Star

Since ActiveRecord uses a zero-configuration, zero-code approach, it

has no way of knowing which columns are appropriate for which clas-

ses. As a result, you can set any attribute for any subclass. You can

give planets a classification:

>> p = Planet.create :name=>'Jupiter', :gas_giant=>true

>> p.classification = 'a very big planet!'

Or you can let stars have moons:

>> s = Star.create :name=>'Antares', :classification=>'M', :magnitude=>0.9

>> s.moons = 250

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/celestialbody.hbm.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=124

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 125

Dynamic language supporters consider this flexibility a feature, not a

bug. However, if you want to guarantee that planets never get star prop-

erties, simply add a validation:

Download code/rails_xt/app/models/planet.rb

class Planet < CelestialBody

validates_each :magnitude, :classification do |obj, att, value|

obj.errors.add att, 'must be nil' if value

end

end

The validates_each method registers a block that will be called once

each for the attributes classification and magnitude, Now, planets are a

bit better behaved:

>> p = Planet.create!(:name=>'Saturn', :classification=>'A ringed planet')

ActiveRecord::RecordInvalid: Validation failed: Classification must be nil

The technique of using one table to support many model classes is

called single table inheritance, or table per class hierarchy. Hibernate single table inheritance

supports some other approaches, such as table per subclass. With table

per subclass, inheritance is spread across multiple tables, and Hiber-

nate does the bookkeeping to join the parts back together.

ActiveRecord does not support table per subclass. In practice, this does

not matter much. Having the O/RM provide powerful support for inher-

itance is important in Java, because inheritance itself is important.

In Java, the inheritance hierarchy is often central to an application’s

design. On the other hand, idiomatic Ruby programs are duck-typed,

and the “is-a” relationships of the inheritance hierarchy are relatively

less important. In fact, the class hierarchy is often almost entirely flat.

In the hundreds of ActiveRecord classes we have put into production,

we have rarely felt the need for even single table inheritance, much less

any more exotic techniques.

4.8 Transactions, Concurrency, and Performance

In many applications, the database owns the data, so the performance

and the correctness of the database are paramount. Part of the goal of

O/RM frameworks is to shield programmers from the complexity of the

database. Indeed, much of the programming with a good O/RM design

can focus on the business logic, leaving the “hard stuff” to the O/RM.

But that is much of the programming, not all. Programmers still have

to worry about three (at least!) data-related tasks:

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/planet.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=125

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 126

• Related units of work must be grouped together and succeed or fail

as a unit. Otherwise, the combinations of partial failures create an

explosion of complexity. This problem is solved with transactions.

• The “read for update” scenario must be optimized to balance con-

current readers with data integrity. By far the best first step here

is optimistic locking.

• For performance reasons, navigation through the object model

should aim for one database operation (or less) per user operation.

The danger to avoid is something closer to one database operation

per row in some table. The most common of these problems is the

well-known N+1 problem.

Next we will show how ActiveRecord handles transactions, optimistic

locking, and the N+1 problem.

Local Transactions

Hibernate includes a Transaction API that maps to the transactional

capabilities of the underlying database. Here is an example that groups

multiple operations into a single transaction:

Download code/hibernate_examples/src/Validations.java

public void saveUsersInTx(User... users) {

Session sess = HibernateUtil.sf.getCurrentSession();

Transaction tx = sess.beginTransaction();

try {

for (User user: users) {

sess.save(user);

}

tx.commit();

} catch (HibernateException e) {

tx.rollback();

throw e;

}

}

The saveUsersInTx method loops over an array of user objects, attempting

to save each one. These users have the declarative validations described

in Section 4.5, Validating Data Values, on page 113. If all the users are

valid, each save will succeed, and the tx.commit will write all the users

in the database. But if any individual users are invalid, the Validator

will throw a HibernateException. If this happens, the call to tx.rollback will

undo any previous saves within the transaction. In fact, “undo” is not

quite the right word. The other saves will simply never happen.

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Validations.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=126

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 127

Here is the ActiveRecord version:

Download code/rails_xt/app/models/user.rb

def User.save(*users)

User.transaction do

users.each {|user| user.save!}

end

end

Any ActiveRecord class, such as User, has a transaction method that

starts a transaction on the underlying connection. Commit and rollback

are implicit. Exceptions that exit the block cause a rollback. Normal

exit from the block causes a commit. The rules are simple and easy to

remember.

ActiveRecord also supports transactional semantics on the objects

themselves. When you pass arguments to transaction, those arguments

are also protected by a transaction. If the database rolls back, the indi-

vidual property values on the model objects roll back also. The imple-

mentation is a clever demonstration of Ruby, but in practice this feature

is rarely used. In web applications, ActiveRecord instances are usually

bound to forms. So, we want them to hold on to any bad values so that

the user can have a chance to correct them.

All Other Transactions

Hibernate’s transaction support goes far beyond the local transactions

described previously. The two most important are container-managed

transactions and distributed transactions.

With container-managed (a.k.a. declarative) transactions, programmers

do not write explicit transactional code. Instead, application code runs

inside a container that starts, commits, and aborts transactions at the

right times. The “right times” are specified in a configuration file, usu-

ally in XML. ActiveRecord provides no support for container-managed

transactions, and we rarely miss them. (Anything that can be done with

container-managed transactions can also be done with programmatic

transactions.)

Distributed transactions manage data across different databases. And,

they manage data even across databases, message queues, and file sys-

tems. ActiveRecord provides no support for distributed transactions,

and when we miss them, we miss them acutely. Rails is currently unsuit-

able for systems that must enforce transactional semantics across differ-

ent databases. But chin up! The JRuby team (http://www.jruby.org) is

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/user.rb
http://www.jruby.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=127

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 128

working to make JRuby on Rails viable. Once it is, we will have access

to Java’s transaction APIs.

Optimistic Locking

Imagine a world without optimistic locking.

Jane: I’d like to see available flights between Raleigh-Durham and

Chicago.

Computer: Here you go!

John: Can you help me plan a trip from Chicago to Boston?

Computer: Sorry, Jane is making travel plans right now. Please ask

again later.

Many application scenarios are read-for-update: Look at a list of avail-

able flights and seats, and then buy some tickets. The problem is bal-

ancing data integrity and throughput. If only Jane can use the system

(or a particular table or a particular row in a table), then data integrity

is assured, but John is stuck waiting. If you let John and Jane use the

system, you run the risk that they will make conflicting updates.

You can employ many tricks to balance data integrity and throughput.

One of the simplest and most effective is optimistic locking with a ver-

sion column in the database. Each data row keeps a version number

column. When users read a row, they read the version number as well.

When they attempt to update the row, they increment the version num-

ber. Updates are conditional: They update the row only if the version

number is unchanged. Now both John and Jane can use the system.

Every so often, John will try to update a row that has just been changed

by Jane. To prevent Jane’s change from being lost, we ask John to start

over, using the new data. Optimistic locking works well because update

collisions are rare in most systems—usually John and Jane both get to

make their changes.

Optimistic locking is trivial in Hibernate. Define a column in the data-

base and an associated JavaBean property in your model object. Usu-

ally the JavaBean property is called version:

Download code/hibernate_examples/src/Person.java

private int version;

public int getVersion() { return version;}

public void setVersion(int version) {

this.version = version;

}

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/Person.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=128

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 129

In the Hibernate configuration file for Person, associate the version prop-

erty with the version column in the database. If the database column is

named lock_version, like so:

Download code/hibernate_examples/config/person.hbm.xml

<version name="version" column='lock_version'/>

then Hibernate will populate the version column when reading a Per-

son and will attempt to increment the column when updating a Person.

If the version column has changed, Hibernate will throw a StaleObject-

StateException. ActiveRecord approaches locking in the same way, with

one additional twist. If you name your column lock_version, ActiveRecord

does optimistic locking automatically. There is no code or configuration

to be added to your application.

All the tables in the Rails XT application use lock_version. Here’s what

happens when both John and Jane try to reset the same user’s pass-

word at the same time. First, Jane begins with this:

Download code/rails_xt/test/unit/user_test.rb

aaron = User.find_by_email('aaron@example.com')

aaron.password = aaron.password_confirmation = 'setme'

Elsewhere, John is doing almost the same thing:

u = User.find_by_email('aaron@example.com')

u.password = u.password_confirmation = 'newpass'

Jane saves her changes first:

aaron.save

Then John tries to save:

u.save

Since Jane’s change got in first, John’s update will fail with a Active-

Record::StaleObjectError.

If your naming convention does not match ActiveRecord’s, you can

override it. To tell ActiveRecord that the User class uses a column named

version, you would say this:

class User < ActiveRecord::Base

set_locking_column :version

end

You can turn off optimistic locking entirely with this:

ActiveRecord::Base.lock_optimistically = false

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/config/person.hbm.xml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=129

TRANSACTIONS, CONCURRENCY, AND PERFORMANCE 130

Sometimes existing data schemas cannot be modified to include a ver-

sion column. Hibernate can do version checking based on the entire

record if you set optimistic-lock="all". ActiveRecord does not support this.

Preventing the N+1 Problem

The N+1 problem is easy to demonstrate. Imagine that you want to print

the name of each person, followed by each author’s quips. First, get all

the people:

$ script/console

>>people = Person.find(:all)

Now, iterate over the people, printing their names and their quips:

>> people.each do |p|

?> puts p.full_name

?> p.quips do |q|

?> puts q.text

>> end

>> end

This code works fine and is easy to understand. The problem is on the

database side. After trying the previous code, refer to the most recent

entries in log/development.log. You will see something like this:

Person Load (0.004605) SELECT * FROM people

Person Columns (0.003437) SHOW FIELDS FROM people

Quip Load (0.005988) SELECT * FROM quips WHERE (quips.author_id = 1)

Quip Load (0.009707) SELECT * FROM quips WHERE (quips.author_id = 2)

Our call to Person.find triggered the Person Load.... Then, for each person

in the database, you will see a Quip Load.... If you have N people in

the database, then this simple code requires N+1 trips to the database:

one trip to get the people and then N more trips (one for each person’s

quips).

Database round-trips are expensive. We know in advance that we want

all the quips for each person. So, we could improve performance by

getting all the people, and all their associated quips, in one trip to the

database. The performance gain can be enormous. The N+1 problem

gets worse quickly as you have more data or more complicated rela-

tionships between tables.

SQL (Structured Query Language) excels at specifying the exact set of

rows you want. But we use O/RM frameworks such as Hibernate and

ActiveRecord to avoid having to deal with (much) SQL. Since the N+1

problem is so important, O/RM frameworks usually provide ways to

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=130

CONSERVING RESOURCES WITH CONNECTION POOLING 131

avoid it. In Hibernate, you can add a hint to your query operation to

specify what other data you will need next. If you are getting the people

but you will be needing the quips too, you can say this:

Download code/hibernate_examples/src/TransactionTest.java

Criteria c = sess.createCriteria(Person.class)

.setFetchMode("quips", FetchMode.JOIN);

Set people = new HashSet(c.list());

The setFetchMode tells Hibernate to use SQL that will bring back any

associated quips. The resulting list will repeat instances of Person to

match each Quip, so we use the HashSet to narrow down to unique peo-

ple.

With ActiveRecord, you can specify relationships to preload with the

:include option:

>> p = Person.find(:all, :include=>:quips)

If you want the control possible with raw SQL, you can do that too. In

Hibernate, here is the code:

Download code/hibernate_examples/src/TransactionTest.java

SQLQuery q = sess.createSQLQuery("SELECT p.* FROM PEOPLE p")

.addEntity(Person.class);

Set people = new HashSet(q.list());

And in ActiveRecord, here it is:

>> p = Person.find_by_sql("SELECT * from people")

4.9 Conserving Resources with Connection Pooling

Hibernate and other Java OR/M frameworks all manage connection

pooling in some fashion. Hibernate comes with a default connection

pooling mechanism and is easily configurable to use third-party pool

managers. Hibernate requires this flexibility because of the wide variety

of application types in which it can be used. ActiveRecord, on the other

hand, was designed for a single application type: web applications. Any

decent web server is already going to provide built-in pooling in the

form of thread pooling; ActiveRecord simplifies the connection pooling

problem by offloading to the thread pooler of the web server.

This means although Hibernate assigns connections into a (presumably

thread-safe) external pool of connections, ActiveRecord assigns open

connections into thread-local storage. All requests to the server are dis-

patched to one of those worker threads, and the ActiveRecord classes

http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/TransactionTest.java
http://media.pragprog.com/titles/fr_r4j/code/code/hibernate_examples/src/TransactionTest.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=131

RESOURCES 132

bound to those threads will share the open connections found there.

As long as ActiveRecord is used in a production-quality web server, this

pattern works.

However, if you attempt to use ActiveRecord in another setting, say a

hand-rolled distributed application or behind a RubyQT front end, then

the open-connection-per-thread strategy is likely to fail. Depending on

how threads are created, pooled, or abandoned, the database connec-

tions may not be harvested in a timely fashion or at all. If the threads

are abandoned and the connections are left in an open but inaccessible

state, then eventually the database will run out of available connection

resources, thereby shutting down the application.

These scenarios are rare; ActiveRecord was built for Rails, and Rails

was built for the Web. To appease the rest of the world, though, a patch

is in the works that provides a more robust connection pooling strategy.

For many people, ActiveRecord is the crowning achievement of Rails. It

does not provide a kitchen sink of O/RM services, but it delivers the

“Active Record” design pattern with an API that is clean, simple, and

beautiful. Now that you have access to data, it is time to move your

attention to how you can operate on that data through a web interface.

4.10 Resources

Composite Primary Keys for Ruby on Rails. . .
. . . http://compositekeys.rubyforge.org/

The composite_primary_keys plugin lets you deal with composite primary keys

in a Rails application.

Crossing Borders: Exploring ActiveRecord. . .
. . . http://www-128.ibm.com/developerworks/java/library/j-cb03076/index.html

Bruce Tate does a nice job introducing ActiveRecord, as well as comparing it to

various options in Java.

iBatis . http://ibatis.apache.org/

iBatis is a data mapper framework. A data mapper might be better than the

“Active Record” design pattern if you need much more control at the SQL level.

iBatis has been ported to Ruby and so is an option if you need to write a Rails

application that accesses legacy data schemas.

http://compositekeys.rubyforge.org/
http://www-128.ibm.com/developerworks/java/library/j-cb03076/index.html
http://ibatis.apache.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=132

Chapter 5

Coordinating Activities with
ActionController

Controllers coordinate the activities of views and models in the MVC

paradigm. Controllers are responsible for the following:

• Collecting input from the user

• Creating model objects to handle the user’s request

• Selecting the appropriate view code to render

Along the way, controllers are responsible for logic that is associated

with the user request (as opposed to with a specific model object). Such

logic includes the following:

• Authentication and authorization

• Business rules that involve multiple model objects

• Auditing

• Error handling

In addition to these responsibilities, most web application frameworks

give controllers a web-specific responsibility as well. Web controllers

provide an object model wrapper for the idioms of the Web: URLs, HTTP

requests, headers, cookies, and so on. At the controller level, web appli-

cations are explicitly web programming. (By contrast, the model layer

code is much more likely to be reusable outside of a web app.) In Rails,

the ActionController library implements the controller layer. In this

chapter, we will introduce ActionController by comparing it to a Struts

application. We will start with basic CRUD and then drill in to more

advanced issues such as session management, filters, and caching.

ROUTING BASICS: FROM URL TO CONTROLLER+METHOD 134

5.1 Routing Basics: From URL to Controller+Method

To access a web application, you need a URL. For our Struts sample

application, the people list view lives at /appfuse_people/editPerson.html?method=Search.

How does this URL get routed to running code in a Java web applica-

tion? Typically, the first part of the name (appfuse_people) identifies

a .war file or directory on the server that corresponds to a particular

web application. Java applications often include an Ant task to copy

the application code and resources to the appropriate directory on the

server.

Download code/appfuse_people/build.xml

<target name="deploy-web" depends="compile-jsp" if="tomcat.home"

description="deploy only web classes to servlet container's deploy directory">

<echo message="Deploying web application to ${tomcat.home}/webapps"/>

<copy todir="${tomcat.home}/webapps/${webapp.name}">

<fileset dir="${webapp.target}"

excludes="**/web-test.xml,**/web.xml,**/*-resources.xml"/>

</copy>

</target>

For a Struts application, the next part of the name (editPerson.html)

is pattern matched to the Struts ActionServlet via a servlet and servlet-

mapping elements in web.xml. Many Struts applications use the dis-

tinctive .do suffix; in our example, we have followed AppFuse’s lead in

simply using .html:

Download code/appfuse_people/web/WEB-INF/web.xml

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.html</url-pattern>

</servlet-mapping>

These two steps do not exist in Rails development. Rails does not run

more than one web application within a process—if you want multiple

web applications, you run them in separate processes. Since all Rails

code is routed to the ActionController layer, you don’t have to take a

separate configuration step to specify “I want to use ActionController.”

Rails applications also do not copy files into the web server during

/appfuse_people/editPerson.html?method=Search
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/build.xml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=134

ROUTING BASICS: FROM URL TO CONTROLLER+METHOD 135

development. During development, Rails code is written and executed

in a single directory tree. This is part of the reason that Rails appli-

cation development is so interactive: changes take effect immediately,

without a deploy step.

Most Java developers find ways to simplify these two steps. Frame-

works such as AppFuse create the appropriate build.xml and web.xml

settings for you. Inspired in part by Rails, many Java developers now

run their development code from the same directory, avoiding part of

the overhead of the compile/deploy cycle.

The more important part of routing happens within the Struts Action-

Servlet and Rails ActionController. Struts uses settings in struts-config.xml

to convert editPerson.html?method=Search into a method call:

<action

path="/editPerson"

type="com.relevancellc.people.webapp.action.PersonAction" ...

The path attribute matches editPerson to the class named by the type

attribute: PersonAction. Finally, the query string ?method=Search leads

us to the search method on PersonAction.

The Rails URL for the people list view is /people/list. Just as with Struts,

Rails uses routing to convert this URL into a method on an object. In

Rails, the routing is described not with XML but with Ruby code. Here

is a simple routing file:

Download code/people/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/:action/:id'

end

The :controller portion of the route maps the first portion of the URL to

a controller class. A standard convention for capitalization and class

naming is used, so people becomes PeopleController. The mechanism

is general, so this routing entry also implies that a URL that begins

with foo will attempt to find a (nonexistent in this case) FooController.

The :action portion of the route maps the second location component

to a method. So, list invokes the list method. Again, the mechanism is

general, so /people/foo would attempt to find a nonexistent foo method

on the PeopleController. Finally, the :id maps to an id parameter, which

is optional. In methods such as create and update that need an object

to operate on, the id is conventionally a primary key.

/people/list
http://media.pragprog.com/titles/fr_r4j/code/code/people/config/routes.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=135

LIST AND SHOW ACTIONS: THE R IN CRUD 136

Many opponents of Rails have criticized this default routing because

they do not like the implied naming scheme. This entirely misses the

point. Rails default routing makes trivial things trivial. It is easy to bring

up a Rails server with a bunch of controllers that use this default route.

The design philosophy is “pay as you go.” The default routing gives you

something simple, generic, and free. If you want more control, you can

have that too, but you have to write some routing configuration, just

as you do in Struts. You will see more advanced routing in Section 5.6,

Routing in Depth, on page 151.

5.2 List and Show Actions: The R in CRUD

Now that we can route from URLs to code, let’s look at the code. In our

Struts application, /appfuse_people/editPerson.html?method=Search takes

us to the search method of PersonAction:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward search(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

PersonManager mgr = (PersonManager) getBean("personManager");

List people = mgr.getPeople(null);

request.setAttribute(Constants.PERSON_LIST, people);

return mapping.findForward("list");

}

The signature of the method contains specific parameters for accessing

the web object model (request and response) and the Struts object model

(mapping and form). The object model is then used to load the people,

and forward to the view, through the following steps:

1. On line 5, we look up the manager object that will actually do the

work.

2. On line 6, we get the people object that will be rendered in the

view.

3. On line 7, we add the people to the request, which makes the people

available to the view.

4. Finally on line 8, we select the view that should render the list.

Behind the scenes is a lot of layering. The manager in its turn delegates

to a DAO, which actually does the data access. The manager and DAO

layers require two Java source files each: an interface to the layer and at

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=136

LIST AND SHOW ACTIONS: THE R IN CRUD 137

least one implementation. In addition, the connections between layers

are configured using Spring Dependency Injection. At the end of the

chain, here is the code that does the work:

Download code/appfuse_people/src/dao/com/relevancellc/people/dao/hibernate/PersonDaoHibernate.java

public List getPeople(Person person) {

return getHibernateTemplate().find("from Person");

}

If you understand how this all works in Struts, the transition to Rails

is straightforward. A typical Rails controller does the same steps. This

is not obvious at first, because at every step, the Rails approach makes

a different stylistic choice. Here is the code:

Download code/people/app/controllers/people_controller.rb

def list

@search = params[:search]

if @search.blank?

@person_pages, @people = paginate :people, :per_page => 10

else

query = ['first_name = :search or last_name = :search',

{:search=>@search}]

@person_pages, @people = paginate :people,

:per_page => 10, :conditions=>query

end

end

The Rails list has no parameters! Of course, the same kinds of informa-

tion are available. The difference is that the request and response objects

are member variables (with accessor methods) on the controller. The

Java philosophy here is “Explicit is better. It is easy to read a Struts

action and see what objects you should be working with.” The Rails

philosophy is “Implicit is better, at least for things that are common.

This is a web app, so requests and responses are pretty common! Learn

them once, and never have to type or read them again.”

The Rails list does not delegate to intermediate layers. There is no man-

ager or DAO layer, just a call to paginate, which in turn directly accesses

ActiveRecord. This is certainly an important difference, and we want to

be careful in laying out why we think both the Java and Rails strategies

make sense. Imagine the following conversation between Rita the Rails

developer and Jim the Java developer:

Rita: Why do you bother with all those layers?

Jim: The layers make it easier to test the code and to reuse the code

in different contexts. For example, the manager layer has no web depen-

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/dao/com/relevancellc/people/dao/hibernate/PersonDaoHibernate.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=137

LIST AND SHOW ACTIONS: THE R IN CRUD 138

dencies, so that code can be reused in a Swing application or over an

RMI connection.

Rita: Still, it must take forever to write all that extra code.

Jim: It isn’t so bad. We have much more elaborate IDE support in the

Java world. Plus, tools such as AppFuse or Maven can be used to do a

lot of the boilerplate work. Aren’t you worried that your Rails app is a

dead end and that your code is inflexible and untestable?

Rita: Not at all. I am building the layers I need right now. If I need more

layers later, it is much easier to add them. Dynamic typing makes it much

easier to plug in new code or execute the existing code in a new context.

Jim: But with dynamic typing, how do you make sure your code works?

I am used to the compiler making sure that variables are of the correct

type.

Rita: We validate our code with unit tests, functional tests, integration

tests, black-box tests, code reviews, and code coverage. Do you do the

same?

Jim: You bet!

In short, the Java approach (lots of layers, dependency injection, good

tooling) is a reasonable response to Java’s class-centric, statically typed

object model. The Ruby approach (layers on demand, less tooling) is a

reasonable approach to Ruby’s object-centric, dynamically typed object

model.

The Rails list method creates person_pages and people variables, but it

does nothing to make these variables available to the view. Again, the

difference is that Rails does things implicitly. When you create instance

variables in a controller method, they are automatically copied into the

view using reflection. This approach takes advantage of the fact that

Ruby classes are open, and this approach can pick up arbitrary vari-

ables at any time.

Finally, the Rails code does not appear to select a view to render. Again,

this is because Rails provides an implicit default behavior. When you

exit a controller method, the default behavior is to render a view tem-

plate file named app/views/{controllername}/{methodname}.rhtml. As you

will see next, Rails provides a render method that you can use to over-

ride this behavior.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=138

LIST AND SHOW ACTIONS: THE R IN CRUD 139

Now that you have seen the list action, you will look at the code for show-

ing an edit form for a single person. Our Struts implementation uses a

single action named edit for both the “new” and “update” varieties:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward edit(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

PersonForm personForm = (PersonForm) form;

if (personForm.getId() != null) {

PersonManager mgr = (PersonManager) getBean("personManager");

Person person = mgr.getPerson(personForm.getId());

personForm = (PersonForm) convert(person);

updateFormBean(mapping, request, personForm);

}

return mapping.findForward("edit");

}

This code goes through the same series of steps you saw earlier: Call

into another layer to get the object, put the object into request scope,

and select the mapping to the view. The novel part is interacting with

the form bean. The form is an instance of PersonForm. The form bean

represents the web form data associated with a person. Because the

form is functionally a subset of a Person model, the form bean class can

be autogenerated. You can accomplish this with an XDoclet tag at the

top of the Person class:

@struts.form include-all="true" extends="BaseForm"

To display an edit form, the edit action needs to copy data from the

model person to its form representation. The convert method does this.

You could write individual convert methods for each model/form pair in

an application. A far simpler approach is to use JavaBean introspection

to write a generic convert method. Our approach uses a generic convert

method that is included in AppFuse.

The Rails equivalent uses two actions: new and edit:

Download code/people/app/controllers/people_controller.rb

def edit

@person = Person.find(params[:id])

end

def new

@person = Person.new

end

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=139

CREATE, UPDATE, AND DELETE ACTIONS 140

The Rails version does the same things but in a different way. In Rails

applications, there is no distinction between model objects and form

beans; ActiveRecord objects serve both purposes. As a result, there is

no form argument or convert step. The Rails version has two methods

because Rails applications typically render “new” and “edit” with two

different templates. (This is not as redundant as it sounds; the two

templates delegate to a single partial template that actually draws the

form.)

5.3 Create, Update, and Delete Actions

Create, update, and delete actions tend to have more interesting code

because they alter state. As a result, they have to deal with validation,

status messages, and redirection. Here is a Struts action method that

will save or update a person:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward save(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

ActionMessages messages = new ActionMessages();

PersonForm personForm = (PersonForm) form;

boolean isNew = ("".equals(personForm.getId()));

PersonManager mgr = (PersonManager) getBean("personManager");

Person person = (Person) convert(personForm);

mgr.savePerson(person);

if (isNew) {

messages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("person.added"));

saveMessages(request.getSession(), messages);

return mapping.findForward("mainMenu");

} else {

messages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("person.updated"));

saveMessages(request, messages);

return mapping.findForward("viewPeople");

}

}

Let’s begin by considering the happy case where the user’s edits are

successful. Much of this code is similar to previous examples; the new

part is the addition of a status message. In line 5 we create an Action-

Messages instance to hold a status message, and in lines 12–14 and

17–19 we save the ActionMessages into the request so they can be ren-

dered in the view.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=140

CREATE, UPDATE, AND DELETE ACTIONS 141

Here is the Rails version of update:

Download code/people/app/controllers/people_controller.rb

def update

@person = Person.find(params[:id])

if @person.update_attributes(params[:person])

flash[:notice] = 'Person was successfully updated.'

redirect_to :action => 'show', :id => @person

else

render :action => 'edit'

end

end

The actual update happens on line 3. update_attributes is an ActiveRe-

cord method that sets multiple attributes all at once. Like its cousins

create and save, update_attributes automatically performs validations.

Since the params[:person] hash contains all the name/value pairs from

the input form, a single call to update_attributes does everything neces-

sary to update the @person instance.

Like the Struts update, the Rails version of update sets a status mes-

sage. In line 4, the message “Person was successfully updated.” is

added to a special object called the flash. The flash is designed to deal flash

with the fact that updates are generally followed by redirects.

So, saving a status into a member variable does no good—after the

redirect, the status variable will be lost. Saving into the session instead

will work, but then you have to remember to remove the status message

from the session later. And that is exactly what the flash does: saves

an object into the session and then automatically removes the status

message after the next redirect.

The flash is a clever trick. Unfortunately, the data that is typically put

into the flash is not clever at all. Out of the box, Rails does not support

internationalization, and status messages are stored directly as strings

(usually in English).

Contrast this with the Struts application, which stores keys such as

“person.added.” The view can later use these keys to look up an appro-

priately localized string. The lack of internationalization support is one

of the big missing pieces in Rails. If your application needs internation-

alization, you will have to roll your own or use a third-party library.

After a successful update operation, the controller should redirect to

a URL that does a read operation. This makes it less likely that a user

will bookmark a URL that does an update, which will lead to odd results

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=141

CREATE, UPDATE, AND DELETE ACTIONS 142

later. Some possible choices are a show view of the object just edited, a

list view of similar objects, or a top-level view. The Struts version does

the redirect by calling findForward:

return mapping.findForward("mainMenu");

To verify that this forward does a redirect, you can consult the struts.xml

configuration file. Everything looks good:

<global-forwards>

<forward name="mainMenu" path="/mainMenu.html" redirect="true"/>

<!-- etc. -->

</global-forwards>

Where Struts uses findForward for both renders and redirects, Rails has

two separate methods. After a save, the controller issues an explicit

redirect:

redirect_to :action => 'show', :id => @person

Notice that the redirect is named in terms of actions and parameters.

Rails runs its routing table “backward” to convert from actions and

parameters back into a URL. When using default routes, this URL will

be /people/show/(some_int).

Now that you have seen a successful update, we’ll show the case where

the update fails. Both Struts and Rails provide mechanisms to validate

user input.

In Struts, the Validator object automatically validates form beans,

based on declarative settings in an XML file. Validations are associ-

ated with the form. To specify that the first name is required, you can

use XML like this:

Download code/appfuse_people/snippets/person_form.xml

<form name="personForm">

<field property="firstName" depends="required">

<arg0 key="personForm.firstName"/>

</field>

<!-- other fields -->

</form>

The original intention of the discrete validation language was separa-

tion of concerns. Sometimes it is more convenient to keep related con-

cerns together. Instead of writing the validation.xml file by hand, we gen-

erate the validations with XDoclet annotations in the Person model class

in this way:

/people/show/(some_int)
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/snippets/person_form.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=142

CREATE, UPDATE, AND DELETE ACTIONS 143

Download code/appfuse_people/src/dao/com/relevancellc/people/model/Person.java

/**

* @hibernate.property column="first_name" length="50"

* @struts.validator type="required"

*/

public String getFirstName() {

return firstName;

}

During an Ant build step, the struts.validator annotation generates the

appropriate lines in the validation.xml file. (In Java 5 and later, annota-

tions provide a simpler and more integrated annotation mechanism.) In

Rails, there’s no separate form bean, and the validations are declared

on the Person model class directly. You have already seen this in Sec-

tion 4.5, Validating Data Values, on page 113:

Download code/people/app/models/person.rb

class Person < ActiveRecord::Base

validates_presence_of :first_name, :last_name

end

Both the Struts version and the Rails version handle a validation error

in the same way: Render the page again, with error messages mark-

ing the form fields that need to be corrected. In Struts, this redirec-

tion is handled in the Validator. Form beans such as PersonForm extend

a Struts class, org.apache.struts.validator.ValidatorForm. The ValidatorForm

class provides a validate method. The Struts framework calls validate

automatically, and if any item fails validation, the form page is ren-

dered again. The Rails approach is more explicit. When you call save or

update_attributes on an ActiveRecord model, a boolean false may indicate

a validation failure. If this happens, you can use render to render the

edit action again:

Download code/people/snippets/update_fails.rb

if @person.update_attributes(params[:person])

...success case elided...

else

render :action => 'edit'

end

The validation errors are stored in the errors property on the @person

object, so you do not need to do anything else to pass the errors to the

form view. Section 6.5, Building HTML Forms, on page 174 describes

how validations are rendered in the view.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/dao/com/relevancellc/people/model/Person.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/models/person.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/snippets/update_fails.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=143

TRACKING USER STATE WITH SESSIONS 144

The standard create and update actions in Rails do not demonstrate

any additional platform features, so we will speak no more of them.

5.4 Tracking User State with Sessions

The Web is mostly stateless. In other words, HTTP requests carry with

them all the information needed to locate/generate a response. State-

lessness simplifies the interaction model between clients and servers

and helps web applications to scale. It is easy to add “dumb” caches,

proxies, and load balancers. Such intermediaries do not have to know

anything about the previous state of the conversation, because no pre-

vious state exists.

Programmers can make the Web stateful by adding server-side ses-

sions. Instead of having the entire conversation “in the open” in the

request and response traffic, clients gradually build up state on the

server. The server associates this state with a unique key, which it

passes to the client (typically via HTTP cookies). This stateful view of the

web produces a much more complicated picture. Intermediaries such

as caches cannot return a cached value for a stateful URL, because an

URL no longer uniquely identifies a resource. To generate the correct

response, you now need an URL, the client’s cookie, and the associated

(application-specific) state on the server.

This sounds like an airtight argument against sessions, and it would

be if scalability was the sole objective. The catch is that sessions can

be very useful. Sessions are commonly used for all kinds of purposes:

• Sessions maintain user identity information for authentication

and authorization purposes.

• Sessions store state in progress, where users have made inter-

mediate decisions but have not made a final commitment. The

ubiquitous “shopping cart” is a good example.

• Sessions are sometimes used to store user-interface preferences,

including locale.

You have already seen one use of the session. In the update scenario

set out in Section 5.3, Create, Update, and Delete Actions, on page 140,

both the Struts and Rails applications used the session to keep status

information alive long enough to survive a client-side redirect. In this

section, we will look in more detail at the session API. But remember

the scalability issue, and avoid session data where feasible.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=144

TRACKING USER STATE WITH SESSIONS 145

In Java, the session is a property of the request object:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LocaleFilter.java

HttpSession session = request.getSession(false);

The session object exposes a simple API for managing name/value pairs.

The following code is storing a Locale instance in the user’s session:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LocaleFilter.java

session.setAttribute(Constants.PREFERRED_LOCALE_KEY, preferredLocale);

In Rails, the session is a property of the controller instance. Like its

Java counterpart, the Rails session exposes a simple API for managing

name/value pairs. The following code is from the acts_as_authenticated

plugin:

Download code/rails_xt/lib/authenticated_system.rb

def store_location

session[:return_to] = request.request_uri

end

The store_location method is called when we redirect a user to login. The

current URL is stored under the :return_to key in the session. Then,

after a successful login, we can redirect the user back to where she was

headed and clear the session value:

Download code/rails_xt/lib/authenticated_system.rb

def redirect_back_or_default(default)

session[:return_to] ? redirect_to_url(session[:return_to]) \

: redirect_to(default)

session[:return_to] = nil

end

The Java and Rails session APIs have an annoyance in common: Both

manage name/value collections without using language idioms already

suited to the purpose. In Java servlets, the session does not implement

HashMap, and in Rails the session does not implement all the methods

of a Hash. But other than this minor nit, both APIs are easy to learn and

use. The interesting part of sessions is not the API but the underlying

issues of concurrency and scalability, which we will turn to next.

In Java, more than one user action can be active in a single servlet

process. As a result, access to the session object must be protected

with thread synchronization primitives. This is trickier than most peo-

ple think, and even synchronization may not be enough. Brian Goetz,

the lead author of Java Concurrency in Practice [Goe06], points out that

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LocaleFilter.java
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LocaleFilter.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/lib/authenticated_system.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/lib/authenticated_system.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=145

TRACKING USER STATE WITH SESSIONS 146

the following simple code example is broken, regardless of any concur-

rency primitives you might add:

Foo foo = session.getAttribute("foo");

foo.setBar(newBar);

The problem is that the session mechanism doesn’t know the session

has changed, because it doesn’t know that foo has changed. To avoid

this problem, you need to reset attributes that are already in the ses-

sion:

Foo foo = session.getAttribute("foo");

foo.setBar(newBar);

//make sure that session knows something changed!

session.setAttribute("foo", foo);

Rails does not suffer from this problem, because Rails always resaves

the session, regardless of whether the session has changed. This elimi-

nates a subtle source of bugs, but it makes sessions even more expen-

sive. Every use of a Rails session implies a read and a write of the

session store. When you tune for performance, you will want to disable

sessions wherever they are not needed. You can turn off sessions in a

controller with the following:

session :off

Or, you can do it with this on a per-action basis:

session :off, :only => %w[index list rss]

Session performance and scalability depends greatly on how sessions

are stored. In Rails, as in Java web frameworks, you can use a number

of different options for session storage. Here are a few rules to get you

started:

• The default session store uses files on the file system. This is suit-

able for development but is undesirable for most deployment sce-

narios.

• You can use ActiveRecord to store the sessions in the database.

To turn this on for a project, create and run a migration to add

the sessions table:

rake db:sessions:create

rake db:migrate

Then, uncomment the following line in your environment.rb:

Download code/rails_xt/config/environment.rb

config.action_controller.session_store = :active_record_store

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/environment.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=146

MANAGING CROSS-CUTTING CONCERNS WITH FILTERS AND VERIFY 147

Use ActiveRecord session storage until profiling shows that you have a

performance issue, and then consult the resources at the end of this

chapter.

5.5 Managing Cross-Cutting Concerns with Filters

and Verify

It is possible to build complex web applications with nothing more than

the basic CRUD actions described in the previous sections. It’s possible

but wasteful.

Often, program logic will need to apply to multiple actions or even

multiple controllers. These elements are called cross-cutting concerns. cross-cutting concerns

Descriptions of cross-cutting concerns often cite security, logging, and

transactions. In addition to these, validation and redirection rules may

sometimes be generic enough for a cross-cutting approach.

Let’s begin with logging. If you want to log that a particular action is

called, you can simply add a call to the method itself. In the Struts

application, you could do this:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java

public ActionForward delete(ActionMapping mapping, ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws Exception {

if (log.isDebugEnabled()) {

log.debug("Entering delete method");

}

You could do the same thing in Rails:

Download code/people/app/controllers/people_controller.rb

def destroy

logger.debug('Entering delete method')

If you wanted to log all action methods, this approach would be tedious.

Instead, you might choose to use a servlet filter to add logging. To define

a servlet filter, you create an instance of javax.servlet.Filter whose doFilter

method gets a chance to process requests before and after they are

routed to a servlet.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/PersonAction.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=147

MANAGING CROSS-CUTTING CONCERNS WITH FILTERS AND VERIFY 148

Here is a Filter that will log the request URI before dispatching the

request:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LoggingFilter.java

public void

doFilter(ServletRequest req, ServletResponse resp, FilterChain filterChain)

throws IOException, ServletException {

if (log.isDebugEnabled()) {

HttpServletRequest r= (HttpServletRequest)req;

log.debug("Entering " + r.getRequestURI());

}

filterChain.doFilter(req, resp);

}

To associate this filter with some set of URLs, you also need to give the

filter a name in web.xml:

Download code/appfuse_people/web/WEB-INF/web.xml

<filter>

<filter-name>loggingFilter</filter-name>

<filter-class>com.relevancellc.people.webapp.filter.LoggingFilter</filter-class>

</filter>

With this name, you can associate the loggingFilter with some specific

URLs. To log any calls related to people, you would add the following to

web.xml:

Download code/appfuse_people/web/WEB-INF/web.xml

<filter-mapping>

<filter-name>loggingFilter</filter-name>

<url-pattern>/appfuse_people/*</url-pattern>

</filter-mapping>

In Rails, you can create filter methods within the controller itself. To

add logging before every action on the PeopleController, add the following

line to PeopleController:

Download code/people/app/controllers/people_controller.rb

before_filter do |controller|

logger.debug "About to handle #{controller.action_name}"

end

The before_filter block is invoked before every action method. Let’s look

at the various ways this differs from the servlet filter approach. First,

the servlet filter has explicit parameters for the request and response.

The Rails before_filter has a controller block parameter. The request and

response are available through methods on controller.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/filter/LoggingFilter.java
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=148

MANAGING CROSS-CUTTING CONCERNS WITH FILTERS AND VERIFY 149

The servlet filter’s doFilter method also has a third parameter, filterChain.

The filterChain forwards processing on to the next filter in the chain (or

to the servlet if this is the last filter in the chain). In Rails, passing

control to the next filter in the chain is implicit, based on the return

value of before_filter. If a Rails before_filter returns true, control passes to

the next filter. If a before_filter returns false, processing completes.

The servlet filter approach gives each filter an explicit name, where the

previous before_filter uses an anonymous block. As an alternative, you

can pass a symbol to before_filter, naming a method to be invoked as a

before filter. Here is a before_filter with a named log_action:

Download code/people/app/controllers/people_controller.rb

before_filter :log_action

def log_action

logger.debug "About to handle #{self.action_name}"

end

The servlet filter can apply to a subset of URLs, based on the filter-

mapping configuration in web.xml. In Rails, you can apply a before_filter

to a subset of actions, by using the :only and :except options. This

before_filter logs only the index and show actions:

Download code/people/app/controllers/people_controller.rb

before_filter :log_action, :only=>[:index,:show]

This before_filter uses except to log all actions except index:

Download code/people/app/controllers/people_controller.rb

before_filter :log_action, :except=>[:index]

In addition to before_filter, Rails controllers can also use around_filter and

after_filter. As their names suggest, these methods execute around and

after controller actions, respectively.

Because the servlet filter is applied at the URL level, it is possible to fil-

ter across multiple servlets. If you changed the filter-mapping’s url-pattern

from /appfuse_people/* to /*, the loggingFilter would apply to all URLs. In

Rails, you can affect multiple controllers by moving code to the Applica-

tionController class at app/controllers/application.rb. ApplicationController is

a base class for all controllers, so methods declared there are available

to all controllers. Likewise, filters on the ApplicationController class apply

to all controllers.

It is worth nothing that servlet filters and Rails filters are not applied

at quite the same point in time. Servlet filters are evaluated against the

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=149

MANAGING CROSS-CUTTING CONCERNS WITH FILTERS AND VERIFY 150

incoming URL, before that URL is converted into an action on a con-

troller. (In fact, the URL may never be converted into an action on a

controller, because not all servlets use MVC.) In Rails, the filters are

applied at the controller/action level, after the URL has been evalu-

ated against the routing table. In our experience, this distinction has

made little difference in practice. Servlet filters and Rails filters tend

to be used for the same kinds of tasks. For example, security con-

straints in Spring ACEGI are enforced by a servlet filter, and in the

Rails acts_as_authenticated plugin they are enforced by a before_filter.

See Chapter 10, Security, on page 282 for details.

One of the most common uses of filters is to redirect requests to a more

appropriate endpoint. Rails has specific support for this use case via

the verify method. verify takes a single hash, with a set of options that

establish prerequisites for an action:

• :except contains the actions to which this verify does not apply.

• :flash contains keys that must be in the flash.

• :method contains the allowed HTTP methods (such as :get).

• :only contains the actions to which this verify applies.

• :params contains keys that must be present in the parameters.

• :session contains keys that must be in the session.

• :xhr can be set to true to require Ajax or to false to forbid it.

The same arguments hash specifies what to do if the conditions are not

met:

• :render specifies a template to render.

• :redirect_to specifies a URL to redirect to, using the same argu-

ments as url_for.

• :add_flash adds name/value pairs to the flash.

The Rails scaffold provides a good example of verify. The Rails scaffold

defines a common set of actions: show, edit, create, new, list, update, and

destroy. Some of these actions alter application state and should require

an HTTP POST. Here is the verify:

Download code/people/app/controllers/people_controller.rb

verify :method => :post, :only => [:destroy, :create, :update],

:redirect_to => { :action => :list }

If a user tries to reach create, update, or delete with any verb other than

POST, he will be redirected to GET the list action.

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=150

ROUTING IN DEPTH 151

5.6 Routing in Depth

As seen in Section 5.1, Routing Basics: From URL to Controller+Method,

on page 134, the default Rails route does quite a bit of work. From

:controller/:action/:id, you can handle an infinite number of possible con-

trollers, methods, and IDs without ever adding another route. But, your

application’s structure is directly exposed in every URL. In this section,

we will show several examples where design requirements introduce a

bit more indirection between URLs and controller code.

First, we will introduce a small bit of terminology. For routing purposes,

a URL is composed of components separated by dividers. The default components

route has three components, divided by a slash. Routing converts these

components into a controller, an action, and possibly some parameters

to the action.

Let’s start with the login and logout URLs in the Rails XT application.

These URLs points to the AccountController’s login and logout methods.

You will see how these methods work in Section 10.1, Authentication

with the acts_as_authenticated Plugin, on page 283; for now, our con-

cern is only with the URLs. The users think /account/login is excessive

and want to use simply /login instead. Ditto for logout. We add the fol-

lowing lines to routes.rb:

Download code/rails_xt/config/routes.rb

map.connect 'login', :controller=>'account', :action=>'login'

map.connect 'logout', :controller=>'account', :action=>'logout'

The first argument to connect is a static component: ’login’. This compo- static component

nent exactly matches the same component occurring in the URL. The

second argument is a hash specifying the controller and action to call.

Why doesn’t the default route specify a controller and action? The

default route is composed of components preceded by a colon, such as

:controller. These dynamic components match any component and assign dynamic components

a named value based on the match. So, :controller matches foo and

selects the foo controller. Let’s add a route that shows recently edited

quips. To see the twenty most recently modified, use /quips/recent/20. If

no number is specified, the default should be ten.

Download code/rails_xt/config/routes.rb

map.connect 'quips/recent/:count',

:defaults => {:count => '10'},

:requirements => {:count => /\d+/},

:controller=>'quips', :action=>'recent'

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/routes.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/routes.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=151

ROUTING IN DEPTH 152

Joe Asks. . .

How Do You Test Routing?

Rails has built-in assertions for testing routing. assert_recognizes

asserts that a URL is recognized as you expect, and
assert_generates asserts that a set of arguments generate a spe-
cific URL. You can test both directions at once with assert_routing.
Here is the test code for the routes covered in this section:

Download code/rails_xt/test/functional/routing_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class RoutingTest < Test::Unit::TestCase
def test_default_route

assert_routing '/quips/show/1',
:controller=>'quips', :action=>'show', :id=>'1'

end

def test_account_routes
assert_routing 'login',

:controller=>'account', :action=>'login'
assert_routing 'logout',

:controller=>'account', :action=>'logout'
end

def test_recent_routes
assert_routing '/quips/recent/20',

:controller=>'quips', :action=>'recent', :count=>'20'
assert_routing '/quips/recent',

:controller=>'quips', :action=>'recent', :count=>'10'
end

def test_conditional_routes
assert_routing '/quips/edit/1',

:controller=>'quips', :action=>'edit', :id=>'1'
end

end

These are functional tests. Functional tests are covered in detail
in Section 7.2, Functional Testing, on page 210. Routes are also
implicitly tested by any test that uses URLs to access function-
ality, including integration tests (Section 7.4, Integration Testing,
on page 216) and selenium tests (Section 6.10, Black-Box Testing
with Selenium, on page 192).

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/routing_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=152

LOGGING, DEBUGGING, AND BENCHMARKING 153

This route demonstrates two new options: requirements and defaults. The

requirements option constrains the possible values for a dynamic com-

ponent. The :count, if specified, must be one or more digits. The defaults

option fills in the value for a dynamic component if the component isn’t

present in the URL. If :count is omitted, params[:count] will be set to ’10’.

Our tireless users have one final request. The same URL should service

both edit and update: /quips/edit. Here’s the route:

Download code/rails_xt/config/routes.rb

map.edit 'quips/edit/:id',

:conditions => {:method => 'get'},

:controller=>'quips', :action=>'edit'

map.edit 'quips/edit/:id',

:conditions => {:method => 'post'},

:controller=>'quips', :action=>'update'

This route demonstrates two more features of routing: conditions and

named routes. The :conditions clauses allows you to route on things

other than just the URL. (This feature requires Rails 1.2.) Here we check

the HTTP verb and route GETs one way and POSTs another.

Instead of map.connect, we create a named route by calling the arbitrary named route

name map.edit. Named routes generate specially named methods that

can be useful for organizing routes into related groups. For example,

map.edit creates the method edit_url. You can use edit_url instead of url_for

to make code easier to read.

Here we have shown route recognition—how Rails converts URLs into

controllers, actions, and parameters. The opposite direction, route gen-

eration, deals with how Rails converts controllers, actions, and param-

eters into URLs. Route generation is covered in Section 6.2, Minimizing

View Code with View Helpers, on page 169.

5.7 Logging, Debugging, and Benchmarking

Web application frameworks tend to make heavy use of logging for diag-

nostics and troubleshooting. A good log file can help you reconstruct

what happened when a problem occurs or even detect impending prob-

lems before they manifest. Web applications tend to make less use of

GUI debuggers; nevertheless, a good GUI debugger can be invaluable

when tracking a difficult problem. Finally, performance tuning is one of

the last steps in developing an application. Simple benchmarking tech-

niques can go a long way toward eliminating performance problems.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/routes.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=153

LOGGING, DEBUGGING, AND BENCHMARKING 154

The techniques we discuss in this section are not unique to the con-

troller layer. In fact, all these techniques touch the entire application.

We chose to cover them here because the controller layer ties every-

thing together. The individual pieces of a well-designed system are often

fairly simple. It is when the pieces are pulled together by the controller

that tricky and unexpected interactions occur. Logging, debugging, and

benchmarking will help you understand these interactions.

Logging

In Java, the de facto standard for logging is an open source project

called log4j. To understand log4j, you need to deal with four basic con-

cepts: log levels, appenders, layouts, and loggers. The log level spec- log level

ifies the urgency of the log message. Messages range from extremely

urgent to informational. There tends to be a reverse correlation with

message volume: There are very few urgent messages and potentially

an avalanche of informational messages. Most Java developers use a

set of predefined log levels:

FATAL

A fatal message is an application’s last gasp before expiring in

some disastrous way. There should not be many FATAL log entries.

ERROR

An error message indicates a serious condition that probably calls

for human intervention (to restart a process, fix a bug, repair cor-

rupt data, and so on).

WARNING

A warning message indicates a potential problem but no immedi-

ate error.

INFO

An informational message reports a normal event in a healthy

application.

DEBUG

A debug message provides additional information that is useful

when debugging a system. Debugging messages are like informa-

tional messages, but there may be a lot more of them, and they

are usually disabled in production systems.

TRACE

A trace message is used for very fine-grained troubleshooting, like

DEBUG but more so. We rarely use TRACE.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=154

LOGGING, DEBUGGING, AND BENCHMARKING 155

An appender is a destination to which messages are appended. In devel- appender

opment, appenders are usually a console window, a local file, or both.

In production, appenders may be more robust and write to a socket

or database. A layout determines the format of the message, specifying layout

what fields the message includes and how the fields are delimited. Log

entries usually include a time stamp and some information about the

source of the message, plus the message itself.

Appenders and layouts are configured for one or more loggers. Loggers loggers

provide named methods for logging messages at the various log levels

and route those messages to some number of appenders and layouts.

Loggers have names, which are usually associated with Java package

names. Names are hierarchical and have a reasonable set of inheritance

rules. This lets you say things like “I want all loggers to log messages

that have a severity of WARNING (or greater), sending them to a file. I am

currently debugging the com.foo package, so set the com.foo logger to

severity DEBUG, sending messages to the console.”

Log4j can be configured with a properties file or XML. We prefer the

properties file, which is easier to read. Here is the basic appender and

layout for the Struts People application:

Download code/appfuse_people/web/WEB-INF/classes/log4j.properties

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

These lines request console output, with a standard format. The entire

file is a few dozen lines and includes some extensions and refinements

to these basics settings. The most important is the package-specific

settings for log level:

Download code/appfuse_people/web/WEB-INF/classes/log4j.properties

log4j.logger.com.relevancellc.people=DEBUG

log4j.logger.com.relevancellc.people.webapp.filter=ERROR

log4j.logger.com.relevancellc.people.webapp.listener.UserCounterListener=WARN

log4j.logger.com.relevancellc.people.util=WARN

The com.relevancellc.people package contains our code. We set the level

to DEBUG because we want to see quite a bit of information as we develop

the application. The three subpackages under com.relevancellc.people

contain generated code, which is presumably bug-free. We do not want

be buried in detailed log messages from this code, so the log level is

turned way down to WARN or ERROR. How did we choose between WARN

and ERROR? In this case, we did not choose. When AppFuse created

the skeleton of the application, these settings were already in place.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/classes/log4j.properties
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/classes/log4j.properties
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=155

LOGGING, DEBUGGING, AND BENCHMARKING 156

Joe Asks. . .

What about JDK 1.4 Logging?

In addition to the log4j package, Java programmers also have
access to an official Logging API, which was added to the Java
SDK in JDK 1.4. This is a rare, embarrassing example of the com-
munity picking one thing (log4j) and the Java Community Pro-
cess (JCP) picking something different. To make matters worse,
there is a metaframework called Commons Logging that lets
you code against a generic API and then plug in either log4j or
JDK 1.4 logging. Logging is not complicated enough to need
this much indirection!

The story of Java logging is an amusing anecdote about how
not to write software, but it contributes nothing to the task of
learning Ruby and Rails, so we will speak no more of it.

The effect of these settings is that we never see messages from these

packages. No news is good news, so we accept the settings and move

on.

To log a message, you will need a logger object. In Java, you typically

instantiate a logger as a static member of a class:

Download code/appfuse_people/src/web/com/relevancellc/people/webapp/action/BaseAction.java

protected final Log log = LogFactory.getLog(getClass());

Then simply call methods on the logger. Loggers have method names

for different log levels, so to log a debug message, use the following:

if (log.isDebugEnabled()) {

log.debug("Entering delete method");

}

The call to log.isDebugEnabled is a performance optimization. If logging

is disabled for the DEBUG level, then the call to log.debug will return

without doing anything. We still pay the overhead of the method call,

which is small, and the overhead of creating the arguments to debug,

which might be nontrivial. By checking isDebugEnabled, we avoid mak-

ing a needless call to debug.

Rails’ support for logging is simpler and easier to use than log4j’s but is

less flexible. In Rails, you do not need to configure a logger. Instances

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/web/com/relevancellc/people/webapp/action/BaseAction.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=156

LOGGING, DEBUGGING, AND BENCHMARKING 157

of ActiveRecord and ActionController provide a logger method, with a pre-

configured logger. The logger has named methods for different log levels,

just as in Java. To log an INFO message, do the following:

Download code/rails_xt/app/controllers/people_controller.rb

def destroy

logger.info "Entering destroy method"

That is easy enough, but you will not see that kind of logging in a Rails

application often. Rails includes a ton of information in its own logging

statements, and this information is often sufficient enough that you

do not need to make any additional calls to the logger. Here is the log

output from creating a new person:

Download code/people/snippets/create_person.log

Processing PeopleController#create (for 127.0.0.1 at 2006-10-30 11:58:17) [POST]

Session ID: 08ecf4526b2d1b38406396d58a538e02

Parameters: {"commit"=>"Create", "action"=>"create",\

"controller"=>"people", "person"=>{"first_name"=>"Jean", "last_name"=>"Dough"}}

Person Columns (0.001395) SHOW FIELDS FROM people

SQL (0.000290) BEGIN

SQL (0.273139) INSERT INTO people (‘first_name‘, ‘last_name‘)\

VALUES('Jean', 'Dough')

SQL (0.186078) COMMIT

Redirected to http://localhost:3000/people/list

Completed in 0.47041 (2 reqs/sec) | DB: 0.46090 (97%) | \

302 Found [http://localhost/people/create]

Rails logging gives you the following information for every request:

• The URL, host, time, and HTTP verb (line 1)

• The user’s session ID (line 2)

• The request parameters, including controller and action (line 3)

• The SQL statements executed, with timing information (line 5)

• The templates rendered or redirects issued (line 10)

• The HTTP response code and total time to handle the request (line

11)

By default, Rails logging emits ANSI control sequences, which colorize

the log lines for supported terminals. For all other viewers, these con-

trol sequences are just gibberish, so we usually turn them off in envi-

ronment.rb:

Download code/people/config/environment.rb

ActiveRecord::Base.colorize_logging = false

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/snippets/create_person.log
http://media.pragprog.com/titles/fr_r4j/code/code/people/config/environment.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=157

LOGGING, DEBUGGING, AND BENCHMARKING 158

Rails log level names are almost the same as the log4j defaults: DEBUG,

INFO, WARN, ERROR, and FATAL. (There is no TRACE.) These levels come

from the Logger class in the Ruby standard library, which Rails uses

by default. The development and test environments set the log level

to DEBUG, and the production environment uses INFO. You can override

these settings in the environment-specific .rb file. For example, this line

sets the production log level to WARN:

Download code/people/config/environments/production.rb

config.log_level = :warn

By default, Rails logging is “clean”—it shows the message only, without

any of the other context to which you may be accustomed. However, the

Logger class provides a format_message that you can override to include

additional information. Rails redefines format_message on Logger itself.

We will overcome this by subclassing Logger and providing our own

format_message:

Download code/rails_xt/config/environment.rb

class BetterLogger < Logger

Format = "[%s#%d] %5s -- %s: %s\n"

def format_message(severity, timestamp, msg, progname)

Format % [timestamp, $$, severity, progname, msg]

end

end

This is basic sprintf-style formatting. The only puzzler is the variable $$.

That’s Ruby for the current process ID. To make BetterLogger the default Thanks a lot, Perl.

logger for the application, we must add a line to environment.rb. While

we are there, we will set the progname that will appear in log output:

Download code/rails_xt/config/environment.rb

config.logger = BetterLogger.new "#{RAILS_ROOT}/log/#{RAILS_ENV}.log"

config.logger.progname = 'rails_xt'

Rails logging has a couple of nice features that take advantage of Ruby

blocks. Instead of passing a string to a log method, you can pass a

block. The result of running the block will be the message to be logged.

Instead of using the following:

bad Ruby style!

if logger.info?

logger.info expensive_message

end

you can simply say this:

logger.info {expensive_message}

http://media.pragprog.com/titles/fr_r4j/code/code/people/config/environments/production.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/environment.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/environment.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=158

LOGGING, DEBUGGING, AND BENCHMARKING 159

The block semantics guarantee that expensive_message will evaluate

only if the INFO level is enabled. For example, this logger call avoids

the call to inspect unless DEBUG logging is enabled:

Download code/rails_xt/app/controllers/people_controller.rb

def edit

@person = Person.find(params[:id])

logger.debug {"Found person #{@person.inspect}"}

end

In several places, Rails uses a silence idiom to adjust the log level for

the duration of the block. When silence is called, the log level is boosted

(usually to ERROR), squelching log messages. Rails uses this to hide

irrelevant details from the log. For example, the ActiveRecord imple-

mentation of session stores silences logging so that your logging will

show ActiveRecord messages for your domain objects but not for ses-

sion objects:

Download code/rails/actionpack/lib/action_controller/session/active_record_store.rb

def update

if @session

ActiveRecord::Base.silence { @session.save }

end

end

The place where Rails’ default logging falls far short of log4j is in sup-

porting a variety of appenders (log message destinations). Fortunately,

there is a log4r project1 that is inspired by log4j. If you need more capa-

ble logging than what we have shown here, you can trivially switch to

log4r. Because of Ruby’s duck typing, you do not need an adapter layer

such as Java’s Commons Logging.

Benchmarking

Rails includes three tools to help benchmark application performance:

script/performance/benchmarker, script/performance/profiler, and the con-

troller method benchmark. To put them through their paces, consider

the following question: Can the Rails XT application be made to handle

5,000 logins per second?

The benchmarker command measures the elapsed time for some Ruby

code, running in the environment of your application. We are not aware

of any major performance problems in the sample applications, but we

1. http://log4r.sourceforge.net/

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails/actionpack/lib/action_controller/session/active_record_store.rb
http://log4r.sourceforge.net/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=159

LOGGING, DEBUGGING, AND BENCHMARKING 160

know that security functions are often slow. Let’s try authenticating a

user2 in the Rails XT application:

$ script/performance/benchmarker 'User.authenticate("quentin","test")'

user system total real

#1 0.010000 0.000000 0.010000 (0.000836)

The numbers (reported in seconds) are pretty small, so let’s try running

the benchmark fifty times in a row:

$ script/performance/benchmarker 50 'User.authenticate("quentin","test")'

user system total real

#1 0.020000 0.010000 0.030000 (0.090123)

It appears that our system will have no trouble authenticating quite a

few more than fifty users in a second. For many applications this is

good enough.

But our proposed goal is much higher: We want to authenticate 5,000

users in a second. Plus, the benchmarker measured only the API call,

not the progression through the web stack before and after the key

method call. Should we add more web servers, try to optimize the

authenticate method, use some native code, or give up on a Ruby-based

approach?

To answer these questions, we need to know where User.authenticate is

spending its time. Enter the profiler. The profiler instruments the code

to tell us which methods authenticate calls and the relative time spent

in each:

$ script/performance/profiler 'User.authenticate("quentin","test")' 50

Loading Rails...

Using the standard Ruby profiler.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

5.78 0.10 0.10 51 1.96 29.41 ActiveRecord::Base#method_missing

5.20 0.19 0.09 1229 0.07 0.10 Hash#[]

5.20 0.28 0.09 354 0.25 0.25 Kernel.==

4.62 0.36 0.08 50 1.60 12.00 ActiveRecord::Base#find_every

4.62 0.44 0.08 21 3.81 4.29 Gem::GemPathSearcher#matching_file

4.62 0.52 0.08 50 1.60 4.00 Enumerable.each_with_index

4.62 0.60 0.08 50 1.60 14.00 ActiveSupport::Deprecation.silence

4.62 0.68 0.08 77 1.04 2.21 Class#new

4.05 0.75 0.07 50 1.40 5.40 ActiveRecord::Base#construct_condi...

4.05 0.82 0.07 200 0.35 0.35 ActiveRecord::Base#current_scoped_...

... about 100 more lines of decreasing importance ...

2. The security API we use here is discussed in detail in Chapter 10, Security, on

page 282. The quentin/test combination comes from our fixture data.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=160

LOGGING, DEBUGGING, AND BENCHMARKING 161

Note the following points here:

• Everything took much longer under the profiler than the bench-

marker. This is not a problem; it merely indicates the overhead

of profiling. (As a rule of thumb, the benchmarker gives useful

absolute numbers, and the profiler gives useful relative numbers.)

• There is no “smoking gun” method that dominates the elapsed

time. If we start optimizing Ruby code, or even switching to native

code for some methods, we expect percentage improvements, not

order-of-magnitude improvements.

• That we see Class.new and Gem::GemPathSearcher#matching_file

makes us suspicious that we are seeing start-up costs that are

not representative of the application’s long-run behavior.

Given the last point, let’s run the profiler again, but for 500 iterations

instead of just 50:

$ script/performance/profiler 'User.authenticate("quentin","test")' 500

Loading Rails...

Using the standard Ruby profiler.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

5.46 0.73 0.73 11129 0.07 0.08 Hash#[]

4.57 1.34 0.61 501 1.22 24.35 ActiveRecord::Base#method_missing

3.97 1.87 0.53 501 1.06 2.14 Benchmark.measure

3.29 2.31 0.44 2501 0.18 0.32 ActiveRecord::Base#connection

2.47 2.64 0.33 500 0.66 6.82 ActiveRecord::Base#construct_finde...

2.32 2.95 0.31 2000 0.15 0.19 ActiveRecord::Base#current_scoped_...

2.02 3.22 0.27 500 0.54 1.84 User#authenticated?

2.02 3.49 0.27 500 0.54 3.08 ActiveRecord::Base#add_conditions!

1.95 3.75 0.26 1000 0.26 0.48 User#encrypt

1.95 4.01 0.26 500 0.52 1.86 ActiveRecord::Base#construct_condi...

That looks more realistic. All the dominant methods are directly related

to the operation we are trying to evaluate. Some further observations

are as follows:

• Encryption is not an issue. Even if User#encrypt could calculate an

SHA1 hash instantly, we would see only a 2 percent increase in

speed overall.

• We might benefit by replacing ActiveRecord with a custom SQL

implementation.

• The calls column suggests that each call to User.authenticate trig-

gers five calls to get the connection. It might be worth looking at

the code path to see whether that number could be reduced.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=161

LOGGING, DEBUGGING, AND BENCHMARKING 162

We should step back for second. Although the profiler results suggest

some possible optimizations, we would not bother trying any of them.

The optimizations are likely to make the code more complex, error-

prone, and difficult to maintain. Plus, nothing in the profiler results

convinces us that the code would not scale to a second web server. In

many scenarios, that second server will be far cheaper than the devel-

opment effort to make the code perform on one server.

The key question here is whether the authentication scales. Can we

increase throughput and lower response time by simply adding hard-

ware? We can get a partial answer to this question from ActionController’s

benchmark method.

benchmark takes three arguments and a block. The block is executed,

and timing information is written to the log, as controlled by the three

arguments: a message to include in the log, a log level, and a silence

argument, which disables any logging inside the block being bench-

marked. You could call benchmark yourself:

Download code/rails_xt/app/controllers/examples_controller.rb

def benchmark_demo

self.class.benchmark "log message here" do

add some expensive operation you want to test

render :text=>'<h1>Hello world</h1>'

end

end

In practice this is rarely necessary. Rails already benchmarks all sorts

of interesting activities. Most importantly, Rails benchmarks both the

total time to process a request, and the time spent in the database.

If we believe that the application can scale perfectly linearly (an unlikely

ideal), then we have this:

M = 5000 / R

In this equation, R is the number of requests per second on a single

machine, and M is the number of web tier machines we will need.

Let’s switch to production mode and run a production-quality server

(Mongrel). We will load the production database with our sample data.3

RAILS_ENV=production rake db:migrate

RAILS_ENV=production rake db:fixtures:load

RAILS_ENV=production mongrel_rails

3. Be careful about doing this on real projects, where the production database data is

important!

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=162

LOGGING, DEBUGGING, AND BENCHMARKING 163

Now, we can log in through the web interface and then review the per-

formance numbers in the Rails log. Here is what we saw on a develop-

ment laptop (2.16GHz MacBook Pro, 2GB RAM, random developer stuff

running in the background):

Processing AccountController#login (for 127.0.0.1 at 2006-10-31 13:05:04) [POST]

Session ID: 80dcc7858d5fcef6385f50a0e90e9f94

Parameters: {"commit"=>"Log in", "action"=>"login",\

"controller"=>"account", "login"=>"quentin", "password"=>"[FILTERED]"}

Redirected to http://localhost:3000/quips

Completed in 0.00262 (381 reqs/sec) | DB: 0.00038 (14%)\

| 302 Found [http://localhost/login]

Two numbers jump out. First, the 381 requests per second. If that is the

best we can do, then we will need 5000/381, or about 14 web servers

to allow 5,000 logins per second. Second, the database (DB) proportion

of that time was low, only 14 percent. Notice that 14 percent tells us

nothing about how loaded the MySQL process was, only how long we

had to wait for it. This suggests that we could have at least five to

six web servers hitting the database simultaneously with no loss of

throughput, and quite possibly more.

We have not seen Rails deployments with as many as fourteen web

servers in front, so we would not cavalierly assume that there are no

problems lurking there. But we have seen Rails deployments with four

or even eight web servers. Given the numbers we have shown here,

would you be willing to bet that you could handle 5,000 logins per

second with eight web servers? This simple exercise has us within a

close order of magnitude, and we have not done any optimizations yet.

We are confident it would be possible.

How does this all compare with the Java options for profiling? If pro-

filing is your chief concern, Java beats Ruby hands down. Java has

more profiling tools and better profiling tools. Both commercial and

open source options exist. Because the Java platform includes a vir-

tual machine specification with documented profiling hooks, it beats

Ruby profiling not only in practice but in concept.

That said, we have not missed Java’s cool profilers while writing Ruby

and Rails applications. We rarely used them in Java and rarely use

their lesser cousins in Ruby. In our experience, most well-tested, well-

factored applications are already fast enough. When they are not fast

enough, the solutions usually require only two tools: observation of the

application and log files and a little bit of pencil-and-paper reckoning.

In an aggregate thirty-plus years of software development, we have done

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=163

LOGGING, DEBUGGING, AND BENCHMARKING 164

performance tuning of some form on almost every application we have

ever developed. In 95 percent of them, we never wanted or needed a

profiler.

Debugging

As Java developers, we are accustomed to powerful GUI debuggers for

our applications. In Ruby, support for debugging is primitive. We have

tried a few open source and commercial debuggers. They are all so slow

that we never bother to launch them.

We rarely miss the debugger, because our development method uses

a variety of different tests to catch program errors. But “rarely” is not

the same thing as “never,” and a good GUI debugger for Ruby would be

appreciated.

Until the mythical GUI debugger arrives, you can use a console-based

alternative. Rails includes a console-based debugger based on the ruby-

breakpoint4 library. To use this debugger, simply add a breakpoint state-

ment anywhere in your code. To see breakpoint in action, consider this

buggy code:

Download code/rails_xt/samples/debug_me.rb

class Widget

attr_accessor :name

def initialize(value)

name = value

end

end

w = Widget.new('zipper')

puts w.name

You might expect this code to print “zipper”; however, it prints “nil”—to

find out why, let’s add a breakpoint at the end of initialize:

Download code/rails_xt/samples/debug_me.rb

def initialize(value)

name = value

breakpoint

end

When the program reaches the breakpoint, it will start an irb session.

You can use this session to inspect or modify program values. We will

show the current instance_variables so you can see what happened to

our name:

4. http://ruby-breakpoint.rubyforge.org/

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/debug_me.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/debug_me.rb
http://ruby-breakpoint.rubyforge.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=164

LOGGING, DEBUGGING, AND BENCHMARKING 165

$ ruby samples/debug_me.rb

Executing break point at samples/debug_me.rb:19 in ‘initialize'

irb(#<Widget:0x2a8c2d8>):001:0> instance_variables

=> ["@__bp_file", "@__bp_line"]

The variables prefixed with @__bp are used internally by the breakpoint

library and do not concern us. More important, there is no @name vari-

able. The next part to look at is local_variables:

irb(#<Widget:0x2a8c2d8>):002:0> local_variables

=> ["value", "name", "_"]

irb(#<Widget:0x2a8c2d8>):003:0> value

=> "zipper"

Gotcha! Ruby is treating name as a local variable. Ruby is interpreting

our name= to mean “Set the name local variable,” when we were mistak-

enly expecting “Call the name= method.” Now that we understand the

problem, we can continue past the breakpoint by typing exit (all plat-

forms), Ctrl-D (Unix), or Ctrl-Z (Windows). Then, we will correct the code

to use self.name= to avoid ambiguity:

Download code/rails_xt/samples/debug_me.rb

def initialize(value)

self.name = value

end

It is worth pointing out that instance_variables and local_variables are

not special debugging commands. These are regular Ruby methods,

available at any time in any Ruby program.

Java GUI debuggers will let you debug a local program, but they will

also let you connect to a server process. This can be helpful in tracking

down problems that manifest only at the level of the entire system. The

breakpoint library can do the same. If you set a breakpoint in a Rails

server process, the breakpoint library will call out to a remote debug-

ger. You can launch the remote debugger with the script/breakpointer

command included in every Rails application. Don’t forget to remove

breakpoints from production code!

Additional instructions for debugging with breakpoint are available on

the Rails Wiki.5 Intrepid Rubyists are also debugging Ruby applica-

tions using gdb; see _why’s blog post6 for a summary of a few different

approaches.

5. http://wiki.rubyonrails.org/rails/pages/HowtoDebugWithBreakpoint

6. http://redhanded.hobix.com/inspect/theRubyGdbArmsRaceNowAtAStandoff.html

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/debug_me.rb
http://wiki.rubyonrails.org/rails/pages/HowtoDebugWithBreakpoint
http://redhanded.hobix.com/inspect/theRubyGdbArmsRaceNowAtAStandoff.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=165

RESOURCES 166

5.8 Resources

A Look at Common Performance Problems in Rails. . .
. . . http://www.infoq.com/articles/Rails-Performance

Stefan Kaes on finding and fixing Rails performance problems.

Regaining Control of Rails Logging. . .
. . . http://dazuma.blogspot.com/2006/10/regaining-control-of-rails-logging.html

Advice on how to log more structured information and how to filter and search

your Rails logs.

Roll your own SQL session store. . .
. . . http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store

Stefan Kaes’s custom SQL session store, which offers better performance than

ActiveRecord-based sessions.

Sessions N Such . http://errtheblog.com/post/24

Chris Wanstrath explains turning off sessions in Rails.

Under the hood: Rails’ routing DSL. . .
. . . http://weblog.jamisbuck.org/2006/10/2/under-the-hood-rails-routing-dsl

First in a series of articles describing Rails routing from the implementation

up. Routing is already extremely flexible; armed with this information, you can

extend it any way you like.

Using memcached for Ruby on Rails Session Storage. . .
. . . http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage

Stefan Kaes’s test results using memcached. Stefan regularly updates his blog

with new test results, so in addition to this article, make sure you read his

most recent entries.

http://www.infoq.com/articles/Rails-Performance
http://dazuma.blogspot.com/2006/10/regaining-control-of-rails-logging.html
http://railsexpress.de/blog/articles/2005/12/19/roll-your-own-sql-session-store
http://errtheblog.com/post/24
http://weblog.jamisbuck.org/2006/10/2/under-the-hood-rails-routing-dsl
http://railsexpress.de/blog/articles/2006/01/24/using-memcached-for-ruby-on-rails-session-storage
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=166

Chapter 6

Rendering Output with
ActionView

ActionView is the view in Rails’ approach to MVC. ActionView takes the

objects created by the controller and renders output, usually as HTML

or XML. ActionView is bundled with ActionController in a Ruby gem

called ActionPack, which is included in Rails. Together with ActiveRe-

cord, ActionView and ActionController form the core of Rails.

Although it is possible to render content directly from the controller,

almost 100 percent of Rails applications use ActionView. ActionView

supports many different approaches to rendering through a pluggable

template mechanism. ActionView ships with three styles of templates.

Embedded Ruby (ERb) templates are stored in .rhtml files and use a

mix of markup and embedded Ruby to build dynamic content. Builder

templates are stored as .rxml files and use pure Ruby to build XML

output. JavaScript templates are stored as .rjs files and use a Ruby API

to build JavaScript output.

It is easy to add new template types, either your own or from third

parties. To demonstrate this we will also look at Markaby, a third-party

gem that uses pure Ruby to render HTML.

Java web applications employ a slew of techniques to write dynamic

view code: inline Java, tag libraries, the JSTL expression language,

and the Object Graph Notation Language. In ActionView, most of these

roles are filled by plain old Ruby code in the form of helpers. Like tag

libraries, Rails helpers reduce the amount of code in the view. However,

Rails helpers do not try to hide their Rubyness.

CREATING BASIC .RHTML FILES 168

Rails is rightly famous for its Ajax support. We can only begin to cover

the Ajax API in the short space we have here, and we use a sampling

of the various APIs to demonstrate the key concepts. We also cover

acceptance testing with Selenium. Selenium is not part of Rails, or

even Rails-specific, but it has an important role in ensuring quality.

Selenium allows you to write, record, step through, and play back tests

in the browser, exercising your entire application.

6.1 Creating Basic .rhtml Files

In Java web applications, JavaServer Pages (JSPs) are the norm for

basic page rendering. JSPs include static content, plus chunks of code

dynamic. To execute code in a JSP, place it inside <% %>. To execute

Java code and write the result into the page, use <%= %> instead. Here

is a “Hello, World” page that includes your name (if it was available in

the query string):

Download code/java_xt/snippets/hello.jsp

<h1>Hello</h1>

<% if request.getParameter('name') %>

Welcome, <%= request.getParameter('name') %>

<% end %>

In ActionView, the JSP role is filled by .rhtml files. Rails evaluates .rhtml

files using Embedded Ruby (ERb), a templating library that is part of

the Ruby standard library. If you know the JSP syntax, ERb should

look familiar:

Download code/people/app/views/people/hello.rhtml

<h1>Hello</h1>

<% unless request.params['name'].blank? %>

Welcome, <%= request.params['name'] %>

<% end %>

In both JSP and ActionView, view code can access the same web object

model seen by the controller: the request (as shown in the previous

examples), the response, the session, and so on. Therefore, it is possible

to build entire applications inside the view template. Don’t do this. In

both JSP and Rails, doing significant coding in the view is a Bad Thing.

The combination of HTML markup and template code is difficult to read,

test, and maintain. The only code in the view layer should be code

dedicated to the formatting of output.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/snippets/hello.jsp
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/views/people/hello.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=168

MINIMIZING VIEW CODE WITH VIEW HELPERS 169

Both JSPs and ActionView have mechanisms to reduce the “codiness” of

view templates. In JSP, there are declarations and tag libraries. Action-

View provides helpers, layouts, and partials.

6.2 Minimizing View Code with View Helpers

Rather than doing direct Java coding in a JSP, many Java programmers

prefer to use tag libraries. Tag libraries are custom markup backed by tag libraries

Java code. Tag libraries require a bit more work to create: you have to

implement the code in Java, create a tag library descriptor, and then

configure the page (or the web application) to make the tag library avail-

able. The advantage is clean syntax in the view. Rather than mixed

markup and Java code, you can have pure markup.

One of the most common tag libraries is the JSTL core library, which

includes tags for control flow and output. Using these tags, the JSP

“Hello, World” example becomes as follows:

Download code/appfuse_people/web/pages/hello.jsp

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<h1>Hello</h1>

<c:if test="not empty request.name">

Welcome, <c:out value="request.name"/>

</c:if>

All the Java code has been replaced by tags. The c:if tag replaces an if

statement, and the c:out tag replaces the JSP output expression. This

has two goals. First, the tags are intended to be more readable than

the Java code, particularly to page designers who may be editing the

view code. Second, the tags allow a level of validation that does not

require parsing Java code (or understanding Java stack traces). The

downside is two new syntaxes to learn: the custom tag vocabulary and

the expression language that is used, for example, to create the boolean expression language

expressions in c:if’s test attribute.

The JSP world includes a huge number of tag libraries that you can add

to your project: formatting tags, tags that help create HTML markup,

tags that access user credentials from the session, and more. Action-

View does not have a direct equivalent to tag libraries. Instead, Action-

View provides built-in view helpers. ActionView includes dozens of hel- view helpers

per methods, which are automatically available to all .rhtml pages. In

addition, Rails adds formatting helpers to the Ruby classes for strings,

numbers, and dates.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/pages/hello.jsp
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=169

WRITING CUSTOM HELPERS 170

6.3 Writing Custom Helpers

The built-in ActionView helpers are extremely useful but cannot cover

every possible situation. So, Rails provides a standard place for your

own helpers. The app/helpers directory contains a helper file for each

controller in your application. When you use script/generate to create

a controller FooController, Rails also creates a helper file, app/helpers/

foo_helper.rb. This code is automatically included in all of FooController’s

views.

Because Rails includes so many built-in helpers, simple web applica-

tions may not need many (or any) custom helpers. You’ll know when

and if you need them. When you see the same code repeated in multi-

ple places in your view, it is time to write a helper.

As a simple example, imagine that the users of the Rails XT applica-

tion want a politeness filter for quips. Their specific requirement states

that when the politeness filter is on, four-letter words should render as

!@#$. We’ll add this capability as a helper in QuipsHelper:

Download code/rails_xt/app/helpers/quips_helper.rb

module QuipsHelper

See http://en.wikipedia.org/wiki/Bowdler

def bowdlerize_four_lettered(str)

h(str.to_s.gsub(/\b\w{4}\b/, '!@#$'))

end

alias_method :bfl, :bowdlerize_four_lettered

end

The implementation is probably a bit more literal than intended, but we

like to code to spec. We are automatically doing HTML escaping (the h

method) because we are lazy and don’t want to have to call both h and

bfl all over our views. We have given the method a meaningful name and

a short alias. This strikes a good balance between our desire to have

self-documenting names and the fact that this particular method may

be used quite a lot. With the helper in place, a show view for quips can

be as simple as this:

Download code/rails_xt/app/views/quips/filtered_show.rhtml

<% for column in Quip.content_columns %>

<p>

<%= column.human_name %>: <%=bfl @quip.send(column.name) %>

</p>

<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @quip %> |

<%= link_to 'Back', :action => 'list' %>

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/helpers/quips_helper.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/filtered_show.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=170

WRITING CUSTOM HELPERS 171

Joe Asks. . .

How Do You Test Custom Helpers?

Rails automatically creates test/unit for model code and cre-
ates test/functional for controller code. There is no corresponding
test/helper for helper code. Don’t let that bother you; just make
your own. Here is a Rake task that you can add to lib/tasks to
manage your helper tests:

Download code/rails_xt/lib/tasks/test_helpers.rake

namespace :test do
desc "Run the helper tests in test/helpers"
Rake::TestTask.new(:helpers => [:prepare_test_database]) do |t|

t.libs << "test"
t.pattern = 'test/helpers/**/*_test.rb'
t.verbose = true

end
end
task :default => ['test:helpers']

And here is an example test for the bfl method from the main
text. Notice that we stub out any required Rails helpers (such as
h) to decouple the test from Rails.

Download code/rails_xt/test/helpers/quips_helper_test.rb

require File.dirname(__FILE__) + '/../test_helper'
require 'quips_helper'

class QuipsHelperTest < Test::Unit::TestCase
include QuipsHelper

handmade stub method
def h(s); s; end

def test_bfl
assert_equal 'safely sized words', bfl('safely sized words')
assert_equal '!@#$ and !@#$', bfl('darn and drat')

end
end

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/lib/tasks/test_helpers.rake
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/helpers/quips_helper_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=171

REUSE WITH LAYOUTS AND PARTIALS 172

6.4 Reuse with Layouts and Partials

View templates often need to share code. In JSP, you can move com-

mon code into a separate .jsp file and then use an include directive. The include directive

include directive is often used to compose the key elements of the page,

such as headers, footers, menus, status messages, and content. For

example, here is a JSP page from the Struts sample application, edited

to show only the basic page structure:

<div id="page">

<div id="header" class="clearfix">

<jsp:include page="/common/header.jsp"/>

</div>

<div id="content" class="clearfix">

<div id="main">

<jsp:include page="/common/messages.jsp" %>

<!-- main content here! -->

</div>

<div id="nav">

<div class="wrapper">

<jsp:include page="/WEB-INF/pages/menu.jsp"/>

</div>

</div>

</div>

<div id="footer" class="clearfix">

<jsp:include page="/common/footer.jsp"/>

</div>

</div>

The jsp:include tag pulls in the header, messages, navigation, and footer.

You can then reuse these JSP fragments across multiple pages. Action-

View does something similar. Two things, in fact: layouts and partials. layouts

partialsA layout is a template that is automatically rendered around the main

content of a page. A partial is a template that is explicitly invoked from

another template. Pages automatically use a layout, if one is available.

By default, the layout for a controller named Foo is a template named

app/views/layouts/foo.html. If a controller-specific layout is unavailable,

ActionView will automatically use app/views/layouts/application.html, if it

exists. The PeopleController in the Rails XT application demonstrates

layouts and partials in action:

Download code/rails_xt/app/views/layouts/people.rhtml

<html>

<head>

<title>People: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/layouts/people.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=172

REUSE WITH LAYOUTS AND PARTIALS 173

<body>

<%= render :partial=>'header' %>

<p style="color: green"><%= flash[:notice] %></p>

<%= @content_for_layout %>

<%= render :partial=>'/shared/footer' %>

</body>

</html>

As you can see here, the layout is usually responsible for rendering the

head section of the document. Inside the body, the @content_for_layout

variable contains the main content for an action.1 For example, when

rendering /people/list, @content_for_layout would usually contain the ren-

dered output from app/views/people/list.rhtml.

The calls to render :partial let us reuse common templates for the header

and footer of the page. To distinguish partials from complete pages, they

are named with a leading underscore. Thus, the header partial points

to app/views/people/_header.rhtml. Partials such as headers and footers

are often shared across all controllers. The app/views/shared directory

holds such shared partials, which can be accessed with names such as

’/shared/footer’. Note that the underscore is omitted in the call to render

but present on the file system.

Every partial has a local variable named after the partial. You can pass

this local variable to a partial with the :object option. You can also set

local variables with the :locals option:

Download code/rails_xt/app/views/examples/call_partials.rhtml

<%= render :partial=> 'listmaker',

:object=> 'My Todo List',

:locals => {:items => ['climb Everest', 'swim Channel']} %>

Inside the partial, listmaker will be ’My Todo List’, and items will be [’climb

Everest’, ’swim Channel’]. The partial might look like this:

Download code/rails_xt/app/views/examples/_listmaker.rhtml

<h1><%= listmaker %></h1>

<% items.each do |item| %>

<%= item %>

<% end %>

The do...end loop in the partial is one way to render a collection. It is

ugly, and most web applications render many collections. ActionView

1. More recent versions of Rails use yield instead of @content_for_layout.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/call_partials.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/_listmaker.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=173

BUILDING HTML FORMS 174

provides a better way. When calling a partial, specify the :collection

option. The partial will execute once for each item in the collection,

setting the template variable to each item in turn. Using collection par-

tials, you could improve the previous two examples as follows:

Download code/rails_xt/app/views/examples/call_collection_partials.rhtml

<h1>My Todo List</h1>

<%= render :partial=> 'listmaker2',

:collection => ['climb Everest', 'swim Channel'] %>

The partial is now simply as follows:

Download code/rails_xt/app/views/examples/_listmaker2.rhtml

<%= listmaker2 %>

6.5 Building HTML Forms

Struts includes a page construction tag library to build HTML forms. In

our sample application, page construction tags are prefixed with html.

Here is the Struts code to render the input elements for a person’s first

and last names:

Download code/appfuse_people/web/pages/personForm.jsp

<label for="firstName" class="desc">First Name </label>

<html:errors property="firstName"/>

<html:text property="firstName" styleId="firstName"

styleClass="text medium"/>

<label for="lastName" class="desc">Last Name </label>

<html:errors property="lastName"/>

<html:text property="lastName" styleId="lastName"

styleClass="text medium"/>

You should notice several points here. First, there is a seamless back-

and-forth between custom tags and plain HTML. The label tags are

HTML, but the html-prefixed tags invoke custom code. The html:errors

tag looks up error messages on a named form property. The html:text tag

generates an HTML input type="text". The styleId and styleClass attributes

become id and class attributes on the generated input elements.

The Rails scaffold code for editing the properties of a person lives at

app/views/people/_form.rhtml:

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/call_collection_partials.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/_listmaker2.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/pages/personForm.jsp
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=174

BUILDING HTML FORMS 175

Download code/people/app/views/people/_form.rhtml

<p><label for="person_first_name">First name</label>

<%= text_field 'person', 'first_name' %><%= error_message_on 'person',

'first_name' %></p>

<p><label for="person_last_name">Last name</label>

<%= text_field 'person', 'last_name' %><%= error_message_on 'person',

'last_name' %></p>

Where the Struts version used page construction tags, the Rails version

uses built-in form helpers. The error_message_on method emits valida-

tion errors. The text_field method takes two arguments here. Rails com-

bines the two arguments to create a parameter name, so text_field ’per-

son’, ’first_name’ becomes a parameter named person[first_name]. When

the parameters are submitted to the server, Rails automatically con-

verts parameters named in this fashion into a hash. This is convenient,

since ActiveRecord constructors take a hash argument.

The Struts form validation has two features absent in Rails:

• Validations can be checked with client-side JavaScript.

• Error messages are internationalized.

If you need these features in your Rails application, you will have to find

a plugin or roll your own. We have found that Rails has advantages in

other areas that outweigh these deficiencies, but it is important to be

aware of them when estimating development effort for a project. Rails

includes form helper methods for every kind of HTML form input. Here

are some examples of form helpers:

Download code/rails_xt/app/views/examples/forms.rhtml

<h2>Form Fields Bound To Query Params</h2>

<%= start_form_tag %>

<table>

<tr>

<td><label for="sample_text">Text</label></td>

<td><%= text_field :sample, :text %></td>

</tr>

<tr>

<td><label for="sample_password">Passsword</label></td>

<td><%= password_field :sample, :password, {:style=>'color:blue;'} %></td>

</tr>

<tr>

<td><label for="sample_area">Text Area</label></td>

<td><%= text_area :sample, :area, {:size=>'10x10'} %></td>

</tr>

</table>

<%= end_form_tag %>

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/views/people/_form.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/forms.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=175

BUILDING HTML FORMS 176

On line 6, you see the two-argument version of a form tag helper. The

first argument is an instance variable name, and the second argument

is the name of an accessor on that instance. Rails will populate the

initial value from the instance variable and will convert the query string

arguments into a hash named for the instance variable. On line 10, you

see the three-argument version. The third argument is a hash that is

converted into attributes on the tag. Here we set a CSS style.

On line 14, you see another three argument helper. This time, how-

ever, the third argument is not an HTML attribute. The argument is

size=>’10x10’, but a proper textarea expects rows and cols. Here Rails has

provided a shortcut. You can specify separate rows and cols if you want,

but Rails has special-cased the options handling for text_area_tag to

convert size arguments into rows and cols. As you are writing view code,

look out for helpers such as these that can simplify common tasks.

Rails form helpers are validation aware. If a model object has validation

errors, the Rails form helpers will put form tags for invalid data inside a

<div class="fieldWithErrors">. You can then use CSS styles to call attention

to errors. (The Rails scaffold adds a red border). Several other form

helpers are worth mentioning, and we’ll get to them shortly. First, we

have to do something about all the ugly HTML code we just showed

you. Each one of those form fields looks the same: Each is wrapped in

tr and td, and each is preceded by a label. The HTML around each field

is extremely repetitive. Surely there must be a better way!

Rails provides the form_for helper to reduce the repetitiveness of form

code. The previous form looks like this if you use form_for:

Download code/rails_xt/app/views/examples/form_for.rhtml

<h2>Form Fields Bound To Query Params</h2>

<% form_for :sample do |f| %>

<table>

<tr><td><label for="sample_text">Text</label></td>

<td><%= f.text_field :text %></td></tr>

<tr><td><label for="sample_password">Password</label></td>

<td><%= f.password_field :password, {:style=>'color:blue;'} %></td></tr>

<tr><td><label for="sample_area">Text Area</label></td>

<td><%= f.text_area :area, {:size=>'10x10'} %></td></tr>

</table>

<% end %>

Notice that form_for uses an ERb evaluation block (<% %>) instead of an

ERb output block (<%= %>). form_for takes a block parameter, which is

the form object. In the block, you can use the block parameter and omit

the first argument to each field helper; for example, you’d use f.text_field

instead of text_field :sample.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/form_for.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=176

BUILDING HTML FORMS 177

That is not much of an improvement so far. The real power of form_for

comes in conjunction with form builders. A form builder gets to override

how each form element is built. Here is a custom form builder that

automatically generates all the tr, td, and label goo around our HTML

fields:

Download code/rails_xt/app/helpers/tabular_form_builder.rb

class TabularFormBuilder < ActionView::Helpers::FormBuilder

(field_helpers - %w(hidden_field)).each do |selector|

src = <<-END_SRC

def #{selector}(field, *args, &proc)

"<tr>" +

"<td><label for='\#{field}'>\#{field.to_s.humanize}:</label></td>" +

"<td>" + super + "</td>" +

"</tr>"

end

END_SRC

class_eval src, __FILE__, __LINE__

end

def submit_tag(value)

"<tr>"+

"<td> </td>"+

"<td><input name='commit' type='submit' value='#{value}'/></td>"+

"</tr>"

end

end

This code looks a bit tricky, but what it does is not that complex. The

call to field_helpers returns all the field helper names. Then, the src string

creates a new definition for each method that includes the formatting

we want. Finally, submit_tag is special-cased because we do not want a

label for submit tags.

To use our custom form builder, we need to pass a named option to

the third parameter for form_for. We will capture this in a new helper

method named tabular_form_for:

Download code/rails_xt/app/helpers/application_helper.rb

require 'tabular_form_builder'

module ApplicationHelper

def tabular_form_for(name, object, options, &proc)

concat("<table>", proc.binding)

form_for(name, object, options.merge(:builder => TabularFormBuilder), &proc)

concat("</table>", proc.binding)

end

end

The calls to concat are the ERb version of puts, and the call to form_for

sets the :builder to be our TabularFormBuilder.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/helpers/tabular_form_builder.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/helpers/application_helper.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=177

BUILDING HTML WITH MARKABY 178

Using the TabularFormBuilder, our form code simplifies to the following:

Download code/rails_xt/app/views/examples/tabular_form_for.rhtml

<h2>Tabular Form For</h2>

<% form_for :sample, @sample do |f| %>

<%= f.text_field :text %>

<%= f.password_field :password, {:style=>'color:blue;'} %>

<%= f.text_area :area, {:size=>'10x10'} %>

<% end %>

That is an enormous improvement in readability. And although the

FormBuilder code looks tricky, you do not have to start from scratch.

We pasted the src block from the FormBuilder base class and tweaked it

until we liked the results.

Sometimes you want a form that is not associated with a model object.

Methods such as text_field assume an associated model object, but Rails

has a second set of methods that do not scope query parameters to

a particular object. Instead of text_field, you use text_field_for. Similarly

named methods exist for all the other form input types.

6.6 Building HTML with Markaby

In the Java world, JSPs are the most controversial piece of the MVC

web stack. JSPs are often despised and sometimes replaced entirely. We

could spend an entire book debating the reasons for this and comparing

various alternatives.

But the underlying turmoil here comes from a simple fact. The view

layer is where programmers, interaction designers, and graphic design-

ers all have to work together. These groups have different goals, differ-

ent skills, and different tools. JSP syntax exists, in part, because Java

syntax is alien to designers and cannot be processed by pure-HTML

tools. But from there you start to get a sense that you are peeling an

onion. JSP tag libraries exists because JSP is too Java-like. Templat-

ing engines such as Velocity2 exist because JSP tag libraries are too

arcane, and they require new Java code to support even the simplest

dynamic tasks. Tapestry3 components hide inside attributes of regular

HTML tags and should be able to “play nice” with HTML tools.

Many people find this creative chaos distressing—why isn’t there one

right way to create dynamic views? We find the variety to be healthy,

2. http://jakarta.apache.org/velocity/

3. http://tapestry.apache.org/

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/examples/tabular_form_for.rhtml
http://jakarta.apache.org/velocity/
http://tapestry.apache.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=178

BUILDING HTML WITH MARKABY 179

for two reasons: First, it validates the separation of the model, view,

and controller. The point of separation is to allow each layer to vary

independently of the others, and in practice this objective is realized

more often in the view than anywhere else. Second, the variety of view

choices is competition, and it spurs new innovation. You can tell the

Java web world is healthy by the variety and ongoing development of

view technologies.

Ditto for Rails. Most Rails programs use the built-in .rhtml templates,

to be sure. But a growing minority use third-party templating libraries.

Here we will show you one of these libraries, Markaby.4 Markaby has

a pure-Ruby syntax that makes view code cleaner and easier to read

than .rhtml files. If your view code is developed and maintained by Ruby

programmers, Markaby may be perfect for you. To install Markaby as a

Rails plugin, use this:

script/plugin install http://code.whytheluckystiff.net/svn/markaby/trunk

You can also install Markaby as a gem: gem install markaby. If you install

Markaby as a gem, you will have to manually register Markaby as the

template handler for files with the .mab extension:

Download code/rails_xt/config/environment.rb

require 'markaby'

require 'markaby/rails'

ActionView::Base::register_template_handler('mab',

Markaby::ActionViewTemplateHandler)

Here is the Rails scaffold layout written in Markaby:

Download code/rails_xt/app/views/layouts/astro.mab

html do

head do

title action_name

stylesheet_link_tag 'scaffold'

end

body do

p flash[:notice], :style=>"color: green"

self << @content_for_layout

end

end

• Line 1 demonstrates generating an element. Simply call the ele-

ment by name, passing a block for anything that should nest

inside the element.

4. http://code.whytheluckystiff.net/markaby/

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/environment.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/layouts/astro.mab
http://code.whytheluckystiff.net/markaby/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=179

CACHING PAGES, ACTIONS, AND FRAGMENTS 180

• Line 3 shows how to set the content of an element, simply by

passing it as a string.

• Line 4 demonstrates calling a Rails helper. Rails helpers are pre-

sumed to be output-generating and are written automatically.

• Line 7 shows creating HTML attributes, by passing them as a Ruby

hash.

• Line 8 demonstrates writing content directly, by concatenating

onto self.

To demonstrate a few more of Markaby’s features, here is a simple show

template:

Download code/rails_xt/app/views/astro/show.mab

div.planet! do

for column in Planet.content_columns

p do

span.emphasis column.human_name

h(@planet.send(column.name))

end

end

end

link_to 'Edit', :action => 'edit', :id => @planet

link_to 'Back', :action => 'list'

• Line 1 shows generating an element ID. Any method with a bang

becomes the ID of its element, so div.planet! turns into

<div id="planet">.

• Line 4 shows how to add a CSS class. Any method with no other

obvious meaning becomes a CSS class, so span.emphasis turns into

.

As Markaby demonstrates, alternative view templates are alive and well

in the Rails world. See the references for pointers to some others.

6.7 Caching Pages, Actions, and Fragments

At the risk of overgeneralization, you could say that the Java world

caches models, and the Rails world caches views. Because there is no

broadly used mechanism for caching views in Java, this section will

cover Rails only, without any comparison to Java.

Caching is a performance optimization, and Rails makes it easy to

apply caching at the right moment in the development process. Caching

should be done only after you have the application working and in the

presence of performance measurements that indicate the need. (More

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/astro/show.mab
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=180

CACHING PAGES, ACTIONS, AND FRAGMENTS 181

than half the Rails applications we have built never use caching at all.

Yes, it is easy to add, and in many cases the applications would run

faster. But we never build it until there is a demonstrated need.)

ActionView provides three levels of caching: page, action, and frag-

ment. Page caching causes entire pages to be cached. Turning on page

caching is trivial. In a controller, list the actions to be cached, like this:

Download code/people/app/controllers/people_controller.rb

caches_page :show, :edit

When Rails first renders an action that is page cached, it copies the

results into the public directory. Subsequent requests for the page do

not encounter Rails at all. Since the page is now in the public directory,

it is returned like any other static resource. The performance of cached

pages is as good as it gets. Unfortunately, cached pages are often inap-

propriate. Any page that has per-user behavior (like security checks),

that has per-user state (sessions), or that changes over time cannot be

cached.

If your application requires per-user behavior such as a security check,

you can use cached actions instead of cached pages. The syntax is

almost the same:

Download code/rails_xt/app/controllers/quips_controller.rb

caches_action :show, :edit

When Rails first renders a cached action, it saves the results. Instead

of saving the page in the public directory, Rails caches the page at a

location unknown to the web server (tmp/cache by default). Subsequent

requests enter the controller layer, where all before filters (such as secu-

rity checks) execute. If the before filters return successfully, Rails ren-

ders the page from the cache without executing the action code. Cached

actions do not get nearly the performance boost of cached pages, but

they keep access control intact.

If your web application produces different content for different users,

then even action caching is not an option. Even something as simple

as a status line saying “Logged in as ‘Stu’ for 2 hours” means that

every user’s page is different, and action caching is not an option. Enter

fragment caching. If you can identify a part of a page that is generic and

slow to render, it is a candidate for fragment caching.

Imagine that we want to cache a controller’s show action. This time,

our page layout includes per-user data, so we cannot cache the entire

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=181

CACHING PAGES, ACTIONS, AND FRAGMENTS 182

action. Instead, in the show.rhtml we can wrap the output in a cache

do...end:

Download code/rails_xt/app/views/people/show.rhtml

<% cache :fragment=>'show' do %>

<% for column in Person.content_columns %>

<p>

<%= column.human_name %>: <%=h @person.send(column.name) %>

</p>

<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @person %> |

<%= link_to 'Back', :action => 'list' %>

<% end %>

The fragment cache is colocated with the action cache and uses the

same naming convention. This means name collisions can occur. More

important, a single view might have multiple fragments to cache. There-

fore, you should always give fragments a unique name by passing a

name/value pair to cache do. Rails interprets the name value/pairs

like arguments to url_for. We prefer to use a key name that is not used

anywhere else in our application’s routing, and that clearly indicates a

fragment. Therefore, “fragment” is a decent name, as used previously.

When Rails first encounters the cache method, it renders the code

inside the block and saves it in the cache. Subsequent requests do

not execute the block, because cache checks the cache first and uses

the cached content if present.

You have seen how to turn on page, action, and fragment caching. That

is the easy part. The hard part is making sure that cached items are

invalidated when data changes. Several possible approaches exist:

• Don’t worry about it, and let the application display stale informa-

tion. This is probably a bad idea in most applications.

• Clean the cache from outside Rails, using a background process

that deletes the caches files, perhaps on a timer.

• Manually expire cached items. Whenever a controller saves modi-

fications that invalidate a cache, call expire_page, expire_action, or

expire_fragment explicitly.

• Use a Rails sweeper (a form of the Observer design pattern) to

expire pages based on model changes.

We recommend the sweeper approach, because it cleanly separates

caching from the rest of your program logic. Here’s how to use sweepers

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/people/show.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=182

CACHING PAGES, ACTIONS, AND FRAGMENTS 183

to manage the various cache examples we created earlier in this section.

First we will take care of the page caching on the People application’s

PeopleController. In the models directory, we create a PersonSweeper:

Download code/people/app/models/person_sweeper.rb

class PersonSweeper < ActionController::Caching::Sweeper

CACHED_ACTIONS = ['show', 'edit']

observe Person

def expire_cache_for_instance(inst)

CACHED_ACTIONS.each do |action|

expire_page(:controller=>'people', :action=>action, :id=>inst)

end

end

alias_method :after_save, :expire_cache_for_instance

alias_method :after_destroy, :expire_cache_for_instance

end

Here’s how it works:

1. On line 1, the class extends ActionController::Caching::Sweeper to

tell Rails that this is a cache sweeper.

2. On line 3, the observe call tells Rails what model class to observe.

3. On line 1, we expire the show and edit views associated with a

Person that has changed.

4. Starting on line 9, we make sure expire_cache_for_instance gets

called for both after_save and after_destroy. Since the signatures

are an exact match, we use alias_method.

With rendering and page caching under your belt, you are ready to build

a beautiful web application. Wait a minute, the marketing department

has asked us to change the previous sentence to end with “beautiful

Web 1.0 application.”

As a matter of principle, we refuse to use the “Web #.#” buzzword. Nev-

ertheless, web development is changing, slowly, for the better. Users

now expect more from the Web than just pages as still life. Modern

web applications should be able to dynamically update parts of a single

page, issue multiple background requests, use visual effects to high-

light changing information, and provide input options beyond plain old

forms. In short, they now want web applications to provide interfaces as

rich and varied as traditional desktop applications. That is the promise

of Ajax.

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/models/person_sweeper.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=183

CREATING DYNAMIC PAGES WITH AJAX 184

How Do You Test Caching?

Because Rails does not ship with any assertions to test caching,
many Rails developers might skip this step. Don’t. A broken
caching implementation can return bad data and violate
security policies. The Rails Cache Test Plugin∗ makes it easy to
test caching. Here is a simple test for the page caching in the
People sample application:

Download code/people/test/integration/person_caching_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class PersonCachingTest < ActionController::IntegrationTest
fixtures :people
def test_caching

assert_cache_pages('/people/show/1', '/people/edit/1')
end
def test_expiry

assert_expire_pages('/people/show/1', '/people/edit/1') do
post '/people/destroy/1'

end
end

end

On line 6, assert_cache_pages takes a list of pages and verifies
that GETting each page causes the page to be cached. On
line 9, assert_expire_pages runs a block of code and then verifies
that each page in its argument is removed from the cache.

The Rails Cache Test Plugin also includes support for other HTTP
verbs and for testing action and fragment caching.

∗. http://blog.cosinux.org/pages/page-cache-test

6.8 Creating Dynamic Pages with Ajax

Ajax (Asynchronous JavaScript and XML) has taken the Web by storm.

The term was coined by Jesse James Garrett in February 2005, and by

September 2006 a survey5 reported that almost 70 percent of respon-

dents6 were already using or planning to use Ajax techniques.

Part of the reason for this success is vagueness in defining the term

Ajax. Ajax has become one of those buzzwords that expands to mean

just about anything you are doing on the Web. For this book, we will

5. http://www.ajaxian.com/by/topic/survey/

6. http://www.surveymonkey.com/DisplaySummary.asp?SID=2402465\&U=240246533425

http://media.pragprog.com/titles/fr_r4j/code/code/people/test/integration/person_caching_test.rb
http://blog.cosinux.org/pages/page-cache-test
http://www.ajaxian.com/by/topic/survey/
http://www.surveymonkey.com/DisplaySummary.asp?SID=2402465&U=240246533425
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=184

CREATING DYNAMIC PAGES WITH AJAX 185

use the term Ajax to mean any web application technique that breaks

the page metaphor of the Web and runs without any additional software

on modern browsers.

This definition expands on the original XML to include a variety of

different data formats: XML, HTML, the JavaScript Object Notation

(JSON), and plain text at the very least. Also, any technique for intro-

ducing asynchrony meets this definition: the typical XMLHttpRequest

object plus various tricks using frames, script tags, and image tags.

JavaScript Libraries: Prototype and Scriptaculous

At the center of any Ajax architecture lies one or more JavaScript libra-

ries. These libraries run in the client browser, respond to user input,

submit asynchronous requests, process server responses, and update

the user interface.

In theory, these libraries are decoupled from your server-side frame-

work. Since all the actual communication in Ajax is over HTTP, any Ajax

client code should coexist with any well-written server code. In practice,

this is partially true. The most popular Ajax libraries are indeed used

with different server-side stacks. According to a recent survey, Proto-

type is the most popular Ajax framework. We have seen Prototype used

on projects with Rails, .NET, Java, and PHP back ends.

Despite the logical separation of Ajax and server-side frameworks, there

is pressure toward integrated solutions. If a server-side framework in-

cludes custom tags or helper methods that generate code for a particu-

lar Ajax framework, then it will be easier to use that framework.

This is in fact the case with Rails. Rails includes helper methods that

specifically target two JavaScript frameworks: Prototype and Scriptac-

ulous. Because these helper methods are so easy to use in Rails, most

Rails projects will pick these libraries without further consideration.

To include Ajax in a Rails application, the first step is to include script

tags for the Prototype and Scriptaculous libraries. Since script tags are

usually included in the head of an HTML document, the best place to

include these tags is a controller’s layout:

Download code/rails_xt/app/views/layouts/quips.rhtml

<%= javascript_include_tag :defaults %>

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/layouts/quips.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=185

CREATING DYNAMIC PAGES WITH AJAX 186

The defaults symbol is special-cased to include all of Rails’ default Java-

Script libraries, so the previous line of code translates to the following:

<script src="/javascripts/prototype.js?1149008954" type="text/javascript">

</script>

<script src="/javascripts/effects.js?1149008954" type="text/javascript">

</script>

<script src="/javascripts/dragdrop.js?1149008954" type="text/javascript">

</script>

<script src="/javascripts/controls.js?1149008954" type="text/javascript">

</script>

<script src="/javascripts/application.js?1149008954" type="text/javascript">

</script>

The file application.js is for any custom JavaScript you write. If you need

more JavaScript files, you can pass a string to javascript_include_tag:

Download code/rails_xt/app/views/layouts/quips.rhtml

<%= javascript_include_tag 'mylibrary' %>

This renders the following:

<script src="/javascripts/mylibrary.js?" type="text/javascript"></script>

Rails Ajax Helpers

Now that we have our client-side JavaScript libraries available, we can

make our application’s pages more usable. Let’s start with the show and

edit actions of the scaffold. Instead of making the user change pages to

switch from show to edit mode, why not just let him use one page for

both purposes? Here’s one possible approach: When the mouse hovers

over a property value in the show action, the text becomes hot and

changes color. Clicking the text dynamically opens a tiny edit form for

that single field, which then uses Ajax to make the update to the server.

We picked this exact design for one reason: Scriptaculous supports it,

and Rails includes a helper that makes it trivial. We have added the

InPlaceEditor to the Quips show action:

Download code/rails_xt/app/views/quips/show.rhtml

<% for column in Quip.content_columns %>

<p>

<%= column.human_name %>:

<%= in_place_editor_field "quip", column.name %>

</p>

<% end %>

That’s it. The only difference from a non-Ajax view is the call to

in_place_editor_field, which shows the current value of particular col-

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/layouts/quips.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/show.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=186

CREATING DYNAMIC PAGES WITH AJAX 187

umn and then adds JavaScript to do everything else: highlight the field

on mouseover, show the edit form, submit an edit via Ajax, and update

the field based on the server response. Here’s the resulting HTML for

one column, reformatted for readability:

Download code/rails_xt/sample_output/in_place.html

<span class="in_place_editor_field"

id="quip_text_1_in_place_editor">This is quip 1

<script type="text/javascript">

//<![CDATA[

new Ajax.InPlaceEditor('quip_text_1_in_place_editor',

'/quips/set_quip_text/1')

//]]>

</script>

The Ajax.InPlaceEditor is a Scriptaculous object. As you might guess from

the HTML, Scriptaculous has its own set of naming conventions that

govern the HTML class and id attributes, as well as the parameters you

pass to Ajax.InPlaceEditor. If you use the Rails helpers, you do not have

to learn or worry about these naming conventions.

The second parameter to Ajax.InPlaceEditor is the server URL to call,

/quips/set_quip_text/1. In standard Rails routing, this implies a set_quip_

text action on the QuipsController. More generally, we will need actions

for every column, named like set_quip_[colname]. Where do these names

come from? Again, a single-line helper method does everything. In the

controller:

Download code/rails_xt/app/controllers/quips_controller.rb

in_place_edit_for :quip, :text

The arguments to in_place_edit_for are the model and column names

that should allow in-place editing. Here we allow editing for a quip’s

:text.

As a slightly more complex example, let’s add a search view for quips.

As the user types characters into a search form, the results will update

automatically, à la GoogleSuggest. First, we will need a search action

on the controller:

Download code/rails_xt/app/controllers/quips_controller.rb

def search

@quips = Quip.find_text_like(params[:search])

render :partial=>'search_results' if request.xhr?

end

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/in_place.html
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=187

CREATING DYNAMIC PAGES WITH AJAX 188

The call to find_text_like presumes a class method on Quip that will find

text like some value:

Download code/rails_xt/app/models/quip.rb

def self.find_text_like(value)

find(:all, :conditions=> "text LIKE " +

ActiveRecord::Base.connection.quote("%#{value}%"))

end

The call to render :partial lets the one search action handle both Ajax and

non-Ajax requests. If request.xhr? returns true, the request was made

via Ajax. We don’t want to render the entire page, just the changed

part, which we plan to place in a partial named _search_results.rhtml.

Otherwise, we fall out of the method, and Rails automatically renders

search.rhtml.

Now we need to create a search.rhtml that will show a collection of quips,

plus a form to submit a search string:

Download code/rails_xt/app/views/quips/search.rhtml

<h1>Search quips</h1>

<%= image_tag 'loading.gif', :id=>'spinner',

:style=>"display:none; float:right;" %>

<% form_tag do %>

<%= text_field_tag 'search', @search %>

<%= observe_field :search,

:frequency => 0.5,

:update => 'search-results',

:complete=>"Element.hide('spinner')",

:before=>"Element.show('spinner')",

:with=>"'search=' + encodeURIComponent(value)",

:url=>{:action=>'search'} %>

<image>

<% end %>

<div id="search-results">

<%= render :partial=>'search_results' %>

</div>

<%= link_to 'List', :action => 'list' %>

We initially created this file by copying and pasting the template for the

show action, show.rhtml. Then we made the following changes:

• The image_tag shows an animated GIF as a progress indicator so

the user can tell we are making an asynchronous call. Since there

is no Ajax call at first, this image is set to :style=>"display:none".

• There is a form for the search operation, containing a search field.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/quip.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/search.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=188

CREATING DYNAMIC PAGES WITH AJAX 189

• Inside the form there is a call to the observe_field helper. This

is where the Ajax happens and is described in more detail in a

moment.

• The actual table is not rendered here but in a partial named

search_results.

• The partial is wrapped with a div id="search-results".

The call to observe_field takes a single required argument, plus a large

number of optional arguments. The ones we use here are as follows:

• :search is the ID of the field to observe. It refers to the text_field_tag.

• :frequency is how often (in seconds) to check the field for changes.

Smaller values are more responsive but put more load on the

server. (Zero is a special case causing the field to be checked when

you exit the control.)

• :update is the DOM ID to update with the results of the Ajax call.

This is why we needed to wrap the partial with a known DOM ID.

• :complete and :before specify JavaScript to execute before and after

the Ajax call. This shows and hides the progress indicator.

• :with specifies the query string for the Ajax request. The call to

encodeURIComponent is JavaScript.

• :url specifies the server URL to call, using standard Rails url_for

arguments.

Planning for Ajax

These two examples have only scratched the surface of Rails’ Ajax

support. Besides in_place_editor_field, there are helpers for other user

interface enhancements, including drag and drop. Besides observe_field,

there are helpers to handle almost everything that can happen in a

browser interface: links, forms, button clicks, timers, and so on.

Complete coverage of these features (and their many optional argu-

ments) would take about half a book. Rather than do that, we will revisit

these two examples to make some general points about Ajax design and

about Ajax implementation in Rails.

First, we will talk about the design side. The two examples we have

shown here demonstrate things that might be useful in some situations

but certainly not in all. Adding an InPlaceEditor presumes you want to

allow edits one field at a time.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=189

CREATING DYNAMIC PAGES WITH AJAX 190

Although this is convenient, you should avoid this in several situations:

• Many users may not recognize that the in-place editor even exists.

You may need to add more visual indication or to train users in

some way.

• Some model objects have validation constraints that span multi-

ple fields or multiple rows. Allowing per-field edits may put these

objects in an invalid state or make some valid states unreachable.

• In-place editing puts more demand on the server.

A huge design concern is users without Ajax-enabled browsers. In our

examples, everything will still work with Ajax disabled—you can verify

this by disabling JavaScript in your browser. But this degradable Ajax degradable

required some up-front thinking that we did not mention when we first

presented the examples. The in-place editing example is usable without

Ajax because the Edit links are all still there. If Ajax is unavailable,

simply go from Show to Edit mode with a plain old page transition.

The search example works without Ajax because of the way we coded

the controller. If JavaScript is turned off, then the form observer will of

course not work. But, a user can still submit the form the old-fashioned

way by pressing Enter. The form will post to the same URL that the

Ajax call would have, /quips/search. However, the call to request.xhr? will

return false, and Rails will render search.rhtml in response. We could

make the non-Ajax case even clearer by including a submit button in

the search form and then use JavaScript to hide the button in Ajax-

aware environments. Rails makes degradable Ajax possible, as long as

you are careful.

The two examples we have shown here demonstrate some most impor-

tant themes of Rails Ajax development:

• Rails helper methods hide the details of Prototype and Scriptac-

ulous. As long as you stay within the capabilities of the helper

methods, you do not really have to understand the JavaScript.

(We think you should, though.)

• Degradable Ajax is possible if you are careful. One easy approach

is to have the same controller methods do double-duty and branch

on request.xhr?.

• Ajax helpers methods tend to take a few required parameters and

many optional ones via a final Hash argument. Many of the option

names are shared across several methods, reducing the amount

you have to learn.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=190

RENDERING JAVASCRIPT WITH RJS 191

• Many of the Rails Ajax helpers encourage a style of Ajax that

depends on returning HTML fragments (as opposed to the XML

suggested by the acronym AJAX). This style simplifies the incre-

mental addition of Ajax features to an existing web application but

may be less useful if you are building a more thoroughly Ajaxified

application.

Another approach to Ajax development is to send JavaScript code in

response to Ajax requests. Although this might sound like an unlikely

approach, Rails includes a clever JavaScript generation mechanism

that allows you to write page updates in Ruby code. The next section

will show you how.

6.9 Rendering JavaScript with RJS

RJS (Rails JavaScript) lets you update pages by programming against a

page object on the server. This page object, written in Ruby, is actually

a code generator that converts Ruby code into JavaScript, which Rails

returns to the client for execution there. This sounds complex, but the

usage is surprisingly simple. As an example, we will create a better

search action called better_search.

The better_search action will work just like search but will also report

the number of items returned. This report will live in a separate partial.

From the main view file, better_search.rhtml, we will reference this partial:

Download code/rails_xt/app/views/quips/better_search.rhtml

<div id="search-count">

<%= render :partial=>'search_count'%>

</div>

The partial itself is simple enough:

Download code/rails_xt/app/views/quips/_search_count.rhtml

Found <%= @quips.size %> matching your request.

Now for the challenge: After the user triggers a search, two different divs

should update: the search-results div containing the table and the search-

count div with the result count. If you tried to use the observe_field with

an :update option, you would have two choices:

• Wrap the two divs in a higher-level HTML element, and :update

that.

• Issue two separate Ajax requests, one for each element.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/better_search.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/_search_count.rhtml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=191

BLACK-BOX TESTING WITH SELENIUM 192

Both of these choices are poor. In our simple example, it might be easy

enough to group the elements together, but in general you may need

to update many more than two elements. By the time you group them

all together you are updating the entire page, which rather defeats the

point of Ajax. The second choice is even worse. The two Ajax requests

decompose a single user action into two server actions. Because Ajax is

asynchronous, these actions might succeed or fail separately. Or they

might both succeed, but one response might be lost. Either way, the

user interface ends up in an incorrect state. Better yet, given that most

calls succeed, the symptoms will be difficult to reproduce. (Translation:

It will work on your machine and fail on your most important user’s

machine.)

RJS comes to your rescue. With RJS, doing multiple updates is a snap.

Here is an RJS template used by the better_search action:

Download code/rails_xt/app/views/quips/_search_update.rjs

page.replace_html 'search-results', :partial=>'search_results'

page.replace_html 'search-count', :partial=>'search_count'

page.visual_effect :highlight, 'search-count'

The previous replace_html methods take a DOM ID and a partial. Rails

then generates JavaScript to replace the contents of each DOM ID with

the result of rendering the partial. The call to visual_effect highlights the

search count so that the user can tell something has changed.

From the controller, an RJS template is accessed like any other tem-

plate. In fact, you cannot tell from the controller code what kind of

template is in use:

Download code/rails_xt/app/controllers/quips_controller.rb

def better_search

@quips = Quip.find_text_like(params[:search])

render :partial=>'search_update' if request.xhr?

end

In addition to basic DOM updates, RJS includes methods for alerts,

timers, redirects, and Scriptaculous drag and drop.

6.10 Black-Box Testing with Selenium

In a Rails application, the tests in test/functional are used to test con-

trollers. They also test the view code to some degree, since the view

templates are rendered when controller actions are invoked. These tests

are white-box tests, because they have access to (and can test) internal white-box

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/_search_update.rjs
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=192

BLACK-BOX TESTING WITH SELENIUM 193

details of how the controllers and views work. These tests are covered

in detail in Chapter 7, Testing, on page 198.

The opposite of white-box test is a black-box test. In black-box testing,

the tests have no awareness of the internal workings of the program

being tested. Black-box tests are often performed jointly by the devel-

opers and consumers of a system. When used in this way, black-box

tests are acceptance tests. Acceptance tests are, quite literally, the mea- acceptance tests

sure of success of a system.

Since acceptance tests know nothing of implementation details, accep-

tance testing tools are not specific to any language or library. We build

acceptance tests for web applications with the open source tool Sele-

nium.7

Testing a Rails application with Selenium usually involves three sepa-

rate libraries:

• Selenium Core is the underlying Selenium engine. Selenium Core

can run tests on about a dozen different browser platforms.

• The Selenium IDE is a Firefox extension for recording tests. Tests

recorded in the Selenium IDE can then be run on other browers

using Selenium Core.

• Selenium on Rails is a Rails plugin that provides a Ruby-based

library for invoking Selenium. For substantial tests, this library is

easier to work with than the test format produced by the Selenium

IDE.

To see these libraries in action, follow the instructions on the Selenium

home page for installing Selenium Core and the Selenium IDE. We will

use the Selenium IDE to record a test for the People application.

1. After installing Selenium IDE, restart Firefox.

2. Run the People application against the test environment:

RAILS_ENV=test script/server

3. Open Firefox, and navigate to the People index page, /people.

4. From the Firefox Tools menu, select Selenium Recorder to turn

on the Selenium Recorder. Resize the browser window and the

recorder so you can see both.

7. http://www.openqa.org/selenium/

http://www.openqa.org/selenium/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=193

BLACK-BOX TESTING WITH SELENIUM 194

5. Click the New Person link to create a new person. Notice that the

recorder is recording your actions.

6. Click the Create button to create a new person. This should fail

since the person has no name.

7. Select the error message “can’t be blank” in the browser window.

Right-click the selection, and choose Append Selenium Comm-

mand | verifyTextPresent.

8. Enter a first name and last name, and click Create again.

9. Select the status message “Person was successfully created” and

append another Selenium command to verify this text is present.

10. Switch to the Selenium Recorder, and save the test as test/selenium/

people/create_person.html.

Use the Selenium IDE to run your test. The Play button at the top of the

IDE will start a test, and you can run at three different speeds: Run,

Walk, or Step. The Selenium IDE has several other features that we will

not explicitly cover here:

• The command field is a pop-up window that lists all the (large)

number of possible Selenium commands.

• The Log tab keeps log messages from past tests.

• The Reference tab documents the current command and automat-

ically syncs with whatever command you have selected.

In a Rails application, the easiest way to run an entire test suite is to

install the Selenium on Rails plugin:8

script/plugin install http://svn.openqa.org/svn/selenium-on-rails/selenium-on-rails/

Navigate to the /selenium URL within your People application. The Sele-

nium on Rails plugin implements this URL (in test mode only!) to pro-

vide a four-panel UI for running Selenium tests. You can see this UI in

Figure 6.1, on the next page. The top-left panel shows your tests, the

middle shows the current test, and the right panel provides an interface

for single-stepping or running the tests. The large panel across the bot-

tom contains your application so you can watch the tests as they run.

Try running your test in Run mode and in Step mode. In Step mode

you will need to click Continue to take each step.

8. We have found that the dash delimiter does not play well with Rails 1.2 RC1. Renam-

ing the plugin to use underscores (selenium_on_rails) fixes the problem.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=194

BLACK-BOX TESTING WITH SELENIUM 195

Figure 6.1: Running tests with Selenium

If you opened the source for a saved Selenium IDE test, you would see

an HTML file with a table. The individual test steps are formatted as

table rows like this step, which navigates to the /people URL:

<tr>

<td>open</td>

<td>/people</td>

<td></td>

</tr>

Selenium on Rails provides an alternative format for tests that uses

Ruby syntax. This is convenient if you are writing more complex tests.

To create a Selenium on Rails test, use the following generator:

./script/generate selenium your_test.rsel

This will create a test file named test/selenium/your_test.rsel. Fill in the test

with RSelenese commands. (The RSelenese commands are documented

in the RDoc for Selenium on Rails. You can generate this documenta-

tion by going to vendor/plugins/selenium-on-rails and executing rake rdoc.)

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=195

CONCLUSIONS 196

Here is an RSelenese test for logging in to the Rails XT application:

Download code/rails_xt/test/selenium/_login.rsel

setup :fixtures=>:all

open '/account/login'

type 'login', 'quentin'

type 'password', 'test'

click 'commit'

wait_for_page_to_load 2000

This test starts by loading all test fixtures and then navigates to the

login page. After logging in, the test waits for up to 2,000 milliseconds to

be redirected to a post-login page. Notice that this test’s filename begins

with an underscore. Borrowing from Rails view nomenclature, this is a

partial test. Since all tests will need to log in, this test is invoked from

other tests with the RSelenese command include_partial.

Selenium on Rails also includes a test:acceptance Rake task. You can

use this task to run all of your Selenium tests.

6.11 Conclusions

The view layer is where programmers, interaction designers, and gra-

phic designers meet. In the Java world, the view tier is often built

around the assumption that programmers know Java and designers

know HTML. Much effort then goes to creating a dynamic environment

that splits the difference between Java and the HTML/scripting world.

Tag libraries, the JSTL expression language, and OGNL all aspire to

provide dynamic content without the complexity of Java syntax.

If we had to pick one phrase to summarize how the Rails approach

differs, it would be “Ruby-centered simplicity.” The vision is that every-

one (including page designers) needs to know a little Ruby but nothing

else. Since Ruby is a scripting language, it is already friendly enough

for designers as well as programmers. As a result, there is no need for

intermediaries such as tag libraries and custom expression languages.

Everything is simply Ruby.

Neither approach is perfect. After all the effort to “simplify” Java into

tags and expression languages, we have seen both programmers and

designers struggle to understand what is happening on a dynamic page.

If you have chosen a side in the dynamic vs. static languages debate,

this is frustrating, regardless of which side you are on. The Java web

tier mixes static, compiled code (Java) with dynamically evaluated code

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/selenium/_login.rsel
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=196

RESOURCES 197

(tag library invocations, expression languages). To troubleshoot a Java

web application, you need to have a thorough understanding of both

worlds.

Troubleshooting Rails applications is no joy either. Things are simpler

since there is only one language, but there are still problems. Tool sup-

port is minimal at present, although we expect Ruby’s rising popularity

to drive major tool improvements. Stack traces in the view are deep and

hard to read, both in Ruby and in Java.

Since tracking down problems that have percolated all the way to the

view is such a pain, we had better make sure that such problems are

few and far between. Fortunately, Rails provides excellent support for

testing, which is the subject of the next chapter.

6.12 Resources

HAML: HTML Abstraction Markup Language. . .
. . . http://unspace.ca/discover/haml/

HAML is an alternative templating engine for Rails.

Markaby Is Markup As Ruby.http://code.whytheluckystiff.net/markaby/

Markaby is a pure-Ruby approach to generating HTML markup. Obsessed with

convenience and willing to employ as much idiomatic Ruby as necessary to get

there.

Rails Cache Test Plugin.http://blog.cosinux.org/pages/page-cache-test

The Rails Cache Test Plugin provides assertions to test the caching of content

and the expiration of cached content. The tests will work even with caching

turned off (as it usually is in the test environment), because the plugin stubs

out cache-related methods.

Selenium. .http://www.openqa.org/selenium/

Selenium is a testing tool for web applications. Selenium runs directly in the

browser and is therefore suitable for functional and acceptance testing, as well

as browse compatibility testing.

Selenium IDE. .http://wiki.openqa.org/display/SIDE/Home

Selenium IDE is a Firefox extension you can use to record, execute, and debug

Selenium tests.

Selenium on Rails http://www.openqa.org/selenium-on-rails/

Selenium on Rails is a Rails plugin that provides a standard Selenium directory

for a Rails project, Ruby syntax for invoking Selenium tests, and a Rake task

for acceptance tests.

http://unspace.ca/discover/haml/
http://code.whytheluckystiff.net/markaby/
http://blog.cosinux.org/pages/page-cache-test
http://www.openqa.org/selenium/
http://wiki.openqa.org/display/SIDE/Home
http://www.openqa.org/selenium-on-rails/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=197

Chapter 7

Testing
Testing starts small, with unit testing. Unit testing is automated testing unit testing

of small chunks of code (units). By testing at the smallest granular-

ity, you can make sure that the basic building blocks of your system

work. Of course, you needn’t stop there! You can also apply many of

the techniques of unit testing when testing higher levels of the system.

Unit tests do not directly ensure good or useful design. What unit tests

do ensure is that things work as intended. This turns out to have an

indirect positive impact on design. You can easily improve code with

good unit tests later. When you think of an improvement, just drop it

in. The unit tests will quickly tell you whether your “two steps forward”

are costing you one (or more) steps back somewhere else.

The Test::Unit framework is part of Ruby’s standard library. To any-

one familiar with Java’s JUnit, Test::Unit will look very familiar—these

frameworks, and others like them, are similar enough that they are

often described as the XUnit frameworks. Like JUnit, Test::Unit pro- XUnit frameworks

vides the following:

• A base class for unit tests and a set of naming conventions for

easily invoking a specific test or a group of related tests

• A set of assertions that will fail a test (by throwing an exception) if assertions

they encounter unexpected results

• Lifecycle methods (setup() and teardown()) to guarantee a consis-

tent system state for tests that need it

In this chapter, we will cover Test::Unit and how Rails’ conventions,

generators, and Rake tasks make it easy to write and run tests. We’ll

also cover the custom assertions that Rails adds to Test::Unit and the

GETTING STARTED WITH TEST::UNIT 199

three kinds of tests generated by Rails. Finally, we will explore some

other tools regularly used to improve Rails testing: FlexMock for mock

objects and rcov for code coverage.

7.1 Getting Started with Test::Unit

The easiest way to understand Test::Unit is to actually test something,

so here goes. Imagine a simple method that creates an HTML tag. The

method will take two arguments: the name of the tag and the (optional)

body of the tag. Here’s a quick and dirty implementation in Java:

Download code/java_xt/src/unit/Simple.java

package unit;

public class Simple {

public static String tag(String name) {

return tag(name, "");

}

public static String tag(String name, String body) {

return "<" + name + ">" + body + "</" + name + ">";

}

}

And here is the similar code in Ruby:

Download code/rails_xt/samples/unit/simple_tag_1.rb

module Simple

def tag(name, body='')

"<#{name}>#{body}</#{name}>"

end

end

One way to test this code is to fire up irb, require() the file, and try some

inputs:

irb(main):001:0> require 'simple_tag_1'

=> true

irb(main):004:0> include Simple

=> Object

irb(main):006:0> tag 'h1'

=> "<h1></h1>"

irb(main):007:0> tag 'h1', 'hello'

=> "<h1>hello</h1>"

irb(main):008:0> tag nil

=> "<></>"

This kind of interactive testing is useful, and it lets you quickly explore

corner cases (notice that the result of tag nil is probably undesirable).

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/unit/Simple.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/simple_tag_1.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=199

GETTING STARTED WITH TEST::UNIT 200

The downside of this interactive testing is that you, the programmer,

must be around to do the interacting. That’s fine the first time, but we

would like to be able to automate this kind of testing. That’s where unit

testing and assertions come in.

Most Java developers write unit tests with JUnit. Although JUnit is not

part of Java proper, its use is extremely widespread. You can download

it at http://www.junit.org, or it is included with most Java IDEs and a wide

variety of other projects. Here’s a simple JUnit TestCase:

Download code/java_xt/src/unit/SimpleTest.java

package unit;

import junit.framework.TestCase;

public class SimpleTest extends TestCase {

public void testTag() {

assertEquals("<h1></h1>", Simple.tag("h1"));

assertEquals("<h1>hello</h1>", Simple.tag("h1", "hello"));

}

}

JUnit relies on several conventions to minimize your work in writing

tests. JUnit recognizes any subclass of TestCase as a container of unit

tests, and it invokes as tests any methods whose names begin with test.

Assertions such as assertEquals() that take two values list the expected

value first, followed by the actual value. JUnit tests can be run in a

variety of test runners, both graphical and console based (consult your

IDE documentation or http://www.junit.org for details).

The equivalent Ruby TestCase is extremely similar:

Download code/rails_xt/samples/unit/simple_tag_1_test.rb

require 'test/unit'

require 'simple_tag_1'

class SimpleTest < Test::Unit::TestCase

include Simple

def test_tag

assert_equal("<h1></h1>", tag("h1"))

assert_equal("<h1>hello</h1>", tag("h1", "hello"))

end

end

Test::Unit recognizes any subclass of Test::Unit::TestCase as a container

of unit tests, and it invokes as tests any methods whose names begin

with test. As with JUnit, assertions such as assert_equal() that take two

http://www.junit.org
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/unit/SimpleTest.java
http://www.junit.org
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/simple_tag_1_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=200

GETTING STARTED WITH TEST::UNIT 201

values list the expected value first, followed by the actual value. You

can run the tests in an .rb file by simply pointing Ruby at the file:

$ ruby simple_tag_1_test.rb

Loaded suite simple_tag_1_test

Started

.

Finished in 0.001918 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

When a test fails, you should get a descriptive message and a stack

trace. For our Simple example, a test that expects tag names to be auto-

matically lowercased should fail:

Download code/java_xt/src/unit/FailingTest.java

public void testTag() {

assertEquals("<h1></h1>", Simple.tag("H1"));

}

Here is the error report from the JUnit console:

junit.framework.ComparisonFailure:

Expected:<h1>

Actual :<H1></H1>

at unit.FailingTest.testTag(FailingTest.java:6)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

(...more stack...)

Here is the Ruby version of a failing test:

Download code/rails_xt/samples/unit/failing_test.rb

require 'test/unit'

require 'simple_tag_1'

class FailingTest < Test::Unit::TestCase

include Simple

def test_tag

assert_equal("<h1></h1>", tag("H1"))

end

end

As with JUnit, the console output will report the failing method name,

the cause of the problem, and some stack trace information:

$ ruby failing_test.rb

(...snip...)

1) Failure:

test_tag(FailingTest) [failing_test.rb:8]:

<"<h1></h1>"> expected but was

<"<H1></H1>">.

1 tests, 1 assertions, 1 failures, 0 errors

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/unit/FailingTest.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/failing_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=201

GETTING STARTED WITH TEST::UNIT 202

When you are writing a test right now, in the present, you have the

entire context of the problem in your brain. At some point in the future,

refactoring may break your test. Take pity on poor Howard, the pro-

grammer who is running the tests that unlucky day. He has never If you don’t believe in

altruism, bear in mind

that Howard might be

you!

looked at your code before this very moment, and he has no helpful

context in his head. You can increase your karma by providing an

explicit error message. In JUnit, use an alternate form of the assertE-

quals() method with an error message as the first argument:

Download code/java_xt/src/unit/SelfDocumentingTest.java

public void testTag() {

assertEquals("tag should lowercase element names",

"<h1></h1>", Simple.tag("H1"));

}

Now, the console report for a failing test will include your error message.

junit.framework.ComparisonFailure: tag should lowercase element names

Expected:<h1>

Actual :<H1></H1>

at unit.SelfDocumentingTest.testTag(SelfDocumentingTest.java:7)

(...more stack...)

Watch out! This time, the Ruby version contains a surprise. You can

add an optional error message, but it is the last parameter, not the

first. This is inconsistent with JUnit but consistent with Ruby style:

Put optional arguments at the end.

Download code/rails_xt/samples/unit/self_documenting_test.rb

require 'test/unit'

require 'simple_tag_1'

class SelfDocumentingTest < Test::Unit::TestCase

include Simple

def test_tag

assert_equal("<h1></h1>", tag("H1"),

"tag should lowercase element names")

end

end

The console output will now include your explicit error message:

$ ruby self_documenting_test.rb

(...snip...)

1) Failure:

test_tag(SelfDocumentingTest) [self_documenting_test.rb:8]:

tag should lowercase element names.

<"<h1></h1>"> expected but was

<"<H1></H1>">.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/unit/SelfDocumentingTest.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/self_documenting_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=202

GETTING STARTED WITH TEST::UNIT 203

Next, let’s test what should happen if the user passes a null/nil name to

tag. We would like this to result in an exception. Early versions of Java

and JUnit did not handle “test for exception” in an elegant way, but

JUnit 4.x uses a Java 5 annotation to mark tests where an exception

is expected. Here is a test that checks for an IllegalArgumentException: JUnit 4 differs in several

ways from many of the

examples shown here.

We are using older JUnit

idioms where possible

because we expect they

are more familiar to most

readers.

Download code/junit4/src/unit/SimpleTest.java

@Test(expected=IllegalArgumentException.class)

public void nullTag() {

Simple.tag(null);

}

Where JUnit uses a custom annotation, Test::Unit takes advantage of

Ruby’s block syntax:

Download code/rails_xt/samples/unit/test_nil.rb

def test_nil_tag

assert_raises (ArgumentError) {tag(nil)}

end

This test should fail, since we do not yet handle the nil case as intended:

$ ruby simple_tag_1_test_2.rb

Loaded suite simple_tag_1_test_2

Started

F.

Finished in 0.025861 seconds.

1) Failure:

test_nil_tag(SimpleTest) [simple_tag_1_test_2.rb:11]:

<ArgumentError> exception expected but none was thrown.

2 tests, 3 assertions, 1 failures, 0 errors

Now we can fix the tag implementation to reject nil:

Download code/rails_xt/samples/unit/simple_tag_2.rb

module Simple

def tag(name, body='')

raise ArgumentError, "Must specify tag" unless name

"<#{name}>#{body}</#{name}>"

end

end

After writing these unit tests, the tag method may still seem not very

good. Perhaps you would like to see a tag() that handles attributes,

does more argument validation, or makes clever use of blocks to allow

nested calls to tag(). With good unit tests in place, it is easy to make

http://media.pragprog.com/titles/fr_r4j/code/code/junit4/src/unit/SimpleTest.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/test_nil.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/simple_tag_2.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=203

GETTING STARTED WITH TEST::UNIT 204

speculative improvements. If your “improvement” breaks code some-

where else, you will know immediately, and you will be able to undo

back to a good state:

Assertions

Assertions are the backbone of unit testing. An assertion claims that

some condition should hold. It could be that two objects should be

equal, it could be that two objects should not be equal, or it could be

any of a variety of more complex conditions. When an assertion works

as expected, nothing happens. When an assertion fails to work, infor-

mation about the failure is reported loudly. If you are in a GUI, expect a

red bar or a pop-up window, with access to more detailed information.

If you are in a console, expect an error message and a stack trace.

Both JUnit and Test::Unit provide several flavors of assertion. Here are

a few key points to remember:

• Equality is not the same as identity. Use assert_equal() to test

equality and assert_same() to test identity.

• false is not the same as nil (although nil acts as false in a boolean

context). Use assert_nil() and assert_not_nil() to deal with nil.

• Zero (0) evaluates to true in a boolean context. Don’t write code

that forces anybody to remember this.

• Ruby uses raise for exceptions, so you test for exceptions with

assert_raises. Do not call the assert_throws method by mistake!

assert_throws is used to test Ruby’s throw/catch, which (despite the

name) is not used for exceptions.

You can write your own assertions, since they are just method calls.

Typically your assertions will assert more complex, domain-specific

conditions by calling one or more of the built-in assertions.

Lifecycle Methods

Often, several tests depend on a common setup. For example, if you

are testing data objects, then all your tests may depend on a common

database connection. It is wasteful to repeat this code in every test, so

unit testing frameworks provide lifecycle callback methods.

JUnit defines setUp() and tearDown() methods, which are called auto-

matically before and after each test. Similarly, Test::Unit defines setup()

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=204

GETTING STARTED WITH TEST::UNIT 205

and teardown() methods. To see them in action, consider this real exam-

ple from the Rails code base: ActiveRecord’s unit tests need to test

threaded database connections.

The “threadedness” of ActiveRecord connections involves some global

setup and teardown. So, any testing of threaded connections must be

preceded by code to put ActiveRecord into a threaded state.

Download code/rails/activerecord/test/threaded_connections_test.rb

def setup

@connection = ActiveRecord::Base.remove_connection

@connections = []

@allow_concurrency = ActiveRecord::Base.allow_concurrency

end

Notice that some original, pretest globals are saved in variables

(@connection and @allow_concurrency). These values are then reset after

the test completes:

Download code/rails/activerecord/test/threaded_connections_test.rb

def teardown

clear the connection cache

ActiveRecord::Base.send(:clear_all_cached_connections!)

set allow_concurrency to saved value

ActiveRecord::Base.allow_concurrency = @allow_concurrency

reestablish old connection

ActiveRecord::Base.establish_connection(@connection)

end

You are likely to find that setup() is useful often to avoid duplicate code

for similar start states. Since Ruby is garbage-collected, teardown() is

used less often, typically for cleaning up application-wide settings.

To give an indication of their relative frequency, here are some simple

stats from Rails:

$ ruby rails_stats.rb

631 .rb files

212 test classes

126 test setup methods

20 test teardown methods

The program that generates these stats is quite simple. It uses Ruby’s

Dir.glob to loop over files and regular expression matching to “guessti-

mate” the relative usage of setup() and teardown():

http://media.pragprog.com/titles/fr_r4j/code/code/rails/activerecord/test/threaded_connections_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails/activerecord/test/threaded_connections_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=205

RAILS TESTING CONVENTIONS 206

Download code/rails_xt/samples/rails_stats.rb

base ||= "../../rails" # set for your own ends

files = tests = setups = teardowns = 0

Dir.glob("#{base}/**/*.rb").each do |f|

files += 1

File.open(f) do |file|

file.each do |line|

tests += 1 if /< Test::Unit::TestCase/=~line

teardowns += 1 if /def teardown/=~line

setups += 1 if /def setup/=~line

end

end

end

puts "#{files} .rb files"

puts "#{tests} test classes"

puts "#{setups} test setup methods"

puts "#{teardowns} test teardown methods"

7.2 Rails Testing Conventions

Historically, Java frameworks have not imposed a directory structure

or naming convention for tests. This flexibility means that every project

tends to be a little different. When approaching a new project, you typ-

ically need to consult the Ant build.xml file to learn the project struc-

ture. Some programmers have found that this flexibility does more

harm than good and now use Apache Maven (http://maven.apache.org/)

to impose a common structure across projects.

Rails projects have a standard layout and naming conventions. As a

result, most Rails projects look a lot like most other Rails projects.

For example, application code lives in the app directory, and the corre-

sponding test code lives in the test directory. This convention makes it

easy to read and understand unfamiliar projects.

Rails’ naming conventions are instantiated by the various generators.

When you call script/generate, Rails creates stubbed-out versions of test

classes, plus the environment they need to run. Rails initially supported

two kinds of tests: unit tests for model classes and functional tests

for controller classes. Since Rails 1.1, you can also generate a third

kind of test called an integration test, which can test an extended user integration test

interation across multiple controllers and model classes.

The three kinds of tests are described in more detail in the following

sections. Unlike most of the book, this chapter does not include Java

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/rails_stats.rb
http://maven.apache.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=206

RAILS TESTING CONVENTIONS 207

code for comparison, because there is no equivalent Java framework

that is in widespread use.

Unit Testing

Let’s start by testing a Rails model class. We’ve cleaned up the output

of the following script/generate to show only the new files created for the

Person model:

script/generate model Person

create app/models/person.rb

create test/unit/person_test.rb

create test/fixtures/people.yml

create db/migrate/002_create_people.rb

The files app/models/person.rb and db/migrate/002_create_people.rb deal

with the ActiveRecord model class itself and are covered in detail in

Chapter 4, Accessing Data with ActiveRecord, on page 96. Here we are

concerned with the files in the test directory. The unit test for the Person

class is the file test/unit/person_test.rb, and it initially looks like this:

require File.dirname(__FILE__) + '/../test_helper'

class PersonTest < Test::Unit::TestCase

fixtures :people

Replace this with your real tests.

def test_truth

assert true

end

end

The first line requires (after the path-math) the file test/test_helper.rb.

The test/test_helper.rb file is automatically created with any new Rails

application and provides three useful things:

• A ready-made environment for your tests, including everything

you are likely to need: environment settings, a live database con-

nection, access to model classes, Test::Unit, and Rails’ own exten-

sions to Test::Unit.

• Access to fixtures, that is, sample data for your tests. We will talk fixtures

more about this in a minute.

• Any application-wide test helpers or assertions you might choose

to write.

The remainder of the PersonTest is an empty unit test, waiting and hop-

ing that your conscience will lead you to write some tests, except for

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=207

RAILS TESTING CONVENTIONS 208

Joe Asks. . .

Is Fixture Configuration Easy in Rails?

We are not going to kid you. Configuring fixtures is a pain, no
matter what language or tool you are using. But in Rails this
cloud does have a bit of a silver lining. YAML is simpler than
XML to work with and less verbose. The introduction of the ERb
templating step lets us jump out to a serious programming lan-
guage (Ruby) when configuration tasks start to get tedious.

one little thing—that line fixtures :people. This line makes fixture data

available to your tests. Here’s how it works....

Rails’ fixture system looks for a fixture file corresponding to :people but

located in the directory test/fixtures. This leads to a file named test/fixtures/

people.yml, which is the other file originally created by script/generate.

The initial version of people.yml looks like this:

Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

first:

id: 1

another:

id: 2

This file is in the YAML format, covered in detail in Section 9.3, YAML

and XML Compared, on page 261. Rails uses the leftmost (unindented)

items to name Person objects: first and another. Rails uses the indented

name/value pairs under each item to initialize model objects that are

available to your tests. You can (and should) add name/value pairs as

appropriate to create reasonable objects for your tests. Here is a more

complete version of the people fixture:

Download code/rails_xt/test/fixtures/people.yml

first:

id: 1

first_name: Stuart

last_name: Halloway

another:

id: 2

first_name: Justin

last_name: Gehtland

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/people.yml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=208

RAILS TESTING CONVENTIONS 209

To use a fixture in your test, call a method named after the plural form

of your model class. So, the :first person is available as people(:first). You

can then use this object as needed during a test:

Download code/rails_xt/test/unit/person_test.rb

def test_find_by_first_name

assert_equal people(:first),

Person.find_by_first_name('Stuart')

end

Rails is clever about injecting fixture objects into your database. During

testing, Rails uses a test-specific database, so unit tests will not blow

away your development (or production!) data. Since the fixtures provide

a reliable initial setup, you will find that your model tests rarely need

to implement a setup() method at all.

Managing Your Fixture Data

Unfortunately, fixture editing often gets more complex, repetitive, and

prone to error. Here’s a quips fixture on the way to disaster:

quip_1:

id: 1

author_id: 1

text: This is quip 1

quip_2:

id: 2

author_id: 1

text: This is quip 1

48 more...

Fortunately, Rails offers an elegant solution to this kind of repetition.

Before handing your fixture to the YAML parser, Rails processes the file

as an Embedded Ruby (ERb) template. ERb is Ruby’s templating lan-

guage, which means you can intersperse Ruby code in your templates.1

With ERb, the quips fixture becomes this:

Download code/rails_xt/test/fixtures/quips.yml

<% (1..50).each do |i| %>

quip_<%= i %>:

id: <%= i %>

author_id: <%= 1+(i%2) %>

text: This is quip <%= i %>

<% end %>

1. ERb is also used in Rails views; see Chapter 6, Rendering Output with ActionView, on

page 167 for more ERb examples.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/unit/person_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/quips.yml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=209

RAILS TESTING CONVENTIONS 210

Verifying that the quips load correctly is easy enough. You can use a

Rake task to load all fixtures and then use script/console and have a

look around:

$ rake db:fixtures:load

(in /Users/stuart/FR_RAILS4JAVA/Book/code/rails_xt)

$ script/console

Loading development environment.

>> Quip.count

=> 50

Functional Testing

Now that you have seen a model test in action, let’s look at testing a

Rails controller.

$ script/generate controller People

create app/views/people

create app/controllers/people_controller.rb

create test/functional/people_controller_test.rb

create app/helpers/people_helper.rb

The file app/controllers/people_controller.rb is the controller itself and is

covered in detail in Chapter 5, Coordinating Activities with ActionCon-

troller, on page 133. Both app/views/people and app/helpers/

people_helper.rb are view code, covered in Chapter 6, Rendering Out-

put with ActionView, on page 167. That leaves the functional test file functional test

test/functional/people_controller_test.rb, which initially looks like this:

require File.dirname(__FILE__) + '/../test_helper'

require 'people_controller'

Re-raise errors caught by the controller.

class PeopleController; def rescue_action(e) raise e end; end

class PeopleControllerTest < Test::Unit::TestCase

def setup

@controller = PeopleController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

end

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=210

RAILS TESTING CONVENTIONS 211

As you can see, a functional test in Rails is nothing more than a unit

test for a controller. Much of the code here is similar to the model test

case, with two noteworthy differences:

• Controller tests reopen the controller to redefine rescue_action(). In

production code, rescue_action() handles reporting and logging for

unhandled exceptions. But in test code, we just want exceptions

to bubble through and trigger test failures. This is a good exam-

ple of the usefulness of open classes, discussed in Section 3.1,

Extending Core Classes, on page 72.

• Controller tests have a setup() method, which establishes a @con-

troller, plus a @request and @response that can be used to simulate

interacting with an HTTP request.2

Test Automation with Rake

In the preceding examples in this section, we have run tests from a

single .rb file. Rails applications also include Rake tasks to automate

running a set of tests. (Rake is an automation tool similar to Ant and

is covered fully in Chapter 8, Automating the Development Process, on

page 233.) Here is how you would use the test:units Rake task to run all

model tests:

$ rake test:units

(in /Users/stuart/FR_RAILS4JAVA/Book/code/rails_xt)

/opt/local/bin/ruby -Ilib:test\

"/opt/local/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_loader.rb"\

"test/unit/person_test.rb" "test/unit/quip_test.rb"

Started

..

Finished in 0.315247 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

The test:units task is one of several standard testing tasks, all of which

are summarized in Figure 7.1, on the following page.

At this point someone might argue that you have everything you need

to test Rails applications. You have a testing framework (Test::Unit),

an automation tool (rake), and a code generator that establishes sim-

ple, easy-to-remember naming conventions (script/generate). Most web

application frameworks do not even do this much, but Rails goes much

2. “Stub” classes such as TestRequest and TestResponse are good examples of the benefit of

duck typing, discussed in Section 3.7, Duck Typing, on page 89.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=211

RAILS EXTENSIONS TO TEST::UNIT 212

Test Task Usage

default Runs unit and functional tests

test Runs unit and functional tests

test:functionals Runs all functional (controller) tests

test:integration Runs all integration tests (controller tests that can

have multiple sessions across multiple controllers)

test:plugins Tests third-party plugins used by this Rails appli-

cation

test:recent Runs tests for files changed in past ten minutes

test:uncommitted Runs tests for files not yet committed to source

control

test:units Runs all unit tests

Figure 7.1: Rails testing tasks

further. In Section 7.3, Rails Extensions to Test::Unit, you will see that

Rails provides extensions to Test::Unit and a generator (script/generate

scaffold) to show you how to use them.

7.3 Rails Extensions to Test::Unit

The easiest way to get started with Rails’ extensions to Test::Unit is to

look at the tests you get for free with the Rails scaffold:

$ script/generate scaffold Person

Most of the scaffold code is examined in Section 1.2, Rails App in Fifteen

Minutes, on page 21. Here, we will focus on one generated file, the func-

tional test test/functional/people_controller_test.rb. We will take the People-

ControllerTest class apart, line by line. First, the test includes fixtures:

Download code/rails_xt/test/functional/people_controller_test.rb

fixtures :people, :users

The scaffold generator assumes that the PeopleController deals with peo-

ple, and it sets the fixtures accordingly. All but the most trivial applica-

tions will find that controllers sometimes interact with more than one

model class. When this happens, simply add more other models to the

fixtures line. For example:

fixtures :people, :widgets, :thingamabobs, :sheep

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/people_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=212

RAILS EXTENSIONS TO TEST::UNIT 213

Next comes the setup method:

def setup

@controller = PeopleController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Almost all functional tests simulate one (or more) web request/response

cycles. Therefore, the @request and @response variables are instantiated

for each test.

Now for a real test. The scaffold generates an index page that simply

renders a list view of the model contents. Here’s the test for the index

page:

def test_index

get :index

assert_response :success

assert_template 'list'

end

First, the get() method simulates an HTTP GET on a controller. The

one-argument version seen here specifies a Rails action name. Then

the Rails assertion assert_response :success asserts that the response is

a success, that is, HTTP status 200. The Rails assertion assert_template

’list’ asserts that the response was rendered from the list template.

As Java programmers, we are tempted to ask, “Where are the objects?”

Maybe test_index() ought to look more like the following code, with ex-

plicit objects:

hypothetical, with explicit objects

@controller.get :index

assert_equal :success, @response.status

assert_equal 'list', @response.template

The two previous examples are functionally equivalent. The difference

is one of style. In Java, we tend to prefer to make objects explicit. In

Ruby, but especially in Rails, we prefer to let the “obvious” thing be

implicit where possible. Try reading both versions aloud to get a better

sense of the difference. Next, the scaffold tests the list action:

def test_list

get :list

assert_response :success

assert_template 'list'

assert_not_nil assigns(:people)

end

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=213

RAILS EXTENSIONS TO TEST::UNIT 214

Most of this code is familiar from test_index(). The novel part is the fol-

lowing:

assert_not_nil assigns(:people)

The assigns variable is special. If you create an instance variable in your

controller, that variable will magically be available to your view tem-

plate. The magic is actually quite simple: Rails uses reflection to copy

controller variables into a collection, which is then copied back into the

view instance. The collection is named assigns, so the previous assertion

can be read “Assert that the controller created a non-nil variable named

people.”

Next, the scaffold tests the show action:

def test_show

get :show, :id => 1

assert_response :success

assert_template 'show'

assert_not_nil assigns(:person)

assert assigns(:person).valid?

end

This test looks a little different, because the show method expects a

specific person to show. Rails’ default behavior is to identify specific

model instances by adding an id to the URL, so the call to get() includes

a second argument to pass in the id of a person:

get :show, :id => 1

The general form of get() can handle any possible context for a request:

get(action=nil, parameters=nil, session=nil, flash=nil)

How can we be sure that a person with an ID of 1 exists? Look to the

fixture file test/fixtures/people.yml:

Download code/rails_xt/test/fixtures/people.yml

first:

id: 1

first_name: Stuart

last_name: Halloway

The other bit of novelty in test_show() is the valid?() test:

assert assigns(:person).valid?

This is just ActiveRecord’s standard support for validation, discussed in

Section 4.5, Validating Data Values, on page 113. As you add validation

methods to the Person class, the call to valid?() will automatically become

smarter.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/people.yml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=214

RAILS EXTENSIONS TO TEST::UNIT 215

The scaffold’s test_new() does not introduce any new concepts, so we’ll

skip it. Next, then, is test_create():

Download code/rails_xt/test/functional/people_controller_test.rb

def test_create

num_people = Person.count

post :create, :person => {}

assert_response :redirect

assert_redirected_to :action => 'list'

assert_equal num_people + 1, Person.count

end

This presents several new ideas. Unlike the methods discussed so far,

create actually changes the database. This has several implications for

our test. First, the test calls post() instead of get(), since the create()

operation is not idempotent.3 Second, we want to test that the database

changes in an appropriate way. The following line:

num_people = Person.count

captures the number of people before the create() operation, and the

following line:

assert_equal num_people + 1, Person.count

verifies that exactly one person is created. (If you want, you could per-

form a more rigorous test here and make sure that the new person

matches the arguments passed in.)

A third implication of mutating operations such as create() is that we

should not expect a :success response. Instead, a successful update

redirects to the show action. The following lines:

assert_response :redirect

assert_redirected_to :action => 'list'

verify that create() redirects correctly.

The remaining scaffold methods (test_edit(), test_update(), and test_

destroy()) do not introduce any new testing concepts, although you may

want to read them to cement your understanding of the scaffold.

3. An idempotent operation can be performed any number of times with no effect beyond

the effect of executing once. Idempotent operations are very friendly to proxies and

caches, because there is no harm (other than wasted bandwidth) in performing the oper-

ations an extra time, now and then. Idempotent operations have their own HTTP verb

(GET).

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/people_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=215

INTEGRATION TESTING 216

Why the Scaffold Redirects After a POST

Redirecting after a POST makes it difficult for users to acciden-
tally submit the same update twice. (You have probably seen
the double-update problem in poorly written web applications.
One symptom is the browser warning “You are about to resub-
mit a URL that contains POST data. Are you sure?”)

Rails applications typically do not suffer from the double-
update problem, because a reasonably good solution (the
redirect) is baked into the scaffold.

7.4 Integration Testing

Integration tests were added in Rails 1.1. You can create an integration Integration tests

test with the integration_test generator:

script/generate integration_test QuipsSample

Integration tests start like other tests, by including the TestHelper and

any necessary fixtures. The only difference is that they extend Action-

Controller::IntegrationTest:

Download code/rails_xt/test/integration/quips_sample_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class QuipsSampleTest < ActionController::IntegrationTest

fixtures :quips, :users, :roles, :roles_users

At their simplest, integration tests look like an alternative syntax for

functional tests:

def test_index_redirects_to_login

get '/quips/index'

assert_response :redirect

follow_redirect!

assert_response :success

assert_template 'account/login'

end

In test_index_redirects_to_login, the call to get takes the actual URL, in-

stead of the hash of routing arguments. This implicitly tests the routing

code as well. If you don’t want that, you can always pass the standard

url_for arguments instead.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/integration/quips_sample_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=216

INTEGRATION TESTING 217

Where integration tests shine is in grouping the low-level testing prim-

itives into recognizable user actions. To demonstrate this, let’s write

a test that demonstrates a hypothetical user (Quentin) logging in and

destroying a quip. First, we write the test itself:

def test_quentin_deletes_post

user_session(:login=>:quentin, :password=>:test) do |quentin|

quentin.logs_in

quentin.destroys_quip(1)

end

end

The nice aspect of this syntax is its close resemblance to English: “Using

credentials quentin/test, Quentin logs in and destroys Quip 1.” Now we

just have to make the syntax work.

Integration tests provide an open_session method that creates a session

to represent a single user’s interaction with the application. We can

implement our user_session in terms of open_session:

def user_session(credentials)

open_session do |sess|

sess.extend UserActions

sess.credentials = credentials

yield sess

end

end

The sess object returned by open_session implements all the integration

test methods: get, post, assert_response, follow_redirect!, and so on. Of

course, it does not implement our domain-specific methods logs_in and

deletes_quip. Not to worry. In user_session we simply have sess extend a

module named UserActions that provides these methods.

Finally, we create the private module UserActions to define our domain-

specific methods:

private

module UserActions

attr_accessor :credentials

def logs_in

post '/account/login', credentials

assert_response :redirect

follow_redirect!

assert_response :success

assert_template 'account/index'

end

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=217

RAILS TESTING EXAMPLES 218

def destroys_quip(id)

post '/quips/destroy', :id=>id

assert_response :redirect

follow_redirect!

assert_response :success

assert_template 'quips/list'

end

end

Now that we have logs_in and deletes_quip, we will probably reuse them

in a bunch of other tests.

You may think we have worked through this entire example backward.

We started from the top (recognizable user actions) and built the plumb-

ing underneath. In many cases, it may be easier to start at the bottom

and then compose the higher-level operations.

A nice feature of Ruby is that you can go both ways4 (or any way in

between). Sometimes starting from the top helps you create a better

API: Forget about what is possible for a moment, and just write the

best expression of your intent. Then leverage Ruby’s flexibility to make

the syntax work for you, instead of the other way around.

You might choose to supplement or replace integration testing with

automated tests that run in the web browser. Testing in the browser

evaluates the external interface of the system, without any knowledge

or assumptions about the implementation details.

Selenium is an excellent open source framework for this kind of testing

and is covered in Section 6.10, Black-Box Testing with Selenium, on

page 192.

7.5 Rails Testing Examples

This section demonstrates several unit tests from the real world: Rails’

own test suite. We have picked these tests to highlight specific ways in

which the Ruby libraries or language lead to approaches that would be

unusual or unthinkable in Java.

4. We’ll be disappointed if this is not quoted out of context.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=218

RAILS TESTING EXAMPLES 219

Testing the Inflector

The Inflector module implements all of Rails’ clever management of

names, such as conversions between singular and plural:

$ script/console

Loading development environment.

>> Inflector.pluralize "robot"

=> "robots"

>> Inflector.pluralize "pony"

=> "ponies"

>> Inflector.pluralize "sheep"

=> "sheep"

As you can imagine from this example, Inflector’s unit tests need to cover

normal plurals, plus a variety of special rules. You might expect the unit

tests to look something like this:

Download code/rails_xt/samples/unit/inflector_test.rb

hypothetical

def test_pluralize

assert_equal "searches", Inflector.pluralize("search")

assert_equal "switches", Inflector.pluralize("switch")

etc.

end

The actual test code looks like this:

Download code/rails/activesupport/test/inflector_test.rb

SingularToPlural.each do |singular, plural|

define_method "test_pluralize_#{singular}" do

assert_equal(plural, Inflector.pluralize(singular))

assert_equal(plural.capitalize,

Inflector.pluralize(singular.capitalize))

end

end

SingularToPlural.each do |singular, plural|

define_method "test_singularize_#{plural}" do

assert_equal(singular, Inflector.singularize(plural))

assert_equal(singular.capitalize,

Inflector.singularize(plural.capitalize))

end

end

The trick here is extracting data from code. Rather than embed a list

of singulars and their plurals in the code, the Inflector tests extract the

data into SingularToPlural. You should be able to guess the type of Singu-

larToPlural, which is a Hash:

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/unit/inflector_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails/activesupport/test/inflector_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=219

RAILS TESTING EXAMPLES 220

SingularToPlural = {

"search" => "searches",

"switch" => "switches",

"fix" => "fixes",

dozens more...

}

The SingularToPlural.each blocks call define_method() to create a new test

method for each pair in SingularToPlural. define_method() works almost

like def(), except you can use a runtime string value for the method

name. This approach has two advantages over directly coding each

assertion:

• The code is DRY. If the form of each assertion ever has to change,

you can change one line of code, instead of dozens. In fact, we

have already taken advantage of this by running the test in both

directions, from plural to singular as well as from singular to plu-

ral.

• The SingularToPlural is easy to read, because it separates intent

(“This is a map of singulars to plurals...”) from implementation

detail (“...that we can test with Test::Unit and Inflector”).

The key Ruby features that enable Rails’ approach are as follows:

• Literal syntax for key data types such as Hash. If you had to make

method calls to populate the SingularToPlural object, you would harm

both the readability and the DRYness.

• The ability to dynamically define methods with define_method().

Without this ability, you would have to call tests in a loop, instead

of creating tests in a loop. Creating named tests is better because

XUnit frameworks such as JUnit and Test::Unit report the name

of the tests that fail.

How would you test an Inflector in Java? What would be different?

Silencing Warnings

Unit testing frameworks typically send output to the console. Even if

you use a graphical wrapper (the famous green bar/red bar of JUnit),

your tests will use the console when they are running unattended, in

automated or continuous integration builds.

This use of the console poses a small problem. What if the program itself

uses the console too? Your testing output will be mixed with the pro-

gram output. This is particularly annoying because unit tests should be

able to run in a “no news is good news” mode—absolute silence unless

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=220

RAILS TESTING EXAMPLES 221

a failure has occurred. How do you get your program to shut up so its

output does not distract your clean, green, no-output tests?

In Rails, this problem occasionally arises when test setup and teardown

needs to cheat a little. The most common example in the Rails code

base appears to be resetting constants. Usually, resetting constants is

a bad idea and generates a warning. But resetting a constant may be

exactly what you want to do when creating a sandbox for a particular

test. Many Rails tests use (different) versions of a sample struct named

Post. This doesn’t cause any warnings, because conflicting versions of

Post are created inside a silence_warnings block:

Download code/rails/actionpack/test/template/date_helper_test.rb

silence_warnings do

Post = Struct.new("Post", :written_on, :updated_at)

end

The silence_warnings() method turns off warnings for the duration of

a block. The block syntax is particularly nice here, because with the

indentation you can guess what silence does without even knowing

Ruby. Here’s how it works:

Download code/rails/activesupport/lib/active_support/core_ext/kernel/reporting.rb

def silence_warnings

old_verbose, $VERBOSE = $VERBOSE, nil

yield

ensure

$VERBOSE = old_verbose

end

silence_warnings() saves the current $VERBOSE level, sets $VERBOSE to nil,

executes its block, and restores the original $VERBOSE level. You will find

blocks are useful any time you need this kind of “wrapper” behavior.

Does the same idiom exist in Java? Sort of. Another place where a

“wrapper” behavior is useful is when opening and closing database con-

nections. In Java, the Spring frameworks wraps JDBC calls, so you

don’t have to manage a finally block and explicitly close() JDBC connec-

tions yourself:

//t is a Spring JDBCTemplate

List l = t.query("SELECT title FROM events", new RowMapper() {

public Object mapRow(ResultSet rs, int i) throws SQLException {

return rs.getString("title");

}

});

Where in Ruby you would use a block, in Java you see a one-method

interface (for example, RowMapper), plus an anonymous inner class to

http://media.pragprog.com/titles/fr_r4j/code/code/rails/actionpack/test/template/date_helper_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails/activesupport/lib/active_support/core_ext/kernel/reporting.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=221

MEASURING CODE COVERAGE WITH RCOV 222

implement a single method (for example, mapRow()). Syntax matters.

The anonymous inner class idiom is bulky enough that it often goes

unused, even where it could greatly DRY the code. Ruby’s blocks are

appropriate in most places where an anonymous inner class would be

used in Java.

7.6 Measuring Code Coverage with rcov

Code coverage measures the degree to which code is covered by tests.

Code coverage has been around since the 1960s. In the Java world,

code coverage is provided by open source tools such as Cobertura5 and

commercial products including Clover.6 In the Ruby world, you can use

the open source rcov7 for code coverage. rcov is available as a gem, and

you can install it via the following:

gem install rcov

The instrumentation required to measure code coverage can make your

test run slower—a lot slower. To offset this, rcov includes a native

extension that makes rcov run more than 100 times faster. You should

definitely build these extensions. After installing rcov, navigate into

your gems to where rcov is installed, and run the following:

ruby setup.rb

Once installed, rcov is available as a Rake task and as the command-

line tool rcov. We will demonstrate the Rake task version. In the People

sample application, there is a coverage task:

Download code/people/lib/tasks/rcov.rake

namespace 'rcov' do

begin

require 'rcov/rcovtask'

Rcov::RcovTask.new do |t|

t.name = 'test'

t.libs << "test"

t.test_files = FileList['test/**/*test.rb']

t.verbose = true

t.rcov_opts = ['-x', '^lib,^config/boot']

end

rescue LoadError

ignore missing rcov

end

end

5. http://cobertura.sourceforge.net/

6. http://www.cenqua.com/clover/

7. http://eigenclass.org/hiki.rb?rcov

http://media.pragprog.com/titles/fr_r4j/code/code/people/lib/tasks/rcov.rake
http://cobertura.sourceforge.net/
http://www.cenqua.com/clover/
http://eigenclass.org/hiki.rb?rcov
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=222

MEASURING CODE COVERAGE WITH RCOV 223

Figure 7.2: An rcov report suggests that tests are needed

On 7, the test_files accessor specifies the tests to run. When the tests are

run, rcov will generate a report showing which lines are covered. rcov

automatically excludes certain files from this report (presumably you

are not interested in code coverage for the Ruby standard library or for

the tests themselves). We want to exclude even more files, so on line 9,

the rcov_opts accessor excludes lib and config/boot. The rescue LoadError

protects users who do not have rcov installed (the default behavior of

Rails is to bomb out of Rake if an exception is unrescued while reading

a task).

With the task in place, rake rcov:test will generate a set of HTML reports

with an index page at coverage/index.html. At one point while developing

the Rails XT application, the coverage index page looked like Figure 7.2.

These numbers look pretty good—it appears most lines are being tested.

But the QuipsController has some uncovered lines. Clicking the name of

the file shows covered lines in drab green and uncovered lines in red.

The offending lines are shown in Figure 7.3, on the following page. Aha!

Somebody wrote the Ajax examples (search and better_search) without

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=223

MEASURING CODE COVERAGE WITH RCOV 224

Figure 7.3: An rcov file report with color-coding

writing any tests. After adding the appropriate tests, another rcov run

showed that all lines were covered.

We find code coverage to be an important part of the overall testing

strategy, but the raw percentages are meaningless without context.

Several factors can create artificially high (or low) coverage percentages:

• Methods that write methods (such as attr_accessor) create code

without any corresponding source code lines. Since rcov is line-

oriented, these methods are invisible.

• Line-oriented coverage missed other things as well. If a method

combines multiple boolean expressions and then branches, simple

line coverage does not guarantee that all the expressions are being

tested.

• The choice of files to include (and exclude) from reporting can

overwhelm significant data with irrelevant noise.

Rather than obsess over the absolute number, it is more useful to com-

pare coverage numbers across libraries or across time. If some modules

have consistently lower coverage than others, why is that? There may

be a good reason, and it would be wise to document it. If a particular

module’s coverage is drifting up or down over time, does this indicate

a real change in testing quality, or is it an artifact of something else?

A particularly good use of coverage is in estimating the risk associated

with change requests. If code has very high coverage, then work esti-

mates in that code will probably be more reliable.

We have also found that code coverage testing has peripheral benefits.

rcov will tend to run your tests in a different order than Rake. Since

tests are supposed to be independent, running them in a different order

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=224

TESTING INTERACTIONS WITH MOCK OBJECTS 225

should not matter. But our experience is that unintended dependencies

tend to creep in, and rcov often flushes these out. One team we know

has taken this to its logical extreme, adding a randomizer to Rake so

that tests run in a different order every time.

7.7 Testing Interactions with Mock Objects

Up to this point, the examples in this chapter have been concerned with

testing object state. Most tests are written this way:

1. Create an object to test.

2. Call methods on the object.

3. Assert that the object’s state is valid.

This approach to testing can lead to issues when the object you want

to test has nontrivial relationships with other objects. Imagine the fol-

lowing scenario:

1. Create an object A that you want to test.

2. Call some methods on A. Those methods call other methods on

objects B and C.

3. Assert that A, B, and C are in a valid state.

Oops. Now our test for A depends on the implementation details of

B and C. Ideally, we want to test A in isolation. The solution to this

dilemma is mock objects. A mock object performs two tasks. First, mock objects

it replaces an object that we are not interested in testing. Second, it

records calls made to that object. Later we can verify that the correct

calls were made and in the correct order. Instead of testing state, we

are testing interactions. The previous scenario becomes this:

1. Create an object A that you want to test.

2. Create mock objects for B and C.

3. Set your expectations for how B and C should be used. expectations

4. Call some methods on A. Those methods call other methods on

(mock!) objects B and C.

5. Assert that A is in a valid state.

6. Verify the mock objects. Verification compares your expectations Verify

with the actual calls made to B and C and fails the test if they do

not match.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=225

TESTING INTERACTIONS WITH MOCK OBJECTS 226

To see how mock objects are useful in practice, consider how you would

write a test for the manager layer in our Struts sample application.

Classes such as PersonManager delegate most of their work to instances

in the DAO layer, such as PersonDao. To test PersonManager, we need to

create a mock instance of PersonDao. Then we can set expectations on

that mock, call some methods on a PersonManager, and verify that the

PersonDao is used as expected.

Since the Java SDK does not include mock object support, the first step

is to select a third-party framework. We will be using jMock,8 a popular

open source library:

Download code/appfuse_people/test/service/com/relevancellc/people/service/PersonManagerTest.java

import org.jmock.Mock;

We instantiate our objects in the test setup:

protected void setUp()

throws Exception {

super.setUp();

personDao = new Mock(PersonDao.class);

personManager.setPersonDao((PersonDao) personDao.proxy());

}

Next, we write the test:

public void testGetPeople()

throws Exception {

List results = new ArrayList();

person = new Person();

results.add(person);

personDao.expects(once()).method("getPeople")

.will(returnValue(results));

List people = personManager.getPeople(null);

assertTrue(people.size() == 1);

personDao.verify();

}

On line 6, we set the expectations for personDao. The getPeople method

should be called once, returning a list of Person objects. Notice how

the API calls read almost like English. Next, we invoke the personMan-

ager. Finally, on line 10, we verify that the personManager behaved as

expected. In this case we are not testing any state at all; we are testing

only that personManager interacted with personDao as expected.

8. http://www.jmock.org/

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/test/service/com/relevancellc/people/service/PersonManagerTest.java
http://www.jmock.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=226

TESTING INTERACTIONS WITH MOCK OBJECTS 227

Like Java, Ruby does not ship with a mock object library. We will use

FlexMock.9 You can install FlexMock via RubyGems:

gem install flexmock

To make FlexMock available to all tests in a Rails application, require it

in test_helper.rb:

Download code/rails_xt/test/test_helper.rb

require 'flexmock'

Now for a test. The Rails XT sample application does not have a man-

ager layer, so we will introduce a new feature in the controller layer.

Instead of simply accessing all quips, users should be allowed to filter

quips based on their preferences. Our application will store user pref-

erences in the session and use a third-party API to filter content. The

third-party API will be implemented through a @filter_service instance on

the controller.

It is possible to call the FlexMock API via freestanding classes. It is

much simpler, however, to just begin our test case by including Flex-

Mock::TestCase:

Download code/rails_xt/test/functional/quips_controller_test.rb

include FlexMock::TestCase

Adding FlexMock::TestCase gives us helper methods for creating mocks,

and it automatically validates the mocks during teardown.

The QuipsController should provide a new method, list_with_user_filter. This

method should return all quips, minus any that are rejected by the

FilterService. Here is the test:

Download code/rails_xt/test/functional/quips_controller_test.rb

def test_list_with_user_filter

filter = flexmock("filter")

filter.should_expect do |m|

m.filter(Array,nil).returns([quips(:quip_1)])

end

@controller.instance_variable_set('@filter_service', filter)

get :list_with_user_filter

assert_equal [quips(:quip_1)], assigns(:quips)

assert_response :success

assert_template 'list_with_user_filter'

end

9. http://onestepback.org/software/flexmock/

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/test_helper.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_controller_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_controller_test.rb
http://onestepback.org/software/flexmock/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=227

TESTING INTERACTIONS WITH MOCK OBJECTS 228

On line 2, the flexmock method creates a mock object. The argument

is a name that will be used in error messages. In the Java version,

the mock had to have a specific interface so jMock could know what

methods the mock should simulate. Since Ruby is dynamically typed,

we do not specify any specific module or class for the mock.

On line 3, we set the expectations for the mock. FlexMock takes advan-

tage of Ruby’s blocks to set expectations through a recorder object. On

line 4, the block parameter m is a recorder. Instead of saying m.should_

expect.filter, we can simply say m.filter; the should_expect is implicit. Flex-

Mock’s matching of parameters takes advantage of Ruby’s case equality

operator (===). So, the first argument to filter must be an instance of

Array. This array will be the result of Quip.find(:all), and we could have

chosen to match it exactly by instantiating the entire collection in the

test. The second argument nil matches the user’s filtering preferences,

which are initially nil.

On line 6, we set the controller’s @filter_serviceto our mock filter. By

calling instance_variable_set, we avoid the requirement that the controller

provide a setter for @filter_service. There is no call to verify at the end of

the method; FlexMock mocks verify automatically at the end of the test.

Ruby’s blocks and case equality make it easy to define flexible argu-

ment matching. Imagine that we wanted to verify that none of the quips

passed to the @filter_service has non-nil text. FlexMock would handle

this with FlexMock.on:

Download code/rails_xt/test/functional/quips_controller_test.rb

matcher = FlexMock.on {|args| Array === args && args.all? {|a| a.text}}

filter.should_expect do |m|

m.filter(matcher,nil).returns([quips(:quip_1)])

end

The previous tests demonstrates another advantage of mock objects.

Mock objects allow you to test interactions with code that does not exist

yet. In testing the QuipsController, we never create a real filter service. At

the time of this writing, there is no real filter service. This decoupling

lets teams of developers work on related subsystems without having to

wait for completed implementations of every object.

The mock objects in this section replace objects not under test and ver-

ify that those objects are called in an appropriate fashion. Sometimes

you want to replace objects not under test, but you don’t care how they

are called. This subset of mock object capability is provided by stub

objects.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=228

REDUCING DEPENDENCIES WITH STUB OBJECTS 229

7.8 Reducing Dependencies with Stub Objects

It is all too easy to write fragile tests that depend on other classes. Think

about how you might test this simple controller method:

Download code/people/app/controllers/people_controller.rb

def create

@person = Person.new(params[:person])

if @person.save

flash[:notice] = 'Person was successfully created.'

redirect_to :action => 'list'

else

render :action => 'new'

end

end

To test both branches of the code, you will need a valid Person and

an invalid Person. The problem is that you are supposed to be testing

PersonController, not Person. If you pick valid and invalid arguments for

the real Person class, you introduce a dependency on Person. This is a

maintenance headache. When you change Person, you will break the

PersonTest (OK), but you will also break the PersonControllerTest (aargh).

To avoid this problem, we can test a stub version of Person. The stub stub

replaces Person with behavior that we define locally, breaking the exter-

nal dependency. This probably sounds similar to the mock objects from

the previous section, and it is. In fact, we will use the same library for

stubs, FlexMock. Here is a stub-based test for creating a Person:

Download code/people/test/functional/people_controller_test.rb

def test_create_succeeds

flexstub(Person).should_receive(:new).and_return {

flexmock('person') do |m|

m.should_receive(:save).and_return(true)

end

}

post :create

assert_response :redirect

assert_redirected_to :action => 'list'

end

On line 2, flexstub temporarily modifies the behavior of Person. For the

remainder of this test, calls to Person.new will invoke this block of code

instead. On line 3 we mock an instance of Person, and on line 4 we cause

save to always succeed. This test method will test how the controller

handles a successful Person create, regardless of how the real Person

class works.

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/people_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/test/functional/people_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=229

ADVANCED CONSIDERATIONS 230

Testing the failure case is a little more complex, because the failure

case hands the Person instance off to new.rhtml. The template expects

a Person to implement various accessors and to return a working errors

property. This requires another mock for the errors collection, plus the

should_ignore_missing call to make the mocks more forgiving:

Download code/people/test/functional/people_controller_test.rb

def test_create_fails

flexstub(Person).should_receive(:new).and_return {

errs = flexmock('errs') do |m|

m.should_ignore_missing

end

inst = flexmock('person') do |m|

m.should_ignore_missing

m.should_receive(:errors).and_return(errs)

m.should_receive(:save).and_return(false)

end

}

post :create

assert_response :success

assert_template 'new'

end

Setting up stubs may seem like overkill for small projects, but it can be

lifesaver as projects grow. The first time a refactoring sets off a chain of

dependencies and breaks 500 tests, you will be wishing for those stubs.

7.9 Advanced Considerations

Now that you have seen the basics of unit testing in Rails, the following

are some more advanced issues to think about:

Naming Conventions Considered Harmful?

The use of naming conventions—such as prefixing all unit tests with

“test”—is troubling to some. The more recent versions of JUnit allows

the use of Java 5 annotations for marking a test. For example, this is

allowed:

@Test public void tag()

instead of the following:

public void testTag()

By comparison, Ruby doesn’t have annotations. Since the object model

is so flexible, results similar to annotations can usually be achieved

with class methods. But nobody in the Ruby community cares. As far

http://media.pragprog.com/titles/fr_r4j/code/code/people/test/functional/people_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=230

RESOURCES 231

as we know, nobody has yet felt the need to provide an automated

testing solution that avoids the use of naming conventions.

One Size Does Not Fit All

Not everyone on in the Java world uses JUnit. TestNG10 is also pop-

ular. TestNG addresses a set of limitations in JUnit’s approach to test

setup, teardown, and integration with automation. Similar limitations

in Test::Unit would not/do not drive anyone to write a new library. Ruby

is flexible enough that issues with Test::Unit are likely to be handled in

an ad hoc way.

Behavior-Driven Development

One possible competitor to Test::Unit in the Ruby world is RSpec.11

RSpec is framework for writing executable specifications of program

behavior. In terms of implementation, executable specifications may

not be much different from unit tests. But the associated mind-set is

different, and the terminology used in RSpec may lead to better project

automation. Java got there first; RSpec is inspired by JBehave.12

The automated testing features discussed in this chapter provide a

dynamic and active way to verify that your application code works cor-

rectly. Dynamic languages like Ruby are particularly well suited to writ-

ing automated tests, because it is easy to create a variety of different

test-bed environments. This is fortuitous, since Rails applications need

good tests—there is no compiler to catch simple mistakes.

Once you have written good tests, the next obvious step is to auto-

mate their invocation on a regular cycle. The next chapter, Chapter 8,

Automating the Development Process, on page 233, explains how to use

Rake to automate not just your tests but all the other repetitive tasks

associated with software development and deployment.

7.10 Resources

A Guide to Testing the Rails http://manuals.rubyonrails.com/read/book/5

The Ruby on Rails manual for writing tests is fairly comprehensive and includes

some pieces not covered here such as tests for ActionMailer.

10. http://testng.org

11. http://rspec.rubyforge.org/

12. http://jbehave.codehaus.org/

http://manuals.rubyonrails.com/read/book/5
http://testng.org
http://rspec.rubyforge.org/
http://jbehave.codehaus.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=231

RESOURCES 232

Annotation Hammer http://www.infoq.com/articles/Annotation-Hammer

Venkat Subramaniam explains Java annotations. In particular, he looks at the

decision to use annotation to mark test methods in Java 1.4 and considers the

trade-offs between naming conventions and annotation metadata.

In Pursuit of Code Quality: Don’t Be Fooled by the Coverage

Report. . .
. . . http://www-128.ibm.com/developerworks/java/library/j-cq01316/index.html?ca=drs

Andrew Glover analyzes ways the coverage reports can be misused and advises

how to use coverage history to guide (but not dictate!) development efforts.

Ruby/Rails Unit Testing in Less Than 1 Second. . .
. . . http://jayfields.blogspot.com/2006/09/rubyrails-unit-testing-in-less-than-1.html

Jay Fields shows how to reduce test dependencies, particularly dependen-

cies on the database, and explains how his team uses Stubba and Mocha

(http://rubyforge.org/projects/mocha/) for mock and stub objects.

ZenTest . http://rubyforge.org/forum/forum.php?forum_id=8885

ZenTest is a set of tools for doing Extreme Programming (XP) faster with

Test::Unit. ZenTest includes tools to generate missing methods, interpret asser-

tion diffs, run tests continuously, and automatically test on multiple version of

Ruby.

http://www.infoq.com/articles/Annotation-Hammer
http://www-128.ibm.com/developerworks/java/library/j-cq01316/index.html?ca=drs
http://jayfields.blogspot.com/2006/09/rubyrails-unit-testing-in-less-than-1.html
http://rubyforge.org/projects/mocha/
http://rubyforge.org/forum/forum.php?forum_id=8885
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=232

Chapter 8

Automating the Development
Process

The process of software development begs for a lot of automation. Given

the source code and other files that make up a project, you may want

to trigger processes to do the following:

• Compile the code

• Deploy from one environment to another

• Vary settings for development, testing, and production

• Run automated tests

• Start and stop server processes

• Collect profiling data

• Manage log files

• Handle dependencies on other libraries

• Configure databases and data

• And on and on and on...

You can bet that decent-sized projects will have lots of tasks like this.

Most of these tasks, in their purest, raw form, can be individually trig-

gered via some command-line tool (with appropriate settings). Remem-

bering all the right settings, and what order to invoke the tools, is

tedious and error-prone. Most programming environments include a

basic tool for this kind of automation. In classic Unix development, the

basic tool is make.1 In Java, the tool is ant. In Ruby, the tool is rake.

This chapter explains rake by comparison to ant and then demonstrates

some of the ways we use rake to manage Rails applications.

1. We find it wildly amusing that we build this chapter by typing make Rake.pdf instead

of rake Rake.pdf. Wonder whether this note will make it through the review process.. . .

RAKE BASICS 234

8.1 Rake Basics

In the Java world, rake is called ant. Let’s start with a simple Ant build

script that manages the compilation of a Java program:

Download code/Rake/simple_ant/build.xml

<project name="simple-ant" default="compile">

<target name="clean">

<delete dir="classes"/>

</target>

<target name="prepare">

<mkdir dir="classes"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

</project>

Ant build scripts are written in XML. In this example, the top-level

project element declares a name, which is the name of the project,

and declares the name of the default target to invoke when the ant target

command-line tool is run. Our default target is compile, so you would

expect that this script’s default behavior is to compile Java source code.

Here’s the output from ant:

$ ant

Buildfile: build.xml

prepare:

[mkdir] Created dir: /Book/code/Rake/simple_ant/classes

compile:

[javac] Compiling 1 source file to /Book/code/Rake/simple_ant/classes

BUILD SUCCESSFUL

Total time: 3 seconds

Three good things just happened. First, notice that ant does not need to

be told to use build.xml; it just assumes that unless told otherwise. This

is an example of “convention over configuration.” Second, even though

the default target for this script is compile, ant knows to execute the

prepare target first. If you refer to the XML configuration file, you can

see that compile depends on prepare:

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

http://media.pragprog.com/titles/fr_r4j/code/code/Rake/simple_ant/build.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=234

RAKE BASICS 235

This depends declaration is an example of dependency-based program-

ming. You do not have to explicitly call functions in some order. Instead,

you just state the dependencies, and the tool figures out the right order.

When you have only a few tasks, this may seem like nothing special;

however, when you have tens or hundreds of tasks, dependency-based

programming can enable cleaner, more readable code.

To see the third good thing that happened, you need to run ant again:

$ ant

Buildfile: build.xml

prepare:

compile:

BUILD SUCCESSFUL

Total time: 2 seconds

This time, Ant looked at the prepare and compile tasks but did not actu-

ally do anything. ant evaluates the dependencies and sees that prepare

and compile are already up-to-date. The body of the prepare target calls

the mkdir task to create a directory:

<target name="prepare">

<mkdir dir="classes"/>

</target>

A task is simply a piece of code to be executed. Many of Ant’s built-in

tasks, such as mkdir, are smart enough to do nothing if their work has

already been done. This becomes important for time-intensive tasks

such as the javac task in the body of compile:

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

Now let’s build a simple rake file. Since Ruby programs are not com-

piled, we will use a slightly different example. The following rakefile

uses Rails’ built-in CodeStatistics object to calculate lines of code and a

few other statistics for some Ruby code:

Download code/Rake/simple_rake/rakefile

require 'rake/rdoctask'

require '../code_statistics.rb'

task :default => :stats

task :clean do

rm_rf 'stats'

end

http://media.pragprog.com/titles/fr_r4j/code/code/Rake/simple_rake/rakefile
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=235

SETTING RAKE OPTIONS: IT’S JUST RUBY 236

task :prepare do

mkdir_p 'stats'

end

task :stats => [:prepare] do

require 'code_statistics'

File.open("stats/main.stat", "w") do |f|

f << CodeStatistics.new(['App Main', 'src']).to_s

end

end

Although this looks quite a bit different from Ant’s build.xml file, they

actually have quite a bit in common. Rake, like Ant, defines a set of

tasks. Also, tasks can be related by dependencies. The => should be

read “depends on.” When you run rake, more similarities appear:

$ rake

(in /Users/stuart/FR_RAILS4JAVA/Book/code/Rake/simple_rake)

mkdir -p stats

+----------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+----------------------+-------+-------+---------+---------+-----+-------+

| App Main | 1 | 1 | 0 | 0 | 0 | 0 |

+----------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 1 Test LOC: 0 Code to Test Ratio: 1:0.0

Rake automatically knows what file to use—rakefile is the default, just

as build.xml is the default for ant.

Although ant has a top-level project element specifying the default task,

rake has no equivalent. Instead, rake assumes a task named default. To

make other tasks run by default, simply make default depend on the

other tasks you want to run:

Download code/Rake/simple_rake/rakefile

task :default => :stats

By far the biggest difference is the language syntax. Where Ant uses

XML, Rake uses Ruby. All the syntax in a rakefile is “just” Ruby. The

task names are symbols, the dependencies are Ruby hashes, and the

task bodies are Ruby blocks. If you know Ruby, you know quite a bit of

Rake already.

8.2 Setting Rake Options: It’s Just Ruby

The ramifications of choosing a programming language (Ruby) instead

of a text markup language (XML) are profound, and they become more

significant as build files become more complex. To see this, let’s refactor

http://media.pragprog.com/titles/fr_r4j/code/code/Rake/simple_rake/rakefile
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=236

SETTING RAKE OPTIONS: IT’S JUST RUBY 237

both examples to deal better with input and output directories. The Ant

file specifies the output directory classes three times. If we make that

value a build property, it will be easy to change it if we ever want to build property

output to a different directory.

Download code/Rake/better_ant/build.xml

<project name="simple-ant" default="compile">

<property name="srcdir" value="src"/>

<property name="destdir" value="classes"/>

<target name="clean">

<delete dir="${destdir}"/>

</target>

<target name="prepare">

<mkdir dir="${destdir}"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="${srcdir}" destdir="${destdir}"/>

</target>

</project>

The property element lets us specify a value once and easily replace or

override it later. Once a property is established, scripts can refer to it

via the syntax ${propertyname}. Here is a similar improvement to the

rakefile:

Download code/Rake/better_rake/rakefile

Line 1 STATS_DIR = "stats"
- require 'rake/rdoctask'
- require '../code_statistics.rb'
- task :default => :stats
5 task :clean do
- rm_rf STATS_DIR
- end
- task :prepare do
- mkdir_p STATS_DIR

10 end
- task :stats => [:prepare] do
- require 'code_statistics'
- File.open("#{STATS_DIR}/main.stat", "w") do |f|
- f << CodeStatistics.count(['App Main', 'src'])

15 end
- end

Since Rake is just Ruby, there is no specialized notion of “build prop-

erties.” On line 1, STATS_DIR is a Ruby constant, and it can be passed to

methods (line 6) or interpolated into a String (line 13), just like any other

Ruby object.

http://media.pragprog.com/titles/fr_r4j/code/code/Rake/better_ant/build.xml
http://media.pragprog.com/titles/fr_r4j/code/code/Rake/better_rake/rakefile
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=237

CUSTOM RAKE TASKS: IT’S JUST RUBY 238

8.3 Custom Rake Tasks: It’s Just Ruby

Ant has more than 100 built-in tasks, if you include both core and

optional tasks. Nevertheless, you may find that you want more. Never

fear, Ant provides many extension points: You can define your own cus-

tom tasks in Java, you can define macros, or you can call out to a vari-

ety of scripting languages. For example, here is a fragment from Apache

Commons Lang’s build file:

Download code/commons-lang-2.1/build.xml

<target name="test.lang" depends="compile.tests">

<runTestCase classname="org.apache.commons.lang.LangTestSuite"/>

</target>

<target name="test.builder" depends="compile.tests">

<runTestCase classname="org.apache.commons.lang.builder.BuilderTestSuite"/>

</target>

You might guess that runTestCase is an Ant task that runs JUnit tests.

You would be right about the JUnit part, but runTestCase is not an Ant

task. It is a macro defined previously in the build file:

<macrodef name="runTestCase">

<attribute name="classname"/>

<sequential>

<junit printsummary="true" showoutput="true"

fork="${junit.fork}" haltonerror="${test.failonerror}">

<classpath refid="test.classpath"/>

<test name="@{classname}"/>

</junit>

</sequential>

</macrodef>

The macrodef defines a new task name, the attributes it allows, and how

those attributes are used. To pass attributes through to other tasks, a

new interpolation syntax @{varname} is introduced:

<test name="@{classname}"/>

We could show examples of the script task and custom tasks defined in

Java, but suffice it to say that they provide alternative answers to the

question, “How do I write functions in Ant?”

At this point, you have seen that Ant has variables/constants (proper-

ties), functions (custom tasks et. al.), and a standard library (the built-

in tasks). The more you look at Ant, the more it starts to look like a

general-purpose programming language. But it isn’t. Ant is an example

of a Domain-Specific Language (DSL). Its domain is dependency-based

project automation. Because it is written in its own custom vocabulary

http://media.pragprog.com/titles/fr_r4j/code/code/commons-lang-2.1/build.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=238

CUSTOM RAKE TASKS: IT’S JUST RUBY 239

(an XML dialect), Ant is rightly called an external DSL. That is, XML is

external to the language (Java) that Ant usually manages.

Rakefiles are also written in a DSL. But because they are written within

a programming language (Ruby), the rakefile syntax is an internal DSL.

In other words, the rakefile language lives “inside” the Ruby language.

As a result, rakefile authors use Ruby to provide any extension points

they need. To demonstrate this, here is a more complex example, taken

from the test automation built into all Rails projects. The recent task

tests code that you wrote in the last ten minutes. (The idea is to support

agile style by making it easy to run a subset of tests.)

Download code/rails/railties/lib/tasks/testing.rake

desc 'Test recent changes'

Rake::TestTask.new(:recent => "db:test:prepare") do |t|

since = TEST_CHANGES_SINCE

touched = FileList['test/**/*_test.rb'].select \

{ |path| File.mtime(path) > since } +

recent_tests('app/models/**/*.rb', 'test/unit', since) +

recent_tests('app/controllers/**/*.rb', 'test/functional', since)

t.libs << 'test'

t.verbose = true

t.test_files = touched.uniq

end

This little bit of code does quite a bit. Rake::TestTask is a task built into

Rake. It is configured by calling Ruby methods:

t.libs << 'test'

t.verbose = true

t.test_files = touched.uniq

The code to calculate which tests to run must perform two tasks: find

tests that changed recently and find tests whose models or controllers

changed recently. The first part (recently changed tests) is straightfor-

ward and takes place inline with a Ruby select:

FileList['test/**/*_test.rb'].select { |path| File.mtime(path) > since }

FileList and File are Ruby classes. In English, this line says “Find all files

ending with _test.rb anywhere under the test directory, whose modified

time is more recent than since (ten minutes ago).”

Finding changed models or controllers is a bit more complex. The goal

is to find such classes and then apply a name transformation to predict

their associated test class names. This code is complex enough to move

into a separate method named recent_tests() (not shown here).

http://media.pragprog.com/titles/fr_r4j/code/code/rails/railties/lib/tasks/testing.rake
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=239

USING RAKE IN RAILS APPLICATIONS 240

The key point here is that Rake is easy to extend. Instead of using a

special-purpose extension mechanism, you have the entire Ruby stan-

dard library at your disposal. You can extend Rake tasks with Ruby

code in situ or with any classes and methods that you define.

8.4 Using Rake in Rails Applications

And now for a bit of good news/bad news. Here is the bad news first:

Build scripts tend to be ugly, unlovely parts of any software project.

(Accuse us of prejudice if you want, but we have spent twenty years

finding this to be true with shell scripts, Make, Ant, and Rake.) Now on

to the good news: Rails applications begin life with a wonderful rakefile

already in place. Here it is, sans comments:

require(File.join(File.dirname(__FILE__), 'config', 'boot'))

require 'rake'

require 'rake/testtask'

require 'rake/rdoctask'

require 'tasks/rails'

Surprised at how little is here? All the good stuff is required in. Since

rakefiles are built atop a general-purpose language, they accrue the

associated benefits—in this case reusable libraries of tasks. The paths

that begin with ’rake’ come from Rake itself, and the ’config’ and ’task’

bits come from Rails.

With a little luck, you can ship your first Rails app without ever writing

a line of rakefile. All you need to know is how to use the tools that are

already provided. Lesson one: The - -tasks flag will tell you what tasks

are available:

$ rake --tasks

(in /Users/stuart/website)

rake db:schema:load # Load a schema.rb file into the database

rake db:sessions:clear # Clear the sessions table

... 39 more omitted for brevity

Notice the colon-delimited names. Rake uses namespaces to organize

tasks into groups. For example, the definition of db:migrate begins:

Download code/rails/railties/lib/tasks/databases.rake

namespace :db do

desc "Migrate the database through scripts in db/migrate. Target..."

task :migrate => :environment do

http://media.pragprog.com/titles/fr_r4j/code/code/rails/railties/lib/tasks/databases.rake
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=240

USING RAKE IN RAILS APPLICATIONS 241

Notice that namespace does not introduce any new syntax. It is just a

method that takes a Ruby block. The desc method before a task takes

a description that will appear in the output of rake - -tasks.

The - -help option lists the various options for Rake. We have truncated

the following output to show only a few of the most important options:

$ rake --help

rake [-f rakefile] {options} targets...

Options are ...

--dry-run (-n)

Do a dry run without executing actions.

--quiet (-q)

Do not log messages to standard output.

--require=MODULE (-r)

Require MODULE before executing rakefile.

--trace (-t)

Turn on invoke/execute tracing, enable full backtrace.

--verbose (-v)

Log message to standard output (default).

The dry-run option is useful when you are exploring a rakefile and want

to look before you leap. For continuous integration builds, it is nice to

be quiet: “No news is good news.” When things go wrong in rake, the

symptom is usually a Ruby exception. Stack traces are not shown by

default (a design decision we disagree with), but you can turn them on

with verbose. The trace option is useful for developing and debugging

rakefiles. Finally, the require option is one of many ways to change a

rakefile’s behavior. Since a rakefile is Ruby code, you can require in

overrides for any constants, variables, classes, or methods you need to

change.

Controlling Which Version of Rails You Use

Your Rails application depends on the Rails framework, but which ver-

sion? Rails provides several Rake tasks to control which version of Rails

your application will use. By default, your Rails application will use the

latest gems on your machine. If you control when and how gems are

installed on a machine and have only one Rails application, this may

be fine. You can be more conservative in several ways and request a

specific version of Rails. The tasks in the list that follows work by copy-

ing Rails into the vendor/rails directory of your project, which is early on

the Ruby load path.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=241

USING RAKE IN RAILS APPLICATIONS 242

rake rails:freeze:gems

Copies current gems into vendor/rails

rake rails:freeze:edge REVISION=nnn

Copies svn revision nnn into vendor/rails

rake rails:freeze:edge TAG=rel_1-1-0

Copies svn tag rel_1-1-0 into vendor/rails

On the other hand, you might want to take less control of which version

of Rails you get. (This sounds unlikely but might be true during devel-

opment, where you want to catch incompatibilities with newer versions

of Rails.) These tasks work by associating your Rails application with a

copy of Rails that is not directly managed by your project.

rake rails:freeze:edge

Puts the svn edge (most recent revision) into vendor/rails

rake rails:unfreeze

Undoes any freeze; back to depending on gems

If you are using Subversion as your version control system, you can

use its svn:externals facility to link the vendor/rails directory to the official

Rails repository. When you svn up the most recent changes to your own

project, you will also get the latest, greatest, not-yet-released version of

Rails. This is not recommended for production servers!

Rails also copies some files into your project that may need to be up-

dated to take advantage of newer versions of Rails. The rake rails:update

task, and its subtasks, copy the most recent versions of these files into

your project.

File Cleanup Tasks

Of the file cleanup tasks, the most important is probably log:clear. Log

files can grow without bound, so you will want to automate trimming

them back on production servers.

rake log:clear

Truncates the log files (log/*.log)

rake tmp:clear

Clears various files in tmp

Figure 7.1, on page 212, covers test-related tasks.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=242

CONTINUOUS INTEGRATION WITH CERBERUS 243

8.5 Continuous Integration with Cerberus

Rake is an excellent tool for doing dependency-based tasks such as

building and testing software projects. To complement Rake, we need

tools for source control management and for continuous integration

(CI).

Source control management tools allow you to track the history of a

software project and to manage a code base across many different

developers. Not much is language-specific about source control. Ruby

programmers tend to use the same tools that Java programmers use:

Subversion and CVS.

Continuous integration is a development practice where team members

frequently integrate their work. Each integration is verified by an auto-

matic build, so a developer will immediately know whether some part

of the application code is moving in a bad direction.

In practical terms, a continuous integration builder is a tool that does

the following:

• Monitors source control for new changes

• Automatically invokes builds with tools like rake

• Complains loudly when the build breaks, using email, chat, deco-

rative lights, lava lamps, sirens, or anything else that will help to

get a team member’s attention

Java programmers often use CruiseControl2 for CI. CruiseControl is an

open source project with good basic CI abilities, plus lots of bells and

whistles.

The Ruby world does not have anything as comprehensive as Cruise-

Control. What we do have, however, is a few simple libraries that pro-

vide a good start for CI. Our current favorite is an open source project

called Cerberus.3 Cerberus provides a simple way to build one or multi-

ple projects on a regular schedule and report build results to interested

parties. Cerberus installs as a gem:

gem install -y cerberus-0.3.0

2. http://cruisecontrol.sourceforge.net/

3. http://cerberus.rubyforge.org/

http://cruisecontrol.sourceforge.net/
http://cerberus.rubyforge.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=243

CONTINUOUS INTEGRATION WITH CERBERUS 244

The cerberus command-line tool lets you set up an automated build for

a project. We used the following command to create a Cerberus build

for the People application that accompanies this book:

cerberus add https://somewhere.pragprog.com/code/people\

APPLICATION_NAME=R4JD_People RECIPIENTS=contact@relevancellc.com

The https URL is the project repository URL. When a build fails, e-mails

with the APPLICATION_NAME in their subject line will be sent to RECIPIENTS.

Since Cerberus sends e-mails, we will need to configure a valid e-mail

account. Cerberus uses ActionMailer (a part of Rails) to send its e-

mails, and the configuration lives at .cerberus/config.yml. Here is a sim-

ple example:

publisher:

active: mail

mail:

address: www.relevancellc.com

port: 25

domain: relevancellc.com

authentication: login

user_name: some_real_user

password: some_real_password

builder:

rake:

task: migrate test

Cerberus supports other publishers not shown here: Jabber, Internet

Relay Chat (IRC), Campfire, and RSS. Adding “LavaLamp” is an exercise

for the reader.

Now that we have configured the mail transport, we can build our

project:

cerberus R4JD_People

Or all projects:

cerberus buildall

Cerberus reports nothing on the command line. However, a failed build

of the People application leads to an e-mail like the one in Figure 8.1,

on the next page. The e-mail includes the project name, the commit

log from the last source control check-in, and the log from running the

tests. Importantly, the commit log includes the identity of the person

who broke the application, in this case the dastardly stuart.halloway.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=244

RESOURCES 245

Figure 8.1: Cerberus reports a failed build

Once you have a Cerberus configuration you are happy with, you can

use an operating system–level service such as cron or the Windows Task

Scheduler to automatically run cerberus buildall on a regular schedule,

perhaps every ten minutes. Builds will run only if the repository has

changed.

Now that you are familiar with Rake and Cerberus, you are ready to

use the entire Rails stack for website development. The chapters that

follow expand from this base to web applications: web-based programs

that deliver data and services beyond browser content.

8.6 Resources

Apache Maven Simplifies the Java Build Process. . .
. . . http://www.devx.com/java/Article/17204

Well-written introduction to Maven. Maven is a build tool for Java that relies

far more on convention than on traditional Ant builds. This is useful for com-

parison with Rake.

http://www.devx.com/java/Article/17204
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=245

RESOURCES 246

Capistrano: Automating Application Deployment. . .
. . . http://manuals.rubyonrails.com/read/book/17

Capistrano is a Ruby-based deployment automation tool. Although developed

for Ruby and Rails, it can deploy applications for other language platforms as

well. Capistrano is beyond the scope of this book but well worth learning about.

The Onion Truck Strikes Again...Announcing Rake. . .
. . . http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/66974

Jim Weirich describes the original development of Rake. Read this, and read

the (linked) original Rake code. It is an incredibly powerful demonstration of

the ease of iterative development in Ruby.

Using the Rake Build Language. . .
. . . http://www.martinfowler.com/articles/rake.html

Martin Fowler explains why Rake is so powerful and introduces DSLs.

http://manuals.rubyonrails.com/read/book/17
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/66974
http://www.martinfowler.com/articles/rake.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=246

Chapter 9

Creating and Invoking Web
Services

We don’t have time for a “What are web services?” debate, so we will pick

a simple definition: A web service provides a service over the Web in a

form that can be easily consumed by other applications. This broad

definition includes all the various candidates for the “right way to do

web services”:

• Services that use the “official” web service stack of XML, XSD,

SOAP, WSDL, and the WS-* specifications

• Services that provide RESTful interfaces

• Services that deliver data in script-friendly formats such as YAML

and JSON

Both Ruby and Java provide support for all of these approaches and

various combinations thereof. (If they didn’t, it would be a condem-

nation of web services, not the languages. Web services should make

interop easy, regardless of programming language. It’s just data.)

Although both Ruby and Java support web services, the level and style

of support is much different. Java has some significant advantages:

• Far more investment has been made in the Java space. There are

more parsers, better documentation, more tools, more commercial

offerings, and better performance.

• Java interop with other platforms has been much more tested.

RESTFUL WEB SERVICES 248

But Ruby has some latent advantages:

• Ruby is a more natural match with XML. XML is dynamically

typed, like Ruby.

• Ruby is a particularly good match for JSON and YAML.

The upshot of all this is that at the time of this writing we prefer

Java for problems that are performance-sensitive or require specialized

libraries. We prefer Ruby for problems where developer productivity is

the dominant factor or where we need to build new libraries.

In this chapter, we will demonstrate building and consuming web ser-

vices in both SOAP and RESTful style. We will also talk about the XML

parser options in case you need to roll your own solution. In both Java

and Ruby, we could have taken dozens of possible approaches. We have

tried to choose approaches that are simple and common.

9.1 RESTful Web Services

Representational State Transfer (REST) was coined by Roy Fielding in

his doctoral dissertation.1 It’s worth reading the original paper, partic-

ularly if you plan to start a REST vs. SOAP brawl at your local pub.

Here are a few key points:

• In REST, endpoints on the Web represent resources. The same

resource may be exposed in different formats, and you can request

the format you want with metadata (HTTP headers). For example,

we might want to read the news in an HTML browser, and you

might want the same news in an XML feed.

• The “interface” for modifying resources is limited to a small set of

simple operations: Create, Read, Update, and Delete (CRUD). To

make things confusing, these operations are traveling under the

pseudonyms POST, GET, PUT, and DELETE.

REST advocates point out that REST scales well. The standardized

CRUD interface is friendly to caches and layered systems. The most

important reason for this is that read-only operations can be trivially

identified by anyone and cached. On the other hand, naive SOAP-based

web services bury their interfaces in application-specific XML message

bodies. These bodies are then opaque to intermediate nodes on the

Internet and cannot be cached.

1. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=248

RESTFUL WEB SERVICES 249

The scalability argument implies that REST is something you ought to

do, like eating your vegetables. In our opinion, REST’s success depends

more on a practicality: For simple tasks, REST interfaces are much

easier to program than SOAP. So, REST is something you want to do,

like eating chocolate cake.

SOAP is an XML protocol for accessing a web service. The “interface”

to a SOAP service can be anything you want. The SOAP XML body can

contain method names and parameters or simply be an arbitrary XML

document. A key component of SOAP is the SOAP header, which can

carry various kinds of metadata. SOAP headers are used to piggyback

all kinds of additional services.

Many other specifications depend on SOAP. Taken together, the specs

spell out standard ways to do error handling, transactions, end-to-end

security, and more. REST has little to say about solving these problems.

This is all oversimplified, of course. We have deliberately drawn a sharp

distinction between SOAP and REST. In practice, various in-between

strategies take advantage of both styles. For the foreseeable future, you

will need to know how to program against both SOAP and REST.

Reflecting REST’s resource-oriented approach, Rails 1.2 includes a new

generator, scaffold/resource. The easiest way to learn about REST on

Rails is to run this generator and explore how the generated code differs

from the Rails code we have seen throughout the rest of the book.

Creating RESTful Services with ActiveResource

For our REST example, we will create a RESTful interface for a database

of authors and publications:2

script/generate scaffold_resource author canonical:string\

legalname:string birthplace:string birthdate:date deathdate:date

The first argument, author, is the model name. As you have come to

expect in Rails, this will create the Author model, plus the AuthorsCon-

troller, plus associated tests. The remaining arguments are name/type

pairs and are used to create the initial migration and the view code.

When you run the generator, it adds the following line to your routes.rb:

map.resources :authors

2. The example is a trimmed-down version of the Internet Speculative Fiction Database

(http://www.isfdb.org).

http://www.isfdb.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=249

RESTFUL WEB SERVICES 250

The call to resource implements Rails’ RESTful routing. We’ll explain

this line in detail after a few examples.

The scaffold generates a set of files whose names and locations are

similar to the original Rails scaffold. The code in these files looks quite

different. Here is the index method:

Download code/rails_xt/app/controllers/authors_controller.rb

def index

@authors = Author.find(:all)

respond_to do |format|

format.html

format.xml { render :xml => @authors.to_xml }

end

end

The respond_to method lets the same endpoint respond with differ-

ent content, depending on the client. respond_to will execute different

blocks, depending on the value of the HTTP Accept header specified by

the client.

The format.html has no block, which means “respond as normal for

HTML requests”—in this case render index.rhtml. The format.xml block

renders an XML response, using a simple, Rails-provided to_xml con-

version.

To see this in action, we can fire up the server with some sample data

and then use Ruby from the console to request the /authors URL. First,

start the Rails XT server:

rake db:fixtures:load

script/server

Then, from another console, run this simple Ruby script to GET the

/authors URL:

Download code/rails_xt/samples/rest/get_authors_html.rb

require 'net/http'

r = Net::HTTP.get_response(URI.parse("http://localhost:3000/authors"))

puts r['content-type']

puts r.body

The server returns the default MIME type, text/html:

Download code/rails_xt/sample_output/get_authors_html.txt

$ ruby samples/rest/get_authors_accept_xml.rb

text/html; charset=utf-8

<h1>Listing authors</h1>

<table>

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/authors_controller.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/rest/get_authors_html.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/get_authors_html.txt
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=250

RESTFUL WEB SERVICES 251

<tr>

<th>Canonical</th>

<th>Legalname</th>

<th>Birthplace</th>

<th>Birthdate</th>

<th>Deathdate</th>

</tr>

<!-- many more lines omitted for brevity -->

To get the XML version of authors, specify an explicit Accept header of

text/xml:

Download code/rails_xt/samples/rest/get_authors_accept_xml.rb

require 'net/http'

res = Net::HTTP.start('localhost', 3000) {|http|

http.get '/authors', {"Accept"=>'text/xml'}

}

puts res['content-type']

puts res.body

Now the server returns an XML version of the data, with the MIME type

text/xml:

Download code/rails_xt/sample_output/get_authors_accept_xml.txt

$ ruby samples/rest/get_authors_accept_xml.rb

application/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8"?>

<authors>

<author>

<birthdate type="date">2006-11-01</birthdate>

<birthplace>MyString</birthplace>

<canonical>MyString</canonical>

<deathdate type="date">2006-11-01</deathdate>

<id type="integer">1</id>

<legalname>MyString</legalname>

</author>

<!-- remainder omitted for brevity -->

That is cool, but what about clients (including browsers) that will not

generate an Accept header? These clients can get the XML version by

requesting /authors.xml. When Rails sees the .xml extension, RESTful

routing adds :format=>’xml’ to the params hash. The following Ruby client

will return XML exactly as if the request header had been set:

Download code/rails_xt/samples/rest/get_authors_xml.rb

require 'net/http'

Net::HTTP.get_print(URI.parse("http://localhost:3000/authors.xml"))

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/rest/get_authors_accept_xml.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/get_authors_accept_xml.txt
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/rest/get_authors_xml.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=251

RESTFUL WEB SERVICES 252

CRUD HTTP URL MIME Action

Read GET /authors (Accept) index

Read GET /authors.xml text/xml index

Read GET /authors/1 (Accept) show

Read GET /authors/1.xml text/xml show

Read GET /authors/new HTML new

Read GET /authors/1;edit HTML edit

Create POST /authors (Accept) create

Create POST /authors.xml text/xml create

Update PUT /authors/1 (Accept) update

Update PUT /authors/1.xml text/xml update

Delete DELETE /authors/1 (Accept) destroy

Delete DELETE /authors/1.xml text/xml destroy

Figure 9.1: RESTful routing examples

The previous three examples illustrate the key concepts in Rails’ ap-

proach to REST:

• Endpoints can return different MIME types based on the Accept

header.

• As a fallback, endpoints can extract MIME type hints from the

URL.

• The respond_to method creates a unified programming model that

abstracts away the details of how the MIME type is discovered.

With these concepts in mind, examples of the various URLs generated

by map.resources authors are shown in Figure 9.1.

Notice how the same URL, /authors/1, is used for read, update, and

delete. The HTTP verb determines which action is invoked. This is con-

sistent with the REST philosophy, but again, this has a catch. Just as

browsers can’t be trusted to set Accept headers, they cannot be trusted

to use HTTP verbs other than GET and POST. Again, Rails is doing

some trickery behind the scenes to make the world seem more RESTful

than it is.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=252

RESTFUL WEB SERVICES 253

Take a look at form helper for the Authors edit view:

Download code/rails_xt/app/views/authors/edit.rhtml

<h1>Editing author</h1>

<% form_for(:author, :url => author_path(@author),

:html => { :method => :put }) do |f| %>

<p>

Canonical

<%= f.text_field :canonical %>

</p>

<p>

Legalname

<%= f.text_field :legalname %>

</p>

<p>

Birthplace

<%= f.text_field :birthplace %>

</p>

<p>

Birthdate

<%= f.date_select :birthdate %>

</p>

<p>

Deathdate

<%= f.date_select :deathdate %>

</p>

<p>

<%= submit_tag "Update" %>

</p>

<% end %>

<%= link_to 'Show', author_path(@author) %> |

<%= link_to 'Back', authors_path %>

It looks like Rails is asking the form to use the PUT verb, but the gener-

ated code tells a different story:

Download code/rails_xt/samples/rest/simulated_put.html

<form action="/authors/1" method="post">

<input name="_method" type="hidden" value="put" />

<!-- truncated for brevity -->

Rails stores the intended action in a hidden _method field. If the HTTP

method is POST, Rails checks _method and use it instead, if available.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/authors/edit.rhtml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/rest/simulated_put.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=253

RESTFUL WEB SERVICES 254

There is a good deal more to RESTful resources in Rails than we have

covered here. See the references at the end of the chapter for additional

information.

The RESTful approach taken in this chapter is a significant improve-

ment over previous approaches to Rails routing. REST routes are sim-

pler and more uniform, and the resulting routes.rb tends to be smaller

and easier to read. Moreover, we have now exposed our application as

a web application (HTML) and a web service (XML), with very little code

duplication.

Of course, the web service is useful only if there a programmatic clients

to take advantage of it. New to Rails 1.2, ActiveResource allows Rails

applications to use other applications as resources.

Consuming RESTful Services with ActiveResource

ActiveResource is an API for accessing web services as model objects.

Just as ActiveRecord hides the details of data access, ActiveResource

hides the details of web service invocation.

ActiveResource is still fairly early in development, so some of what fol-

lows may change before ever appearing in a public release of Rails. At

the time of this writing, you cannot get it by simply freezing to Edge

Rails. Instead, you have to check out the most recent version of Rails

into the vendor/rails directory of your application:

svn co http://dev.rubyonrails.org/svn/rails/trunk vendor/rails

Then, edit your environment.rb to include ActiveResource in the load

path:

Download code/rails_xt/config/environment.rb

Rails::Initializer.run do |config|

config.load_paths += %W(#{RAILS_ROOT}/vendor/rails/activeresource/lib)

Now you are ready to create an ActiveResource. Simply extend ActiveRe-

source::Base, and tell your class the base URL of the service:

Download code/rails_xt/test/resource/author_resource_test.rb

class Author < ActiveResource::Base; end

Author.site = 'http://localhost:3000'

Just as with ActiveRecord, Rails uses naming conventions to maintain

simplicity. For the Author.site shown, Rails will expect RESTful server

endpoints localhost:3000/authors and localhost:3000/authors/1. You can

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/config/environment.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/resource/author_resource_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=254

SOAP WEB SERVICES 255

override these naming conventions with element_name and collection_

name class attributes, if necessary.

Finding an ActiveResource is similar to finding an ActiveRecord:

Download code/rails_xt/test/resource/author_resource_test.rb

a = Author.find(1)

Creating an instance also looks very like the ActiveRecord counterpart:

Download code/rails_xt/test/resource/author_resource_test.rb

a = Author.new :canonical=>'David Brin'

a.save

It is not worth delving much more deeply than this, because the cur-

rent implementation is preliminary. However, the vision is clear: Active-

Resource should make web services as simple as ActiveRecord made

databases.

The RESTful approach works well when you care about simplicity and

scalability and when your services imply a simple object model (or no

object model at all). An alternative approach is to build “heavier” web

services to support more complex XML, more complex object models,

and interactions other than simply client/server. In the next section,

we will look at Java and Rails SOAP servers.

9.2 SOAP Web Services

SOAP3 is a W3C recommendation for exchanging structured and typed

information between pairs. At its core, a SOAP message is simply a

header+body expressed in XML. The SOAP header acts as an extensibil-

ity point, allowing applications to layer in features such as end-to-end

security, transactions, and reliable messaging.

Creating SOAP Services with ActionWebService

For our Java SOAP implementation, we will use the most popular open

source toolkit, Apache Axis (http://ws.apache.org/axis/), together with

AppFuse (http://www.appfuse.org) to reduce the amount of drudge work.

3. http://www.w3.org/TR/soap

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/resource/author_resource_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/resource/author_resource_test.rb
http://ws.apache.org/axis/
http://www.appfuse.org
http://www.w3.org/TR/soap
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=255

SOAP WEB SERVICES 256

We will begin by declaring the Java interface to a service we want to

provide:

Download code/appfuse_people/src/service/com/relevancellc/people/service/PersonManager.java

package com.relevancellc.people.service;

import com.relevancellc.people.model.Person;

import com.relevancellc.people.dao.PersonDao;

import java.util.List;

public interface PersonManager {

public void setPersonDao(PersonDao dao);

public Person getPerson(String id);

public void savePerson(Person person);

public void removePerson(String id);

List getPeople(Person o);

}

In Rails we will use ActionWebService, a library for creating web services

over SOAP or XML-RPC. We start by running a generator:

$ script/generate web_service PersonService get_person save_person \

delete_person get_people

create app/apis/

exists app/controllers/

exists test/functional/

create app/apis/person_service_api.rb

create app/controllers/person_service_controller.rb

create test/functional/person_service_api_test.rb

The generator creates a directory we have not seen before: app/apis.

The person_service_api.rb file contains the Ruby description of the web

service interface. The generated version is just a stub, which we have

edited to look like this:

Download code/people/app/apis/person_service_api.rb

class PersonServiceApi < ActionWebService::API::Base

api_method :get_person, :expects=>[:int], :returns=>[Person]

api_method :save_person, :expects=>[Person], :returns=>[:int]

api_method :delete_person, :expects=>[:int], :returns=>[:bool]

api_method :get_people, :expects=>[], :returns => [[Person]]

end

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/service/com/relevancellc/people/service/PersonManager.java
http://media.pragprog.com/titles/fr_r4j/code/code/people/app/apis/person_service_api.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=256

SOAP WEB SERVICES 257

Because Ruby does not have interfaces, ActionWebService defines

api_method for describing web service methods. For each method, the

expects array contains the parameter list, and the returns array contains

the return value.

Primitive types are named with symbols such as :int. Complex types

such as ActiveRecord models are specified by their class name, such as

Person.

The Java implementation of PersonManager is named PersonManagerImpl.

Our implementation is generated by AppFuse and simply delegates to

the DAO layer:

Download code/appfuse_people/src/service/com/relevancellc/people/service/impl/PersonManagerImpl.java

package com.relevancellc.people.service.impl;

import com.relevancellc.people.dao.PersonDao;

import com.relevancellc.people.model.Person;

import com.relevancellc.people.service.PersonManager;

import java.util.List;

public class PersonManagerImpl extends BaseManager implements PersonManager {

private PersonDao dao;

public void setPersonDao(PersonDao dao) {

this.dao = dao;

}

public Person getPerson(String id) {

return dao.getPerson(Long.valueOf(id));

}

public void savePerson(Person person) {

dao.savePerson(person);

}

public void removePerson(String id) {

dao.removePerson(Long.valueOf(id));

}

public List getPeople(Person person) {

return dao.getPeople(person);

}

}

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/src/service/com/relevancellc/people/service/impl/PersonManagerImpl.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=257

SOAP WEB SERVICES 258

The Ruby implementation of PersonServiceApi is named PersonServiceCon-

troller and simply delegates to ActiveRecord:

Download code/people/app/controllers/person_service_controller.rb

class PersonServiceController < ApplicationController

wsdl_service_name 'PersonService'

web_service_scaffold :invoke

def get_person(id)

Person.find(id)

end

def save_person(p)

p.save!

p.id

end

def delete_person(id)

Person.destroy(id)

true

end

def get_people

Person.find(:all)

end

end

That is all the code you need. As you can see, both Axis and ActionWeb-

Service take a similar approach to the code. You declare the interface

in one file and the implementation in another.

Now that the implementation is in place, the job of the toolkits is to

expose the service at a URL endpoint on the Web. For the Axis ver-

sion, we follow the approach outlined in the Axis tutorial located at

http://www.appfuse.org. This process includes the following steps:

1. Register the Axis servlet (thirteen lines of XML).

2. Register the MIME mappings (eight lines of XML).

3. Create an XDoclet task to build Axis’s WSDD file (about 100 lines

of XML).

4. Annotate any complex types for conversion to XML Schema (two

lines of annotation for Person).

5. Create a PersonEndpoint class that delegates to PersonManagerImpl

(thirty to forty lines of Java and annotations).

That sounds like a lot of code and XML, but it isn’t that much work to

put in place. Much of the code is boilerplate, so when you have done it

once, you can reuse it on other projects. Tools like AppFuse automate

the process so that you might not have to actually write any of this

code.

http://media.pragprog.com/titles/fr_r4j/code/code/people/app/controllers/person_service_controller.rb
http://www.appfuse.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=258

SOAP WEB SERVICES 259

The Rails equivalent is this line of code from PersonManagerImpl:

wsdl_service_name 'PersonService'

The call to wsdl_service_name tells ActionWebService that the Person-

ServiceController implementation is associated with the PersonServiceApi.

Everything else is discovered by convention. The servlet connection, the

conversion to WSDL, and the mapping of Person to XML Schema are all

derived automatically.

This example nicely demonstrates the difference in perspective between

many Java frameworks and Rails. Java frameworks tend to have a great

number of configuration options that are explicitly specified in XML,

while Rails tries to have implicit defaults that will “just work” in the

most common case.

Consuming SOAP Services with soap4r

In Ruby, you can create SOAP clients using soap4r, which is part of the

standard library. To start, require the library:

Download code/people/samples/person_soap_client.rb

require 'soap/wsdlDriver'

Next, create a remote procedure call (RPC) driver to invoke your SOAP

methods. To create the driver, you will need to have access to a Web

Services Definition Language (WSDL) file that describes the service you

plan to call. WSDL files describe services in a generic way, using a

boatload of XML. For simple services, this XML is totally boilerplate,

and toolkits generate it automatically. When you run the People sample

application, the WSDL for the PersonService is at localhost:3000/person_

service/wsdl. Here is the code to create the RPC driver:

Download code/people/samples/person_soap_client.rb

url = "http://localhost:3000/person_service/wsdl"

soap = SOAP::WSDLDriverFactory.new(url).create_rpc_driver

Now, you can use the soap object to invoke the methods described in

the WSDL file. In our example, the original description of these meth-

ods is the PersonServiceAPI from the previous section. Invoking a SOAP

message is as simple as this:

Download code/people/samples/person_soap_client.rb

puts soap.getPerson(1).inspect

http://media.pragprog.com/titles/fr_r4j/code/code/people/samples/person_soap_client.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/samples/person_soap_client.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/samples/person_soap_client.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=259

SOAP WEB SERVICES 260

Running the code returns a SOAP::Mapping::Object, which is a simple

collection containing the values returned from the server:

Download code/people/snippets/person_soap_client.txt

$ ruby samples/person_soap_client.rb

#<SOAP::Mapping::Object:0x81c768 \

{}id=1 {}first_name="Stuart" {}last_name="Halloway">

If you want to see the actual SOAP messages, you can set the wire-

dump_file_base property:

Download code/people/samples/person_soap_client.rb

soap.wiredump_file_base = File.join(File.dirname(__FILE__), "../tmp")

soap4r will log SOAP calls to files in the directory specified by wire-

dump_file_base. The log of the previous request to getPerson looks like

this:

Download code/people/snippets/tmp_getPerson_request.xml

<?xml version="1.0" encoding="utf-8" ?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:GetPerson xmlns:n1="urn:ActionWebService"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<param0 xsi:type="xsd:int">1</param0>

</n1:GetPerson>

</env:Body>

</env:Envelope>

And here is the response:

Download code/people/snippets/tmp_getPerson_response.xml

<?xml version="1.0" encoding="UTF-8" ?>

<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<env:Body>

<n1:GetPersonResponse xmlns:n1="urn:ActionWebService"

env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="n1:Person">

<id xsi:type="xsd:int">1</id>

<first_name xsi:type="xsd:string">Stuart</first_name>

<last_name xsi:type="xsd:string">Halloway</last_name>

</return>

</n1:GetPersonResponse>

</env:Body>

</env:Envelope>

http://media.pragprog.com/titles/fr_r4j/code/code/people/snippets/person_soap_client.txt
http://media.pragprog.com/titles/fr_r4j/code/code/people/samples/person_soap_client.rb
http://media.pragprog.com/titles/fr_r4j/code/code/people/snippets/tmp_getPerson_request.xml
http://media.pragprog.com/titles/fr_r4j/code/code/people/snippets/tmp_getPerson_response.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=260

YAML AND XML COMPARED 261

That’s a lot of XML for a simple service invocation. When you compare

REST and SOAP at the level of simple examples, as in this chapter,

it is easy to conclude that REST is the way to go. Often that will be

true; many service APIs start simple and never get more complex. In

fairness to SOAP, though, we should point out the extensibility points

that might become valuable in more complex applications:

• The namespace definitions on the env:Envelope element designate

three different namespaces and the associated schemas. An XML schemas

Schema specifies the structure and data types that are legal for an

XML document. By using multiple schemas and namespaces, you

can build complex documents without needing a single, inflexible

overarching schema.

• The env:encodingStyle attribute specifies the serialization rules em-

ployed inside the SOAP message. In theory this allows SOAP to be

used with a variety of different schema languages. In practice most

developers end up using their development tool’s defaults.

During the early days of web services, XML appeared to be the only

game in town. This is less true over time. RESTful architectures focus

more on HTTP verbs and content negotiation via HTTP headers, making

XML one option among many. In the last few years, many developers

have rediscovered dynamic languages such as JavaScript, PHP, Python,

and Ruby as an alternative to the perceived complexity of Java and C#

development. This search for simplicity has happened with data format

as well, with the rise of YAML as an alternative to XML.

9.3 YAML and XML Compared

XML is the dominant data format for web service development. There

are some good reasons for this. XML has a long lineage. XML evolved

from Standard Generalized Markup Language (SGML), a metalanguage

for defining document markup.

XML has become so popular that it is used for all things data. In the

Java world, XML has become the standard mechanism for application

configuration files. Many Java programmers have come to believe that

XML is overkill for this purpose. To see why, imagine a hypothetical

configuration file that stores user information:

<user>

<username>stu</username>

<homepage>http://blogs.relevancellc.com</homepage>

</user>

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=261

YAML AND XML COMPARED 262

XML is intended to be human-readable and self-describing. XML is

human-readable because it is a text format, and it is self-describing

because data is described by elements such as <user>, <username>, elements

and <homepage> in the preceding example. Another option for repre-

senting usernames and home pages would be XML attributes:

<user username="stu" homepage="http://blogs.relevancellc.com"></user>

The attribute syntax is obviously more terse. It also implies seman-

tic differences. Attributes are unordered, while elements are ordered.

Attributes are also limited in the values they may contain: Some char-

acters are illegal, and attributes cannot contain nested data (elements,

on the other hand, can nest arbitrarily deep).

There is one last wrinkle to consider with this simple XML document.

What happens when it travels in the wide world and encounters other

elements named <user>? To prevent confusion, XML allows names-

paces. These serve the same role as Java packages or Ruby modules, namespaces

but the syntax is different:

<rel:user xmlns:rel="http://www.relevancellc.com/sample"

username="stu"

homepage="http://blogs.relevancellc.com">

</rel:user>

The namespace is http://www.relevancellc.com/sample. That would be a

lot to type in front of an element name, so xmlns:rel establishes rel as a

prefix. Reading the previous document, an XML wonk would say that

<user> is in the http://www.relevancellc.com/sample namespace.

YAML is a response to the complexity of XML (YAML stands for YAML

Ain’t Markup Language). YAML has many things in common with XML.

Most important, both YAML and XML can be used to represent and seri-

alize complex, nested data structures. What special advantages does

YAML offer?

The YAML criticism of XML boils down to a single sentence. XML has

two concepts too many:

• There is no need for two different forms of nested data. Elements

are enough.

• There is no need for a distinct namespace concept; scoping is suf-

ficient for namespacing.

To see why attributes and namespaces are superfluous in YAML, here

are three YAML variants of the same configuration file:

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=262

YAML AND XML COMPARED 263

Download code/rails_xt/samples/why_yaml.rb

user:

username: stu

homepage: http://blogs.relevancellc.com

As you can see, YAML uses indentation for nesting. This is more terse

than XML’s approach, which requires a closing tag.

The second XML example used attributes to shorten the document to a

single line. Here’s the one-line YAML version:

Download code/rails_xt/samples/why_yaml.rb

user: {username: stu, homepage: http://blogs.relevancellc.com}

The one-line syntax introduces {} as delimiters, but there is no semantic

distinction in the actual data. Name/value data, called a simple map-

ping in YAML, is identical in the multiline and one-line documents. simple mapping

Here’s a YAML “namespace”:

Download code/rails_xt/samples/why_yaml.rb

http://www.relevancellc.com/sample:

user: {username: stu, homepage: http://blogs.relevancellc.com}

There is no special namespace construct in YAML, because scope pro-

vides a sufficient mechanism. In the previous document, user belongs

to http://www.relevancellc.com/sample. Replacing the words “belongs to”

with “is in the namespace” is a matter of taste.

It is easy to convert from YAML to a Ruby object:

irb(main):001:0> require 'yaml'

=> true

irb(main):002:0> YAML.load("{username: stu}")

=> {"username"=>"stu"}

Or from a Ruby object to YAML:

irb(main):003:0> YAML.dump 'username'=>'stu'

=> "--- \nusername: stu"

The leading - – \n: is a YAML document separator. This is optional, and

we won’t be using it in Rails configuration files. See the sidebar on the

next page for pointers to YAML’s constructs not covered here.

Items in a YAML sequence are prefixed with ’- ’:

- one

- two

- three

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/why_yaml.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/why_yaml.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/why_yaml.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=263

YAML AND XML COMPARED 264

Data Formats: More Complexity

For Rails configuration, you may never need YAML knowledge
beyond this chapter. But, if you delve into YAML as a general-
purpose data language, you will discover quite a bit more
complexity. Here are a few areas of complexity, with XML’s
approach to the same issues included for comparison:

Complexity YAML Approach XML Approach

whitespace Annoying rules Annoying rules

Repeated data Aliases and anchors Entities, SOAP sect. 5

Mapping to
programming
language types

Type families XML Schema, various
data bindings

If you are making architectural decisions about data formats,
you will want to understand these issues. For YAML, a good
place to start is the YAML Cookbook.∗

∗. http://yaml4r.sourceforge.net/cookbook/

There is also a one-line syntax for sequences, which from a Ruby per-

spective could hardly be more convenient. A single-line YAML sequence

is also a legal Ruby array:

irb(main):015:0> YAML.load("[1, 2, 3]")

=> [1, 2, 3]

irb(main):016:0> YAML.dump [1,2,3]

=> "--- \n- 1\n- 2\n- 3"

Beware the significant whitespace, though! If you leave it out, you will

be in for a rude surprise:

irb(main):018:0> YAML.load("[1,2,3]")

=> [123]

Without the whitespace after each comma, the elements all got com-

pacted together. YAML is persnickety about whitespace, out of defer-

ence to tradition that markup languages must have counterintuitive

whitespace rules. With YAML there are two things to remember:

• Any time you see a single whitespace character that makes the

format prettier, the whitespace is probably significant to YAML.

That’s YAML’s way of encouraging beauty in the world.

• Tabs are illegal. Turn them off in your editor.

http://yaml4r.sourceforge.net/cookbook/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=264

JSON AND RAILS 265

If you are running inside the Rails environment, YAML is even eas-

ier. The YAML library is automatically imported, and all objects get a

to_yaml() method:

$ script/console

Loading development environment.

>> [1,2,3].to_yaml

=> "--- \n- 1\n- 2\n- 3"

>> {'hello'=>'world'}.to_yaml

=> "--- \nhello: world"

In many situations, YAML’s syntax for serialization looks very much

like the literal syntax for creating hashes or arrays in some (hypotheti-

cal) scripting language. This is no accident. YAML’s similarity to script

syntax makes YAML easier to read, write, and parse. Why not take this

similarity to its logical limit and create a data format that is also valid

source code in some language? JSON does exactly that.

9.4 JSON and Rails

The JavaScript Object Notation (JSON) is a lightweight data-inter-

change format developed by Douglas Crockford. JSON has several rel-

evant advantages for a web programmer. JSON is a subset of legal

JavaScript code, which means that JSON can be evaluated in any

JavaScript-enabled web browser. Here are a few examples of JSON.

First, an array:

authors = ['Stu', 'Justin']

And here is a collection of name/value pairs:

prices = {lemonade: 0.50, cookie: 0.75}

Unless you are severely sleep deprived, you are probably saying “This

looks almost exactly like YAML.” Right. JSON is a legal subset of Java-

Script and also a legal subset of YAML (almost). JSON is much simpler

than even YAML—don’t expect to find anything like YAML’s anchors

and aliases. In fact, the entire JSON format is documented in one short

web page at http://www.json.org.

JSON is useful as a data format for web services that will be con-

sumed by a JavaScript-enabled client and is particularly popular for

Ajax applications.

http://www.json.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=265

XML PARSING 266

Rails extends Ruby’s core classes to provide a to_json method:

Download code/rails_xt/sample_output/to_json.irb

$ script/console

Loading development environment.

>> "hello".to_json

=> "\"hello\""

>> [1,2,3].to_json

=> "[1, 2, 3]"

>> {:lemonade => 0.50}.to_json

=> "{\"lemonade\": 0.5}"

If you need to convert from JSON into Ruby objects, you can parse

them as YAML, as described in Section 9.3, YAML and XML Compared,

on page 261. There are some corner cases where you need to be careful

that your YAML is legal JSON; see _why’s blog post4 for details.

JSON and YAML are great for green-field projects, but many developers

are committed to an existing XML architecture. Since XML does not look

like program source code, converting between XML and programming

language structures is an interesting challenge.

It is to this challenge, XML parsing, that we turn next.

9.5 XML Parsing

To use XML from an application, you need to process an XML docu-

ment, converting it into some kind of runtime object model. This pro-

cess is called XML parsing. Both Java and Ruby provide several differ- XML parsing

ent parsing APIs.

Ruby’s standard library includes REXML, an XML parser that was orig-

inally based on a Java implementation called Electric XML. REXML is

feature-rich and includes XPath 1.0 support plus tree, stream, SAX2,

pull, and lightweight APIs. This section presents several examples using

REXML to read and write XML.

Rails programs also have another choice for writing XML. Builder is a

special-purpose library for writing XML and is covered in Section 9.7,

Creating XML with Builder, on page 276.

4. http://redhanded.hobix.com/inspect/jsonCloserToYamlButNoCigarThanksAlotWhitespace.html

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/sample_output/to_json.irb
http://redhanded.hobix.com/inspect/jsonCloserToYamlButNoCigarThanksAlotWhitespace.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=266

XML PARSING 267

The next several examples will parse this simple Ant build file:

Download code/Rake/simple_ant/build.xml

<project name="simple-ant" default="compile">

<target name="clean">

<delete dir="classes"/>

</target>

<target name="prepare">

<mkdir dir="classes"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

</project>

Each example will demonstrate a different approach to a simple task:

extracting a Target object with name and depends properties.

Push Parsing

First, we’ll look at a Java SAX (Simple API for XML) implementation.

SAX parsers are “push” parsers; you provide a callback object, and

the parser pushes the data through various callback methods on that

object:

Download code/java_xt/src/xml/SAXDemo.java

public Target[] getTargets(File file)

throws ParserConfigurationException, SAXException, IOException {

final ArrayList al = new ArrayList();

SAXParserFactory f = SAXParserFactory.newInstance();

SAXParser sp = f.newSAXParser();

sp.parse(file, new DefaultHandler() {

public void startElement(String uri, String lname,

String qname, Attributes attributes)

throws SAXException {

if (qname.equals("target")) {

Target t = new Target();

t.setDepends(attributes.getValue("depends"));

t.setName(attributes.getValue("name"));

al.add(t);

}

}

});

return (Target[]) al.toArray(new Target[al.size()]);

}

The Java example depends on a Target class, which is a trivial JavaBean

(not shown).

http://media.pragprog.com/titles/fr_r4j/code/code/Rake/simple_ant/build.xml
http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/SAXDemo.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=267

XML PARSING 268

An REXML SAX approach looks like this:

Download code/rails_xt/samples/xml/sax_demo.rb

def get_targets(file)

targets = []

parser = SAX2Parser.new(file)

parser.listen(:start_element, %w{target}) do |u,l,q,atts|

targets << {:name=>atts['name'], :depends=>atts['depends']}

end

parser.parse

targets

end

Even though they are implementing the same API, the Ruby and Java

approaches have two significant differences. Where the Java implemen-

tation uses a factory, the Ruby implementation instantiates the parser

directly. And where the Java version uses an anonymous inner class,

the Ruby version uses a block.

These language issues are discussed in the Joe Asks. . . on page 272

and in Section 3.9, Functions, on page 92, respectively. These differ-

ences will recur with the other XML parsers as well, but we won’t bring

them up again.

There is also a smaller difference. The Ruby version takes advantage

of one of Ruby’s many shortcut notations. The %w shortcut provides a shortcut notations

simple syntax for creating an array of words. For example:

irb(main):001:0> %w{these are words}

=> ["these", "are", "words"]

The %w syntax makes it convenient for Ruby’s start_element to take a

second argument, the elements in which we are interested. Instead of

listening for all elements, the Ruby version looks only for the <target>

element that we care about:

Download code/rails_xt/samples/xml/sax_demo.rb

parser.listen(:start_element, %w{target}) do |u,l,q,atts|

Pull Parsing

A pull parser is the opposite of a push parser. Instead of implementing

a callback API, you explicitly walk forward through an XML document.

As you visit each node, you can call accessor methods to get more infor-

mation about that node.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/sax_demo.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/sax_demo.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=268

XML PARSING 269

In Java, the pull parser is called the Streaming API for XML (StAX).

StAX is not part of the J2SE, but you can download it from the Java

Community Process website.5 Here is a StAX implementation of getTar-

get():

Download code/java_xt/src/xml/StAXDemo.java

Line 1 public Target[] getTargets(File f)
- throws XMLStreamException, FileNotFoundException {
- XMLInputFactory xif= XMLInputFactory.newInstance();
- XMLStreamReader xsr = xif.createXMLStreamReader(new FileInputStream(f));
5 final ArrayList al = new ArrayList();
- for (int event = xsr.next();
- event != XMLStreamConstants.END_DOCUMENT;
- event=xsr.next()) {
- if (event == XMLStreamConstants.START_ELEMENT) {

10 if (xsr.getLocalName().equals("target")) {
- Target t = new Target();
- t.setDepends(xsr.getAttributeValue("", "depends"));
- t.setName(xsr.getAttributeValue("", "name"));
- al.add(t);

15 }
- }
- }
- return (Target[]) al.toArray(new Target[al.size()]);
- }

Unlike the SAX example, the StAX version explicitly iterates over the

document by calling next() (line 6). Then, we detect whether we care

about the parser event in question by comparing the event value to one

or more well-known constants (line 9).

Here’s the REXML pull version of get_targets():

Download code/rails_xt/samples/xml/pull_demo.rb

Line 1 def get_targets(file)
- targets = []
- parser = PullParser.new(file)
- parser.each do |event|
5 if event.start_element? and event[0] == 'target'
- targets << {:name=>event[1]['name'], :depends=>event[1]['depends']}
- end
- end
- targets

10 end

5. http://jcp.org/aboutJava/communityprocess/final/jsr173/index.html

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/StAXDemo.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/pull_demo.rb
http://jcp.org/aboutJava/communityprocess/final/jsr173/index.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=269

XML PARSING 270

As with the StAX example, the REXML version explicitly iterates over

the document nodes. Of course, the REXML version takes advantage

of Ruby’s each() (line 4). Where StAX provided an event number and

well-known constants to compare with, the REXML version provides an

actual event object, with boolean accessors such as start_element? for

the different event types (line 5).

Despite their API differences, push and pull parsers have a lot in com-

mon. They both move in one direction, forward through the document.

This can be efficient if you can process nodes one at a time, without

needing content or state from elsewhere in the document. If you need

random access to document nodes, you will probably want to use a tree

parser, discussed next.

Tree Parsing

Tree parsers represent an XML document as a tree in memory, typi-

cally loading in the entire document. Tree parsers allow more power-

ful navigation than push parsers, because you have random access to

the entire document. On the other hand, tree parsers tend to be more

expensive and may be overkill for simple operations.

Tree parser APIs come in two flavors: the DOM and everything else. The

Document Object Model (DOM) is a W3C specification and aspires to

be programming language neutral. Many programming languages also

offer a tree parsing API that takes better advantage of specific language

features. Here is the build.xml example implemented with Java’s built-in

DOM support:

Download code/java_xt/src/xml/DOMDemo.java

Line 1 public Target[] getTargets(File file) throws Exception {
- DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
- DocumentBuilder db = dbf.newDocumentBuilder();
- Document doc = db.parse(file);
5 NodeList nl = doc.getElementsByTagName("target");
- Target[] targets = new Target[nl.getLength()];
- for (int n=0; n<nl.getLength(); n++) {
- Target t = new Target();
- Element e = (Element) nl.item(0);

10 t.setDepends(e.getAttribute("depends"));
- t.setName(e.getAttribute("name"));
- targets[n] = t;
- }
- return targets;

15 }

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/DOMDemo.java
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=270

XML PARSING 271

The Java version finds users with getElementsByTagName() in line 5. The

value returned is a NodeList, which is a DOM-specific class. Since the

DOM is language-neutral, it does not support Java’s iterators, and loop-

ing over the nodes requires a for loop (line 7).

Next, using REXML’s tree API, here is the code:

Download code/rails_xt/samples/xml/dom_demo.rb

Line 1 def get_targets(file)
- targets = []
- Document.new(file).elements.each("//target") do |e|
- targets << {:name=>e.attributes["name"],
5 :depends=>e.attributes["depends"]}
- end
- targets
- end

REXML does not adhere to the DOM. Instead, the elements() method

returns an object that supports XPath. In XPath, the expression //target

matches all elements named target. Building atop XPath, iteration can

then be performed in normal Ruby style with each() (line 3).

Of course, Java supports XPath too, as you will see in the following

section.

XPath

XML documents have a hierarchical structure, much like the file sys-

tem on a computer. File systems have a standard notation for address-

ing specific files. For example, path/to/foo refers to the file foo, in the

to directory, in the path. Better yet, shell programs use wildcards to

address multiple files at once: path/* refers to all files contained in the

path directory.

The XML Path Language (XPath) brings path addressing to XML. XPath

is a W3C Recommendation for addressing parts of an XML document

(see http://www.w3.org/TR/xpath.html).

The previous section showed a trivial XPath example, using //target to

select all <target> elements. Our purpose here is to show how to access

the XPath API using Java and Ruby, not to learn the XPath language

itself. Nevertheless we feel compelled to pick a slightly more interesting

example.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/dom_demo.rb
http://www.w3.org/TR/xpath.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=271

XML PARSING 272

Joe Asks. . .

Why Are the Java XML Examples So Verbose?

The Ruby XML examples are so tight that you have to expect there’s a
catch. Are the Ruby XML APIs missing something important?

What the Java versions have, and the Ruby versions lack utterly,
is abstract factories. Many Java APIs expose their key objects via
abstract factories. Instead of saying new Document, we say Document-

BuilderFactory.someFactoryMethod(). The purpose of factory methods in
this context is keep our options open. If we want to switch implemen-
tations later, to different parser, we can reconfigure the factory with-
out changing a line of code. On the other hand, calling new limits your
options. Saying new Foo() gives you a Foo, period. You can’t change
your mind and get subclass of Foo or a mock object for testing.

The Ruby language is designed so that abstract factories are generally
unnecessary, for three reasons:

• In Ruby, the new method can return anything you want. Most
important, new can return instances of a different class, so choos-
ing new now does not limit your options.

• Ruby objects are duck-typed (see Section 3.7, Duck Typing, on
page 89). Since objects are defined by what they can do, rather
than what they are named, it is easier to change your mind and
have one kind of object stand in for another.

• Ruby classes are open. Choosing Foo now doesn’t limit your
options later, because you can always reopen Foo and tweak
its behavior.

In Java, having to choose between abstract factories and new under-
mines agility. A central agile theme is “Build what you need now, in
a way that can easily evolve to what you discover you need next
week.” For every new class, we have to make a Big Up-Front Deci-
sion (BUFD, often also BFUD). “Will it need pluggable implementations
later?” If yes, use factory. If no, call new. The more BUFDs a language
avoids, the easier it is to be agile. In Java’s defense, you can avoid
the dilemma posed by abstract factories in several ways. You can skip
factories and use delegation behind the scenes to select alternate
implementations. A great example is the JDOM (http://www.jdom.org),
which is much easier to use than the J2SE APIs. With Aspect-Oriented
Programming (AOP), you can unmake past decisions by weaving in
new decisions. With Dependency Injection (DI), you can pull configu-
ration choices out of your code entirely. Pointers to more reading on
all this are in the references section at the end of the chapter.

http://www.jdom.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=272

XML PARSING 273

The following Java program finds the name of all <target> elements

whose depends attribute is prepare:

Download code/java_xt/src/xml/XPathDemo.java

Line 1 public String[] getTargetNamesDependingOnPrepare(File file)
- throws Exception
- {
- DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
5 DocumentBuilder db = dbf.newDocumentBuilder();
- Document doc = db.parse(file);
- XPathFactory xpf = XPathFactory.newInstance();
- XPath xp = xpf.newXPath();
-

10 NodeList nl = (NodeList) xp.evaluate("//target[@depends='prepare']/@name",
- doc, XPathConstants.NODESET);
-

- String[] results = new String[nl.getLength()];
- for (int n=0; n<nl.getLength(); n++) {

15 results[n] = nl.item(n).getNodeValue();
- }
- return results;
- }

Java’s XPath support builds on top of its DOM support, so most of

this code should look familiar. Starting on line 4 you will see several

lines of factory code to create the relevant DOM and XPath objects. The

actual business of the method is conducted on line 10 when the XPath

expression is evaluated. The results are in the form of a NodeList, so the

iteration beginning on line 13 is nothing new either.

Ruby’s XPath code also builds on top of the tree API you have already

seen:

Download code/rails_xt/samples/xml/xpath_demo.rb

def get_target_names_depending_on_prepare(file)

XPath.match(Document.new(file),

"//target[@depends='prepare']/@name").map do |x|

x.value

end

end

That’s it. Just one line of code. The XPath API in Ruby is all business,

no boilerplate. In fact, the syntax can be made even tighter, as shown

in the sidebar on the next page.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/XPathDemo.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/xpath_demo.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=273

XML PARSING 274

The Symbol#to_proc Trick

You may be thinking that this Ruby XPath example is a bit too
verbose:

def get_target_names_depending_on_prepare(file)
XPath.match(Document.new(file),

"//target[@depends='prepare']/@name").map do |x|
x.value

end
end

The Rails team thought so and provided another syntax to be
used when invoking blocks:

XPath.match(Document.new(file),
"//target[@depends='prepare']/@name").map(&:value)

The new syntax &:value takes advantage of Ruby’s alternate
syntax for passing blocks, by passing an explicit Proc object. (A
Proc is a block instantiated as a class so you can manipulate
it in normal Ruby ways.) Of course, :value is not a Proc; it’s a
Symbol! Rails finesses this by defining an implicit conversion from
a Symbol to a Proc:

class Symbol
def to_proc

Proc.new { |*args| args.shift.__send__(self, *args) }
end

end

The Symbol#to_proc trick is interesting because it demonstrates
an important facet of Ruby. The Ruby language encourages
modifications to its syntax. Framework designers such as the
Rails team do not have to accept Ruby “as is.” They can bend
the language to meet their needs.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=274

RUBY XML OUTPUT 275

9.6 Ruby XML Output

Configuration is often read-only, but if you use XML for user-editable

data, you will need to modify XML documents and serialize them back

to text. Both Java and Ruby build modification capability into their

tree APIs. Here is a Java program that uses the DOM to build an XML

document from scratch:

Download code/java_xt/src/xml/DOMOutput.java

Line 1 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
- DocumentBuilder db = dbf.newDocumentBuilder();
- Document doc = db.newDocument();
- Element root = doc.createElement("project");
5 root.setAttribute("name", "simple-ant");
- doc.appendChild(root);
- Element target = doc.createElement("target");
- target.setAttribute("name", "compile");
- root.appendChild(target);

10 return doc;

After the boilerplate factory code, creating documents with the DOM

boils down to three steps:

1. Create elements using methods such as createElement() in line 4.

2. Attach attributes using methods such as setAttribute() in line 5.

3. Attach created elements to a specific node in a document using

methods such as appendChild() in line 6.

The REXML approach is similar:

Download code/rails_xt/samples/xml/dom_output.rb

Line 1 root = Element.new("project", Document.new)
- root.add_attribute("name", "simple-ant")
- Element.new("target", root).add_attribute("name", "compile")

The REXML API provides for the same three steps: create, add attri-

butes, and attach to document. However, you can combine creation and

attachment, as in line 1. If you are really bold, you can even combine

all three steps, as in line 3.

XML documents in memory are often serialized into a textual form for

storage or transmission. You might want to configure several aspects

when serializing XML, such as using whitespace to make the document

more readable to humans.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/DOMOutput.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/dom_output.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=275

CREATING XML WITH BUILDER 276

In Java, you can control XML output by setting Transformer properties:

Download code/java_xt/src/xml/DOMOutput.java

Line 1 TransformerFactory tf = TransformerFactory.newInstance();
- Transformer tform = tf.newTransformer();
- tform.setOutputProperty(OutputKeys.INDENT, "yes");
- tform.transform(new DOMSource(doc), new StreamResult(System.out));

In line 2, the no-argument call to newTransformer() requests a “no-op”

transformer. (We are using the transformer just for formatting, not to

do anything more exciting such as an XSLT transformation.) The call

to setOutputProperty() in line 3 specifies that we want human-readable

indentation in the output.

The REXML version exposes output options directly on the document

itself:

Download code/rails_xt/samples/xml/dom_output.rb

root.document.write STDOUT, 2

The call to write() takes an optional second argument that sets the

indentation level.

Both the DOM and REXML are general-purpose, low-level APIs. For

significant XML applications, such as calling or implementing web ser-

vices, you are usually better off not using these APIs directly. Instead

you should use the higher-level APIs for REST and SOAP discussed at

the beginning of this chapter. For quick and easy emission of serialized

XML data, Rails programmers also have another option that does not

use the underlying tree APIs at all: Builder, which we turn to next.

9.7 Creating XML with Builder

Jim Weirich’s Builder library is bundled with Rails or can be installed

separately via this:

gem install builder

Builder takes advantage of two symmetries between Ruby and XML to

make building XML documents a snap:

• Ruby classes can respond to arbitrary methods not known in

advance, just as XML documents may have elements not known

in advance.

• Both Ruby and XML have natural nesting: XML’s element/child

relationship and Ruby’s block syntax.

http://media.pragprog.com/titles/fr_r4j/code/code/java_xt/src/xml/DOMOutput.java
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/xml/dom_output.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=276

CREATING XML WITH BUILDER 277

To see the first symmetry, consider “Hello World,” Builder-style. We’ll

use script/console since Rails preloads Builder, and irb does not: In script/console output,

we are omitting the

return value lines (=> ...)

for clarity, except where

they are directly

relevant.

$ script/console

Loading development environment.

>> b = Builder::XmlMarkup.new(:target=>STDOUT, :indent=>1)

<inspect/>

>> b.h1 "Hello, world"

<h1>Hello, world</h1>

As you can surmise from line 5, instances of XmlMarkup use method

names as element names and convert string arguments into text con-

tent inside the elements. Of course, the set of all methods is finite:

>> Builder::XmlMarkup.instance_methods.size

=> 17

Obviously, one of those 17 methods must be h1(), and the others must

correspond to other commonly used tag names. Let’s test this hypoth-

esis by finding a tag name that is not supported by Builder:

>> b.foo "Hello, World!"

<foo>Hello, World!</foo>

>> b.qwijibo "Hello, World!"

<qwijibo>Hello, World!</qwijibo>

>> b.surely_this_will_not_work "Hello, World"

<surely_this_will_not_work>Hello, World</surely_this_will_not_work>

What’s going on here? XmlMarkup is using Ruby’s method_missing() hook

to dynamically respond to any legal Ruby method name. As a result,

XmlMarkup can handle almost any XML element name you might want

to create.

Let’s create the build.xml example we have been using throughout this

chapter. First, we’ll need to add attributes to an element. Builder lets

you do this by passing an optional hash argument:

>> b.project "", :name=>'simple-ant', :default=>'compile'

<project default="compile" name="simple-ant"></project>

Next, we’ll need some way to nest one element inside another. Ruby’s

block syntax is perfect for the job. Instead of passing an initial string

parameter for the element content, pass a block to generate element

content:

>> b.project :name=>'simple-ant', :default=>'compile' do

?> b.target :name=>'clean'

>> end

<project default="compile" name="simple-ant">

<target name="clean"></target>

</project>

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=277

CURING YOUR DATA HEADACHE 278

Ruby’s blocks give the program a nested structure that mirrors the

nesting of the (pretty-printed) XML output. This is even more visible

when we put together a program to emit the entire build.xml sample:

Download code/rails_xt/samples/build_build_xml.rb

require 'rubygems'

require_gem 'builder'

b = Builder::XmlMarkup.new :target=>STDOUT, :indent=>1

b.project :name=>"simple-ant", :default=>"compile" do

b.target :name=>"clean" do

b.delete :dir=>"classes"

end

b.target :name=>"prepare" do

b.mkdir :dir=>"classes"

end

b.target :name=>"compile", :depends=>"prepare" do

b.javac :srcdir=>'src', :destdir=>'classes'

end

end

That yields this:

Download code/Rake/simple_ant/build.xml

<project name="simple-ant" default="compile">

<target name="clean">

<delete dir="classes"/>

</target>

<target name="prepare">

<mkdir dir="classes"/>

</target>

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

</project>

Builder is fully integrated with Rails. To use Builder for a Rails view,

simply name your template with the extension .rxml instead of .rhtml.

9.8 Curing Your Data Headache

In this chapter we have reviewed three alternative data formats: YAML,

JSON, and XML. Choice feels nice, but sometimes having too many

choices can be overwhelming. Combine the three alternative formats

with two different language choices (Java and Ruby for readers of this

book), add a few dozen open source and commercial projects, and you

can get a big headache. We will now present five “aspirin”—specific

pieces of advice to ease the pain.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/samples/build_build_xml.rb
http://media.pragprog.com/titles/fr_r4j/code/code/Rake/simple_ant/build.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=278

CURING YOUR DATA HEADACHE 279

Aspirin #1: Prefer Java for Big XML Problems

At the time of this writing, Java’s XML support is far more comprehen-

sive than Ruby’s. We don’t cover schema validation, XSLT, or XQuery

in this book because Ruby support is minimal. (You can get them via

open source projects that call to native libraries, but we had to draw

the line somewhere).

It is also important to understand why Ruby’s XML support is less than

Java’s. Two factors are at work here:

• Java and XML came of age together. Throughout XML’s lifetime

much of the innovation has been done in Java.

• Ruby programmers, on the other hand, have long preferred YAML

(and more recently JSON).

Notice that neither of these factors have anything to do with language or

runtime features. They are more about programmer culture. We believe

that dynamic languages are a better natural fit to any extensible data

formats and that in the future the best XML support will be in dynamic

languages.

But that’s all in the future. For now, prefer Java for Big XML Problems.

How do you recognize a Big Problem? If you think you have a perfor-

mance problem, write a benchmark that evaluates your representative

data, and you’ll know soon enough. If you need a specific API, google

it. Maybe you will be lucky and turn up some choices that have evolved

since these words were written.

Aspirin #2: Avoid the DOM

The DOM is ugly. We reference the DOM in this chapter because it is a

common baseline that Java programmers are expected to know. Place

the DOM on the list of things that were good to learn but never get used. We don’t really believe

the DOM was good to

learn but pretending it

was makes us feel better

about the lost hours.

If you must use a tree API in Java, at least use JDOM (www.jdom.org).

Aspirin #3: Prefer YAML Over XML for Configuration

As we discussed in Section 9.3, YAML and XML Compared, on page 261,

XML brings unnecessary document baggage to configuration files, such

as the distinction between elements and attributes. Namespaces make

things even worse.

www.jdom.org
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=279

CURING YOUR DATA HEADACHE 280

Of course, we do not require that you drop your current project to write

a YAML configuration parser when you already have an XML approach

working. We tend to endure XML where it is already entrenched.

Aspirin #4: Be As RESTful As Possible

REST and SOAP are not wholly incompatible. REST deals with HTTP

headers, verbs, and format negotiation. SOAP uses HTTP because it is

there but keeps its semantics to itself, in SOAP-specific headers. This

separation means that a carefully crafted service can use SOAP and

still be RESTful. Unfortunately, given the state of today’s tools, you will

need a pretty detailed understanding of both SOAP and REST to do this

well.

Another alternative is to provide two interfaces to your services: one

over SOAP and one that is RESTful.

Aspirin #5: Work at the Highest Feasible Level of Abstraction

The XML APIs, whether tree-based, push, or pull, are the assembly

language of XML programming. Most of the time, you should be able to

work at a higher level. If the higher-level abstraction you want doesn’t

exist yet, create it. Even if you use it only once, the higher-level ap-

proach will probably be quicker and easier to implement than continu-

ing to work directly with the data.

XML, JSON, and YAML share common goals: to standardize data for-

mats so that application developers need not waste time reading and

writing proprietary formats. Because the data formats are general-

purpose, they do not impose any fixed types. (This is what people mean

when they say that XML is a metaformat.) Developers can then develop

domain-specific formats, such the XHTML dialect of XML for web pages.

Web services will greatly expand the amount of communication between

computers. As a result, our mental model of the Web is changing. A

website is no longer a monolithic entity, served from a single box (or

rack of boxes) somewhere. Increasingly, web applications will delegate

parts of their work to other web applications, invoking these subsidiary

applications as web services. This is mostly a good thing, but it will put

even more pressure on developers to make web applications secure. In

the next chapter, we will look at securing Rails applications.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=280

RESOURCES 281

9.9 Resources

Builder Objects.onestepback.org/index.cgi/Tech/Ruby/BuilderObjects.rdoc

Jim Weirich’s original blog post explaining why and how he created Builder.

Explains how to use the instance_eval() trick to get builder methods to execute

in the correct context.

Creating XML with Ruby and Builder. . .
. . . http://www.xml.com/pub/a/2006/01/04/creating-xml-with-ruby-and-builder.html

A quick introduction to Builder by Michael Fitzgerald.

Design Patterns in AOP .http://www.cs.ubc.ca/~jan/AODPs

Jan Hannemann argues that design patterns are language dependent. Using

AspectJ, many Java design patterns can be made into library calls: “For 12 of

[the GoF Patterns], we developed reusable implementations that can be inte-

grated into software systems as library pattern aspects.” Includes source code

for the aspects.

Introducing JSON . http://www.json.org/

JSON’s home on the Web. JSON is so simple there isn’t much more to say,

but all of it is said here. Includes the JSON parser (www.json.org/js.html) and a

discussion about why you might prefer using it instead of relying on JavaScript

eval().

Inversion of Control and the Dependency Injection Pattern. . .
. . . http://www.martinfowler.com/articles/injection.html

Good introduction to IoC and DI from Martin Fowler.

JDOM: Mission . http://www.jdom.org/mission/index.html

Motivates getting away from abstract factories and getting work done with

JDOM: “There is no compelling reason for a Java API to manipulate XML to

be complex, tricky, unintuitive, or a pain in the neck.”

Rails, SOAP4R, and Java. . .
. . . http://ola-bini.blogspot.com/2006/08/rails-soap4r-and-java.html

Ola Bini describes getting SOAP4R to call Apache Axis web services. The hoops

he had to jump through are depressing, but he was able to get interop working

fairly quickly.

REXML . http://www.germane-software.com/software/rexml/

REXML’s home on the Web. Includes a tutorial where you can learn many of

REXML’s capabilities by example.

YAML Ain’t Markup Language . http://www.yaml.org

YAML’s home on the Web. YAML includes a good bit more complexity than

discussed in this chapter, and this site is your guide to all of it. We find the

Reference Card (http://www.yaml.org/refcard.html) to be particularly helpful.

onestepback.org/index.cgi/Tech/Ruby/BuilderObjects.rdoc
http://www.xml.com/pub/a/2006/01/04/creating-xml-with-ruby-and-builder.html
http://www.cs.ubc.ca/~jan/AODPs
http://www.json.org/
www.json.org/js.html
http://www.martinfowler.com/articles/injection.html
http://www.jdom.org/mission/index.html
http://ola-bini.blogspot.com/2006/08/rails-soap4r-and-java.html
http://www.germane-software.com/software/rexml/
http://www.yaml.org
http://www.yaml.org/refcard.html
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=281

Chapter 10

Security
Web applications manage huge amounts of important data. Securing

that data is a complex, multifaceted problem. Web applications must

ensure that private data remains private and that only authorized indi-

viduals can perform transactions.

When it comes to security, Java and Ruby on Rails web frameworks

have one big aspect in common: Everybody does it differently. No other

part of an application architecture is likely to vary as much as the

approach to security. We cannot even begin to cover all the differ-

ent approaches out there, so for this chapter we have picked what

we believe to be representative, quality approaches. For the Java side,

we will cover securing a Struts application with Acegi, a popular open

source framework. To minimize the amount of hand-coding, we are

again using AppFuse to generate boilerplate configuration. For Ruby

and Rails, we will cover two plugins: acts_as_authenticated and Autho-

rization.

We will begin with the traditional focus on authentication (authn) and

authorization (authz). The authn step asks “Who are you?” and the

authz step asks “What can you do?” With this basis in place, we will

look at security from the attacker’s perspective. For a list of possible

flaws an attacker might exploit, we will use the Open Web Application

Security Project (OWASP) Top 10 Project. For each of the ten web secu-

rity flaws, we will present preventative measures that you might take

in Ruby on Rails.

AUTHENTICATION WITH THE ACTS_AS_AUTHENTICATED PLUGIN 283

10.1 Authentication with the acts_as_authenticated

Plugin

Ruby on Rails applications are typically secured with one or more open

source plugins. Rails plugins are reusable code that is installed in the plugins

vendor/plugins directory of a Rails application. Probably the most popu-

lar security plugin is acts_as_authenticated, which provides the follow-

ing:

• Form-based and HTTP BASIC authentication

• A session-scoped user object

• “Remember Me” across sessions with a hashed cookie

• Starter RHTML forms

The steps to configure authn are straightforward:

1. Install the authn library.

2. Specify which resources require authn.

3. Specify navigation flow for login, logout, and redirects.

4. Configure a database of usernames and passwords.

Installing Acegi is a matter of putting JAR files in the right places,

which AppFuse does automatically. Installing acts_as_authenticated is

described in the sidebar on the next page.

The most common form of Acegi security uses a servlet filter to protect

any resources that require authn. To configure this filter, you need to

add the filter to web.xml:

Download code/appfuse_people/web/WEB-INF/web.xml

<filter>

<filter-name>securityFilter</filter-name>

<filter-class>org.acegisecurity.util.FilterToBeanProxy</filter-class>

<init-param>

<param-name>targetClass</param-name>

<param-value>org.acegisecurity.util.FilterChainProxy</param-value>

</init-param>

</filter>

Next, make web.xml bring in the Spring context file security.xml so that

the filterChainProxy bean is available at runtime:

Download code/appfuse_people/web/WEB-INF/web.xml

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/applicationContext-*.xml,/WEB-INF/security.xml</param-value>

</context-param>

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=283

AUTHENTICATION WITH THE ACTS_AS_AUTHENTICATED PLUGIN 284

Installing the acts_as_authenticated Plugin

Rails plugins are installed into the vendor/plugins directory. Any
way you get the files there is fine. You can download a plugin
from its home page and unzip it into vendor/plugins. If the plugin
has public subversion access, you can svn:external it and stay
on the latest version at all times.

To make the process even simpler, many plugins are deployed
to the Web so they can be installed via the script/plugin com-
mand. acts_as_authenticated is such a plugin, so all you have
to do is enter the following two commands:

script/plugin source http://svn.techno-weenie.net/projects/plugins
script/plugin install acts_as_authenticated

Once you have installed the plugin, you need to create data
tables for the username, password, and so on. The following two
commands will create the necessary ActiveRecord classes and
the migration to add them to the database:

script/generate authenticated user account
rake migrate

Inside security.xml, specify which resources should be filtered:

<bean id="filterChainProxy" class="org.acegisecurity.util.FilterChainProxy">

<property name="filterInvocationDefinitionSource">

<value>

CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

PATTERN_TYPE_APACHE_ANT

/**=httpSessionContextIntegrationFilter, ... 7 more filter names

</value>

</property>

</bean>

The /** is a wildcard that filters all resources.

The database of usernames and passwords is configurable and involves

a bit more XML not shown here.

When using Ruby’s acts_as_authenticated, you could require authn by

adding the following line to a controller class:

before_filter :login_required

If you want to require authn for some actions only, you can use the

standard options to before_filter.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=284

AUTHORIZATION WITH THE AUTHORIZATION PLUGIN 285

For example, maybe read operations do not require authn, but update

operations do:

Download code/rails_xt/app/controllers/people_controller.rb

before_filter :login_required, :except=>['index', 'list', 'show']

The use of :except is a nice touch because you do not have to learn

a security-specific filter vocabulary. You can use the common options

you already know for before_filter.

Both Acegi and acts_as_authenticated support a “Remember Me” fea-

ture. When this feature is enabled, the application will generate a cookie

that can be used to automatically log the user in. This creates the illu-

sion of staying logged in, even across closing and reopening the browser

application. Activating such support is trivial in both frameworks. In

Acegi, the “Remember Me” filter is just another filter in the list of filters

added to the filterChainProxy:

/**=...rememberMeProcessingFilter...

With acts_as_authenticated, you add a filter to the ApplicationController:

before_filter :login_from_cookie

That’s it.Both AppFuse and acts_as_authenticated automatically install

some minimal forms to create and manage logins. Depending on your

policy for new account creation, you may want to modify or remove

some of these forms. Now that we have authn in place, we can use

attach user information to specific roles and use those roles for authz

checks.

10.2 Authorization with the Authorization Plugin

To perform authorization, we need to do the following:

1. Associate the authorization with our authentication strategy.

2. Establish some named roles.

3. Map some users to roles.

4. Limit some actions or objects to roles.

For the Java side, we will continue to use Acegi for these tasks. For

Ruby on Rails, we will use another plugin, the Authorization plugin.

Both Acegi and Authorization allow pluggable authentication strategies.

We will be using a database-backed approach for both the Java and

Rails applications.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/people_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=285

AUTHORIZATION WITH THE AUTHORIZATION PLUGIN 286

Joe Asks. . .

What about Single Sign-On?

Ruby and Rails have less support for SSO than the Java world
provides. However, there are some bright spots. If you are
accustomed to using Central Authentication Service (CAS)∗ in
Java, you are in luck. The Ruby world sports a CAS filter for Rails†

and the RubyCAS-Client.‡

If you are integrating with some other SSO provider, you can use
the CAS implementations as a starting point.

∗. http://www.ja-sig.org/products/cas/

†. http://opensource.ki.se/casauth.html

‡. http://rubyforge.org/projects/rubycas-client/

Installing the Authorization Plugin

Follow the online instructions∗ to download the plugin, and then
unzip the plugin to the vendor/plugins directory of a Rails appli-
cation that you want to secure.

Since we are using a database for roles, you will need to gen-
erate and run a migration:

script/generate role_model Role
rake db:migrate

The complete installation instructions are worth reading online;
they describe some other options that we will not be needing
for this example.

∗. http://www.writertopia.com/developers/authorization

http://www.ja-sig.org/products/cas/
http://opensource.ki.se/casauth.html
http://rubyforge.org/projects/rubycas-client/
http://www.writertopia.com/developers/authorization
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=286

AUTHORIZATION WITH THE AUTHORIZATION PLUGIN 287

With Acegi, the authz and authn components are connected via Spring

dependency injection:

Download code/appfuse_people/web/WEB-INF/security.xml

<bean id="filterInvocationInterceptor"

class="org.acegisecurity.intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

With the Authorization plugin, you annotate the authentication class

to show that it is used for authorization:

Download code/rails_xt/app/models/user.rb

class User < ActiveRecord::Base

acts_as_authorized_user

Since we are storing users and roles in the database, the roles setup

steps might seem like mere data entry. However, we will need sample

data for our automated tests, so we’ll cover how this data is populated.

AppFuse will create an XML file with sample data:

Download code/appfuse_people/metadata/sql/sample-data.xml

<row>

<value>1</value>

<value>tomcat</value>

<value>536c0b339345616c1b33caf454454d8b8a190d6c</value>

<value>Tomcat</value>

<value>User</value>

<value></value>

<value>Denver</value>

<value>US</value>

This file continues to specify several users and roles. AppFuse then

uses a dbunit Ant task to populate the database.

When you install Authorization in a project, it automatically creates a

roles fixture file, which we can edit to create a few roles:

Download code/rails_xt/test/fixtures/roles.yml

admin:

id: 1

name: admin

mortal:

id: 2

name: mortal

We already have sample users named Quentin and Aaron, installed by

acts_as_authenticated.

http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/security.xml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/user.rb
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/metadata/sql/sample-data.xml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/roles.yml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=287

AUTHORIZATION WITH THE AUTHORIZATION PLUGIN 288

Here is Quentin:

Download code/rails_xt/test/fixtures/users.yml

quentin:

id: 1

login: quentin

email: quentin@example.com

salt: 7e3041ebc2fc05a40c60028e2c4901a81035d3cd

crypted_password: 00742970dc9e6319f8019fd54864d3ea740f04b1 # test

created_at: <%= 5.days.ago.to_s :db %>

We have to create a roles_users.yml fixture by hand to populate the join

table associating users with roles. We’ll make Quentin an admin and

Aaron a mortal:

Download code/rails_xt/test/fixtures/roles_users.yml

first:

role_id: 1

user_id: 1

second:

role_id: 2

user_id: 2

There is no need for a custom Rake task to load these security objects.

They are simple ActiveRecord models, so they are automatically man-

aged by the standard Rake tasks built into Rails.

Now we will get to the heart of the matter: protecting resources by role.

With Acegi, this is done in an XML file. However, the syntax is not XML

but is an embedded pattern language inspired by Apache Ant:

Download code/appfuse_people/web/WEB-INF/security.xml

<property name="objectDefinitionSource">

<value>

PATTERN_TYPE_APACHE_ANT

/clickstreams.jsp*=admin

/flushCache.*=admin

/passwordHint.html*=ROLE_ANONYMOUS,admin,user

/reload.*=admin

/signup.html*=ROLE_ANONYMOUS,admin,user

/users.html*=admin

/**/*.html*=admin,user

</value>

</property>

The patterns restrict URLs to certain roles. We believe that the language

succeeds in its goal of being self-explanatory.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/users.yml
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/fixtures/roles_users.yml
http://media.pragprog.com/titles/fr_r4j/code/code/appfuse_people/web/WEB-INF/security.xml
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=288

AUTHORIZATION WITH THE AUTHORIZATION PLUGIN 289

With the Authorization plugin, role permissions are assigned in the con-

troller itself. Instead of using pure Ruby code, the permit code parses a

mini-language that aspires to read like a human language. For exam-

ple, the following lines in the controller will specify that only adminis-

trators can edit Quips, and mere mortals can only view them:

Download code/rails_xt/app/controllers/quips_controller.rb

READ_ACTIONS = %w(index list show)

permit 'admin or mortal', :only=>READ_ACTIONS

permit 'admin', :except=>READ_ACTIONS

As with the Acegi pattern language, we find the Authorization plugin’s

mini-language to be self-explanatory.

You can test that the authorization protections work by loading the test

fixture data into the development database. Rails has a built-in task

specifically for this purpose. From the rails_xt directory, rake db:fixtures:

load will blow away the development database and replace its contents

with the test fixtures. After loading the fixtures, you can run script/server

and navigate to /quips. If you are Quentin, you will have read/write

access, but as Aaron you will have read access only.

Both Acegi and the Authorization plugin are much more powerful than

we have shown here. Both provide the ability to associate roles with

particular objects. Acegi also has one incredible feature that we have

not seen anywhere else. Because it integrates with the web tier, with

simple method interception, and with AspectJ’s pointcuts, Acegi can

secure just about anything. Better yet, you can use the same configu-

ration and roles from end-to-end in your application. You can use the

same roles to secure web endpoints, methods, objects, and anything

you can capture in an AspectJ pointcut. For the biggest, hairiest prob-

lems out there, we would not use anything else.

The acts_as_authenticated/Authorization plugin tandem also has its

area of excellence: the tiny amount of configuration and code involved.

The amount of configuration required is an order of magnitude less

than Acegi, and it is not spread across multiple files and languages.

This parsimony extends to the implementation as well. The entire run-

time footprint of both plugins together is less than 1,000 lines of Ruby

code. Security-related code is costly to develop and maintain, so getting

a lot done in a little code is a big advantage.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=289

TESTING AUTHENTICATION AND AUTHORIZATION 290

10.3 Testing Authentication and Authorization

When you add authn and authz support to a Rails application, you

will typically break any functional tests that are already in place. This

is because functional tests exercise all controller code, including the

filters that are used to implement security.

For example, when we added authn and authz to People and Quips in

the previous two sections, we broke every test that invoked a secure

action, for a total of fifteen broken tests.

We have two problems here. First, we would like to be able to test the

logic of the controllers separately from the security constraints. So, we

would like a set of functional tests that do not include any security

filters. Second, we would like to be able to test the security constraints

themselves. Moreover, both of these sets of tests must be easy to write.

Otherwise, busy developers won’t write them. It would be a shame to

have an application where everything was testable except security.

The acts_as_authenticated plugin includes an AuthenticatedTestHelper

module to simplify security testing. You can make AuthenticatedTes-

tHelper available to all your tests by mixing the module into TestCase

in test/test_helper.rb:

Download code/rails_xt/test/test_helper.rb

class Test::Unit::TestCase

include AuthenticatedTestHelper

AuthenticatedTestHelper adds several new test methods. One of the most

helpful is login_as. To get our tests to pass again, we can simply login_as

some account that has every necessary role. A test case’s setup method

is a perfect place to do this, since it runs before every test:

Download code/rails_xt/test/functional/people_controller_test.rb

def setup

@controller = PeopleController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

login_as(:quentin)

end

Since our authn and authz approach stores users and roles in the

database, we also need to add the security-related tables to the test

fixture.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/test_helper.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/people_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=290

TESTING AUTHENTICATION AND AUTHORIZATION 291

For example, we have used role-based security for the QuipsController, so

the functional test will need to have access to users, roles, and roles_users:

Download code/rails_xt/test/functional/quips_controller_test.rb

class QuipsControllerTest < Test::Unit::TestCase

fixtures :quips, :users, :roles, :roles_users

We used the previous approach to fix the fifteen broken functional test

for QuipsController and PeopleController. The fix required five total lines of

changed code:

• Including AuthenticatedTestHelper (one line)

• Adding login_as(:quentin) to two test classes (two lines)

• Editing the fixture line for the same two test classes (two lines)

Now the functional tests are working again, so we can turn our atten-

tion to testing the security constraints themselves. The AuthenticatedTes-

tHelper includes an assert_requires_login method that checks that a par-

ticular controller invocation gets redirected to login:

Download code/rails_xt/test/functional/quips_security_test.rb

assert_requires_login do |c|

c.post :create, :quip => {}

end

Notice that this code lives in a different test class, QuipsSecurityTest in-

stead of QuipsControllerTest. We are using a separate test class because

the QuipsControllerTest always logs in as Quentin, and now we are testing

what happens when there is no login. You can also use assert_requires_

login to test that Aaron (a mortal) lacks a role that would be allowed to

create a quip:

Download code/rails_xt/test/functional/quips_security_test.rb

assert_requires_login(:aaron) do |c|

c.post :create, :quip => {}

end

The syntax is a bit twisted here, in that assert_requires_login(:aaron) actu-

ally means “Assert that logging in as Aaron isn’t enough and that you

get redirected back to login.”

Rather than testing the redirect, you might want to test that failed

logins do not change the database. AuthenticatedTestHelper provides a

nifty assert_difference method for this kind of test. assert_difference takes

three arguments: an object, a method name, and a difference (which

defaults to +1). It also expects a block of code. assert_difference calls the

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_controller_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_security_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_security_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=291

TESTING AUTHENTICATION AND AUTHORIZATION 292

method on the object, runs the block, and then calls the method on the

object again and checks the difference from the original value. You can

write this:

Download code/rails_xt/test/functional/quips_security_test.rb

assert_difference(Quip, :count, 0) do

post :create, :quip => {}

end

In other words, the Quips.count remains unchanged (difference of 0)

when you post a new quip. This is the expected behavior, because

posting a new quip will fail if you do not log in first. Although pack-

aged with acts_as_authenticated, the assert_difference method is really a

general-purpose method that you might find useful elsewhere as well.

For example, the Rails scaffold tests that the create action inserts a

new row into a database:

Download code/rails_xt/test/functional/people_controller_test.rb

def test_create

num_people = Person.count

post :create, :person => {}

assert_response :redirect

assert_redirected_to :action => 'list'

assert_equal num_people + 1, Person.count

end

Using assert_difference, this can be refactored to the following:

Download code/rails_xt/test/functional/quips_controller_test.rb

def test_create

assert_difference(Quip, :count) do

post :create, :quip => {:text=>'Test Quip'}

assert_response :redirect

assert_redirected_to :action => 'list'

end

end

People sometimes equate security with the steps we have just described,

that is, enabling authn and authz for an application. We want to go

much further than this. Instead of just bolting security on at the edges

of an application, we can make security a pervasive concern, through

the entire life cycle of design, development, deployment, and mainte-

nance. That’s a tall order, and no application will ever be perfectly

secure. One reasonable step in the right direction is to look at com-

mon web security flaws and ask where in our application we can most

effectively prevent these flaws from occurring.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_security_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/people_controller_test.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/test/functional/quips_controller_test.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=292

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 293

10.4 Preventing the Top-Ten Web Security Flaws

The Open Web Application Security Project (OWASP) is a nonprofit orga-

nization that provides free, open source resources for finding and fight-

ing insecure software. One such resource is the Top Ten Project, which

represents a group of security professionals’ consensus about the most

critical web application security flaws. We’ll cover each of these in turn

and show how to translate your knowledge of Java coding practices into

successful Ruby defenses against these flaws. With apologies to David

Letterman, we will ruin the suspense by starting with number one.

#1. Unvalidated Input

Attackers can tamper with any part of an HTTP request: the URL, query

string, headers, body, cookies, and form data. All parts of the request

are user input and cannot be simply trusted. Programs that do not

validate input may be subject to injection attacks and may disclose (or

corrupt) data that the user should not be allowed to access.

Java web frameworks and Rails both provide declarative validation

mechanisms to guard against unvalidated input. For example, in our

sample Struts application, validation.xml contains rules for form valida-

tion. In Rails, validations are declared directly on the model classes

themselves. Either way, the validations do their job only if developers

are methodical in making sure that they are correctly applied to every

single piece of input.

One concern with validation in Rails applications is that much “magic”

happens automatically. For example, code like this is often used to

create an ActiveRecord instance directly from form data:

Download code/rails_xt/app/controllers/quips_controller.rb

@quip = Quip.new(params[:quip])

Some good magic is happening here. Because validations are done at

the ActiveRecord level, calling save on this new object will fail (without

ever touching the database!) if validations fail. Since quips validate the

presence of the text field, there is no danger that this line of code will

create an invalid quip with a NULL text.

But maybe there is a little too much magic. Imagine that your form

for creating new quips offers only two fields: text and commit. What

happens if a user submits the following POST body?

quip%5Btext%5D=Hello%2C+world&quip%5Bauthor_id%5D=15&commit=Create

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/quips_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=293

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 294

Oops. What is that author_id parameter doing in there? Even though you

didn’t include that value in the form, nothing stops a curious (or mali-

cious) user from adding it to the POST body. The quip will now appear

to be authored by the person with ID 15. If your database includes col-

umns that are not intended to be accessed directly by users, then Rails’

default mass assignment will be a problem. One (very poor) solution to

this problem would be to go back to assigning each value manually:

@quip = Quip.new

@quip.some_attr = params[:quip][:some_attr]

@quip.other_attr = params[:quip][:other_attr]

@quip.another_attr = params[:quip][:another_attr]

etc.

ActiveRecord provides a better solution. We can use the attr_accessible

method to declare the exact list of attributes that can be mass-assigned.

Alternately, we can use the attr_protected method to declare the list

of attributes that cannot be mass-assigned. Of the two choices, attr_

accessible is considered more secure, so we will use attr_accessible to

make sure that only expected values get assigned:

Download code/rails_xt/app/models/quip.rb

attr_accessible :text

You can use validations to validate the fields you expect to see and use

attr_accessible to make sure that only expected fields get assigned.

#2: Broken Access Control

We have already covered access control in some detail in Section 10.2,

Authorization with the Authorization Plugin, on page 285. Even with an

authz mechanism in place, you have to be careful to avoid tricks that

bypass authz entirely. Some of the dangers are as follows:

• Path traversal attacks that craft relative paths (../../../etc.) to

back into supposedly inaccessible places

• Readable configuration files that contain sensitive information (in-

cluding passwords in some cases)

• Browsing directly to deep URLs that are protected only by the pre-

sumption that users will pass through some other protected URL

first

• Caching that bypasses security

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/quip.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=294

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 295

Most of these issues play out similarly in Java and Rails, but you

should pay special attention to one. Java programmers are accustomed

to caching at the data level. In Rails, caching is primarily done at the

view level. When you cache pages in Rails, they are delivered directly

from the web server to the user, without Rails being involved at all.

Page caching is fast, but be careful. Any cached page will bypass all of

Rails’ security mechanisms. Rails provides action caching to deal with action caching

this problem. When a user accesses a cached action, Rails performs

your controller’s before_filters before returning the cached results. Since

security checks are usually performed in before_filters, cached actions

can be secured. See Section 6.7, Caching Pages, Actions, and Frag-

ments, on page 180 for details about both page and action caching.

Action caching is, of course, slower than page caching. You get what

you pay for. Use page caching for public resources and action caching

for secured resources.

#3. Broken Authentication and Session Management

Even when access control is implemented correctly, security can be

compromised by mismanaging authentication or session. Here are a

few examples:

• Authentication usually places some information in the session so

that subsequent requests can be aware the user is authenticated.

The cookie that is used to identify the session must be protected.

It does little good to use the Secure Sockets Layer (SSL) to secure

the login step and then continue to trust that same login based on

a cookie that is submitted in plain text over HTTP.

• Passwords should be strong (not likely to be guessed). Passwords

should not be stored as plain text anywhere. (This is why system

administrators can reset your password, but they cannot tell you

what it was.)

• In both Java and Rails web applications, turning on SSL is a web

server setting, separate from the application code itself. However,

application code can (and should) double-check that requests that

should be encrypted actually were. In a Rails application, requests

implement the ssl? method, which returns true if the request was

made over SSL.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=295

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 296

The Acts as Authenticated home page1 includes tutorials and code for

adding various password management features to a Rails application:

user activation, initial password generation, password reset, and pass-

word change.

#4. Cross-Site Scripting (XSS)

Cross-site scripting occurs when a web application sends malicious

code to users. This is surprisingly easy to do. When we fill out some

user information for some site, we set the last name to this:

"Halloway <script type='text/javascript'>(malicious code)</script>"

If a web application accepts this input, then anyone who views the List

Users screen in a JavaScript-enabled browser will execute the mali-

cious code. The best way to prevent this attack is to have rigorous pos-

itive validation. Instead of guessing all the ways that somebody might

sneak in bad code, just validate the positive set of legal values, using

the techniques in Section 4.5, Validating Data Values, on page 113.

What about data fields, where the positive validation is too open-ended

to eliminate all possible XSS tricks? Guessing all the bad values may be

impossible. XSS exploits often use Unicode escapes and other kinds of

character set trickery so that there is no obvious <script> tag to hunt for.

Nevertheless, it is worth stripping out the most obvious XSS attacks.

The ERb templating library includes the method html_escape to escape

HTML tags in rendered output. This method is so common that it has

the short alias h, as shown in this code fragment from a scaffold list

view:

Download code/rails_xt/app/views/quips/list.rhtml

<% for column in Quip.content_columns %>

<td><%=h quip.send(column.name) %></td>

<% end %>

#5. Buffer Overflow

Buffer overflow attacks take advantage of the fact that in some run-

time environments, program variables and stack frames share the same

memory address space. If an attacker can corrupt a program vari-

able, they may corrupt far more than just that value. If the corruption

extends into the stack frame, an attacker can execute arbitrary code,

often taking complete control of the entire machine.

1. http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/views/quips/list.rhtml
http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=296

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 297

Java and Ruby programs are immune to buffer overflow, because their

memory model does not permit the necessary kind of stack corrup-

tion. Your programs cannot directly run afoul of this problem. However,

the Java virtual machine or Ruby interpreter might itself be subject to

buffer overflow, so keep up with your security patches.

#6. Injection Flaws

Injection flaws occur when attackers can inject malicious code into

the web application, which is then executed by some back-end pro-

cess. In the Java world, the best-known injection flaw is SQL injection.

When poorly written programs build SQL commands dynamically by

string concatenation, attackers can use delimiters and comments to

sneak in statements or clauses that execute arbitrary commands on

the database.

SQL injection can occur in any language that has support for strings

and SQL, that is, pretty much every language used in web application

development, including Ruby. Here is the classic SQL injection error,

translated into ActiveRecord code:

Download code/rails_xt/app/models/person.rb

This method demonstrates a SQL injection attack

DO NOT WRITE CODE LIKE THIS

def self.find_by_any_name_UNSAFE(search)

find(:all, \

:conditions=>"first_name = '#{search}' OR last_name = '#{search}'")

end

The problem here is the use of string interpolation to insert the search

term. If the user enters the term Fred, things will be fine. But a search

for foo\’ OR true OR id=\’ will return every row in the table. (You can see

this in action by running test/unit/person_test.rb. Yes, we wrote unit tests

that prove our broken example is really broken.)

Returning unexpected rows can easily violate security constraints, and

there are worse possibilities. Attack strings can be crafted to, well, do

anything a SQL database can do: create, read, update, delete, and even

run stored procedures. The solution for this problem in Ruby is approx-

imately the same as in Java’s JDBC: Do not build SQL commands with

raw string concatenation. Instead, use an API that automatically quotes

user input. In ActiveRecord, the :conditions clause quotes arguments

automatically, so the preceding example should be rewritten as follows:

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/person.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=297

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 298

Download code/rails_xt/app/models/person.rb

def self.find_by_any_name(search)

find(:all, \

:conditions=>['first_name = :search or last_name = :search', {:search=>search}])

end

#7. Improper Error Handling

Web application errors will occur, and handling them is a challenge. The

problem is one of balancing disparate audiences. Users should get help,

administrators should get detailed diagnostics, and attackers should

get nothing. An example will illustrate the problem. Ned logs into a site

and does something that causes an exception in some Ruby code on the

server. The log file should contain detailed information about the prob-

lem so that developers and administrators can troubleshoot it later. We

can’t be sure Ned is not an attacker, so Ned will get a generic error mes-

sage. In particular, we do not want to provide detailed and varying error

messages that encourage an attacker to analyze our system by making

it fail in different ways.

Rails’ default handling of errors is good. In a development environment,

detailed error information is automatically written to the browser win-

dow and to the log/development.log. To make this easy to see, we have

added a deliberately broken method named fail to the AccountController:

Download code/rails_xt/app/controllers/account_controller.rb

Demonstrates some of the possible dangers in error handling code

def fail

raise "Failed"

end

If you run the Quips application and navigate to /account/fail/1, you will

see an error message similar to the one shown in Figure 10.1, on the

next page. You can follow the links to view the entire stack trace. The

message in log/development.log is similar.

In a production environment, you would not want to provide this level

of internal detail in an error message. Instead, Rails routes error mes-

sages to a static HTML page at public/500.html, which you can then edit

as you see fit.

The default behaviors are a pretty good start, but that is not quite the

end of the story. By default, Rails dumps HTTP parameters to the log

file. Some of these form parameters, such as passwords, are sensitive

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/models/person.rb
http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/account_controller.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=298

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 299

Figure 10.1: Development error message

and should not be stored as plain text, in log files, or anywhere else.

To deal with this, Rails controllers provide the filter_parameter_logging

method. This class method can take regular expressions for parameter

names that should not be included in log files. For example, the Quips

application has the following line:

Download code/rails_xt/app/controllers/application.rb

filter_parameter_logging 'password'

As a result, any parameters that match /password/i will be filtered in the

log file. For example, navigating to /account/fail?password=supersecret will

leave the following in the log file:

Processing AccountController#fail (for 127.0.0.1 at 2006-09-25 14:07:41) [GET]

Session ID: b2745e2f7ce5fb0201c030aa4a31986c

Parameters: {"action"=>"fail", "controller"=>"account",

"password"=>"[FILTERED]"}

That takes care of Rails’ default logging. If you do your own logging

of sensitive data, you will need to be careful to make sure the data is

appropriately sanitized.

http://media.pragprog.com/titles/fr_r4j/code/code/rails_xt/app/controllers/application.rb
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=299

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 300

#8. Insecure Storage

Applications need to store sensitive information such as passwords and

credit card numbers. Both Java and Ruby have libraries that provide

the encryption and hashing functions that are needed to do this cor-

rectly. That said, storing secure data is difficult. Even if you use the

best libraries, you have to think through how to use them in a secure

fashion. Moreover, storing secure data often implies legal liability. So

our strong recommendation is to take the following approach to secure

data storage:

• Do not store secure data.

• If the design absolutely requires secure data, then use well-known

existing systems instead of rolling your own.

• Kick and scream while continuing to insist on one of the previous

approaches.

• Roll your own only as a last resort, and get a review from a security

expert.

The acts_as_authenticated plugin demonstrates a reasonable use of

hashing and salt to store passwords; look at user.rb for details.

#9. Application Denial of Service

Web applications are particularly prone to denial of service attacks,

where an attacker consumes the processing resources of the applica-

tion and legitimate users cannot get service. For the most part, these

attacks do not target language-specific implementation details, so most

preventive measures are the same for Java, Ruby, or any other lan-

guage.

You should be aware of one Ruby-specific issue. Java applications use

multiple threads to handle simultaneous requests and use database-

level caching to improve performance. (Larger Java applications also

use multiple processes and other kinds of caching, but many appli-

cations work fine from a single process.) Rails applications use mul-

tiple processes to handle simultaneous requests and use view-level

caching to improve performance. This means that even a small number

of expensive user requests can bog down a standard Rails configura-

tion. The solution to this is to let the cache do as much as possible, ide-

ally handling all unauthenticated requests. To handle the “real” work

of authenticated users, you will need to add more processes and even-

tually more boxes.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=300

PREVENTING THE TOP-TEN WEB SECURITY FLAWS 301

#10. Insecure Configuration Management

To misquote Richard Dawkins: However many ways there are to cor-

rectly configure a server, it is certain that there are vastly more ways of

misconfiguring it. The OWASP site lists several configuration problems

that can weaken security, including the following:

• Default accounts and passwords

• Unnecessary services enabled (especially admin ones)

• Unpatched flaws

• Improper file permissions

• Misconfigured SSL

These issues are not language-specific, so for the most part there is

not a distinct “Ruby” or “Java” approach. Rails does have one distin-

guishing characteristic. Because Rails is a full-stack framework with a

standardized directory structure, most Rails applications look similar.

This is mostly beneficial for securing application configuration, because

good ideas are easily (sometimes automatically) available to all Rails

applications. The downside is that a defect in Rails configuration secu-

rity is likely to impact the entire Rails community.

This brings us to the most important Rails security flaw to date. On

August 9, 2006, the Rails team announced a security flaw and an

immediate mandatory patch. One day later, on August 10, 2006, they

disclosed full details about the problem and provided more documen-

tation about patching it. The flaw was in the Rails routing code, which

would allow unexpected evaluation of Ruby code. For example, /script/*

URLs would actually invoke the support scripts in Rails’ script directory.

This flaw is an example of several items in the OWASP Top Ten: denial

of service, insecure configuration management, and broken access con-

trol at the very least. The solution is also on the Top Ten list: To prevent

insecure configuration, you must always stay up-to-date with patches.

This chapter has provided only a brief overview of web application secu-

rity. Since this book is about programming in Ruby and Rails, we have

emphasized only some code-specific and language-specific concerns.

Securing applications includes much more than just coding practices.

In particular, code alone cannot resist a determined attacker. Attacks

are dynamic, active, and guided by human intelligence. Defenses must

include these elements as well. For a good, and not too technical, intro-

duction to these issues, we recommend [Sch04].

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=301

RESOURCES 302

10.5 Resources

Acts as Authenticated. . .
. . . http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated

Acts as Authenticated used in Section 10.1, Authentication with the

acts_as_authenticated Plugin, on page 283.

Authorization Plugin http://www.writertopia.com/developers/authorization

Authorization plugin used in Section 10.2, Authorization with the Authorization

Plugin, on page 285.

Open Web Application Security Project.http://www.owasp.org

The Open Web Application Security Project (OWASP) is dedicated to finding and

fighting the causes of insecure software. Everything on the side is free and open

source.

Rails 1.1, backports, and full disclosure. . .
. . . http://weblog.rubyonrails.org/2006/8/10/rails-1-1-6-backports-and-full-disclosure

Explanation of a serious security flaw in Rails 1.1.0 through 1.1.5. Get off these

versions, and read here to understand how the Rails team handled the problem.

Spring Acegi .http://www.acegisecurity.org/

Acegi Security provides comprehensive authentication, authorization, instance-

based access control, and channel security for Java applications. Because of

its integration with Aspect-Oriented Programming and servlet filters, we prefer

Acegi for Java projects.

http://technoweenie.stikipad.com/plugins/show/Acts+as+Authenticated
http://www.writertopia.com/developers/authorization
http://www.owasp.org
http://weblog.rubyonrails.org/2006/8/10/rails-1-1-6-backports-and-full-disclosure
http://www.acegisecurity.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=302

Appendix A

Java to Ruby Dictionary
This dictionary maps Java concepts to Ruby and Rails concepts. The

mapping is not always exact or one-to-one; for more details, follow the

references.

AOP

Aspect-Oriented Programming. AOP is a way to improve the modu-

larity (and DRYness) of your code. Code that traditionally would be

scattered across an application is gathered together in an aspect

and then woven back into the application where needed. Because

aspects can be used to circumvent language restrictions, aspects

are essential in Java. Java has excellent AOP support through

AspectJ.1 Aspects are less important in Ruby, thanks to language

features such as method_missing and the ability to rewrite methods

at runtime. We use a simple Ruby aspect library called AspectR.2

block

A block is a piece of code that can be passed to a method. Java

has no equivalent. Where Ruby programs use blocks, Java pro-

grams use a combination of single-method interfaces and anony-

mous inner classes. Blocks are used throughout the book and are

introduced in Section 2.4, Collections and Iteration, on page 47.

class

Ruby has classes as well; see Section 2.6, Defining Classes, on

page 57.

1. http://www.eclipse.org/aspectj/

2. http://aspectr.sourceforge.net/

http://www.eclipse.org/aspectj/
http://aspectr.sourceforge.net/

APPENDIX A. JAVA TO RUBY DICTIONARY 304

cobertura

Cobertura3 is an open source tool measuring test coverage. The

approximate equivalent in the Ruby world is rcov.4 See Section 7.6,

Measuring Code Coverage with rcov, on page 222.

constructor

The Ruby equivalent of a constructor is a method named initialize();

see Section 2.6, Defining Classes, on page 57.

CruiseControl

CruiseControl5 is a popular, open source continuous integration

framework for Java. There is no comprehensive equivalent for Ruby

yet. We currently use Cerberus, covered in Section 8.5, Continuous

Integration with Cerberus, on page 243. Other projects we have

worked on chose to write adapters to integrate Ruby builds into

CruiseControl. Stay away from DamageControl,6 unless you want

to be a hero and start maintaining it.

JavaServer Pages

The approximate equivalent of JavaServer Pages (JSPs) are .rhtml

files in ActionView. See Section 6.1, Creating Basic .rhtml Files, on

page 168.

field

Ruby has instance variables, which are named like @my_var. See

Section 2.6, Defining Classes, on page 57.

hibernate.cfg.xml

The Hibernate configuration file has database connection settings,

plus configuration for model objects. In Rails, database connec-

tion settings live in database.yml (Section 4.1, Getting Connected,

on page 97). Rails applications rely on convention for most model

setting, but such configuration lives in the model classes them-

selves. See Section 4.6, Lifecycle Callbacks, on page 116 and Sec-

tion 4.7, Associations and Inheritance, on page 119.

method

Ruby also has methods, but they are named like my_method. See

Section 2.3, Objects and Methods, on page 44.

3. http://cobertura.sourceforge.net/

4. http://eigenclass.org/hiki.rb?rcov

5. http://cruisecontrol.sourceforge.net/

6. http://damagecontrol.codehaus.org/

http://cobertura.sourceforge.net/
http://eigenclass.org/hiki.rb?rcov
http://cruisecontrol.sourceforge.net/
http://damagecontrol.codehaus.org/
http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=304

APPENDIX A. JAVA TO RUBY DICTIONARY 305

servlet filters

The Rails equivalents to servlet filters are controller filters and ver-

ify. See Section 5.5, Managing Cross-Cutting Concerns with Filters

and Verify, on page 147.

soap4r

This is the Ruby API to call SOAP servers. It’s like a lightweight,

easy-to-use version of JAX-RPC. It is part of the Ruby Standard

Library. Section 9.2, Consuming SOAP Services with soap4r, on

page 259.

static method

Ruby provides several ways to declare class-level methods. See

Section 2.6, Creating Static Methods, on page 61.

tag libraries

Rails has no direct equivalent to tag libraries. Instead, Rails appli-

cations use view helpers and collection partials. See Section 6.2,

Minimizing View Code with View Helpers, on page 169.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=305

Appendix B

Bibliography

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley,

Reading, MA, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Pin06] Chris Pine. Learn to Program. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2006.

[Sch04] Bruce Schneier. Secrets and Lies: Digital Security in a Net-

worked World. John Wiley & Sons, New York, NY, 2004.

[Tat06] Bruce Tate. From Java to Ruby: Things Every Manager

Should Know. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2006.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, sec-

ond edition, 2005.

[TH06] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, second edition, 2006.

Appendix C

Structure of a Rails Project
One factor that makes Rails easy to learn is the standardized directory

layout of Rails projects. The following list highlights the directory struc-

ture of a Rails project, with references to sections in the book that cover

each directory:

app/controllers

MVC controllers live here. A file named people_controller.rb will con-

tain a single Ruby class, PeopleController. See Chapter 5, Coordinat-

ing Activities with ActionController, on page 133.

app/helpers

Every controller has an associated view helper, such as people_

helper.rb, for example. View helpers typically contain utility meth-

ods for formatting output. See Section 6.2, Minimizing View Code

with View Helpers, on page 169.

app/models

Model classes are named in the singular; for example, person.rb

contains the Person class. See Chapter 4, Accessing Data with

ActiveRecord, on page 96.

app/views

View code lives in a directory per controller. The naming conven-

tion is that the PeopleController will have a corresponding people

directory here. See Chapter 6, Rendering Output with ActionView,

on page 167.

components

Rails components provide a way to modularize Rails code.

Components are not widely used and are not covered in this book.

See http://manuals.rubyonrails.com/read/book/14.

http://manuals.rubyonrails.com/read/book/14

APPENDIX C. STRUCTURE OF A RAILS PROJECT 308

config

The config directory contains database connection settings, web

server settings, and settings for the different environments asso-

ciated with a Rails project. See Section 1.7, Rails Environments,

on page 32.

db

This contains the data schema for your application, plus past ver-

sions of the schema in the form of migrations. See Section 4.2,

Managing Schema Versions with Migrations, on page 100.

doc

This contains generated documentation for your application, like

javadoc creates.

lib

This contains third-party library code.

log

This contains log files for the different environments. See Sec-

tion 1.7, Rails Environments, on page 32.

public

This contains static web content that is rendered automatically,

before consulting Rails routing.

Rakefile

This is the project automation file. See Chapter 8, Automating the

Development Process, on page 233.

script

This contains various support scripts, including those for starting

and stopping the application during development. See Section 1.9,

Rails Support Scripts, on page 36.

test

This contains automated tests: those in the unit directory test mod-

els and those in the functional directory test controllers. See Chap-

ter 7, Testing, on page 198.

vendor

This contains third-party code and plugins. Plugins are introduced

briefly in the sidebar on page 284.

http://books.pragprog.com/titles/fr_r4j/errata/add?pdf_page=308

Index
Symbols
#{} (in Ruby), 42

$$ (in Ruby), 158

%w shortcut (in Ruby), 268

+ sign (in Java), 41

/**, 284

:: (in Ruby), 78

< (in Ruby), 65

<% %>, 168, 176

<%=%>, 168, 176

== (in Java), 64

== (in Ruby), 64, 65

=== (in Ruby), 57, 228

=> (in Rake), 236

[] (in Ruby), 43, 50

[]= (in Ruby), 50

$: (in Ruby), 81

<< (in Ruby), 43

A
Abstract factories, 272

Accept header, 251

Acceptance tests, 193

Access specifiers, 67f, 67–69

Accessors, 59–60

Acegi, 302

for authorization, 285

benefits of, 289

components of, 287

features of, 285

installation of, 283

protecting resources by role, 288

Action caching, 295

ActionController, 133–166

actions, list and show, 136–140

benchmarking in, 159–164

create, update and delete actions,

140–144

cross-cutting concerns, 147–150

debugging in, 164–165

layering in, 137, 138

logging in, 154–159

logic of, 133

naming conventions in, 135

resources for, 166

responsibilities of, 133

routing basics, 134–136

routing in, 151–153

sessions, tracking user state with,

144–147

ActionPack, see ActionCon-

troller;ActiveRecord;ActionView

ActionView, 167–197

black-box testing with Selenium,

195f, 193–196

caching in, 180–183

creating .rhtml files in, 168–169

custom helpers in, 170–171

dynamic pages (Ajax) in, 184–191

HTML forms, building, 174–178

JavaScript, rendering with RJS,

191–192

layouts and partials in, 172–174

HTML forms, building

with Markaby, 178–180

overview of, 167–168, 196–197

resources for, 197

view helpers in, 169

ActionWebService, 256–259

vs. Axis, 258

ActiveRecord, 96–132

as a gem, 96

association and inheritance in,

119–125

one to many relationships, 119

associations in, 122

commit and rollback in, 127

conditions option, 108

ACTIVERESOURCE AND REST 310 ATTR_PROTECTED

configuring, 97

connecting to databases, 35–36

conserving resources/connection

pooling, 131–132

and CRUD, access patterns,

106–113

deleting records in, 113

finders for, 110

getting connected, 97–100

vs. Hibernate, 107

inheritance in data tier, modeling,

123–125

lifecycle callbacks in, 116–118

mapping data to classes, 103–105

model objects and form beans, 140

multiple databases and, 100

N+1 problem, preventing, 130–131

new record, inserting, 109–111

optimistic locking in, 128–130

persisting data, 109

polymorphic associations in, 123

primary key field in, 103

resources for, 132

save(), 109

schema versions with migrations in,

100–103

search via properties, 108

and sessions, 111, 146

and SQL, 101

through associations in, 123

transactions in, 125–128

and unvalidated input, 294

updating records in, 112

validating data values in, 113–116

validation limitation in, 116

and YAML, 99

see also Hibernate

ActiveResource and REST

accessing, 254

consuming services, 254–255

creating services, 249–254

defined, 254

after_filter, 149

Agile Web Development with Rails by

Thomas et al., 14

Ajax

in ActionView, 184–191

defined, 185

degradable, 190

in Rails applications, 185

InPlaceEditor, 186, 187, 190

JavaScript libraries and, 185–186

planning for, 189–191

Rails Ajax helpers, 186–189

and RJS, 191

search.rhtml, 188

searches, 188

surveys about, 184

alias_method, 183

Aliases in YAML, 99

Anchors in YAML, 99

Annotations, 230

Anonymous inner calsses, 93

Ant, 206

see also Rake

ant, 23, 234

and dependency-based

programming, 234

as external DSL, 239

output from, 234

tasks in, 235

Apache Axis, 256

tutorial, 258

Apache Commons Lang, 72, 238

Apache Maven, 206, 245

api_method, 257

appendChild(), 275

Appender, 155

AppFuse, 139, 256, 287

Application denial of service, 300

Arguments, 45

for access control methods, 68

ARGV, 48

around_filter, 149

Arrays, 47–49

mathematical operators in, 48

syntax in, 48

assert_difference, 292

assert_equal(), 201

assert_nil(), 204

assert_raises, 204

assert_requires_login, 291

assert_routing, 152

assert_same(), 204

assert_throws, 204

assertEquals(), 200, 202

Assertions, 198, 204

Asynchronous JavaScript and XML,

see Ajax

attr_accessor, 60

attr_accessible, 294

attr_protected, 294

AUTHENTICATE 311 CACHING IN ACTIONVIEW

authenticate, 160

Authentication plugin, 283–286

"Remember Me" feature, 285

acts_as_authenticated

configuration, 283

features, 283

installation, 284

filtering resources, 284

and functional tests, 290

requiring authn, 285

and security constraints, testing,

291

and security-related tables, 291

test methods for, 290

testing, 290–292

website for, 302

Authorization plugin, 285–289

benefits of, 289

fixture file in, 287

fixtures, creating, 288

and functional tests, 290

installation, 286

protecting resources by role, 288

and security constraints, testing,

291

and security-related tables, 291

steps of, 285

testing, 289–292

website for, 302

Authors and publications database

example, 249–253

Automating development, 233–246

continuous integration with

Cerberus, 245f, 243–245

overview of, 233

Rake basics, 234–236

Rake custom tasks, 238–240

Rake in Rails applications, 240–242

Rake options, 237

resources for, 245–246

B
Backslash escapes, 42

Backslashes in Ruby vs. Java, 44

before_filter, 148, 149, 284

before_filters, 295

before_save(), 117, 118

Behavioral methods, 60–61

benchmark, 162

Benchmarking in ActionController,

159–164

authenticating users, 160

benchmarker, 160, 162

and encryption, 161

optimizations in, 162

profiler, 160, 162, 163

profiler vs. benchmarker, 161

web servers for, 163

better_search, 191, 192

bfl, 170, 171

Bignum, 40

Bini, Ola, 281

Black-box testing with Selenium,

193–196

as acceptance test, 193

vs. white-box, 193

Blankspace, testing for, 72–74

Blocks, 48

ampersand and, 94

in benchmarker, 162

and Builder, 277

catch, 69

for iteration, 49

and key/value, 49

for logging in Ruby, 158

passing function to method via, 94

and ranges, 54

in Ruby vs. Java, 222

breakpoint, 164

Broken access control, 294–295

Broken authentication and session

management, 295

Buffer overflow, 296

Build property, 237

Builder, 281

creating XML with, 276–278

Builder, creating XMl with

advantages of, 276

Hello World example, 277

installation, 276

nesting in, 277

for Rails view, 278

C
cache, 181

Caching

action, 295

Caching in ActionView, 180–183

actions vs. pages, 181

and blocks, 182

with data changes, 182

fragment, 181, 182

CAPISTRANO 312 CUSTOM HELPERS IN ACTIONVIEW

levels of, 181

sweepers and, 182

testing, 184

when to use, 181

Capistrano, 246

Cascade property, 122

case, 55–57

Case equality, 56

Case equality operator, 57

Celestial body example, 123

Central authentication service (CAS),

286

Cerberus, 245f, 243–245

command-line tool, 244

and failed builds, 244

functions of, 243

project repository URL, 244

publishers supported, 244

website, 243

charAt, 42

Checked exceptions, 69–71

CI, see Continuous integration

Class loader, 80

Classes, 59f, 57–61

access specifiers for, 67–69

anonymous inner, 93

and case equality, 56

creating behavioral methods in,

60–61

declaring fields in, 57–58

defining accessors, 59–60

defining constructors, 58

derived, 65

extending core, 72–74

inheritance in, 65–66

mapping data to, 103–105

naming, 76

open, in Ruby, 73

singleton, 92

super, 65

Classpath

see also Load path

Classpath, defined, 79

Clover, 222

Cobertura, 222

Code

agile, 100

coverage, measuring, 224f, 222–225

deployment of, 79–83

routing from URLs, 134–136

Collections

and arrays, 47–49

and iteration, 47–51

maps, 49–50

Components in URLs, 151

Concatenation, 41

Conditions option, 108

Connecting to databases, 35–36

Connection pooling, 131–132

Constructors, 58

Container-managed transactions, 127

Continuous integration with Cerberus,

245f, 243–245

command-line tool, 244

and CruiseControl, 243

and failed builds, 244

functions of, 243

project repository URL, 244

publishers supported, 244

website for, 243

Controllers, 133

permissions by role in, 289

testing, 210–211, 229

variables in, 214

see also ActionController

convert, 139

Coverage, see Code, coverage

create(), 111, 215

Create, Read, Update, and Delete, see

CRUD

createElement(), 275

Crockford, Douglas, 265

Cross-cutting in ActionController,

147–150

concerns in, 147

filters for, 148, 150

verification in, 150

Cross-site scripting (XSS), 296

CRUD, 106–113

create, update, delete in

ActionController, 140–144

loading data, 106–109

new record, inserting, 109–111

persisting data, 109

reading in ActionController, 136–140

and REST, 248

and SQL injection attacks, 297

CruiseControl, 243

Custom helpers in ActionView,

170–171

DATABASES 313 FIXNUM

D
Databases

authors and publications example,

249–253

connecting to, 35–36

multiple, in Rails, 100

N+1 problem, preventing, 130–131

passwords in, 116

performance of, 125

and version columns, 128

Dawkins, Richard, 301

Debugging in ActionController,

164–165

breakpoint, 164

variables in, 164

default (in Rake), 236

define_method(), 220

Degradable Ajax, 190

Delegation, 83–85

Deleting records in ActiveRecord, 113

Denial of service, application, 300

Dependency-based programming, 234

Deployment, 79–83

and load path, 80–81

and classpaths, 79

and RubyGems, 81–83

desc, 241

destroy(), 113

Development cycle in Rails, 27f, 28f,

25–28

Development environment, 32, 33

and ActiveRecord, 99

Discriminator column, 124

Distributed transactions, 127

Document object model (DOM), 279

doFilter, 148

DOM, 270, 279

Domain names, 76

down(), 102

Duck typing, 78, 89

defined, 89

disadvantage of, 89

Dynamic components, 151

Dynamic language and inheritance in

data, 125

Dynamic pages in ActionView, 184–191

Dynamic typing, 138

Dynamic vs. static typing, 46

E
each(), 50, 270, 271

Eckel, Bruce, 71

Editors for Ruby and Rails, 29

Elements in XML, 262

elements(), 271

Emacs, 29

Embedded Ruby (ERB), 168

Embedded Ruby (ERb), 209

Encryption in benchmarking example,

161

Endpoints, 252

ENV, 49

Environment variables, 49

Environments

and ActiveRecord, 99

overriding, 35

for web applications, 32–35

eql, 64, 65

Equality, 63–65

Error handling, improper, 298–299

error_message_on, 175

Escapes, 42

Exceptions, 41

checked, 69–71

raising and handling, 69–71

Exploration tests, 32

websites for, 32n

Expression language, 169

Expressions and case equality, 56

extends, 65

Extraction in Ruby, 43

F
fail, 298

fetch, 50

field_helpers, 177

Fielding, Roy, 248

Fields, 57–58

Fields, Jay, 232

filter_parameter_logging, 299

filterChain, 149

Filters

for logging, 148

in Rails, 148

request redirection, 150

servlet vs. Rails, 149

final, 74

find(), 107

Finders in ActiveRecord, 110

findForward, 142

Fitzgerald, Michael, 281

Fixnum, 40

FIXTURES 314 INHERITANCE

Fixtures, 207, 209

configuring, 208

managing data, 208, 209

flash, 141

FlexMock

advantages of, 228

expectations for, 228

filtering quips with, 227

helper methods for, 227

including, 227

installation of, 227

and stub objects, 229

verification and, 228

website for, 227n

flexmock, 228

foo, 146

form bean, 139

Form builders, 177

Form helpers, 175, 176

form_for helper, 176

format_message, 157

Fowler, Martin, 65

on ActiveRecord, 96

on dependency injection, 281

on Rake, 246

freeze, 75, 242

Freezing, 83

Functional testing, 210–211

Functional tests, 290, 291

for routing, 152

Functions, 92–95

sorting example, 92

sort criteria, changing, 93

G
Garrett, Jesse James, 184

get(), 213–215

get_targets(), 269

Getters, 59

Glover, Andrew, 232

Goetz, Brian, 146

GUI debuggers, 153, 164, 165

H
HAML, 197

Hannemann, Jan, 281

has_many, 120

Hash keys, 74

Hashes, 49–50

passwords and, 116

syntax of, 49

help, 241

Help options (in Rake), 241

Helpers, writing custom, 170–171

heredoc, 43

Hibernate, 96, 102

vs. ActiveRecord, 107

associations in, 122

cache and sessions, 111

connection pooling, 131

container-managed transactions,

127

deleting records in, 113

distributed transactions, 127

event listeners in, 117

lifecycle interfaces and, 116

loading data in, 106

local transactions in, 126

model class, in ActiveRecord, 104

and optimistic locking, 128

POJOs in, 106

Validator, 113, 115

see also ActiveRecord

HTML forms in ActionView, 174–178

form helpers in, 175

Struts vs. Rails, 175

Struts’ strengths, 175

tags and, 174

HTML with Markaby, 178–180

html_escape, 296

Humane vs. minimal interface, 65

I
iBatis, 132

id, 135

Identity, 63–65

if, 51–53

Immutable objects, 74–76

defined, 74

and modifier methods, 75

properties of, 74

and setter methods, 75

import vs. include, 79

Improper error handling, 298–299

include, 79

Include directive, 172

index, 250

Inflector, testing, 219–220

Inheritance, 65–66

in ActiveRecord, 119–125

and ancestors, 79

in data tier, 123–125

INITIALIZE 315 LANGUAGES

and functions, 93

and many-to-many associations, 122

multiple, 66

and one-to-one associations, 122

polymorphism and, 86, 87

single implementation, 65

single table, 125

transitive persistence, 121–122

initialize, 58

Injection flaws, 297

InPlaceEditor, 186, 187, 190

Insecure configuration management,

301

Insecure storage, 300

Instance variables, 59f

and constructors, 58

private, 58

instance_variables, 165

Instant Rails, website for, 20n

int, 38

Integers in Ruby vs. Java, 39

Integration testing, 216–218

defined, 206

helper for, 216

open_session(), 217

strengths of, 217

vs. functional, 216

IntelliJ IDEA, 29

Interactive testing, 199

Interfaces

comparator, 93

and functions, 93

implementing, 86

and polymorphism, 85–89

Internationalization in Rails, 141

isBlank(), 73, 74

Iteration and collections, 47–51

Iterations, syntax for, 50–51

J
JAR files, 80

Java

access specifiers in, 67f

anonymous inner classes in, 93

ant, 23

and buffer overflow, 297

environments in, 33

iteration syntax, 50–51

and JDK 1.4, 156

JSPs in, 168

log4j, 154

maps, 49–50

multiline strings in, 43

null, 74

person in, 62f

primitive types in, 38–41

profilers in, 163

vs. Rails and controllers, 137

regular expressions in, 44

schema versioning in, 102

SOAP implementation, 256

strings in, 41–45

validation in, 115

web services, support for, 247

XML in, 272

for XML problems, 278

Java Concurrency in Practice, Goetz,

146

Java Network Launch Protocol (JNLP),

79

Java SAX, 267

javac task, 235

JavaScript in ActionView, 191–192

JavaScript libraries, 185

JavaServer Pages (JSPs), 168, 178

see also .rhtml files

JBehave, 231

JDK 1.4, 156

JDOM, 272, 281

jMock, 226

JSON, 281

documentation for, 265

Rails and, 265–266

vs. YAML, 265

jsp:include tag, 172

JSTL core library, 169

JUnit, 200

assertions in, 204

error messages, explicit, 202

error report, 201

lifecycle methods, 205

test for exception, 203

K
Kaes, Stefan, 166

Key/value pairs, 49

Kodo, 102

L
Languages

evolution of, 51

expression, 169

LAYERS IN ACTIONCONTROLLER 316 NUMERIC TYPES IN RUBY

Layers in ActionController, 138

Layers, in ActionController, 137

Layout, 155

Layouts in ActionView, 172–174

default template, 172

defined, 172

example of, 173

Learning tests, see Exploration tests

Libraries

and JavaScript, 185

Prototype, 185

and RubyGems, 83

Scriptaculous, 185, 186

for Selenium and Rails, 193

for soap4r, 259

for Struts, 174

tag, 169

Lifecycle callbacks in ActiveRecord,

116–118

Lifecycle methods, 204

Linux, and Rails setup, 21

list, 135, 137, 138

Load path, 80–81

Local transactions, 126–127

local_variables, 165

lock_version, 129

Locomotive, website for, 21n

Log levels, 154

package-specific settings for, 155

in Rails, 158

log4j, 154, 155

log_action, 149

Logging in ActionController, 154–159

appender, 155

debug message, 156

and JDK 1.4, 156

layout, 155

log levels of, 154

in Rails, 157, 159

Logging in Struts, 147

login, 151

login_as, 290

logout, 151

M
Mac

and Rails setup, 21

TextMate for, 29

macrodef (in Rake), 238

main, 48

Manager, 83–84

Mapping

in ActiveRecord, 103–105

conventions, 104–105

overriding defaults, 105

Markaby, 178–180, 197

features, in show template, 180

installing, 179

Rails scaffold layout in, 179

marry, 60

memcached, website for, 166

_method, 253

method_missing(), 110, 277

Methods, 44–46, 59f

arguments in, 45

behavioral, 60–61

defined, 45

dynamically dispatched, 85

see also specific methods

Migrations in ActiveRecord, 100–103

defined, 101

executing, 101

tracking in Ruby, 102

Minimal vs. humane interface, 65

Mixins, 90–92

mkdir task, 235

Mock objects, testing interactions with,

225–228

expectations and, 225, 226, 228

with FlexMock, 227

purpose of, 225

in Struts sample application, 226

verification and, 225, 228

Model classes, see ActiveRecord

Modules, 77

naming in Ruby, 78

Mutable objects, 74–76

defined, 74

N
N+1 problem, preventing, 130–131

name=, 165

Named route, 153

namespace, 241

Namespaces, 76–79, 262, 263

exceptions, 78

modules in, 77

next(), 269

nil, 74

null, 52, 74

Numeric types in Ruby, 40

OBJECT/RELATIONAL MAPPING FRAMEWORK 317 RAILS

O
Object/Relational mapping framework,

106

and databases, 125

object_id, 64

Objects

and duck typing, 89

checking for, 52

and delegation, 83–85

identity and equality in, 63–65

initializing, 75

Math example, 45

and methods, 44–46

mutable and immutable, 74–76

nil as an, 74

and O/RM layer, 116

setter methods for, 75

testing, in Rails vs. Java, 213

type safe, 45, 46

One to many relationships, 119

in ActiveRecord, 120

in Hibernate, 119

Open Web Application Security Project

(OWASP), 293, 301, 302

open_session(), 217

Optimistic locking, 128–130

and data integrity, 128

and version column, 128

P
p (singleton class), 92

and deleting records, 113

Package private, 67

Packages, 76–79

imported, 77

Partials in ActionView, 172–174

defined, 172

naming, 173

variables in, 173

Partials, and RJS, 191

Passwords, 295

PDF-writer, 82

People application

search form for, 28f

validation for, 27f

Performance

in ActiveRecord, 125

and caching, 180

and N+1 problem, 130

Person

in Java, 62f

in Ruby, 63f

Person class example, 57

Plugins

acts_as_authenticated, 283, 284,

290

for authentication plugin, 302

for authorization plugin, 302

pluralize, 35

Polymorphic associations, 123

Polymorphism and interfaces, 85–89

defined, 86

and implementation inheritance, 86

in Ruby, 88

pop, 49

post(), 215

Primitive types, 38–41

PrintArgs, 47

Production environment, 33

and ActiveRecord, 99

Productivity

and duck typing, 89

and Rails development cycle, 26

Programming Ruby, Second Edition by

Thomas, Fowler, and Hunt, 14

project (in Ant), 236

property (in Rake), 237

Prototype, 185

public, 69

Pull parsing, 268, 270

push, 49

Push parsing, 267, 268

puts, 48

Q
Question mark for character literals, 42

Quips

and Rails Ajax helpers, 187

Quips, 107

example, 101

one to many example, 119

R
Rails

and action caching, 295

advantages of, 15

Ajax helpers, 186

Ajax, including in, 185

cache test plugin, 197

code and configuration languages in,

34

connecting to databases, 35–36

RAILS JAVASCRIPT 318 RESTFUL

and degradable Ajax, 190

development cycle in, 27f, 28f, 25–28

and distributed transactions, 128

editors and IDEs in, 29

environments for, 32–35

defaults, 33

flash in, 141

form builders, 177

form helper methods, 175, 176

helpers, built-in, 170

hidden method, 253

implicit default behavior in, 138

installation of as a gem, 83

internationalization and, 141

vs. Java, 17–18

and JSON, 265–266

multiple databases in, 100

overriding defaults in, 105

plugins for, 283, 284

pluralization rules in, 34

Rake and, 240–242

and REST, 252

sample code for, 16–17, 31

security flaws in, 301, 302

and Selenium, 193

setup, 20–21

and single sign-on, 286

singular and plural words in, 23

support scripts for, 36–37

testing conventions in, 206–212

testing examples in, 218–222

inflector, 219–220

silencing warnings, 220–222

testing routing in, 152

testing tasks in, 212f

top-level directories in, 22

troubleshooting in, 197

use of scaffolding in, 25

validation in, 26

variables in, 214

web application for (scaffold code

generator), 24f, 21–25

tests for, 24

XT App configuration, 98

Rails JavaScript, see RJS

Rails Wiki website, 21n

Rake

basics of, 234–236

building a file in, 235

vs. Ant, 236

continuous integration with

Cerberus, 245f, 243–245

custom tasks in, 238–240

recent, 239

extending with Ruby standard

library, 239

options, setting, 237

build property, 237

in Rails applications, 240–242

in Rails applications

and Rails version, 241

in Rails applications

file cleanup tasks, 242

in Rails applications

help options, 241

in Rails applications

tasks flag and, 240

resources for, 245–246

rake, 23

Rake test automation, 211–212

Ranges, 54–55

and case equality, 56

rcov, 224f, 222–225

installation of, 222

report in, 223f

recent (in Rake), 239

Redrails, 29

Regular expressions, 44

and case equality, 56

Remember Me feature, 285

render, 138, 143

replace_html, 192

Representative state transfer, see

RESTful

request, 137, 148

require_gem, 84

require, 81

require(), 199

required (in Rake), 240

rescue_action(), 211

Resources

for ActionController, 166

for ActionView, 197

for ActiveRecord, 132

for automated development, 245–246

for security, 302

for testing, 231–232

for Web services, 281

respond_to, 250, 252

response, 137, 148

RESTful, 248–255

REXML 319 SCHEMAS

with ActiveResource

consuming services, 254–255

creating services, 249–254

dissertation on, 248n

and endpoints, 252

key points on, 248

practicality of, 249

routing examples, 252f

scalability of, 248

vs. SOAP, 249, 261, 280

REXML, 266, 281

DOM parser, 270

.rhtml files, 168–169

Embedded Ruby (ERB) and, 168

search.rhtml, 188

vs. JSP, 168

RJS, 191–192

and divs, 191

and partials, 191

and Scriptaculous, 192

Routing in ActionController, 151–153

conditions and named routes, 153

dynamic components, 151

named route, 153

requirements and defaults, 153

static components, 151

testing, 152

Routing in ActiveController

basics, 134–136

RSelenese commands, 196

RSpec, 231

Ruby

and annotations, 230

arrays in, 47–49

and buffer overflow, 297

collections in, 47–51

documentation for, 28

editors and IDEs in, 29

exceptions in, 41

extraction in, 43

and GUI debuggers, 164

hashes in, 49–50

heredoc in (for multiline strings), 43

integers in, 39

iteration syntax, 50–51

nil, 74

numeric types in, 40

object equality, methods for, 65

objects and methods in, 44–46

person in, 63f

vs. primitive types in Java, 38–41

on Rails manual, 231

and Rails setup, 20–21

ranges in, 54–55

shortcut notations in, 268

and single-sign on, 286

soap4r library, 259

statement modifiers in, 53

string interpolation in, 42

strings in, 41–44

type safety in, 46

web services, support for, 247, 248

websites for, 28

XML in, 272

XML output in, 275–276

ruby, 30

ruby-breakpoint, 164n

RubyGems, 81–83

ActiveRecord as, 96

Cerberus, 243

and FlexMock, 227

and freezing, 83

installing Rails, 83

listing, 82

Markaby, 179

and multiple libraries, 83

rcov, 222

require_gem, 84

S
Sample code, 16–17

running, 30–32

irb, 30

irb, 30

Rails, 31

Ruby, 31

ruby, 30

script/*, 30

unit tests, 32

save(), 112

save, 143

SAX parsers, 267

Scaffold code generator

in Rails, 24f, 21–25

and Test::Unit, 212

tests for, 24

use of, 25

Schema versioning

with migrations, 100–103

in Rails, 102

Schema versions in Java, 102

Schemas, 261

SCRIPT TAGS 320 STRUTS APPLICATION

Script tags, 185

script/*, 30

script/console, 31, 34, 117

script/generate, 206

Scriptaculous, 185–187, 192

Scripts, 36–37

search, 135, 136

Security, 282–302

and Acegi, 283

action caching and, 295

authentication with plugin, 283–286

authorization with plugin, 285–289

flaws in Rails’ versions, 302

overview of, 282

and passwords, 295

prevention of web flaws, 299f,

293–301

application denial of service, 300

broken access control, 294–295

broken authentication and

session management, 295

buffer overflow, 296

cross-site scripting (XSS), 296

improper error handling, 298–299

injection, 297

insecure configuration

management, 301

insecure storage, 300

unvalidated input, 293–294

Rails’ flaws, 301

resources for, 302

and single sign-on, 286

testing, 290–292

select, 239

Selenium, 218

black-box testing with, 193–196

Core, 193

IDE, 193

plugin, 194

and Rails applications, 193

RSelenese commands, 196

testing with, 195f

websites for, 197

self.down(), 101

self.up(), 101

send, 68

Servers for ActionController eample,

163

Servlet filters, 149

Sessions

in ActionController, 144–147

drawbacks, 145

in Java, 145

management of and security, 295

performace of, 146

purposes of, 144

in Rails, 145, 146

server-side, 144

storage of, 146

turning on and off, 146

setAttribute(), 275

setOutputProperty(), 276

Setters, 59

setup(), 205, 209, 211

Shortcut notations, 268

show action, 186, 188

silence, 159

silence_warnings(), 221

Simple mapping, 263

Single implementation inheritance, 65

Single Sign-On (SSO), 286

Single table inheritance, 125

Singleton class, 92

SingularToPlural, 219, 220

slice/[], 43

SOAP web services, 255–261

with ActionWebService, 256–259

benefits of, 261

defined, 249, 255

with soap4r, 259–261

vs. REST, 261, 280

soap4r, 259–261

logging SOAP calls, 260

RPC driver for, 259

Ruby library for, 259

SQL injection attacks, 108, 297

start_element(), 270

Stateful vs. statelessness, 144

Statelessness, 144

Statement modifier, 53

Static component, 151

StAX, 269, 270

store, 50

store_location, 145

Streaming API for XML (StAX), 269, 270

String interpolation, 42, 43

Strings, 41–44

immutability of, 76

Struts application

and HTML forms, 174

logging in, 147

naming, 134

STUB OBJECTS AND TESTING 321 UNIT TESTING

routing in, 135

sample of people list view, 134

for saving or updating a person, 140

testing with mock objects, 225

validations in, 142

see also ActionController

Stub objects and testing, 229–230

failure case, 230

and FlexMock, 229

introducing, 229

valid and invalid arguments, 229

Subclassing, 65

submit_tag, 177

Subramaniam, Venkat, 232

Support scripts, 36–37

Sweepers in caching, 182

switch, 55–57

Symbol#to_proc, 274

T
tabular_form_for, 177

Tag libraries, 169

tag(), 204

Tapestry, 178

Target, 234

Tasks flag, 240

Tasks in Ant, 235

Tate, Bruce, 132

teardown(), 205

Ternary operator, 52

Test environment, 33

and ActiveRecord, 99

Test::Unit

assertions in, 198, 204

benefits of, 198

getting started in, 199–205

interactive testing in, 199

lifecycle methods, 205

Rails’ extensions to, 212–216

Ruby’s block syntax in, 203

scaffold code for, 212

tag method in, 204

and unit tests, 201

test_create(), 215

test_index(), 213

test_new(), 215

Testing, 198–232

acceptance, 193

and rcov, 223f, 224f, 222–225

and behavior-driven development,

231

black-box, 193–196

caching, 184

custom helpers, 171

examples, 218–222

inflector, 219–220

silencing warnings, 220–222

fixture data, managing, 208, 209

functional, 210–211

integration, 216–218

and lifecycle methods, 204

with mock objects, 225–228

and name/value pairs, 208

naming conventions in, 230–231

overview of, 198–199

Rails’ conventions, 212f, 206–212

Rails’ extensions to Test::Unit,

212–216

Rake automation, 211–212

resources for, 231–232

of routing in ActionController, 152

with Selenium, 195f

and stub objects, 229–230

Test::Unit, basics of, 199–205

unit tests, 32, 207–210

valid(), 214

white-box, 193

TestNG, 231

text_field, 175, 178

TextMate, 29

Through associations, 123

throws, 69

to_json, 266

to_xml, 250

to_yaml, 265

Top Ten Project, 293

Transactions in ActiveRecord, 125–128

container-managed, 127

distributed, 127

local, 126–127

other, 127–128

Transitive persistence, 121–122

Tree parsing, 270, 272

Troubleshooting in Rails, 197

true, 53

Type safety, 45, 46, 78

Ruby vs. Java, 88

U
Unit testing, 207–210

assertions in, 204

defined, 198

UNIT TESTS 322 WEBSITES

Unit tests, 32

unless, 53

until, 53

Unvalidated input, 293–294

up(), 102

upcase, 76

upcase!, 76

update(), 112

update_attributes, 141, 143

Updating records in ActiveRecord, 112

URLs

and controller code, 151

editing and updating, 153

login and logout, 151

in RESTful routing, 252f, 253

user_session, 217

V
valid(), 214

validate, 143

validates_each, 125

Validation, 26, 27f

in ActiveRecord, 113–116

limitations in, 116

errors, 143

in Rails, 143

in Rails vs. Java, 115

and Struts, 142, 175

and unvalidated input, 293, 294

Variables, environment, 49

Velocity, 178

verify, 150

View helpers in ActionView, 169

vim, 29

W
Wanstrath, Chris, 166

Warnings, silencing, 220–222

Web applications, see

ActionController;ActiveRecord

Web flaws, preventing, 299f, 293–301

application denial of service, 300

broken access control, 294–295

broken authentication and session

management, 295

buffer overflow, 296

cross-site scripting, 296

improper error handling, 298–299

injection flows, 297

insecure configuration management,

301

insecure storage, 300

unvalidated input, 293–294

Web services, 247–281

and DOM, 279

configuration, 279

defined, 247

and Java, 279

JSON and Rails, 265–266

overview of, 247–248

resources for, 281

RESTful, 252f, 248–255

selecting the right data format,

278–280

SOAP, 255–261

support for, 247

and XML output in Ruby, 275–276

and XML parsing, 266–274

pull, 268–270

push, 267–268

tree, 270–272

and XPath, 271–273

and XML with Builder, 276–278

YAML vs. XML, 261–265

Web services definition language

(WSDL), 259

Websites

for Acegi, 302

for ActionController, 166

for ActionView, 197

for ActiveRecord intro, 132

for Ajax surveys, 184

for annotation metadata, 232

for AOP design patterns, 281

for Apache Axis, 256

for Apache Maven, 206, 245

for AppFuse, 256

for authentication plugin, 302

for authorization plugin, 302

for Builder, 281

for Capistrano, 246

for central authentication service,

286

for Cerberus, 243

for checked exceptions, Bruce Eckel

on, 71

for Clover, 222

for Cobertura, 222

for coverage reports, 232

for CruiseControl, 243

for dependency injection and control

container inversion, 281

WEIRICH 323 ZENTEST

for editors and IDEs, 29n

for exploration testing, 32n

for FlexMock, 227n

for HAML, 197

for Hibernate, 96

for iBatis, 132

for Instant Rails, 20n

for internationalization of Rails, 116

for Internet Speculative Fiction

Database, 249

for JBehave, 231

for JDOM, 272, 281

for jMock, 226

for JRuby, 128

for JSON, 265, 281

for JUnit, 200

for Locomotive, 21n

for Markaby, 179, 197

for Martin Fowler on interfaces, 65

for memcached, 166

for OWASP, 302

for primary keys for Rails, 132

for Rails cache test plugin, 197

for Rails Logging, 166

for Rails’ routing DSL, 166

for Rake, 246

for Rake development, 246

for rcov, 222

for REXML, 281

for RSpec, 231

for Ruby breakpoint, 164n

for Ruby documentation, 28

for Ruby on Rails manual, 231

for security flaws in Rails versions,

302

for Selenium, 197

for SOAP4R, 281

for SQL session store, 166

for Stubba and Mocha use, 232

for Tapestry, 178

for TestNG, 231

for Velocity, 178

for Wiki, 21n

for YAML, 281

for YAML Cookbook, 264

for ZenTest, 232

Weirich, Jim, 246, 281

while, 53–54

White-box tests, 193

Whitespace, 264

Wiki website, 21n

Windows

naming Ruby interpreter, 22

and Rails setup, 20

write(), 276

WSDL, 259

X
XML

benefits of, 261

with Builder, 276–278

elements in, 262

Java for, 278

namespaces and, 262

output in Ruby, 275–276

parsing, 266–274

and XPath, 271–273

pull, 268–270

push, 267–268

tree, 270–272

Streaming API for, 269, 270

vs. YAML, 261–265

XPath, 271, 273

accessing, 273

syntax for, in Ruby, 274

XSS attacks, see Cross-site scripting

(XSS)

XT App setup for Rails, 98

XUnit frameworks, 198

Y
YAML

and ActiveRecord setup, 99

and aliases, 99

and anchors, 99

benefits of, 262

complexity in, 264

for configuration, 279

cookbook, 264

indentation in, 263

vs. JSON, 265

namespaces in, 263

Ruby objects, conversion to, 263

simple mapping in, 263

vs. XML, 262, 264

website for, 281

whitespace in, 264

vs. XML, 261–265

yield, 94

Z
Zentest, 232

	Contents
	Foreword
	Preface
	Getting Started with Rails
	Setting Up Ruby and Rails
	Rails App in Fifteen Minutes
	The Rails Development Cycle
	Finding Information in Online Documentation
	Editors and IDEs
	Running the Samples
	Rails Environments
	How Rails Connects to Databases
	Rails Support Scripts

	Programming Ruby
	Primitive Types
	Strings
	Objects and Methods
	Collections and Iteration
	Control Flow
	Defining Classes
	Identity and Equality
	Inheritance
	Controlling Access with Access Specifiers
	Raising and Handling Exceptions

	Ruby Eye for the Java Guy
	Extending Core Classes
	Mutable and Immutable Objects
	Packages and Namespaces
	Deploying Code
	Delegation
	Polymorphism and Interfaces
	Duck Typing
	Mixins
	Functions

	Accessing Data with ActiveRecord
	Getting Connected
	Managing Schema Versions with Migrations
	Mapping Data to Classes
	Create, Read, Update, and Delete: Access Patterns
	Validating Data Values
	Lifecycle Callbacks
	Associations and Inheritance
	Transactions, Concurrency, and Performance
	Conserving Resources with Connection Pooling
	Resources

	Coordinating Activities with ActionController
	Routing Basics: From URL to Controller+Method
	List and Show Actions: The R in CRUD
	Create, Update, and Delete Actions
	Tracking User State with Sessions
	Managing Cross-Cutting Concerns with Filters and Verify
	Routing in Depth
	Logging, Debugging, and Benchmarking
	Resources

	Rendering Output with ActionView
	Creating Basic .rhtml Files
	Minimizing View Code with View Helpers
	Writing Custom Helpers
	Reuse with Layouts and Partials
	Building HTML Forms
	Building HTML with Markaby
	Caching Pages, Actions, and Fragments
	Creating Dynamic Pages with Ajax
	Rendering JavaScript with RJS
	Black-Box Testing with Selenium
	Conclusions
	Resources

	Testing
	Getting Started with Test::Unit
	Rails Testing Conventions
	Rails Extensions to Test::Unit
	Integration Testing
	Rails Testing Examples
	Measuring Code Coverage with rcov
	Testing Interactions with Mock Objects
	Reducing Dependencies with Stub Objects
	Advanced Considerations
	Resources

	Automating the Development Process
	Rake Basics
	Setting Rake Options: It's Just Ruby
	Custom Rake Tasks: It's Just Ruby
	Using Rake in Rails Applications
	Continuous Integration with Cerberus
	Resources

	Creating and Invoking Web Services
	RESTful Web Services
	SOAP Web Services
	YAML and XML Compared
	JSON and Rails
	XML Parsing
	Ruby XML Output
	Creating XML with Builder
	Curing Your Data Headache
	Resources

	Security
	Authentication with the acts_as_authenticated Plugin
	Authorization with the Authorization Plugin
	Testing Authentication and Authorization
	Preventing the Top-Ten Web Security Flaws
	Resources

	Java to Ruby Dictionary
	Bibliography
	Structure of a Rails Project
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

