i 1 1 " . !
1 r}- - .
THE EXPERT'S VOICE® IN JAVA 2l e "’ 0 !

Pro EJB 3

Java Persistence API

Tl e fivritian guikele te developdng appaiicatiomns
it Flae rnlu'.-.m.lul'rmi.hr |-'.Irl'i'r||'.lrl'.-'.|'_.|;|'¢r'|'l Jaersislenoe

Mike Keith and Merrick Schincariol

i T LAY PROMT A TPSe

Apress

Pro EJB 3

Java Persistence API

Mike Keith
Merrick Schincariol

Apress’

Pro EJB 3: Java Persistence APl
Copyright © 2006 by Mike Keith and Merrick Schincariol

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-645-6
ISBN-10 (pbk): 1-59059-645-5
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Jason Haley, Huyen Nguyen, Shahid Shah

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Julie M. Smith

Copy Edit Manager: Nicole LeClerc

Copy Editor: Hastings Hart

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositors: Pat Christenson and Susan Glinert Stevens

Proofreader: Elizabeth Berry

Indexer: Julie Grady

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

To the memory of my mother, who touched so many lives, and to my wife Darleen,
who touches my life each and every day. —Mike

To my parents, for always supporting me in all of my adventures,
and my wife Natalie, whose love and support kept me going to the end. —Merrick

Contents at a Glance

FOrBWOrd ... e XV
About the AUTNOTSot e Xvii
About the Technical REVIBWEISo e Xix
ACKNOWIBAgMENTS .. i i e e XXi
PrEIaCE . .ot Xxiii
CHAPTER 1 Introduction 1
CHAPTER2 GettingStartedccciii i, 17
CHAPTER 3 Enterprise Applications 35
CHAPTER 4 Object-Relational Mappingccooiiiiiiin.... 71
CHAPTERS5 Entity Manager ...t 111
CHAPTERG6 UsSing QUEriesoviiniiii ittt 163
CHAPTER7 QueryLanguageoviiiiiiniriiiiniaanannnn, 191
CHAPTER 8 Advanced Object-Relational Mapping 221
CHAPTER9 Advanced TOPICScoiiiiiriiiiii it ii e 257
CHAPTER 10 XML Mapping Files ...t 299
CHAPTER 11 Packaging and Deployments. 335
CHAPTER12 Testing ... e 353
CHAPTER 13 Migration ...t 385
APPENDIX Quick Referenceccooiiiiiii s 411

Contents

BT WO et e XV
About the AUTNOTS . ..o e e Xvii
About the Technical REVIBWETSot e e e e e Xix
ACKNOWIBAgMENTS .. i i e e XXi
PrEIaCE . .o ottt e e Xxiii
CHAPTER1 Introduction 1
Java Support for Persistence 2

JDBC 2

Enterprise JavaBeans. i i 2

JavaData Objects.ccoviiiii e 3

Why Another Standard?cc i 4

Object-Relational Mappingcovviiiiieiii i 5

The Impedance Mismatch................ ...t 6

The Java Persistence APlt i 12

History of the Specificationttt 12

OV W oottt e e e 13

SUMIMIANY i e e e e e 15

CHAPTER 2 Getting Started .. 17
Entity Overviewo 17

Persistability ... 17

Identity 18

Transactionality.oovvii i e e 18

Granularity 18

EntityMetadataco i 19

ANNOtatioNS e 19

XML . e 19

Configuration by Exceptionl 20

Creatingan Entity ... e 21

Automatic State Mapping ... 22

vii

viii

CONTENTS

CHAPTER 3

Entity Managerccooiiiiiiii i e 23
Obtaining an Entity Manager.cooviiivinenn... 24
PersistinganEntity................ o i i 25
FindinganEntity.............oo i 26
Removing anEntity. ... 27
UpdatinganEntity. ... 28
Transactions e e 28
QUBMIBS. . .ottt e e 29

Putting It All Together ... e 30

Packaging R Up ..o e e 33
Persistence Unit ... 33
Persistence Archive ...t 34

SUMMANY .. e e i e i e 34

Enterprise Applications 35

Application ComponentModels ..., 35

SESSION BRANSt e 37
Stateless SessionBeans ..., 37
Stateful SessionBeans, M4

Message-Driven Beans ...t e 44
Defining a Message-DrivenBean............................ 44

SeIVIBS . e 45

Dependency Management ..ot 46
Dependency LOOKUP.vvevie i 47
Dependency Injection. ... 49
Declaring Dependenciesc.coviiiiniiiniiinnnn 51

Transaction Managementcc ... 54
Transaction RevViewccoieiii i i 54
Enterprise Transactionsindava 55

Using Java EE Components ..., 60
Using a Stateless SessionBeanccovvieenn... 61
Using a Stateful SessionBeanccovvvieenn.s. 61
Using a Message-DrivenBeancccoiiuun... 63
Adding the Entity Managerccoiiiiiiia. 64

Putting It All Together ... e 65
Defining the Componentt 65
Defining the User Interface ..., 67
Packaging tUp. ..o e e 68

SUMMANY .. e e i e i e 68

CHAPTER 4

CHAPTER 5

CONTENTS

Object-Relational Mapping 7
Persistence Annotationso i 71
Accessing Entity State 72
Field ACCESS .. ovi ittt i i et e 72
Property ACCESS ...ovvi i e e e 73
MappingtoaTableoo i 74
Mapping SImple TYPeS oot e e 75
Column Mappings. . ..o v e e 76
Lazy Fetching ... e 77
Large ObjectS . ..o e e 79
Enumerated TYpeS . ..o vivi i i 79
Temporal TYPeS . ..vvvi e e e e 81
TransientStatecco i 82
Mapping the Primary Key ... 83
Identifier Generation................ ... o i 83
Relationships ... e 88
Relationship Concepts ... 89
Mappings OVEIVIEWv it i i aae 92
Single-Valued Associations, 92
Collection-Valued Associations...............cccveeeviann, 99
Lazy Relationships ...t 108
SUMMANY .. i i et i et 108
EntityManager ... 111
Persistence Contextsccoviiiiiiiiiiii i 111
Entity Managers ... 112
Container-Managed Entity Managers........................ 112
Application-Managed Entity Managers 117
Transaction Managementcciiiiiiiiiiiiinnann, 119
JTA Transaction Management 119
Resource-Local Transactionsc.cccvviviinnnn... 128
Transaction Rollback and Entity State 131
Choosing an Entity Managercccoiiiiiiiiianat. 131
Entity Manager Operationscoiiiiiii i, 132
PersistinganEntity................ ..o i 132
FindinganEntity.............c i 133
RemovinganEntity. i 135
Cascading Operationscovviiiiniiieniiinnnns 136

Clearing the Persistence Context 138

CONTENTS

CHAPTER 6

Synchronization with the Database 139
Detachmentand Mergingccoviiiiiiiiiiiinnninnn.. 141
Detachment. ... 142
Merging Detached Entities.cooiiiiiiiL 143
Working with Detached Entities 147
SUMIMIANY it i i et i e 161
Using Queries ..., 163
JavaPersistence QL ... 163
Getting Startedco i 164
FilteringResults ... e 165
Projecting Results. ... 165
Joins Between Entities............... ... oL 165
Aggregate QUEreScoiriii i 166
Query Parameters. ...t e 166
Defining QUeries ...t e 167
Dynamic Query Definitionl 167
Named Query Definition............. ...t 170
Parameter TYPeS ..o ov v e 171
Executing QUEriesoviii i e 173
Working with Query Resultst 175
Query Paging.oovit e 178
Queries and Uncommitted Changes......................... 180
Bulk Update and Deleteccciiiiiiii i 183
Using Bulk Update and Delete.....................contt. 183
Bulk Delete and Relationships...................cooinat e 186
QueryHintso 187
Query BestPractices ... 188
Named QUEMIESv e e 188
Report QUEHESovv i i e i 188
QueryHints ... e 189
Stateless SessionBeans ...t 189
Bulk Update and Delete, 189
Provider Differences.oovvvi i 189

SUMIMIANY ottt i i e e i e 190

CHAPTER 7

CHAPTER 8

CONTENTS
QuerylLanguageccoiiiiiiiiiiiinnn. 191
Introduction ... e 191
Terminology. ... cov e e 192
Example DataModel. ... 192
Example Application. ... 193
SeleCt QUENES ...ttt e 195
The SELECTClauseccoviiiiiii it 197
The FROM Clauseoovei it i e 200
The WHERE Clause.ccveiii i 206
The ORDERBY ClausSeovvireiiii it e i 214
Aggregate QUENESoiviir i e e 214
Aggregate Functions.cco i e 216
The GROUPBY Clauseovvireiii i 216
The HAVING Clause.oovie i i i 217
Update QUEMESovrt i e 218
Delete QUETIES ovv e e e e e 218
SUMMANY .. i i e i e i 219
Advanced Object-Relational Mapping 221
Embedded Objectscoviiiiii e 221
Sharing Embedded Object Classes.......................... 224
Compound Primary Keysccoieiiiiiiiii i, 225
Id CIaSS .\t e 226
Embedded Id Class. ... 228
Advanced Mapping Elementsl 229
Read-0nly Mappingsovvviieeii it iiiiieneens 229
Optionalityoovi i e 230
Advanced Relationshipsco i 231
Compound Join COlUMNS.evviee i 231
Identifiers That Include a Relationship....................... 233
Mapping Relationship State....................l 235
Multiple Tables ... e 237
INheritance e i e 241
Class Hierarchiesccoiiii i 241
Inheritance Models.oovviii i 246
Mixed Inheritance. ... 253

SUMMANY .. i i e i e i 255

Xi

xii

CONTENTS

CHAPTER 9

CHAPTER 10

Advanced TOPIiCScoiiiiiiii i 257
SAL QUEMES .. vttt et i i e i e e 257
Native Queriesvs. JDBC ... 258
Defining and Executing SQL Queriesou.... 260
SQL Result SetMappingccovvviiiiii e 262
ParameterBinding ... 268
Lifecycle Callbacks ..o e 268
Lifecycle Eventsccoo i 269
Callback Methods. ... 270
Entity Listeners 271
Inheritance and Lifecycle Events 274
0] 1o 4 T T 279
Entity Operations. ... e 279
ENtity ACCESS. oot e 279
Refreshing Entity Statecoo i 279
LOCKING oot e 282
Optimistic Lockingccooiii i 282
VerSIONING . ..v et e 284
Additional Locking Strategiescociiiiiiin., 285
Recovering from Optimistic Failures. 290
SchemaGeneration ... 293
Unique Constraints. 293
Null Constraints. e 294
String-Based Columns.........cooviiii i e 295
Floating Point Columns ... 295
Definingthe Column. ...t 296
SUMIMIANY ottt i i it e i e 297
XML Mapping Files 299
The MetadataPuzzle, 300
The Mapping File ... e e 301
Disabling Annotations.cccoiiii i 301
Persistence Unit Defaults.t 303
Mapping File Defaults.o 306
Queriesand Generators.oovi it 308
Managed Classes and Mappingscccovviieinn.. 312

SUMMANY .. i i e i e i 333

CHAPTER 11

CHAPTER 12

CONTENTS
Packaging and Deployment 335
Configuring Persistence Units ...t 335
Persistence UnitName.............o i 336
Transaction TYpecoviiei i e e 336
Persistence Provider. ...t 337
Data SOUrCE. . ..ot 337
Mapping Filesooirii e 338
Managed Classescoviieiiii it 339
Adding Vendor Properties ...t 3M
Building and Deploying ... 342
Deployment Classpath. ...t 342
Packaging Options ... e 343
Persistence UnitScope ...t 347
Outside the Server ... 348
Configuring the Persistence Unit............................ 348
Specifying Properties at Runtime 350
System Classpath. ... 351
SUMMANY .t e e e e e 351
Testing ... 353
Testing Enterprise Applications ..., 353
Terminology.ovv v e e 354
Testing Outside the Server ..., 355
Test Frameworksooeii i e e 356
Unit Testingcooeri i e e i e 357
Testing EntitiesSoovvii e 357
Testing Entities in Components.s. 359
The Entity ManagerinUnitTests 361
Integration Testing ... 364
Using the Entity Manager..................cooiiiiiin.t, 364
Components and Persistencecooiian 370
BestPracticescooviiii e 383

SUMMIANY .. i i e et i et 384

Xiii

Xiv

CONTENTS
CHAPTER 13 Migrationco i, 385
Migrating from CMP EntityBeans 385

Scopingthe Challenge..........ccovvviiiiii it 386

Entity Bean Conversioncoviiiiiiiiieiiien 387

Migrating from JDBC ... e 396

Migrating from Other ORM Solutionscovvitt. 397

Leveraging Design Patterns oot 397

Transfer Object. ... 398
SessionFacade............cooiiiii i 401

Data Access Object.ovvii i 403

Business Object ... 408
FastLaneReader..............coiiiiiiiiiii i 408

Active Recordo e 409

SUMMIANY .. i i e i et 409

APPENDIX Quick Reference ... 411
Metadata Referenceoovviiiiiiiii i, 411

Enumerated TYPES ..o e e e 426

Mapping File-Level Metadata Reference 426
Persistence-Unit-Level Metadata Reference 427

EntityManager Interface ... 428

QueryInterface ... e 430
EntityManagerFactory Interface oLt 431
EntityTransaction Interface it 431

INDEX .. e e 433

Foreword

I believe that the Java Persistence API (JPA) is the most important advance in the Java EE 5 plat-
form revision. It offers a simple yet powerful standard for object-relational mapping (ORM).
Leading persistence vendors have united to develop it, and developers should unite in adopting it.

Up to and including EJB 2.1, the persistence technology (entity beans) was the weakest part
of the overall EJB specification—complex yet lacking in essential capabilities such as inheritance
modelling, and unusable in isolation. JPA is now a fine model that can stand on its own and
works in a range of environments. In future revisions, JPA’s independence from its runtime
environment is likely to become explicit, with JPA split into a separate specification from EJB.
Thus JPA isrelevant to allJava developers who work with relational databases, not merely those
who work with the EJB component model overall.

Since the release of EJB 2.0 in 2001, enterprise Java has been revolutionized by a switch
to a simpler, POJO-based programming model. This switch has been equally marked in the
Fortune 500 as it has amongst developers of simple web applications. The focus is increasingly
on the Javalanguage itself rather than complex container contracts. Modern infrastructure can
apply enterprise services to POJOs without their needing to be polluted by infrastructure concerns.

Unlike the former entity bean model, JPA offers the ability to persist POJOs. The JPA spec-
ification has been drawn from collective experience from more than 10 years, across products
such as TopLink, Kodo, and Hibernate. POJO-based persistence offers many important bene-
fits lacking in the former entity bean model: a simple, productive development experience; ease
of testing; and the ability to build and persist true domain models capturing business concepts.
The rise of POJO persistence will gradually change for the better how we design applications,
enabling greater object orientation in place of the often procedural style traditionally associated
with J2EE development.

Of course, ORM is not new, and many developers have been successfully working with
ORM products for years. The importance of JPA lies in the fact that it offers users choices between
implementations without subjecting them to a lowest common denominator. All leading ORM
products will support the JPA in addition to their proprietary APIs (or other standards, such as
JDO); users who choose to move to the JPA API will not be forced to switch persistence products
but will gain greater choice in the future.

As leader of the Spring Framework open source project, I am particularly pleased that the
leading JPA implementations are all open source. The Spring Framework 2.0 release integrates
with JPA, and we aim to make it easy for Spring users to work with JPA in any environment. We
are excited about working with the communities around the open source JPA implementations
to help make the Spring/JPA experience still better.

Thus this is an important topic. Hopefully I have convinced you that you should read a
book on JPA, but why should you read this one?

Mike Keith is ideally qualified to write such a book. He was co-lead of the EJB 3.0 specifica-
tion, and he not only has intimate knowledge of the specification but also played a vital role in
bringing it to completion. His experience with persistence engines dates back almost 15 years.
He has been a key member of the TopLink team for five years, championing what would now

Xv

XVi

FOREWORD

be called POJO persistence before it become fashionable, during the persistence Dark Ages of
J2EE 1.3 and 1.4.

Most important, Mike and Merrick Schincariol have turned their experience into a clear,
readable book providing a thorough introduction to JPA. While you won'’t be disappointed as
you grow in your experience with JPA, and while you will find valuable content on more advanced
questions and best practices, the book never feels bogged down in detail. The authors clearly
convey the big picture of how you can use JPA effectively. The many code examples ensure that
the discussion always comes back to practice, with examples that are directly relevant to
developers.

I encourage you to browse for yourself and am confident you will my share my high opinion
of Pro EJB 3: Java Persistence APIL

Rod Johnson
Founder, Spring Framework
CEO, Interface2l

About the Authors

MIKE KEITH is the co-specification lead of EJB 3.0 and a member of the
Java EE 5 expert group. He holds a Master of Science degree in computing
from Carleton University and has over 15 years of teaching, research,
and practical experience in object persistence. He has implemented
persistence systems for Fortune 100 corporations on a host of technol-
ogies, including relational and object databases, XML, directory services,
and custom data formats. Since the fledgling EJB days he has worked
on EJB implementations and integrations to multiple application servers.
He has written various papers and articles and spoken at numerous
conferences about EJB 3.0. He is currently employed at Oracle as a
persistence architect.

MERRICK SCHINCARIOL is a senior engineer at Oracle and a reviewer
of the EJB 3.0 specification. He has a Bachelor of Science degree in
computer science from Lakehead University and has over seven years
of experience in the industry. He spent some time consulting in the
pre-Java enterprise and business intelligence fields before moving on
to write Java and J2EE applications. His experience with large-scale
systems and data warehouse design gave him a mature and practiced
perspective on enterprise software, which later propelled him into
doing EJB container implementation work. He was a lead engineer for
Oracle’s EJB 3.0 offering.

xvii

About the Technical
Reviewers

JASON HALEY is a senior engineer at Oracle and a reviewer of the EJB
3.0 specification. He has a Bachelor of Science degree in computing
from Carleton University and has been working with the EJB internals,
and Java and J2EE applications for over seven years. He has done
consulting and training but spent much of his time designing and
implementing EJB container infrastructure both on the session and
persistence sides. He has extensive experience with the inner workings
of BEA WebLogic Server and Oracle Application Server, and has
devised multiple session and persistence manager interfaces. He is a
lead engineer for Oracle’s EJB container.

HUYEN NGUYEN is quality assurance manager at Oracle in the Server
Technologies group. He has a Bachelor of Applied Science degree in
Systems Design Engineering from the University of Waterloo. In the
field of object persistence, he has been working as an instructor and
consultant for 11 years and a quality assurance manager for the past
four years.

SHAHID N. SHAH is the Founder and CEO of Netspective Communica-
tions. Netspective is a software development firm that provides the
tools and skills necessary for creating service-oriented systems using
Java and .NET. He has recently built a large health-care informatics
framework using EJB 3.0 and Java 5.0. Shahid has held the positions of VP
of Technology, CTO, Chief Software Architect, and Lead Engineer at large
enterprises for the past 15 years. Shahid’s key technology expertise
areas are service-oriented architectures, distributed object services,
Java, J2EE, .NET, XML, UML, and object- and aspect-oriented software
development. Shahid runs three successful blogs. At http://shahid.shah.org he writes about
architecture issues, at http://www.healthcareguy.com he provides valuable insights on how to
apply technology in health care, and at http://www.hitsphere.com he gives a glimpse of the
health-care IT blogosphere as an aggregator. He can be reached at shahid@shah.org.

Xix

Acknowledgments

I want to thank all of the members of the expert group who contributed to the EJB 3.0 specifi-
cation. Numerous conference calls, countless hours on the phone with Linda, Gavin, Patrick,
and others, and bucket-loads of email produced a result that we all hope is worth the two years
of our lives that we sacrificed for it.

I want to thank the four D’s (Dennis Leung, Dan Lesage, Doug Clarke, and Donald Smith)
for their support and friendship at various stages of the book. Thanks to Shahid for reviewing
the early drafts of the chapters and to a host of other casual reviewers that looked at the occasional
chapter. I especially owe huge thanks to three great friends: Jason for agreeing to tirelessly put
all of the examples into code (and fix my bugs!), for reviewing, and even writing some of the
early chapter drafts; Huyen for going above and beyond the call of duty by spending night after
late night reviewing to meet a tight schedule; and of course Merrick for being great to work with and
taking up the slack when I was out of commission or not able to keep up. Tony, Julie, Hastings,
and Laura at Apress really helped out along the way and performed miracles getting this book
to print. Last of all, and most important, my wife Darleen and my kids Cierra, Ariana, Jeremy,
and Emma. I love them all without bounds. It is they who sacrificed the most for this book by
being so very patient over months of having a distant husband and father slouched in a chair
clacking away on a laptop.

Mike Keith

Writing a book involves many more people than will ever have their names printed on the
cover. Over the last year I have been blessed with the support of many people, who offered advice,
reviewed my work, and encouraged me along the way. First of all I'd like to thank Mike for giving
me the opportunity to collaborate with him on this book. It was a true partnership from beginning
to end. But it could not have been done without the loving support of my wife Natalie and the
remarkable patience of my young son Anthony, who had to put up with a daddy who was often
hidden away in his office writing. At Oracle, special thanks to Jason Haley for shouldering more
than his fair share of senior engineering responsibilities while I worked on this project, and
thanks for the support of Dennis Leung, Rob Campbell, and the entire EJB container team.
At Apress, Julie Smith, Hastings Hart, and Laura Esterman pulled out all the stops to get things
done on time. And finally, thanks to the many reviewers who looked over the drafts of this book.
Huyen Nguyen and Jason Haley in particular were instrumental in helping us refine and make
this book both accurate and readable.

Merrick Schincariol

XXi

Preface

The Java Persistence API has been a long time in coming, some might even say overdue. The
arrival of an enterprise Java persistence standard based on a “POJO” development model fills a
gap in the platform that has needed to be filled for a long time. The previous attempt missed the
mark and advocated EJB entity beans that were awkward to develop and too heavy for many
applications. It never reached the level of widespread adoption or general approval in many
sectors of the industry. But in the absence of a standard, proprietary persistence products such
as JBoss Hibernate and Oracle TopLink gained popularity in the industry and have been thriving.
With the emergence of the Java Persistence API, developers can now create portable persistence
code that will run on any compliant Java EE 5 server, as well as in a stand-alone JVM outside the
server.

It could be argued that the result of waiting until the persistence market had matured was
that a superior standard emerged based on product and user experience instead of theory and
design. Contained in the Java Persistence API (abbreviated by some as “JPA”) are the basic
notions and interfaces that all persistence connoisseurs will recognize from their experience
with existing products. This will make it easier for people who are already using these products
to adopt the Java Persistence API while still allowing novice persistence developers to pick up
the API and quickly learn it.

The specification was written for architects and developers alike, but it is still a specifica-
tion. Few people enjoy sitting down with a tersely worded specification to find out how to use
an API. It does not delve into the intricacies of applying the API, nor does it explain any of the
peripheral issues that you may encounter during development. In this book we wanted to bring
amore practical approach to the topic and highlight some of the usage patterns that we think
are of value.

Our original intent was to write about the entire EJB 3.0 specification. We also wanted to
produce a book that would fit in someone’s laptop bag and not outweigh the laptop. It didn’t
take us long to realize that in order to provide adequate coverage of the topic and write a book
that offered value to the average developer, we needed to focus on only half of the specification.
Given our own persistence experience and the lack of existing outside knowledge of the Java
Persistence API, the choice was an easy one.

Over the course of this book we will go into detail on all of the elements of the API. We will
explain the concepts and illustrate their usage by providing practical examples of how to apply
them in your own applications. We begin the journey with a quick tour of the API by creating a
very simple application in the Java SE environment. We then move into the enterprise and
provide an overview of the features in the EJB 3.0 and Java EE 5 standards that apply to persis-
tence in enterprise applications.

Object-relational mapping is at the heart of storing object state in a relational database,
and we go into detail on ORM technology and the mappings and features supported by the API.
The EntityManager is the main interface used to interact with entities. Different aspects of using

Xxiii

XXiv

PREFACE

the entity manager are explored, and we open the hood to expose the internals of the imple-
mentation to help you understand some of the important nuances. We also explore the queries
that can be obtained from entity managers, and make distinctions between the different kinds
of dynamic, static, or named queries that are available. We assess the query capabilities that
may be accessed and present ideas about when the different kinds of queries should be used.
Java Persistence Query Language is discussed in its entirety, with examples of all of its features.

Next we tackle some of the intermediate and advanced topics of ORM, such as inheritance,
and show how to map different kinds of class hierarchies to a variety of data schemas. We also
delve into the important subject of locking and explain how to best make use oflocking strategies
in your application. For those who like to use XML for metadata, we describe how XML mappings
are specified and explain how they can be used to override annotations. The development life
cycle is then completed by a discussion of how to configure the persistence unit and package it
up in different categories of enterprise application components.

Much has been written about testing, and much is still being written. Another strength of
the API is its ability to support unit testing and some of the other current testing methodologies
and patterns that are being used today. We spend some time discussing some of the ways that
you can test entities and the application logic that invokes them, both inside and outside the
application server.

Finally, for those who are coming to the API from existing persistence systems, we devote
some time to going over the migration issues. We offer some suggestions, through the use of
some of the common design patterns, of ways to migrate different kinds of architected applica-
tions to use the Java Persistence API.

We hope that you enjoy both reading this book and learning how to use the Java Persistence
API. We still couldn’t fit everything that we wanted to fit in this book, but hopefully, like Indiana
Jones, we “chose wisely” about what was important and what didn’t need to be included. We
welcome any suggestions for additional topics as well as any comments about the topics that
we did include.

Who This Book Is For

We have written this book for everybody who wants to use persistence in enterprise and desktop
applications. We do not assume that you have any experience with persistence products, although
we do assume that you have some Java programming experience, as well as some exposure to
the J2EE platform. Experience with the new Java EE 5 standard may be helpful but is certainly
not required. Knowledge of previous versions of EJB is also not required.

A persistence API that maps objects and stores data in a relational database expects some
amount of basic understanding of databases and SQL. In addition, since the API is implemented
on top of Java Database Connectivity JDBC) API that accesses the database, any knowledge of
that API will also be an asset but is not absolutely needed.

About the Code Examples

Sometimes a single code example is worth more than the number of words that can fitin a
chapter. We have tried to use inlined code examples when it is practical and when it suits the
purpose. Although we tend to prefer learning from code rather than reading paragraphs of text,
we find it frustrating when a code example goes on for pages, and by the time you reach the end

PREFACE

of it you have forgotten what it was you were trying to learn from it. We have attempted to alle-
viate the distraction of the nonrelevant code bits by using ellipses and eliding the parts that do
not contribute to the point of the example. Our hope is that you will agree with us and think that
it makes the examples more meaningful, not that the examples are only half-baked.

The API is somewhat flexible about the access modifier of persistent state in that it may be
package, protected, or private. We have defined entity state to consistently be private in the
examples to highlight how the state should be encapsulated within the entity. For the record,
we are not dogmatic about state being private. We just happened to start out doing it that way
and never bothered to change.

To ensure that the focus remains on understanding the technology and not puzzling over
the sample domain, we have adopted the simplest and most prevalent domain model that we
could think of, the tried and true Employee model. While being a bit on the dull side, we had to
admit that it was ubiquitous to the point where it was a sure bet that virtually every developer
on the planet would understand and be able to relate to it. It contains all of the necessary modeling
variability (although admittedly we did have to stretch it a bit in some cases) that is needed to
illustrate the concepts and practices of the API.

The examples that accompany the book have been implemented using the official Refer-
ence Implementation (RI) of the Java EE 5 application server and the Java Persistence API. The
Java EE 5 Rl is called “Glassfish” and is a fully featured open source application server that can
be obtained and used under the Common Development and Distribution License (CDDL). The
RI for the Java Persistence API is called “TopLink Essentials” and is an open source and freely
available product derived from the commercially distributed Oracle TopLink enterprise data
integration stack. GlassFish and TopLink Essentials can be obtained from the GlassFish project
downloads link on java.net, but we recommend going to the persistence page athttp://glassfish.
dev.java.net/javaee5/persistence. TopLink Essentials can also be obtained from the TopLink
page on the Oracle Technology Network at http://www.oracle.com/technology/products/ias/
toplink.

The examples are available for download on the Apress website at http://www.apress.com.
We recommend downloading them and poking around. The best way to learn the API is to try
it out on your own, and taking an existing model and tweaking it is a great way to get started.
The API is its own best selling point. Once you develop with it, you will see that it really does
make persistence development much easier than it has ever been before!

Contacting Us

We can be contacted at michael.keith@oracle.com and merrick.schincariol@oracle.com.

XXV

CHAPTER 1

Introduction

The word enterprise is arguably one of the most overused terms in software development
today. And yet, when someone states that they are developing an enterprise application,
invariably a single word comes to mind: information. Enterprise applications are defined by
their need to collect, transform and report on vast amounts of information. And, of course,
that information does not simply exist in the ether. Storing and retrieving data is a multibillion
dollar business, as evidenced by the burgeoning enterprise integration systems (EIS) and
enterprise application integration (EAI) companies that have sprung up in recent years.

Many ways of persisting data have come and gone over the years, and no concept has had
more staying power than the relational database. It turns out that the vast majority of the
world’s corporate data is now stored in relational databases. They are the starting point for
every enterprise application with a lifespan that may continue long after the application has
faded away.

Understanding the relational data is key to successful enterprise development. Develop-
ing applications to work well with database systems has become the primary business of
software development. For Java in particular, part of its success can be attributed to the
widespread adoption of the language for building enterprise database systems. From con-
sumer web sites to automated gateways, Java applications are at the heart of enterprise data
development.

Despite the success the Java platform has had in working with database systems, it still suf-
fers from a problem. Moving data back and forth between a database system and the object
model of a Java application is a lot harder than it needs to be. Java developers either seem to
spend a lot of time converting row and column data into objects, or they find themselves tied
to proprietary frameworks that try to hide the database from the developer.

Fortunately, a solution is finally at hand. Recently standardized and backed by both com-
mercial and open source interests from across the spectrum, the Java Persistence API is set to
have a major impact on the way we handle persistence within Java. For the first time, develop-
ers have a standard way of bridging the gap between object-oriented domain models and
relational database systems.

Over the course of this book we will introduce the Java Persistence API and explore every-
thing that it has to offer developers. Whether you are building client-server applications to
collect form data in a Swing application or building a web site using the latest application
framework, the Java Persistence API is a framework you can use to be more effective with
persistence. One of its major strengths is that it can be slotted into whichever layer, tier, or
framework that an application needs it to be in.

CHAPTER 1 INTRODUCTION

To set the stage for the Java Persistence API, this chapter first takes a step back to show
where we’ve been and what problems we are trying to solve. From there we will look at the his-
tory of the specification and provide a high-level view of the value it brings to developers.

Java Support for Persistence

The Java platform is well supported for managing persistence to relational databases. From the
earliest days of the platform, programming interfaces have existed to provide gateways into
the database and even to abstract away much of the vendor-specific persistence requirements
of business applications. In the next few sections we will look at the current set of Java stan-
dards for persistence and their role in enterprise applications.

JDBC

The second release of the Java platform ushered in the first major support for database persis-
tence with the Java Database Connectivity specification, better known as JDBC. Offering a
simple and portable abstraction of the proprietary client programming interfaces offered

by database vendors, JDBC allows Java programs to fully interact with the database. This inter-
action is heavily reliant on SQL, offering developers the chance to write queries and data
manipulation statements in the language of the database, but executed and processed using
a simple Java programming model.

The irony of JDBCis that while the programming interfaces are portable, the SQL language
is not. Despite many attempts to standardize the SQL language, it is still rare to write SQL of any
complexity that will run unchanged on any two major database platforms. Even where the lan-
guages are the same, each database performs differently depending on the structure of the
query, necessitating vendor-specific tuning in most cases.

There is also the issue of tight coupling between Java source and SQL text. Developers are
constantly tempted by the lure of ready-to-run SQL queries either dynamically constructed at
runtime or simply stored in variables or fields. This is a very effective programming model until
the minute you realize that the application has to support a new database vendor and that it
doesn’t support the dialect of SQL you have been using.

Even with SQL text relegated to property files or other application metadata, there comes
a point in working with JDBC where it not only feels wrong, but also becomes a cumbersome
exercise to take tabular row and column data and continuously have to convert it back and
forth into objects. The application has an object model—why does it have to be so hard to use
with the database?

Enterprise JavaBeans

The first release of the Java 2 Enterprise Edition J2EE) platform introduced a new solution for
Java persistence in the form of the entity bean, part of the Enterprise JavaBean (EJB) family of
components. Intended to fully insulate developers from dealing directly with persistence, it

introduced an interface-based approach, where the concrete bean class is never directly used
by client code. Instead, a specialized bean compiler generates an implementation of the bean
interface that facilitates persistence, security, transaction management, and more, delegating
only the business logic to the entity bean implementation. Entity beans are configured using a

CHAPTER 1 INTRODUCTION

combination of standard and vendor-specific XML deployment descriptors which have
become famous for their complexity and verbosity.

It’s probably fair to say that entity beans were over-engineered for the problem they were
trying to solve; yet ironically the first release of the technology lacked many features necessary
to implement realistic business applications. Relationships between entities had to be man-
aged by the application, requiring foreign key fields to be stored and managed on the bean
class. The actual mapping of the entity bean to the database was done entirely using vendor-
specific configurations, as was the definition of finders, the entity bean term for queries.
Finally, entity beans were modeled as remote objects that used RMI and CORBA, introducing
network overhead and restrictions that should never have been added to a persistent object to
begin with. The entity bean seemed to have begun by solving the distributed persistent com-
ponent problem that never existed to begin with, leaving behind the common case of locally
accessed lightweight persistent objects.

The EJB 2.0 specification solved many of the problems identified in the early releases.
The notion of container-managed entity beans was introduced, where bean classes became
abstract and the server was responsible for generating a subclass to manage the persistent
data. Local interfaces and container-managed relationships were introduced, allowing associ-
ations to be defined between entity beans and automatically kept consistent by the server. This
release also saw the introduction of Enterprise JavaBeans Query Language (EJB QL), a query
language designed to work with entities that could be portably compiled to any SQL dialect.

Despite the improvements introduced with EJB 2.0, there is one problem that could not be
overcome by the EJB expert group: complexity. The specification assumed that development
tools would insulate the developer from the challenge of configuring and managing the sheer
number of artifacts that were required for each bean. Unfortunately, these tools took too long
to materialize, and the development burden fell squarely on the shoulders of the developer
even as the size and scope of EJB applications increased. Developers felt abandoned in a sea of
complexity without the promised infrastructure to keep them afloat.

Java Data Objects

Due in part to some of the failures of the EJB persistence model, and some amount of frustra-
tion at not having a standardized persistence API that was satisfactory, another persistence
specification effort was attempted. Java Data Objects JDO) was inspired and supported prima-
rily by the object-oriented database (OODB) community at the outset and probably at least
partly because it did not garner the support that a specification needed to become adopted by
the community. It required that vendors enhance the bytecode of the domain objects to pro-
duce class files that were binary-compatible across all vendors, and every compliant vendor
had to be capable of both producing and consuming them. It also had a query language that
was decidedly object-oriented in nature, which did not sit well with the relational database
users, who as it turned out were the majority.

JDO reached the status of being an extension of the Java Development Kit JDK) but never
became an integrated part of the enterprise Java platform. It had a great many good features in
it and was adopted by a small community of devoted and loyal users who stuck by it and tried
to promote it. Unfortunately the major commercial vendors did not share the same view of
how a persistence framework should be implemented. Few supported the specification, and as
aresult JDO spent most of its time in the persistence underground.

CHAPTER 1 INTRODUCTION

Some might argue that it was slightly ahead of its time and that its reputation for enhance-
ment caused it to be unfairly stigmatized. This was probably true, and if it had been introduced
three years later, it might have been much more accepted by a developer community that now
thinks nothing of using frameworks that make extensive use of bytecode enhancement. Once the
EJB 3.0 persistence movement was in motion, however, and the major vendors all signed up to be
a part of the new enterprise persistence standard, the writing was on the wall for JDO. People
soon complained to Sun that they now had two persistence specifications, one that was part of its
enterprise platform and also worked in Java SE, and one that was standardized only for Java SE.
Shortly thereafter Sun announced that JDO would be reduced to specification maintenance
mode and that the Java Persistence API would draw from both JDO and the other persistence
vendors and become the single supported standard going forward.

Why Another Standard?

Software developers knew what they wanted, but many could not find it in the existing stan-
dards, so they decided to look elsewhere. What they found was proprietary persistence
frameworks, both in the commercial and open source domains. The products that imple-
mented these technologies adopted a persistence model that did not intrude upon the domain
objects. Persistence was nonintrusive to the business objects in that, unlike entity beans, they
did not have to be aware of the technology that was persisting them. They did not have to
implement any type of interface or extend a special class. The developer could simply develop
the persistent object as with any other Java object, and then map it to a persistent store and use
a persistence API to persist the object. Because the objects were regular Java objects, this per-
sistence model came to be known as POJO (Plain Old Java Object) persistence.

The two most popular of these persistence APIs were TopLink in the commercial space
and Hibernate in the open source community. These and other products grew to support all
the major application servers and provided applications with all of the persistence features
they needed. Application developers were quite satisfied to use a third-party product for their
persistence needs.

As Hibernate, TopLink, and other persistence APIs became ensconced in applications and
met the needs of the application perfectly well, the question was often asked, “Why bother
updating the EJB standard to match what these products already did? Why not just continue to
use these products as has already been done for years, or why not even just standardize on an
open source product like Hibernate?” There are actually a great many reasons why this is not
only infeasible but also unpalatable.

A standard goes far deeper than a product, and a single product (even a product as success-
ful as Hibernate or TopLink) cannot embody a specification, even though it can implement one.
Atits very core, the intention of a specification is that it be implemented by different vendors and
that it have different products offer standard interfaces and semantics that can be assumed by
applications without coupling the application to any one product.

Binding a standard to an open source project like Hibernate would be problematic for the
standard and probably even worse for the Hibernate project. Imagine a specification that was
based on a specific version or checkpoint of the code base of an open source project, and how
confusing that would be. Now imagine an open source software (OSS) project that could not
change or could change only in discrete versions controlled by a special committee every two
years, as opposed to the changes being decided by the project itself. Hibernate, and indeed any
open source project, would likely be suffocated.

CHAPTER 1 INTRODUCTION

Standardization may not be valued by the consultant or the five-person software shop, but
to a corporation it is huge. Software technologies are a big investment for most corporate IT
shops, and when large sums of money are involved, risk must be measured. Using a standard
technology reduces that risk substantially and allows the corporation to be able to switch ven-
dors if the initial choice turns out not to have met the need.

Besides portability, the value of standardizing a technology is manifested in all sorts of
other areas as well. Education, design patterns, and industry communication are just some of
the many other benefits that standards bring to the table.

Object-Relational Mapping

“The domain model has a class. The database has a table. They look pretty similar. It should be
simple to convert from one to the other automatically.” This is a thought we’ve probably all had
at one point or another while writing yet another Data Access Object to convert JDBC result sets
into something object-oriented. The domain model looks similar enough to the relational model
of the database that it seems to cry out for a way to make the two models talk to each other.

The science of bridging the gap between the object model and the relational model is
known as object-relational mapping, often referred to as O-R mapping or simply ORM. The
term comes from the idea that we are in some way mapping the concepts from one model onto
another, with the goal of introducing a mediator to manage the automatic transformation of
one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief manifesto
of sorts for what the ideal solution should be:

¢ Objects, not tables. Applications should be written in terms of the domain model and
not be bound to the relational model. It must be possible to operate on and query
against the domain model without having to express it in the relational language of
tables, columns, and foreign keys.

¢ Convenience, not ignorance. The task of mapping will be and should be done by some-
one familiar with relational technology. O-R mapping is not for someone who does not
want to understand the mapping problems or have them hidden from their view. It is
meant for those who have an understanding of the issues and know what they want but
who just don’t want to have to write thousands of lines of code that somebody has
already written to solve the problem.

¢ Unobtrusive, not transparent. It is unreasonable to expect that persistence be transpar-
ent since an application always needs to have control of the objects that it is persisting
and be aware of the entity life cycle. The persistence solution should not intrude on the
domain model, however, and domain classes must not be required to extend classes or
implement interfaces in order to be persistable.

* Legacy data, new objects. It is far more likely that an application will target an existing
relational database schema instead of creating a new one. Support for legacy schemas is
one of the most relevant use cases that will arise, and it is quite possible that such data-
bases will outlive every one of us.

CHAPTER 1 INTRODUCTION

* Enough, but not too much. Enterprise applications have problems to solve, and they
need features sufficient to solve those problems. What they don’t like is being forced to
eat a heavyweight persistence model that introduces large overhead because it is solving
problems that many do not even agree are problems.

¢ Local, but mobile. A persistent representation of data does not need to be modeled as a
full-fledged remote object. Distribution is something that exists as part of the applica-
tion, not part of the persistence layer. The entities that contain the persistent state,
however, must be able to travel to whichever layer needs them.

This would appear to be a somewhat demanding set of requirements, but it is one born of
both practical experience and necessity. Enterprise applications have very specific persistence
needs, and this shopping list of items is a fairly specific representation of the experience of the
enterprise community.

The Impedance Mismatch

Advocates for object-relational mapping often describe the difference between the object
model and the relational model as the impedance mismatch between the two. This is an apt
description because the challenge of mapping one to the other lies not in the similarities
between the two, but in the many concepts in both for which there is no logical equivalent in
the other.

In the following sections we will present some basic object-oriented domain models and
avariety of relational models to persist the same set of data. As you are about to see, the chal-
lenge in object-relational mapping is not so much the complexity of a single mapping but that
there are so many possible mappings. The goal is not to explain how to get from one point to
the other but to understand the roads that may have to be taken to arrive at an intended
destination.

Class Representation

Let’s begin this discussion with a simple class. Figure 1-1 shows an Employee class with four
attributes: employee id, employee name, date they started, and current salary.

Employee

id: int

name: String
startDate: Date
salary: long

Figure 1-1. The Employee class

Now consider the relational model shown in Figure 1-2. The ideal representation of this
class in the database corresponds to scenario (A). Each field in the class maps directly to a col-
umn in the table. The employee number becomes the primary key. With the exception of some
slight naming differences, this is a straightforward mapping.

CHAPTER 1 INTRODUCTION

A) (B) (©

EMP EMP EMP
PK |ID PK |ID PK |ID
NAME NAME NAME
START_DATE START_DAY START_DATE
SALARY START_MONTH T
START_YEAR T
SALARY
EMP_SAL
PKFK1 |ID
SALARY

Figure 1-2. Three scenarios for storing employee data

In scenario (B), we see that the start date of the employee is actually stored as three sepa-
rate columns, one each for the day, month, and year. Recall that the class used a Date object to
represent this value. As database schemas are much harder to change, should the class be
forced to adopt the same storage strategy in order to keep parity with the relational model? Also
consider the inverse of the problem, where the class had used three fields and the table used a
single date column. Even a single field becomes complex to map when the database and object
model differ in representation.

Salary information is considered sensitive information, so it may be unwise to place
the salary value directly in the EMP table, which may be used for a number of purposes. In
scenario (C), the EMP table has been split so that the salary information is stored in a separate
EMP_SAL table. This allows the database administrator to restrict SELECT access on salary infor-
mation to only those users who genuinely require it. With such a mapping, even a single store
operation for the Employee class now requires inserts or updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging exer-
cise. We concern ourselves with these scenarios because real database schemas in production
systems were never designed with object models in mind. The rule of thumb in enterprise
applications is that the needs of the database trump the wants of the application. It’s up to the
object model to adapt and find ways to work with the database schema without letting the
physical design overpower the logical application model.

Relationships

Objects rarely exist in isolation. Just like relationships in a database, domain classes depend on
and associate themselves with other domain classes. Consider the Employee class introduced
in Figure 1-1. There are many domain concepts we could associate with an employee, but for
now let’s introduce the Address domain class, for which an Employee may have at most one
instance. We say in this case that Employee has a one-to-one relationship with Address,
represented in the Unified Modeling Language (UML) model by the 0. . 1 notation. Figure 1-3
demonstrates this relationship.

CHAPTER 1 INTRODUCTION

Employee Address
id: int street: String
name: String 0 city: String
startDate: Date " state: String

salary: long zip: String

Figure 1-3. The Employee and Address relationship

We discussed different scenarios for representing the Employee state in the previous sec-
tion, and likewise there are several approaches to representing a relationship in a database
schema. Figure 1-4 demonstrates three different scenarios for a one-to-one relationship
between an employee and an address.

The building block for relationships in the database is the foreign key. Each scenario
involves foreign key relationships between the various tables, but in order for there to be a for-
eign key relationship, the target table must have a primary key. And so before we even get to
associate employees and addresses with each other we have a problem. The domain class
Address does not have an identifier, yet the table that it would be stored in must have one if it
is to be part of relationships. We could construct a primary key out of all of the columns in the
ADDRESS table, but this is considered bad practice. Therefore the ID column is introduced and
the object relational mapping will have to adapt in some way.

In scenario (A) of Figure 1-4 we have the ideal mapping of this relationship. The EMP table
has a foreign key to the ADDRESS table stored in the ADDRESS ID column. If the domain class
holds onto an instance of the Address class, then the primary key value for the address can be
set during store operations.

And yet consider scenario (B), which is only slightly different yet suddenly much more
complex. In our domain model, Address did not hold onto the Employee instance that owned
it, and yet the employee primary key must be stored in the ADDRESS table. The object-relational
mapping must either account for this mismatch between domain class and table or a reference
back to the employee will have to be added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and ADDRESS
tables. Instead of storing the foreign keys directly in one of the domain tables, the join table
instead holds onto the pair of keys. Every database operation involving the two tables must
now traverse the join table and keep it consistent. We could introduce an EmployeeAddress
association class into our domain model to compensate, but that defeats the logical represen-
tation we are trying to achieve.

Figure 1-4. Three scenarios for relating employee and address data

CHAPTER 1 INTRODUCTION
A)
EMP ADDRESS
K| PK | 1D
NAME O --------- OH STREET
START_DATE oy
SALARY STATE
FK1 | ADDRESS_ID zp
(B)
ADDRESS
EMP
K |1
PK |ID
o S oF STREET
NAME oY
START_DATE STATE
SALARY zp
FK1 | EMP_ID
© ADDRESS
EVP EMP_ADDRESS T
i PKFK1 | ADDRESS ID —
H—=0C+ +O—H-
AV PKFK2 |EMP_ID Stheet
START_DATE e
SALARY b

Relationships present a challenge in any object-relational mapping solution. In this

introduction we have covered only one-to-one relationships, and yet we have been faced
with the need for primary keys not in the object model and the possibility of having to intro-
duce extra relationships into the model or even association classes to compensate for the
database schema.

9

10

CHAPTER 1 INTRODUCTION

Inheritance

A defining element of an object-oriented domain model is the opportunity to introduce gener-
alized relationships between like classes. Inheritance is the natural way to express these
relationships and allows for polymorphism in the application. Let’s revisit the Employee class
shown in Figure 1-1 and imagine a company that needs to distinguish between full-time and
part-time employees. Part-time employees work off of an hourly rate, while full-time employ-
ees are assigned a salary. This is a good opportunity for inheritance, moving wage information
to PartTimeEmployee and FullTimeEmployee subclasses. Figure 1-5 shows this arrangement.

Employee

id: int
name: String
startDate: Date

PartTimeEmployee FullTimeEmployee

hourlyRate: float salary: long

Figure 1-5. Inheritance relationships between full-time and part-time employees

Inheritance presents a genuine problem for object-relational mapping. We are no longer
dealing with a situation where there is a natural mapping from a class to a table. Consider the
relational models shown in Figure 1-6. Once again we demonstrate three different strategies
for persisting the same set of data.

Arguably the easiest solution for someone mapping an inheritance structure to a database
would be to put all of the data necessary for each class (including parent classes) into separate
tables. This strategy is demonstrated by scenario (A) in Figure 1-6. Note that there is no relationship
between the tables. This means that queries against these tables are now much more complicated
if the user needs to operate on both full-time and part-time employees in a single step.

An efficient but denormalized alternative is to place all of the data required for every class
in the model in a single table. That makes it very easy to query, but note the structure of the
table shown in scenario (B) of Figure 1-6. There is a new column, TYPE, which does not exist in
any part of the domain model. The TYPE column indicates whether or not the employee is part-
time or full-time. This information must now be interpreted by an object-relational mapping
solution to know what kind of domain class to instantiate for any given row in the table.

CHAPTER 1 INTRODUCTION

(A)

FULL_TIME_EMP PART_TIME_EMP

PK |ID PK |[ID

NAME NAME

START_DATE START_DATE

SALARY RATE
(B)
EMP

PK |ID
NAME
START_DATE
SALARY
RATE
TYPE
(€)
EMP
FULL_TIME_EMP PART_TIME_EMP
PK |ID
PK,FK1 D HO—H— —H—— O+ PKFK1 D
NAME
SALARY START_DATE RATE

TYPE

Figure 1-6. Inheritance strategies in a relational model

Scenario (C) takes this one step further, this time normalizing the data into separate tables
each for full-time and part-time employees. Unlike scenario (A), however, these tables are
related by a common EMP table that stores all of the data common to both employee types. It
might seem like an excessive solution for a single column of extra data, but a real schema with
many columns specific to each type of employee would likely use this type of table structure. It
presents the data in a logical form and also simplifies querying by allowing the tables to be
joined together. Unfortunately, what works well for the database does not necessarily work
well for an object model mapped to such a schema. Even without associations to other classes,
the object-relational mapping of the domain class must now take joins between multiple
tables into account.

1

12

CHAPTER 1 INTRODUCTION

When you start to consider abstract superclasses or parent classes with no persistent form,
inheritance rapidly becomes a complex issue in object-relational mapping. Not only is there a
challenge with storage of the class data, but the complex table relationships are difficult to
query efficiently.

The Java Persistence API

The Java Persistence API is a lightweight, POJO-based framework for Java persistence.
Although object-relational mapping is a major component of the API, it also offers solutions to
the architectural challenges of integrating persistence into scalable enterprise applications.
In the following sections we will look at the evolution of the specification and provide an over-
view of the major aspects of this technology.

History of the Specification

The Java Persistence API is remarkable not only for what it offers developers but also for the
way in which it came to be. The following sections outline the prehistory of object-relational
persistence solutions and the genesis of the Java Persistence API as part of EJB 3.0.

The Early Years

It may come as a surprise to learn that object-relational mapping solutions have been around for
along time, longer even than the Java language itself. Products such as Oracle TopLink originally
got their start in the Smalltalk world before making the switch to Java. Perhaps one of the greatest
ironies in the history of Java persistence solutions is that one of the first implementations of
entity beans, which have long been criticized for their complexity, was actually demonstrated by
mapping the bean class and persisting it using TopLink.

Commercial object-relational mapping products like TopLink have been available since the
earliest days of the Java language. They were successful, but the techniques were never standard-
ized for the Java platform. An approach similar to object-relational mapping was standardized in
the form of JDO, but as we mentioned previously, that standard failed to gain any significant
market penetration.

It was actually the popularity of open source object-relational mapping solutions such as
Hibernate that led to some surprising changes in the direction of persistence in the Java plat-
form and brought about a convergence towards object-relational mapping as the preferred
solution.

EJB 3.0

After years of complaints about the complexity of building enterprise applications with Java,
“ease of development” was adopted as the theme for the Java EE 5.0 platform release. The
members of the EJB 3.0 expert group were charged with finding ways to make Enterprise
JavaBeans easier and more productive to use.

In the case of session beans and message-driven beans, solutions for usability issues were
largely cosmetic in scope. By simply removing some of the more onerous implementation
requirements and letting components look more like plain Java objects, the goal was largely
achieved early on.

CHAPTER 1 INTRODUCTION

In the case of entity beans, however, a more serious problem faced the expert group. If the def-
inition of “ease of use” is to keep implementation interfaces and descriptors out of application code
and to embrace the natural object model of the Java language, how do you make coarse-grained,
interface-driven, container-managed entity beans look and feel like a domain model?

The conclusion reached by the expert group was nothing short of remarkable: start over.
Leave entity beans alone and introduce a new model for persistence. And start over we did, but
not from scratch. The Java Persistence API was born out of recognition of the demands of prac-
titioners and the existing proprietary solutions that they were using to solve their problems. To
ignore that experience would have been folly.

The expert group reached out to the leading vendors of object-relational mapping solu-
tions and invited them to come forward and standardize the best practices represented by
their products. Hibernate and TopLink were the first to sign on with the existing EJB vendors,
followed later by the JDO vendors.

Years of industry experience coupled with a mission to simplify development combined to
produce the first specification to truly embrace the new programming models offered by the
Java SE 5 platform. The use of annotations in particular resulted in a new way of using persis-
tence in applications that had never been seen before.

The resulting EJB 3.0 specification ended up being divided into three distinct pieces and
split across three separate documents. The first includes the existing EJB 2.1 APIs and the tra-
ditional contracts from the perspectives of the container, the bean provider, and the client.
This content was incremented by the additional Java EE injection features as well as the new
EJB 3.0 interceptor specifications and lifecycle callback changes. This is the heavy document
that describes the “old school” of EJB development plus some of the new features that have
been made available to the old API.

The second document describes a simplified API that people can use to develop new ses-
sion and message-driven components against. It is essentially an overview of the ease-of-use
features that were introduced for EJB components by EJB 3.0. It outlines the basic ideas of how
to define and annotate beans, use them without home interfaces, add callback methods and
interceptors, and apply these new features.

The third document is the Java Persistence API, a stand-alone specification that describes
the persistence model in both the Java SE and Java EE environments, and the subject of this
book. In the next iteration the Java Persistence API will become a separate specification in the
Java EE platform, distinct from the Enterprise JavaBeans specification.

Overview

The model of the Java Persistence API is simple and elegant, powerful and flexible. It is natural
to use, and easy to learn, especially if you have used any of the existing persistence products on
the market today on which the API was based. The main operational API that an application
will be exposed to is contained within only a few classes.

P0OJO Persistence

Perhaps the most important aspect of the Java Persistence API is the fact that the objects are
POJOs, meaning that there is nothing special about any object that is made persistent. In fact,
any existing application object can be made persistent without so much as changing a single
line of code. Object-relational mapping with the Java Persistence API is entirely metadata-
driven. It can be done either by adding annotations to the code or using externally defined

13

14

CHAPTER 1 INTRODUCTION

XML. The objects that are persisted are lightweight in memory and as light as the user happens
to define and map them in the database.

Non-intrusiveness

The persistence API exists as a separate layer from the persistent objects. The persistence API
is called by the application business logic and is passed the persistence objects and instructed
to operate upon them. So even though the application must be aware of the persistence AP,
since it has to call into it, the persistent objects themselves need not be aware. This is note-
worthy because some people are under the misconception that transparent persistence means
that objects magically get persisted, the way that object databases of yesteryear used to do
when a transaction got committed. This is an incorrect notion and even more irrational when
you think about querying. You need to have some way of retrieving the objects from the data
store. This requires a separate API object and, in fact, even object databases used separate
Extent objects to issue queries. Applications absolutely need to manage their persistent
objects in very explicit ways, and they require a designated API to do it. Because the API does
not intrude upon the persistent objects themselves, we call this non-intrusive persistence.

Object Queries

A powerful query framework offers the ability to query across entities and their relationships
without having to use concrete foreign keys or database columns. Queries are expressed in Java
Persistence Query Language, a query language that is derived from EJB QL and modeled after
SQL for its familiarity, but it is not tied to the database schema. Queries use a schema abstrac-
tion that is based on the state of an entity as opposed to the columns in which the entity is
stored. Creating a query does not require knowledge of the database mapping information and
typically returns results that are in the form of entities.

A query may be defined statically in metadata or created dynamically by passing query cri-
teria when constructing it. It is also possible to escape to SQL if a special query requirement
exists that cannot be met by the SQL generation from the persistence framework. These que-
ries can all return results that are entities and are valuable abstractions that enable querying
across the Java domain model instead of across database tables.

Mobile Entities

Client/server and web applications and other distributed architectures are clearly the most
popular types of applications in a connected world. To acknowledge this fact meant acknowl-
edging that persistent entities must be mobile in the network. Objects must be able to be
moved from one virtual machine to another and then back again, and must still be usable by
the application.

The detachment model provides a way of reconciling any newly relocated or deserialized
instance that may have changed state along the way, with the instance or state that was left
behind. Objects that leave the persistence layer are called detached, and a key feature of the
persistence model is the ability to reattach such detached entities upon their return.

CHAPTER 1 INTRODUCTION

Simple Configuration

There are a great number of persistence features that the specification has to offer and which
we will explain in the chapters of this book. All of the features are configurable through the use
of Java SE 5 annotations, or XML, or a combination of the two. Annotations offer ease of use
that is unparalleled in the history of Java metadata. They are convenient to write and painless
to read, and they make it possible for beginners to get an application going quickly and easily.
Configuration may also be done in XML for those who like XML or are more comfortable with
it. Of greater significance than the metadata language is the fact that the Java Persistence API
3.0 makes heavy use of defaults. This means that no matter which method is chosen, the
amount of metadata that will be required just to get running is the absolute minimum. In some
cases, if the defaults are good enough almost no metadata will be required at all.

Integration and Testability

Multitier applications hosted on an application server have become the de facto standard for
application architectures. Testing on an application server is a challenge that few relish. It can
bring pain and hardship, and it is often prohibitive to unit testing and white box testing.

This is solved by defining the API to work outside as well as inside the application server.
While it is not as common a use case, those applications that do run on two tiers (the applica-
tion talking directly to the database tier) can use the persistence API without the existence of an
application server at all. The more common scenario is for unit tests and automated testing
frameworks that can be run easily and conveniently in Java SE environments.

The Java Persistence API really has introduced a new era in standardized integrated persis-
tence. When running inside a container, all of the benefits of container support and superior
ease of use apply, but the same application may also be configured to run outside the container
as well.

Summary

In this chapter we presented an introduction to the Java Persistence API. We began with an
overview of current standards for persistence, looking at JDBC, EJB, and JDO. In each case, we
looked at the conditions forced on us by these frameworks and developed a view of what a bet-
ter solution could be.

In the Object-Relational Mapping section we introduced the primary problem facing
developers trying to use object-oriented domain models in concert with a relational database:
the impedance mismatch. To demonstrate the complexity bridging the gap, we presented
three small object models and nine different ways to represent the same information.

We concluded the chapter with a brief look at the Java Persistence API. We looked at the
history of the specification and the vendors who came together to create it. We then looked at
the role it plays in enterprise application development and introduced the feature set offered
by the specification.

In the next chapter we will get our feet wet with the Java Persistence AP]I, taking a whirl-
wind tour of the API basics and building a simple application in the process.

15

CHAPTER 2

Getting Started

Eom the outset, one of the main goals when creating the Java Persistence API was to ensure
that it is simple to use and easy to understand. Although the problem domain cannot be trivi-
alized or watered down, the technology that enables one to deal with it can be straightforward
and intuitive. In this chapter we will show how effortless it is to develop and use entities.

We will start this chapter off by describing the basic characteristics of entities. We’ll define
what an entity is and how to create, read, update, and delete them. We’ll also introduce entity
managers and how they are obtained and used. Then we’ll take a quick look at queries and how
to specify and execute a query using the EntityManager and Query objects. The chapter will
conclude by showing a simple working application that runs in a standard Java SE 5 environ-
ment and that demonstrates all of the example code in action.

Entity Overview

The entity is not a new thing. In fact, entities have been around longer than many program-
ming languages and certainly longer than Java. They were first introduced by Peter Chen in his
seminal paper on entity-relationship modeling.! He described entities as things that have
attributes and relationships. The expectation was that the attributes were going to be persisted
in a relational database, as were the relationships.

Even now, the definition still holds true. An entity is essentially a noun, or a grouping of state
associated together as a single unit. It may participate in relationships to any number of other
entities in a number of standard ways. In the object-oriented paradigm, we would add behavior
to it and call it an object. In the Java Persistence API, any application-defined object can be an
entity, so the important question might be, What are the characteristics of an object that has
been turned into an entity?

Persistability

The first and most basic characteristic of entities is that they are persistable. This generally just
means that they can be made persistent. More specifically it means that their state can be rep-
resented in a data store and can be accessed at a later time, perhaps well after the end of the
process that created it.

1. Peter C. Chen, “The entity-relationship model—toward a unified view of data,” ACM Transactions on
Database Systems 1, no. 1 (1976): 9-36.

17

18

CHAPTER 2 GETTING STARTED

We could call them persistent objects, and many people do, but it is not technically cor-
rect. Strictly speaking, a persistent object becomes persistent the moment it is instantiated. If
a persistent object exists, then by definition it is already persistent.

An entity is persistable because it can be created in a persistent store. The difference is that
itis not automatically persisted and that in order for it to have a persistent representation the
application must actively invoke an API method to initiate the process. This is an important
distinction because it leaves control over persistence firmly in the hands of the application. It
offers the application the flexibility to manipulate data and perform business logic on the
entity, and then only when the application decides that it is the right time to persist the entity,
actually causing it to be persistent. The lesson is that entities may be manipulated without nec-
essarily having persistent repercussions, and it is the application that decides whether or not
they do.

Identity

Like any other Java object, an entity has an object identity, but when it exists in the data store it
also has a persistent identity. Persistent identity, or an identifier, is the key that uniquely identifies
an entity instance and distinguishes it from all of the other instances of the same entity type. An
entity has a persistent identity when there exists a representation of it in the data store, that is, a
row in a database table. If it is not in the database then even though the in-memory entity may
have its identity set in a field, it does not have a persistent identity. The entity identifier, then, is
equivalent to the primary key in the database table that stores the entity state.

Transactionality

Entities are what we might call quasi-transactional. They are normally only created, updated,
and deleted within a transaction,? and a transaction is required for the changes to be commit-
ted in the database. Changes made to the database either succeed or fail atomically, so the
persistent view of an entity should indeed be transactional.

In memory it is a slightly different story in the sense that entities may be changed without
the changes ever being persisted. Even when enlisted in a transaction, they may be left in an
undefined or inconsistent state in the event of a rollback or transaction failure. The in-memory
entities are simple Java objects that obey all of the rules and constraints that are applied by the
Java virtual machine to other Java objects.

Granularity

Finally, we can also learn something about what entities are by describing what they are not.
They are not primitives, primitive wrappers, or built-in objects. These are no more than scalars
and do not have any designated semantic meaning to an application. A string, for example is
too fine-grained an object to be an entity because it does not have any domain-specific conno-
tation. Rather, a string is well-suited and very often used as a type for an entity attribute and
given meaning according to the entity attribute that it is typing.

2. In most cases this is a requirement, but in certain configurations the transaction may not be present
until later.

CHAPTER 2 GETTING STARTED

Entities are fine-grained objects that have a set of aggregated state that is normally stored
in a single place, such as a row in a table, and typically have relationships to other entities. In
the most general sense they are business domain objects that have specific meaning to the
application that accesses them.

While it is certainly true that entities may be defined in exaggerated ways to be as fine-
grained as storing a single string or coarse-grained enough to contain 500 columns’ worth of
data, the suggested granularity of an entity is definitely on the smaller end of the spectrum.
Ideally, entities should be designed and defined as fairly lightweight objects of equal or smaller
size than that of the average Java object.

Entity Metadata

Associated with every entity is metadata in some amount, possibly small, that describes it. This
metadata enables the persistence layer to recognize, interpret, and properly manage the entity
from the time it is loaded through to its runtime invocation.

The metadata that is actually required for each entity is minimal, rendering entities easy to
define and use. However, like any sophisticated technology with its share of switches, levers, and
buttons, there is also the possibility to specify much, much more metadata than is required. It
may be extensive amounts, depending upon the application requirements, and may be used to
customize every detail of the entity configuration or state mappings.

Entity metadata may be specified in one of two ways—annotations or XML. Each is equally
valid, but the one that you use will depend upon your development preferences or process.

Annotations

Annotation metadata is a language feature that allows structured and typed metadata to be
attached to the source code. It was introduced as part of Java SE 5 and is a key part of the EJB
3.0 and Java EE 5 specifications.3 Although annotations are not required by the Java Persis-
tence API, they are a convenient way to learn and use the API. Because annotations co-locate
the metadata with the program artifacts, it is not necessary to escape to an additional file and
additional language (XML) just to specify the metadata.

Annotations are used throughout both the examples and the accompanying explanations
in this book. All of the API annotations that are shown and described, except for Chapter 3,
which talks about Java EE annotations, are defined in the javax.persistence package.
Example code snippets can be assumed to have an implicit import of the form import
javax.persistence.*;.

XML

For those who prefer to use the traditional XML descriptors, this option is still available. It
should be a fairly straightforward process to switch to using XML descriptors after having
learned and understood the annotations since the XML has in large part been patterned after
the annotations. Chapter 10 describes how to use XML to specify or override entity mapping
metadata.

3. TheJava EE 5 platform specification and all of its sub-specifications require the use of Java SE 5.

19

20

CHAPTER 2 GETTING STARTED

ANNOTATIONS

Java annotations are specially defined types that may annotate (be attached to or placed in front of) Java pro-
gramming elements including classes, methods, fields, and variables. When they annotate a program element,
the compiler reads the information contained in them and may retain it in the class files or dispose of it accord-
ing to what was specified in the annotation type definition. When retained in the class files the elements
contained in the annotation may be queried at runtime through a reflection-based API. A running program can
in this way obtain the metadata that exists on a Java program element. An example of a custom annotation
type definition that could be used to indicate classes that should be validated (whatever validate means to the
application or tool that is processing it) is:

@Target(TYPE) @Retention(RUNTIME)
public @interface Validate {
boolean flag;

}

This annotation definition is in fact itself annotated by @Target and @Retention built-in annotations that
determine what kinds of program elements the annotation may annotate and at what point the annotation
metadata should be discarded from the class. The annotation defined above may annotate any type and will
not be discarded from the class (that is, it will be retained in the class file even at runtime). This annotation
may, for example, annotate any given class definition. An example usage of this annotation could be:

@validate(flag=true)
public class MyClass {

}...

An application that looks at all classes in the system for this annotation will be able to determine that
MyClass should be validated and perform that validation whenever it makes sense. The semantic meaning
of @/alidate is completely up to the component that defines the annotation type and the one that reads and
processes the annotation.

Configuration by Exception

The notion of configuration by exception means that the persistence engine defines defaults
that apply to the majority of applications and that users need to supply values only when they
want to override the default value. In other words, having to supply a configuration value is the
exception to the rule, not a requirement.

Configuration by exception is ingrained in the Java Persistence API and is a strong contrib-
uting factor to its usability. The majority of configuration values have defaults, rendering the
metadata that does have to be specified more relevant and concise.

The extensive use of defaults and the ease of use that it brings to configuration comes with
a price, however. When defaults are embedded into the API and do not have to be specified,
then they are not visible or obvious to users. This can make it possible for users to be unaware
of the complexity of developing persistence applications, making it slightly more difficult to
debug or to change the behavior when it becomes necessary.

CHAPTER 2 GETTING STARTED

Defaults are not meant to shield users from the often complex issues surrounding persis-
tence. They are meant to allow a developer to get started easily and quickly with something
that will work and then iteratively improve and implement additional functionality as the com-
plexity of their application increases. Even though the defaults may be what you want to have
happen most of the time, it is still fairly important for developers to be familiar with the default
values that are being applied. For example, if a table name default is being assumed, then it is
important to know what table the runtime is expecting, or if schema generation is used, what
table will be generated.

For each of the annotations we will also discuss the default value so that it is clear what will
be applied if the annotation is not specified. We recommend that you remember these defaults
as you learn them. After all, a default value is still part of the configuration of the application; it
was just really easy to configure!

Creating an Entity

Regular Java classes are easily transformed into entities simply by annotating them. In fact, by add-
ing a couple of annotations, virtually any class with a no-arg constructor can become an entity.

Let’s start by creating a regular Java class for an employee. Listing 2-1 shows a simple
Employee class.

Listing 2-1. Employee Class

public class Employee {
private int id;
private String name;
private long salary;

public Employee() {}
public Employee(int id) { this.id = id; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }

public void setSalary (long salary) { this.salary = salary; }

You may notice that this class resembles a JavaBean-style class with three properties: id,
name, and salary. Each of these properties is represented by a pair of accessor methods to get
and set the property and is backed by a member field. Properties or member fields are the units
of state within the entity that we want to persist.

To turn Employee into an entity we first need to annotate the class with @ntity. This is pri-
marily just a marker annotation to indicate to the persistence engine that the class is an entity.

The second annotation that we need to add is @1d. This annotates the particular field or
property that holds the persistent identity of the entity (the primary key) and is needed so the
provider knows which field or property to use as the unique identifying key in the table.

21

22

CHAPTER 2 GETTING STARTED

Adding these two annotations to our Employee class, we end up with pretty much the same
class that we had before, except that now it is an entity. Listing 2-2 shows the entity class.

Listing 2-2. Employee Entity

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

public Employee() {}
public Employee(int id) { this.id = id; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }

public void setSalary (long salary) { this.salary = salary; }

When we say that the @Id annotation is placed on the field or property, we mean that the
user can choose to annotate either the declared field, or the getter method? of a JavaBean-style
property. Either field or property strategy is allowed, depending upon the needs and tastes of
the entity developer, but whichever strategy is chosen, it must be followed for all persistent
state annotations in the entity. We have chosen in this example to annotate the field because it
is simpler; in general, this will be the easiest and most direct approach. We will learn more
about the details of annotating persistent state using field or property access in subsequent
chapters.

Automatic State Mapping

The fields in the entity are automatically made persistable by virtue of their existence in the
entity. Default mapping and loading configuration values apply to these fields and enable
them to be persisted when the object is persisted. Given the questions that were brought up in
the last chapter, one might be led to ask, “How did the fields get mapped, and where do they
get persisted to?”

To find the answer we must first take a quick detour to dig inside the @Entity annotation
and look at an element called name that uniquely identifies the entity. The entity name may be
explicitly specified for any entity by using this name element in the annotation, as in
@Entity(name="Emp"). In practice this is seldom specified because it gets defaulted to be
the unqualified name of the entity class. This is almost always both reasonable and adequate.

Now we can get back to the question about where the data gets stored. It turns out that the
default name of the table used to store any given entity of a particular entity type is the name

4. Annotations on setter methods will just be ignored.

CHAPTER 2 GETTING STARTED

of the entity. If we have specified the name of the entity, then that will be the default table
name, but if we have not, then the default value of the entity name will be used. We just stated
that the default entity name was the unqualified name of the entity class, so that is effectively
the answer to the question of which table gets used. In our Employee example all entities of type
Employee will get stored in a table called EMPLOYEE.

Each of the fields or properties has individual state in it and needs to be directed to a par-
ticular column in the table. We know to go to the EMPLOYEE table, but we don’t know which
column to use for any given field or property. When no columns are explicitly specified, then
the default column is used for a field or property, which is just the name of the field or property
itself. So our employee id will get stored in the ID column, the name in the NAME column, and
the salary in the SALARY column of the EMPLOYEE table.

Of course these values can all be overridden to match an existing schema. We will discuss
how to override them when we get to Chapter 4 and discuss mapping in more detail.

Entity Manager

In the Entity Overview section, it was stated that a specific API call needs to be invoked before
an entity actually gets persisted to the database. In fact, separate API calls are needed to per-
form many of the operations on entities. This API is implemented by the entity manager and
encapsulated almost entirely within a single interface called EntityManager. When all is said
and done, it is to an entity manager that the real work of persistence is delegated. Until an
entity manager is used to actually create, read, or write an entity, the entity is nothing more
than a regular (non-persistent) Java object.

When an entity manager obtains a reference to an entity, either by having it explicitly
passed in or because it was read from the database, that object is said to be managed by the
entity manager. The set of managed entity instances within an entity manager at any given
time is called its persistence context. Only one Java instance with the same persistent identity
may exist in a persistence context at any time. For example, if an Employee with a persistent
identity (or id) of 158 exists in the persistence context, then no other object with its id set to 158
may exist within that same persistence context.

Entity managers are configured to be able to persist or manage specific types of objects,
read and write to a given database, and be implemented by a particular persistence provider (or
provider for short). It is the provider that supplies the backing implementation engine for the
entire Java Persistence API, from the EntityManager through to Query implementation and
SQL generation.

All entity managers come from factories of type EntityManagerFactory. The configuration
for an entity manager is bound to the EntityManagerFactory that created it, but it is defined sep-
arately as a persistence unit. A persistence unit dictates either implicitly or explicitly the settings
and entity classes used by all entity managers obtained from the unique EntityManagerFactory
instance bound to that persistence unit. There is, therefore, a one-to-one correspondence
between a persistence unit and its concrete EntityManagerFactory.

Persistence units are named to allow differentiation of one EntityManagerFactory from
another. This gives the application control over which configuration or persistence unit is to be
used for operating on a particular entity.

23

24 CHAPTER 2 GETTING STARTED

Persistence

1

Creates ¥
<« Configured By
Persistence Unit . ; EntityManagerFactory

1

Creates ¥
< Manages
PersistenceGontext y " EntityManager

Figure 2-1. Relationships between Java Persistence API concepts

Figure 2-1 shows that for each persistence unit there is an EntityManagerFactory and that
many entity managers can be created from a single EntityManagerFactory. The part that may
come as a surprise is that many entity managers can point to the same persistence context. We
have talked only about an entity manager and its persistence context, but later on we will see
that this is indeed the case and that there may be multiple references to different entity man-
agers which all point to the same group of managed entities.

Obtaining an Entity Manager

An entity manager is always obtained from an EntityManagerFactory. The factory from which
itwas obtained determines the configuration parameters that govern its operation. While there
are shortcuts that veil the factory from the user view when running in a Java EE application
server environment, in the Java SE environment we can use a simple bootstrap class called
Persistence. The static createEntityManagerFactory() method in the Persistence class
returns the EntityManagerFactory for the specified persistence unit name. The following
example demonstrates creating an EntityManagerFactory for the persistence unit named
“EmployeeService”:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("EmployeeService");

The name of the specified persistence unit “EmployeeService” passed into the
createEntityManagerFactory() method identifies the given persistence unit
configuration that determines such things as the connection parameters that entity
managers generated from this factory will use when connecting to the database.

CHAPTER 2 GETTING STARTED

Now that we have a factory, we can easily obtain an entity manager from it. The following
example demonstrates creating an entity manager from the factory that we acquired in the
previous example:

EntityManager em = emf.createEntityManager();

With this entity manager, we are now in a position to start working with persistent entities.

Persisting an Entity

Persisting an entity is the operation of taking a transient entity, or one that does not yet have
any persistent representation in the database, and storing its state so that it can be retrieved
later. This is really the basis of persistence—creating state that may outlive the process that
created it. We are going to start by using the entity manager to persist an instance of Employee.
Here is a code example that does just that:

Employee emp = new Employee(158);
em.persist(emp);

The first line in this code segment is simply creating an Employee instance that we want to per-
sist. If we ignore the sad fact that we seem to be employing a nameless individual and paying
them nothing (we are setting only the id, not the name or salary) the instantiated Employee is
just a regular Java object.

The nextline obtains an entity manager and uses it to persist the entity. Calling persist()
is all thatis required to initiate it being persisted in the database. If the entity manager encoun-
ters a problem doing this, then it will throw an unchecked PersistenceException; otherwise
the employee will be stored in the database. When the persist() call returns, emp will be a
managed entity within the entity manager’s persistence context.

Listing 2-3 shows how to incorporate this into a simple method that creates a new
employee and persists it to the database.

Listing 2-3. Method for Creating an Employee

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);
emp.setName(name);
emp.setSalary(salary);
em.persist(emp);
return emp;

This method assumes the existence of an entity manager in the em field of the instance and
uses it to persist the Employee. Note that we do not need to worry about the failure case in this
example. It will result in a runtime PersistenceException being thrown, which will get prop-
agated up to the caller.

25

CHAPTER 2 GETTING STARTED

Finding an Entity

Once an entity is in the database, then the next thing one typically wants to do is find it again.
In this section we will show how an entity can be found using the entity manager. There is
really only one line that we need to show:

Employee emp = em.find(Employee.class, 158);

We are passing in the class of the entity that is being sought (in this example we are looking for
an instance of Employee) and the id or primary key that identifies the particular entity (in our
case we want to find the entity that we just created). This is all the information needed by the
entity manager to find the instance in the database, and when the call completes, the employee
that gets returned will be a managed entity, meaning that it will exist in the current persistence
context associated with the entity manager.

PARAMETERIZED TYPES

Another of the principal features included in Java SE 5 was the introduction of generics. The abstraction of
Java types allowed them to be parameterized and used generically by a class or method. Such classes or
methods that make use of type parameterization are called generic types or generic methods. An example of
a generic class is one that defines a parameterized type variable in its definition. It could then use that type in
the signature of its methods just as does the following generic class:

public class Holder<T> {
T contents;
public void setContents(T obj) { contents = obj; }
public T getContents() { return contents; }

}

This Holder class is parameterized by the T type variable making it possible to create an instance that can
hold a given type. Why is this better than simply using Object everywhere where T is used? The reason is

because once the type is supplied and the Holder is instantiated to be of a given type, then only instances of
that type will be allowed to be stored. This makes any given Holder instance strongly typed for the type of

our choice. For example, we can do the following:

Holder<String> stringHolder = new Holder<String>();
stringHolder.setContents(“MyOwnString”);
Holder<Integer> intHolder = new Holder<Integer>();
intHolder.setContents(100);

String s = stringHolder.getContents();
stringHolder.setContents(101); // compile error

We have a Holder that stores String objects or anything we want, but once we define it then we get the strong
compile-time type checking that frees us from having to type-check at runtime. ClassCastExceptions can
be a thing of the past (well, almost!). As an added bonus, we don’t have to cast. The getContents() generic
method returns precisely the type that was passed to Holder as the type parameter, so the compiler can type-
check and safely assign as needed.

CHAPTER 2 GETTING STARTED

You may have noticed that there is no cast required to make the return result an Employee
object, even though the find() method call can be used for any type of entity. Those who have
used Java SE 5 will recognize that this is just because the return type of the find() method is
parameterized to return the same class that was passed in, so if Employee was passed as the
entity class, then it will also be the return type.

What happens if the object has been deleted or if we supplied the wrong id by accident? In
the event that the object was not found, then the find() call simply returns null. We would
need to ensure that a null check is performed before the next time the emp variable is used.

The code for a method that looks up and returns the Employee with a given id is now trivial
and shown in Listing 2-4.

Listing 2-4. Method for Finding an Employee

public Employee findEmployee(int id) {
return em.find(Employee.class, id);

}

In the case where no employee exists for the id that is passed in, then the method will
return null, since that is what find() will return.

Removing an Entity

Removal of an entity from the database is not as common a thing as some might think. Many
applications simply never delete objects, or if they do they just flag the data as being out of date
or no longer valid and then just keep it out of sight of clients. We are not talking about that kind
of application-level logical removal, where the data is not actually even removed from the
database. We are talking about something that results in a DELETE statement being made across
one or more tables.

In order to remove an entity, the entity itself must be managed, meaning that it is present
in the persistence context. This means that the calling application should have already loaded
or accessed the entity and is now issuing a command to remove it. This is not normally a prob-
lem given that most often the application will have caused it to become managed as part of the
process of determining that this was the object that it wanted to remove.

A simple example for removing an employee is:

Employee emp = em.find(Employee.class, 158);
em.remove(emp);

In this example we are first finding the entity using the find() call, which returns a managed
instance of Employee, and then removing the entity using the remove () call on the entity man-
ager. Of course, we learned in the previous section that if the entity was not found then the
find() method will return null. We would get a java.lang.IllegalArgumentException if it
turned out that we passed null into the remove() call because we forgot to include a null check
before calling remove().

In our application method for removing an employee, we can fix the problem by checking
for the existence of the employee before we issue the remove () call, as shown in Listing 2-5.

27

28

CHAPTER 2 GETTING STARTED

Listing 2-5. Method for Removing an Employee

public void removeEmployee(int id) {
Employee emp = em.find(Employee.class, id);
if (emp != null) {
em.remove(emp);

}

This method will ensure that the employee with the given id is removed from the database.
It will return successfully whether the employee exists or not.

Updating an Entity

An entity may be updated in a few different ways, but for now we will illustrate the most com-
mon and simple case. This is the case where we have a managed entity and want to make
changes to it. If we do not have a reference to the managed entity, then we must first obtain one
using find() and then perform our modifying operations on the managed entity. This code
adds $1,000 to the salary of the employee with id 158:

Employee emp = em.find(Employee.class, 158);
emp.setSalary(emp.getSalary() + 1000);

Note the difference between this operation and the others. In this case we are not calling into
the entity manager to modify the object but directly on the object itself. For this reason it is
important that the entity be a managed instance, otherwise the persistence provider will have
no means of detecting the change, and no changes will be made to the persistent representa-
tion of the employee.

Our method to raise the salary of a given employee will take the id and amount of the raise,
find the employee, and change the salary to the adjusted one. Listing 2-6 demonstrates this
approach.

Listing 2-6. Method for Updating an Employee

public Employee raiseEmployeeSalary(int id, long raise) {
Employee emp = em.find(Employee.class, id);
if (emp != null) {
emp.setSalary(emp.getSalary() + raise);
}

return emp;

If we can’t find the employee, then we return null so the caller will know that no change
could be made. We indicate success by returning the updated employee.

Transactions

The keen reader may have noticed something in the code to this point that was inconsistent
with earlier statements made about transactionality when working with entities. There were no

CHAPTER 2 GETTING STARTED

transactions in any of the above examples, even though we said that changes to entities must
be made persistent using a transaction.

In all the examples except the one that only called find(), we assume that a transaction
enclosed each method. The find() call is not a mutating operation, so it may be called any
time, with or without a transaction.

Once again, the key is the environment in which the code is being executed. The typical
situation when running inside the Java EE container environment is that the standard Java
Transaction API (JTA) is used. The transaction model when running in the container is to
assume the application will ensure that a transactional context is present when one is required.
If a transaction is not present, then either the modifying operation will throw an exception or
the change will simply never be persisted to the data store. We will come back to discussing
transactions in the Java EE environment in more detail in Chapter 3.

In our example in this chapter, though, we are not running in Java EE. We are in a Java SE envi-
ronment, and the transaction service that should be used in Java SE is the EntityTransaction
service. When executing in Java SE we either need to begin and to commit the transaction in
the operational methods, or we need to begin and to commit the transaction before and after call-
ing an operational method. In either case, a transaction is started by calling getTransaction() on
the entity manager to get the EntityTransaction and then invoking begin() on it. Likewise, to
commit the transaction the commit () call is invoked on the EntityTransaction obtained from the
entity manager. For example, starting and committing before and after the method would produce
code that creates an employee the way it is done in Listing 2-7.

Listing 2-7. Beginning and Committing an EntityTransaction

em.getTransaction().begin();
createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

Further detail about resource-level transactions and the EntityTransaction API are con-
tained in Chapter 5.

Queries

In general, given that most developers have used a relational database at some point or other
in their lives, most of us pretty much know what a database query is. In the Java Persistence
API, a query is similar to a database query, except that instead of using Structured Query
Language (SQL) to specify the query criteria, we are querying over entities and using alanguage
called Java Persistence Query Language (which we will abbreviate as JPQL).

A query is implemented in code as a Query object. Query objects are constructed using the
EntityManager as a factory. The EntityManager interface includes a variety of API calls that
return a new Query object. As a first class object, this query can in turn be customized accord-
ing to the needs of the application.

A query can be defined either statically or dynamically. A static query is defined in either
annotation or XML metadata, and it must include both the query criteria as well as a user-
assigned name. This kind of query is also called a named query, and it is later looked up by its
name at the time it is executed.

A dynamic query can be issued at runtime by supplying only the JPQL query criteria. These
may be a little more expensive to execute because the persistence provider cannot do any

29

30

CHAPTER 2 GETTING STARTED

query preparation beforehand, but they are nevertheless very simple to use and can be issued
in response to program logic or even user logic.

Following is an example showing how to create a query and then execute it to obtain all of
the employees in the database. Of course this may not be a very good query to execute if the
database is large and contains hundreds of thousands of employees, but it is nevertheless a
legitimate example. The simple query is as follows:

Query query = em.createQuery("SELECT e FROM Employee e");
Collection emps = query.getResultlList();

We create a Query object by issuing the createQuery() call on the EntityManager and
passing in the JPQL string that specifies the query criteria. The JPQL string refers not to an
EMPLOYEE database table but the Employee entity, so this query is selecting all Employee objects
without filtering them any further. We will be diving into queries in Chapter 6 and JPQL in
Chapters 6 and 7. You will see that you can be far more discretionary about which objects you
want to be returned.

To execute the query we simply invoke getResultList() on it. This returns a List (a sub-
interface of Collection) containing the Employee objects that matched the query criteria. Note
that a List<Employee> is not returned. Unfortunately this is not possible, since no class is
passed into the call, so no parameterization of the type is able to occur. The return type is
inferred by the persistence provider as it processes the JPQL string. We could cast the result to
a Collection<Employee>, however, to make a neater return type for the caller. Doing so, we
can easily create a method that returns all of the employees, as shown in Listing 2-8.

Listing 2-8. Method for Issuing a Query

public Collection<Employee> findAllEmployees() {
Query query = em.createQuery("SELECT e FROM Employee e");
return (Collection<Employee>) query.getResultlist();

This example shows how simple queries are to create, execute, and process, but what this
example does not show is how powerful they are. In Chapter 6 we will examine many other
extremely useful and interesting ways of defining and using queries in an application.

Putting It All Together

We can now take all of the methods that we have created and combine them into a class. The
class will act like a service class, which we will call EmployeeService, and will allow us to per-
form operations on employees. The code should be pretty familiar by now. Listing 2-9 shows
the complete implementation.

Listing 2-9. Service Class for Operating on Employee Entities

import javax.persistence.*;
import java.util.Collection;

CHAPTER 2 GETTING STARTED

public class EmployeeService {
protected EntityManager em;

public EmployeeService(EntityManager em) {
this.em = em;

}

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);
emp.setName(name);
emp.setSalary(salary);
em.persist(emp);
return emp;

}

public void removeEmployee(int id) {
Employee emp = findEmployee(id);
if (emp != null) {
em.remove(emp);
}
}

public Employee raiseEmployeeSalary(int id, long raise) {
Employee emp = em.find(Employee.class, id);
if (emp != null) {
emp.setSalary(emp.getSalary() + raise);
}

return emp;

}

public Employee findEmployee(int id) {
return em.find(Employee.class, id);

}

public Collection<Employee> findAllEmployees() {
Query query = em.createQuery("SELECT e FROM Employee e");
return (Collection<Employee>) query.getResultlist();

This is a simple yet fully functional class that can be used to issue the typical CRUD (create,
read, update, and delete) operations on Employee entities. This class requires that an entity
manager is created and passed into it by the caller and also that any required transactions are
begun and committed by the caller. This may seem strange at first, but decoupling the transac-
tion logic from the operation logic makes this class more portable to the Java EE environment.
We will revisit this example in the next chapter, where we focus on Java EE applications.

A simple main program that uses this service and performs all of the required entity man-
ager creation and transaction management is shown in Listing 2-10.

31

32

CHAPTER 2 GETTING STARTED

Listing 2-10. Using EmployeeService

import javax.persistence.*;
import java.util.Collection;

public class EmployeeTest {

public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory(“EmployeeService”);
EntityManager em = emf.createEntityManager();
EmployeeService service = new EmployeeService(em);

// create and persist an employee
em.getTransaction().begin();

Employee emp = service.createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

System.out.println("Persisted " + emp);

// find a specific employee
emp = service.findEmployee(158);
System.out.printIn("Found " + emp);

// find all employees

Collection<Employee> emps = service.findAllEmployees();

for (Employee e : emps)
System.out.println("Found employee:

+e);

// update the employee
em.getTransaction().begin();

emp = service.raiseEmployeeSalary(158, 1000);
em.getTransaction().commit();
System.out.println("Updated " + emp);

// remove an employee
em.getTransaction().begin();
service.removeEmployee(158);
em.getTransaction().commit();
System.out.println("Removed Employee 158");

// close the EM and EMF when done
em.close();
emf.close();

CHAPTER 2 GETTING STARTED 33

Packaging It Up

Now that we know the basic building blocks of the Java Persistence API, we are ready to orga-
nize the pieces into an application that runs in Java SE. The only thing left to discuss is how to
put it together so that it runs.

Persistence Unit

The configuration that describes the persistence unit is defined in an XML file called
persistence.xml. Each persistence unit is named, so when a referencing application wants
to specify the configuration for an entity it need only reference the name of the persistence unit
that defines that configuration. A single persistence.xml file may contain one or more named
persistence unit configurations, but each persistence unit is separate and distinct from the
others, and they can be logically thought of as being in separate persistence.xml files.

Many of the persistence unit elements in the persistence.xml file apply to persistence
units that are deployed within the Java EE container. The only ones that we need to specify for
our example are name, transaction-type, class, and properties. There are a number of other
elements that can be specified in the persistence unit configuration in the persistence.xml
file, but these will be discussed in more detail in Chapter 11. Listing 2-11 shows the relevant
part of the persistence.xml file for this example.

Listing 2-11. Elements in the persistence.xml File

<persistence>
<persistence-unit name="EmployeeService" transaction-type="RESOURCE_LOCAL">
<class>examples.model.Employee</class>
<properties>
<property name="toplink.jdbc.driver"
value="org.apache.derby.jdbc.ClientDriver"/>
<property name="toplink.jdbc.url"
value="jdbc:derby://localhost:1527/EmpServDB;create=true"/>
<property name="toplink.jdbc.user" value="APP"/>
<property name="toplink.jdbc.password" value="APP"/>
</properties>
</persistence-unit>
</persistence>

The name element indicates the name of our persistence unit and is the string that we
specify when we create the EntityManagerFactory. We have used “EmployeeService” as the
name. The transaction-type element indicates that our persistence unit uses resource level
EntityTransaction instead of JTA transactions. The class element lists the entity that is part
of the persistence unit. Multiple class elements may be specified when there is more than
one entity. These would not normally be needed when deploying in a Java EE container, but
they are needed for portable execution when running in Java SE. We only have a single
Employee entity.

The last part that we use is a list of properties that are vendor-specific. The login parameters
to a database must be specified when running in a Java SE environment, so these properties exist

34

CHAPTER 2 GETTING STARTED

to tell the provider what to connect to. Other provider properties, such as logging options, are
also useful.

Persistence Archive

The persistence artifacts are packaged in what we will loosely call a persistence archive. This is
really just aJAR-formatted file that contains the persistence.xml file in the META- INF directory
and normally the entity class files.

Since we are running as a simple Java SE application, all we have to do is put the applica-
tion JAR, the persistence provider JARs, and the Java Persistence API JAR on the classpath when
the program is executed.

Summary

In this chapter we discussed just enough of the basics of the Java Persistence API to develop
and run a simple application in a Java SE runtime.

We started out discussing the entity, how to define one, and how to turn an existing Java
class into one. We discussed entity managers and how they are obtained and constructed in
the Java SE environment.

The next step was to instantiate an entity instance and use the entity manager to persist it
in the database. After we inserted some new entities, we were able to retrieve them again and
then remove them. We also made some updates and ensured that the changes were written
back to the database.

We talked about the resource-local transaction API and how to use it. We then went over
some of the different types of queries and how to define and execute them. Finally, we aggre-
gated all of these techniques and combined them into a simple application that we can execute
in isolation from an enterprise environment.

In the next chapter, we will look at the impact of the Java EE environment when develop-
ing enterprise applications using the Java Persistence API.

CHAPTER 3

Enterprise Applications

N o technology exists in a vacuum, and the Java Persistence API is no different than any other
in this regard. Although the fat-client style of application demonstrated in the previous chapter
is a viable use of the Java Persistence API, the vast majority of enterprise Java applications are
deployed to a Java EE application server. Therefore it is essential to understand the compo-
nents that make up aJava EE application and the role of the Java Persistence API in this
environment.

We will begin with an overview of the major Java EE technologies relevant to persistence. As
part of this overview, we will also detour into the EJB component model, demonstrating the new
syntax for stateless, stateful, and message-driven beans. Even if you have experience with previ-
ous versions of these components, you may find this section helpful to get up to speed with the
changes in EJB 3.0 and Java EE 5. As part of the ease-of-development initiative for Java EE 5, E]Bs
have undergone a major revision and have become considerably easier to implement in the
process.

Although this chapter is not a complete or detailed exploration of Java EE, it will hopefully
serve as a sufficient overview to the new simplified programming interfaces. We will introduce
features only briefly and spend the bulk of the chapter focusing on the elements relevant to
developing applications that use persistence.

Next we will look at the other application server technologies that are going to have a
major impact on applications using the Java Persistence API: transactions and dependency
management. Transactions, of course, are a fundamental element of any enterprise applica-
tion that needs to ensure data integrity. The new dependency-management facilities of
Java EE 5 are also key to understanding how the entity manager is acquired by enterprise
components and how these components can be linked together.

Finally, we will demonstrate how to use the Java EE components described in this chapter,
with a focus on how persistence integrates into each component technology. We will also
revisit the Java SE application from the previous chapter and retarget it to the Java EE 5
platform.

Application Component Models

The word component has taken on many meanings in software development, so let’s begin
with a definition. A component is a self-contained, reusable software unit that can be inte-
grated into an application. Clients interact with components via a well-defined contract. In
Java, the simplest form of software component is the JavaBean, commonly referred to as just a
bean. Beans are components implemented in terms of a single class whose contract is defined

35

36

CHAPTER 3 ENTERPRISE APPLICATIONS

by the naming patterns of the methods on the bean. The JavaBean naming patterns are so
common now that it is easy to forget that they were originally intended to give user-interface
builders a standard way of dealing with third-party components.

In the enterprise space, components focus more on implementing business services,
with the contract of the component defined in terms of the business operations that may be
carried out by that component. The standard component model for Java EE is the Enterprise
JavaBeans model, which defines ways to package, deploy, and interact with self-contained
business services. The EJB’s type determines the contract required to interact with it. Session
beans use standard Java interfaces to define the set of business methods that may be invoked,
while message-driven bean behavior is determined by the type and format of the messages the
bean is designed to receive.

Choosing whether or not to use a component model in your application is largely a per-
sonal preference. With some exceptions, most of the container services available to session
beans are also available to servlets. As a result, many web applications today sidestep EJBs
entirely, going directly from servlets to the database. Using components requires organizing
the application into layers, with business services living in the component model and presen-
tation services layered on top of it.

Historically, one of the challenges in adopting components in Java EE was the complexity
of implementing them. With that problem largely solved, we are left with the benefits that a
well-defined set of business services brings to an application:

¢ Loose coupling. Using components to implement services encourages loose coupling
between layers of an application. The implementation of a component may change
without any impact to the clients or other components that depend on it.

* Dependency management. Dependencies for a component may be declared in meta-
data and automatically resolved by the container.

* Life cycle management. The life cycle of components is well defined and managed by
the application server. Component implementations can participate in life cycle opera-
tions to acquire and release resources or perform other initialization and shutdown
behavior.

e Declarative container services. Business methods for components are intercepted by
the application server in order to apply services such as concurrency, transaction man-
agement, security, and remoting.

¢ Portability. Components that comply to Java EE standards and that are deployed to
standards-based servers can be more easily ported from one compliant server to
another.

 Scalability and reliability. Application servers are designed to ensure that components
are managed efficiently with an eye to scalability. Depending on the component type
and server configuration, business operations implemented using components can
retry failed method calls or even fail over to another server in a cluster.

CHAPTER 3 ENTERPRISE APPLICATIONS

One of the themes you will encounter as you read this book is the tendency for example
code to be written often in terms of session beans. This is intentional. Not only are session
beans easy to write and a good way to organize application logic, but they are also a natural fit
for interacting with the Java Persistence API. In fact, as web application frameworks continue
to push application code further away from the servlet, the ability for session beans to seam-
lessly integrate and acquire the services of other components makes them more valuable today
than ever before.

Session Beans

Session beans are a component technology designed to encapsulate business services. The
operations supported by the service are defined using a regular Java interface, referred to as the
business interface of the session bean, that clients use to interact with the bean. The bean
implementation is little more than a regular Java class which implements the business inter-
face. And yet, by virtue of being part of the Enterprise JavaBeans component model, the bean
has access to a wide array of container services that it can leverage to implement the business
service. The significance of the name session bean has to do with the way in which clients
access and interact with them. Once a client acquires a reference to a session bean from the
server, it starts a session with that bean and may invoke business operations on it.

There are two types of session bean, stateless and stateful. Interaction with a stateless
session bean begins at the start of a business method call and ends when the method call
completes. There is no state that carries over from one business operation to the other. An
interaction with stateful session beans becomes more of a conversation that begins from the
moment the client acquires a reference to the session bean and ends when the client explicitly
releases it back to the server. Business operations on a stateful session bean may maintain state
on the bean instance across calls. We will provide more detail on the implementation consid-
erations of this difference in interaction style as we describe each type of session bean.

Clients never interact directly with a session bean instance. The client references and
invokes an implementation of the business interface provided by the server. This implementa-
tion class acts as a proxy to the underlying bean implementation. This decoupling of client
from bean allows the server to intercept method calls in order to provide the services required
by the bean, such as transaction management. It also allows the server to optimize and reuse
instances of the session bean class as necessary.

Stateless Session Beans

As we mentioned, a stateless session bean sets out to accomplish the goals of an operation
entirely within the lifetime of a single method. Stateless beans may implement many business
operations, but each method cannot assume that any other was invoked before it.

This might sound like a limitation of the stateless bean, but it is by far the most common
form of business service implementation. Unlike stateful session beans, which are good for accu-
mulating state during a conversation (such as the shopping cart of a retail application), stateless
session beans are designed to carry out independent operations very efficiently. Stateless session
beans may scale to large numbers of clients with minimal impact to overall server resources.

37

38

CHAPTER 3 ENTERPRISE APPLICATIONS

Defining a Stateless Session Bean

A session bean is defined in two parts:
* Oneormore business interfaces that define what methods a client may invoke on the bean

* Aclass thatimplements these interfaces, called the bean class, which is marked with the
@Stateless annotation

Most session beans have only a single business interface, but there is no restriction on the
number of interfaces that a session bean may expose to its clients. When the server encounters
the @Stateless annotation, it knows to treat the bean class as a session bean. It will configure the
bean in the EJB container and make it available for use by other components in the applica-
tion. The @Stateless annotation and other annotations described in this chapter are defined
in the javax.ejb and javax.annotation packages.

Let’s look at a complete implementation of a stateless session bean. Listing 3-1 shows the
business interface that will be supported by this session bean. In this example, the service con-
sists of a single method, sayHello(), which accepts a String argument corresponding to a
person’s name and returns a String response. There is no annotation or parent interface to
indicate that this is a business interface. When implemented by the session bean, it will be
automatically treated as a local business interface, meaning that it is accessible only to clients
within the same application server. A second type of business interface for remote clients is
discussed later in the section Remote Business Interfaces. To emphasize that an interface is a
local business interface, the @Local annotation may be optionally added to the interface.

Listing 3-1. The Business Interface for a Session Bean

public interface HelloService {
public String sayHello(String name);

Now let’s consider the implementation, which is shown in Listing 3-2. This is a regular Java
class that implements the HelloService business interface. The only thing unique about this
class is the @Stateless annotation that marks it as a stateless session bean. The business
method is implemented without any special constraints or requirements. This is a regular class
that just happens to be an EJB.

Listing 3-2. The Bean Class Implementing the HelloService Interface

@Stateless
public class HelloServiceBean implements HelloService {
public String sayHello(String name) {
return "Hello, " + name;

CHAPTER 3 ENTERPRISE APPLICATIONS

There are only a couple of caveats about the stateless session bean class definition. The
first is that it needs a no-arg constructor, but the compiler normally generates this automati-
cally when no other constructors are supplied. The second is that static fields should not be
used, primarily because of bean redeployment issues.

Many EJB containers create a pool of stateless session bean instances and then select an
arbitrary instance to service each client request. Therefore there is no guarantee that the same
state will be used between calls, and hence it cannot be relied on. Any state placed on the bean
class should be restricted to factory classes that are inherently stateless, such as DataSource.

Lifecycle Callbacks

Unlike a regular Java class used in application code, the server manages the life cycle of a state-
less session bean. This impacts the implementation of a bean in two ways.

First, the server decides when to create and remove bean instances. The application has
no control over when or even how many instances of a particular stateless session bean are
created or how long they will stay around.

Second, the server has to initialize services for the bean after it is constructed but before the
business logic of the bean is invoked. Likewise, the bean may have to acquire a resource such as
aJDBC data source before business methods can be used. However, in order for the bean to
acquire aresource, the server must first have completed initializing its services for the bean. This
limits the usefulness of the constructor for the class since the bean won’t have access to any
resources until server initialization has completed.

To allow both the server and the bean to achieve their initialization requirements, EJBs
support lifecycle callback methods that are invoked by the server at various points in the
bean’s life cycle. For stateless session beans there are two lifecycle callbacks, PostConstruct
and PreDestroy. The server will invoke the PostConstruct callback as soon as it has completed
initializing all of the container services for the bean. In effect, this replaces the constructor as
the location for initialization logic since it is only here that container services are guaranteed to
be available. The server invokes the PreDestroy callback immediately before the server releases
the bean instance to be garbage-collected. Any resources acquired during PostConstruct that
require explicit shutdown should be released during PreDestroy.

Listing 3-3 shows a stateless session bean that acquires a reference to a
java.util.logging.Logger instance during the PostConstruct callback. A bean may
have at most one PostConstruct callback method! that is identified by the @PostConstruct
marker annotation. Likewise, the PreDestroy callback is identified by the @PreDestroy
annotation.

1. Ininheritance situations, additional callback methods from parent classes may also be invoked.

39

40

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-3. Using the PostConstruct Callback to Acquire a Logger

@Stateless
public class LoggerBean implements Logger {
private java.util.logging.logger logger;

@PostConstruct
public void init() {

logger = Logger.getlogger("notification");
}

public void logMessage(String message) {
logger.info(message);

}

Remote Business Interfaces

So far we have only discussed session beans that use a local business interface. Local in this
case means that a dependency on the session bean may be declared only by Java EE compo-
nents that are running together in the same application server instance. It is not possible to use
a session bean with a local interface from a remote client, for example.

To accommodate remote clients, session beans may mark their business interface with the
@Remote annotation to declare that it should be useable remotely. Listing 3-4 demonstrates this
syntax for a remote version of the HelloService interface shown in Listing 3-1. Marking an inter-
face as being remote is equivalent to having it extend the java.rmi.Remote interface. The
reference to the bean that gets acquired by a client is no longer a local reference on the server but
a Remote Method Invocation (RMI) stub that will invoke operations on the session bean from
across the network. No special support is required on the bean class to use remote interfaces.

Listing 3-4. A Remote Business Interface

@Remote
public interface HelloServiceRemote {
public String sayHello(String name);

}

Making an interface remote has consequences both in terms of performance and how
arguments to business methods are handled. Remote business interfaces may be used locally
within a running server, but doing so may still result in network overhead if the method call is
routed through the RMI layer. Arguments to methods on remote interfaces are also passed by
value instead of passed by reference. This means that the argument is serialized even when the
client is local to the session bean. Local interfaces for local clients are generally a better
approach. Local interfaces preserve the semantics of regular Java method calls and avoid the
costs associated with networking and RMI.

CHAPTER 3 ENTERPRISE APPLICATIONS

Tip Many application servers provide options to improve the performance of remote interfaces when used
locally within an application server. This may include the ability to disable serialization of method arguments
or may go so far as to sidestep RMI entirely. Use caution when relying on these features in application code,
as they are not portable across different application servers.

Stateful Session Beans

In our introduction to session beans we described the difference between stateless and stateful
beans as being based on the interaction style between client and server. In the case of stateless
session beans, that interaction started and ended with a single method call. Sometimes clients
need to issue multiple requests to a service and have each request be able to access or consider
the results of previous requests. Stateful session beans are designed to handle this scenario by
providing a dedicated service to a client that starts when the client obtains a reference to the
bean and ends only when the client chooses to end the conversation.

The quintessential example of the stateful session bean is the shopping cart of an e-commerce
application. The client obtains a reference to the shopping cart, starting the conversation. Over the
span of the user session, the client adds or removes items from the shopping cart, which maintains
state specific to the client. Then, when the session is complete, the client completes the purchase,
causing the shopping cart to be removed.

This is not unlike using a non-managed Java object in application code. We create an
instance, invoke operations on the object that accumulate state, and then dispose of the object
when we no longer need it. The only difference with the stateful session bean is that the server
manages the actual object instance and the client interacts with that instance indirectly
through the business interface of the bean.

Stateful session beans offer a superset of the functionality available in stateless session
beans. The features that we covered for stateless session beans such as remote interfaces apply
equally to stateful session beans.

Defining a Stateful Session Bean

Now that we have established the use case for a stateful session bean, let’s look at how to define
one. Similar to the stateless session bean, a stateful session bean is comprised of one or more
business interfaces implemented by a single bean class. A sample local business interface for a
shopping cart bean is demonstrated in Listing 3-5.

Listing 3-5. Business Interface for a Shopping Cart

public interface ShoppingCart {
public void addItem(String id, int quantity);
public void removeItem(String id, int quantity);
public Map<String,Integer> getItems();
public void checkout(int paymentId);
public void cancel();

L)

42

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-6 shows the bean class that implements the ShoppingCart interface. The bean
class has been marked with the @Stateful annotation to indicate to the server that the class is
a stateful session bean.

Listing 3-6. Implementing a Shopping Cart Using a Stateful Session Bean

@Stateful
public class ShoppingCartBean implements ShoppingCart {
private HashMap<String,Integer> items = new HashMap<String,Integer>();

public void addItem(String item, int quantity) {
Integer orderQuantity = items.get(item);
if (orderQuantity == null) {
orderQuantity = 0;
}
orderQuantity += quantity;
items.put(item, orderQuantity);

}

/7 ...

@Remove

public void checkout(int paymentId) {
// store items to database
/!l ...

@Remove
public void cancel() {

}

There are two things different in this bean compared to the stateless session beans we
have been dealing with so far.

The first difference is that the bean class has state fields that are modified by the business
methods of the bean. This is allowed because the client that uses the bean effectively has
access to a private instance of the session bean on which to make changes.

The second difference is that there are methods marked with the @Remove annotation.
These are the methods that the client will use to end the conversation with the bean. After one
of these methods has been called, the server will destroy the bean instance, and the client ref-
erence will throw an exception if any further attempt is made to invoke business methods.
Every stateful session bean must define at least one method marked with the @Remove annota-
tion, even if the method doesn’t do anything other than serve as an end to the conversation. In
Listing 3-6, the checkout () method is called if the user completes the shopping transaction,
while cancel() is called if the user decides not to proceed. The session bean is removed in
either case.

CHAPTER 3 ENTERPRISE APPLICATIONS

Lifecycle Callbacks

Like the stateless session bean, the stateful session bean also supports lifecycle callbacks in
order to facilitate bean initialization and cleanup. It also supports two additional callbacks to
allow the bean to gracefully handle passivation and activation of the bean instance. Passivation
is the process by which the server serializes the bean instance so that it can either be stored
offline to free up resources or so that it can be replicated to another server in a cluster. Activa-
tion is the process of deserializing a passivated session bean instance and making it active in
the server once again. Because stateful session beans hold state on behalf of a client and are not
removed until the client invokes one of the remove methods on the bean, the server cannot
destroy a bean instance to free up resources. Passivation allows the server to reclaim resources
while preserving session state.

Before a bean is passivated, the server will invoke the PrePassivate callback. The bean uses
this callback to prepare the bean for serialization, usually by closing any live connections to
other server resources. The PrePassivate method is identified by the @PrePassivate marker
annotation. After a bean has been activated, the server will invoke the PostActivate callback.
With the serialized instance restored, the bean must then reacquire any connections to other
resources that the business methods of the bean may be depending on. The PostActivate
method is identified by the @PostActivate marker annotation. Listing 3-7 shows a session
bean that makes full use of the lifecycle callbacks in order to maintain a JDBC connection. Note
that only the JDBC Connection is explicitly managed. As a resource connection factory, the
server automatically saves and restores the data source during passivation and activation.

Listing 3-7. Using Lifecycle Callbacks on a Stateful Session Bean

@Stateful

public class OrderBrowserBean implements OrderBrowser {
DataSource ds;
Connection conn;

@PostConstruct
public void init() {
// acquire the data source

/...
acquireConnection();
}
@PrePassivate

public void passivate() { releaseConnection(); }

@PostActivate
public void activate() { acquireConnection(); }

@PreDestroy
public void shutdown() { releaseConnection(); }

43

44

CHAPTER 3 ENTERPRISE APPLICATIONS

private void acquireConnection() {
try {
conn = ds.getConnection();
} catch (SQLException e) {
throw new EJBException(e);
}
}

private void releaseConnection() {
try {
conn.close();
} catch (SQLException e) {
}

conn = null;

}

public Collection<Order> listOrders() {
/] ...

}

Message-Driven Beans

So far we have been looking at components that are synchronous in nature. The client invokes
a method through the business interface, and the server completes that method invocation
before returning control to the client. For the majority of services, this is the most natural
approach. There are cases, however, where it is not necessary for the client to wait for a
response from the server. We would like the client to be able to issue a request and continue
while the server processes the request asynchronously.

The message-driven bean (MDB) is the EJB component for asynchronous messaging. Clients
issue requests to the MDB using a messaging system such as Java Message Service JMS). These
requests are queued and eventually delivered to the MDB by the server. The server invokes the
business interface of the MDB whenever it receives a message sent from a client. Whereas the
component contract of a session bean is defined by its business interface, the component con-
tract of an MDB is defined by the structure of the messages it is designed to receive.

Defining a Message-Driven Bean

When defining a session bean, the developer creates a business interface, and the bean class
implements it. In the case of message-driven beans, the bean class implements an interface
specific to the messaging system the MDB is based on. The most common case is JMS, but
other messaging systems are possible with the Java Connector Architecture. For JMS message-
driven beans, the business interface is javax.jms.MessagelListener, which defines a single
method, onMessage().

Listing 3-8 shows the basic structure of a message-driven bean. The @MessageDriven
annotation marks the class as an MDB. The activation configuration properties, defined using
the @ActivationConfigProperty annotations, tell the server the type of messaging system and

CHAPTER 3 ENTERPRISE APPLICATIONS

any configuration details required by that system. In this case the MDB will be invoked only if
the JMS message has a property named RECIPIENT where the value is ReportProcessor. When-
ever the server receives a message, it invokes the onMessage () method with the message as the
argument. Because there is no synchronous connection with a client, the onMessage () method
does not return anything. However, the MDB can use session beans, data sources, or even
other JMS resources to process and carry out an action based on the message.

Listing 3-8. Defining a JMS Message-Driven Bean

@MessageDriven(
activationConfig = {
@ActivationConfigProperty(propertyName="destinationType",
propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="messageSelector”,
propertyValue="RECIPIENT="'ReportProcessor'")
)
public class ReportProcessorBean implements javax.jms.Messagelistener {
public void onMessage(javax.jms.Message message) {
/...

}

Serviets

Servlets are a component technology designed to serve the needs of web developers who need
to respond to HTTP requests and generate dynamic content in return. Servlets are the oldest
and most popular technology introduced as part of the Java EE platform. They are the founda-
tion for technologies such as JavaServer Pages (JSP) and the backbone of web frameworks such
as Apache Struts and JavaServer Faces (JSF).

Although it is quite likely that readers will have some experience with servlets, it is worth
describing the impact that web application models have had on enterprise application devel-
opment. The web, due to its reliance on the HTTP protocol, is inherently a stateless medium.
Much like the stateless session beans we described earlier, a client makes a request, the server
triggers the appropriate service method in the servlet, and content is generated and returned
to the client. Each request is entirely independent from the last.

This presents a challenge, because many web applications involve some kind of conversa-
tion between the client and the server in which the previous actions of the user influence the
results returned on subsequent pages. To maintain that conversational state, many early appli-
cations attempted to dynamically embed context information into URLs. Unfortunately not
only does this technique not scale very well, it requires a dynamic element to all content gen-
eration that makes it difficult for non-developers to write content for a web application.

Servlets solve the problem of conversational state with the session. Not to be confused with
the session bean, the HTTP session is a map of data associated with a session id. When the
application requests that a session be created, the server generates a new id and returns an
HTTPSession object that the application can use to store key/value pairs of data. It then uses
techniques such as browser cookies to link the session id with the client, tying the two together

45

46

CHAPTER 3 ENTERPRISE APPLICATIONS

into a conversation. For web applications, the client is largely ignorant of the conversational
state that is tracked by the server.

Using the HTTP session effectively is an important element of servlet development.
Listing 3-9 demonstrates the steps required to request a session and store conversational data in
it. In this example, assuming that the user has logged in, the servlet stores the user id in the ses-
sion, making it available for use in all subsequent requests by the same client. The getSession()
call on the HttpServletRequest object will either return the active session or create a new one
if one does not exist. Once obtained, the session acts like a map, with key/value pairs set and
retrieved with the setAttribute() and getAttribute() methods respectively. As we see later
in this chapter, the servlet session, which stores unstructured data, is sometimes paired with a
stateful session bean in order to manage session information with the benefit of a well-defined
business interface.

Listing 3-9. Maintaining Conversational State with a Servlet

public class LoginServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String userId = request.getParameter("user");
HttpSession session = request.getSession();
session.setAttribute("user", userId);

/...

The rise of application frameworks targeted to the web has also changed the way in which
we develop web applications. Application code written in servlets is rapidly being replaced with
application code further abstracted from the base model using frameworks like JavaServer Faces.
When working in an environment such as this, basic application persistence issues such as where
to acquire and store the entity manager and how to effectively use transactions quickly become
more challenging.

Although we will explore some of these issues, persistence in the context of a framework
such as JavaServer Faces is beyond the scope of this book. As a general solution, we recom-
mend adopting a session bean component model in which to focus persistence operations.
Session beans are easily accessible from anywhere within a Java EE application, making them
perfect neutral ground for business services. The ability to exchange entities inside and outside
of the session bean model means that the results of persistence operations will be directly
usable in web frameworks without having to tightly couple your presentation code to the per-
sistence API.

Dependency Management

The business logic of a Java EE component is not always self-contained. More often than not,
the implementation depends on other resources hosted by the application server. This may

CHAPTER 3 ENTERPRISE APPLICATIONS

include server resources such as a JDBC data source or JMS message queue, or application-
defined resources such as a session bean or entity manager for a specific persistence unit.

To manage these dependencies, Java EE components support the notion of references
to resources that are defined in metadata for the component. A reference is a named link to
aresource that may be resolved dynamically at runtime from within application code or
resolved automatically by the container when the component instance is created. We’ll cover
each of these scenarios shortly.

A reference consists of two parts: a name and a target. The name is used by application
code to resolve the reference dynamically while the server uses target information to find the
resource the application is looking for. The type of resource to be located determines the type
of information required to match the target. Each resource reference requires a different set of
information specific to the resource type it refers to.

A reference is declared using one of the resource reference annotations: @Resource, @EJB,
@PersistenceContext, or @PersistenceUnit. These annotations may be placed on a class,
field, or setter method. The choice of location determines the default name of the reference
and whether or not the server resolves the reference automatically.

Dependency Lookup

The first strategy for resolving dependencies in application code that we will discuss is called
dependency lookup. This is the traditional form of dependency management in Java EE, where
the application code is responsible for using the Java Naming and Directory Interface JNDI) to
look up a named reference.

All of the resource annotations support an element called name that defines the name of
the reference. When the resource annotation is placed on the class definition, this element is
mandatory. If the resource annotation is placed on a field or a setter method, the server will
generate a default name. When using dependency lookup, annotations are typically placed at
the class level, and the name is explicitly specified. Placing a resource reference on a field or
setter method has other effects besides generating a default name that we will discuss in the
next section.

Therole of the name is to provide a way for the client to resolve the reference dynamically.
Every Java EE application server supports JNDI, and each component has its own locally
scoped JNDI naming context called the environment naming context. The name of the refer-
ence is bound into the environment naming context, and when it is looked up using the JNDI
API, the server resolves the reference and returns the target of the reference.

47

48

CHAPTER 3 ENTERPRISE APPLICATIONS

Consider the DeptServiceBean session bean shown in Listing 3-10. It has declared a
dependency on a session bean using the @EJB annotation and given it the name “audit”. The
beanInterface element of the @EJB annotation references the business interface of the session
bean that the client is interested in. In the PostConstruct callback, the audit bean is looked up
and stored in the audit field. The Context and InitialContext interfaces are both defined by
the JNDI API. The lookup() method of the Context interface is the primary way to retrieve
objects from a JNDI context. To find the reference named “audit”, the application looks up the
name “java:comp/env/audit” and casts the result to the AuditService business interface. The
prefix “java:comp/env/” that was added to the reference name indicates to the server that the
environment naming context should be searched to find the reference. If the name is incor-
rectly specified, an exception will be thrown when the lookup fails.

Listing 3-10. Looking Up an EJB Dependency

@Stateless

@EJB(name="audit", beanInterface=AuditService.class)

public class DeptServiceBean implements DeptService {
private AuditService audit;

@PostConstruct
public void init() {
try {
Context ctx = new InitialContext();
audit = (AuditService) ctx.lookup("java:comp/env/audit");
} catch (NamingException e) {
throw new EJBException(e);
}
}

/...

Using the JNDI API to look up resource references from the environment naming context
is supported by all Java EE components. It is, however, a somewhat cumbersome method of
finding a resource due to the exception-handling requirements of JNDI. E]JBs also support an
alternative syntax using the lookup () method of the EJBContext interface. The EJBContext inter-
face (and subinterfaces such as SessionContext and MessageDrivenContext) is available to any
EJB and provides the bean with access to runtime services such as the timer service. Listing 3-11
shows the same example as Listing 3-10 using the lookup () method. The SessionContext
instance in this example is provided via a setter method. We will revisit this example later in the
section called Referencing Server Resources to see how it is invoked.

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-11. Using the EJBContext lookup() Method

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
SessionContext context;
AuditService audit;

public void setSessionContext(SessionContext context) {
this.context = context;

}

@PostConstruct
public void init() {

audit = (AuditService) context.lookup("audit");
}

/7 ...

The EJBContext lookup() method has two advantages over the JNDI API. The first is that
the argument to the method is the name exactly as it was specified in the resource reference.
The second is that only runtime exceptions are thrown from the lookup () method so the
checked exception handling of the JNDI API can be avoided. Behind the scenes the exact same
sequence of JNDI API calls from Listing 3-10 is being made, but the JNDI exceptions are han-
dled automatically.

Dependency Injection

When a resource annotation is placed on a field or setter method, two things occur. First, a
resource reference is declared just as if it had been placed on the bean class (similar to the
example in Listing 3-10), and the name for that resource will be bound into the environment
naming context when the component is created. Second, the server does the lookup automat-
ically on your behalf and sets the result into the instantiated class.

The process of automatically looking up a resource and setting it into the class is called
dependency injection because the server is said to inject the resolved dependency into the
class. This technique, one of several commonly referred to as inversion of control, removes the
burden of manually looking up resources from the JNDI environment context.

Dependency injection is rapidly being considered a best practice for application develop-
ment, not only because it reduces the need for]NDI lookups (and the associated Service Locator?
pattern), but also because it simplifies testing. Without any JNDI API code in the class that has
dependencies on the application server runtime environment, the bean class may be instanti-
ated directly in a unit test. The developer can then manually supply the required dependencies
and test the functionality of the class in question instead of worrying about how to work around
the JNDI APIs.

2. Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

49

50

CHAPTER 3 ENTERPRISE APPLICATIONS

Field Injection

The first form of dependency injection is called field injection. Injecting a dependency into a
field means that after the server looks up the dependency in the environment naming context,
it assigns the result directly into the annotated field of the class. Listing 3-12 revisits the exam-
ple from Listing 3-10 and demonstrates the @EJB annotation, this time by injecting the result
into the audit field. All of the directory interface code we demonstrated before is gone, and the
business methods of the bean can assume that the audit field holds a reference to the
AuditService bean.

Listing 3-12. Using Field Injection

@Stateless
public class DeptServiceBean implements DeptService {
@EJB AuditService audit;

/7 ...

Field injection is certainly the easiest to implement, and the examples in this book use this
form exclusively to conserve space. The only thing to consider with field injection is that if you
are planning on unit testing, then you need either to add a setter method or to make the field
accessible to your unit tests in order to manually satisfy the dependency. Private fields, though
legal, require unpleasant hacks if there is no accessible way to set their value. Consider package
scope for field injection if you want to unit test without having to add a setter.

We mentioned in the previous section that a name is automatically generated for the refer-
ence when a resource annotation is placed on a field or setter method. For completeness, we
will describe the format of this name, but it is unlikely that you will find many opportunities to
use it. The generated name is the fully qualified class name followed by a forward slash and then
the name of the field or property. This means that if the AuditService bean is located in the
persistence.session package, then the injected EJB referenced in Listing 3-12 would be acces-
sible in the environment naming context under the name “persistence.session.AuditService/
audit”. Specifying the name element for the resource annotation will override this default value.

Setter Injection

The second form of dependency injection is called setter injection and involves annotating

a setter method instead of a class field. When the server resolves the reference, it will invoke the
annotated setter method with the result of the lookup. Listing 3-13 revisits Listing 3-10 for the last
time to demonstrate using setter injection.

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-13. Using Setter Injection

@Stateless
public class DeptServiceBean implements DeptService {
private AuditService audit;

@EJB
public void setAuditService(AuditService audit) {
this.audit = audit;

}

/7 ...

This style of injection allows for private fields yet also works well with unit testing. Each
test can simply instantiate the bean class and manually perform the dependency injection by
invoking the setter method, usually by providing an implementation of the required resource
that is tailored to the test.

Declaring Dependencies

The following sections describe the resource annotations defined by the Java EE and EJB spec-
ifications. Each annotation has a name element for optionally specifying the reference name for
the dependency. Other elements on the annotations are specific to the type of resource that
needs to be acquired.

Referencing a Persistence Context

In the previous chapter we demonstrated how to create an entity manager for a persistence
context using an EntityManagerFactory returned from the Persistence class. In the Java EE
environment, the @PersistenceContext annotation may be used to declare a dependency on
a persistence context and have the entity manager for that persistence context acquired
automatically.

Listing 3-14 demonstrates using the @PersistenceContext annotation to acquire an entity
manager through dependency injection. The unitName element specifies the name of the per-
sistence unit on which the persistence context will be based.

Tip If the unitName element is omitted, it is vendor-specific how the unit name for the persistence con-
text is determined. Some vendors may provide a default value if there is only one persistence unit for an
application, while others may require that the unit name be specified in a vendor-specific configuration file.

51

52

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-14. Injecting an EntityManager Instance

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

/7 ...

After the warnings about using a state field in a stateless session bean, you may be wonder-
ing how this code is legal. After all, entity managers must maintain their own state in order to
be able to manage a specific persistence context. The good news is that the specification was
designed with Java EE integration in mind, so what actually gets injected in Listing 3-14 is not
an entity manager instance like the ones we used in the previous chapter. The value injected
into the bean is a container-managed proxy that acquires and releases persistence contexts on
behalf of the application code. This is a powerful feature of the Java Persistence API in Java EE
and one we will cover extensively in Chapter 5. For now it is safe to assume that the injected
value will “do the right thing.” It does not have to be disposed of and works automatically with
the transaction management of the application server.

Referencing a Persistence Unit

The EntityManagerFactory for a persistence unit may be referenced using the @PersistenceUnit
annotation. Like the @PersistenceContext annotation, the unitName element identifies the persis-
tence unit for the EntityManagerFactory instance we wish to access. If the persistent unit name is
not specified in the annotation, then it is vendor-specific how the name is determined.

Listing 3-15 demonstrates injection of an EntityManagerFactory instance into a stateful
session bean. The bean then creates an EntityManager instance from the factory during the
PostConstruct lifecycle callback. An injected EntityManagerFactory instance may be safely
stored on any component instance. It is thread-safe and does not need to be disposed of when
the bean instance is removed.

Listing 3-15. Injecting an EntityManagerFactory Instance

@Stateful

public class EmployeeServiceBean implements EmployeeService {
@PersistenceUnit(unitName="EmployeeService")
private EntityManagerFactory emf;
private EntityManager em;

@PostConstuct
public void init() {
em = emf.createEntityManager();

}

/...

CHAPTER 3 ENTERPRISE APPLICATIONS

The EntityManagerFactory for a persistence unit is not used very often in the Java EE
environment since injected entity managers are easier to acquire and use. As we will see in
Chapter 5, there are important differences between the entity managers returned from the fac-
tory and the ones provided by the server in response to the @PersistenceContext annotation.

Referencing Enterprise JavaBeans

When a component needs to access an EJB, it declares a reference to that bean with the @EJB
annotation. The target of this reference type is typically a session bean. Message-driven beans
have no client interface, so they cannot be accessed directly and cannot be injected. We have
already demonstrated the beanInterface element for specifying the business interface of the
session bean that the client is interested in. The server will search through all deployed session
beans to find the one that implements the requested business interface.

In the rare case that two session beans implement the same business interface or if the
client needs to access a session bean located in a different EJB jar, then the beanName element
may also be specified to identify the session bean by its name. The name of a session bean
defaults to the unqualified class name of the bean class, or it may be set explicitly by using the
name element of the @Stateless and @Stateful annotations. Listing 3-16 revisits the example
shown in Listing 3-12, this time specifying the beanName element on the injected value. Sharing
the same business interface across multiple bean implementations is not recommended. The
beanName element should almost never be required.

Listing 3-16. Qualifying an EJB Reference Using the Bean Name

@Stateless

public class DeptServiceBean implements DeptService {
@EJB(beanName="AuditServiceBean")
AuditService audit;

/7 ...

Referencing Server Resources

The @Resource annotation is the catchall reference for all resource types that don’t correspond
to one of the types we have described so far. It is used to define references to resource factories,
message destinations, data sources, and other server resources. The @Resource annotation is
also the simplest to define, as the only additional element is resourceType, which allows you
to specify the type of resource if the server can’t figure it out automatically. For example, if the
field you are injecting into is of type Object, then there is no way for the server to know that you
wanted a data source instead. The resourceType element can be set to javax.sql .DataSource
to make the need explicit.

53

54

CHAPTER 3 ENTERPRISE APPLICATIONS

One of the features of the @Resource annotation is that it is used to acquire logical
resources specific to the component type. This includes EJBContext implementations as
well as services such as the EJB timer service. Without defining it as such, we used setter injec-
tion to acquire the EJBContext instance in Listing 3-11. To make that example complete, the
@Resource annotation would be placed on the setSessionContext() method. Listing 3-17
revisits the example from Listing 3-11, this time demonstrating field injection to acquire a
SessionContext instance

Listing 3-17. Injecting a SessionContext instance

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
@Resource SessionContext context;
AuditService audit;

@PostConstruct
public void init() {
audit = (AuditService) context.lookup("audit");

/7 ...

Transaction Management

More than any other type of enterprise application, applications that use persistence require
careful attention to issues of transaction management. When transactions start, when they
end, and how the entity manager participates in container-managed transactions are all essen-
tial topics for developers using the Java Persistence API. In the following sections we will lay out
the foundation for transactions in Java EE and then revisit this topic in detail again in Chapter 5
as we look at the entity manager and how it participates in transactions. Advanced transaction
topics are beyond the scope of this book. We recommend Java Transaction Processing® for an
in-depth discussion on using and implementing transactions in Java.

Transaction Review

A transaction is an abstraction that is used to group together a series of operations. Once
grouped together, the set of operations is treated as a single unit, and all of the operations must
succeed or none of them can succeed. The consequence of only some of the operations being
successful would produce an inconsistent view of the data that would be harmful or undesir-
able to the application. The term used to describe whether the operations succeed together or
not atall is called atomicity and is arguably the most important of the four basic properties that

3. Little, Mark, Jon Maron, and Greg Pavlik. Java Transaction Processing: Design and Implementation.
Upper Saddle River, N.J.: Prentice Hall PTR, 2004.

CHAPTER 3 ENTERPRISE APPLICATIONS

are used to characterize how transactions behave. Understanding these four properties is fun-
damental to understanding transactions. The following list summarizes these properties:

* Atomicity: All of the operations in a transaction are successful or none of them are. The
success of every individual operation is tied to the success of the entire group.

* Consistency: The resulting state at the end of the transaction adheres to a set of rules
that define acceptability of the data. The data in the entire system is legal or valid with
respect to the rest of the data in the system.

¢ Isolation: Changes made within a transaction are visible only to the transaction that is
making the changes. Once a transaction commits the changes they are atomically visible
to other transactions.

¢ Durability: The changes made within a transaction endure beyond the completion of
the transaction.

A transaction that meets all of these requirements is said to be an ACID transaction (the famil-
iar ACID term being obtained by combining the first letter of each of the four properties).

Not all transactions are ACID transactions, and those that are often offer some flexibility
in the fulfillment of the ACID properties. For example, the isolation level is a common setting
that can be configured to provide either looser or tighter degrees of isolation than what was
described earlier. These are typically done for reasons of either increased performance or, on
the other side of the spectrum, if an application has more stringent data consistency require-
ments. The transactions that we discuss in the context of Java EE are normally of the ACID
variety.

Enterprise Transactions in Java

Transactions actually exist at different levels within the enterprise application server. The
lowest and most basic transaction is at the level of the resource, which in our discussion is
assumed to be a relational database fronted by a DataSource interface. This is called a resource-
local transaction and is equivalent to a database transaction. These types of transactions are
manipulated by interacting directly with the JDBC DataSource that is obtained from the appli-
cation server. Resource-local transactions are used much more infrequently than container
transactions.

The broader container transaction uses the Java Transaction API (JTA) that is available in
every compliant Java EE application server. This is the typical transaction that is used for enter-
prise applications and may involve or enlist a number of resources including data sources as well
as other types of transactional resources. Resources defined using Java Connector Architecture
(J2C) components may also be enlisted in the container transaction.

Containers typically add their own layer on top of the JDBC DataSource to perform
functions such as connection management and pooling that make more efficient use of the
resources and provide a seamless integration with the transaction-management system. This
is also necessary because it is the responsibility of the container to perform the commit or roll-
back operation on the data source when the container transaction completes.

Because container transactions use JTA and because they may span multiple resources,
they are also called JTA transactions or global transactions. The container transaction is a cen-
tral aspect of programming within Java EE application servers.

55

56

CHAPTER 3 ENTERPRISE APPLICATIONS

Transaction Demarcation

Every transaction has a beginning and an end. Beginning a transaction will allow subsequent
operations to become a part of the same transaction until the transaction has completed.
Transactions may be completed in one of two ways. They may be committed, causing all of the
changes to be persisted to the data store, or rolled back, indicating that the changes should be
discarded. The act of causing a transaction to either begin or complete is termed transaction
demarcation. This is a critical part of writing enterprise applications, since doing transaction
demarcation incorrectly is one of the most common sources of performance degradation.

Resource-local transactions are always demarcated explicitly by the application, while con-
tainer transactions may either be demarcated automatically by the container or by using a JTA
interface that supports application-controlled demarcation. In the first case, when the container
takes over the responsibility of transaction demarcation, we call it container-managed transac-
tion management, but when the application is responsible for demarcation we call it bean-
managed transaction management.

EJBs may use either container-managed transactions or bean-managed transactions. Servlets
are limited to the somewhat poorly named bean-managed transaction. The default transaction
management style for an EJB component is container-managed. To configure an EJB to have its
transactions demarcated one way or the other, the @TransactionManagement annotation should be
specified on the session or message-driven bean class. The TransactionManagementType enu-
merated type defines BEAN for bean-managed transactions and CONTAINER for container-managed
transactions. Listing 3-18 demonstrates how to enabled bean-managed transactions using this
approach.

Listing 3-18. Changing the Transaction Management Type of a Bean

@Stateless
@TransactionManagement (TransactionManagementType.BEAN)
public class ProjectServiceBean implements ProjectService {
// methods in this class manually control transaction demarcation

Since the default transaction management for a bean is container-managed, this annota-
tion needs to be specified only if bean-managed transactions are desired.

Container-Managed Transactions

The most common way to demarcate transactions is to use container-managed transactions
(CMTs). This spares the application the effort and code to begin and commit transactions
explicitly.

Transaction requirements are determined by metadata on session and message-driven
beans and are configurable at the granularity of method execution. For example, a session
bean may declare that whenever any specific method on that bean gets invoked, then the con-
tainer must ensure that a transaction is started before the method begins. The container would
also be responsible for committing the transaction after the completion of the method.

It is quite common for one bean to invoke another bean from one or more of its methods.
In this case a transaction that may have been started by the calling method would not have
been committed, because the calling method will not be completed until its call to the second

CHAPTER 3 ENTERPRISE APPLICATIONS

bean has completed. This leads to the requirement to have settings for defining how the con-
tainer should behave when a method is invoked within a specific transactional context.

For example, if a transaction is already in progress when a method is called, then the con-
tainer may be expected to just make use of that transaction, whereas it may be directed to start
anew one if no transaction is active. These settings are called transaction attributes, and they
determine exactly what the container-managed transactional behavior is.

The defined transaction attributes choices are

e MANDATORY: If this attribute is specified for a method, then a transaction is expected to
have already been started and be active when the method is called. If no transaction is
active, then an exception is thrown. This attribute is seldom used but can be a develop-
ment tool to catch transaction demarcation errors in cases where it is expected that a
transaction should already have been started.

e REQUIRED: This is the most common case where a method is expected to be in a transac-
tion. The container provides a guarantee that a transaction is active for the method. If
one is already active, then that one is used, but if one does not exist, then a new transac-
tion is created for the method execution.

e REQUIRES_NEW: This is used when the method always needs to be in its own transaction,
that is, the method should be committed or rolled back independent of methods further
up the call stack. It should be used with caution, as it can lead to excessive transaction
overhead.

¢ SUPPORTS: Methods marked with Supports are not dependent upon a transaction but
will tolerate running inside one if it exists. This is an indicator that no transactional
resources are accessed in the method.

e NOT_SUPPORTED: A method marked to not support transactions will cause the container
to suspend the current transaction if one is active when the method is called. It implies
that the method does not perform transactional operations but may fail in other ways that
could undesirably affect the outcome of a transaction. This is not a commonly used
attribute.

¢ NEVER: A method marked to never support transactions will cause the container to throw
an exception if a transaction is active when the method is called. This attribute is very
seldom used but can be a development tool to catch transaction demarcation errors in
cases when it is expected that transactions should already have been completed.

Any time the container starts a transaction for a method, the container is assumed to also
attempt to commit the transaction at the end of the method. Each time the current transaction
must be suspended, then the container is responsible for resuming the suspended transaction
at the conclusion of the method.

The transaction attribute for a method may be indicated by annotating a session or
message-driven bean class, or one of its methods that is part of the business interface, with
the @TransactionAttribute annotation. This annotation requires a single argument of the
enumerated type TransactionAttributeType, the values of which are defined in the preceding
list. Annotating the bean class will cause the transaction attribute to apply to all of the business
methods in the class, while annotating a method applies the attribute only to the method. If
both class-level and method-level annotations exist, then the method-level annotation takes

57

58

CHAPTER 3 ENTERPRISE APPLICATIONS

precedence. In the absence of class-level or method-level @TransactionAttribute annota-
tions, the default attribute of REQUIRED will be applied.

Listing 3-19 shows how the addItem() method from the shopping cart bean in Listing 3-6
might use a transaction attribute. No transaction management setting was supplied, so container-
managed transactions will be used. No attribute was specified on the class, so the default behavior
of REQUIRED will apply to all of the methods of the class. The exception is that the addItem()
method has declared a transaction attribute of SUPPORTS, which overrides the REQUIRED setting.
Whenever a call to add an item is made, then that item will be added to the cart, but if no transac-
tion was active then none will need to be started.

Listing 3-19. Specifying a Transaction Attribute

@Stateful
public class ShoppingCartBean implements ShoppingCart {

@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public void addItem(String item, Integer quantity) {
verifyItem(item, quantity);
/...
}

/7 ...

Furthermore, before the addItem() method adds the item to the cart, it does some valida-
tion in a private method called verifyItem() that is not shown in the example. When this
method is invoked from verifyItem(), it will run in whatever transactional context addItem()
was invoked.

Any bean wanting to cause a container-managed transaction to roll back may do so by
invoking the setRollbackOnly() method on the EJBContext object. While this will not cause
the immediate rollback of the transaction, it is an indication to the container that the transac-
tion should be rolled back when the time comes. Note that entity managers will also cause the
current transaction to be set to roll back when an exception is thrown during an entity manager
invocation or when the transaction completes.

Bean-Managed Transactions

The other way of demarcating transactions is to use bean-managed transactions (BMT).
Declaring that a bean is using bean-managed transactions means that the bean class is assum-
ing the responsibility to begin and commit the transactions whenever it deems it’s necessary.
With this responsibility, however, comes the expectation that the bean class will get it right.
Beans that use BMT must ensure that any time a transaction has been started, it must also be
completed before returning from the method that started it. Failure to do so will result in the
container rolling back the transaction automatically and an exception being thrown.

One penalty of transactions being managed by the application instead of by the container
is that they do not get propagated to methods called on another BMT bean. For example, if
Bean A begins a transaction and then calls Bean B, which is using bean-managed transactions,
then the transaction will not get propagated to the method in Bean B. Any time a transaction is

CHAPTER 3 ENTERPRISE APPLICATIONS

active when a BMT method is invoked, the active transaction will be suspended until control
returns to the calling method.

BMT is not generally recommended for use in EJBs because it adds complexity to the
application and requires the application to do work that the server can already do for it. It is
necessary, though, when transactions must be initiated from the web tier, since it is the only
supported way that non-EJB components can use container transactions.

UserTransaction

In order to be able to manually begin and commit container transactions, the application must
have an interface that supports it. The UserTransaction interface is the designated object in the
JTA that applications can hold on to and invoke to manage transaction boundaries. An instance
of UserTransaction is not actually the current transaction instance but is a sort of proxy that
provides the transaction API and represents the current transaction. A UserTransaction
instance may be injected into BMT components by using the @Resource annotation. When using
dependency lookup, it is found in the environment naming context using the reserved name
“java:comp/UserTransaction”. The UserTransaction interface is shown in Listing 3-20.

Listing 3-20. The UserTransaction Interface

public interface javax.transaction.UserTransaction {
public abstract void begin();
public abstract void commit();
public abstract int getStatus();
public abstract void rollback();
public abstract void setRollbackOnly();
public abstract void setTransactionTimeout(int seconds);

Each JTA transaction is associated with an execution thread, so it follows that no more
than one transaction can be active at any given time. So if one transaction is active, the user
cannot start another one in the same thread until the first one has committed or rolled back.
Alternatively, the transaction may time out, causing the transaction to roll back.

We discussed earlier that in certain CMT conditions the container will suspend the current
transaction. From the previous API you can see that there is no UserTransaction method for
suspending a transaction. Only the container can do this using an internal transaction man-
agement API. In this way multiple transactions can be associated with a single thread, even
though only one can ever be active at a time.

Rollbacks may occur in several different scenarios. The setRollbackOnly() method indi-
cates that the current transaction may not be committed, leaving rollback as the only possible
outcome. The transaction may be rolled back immediately by calling the rol1lback() method.
Alternately, a time limit for the transaction may be set with the setTransactionTimeout ()
method, causing the transaction to roll back when the limit is reached. The only catch with
transaction timeouts is that the time limit must be set before the transaction starts and it can-
not be changed once the transaction is in progress.

In JTA every thread has a transactional status that can be accessed through the
getStatus() call. The return value of this method is one of the constants defined on the
java.transaction.Status interface. If no transaction is active, for example, then the value

59

60

CHAPTER 3 ENTERPRISE APPLICATIONS

returned by getStatus () will be the STATUS_NO_TRANSACTION. Likewise if setRollbackOnly()
has been called on the current transaction, then the status will be STATUS_MARKED ROLLBACK
until the transaction has begun rolling back.

Listing 3-21 shows a fragment from a servlet using the ShoppingCart bean in order to dem-
onstrate using UserTransaction to invoke multiple EJB methods within a single transaction.
The doPost () method uses the UserTransaction instance injected with the @Resource anno-
tation to start and commit a transaction. Note the try ... finally block required around the
transaction operations in order to ensure that the transaction is correctly cleaned up in the
event of a failure.

Listing 3-21. Using the UserTransaction Interface

public class ProjectServlet extends HttpServlet {
@Resource UserTransaction tx;
@EJB ProjectService bean;

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/...

try {
tx.begin();
try {

bean.assignEmployeeToProject(projectId, empId);
bean.updateProjectStatistics();

} finally {
tx.commit();

}

} catch (Exception e) {
// handle exceptions from UserTransaction methods
/...

/...

Using Java EE Components

Now that we have described how to define Java EE components and make use of services such
as transaction management that are provided by the application server, we can demonstrate
how to put these components to work. Once again we must caution that this is not an exhaus-
tive overview of these technologies but is provided to put the upcoming persistence examples
in context and preview the new features in Java EE 5 for developers who may be new to the
platform.

CHAPTER 3 ENTERPRISE APPLICATIONS

Using a Stateless Session Bean

A client of a stateless session bean is any Java EE component that can declare a dependency on
the bean. This includes other session beans, message-driven beans, and servlets. Two-tier
access from a remote client is also possible if the bean defines a remote business interface.

Consider the servlet shown in Listing 3-22, which uses the EJB from Listing 3-2 to obtain a
message and then generates a simple HTML page. As we discussed earlier in the section on
Dependency Management, the @EJB annotation causes the HelloService bean to be automat-
ically injected into the servlet. Therefore when the doGet () method is invoked, methods on the
business interface can be invoked without any extra steps.

Listing 3-22. A Servlet That Uses a Session Bean

public class HelloServlet extends HttpServlet {
@EJB HelloService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException {
String name = request.getParameter("name");
String message = bean.sayHello(name);

PrintWriter out = response.getWriter();

out.println("<html>" +
"<head><title>Hello</title></head>" +
"<body><p>" + message + "</p></body>" +
"</html>");

The use of annotations to manage dependencies is an important change in Java EE 5 that
significantly reduces the complexity of weaving together components within applications. In
the case of session beans that depend on other session beans, note that it is always safe to
declare a reference to a stateless session bean and store it in a field on the bean. The bean ref-
erence in the case of a stateless session bean is itself a stateless and thread-safe object.

Using a Stateful Session Bean
There are a few basic things to keep in mind when working with stateful session beans:
1. When a client obtains a reference to a stateful session bean, a private instance of that

bean is created for the client. In other words, there is one bean instance per client
reference.

2. The bean does not go away until the client invokes a method annotated with @Remove. If
the client forgets or is unable to end the conversation with the bean, it will hang around
until the server can determine that it is safe to remove it.

3. Areference to a stateful session bean cannot be shared between threads.

61

62

CHAPTER 3 ENTERPRISE APPLICATIONS

A consequence of these rules is that clients need to plan carefully on when they need to
start the session and when it can be ended. It also means that using the @EJB annotation to
inject a stateful session bean is not a good solution. Servlets, stateless session beans, and
message-driven beans are all stateless components. As we stated before in the description of
stateless session beans, that means that any state placed on a stateless component must also
be stateless as well. A stateful session bean reference is itself stateful because it references a pri-
vate instance of the bean managed by the server. If ®EJB were used to inject a stateful session
bean into a stateless session bean where the server had pooled 100 bean instances, then there
would be 100 stateful session bean instances created as well. The only time it is ever safe to
inject a stateful session bean is into another stateful session bean.

Dependency lookup is the preferred method for acquiring a stateful session bean instance
for a stateless client. The EJBContext lookup() method is the easiest way to accomplish this,
but JNDIwill be required if the client is a servlet. Listing 3-23 demonstrates a typical pattern for
servlets using stateful session beans. A reference is declared to the bean, it is looked up lazily
when needed, and the result is bound to the HTTP session. The stateful session bean and HTTP
session have similar life cycles, making them good candidates to work together.

Listing 3-23. Creating and Using a Stateful Session Bean

@EJB(name="cart", beanInterface=ShoppingCart.class)
public class ShoppingCartServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession(true);
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");
if (cart == null) {
try {
Context ctx = new InitialContext();
cart = (ShoppingCart) ctx.lookup("java:comp/env/cart");
session.setAttribute("cart", cart);
} catch (NamingException e) {
throw new ServletException(e);
}
}

if (request.getParameter("action").equals("add")) {
String itemId = request.getParameter("item");
String quantity = request.getParameter("quantity");
cart.addItem(itemId, Integer.parseInt(quantity));

CHAPTER 3 ENTERPRISE APPLICATIONS

if (request.getParameter("action").equals("cancel")) {
cart.cancel();
session.removeAttribute("cart");

/7 ...

When the server receives a request to look up a stateful session bean, it asks the EJB con-
tainer to create a new instance of the bean, which is then assigned a unique identifier. The
reference to the bean that is returned keeps track of this identifier and uses it when communi-
cating with the server to ensure that the right bean instance is used to invoke each business
method.

Using a Message-Driven Bean

As an asynchronous component, clients of a message-driven bean can’t directly invoke business
operations. Instead they send messages, which are then delivered to the MDB by the messaging
system being used. The client needs to know only the format of the message that the MDB is
expecting and the messaging destination where the message must be sent. Listing 3-24 demon-
strates sending a message to the MDB we defined in Listing 3-8. The ReportProcessor MDB
expects an employee id as its message format. Therefore the session bean client in this example
creates a text message with the employee id and sends it through the JMS API The same criteria
that was specified on the MDB to filter the messages is also specified here on the client.

Listing 3-24. Sending a Message to an MDB

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@Resource Queue destinationQueue;
@Resource QueueConnectionFactory factory;

public void generateReport() {
try {
QueueConnection connection = factory.createQueueConnection();
QueueSession session =
connection.createQueueSession(false, 0);
QueueSender sender = session.createSender(destinationQueue);

Message message = session.createTextMessage("12345");
message.setStringProperty("RECIPIENT", "ReportProcessor");

sender.send(message);

63

64 CHAPTER 3 ENTERPRISE APPLICATIONS

sender.close();
session.close();
connection.close();

} catch (IMSException e) {
/...

}

/7 ...

Adding the Entity Manager

Using stateless session beans as components to manage persistence operations is the pre-
ferred strategy for Java EE applications. Clients gain the benefit of working with a session
facade that presents a business interface that is decoupled from the specifics of the implemen-
tation. The bean is able to leverage the dependency-management capabilities of the server to
access the entity manager and can make use of services such as container-managed transac-
tions to precisely specify the transaction requirements of each business operation. Finally, the
POJO nature of entities allows them to be easily returned from and passed as arguments to a
session bean method.

Leveraging the stateless session bean for persistence is largely a case of injecting an entity
manager. Listing 3-25 demonstrates a typical session bean that injects an entity manager and
uses it to implement its business operations.

Listing 3-25. Using the Entity Manager with a Stateless Session Bean

@Stateless

public class DepartmentServiceBean {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public void addEmployeeToDepartment(int empId, int deptId) {
Employee emp = em.find(Employee.class, empld);
Department dept = em.find(Deptartment.class, deptld);
dept.getEmployees().add(emp);
emp.setDept(dept);

/7 ...

Stateful session beans are also well suited to managing persistence operations within an
application component model. The ability to store state on the session bean means that query
criteria or other conversational state can be constructed across multiple method calls before
being acted upon. The results of entity manager operations may also be cached on the bean
instance in some situations.

CHAPTER 3 ENTERPRISE APPLICATIONS

Listing 3-26 revisits the shopping cart bean from Listing 3-6. In this example Order and
Item are entities representing a sales transaction. The order is built up incrementally over the
life of the session and then persisted to the database using the injected entity manager when
payment has been confirmed.

Listing 3-26. Using the Entity Manager with a Stateful Session Bean

@Stateful

public class ShoppingCartBean implements ShoppingCart {
@PersistenceContext(unitName="order")
private EntityManager em;
private Order order = new Order();

public void addItem(Item item, int quantity) {
order.addItem(item, quantity);

}

/7 ...

@Remove

public void checkout(int paymentId) {
order.setPaymentId(paymentId);
em.persist(order);

From the perspective of using the entity manager with message-driven beans, the main
question is whether or not the MDB should use the Java Persistence API directly or delegate to
another component such as a session bean. A common pattern in many applications is to treat
the MDB as an asynchronous facade for session beans in situations where the business logic
does not produce results that are customer-facing, that is, where the results of the business
operation are stored in a database or propagated to another messaging system. This is largely
an issue of personal taste, as message-driven beans fully support injecting the entity manager
and can leverage container-managed transactions.

Putting It All Together

Now that we have discussed the application component model and services available as part of
aJava EE application server, we can revisit the EmployeeService example from the previous
chapter and port it to the Java EE environment. Along the way, we’ll provide example code to
show how the components fit together and how they relate back to the Java SE example.

Defining the Component

To begin, let’s consider the definition of the EmployeeService class from Listing 2-9 in the
previous chapter. The goal of this class is to provide business operations related to the mainte-
nance of employee data. In doing so, it encapsulates all of the persistence operations. To

65

66

CHAPTER 3 ENTERPRISE APPLICATIONS

introduce this class into the Java EE environment, we must first decide how it should be repre-
sented. The service pattern exhibited by the class suggests the session bean as the ideal
component. Since the business methods of the bean have no dependency on each other, we
can further decide that a stateless session bean is suitable. In fact, this bean demonstrates a
very typical design pattern called a Session Facade,* in which a stateless session bean is used to
shield clients from dealing with a particular persistence API. Our first step is to extract a busi-
ness interface from the original bean. Listing 3-27 shows the EmployeeService business
interface.

Listing 3-27. The EmployeeService Business Interface

public interface EmployeeService {
public Employee createEmployee(int id, String name, long salary);
public void removeEmployee(int id);
public Employee changeEmployeeSalary(int id, long newSalary);
public Employee findEmployee(int id);
public Collection<Employee> findAllEmployees();

In the Java SE example, the EmployeeService class must create and maintain its
own entity manager instance. We can replace this logic with dependency injection to acquire
the entity manager automatically. Having decided on a stateless session bean and dependency
injection, the converted stateless session bean is demonstrated in Listing 3-28. With the excep-
tion of how the entity manager is acquired, the business methods are identical. This is an
important feature of the Java Persistence API, as the same EntityManager interface can be
used both inside and outside of the application server.

Listing 3-28. The EmployeeService Session Bean

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
protected EntityManager em;

public EntityManager getEntityManager() {
return em;

}

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);
emp.setName(name);
emp.setSalary(salary);
getEntityManager().persist(emp);
return emp;

4. Alur et al., Core J2EE Patterns.

CHAPTER 3 ENTERPRISE APPLICATIONS

public void removeEmployee(int id) {
Employee emp = findEmployee(id);
if (emp != null) {
getEntityManager().remove(emp);
}
}

public Employee changeEmployeeSalary(int id, long newSalary) {
Employee emp = findEmployee(id);
if (emp != null) {
emp.setSalary(newSalary);
}

return emp;

}

public Employee findEmployee(int id) {
return getEntityManager().find(Employee.class, id);
}

public Collection<Employee> findAllEmployees() {
Query query = getEntityManager().createQuery("SELECT e FROM Employee e");
return (Collection<Employee>) query.getResultlist();

Defining the User Interface

The next question to consider is how the bean will be accessed. A web interface is the standard
presentation method for modern enterprise applications. To demonstrate how this stateless
session bean might be used by a servlet, consider Listing 3-29. The request parameters are
interpreted to determine the action, which is then carried out by invoking methods on the
injected EmployeeService bean. Although only the first action is described, you can see how
this could easily be extended to handle each of the operations defined on the EmployeeService
business interface.

Listing 3-29. Using the EmployeeService Session Bean from a Servlet

public class EmployeeServlet extends HttpServlet {

@EJB EmployeeService bean;

protected void doPost(HttpServletRequest request,
HttpServletResponse response) {
String action = request.getParameter("action");

67

68

CHAPTER 3 ENTERPRISE APPLICATIONS

if (action.equals("create")) {
String id = request.getParameter("id");
String name = request.getParameter("name");
String salary = request.getParameter("salary");
bean.createEmployee(Integer.parselnt(id), name,
Long.parselong(salary));

}
7
}
}
Packaging It Up

In the Java EE environment, many properties required in the persistence.xml file for Java SE
may be omitted. In Listing 3-30 we see the persistence.xml file from Listing 2-11 in the previ-
ous chapter converted for deployment as part of a Java EE application. Instead of JDBC
properties for creating a connection, we now declare that the entity manager should use the
data source name “jdbc/EmployeeDS”. The transaction-type attribute has also been
removed to allow the persistence unit to default to JTA. The application server will automati-
cally find entity classes, so even the list of classes has been removed. This example represents
the ideal minimum Java EE configuration.

Since the business logic that uses this persistence unit is implemented in a stateless ses-
sion bean, the persistence.xml file would typically be located in the META-INF directory of
the corresponding EJB JAR. We will fully describe the persistence.xml file and its placement
within a Java EE application later in Chapter 11.

Listing 3-30. Defining a Persistence Unit in Java EE

<persistence>
<persistence-unit name="EmployeeService">
<jta-data-source>jdbc/EmployeeDS</jta-data-source>
</persistence-unit>
</persistence>

Summary

It would be impossible to provide details on all of the features of the Java EE platform in a single
chapter. However, is it likewise difficult to put the Java Persistence API in context without
understanding the application server environment in which it will be used. Therefore over the
course of this chapter we have attempted to introduce the technologies that are of the most rel-
evance to the developer using persistence in enterprise applications.

We began with an introduction to software component models and introduced the
Enterprise JavaBeans model for enterprise components. We argued that the use of compo-
nents is more important than ever before and identified some of the benefits that come from
leveraging this approach.

CHAPTER 3 ENTERPRISE APPLICATIONS

In the section on session beans, we introduced the fundamentals and then looked in detail
at both stateless and stateful session beans. We learned about the difference in interaction
style between the two session types and looked at the syntax for declaring beans. We also
looked at the difference between local and remote business interfaces.

We next looked at dependency management in Java EE application servers. We discussed
the reference annotation types and how to declare them. We also looked at the difference
between dependency lookup and dependency injection. In the case of injection we looked at
the difference between field and setter injection. Finally, we explored each of the resource
types demonstrating how to acquire server and Java Persistence API resources.

In the section on transaction management, we looked at the Java Transaction API and
its role in building datacentric applications. We then looked at the difference between bean-
managed transactions and container-managed transactions for EJBs. We documented the
different types of transaction attributes for CMT beans and showed how to manually control
bean-managed transactions.

Finally, we concluded the chapter by exploring how to use Java EE components in appli-
cations and how they can leverage the Java Persistence API. We also discussed an end-to-end
example of the Java Persistence API in the Java EE environment, converting the example
application introduced in the previous chapter from a command-line Java SE application to
aweb-based application running on an application server.

Now that we have introduced the Java Persistence API in both the Java SE and Java EE
environments, it’s time to dive into the specification in detail. In the next chapter we begin this
journey with the central focus of the Java Persistence AP], object-relational mapping.

69

CHAPTER 4

Object-Relational Mapping

The largest part of an API that persists objects to a relational database ends up being the
object-relational mapping component. The topic of object-relational mapping usually
includes everything from how the object state is mapped to the database columns to how to
issue queries across the objects. We are focusing this chapter primarily on how to define and
map entity state to the database, emphasizing the simple manner in which it may be done.

In this chapter we will introduce the basics of mapping fields to database columns and
then go on to show how to map and automatically generate entity identifiers. We will go into
some detail about different kinds of relationships and show examples that demonstrate how
they are mapped from the domain model to the data model.

Persistence Annotations

We have shown in previous chapters how annotations have been used extensively both in the
EJB 3.0 and Java Persistence API specifications. We are going to discuss in significant detail per-
sistence and mapping metadata, and since we use annotations to explain the concepts, it is
worth reviewing a few things about the annotations before we get started.

Persistence annotations may be applied at three different levels: at the class, method, and
field levels. To annotate any of these, the annotation must be placed in front of the code defini-
tion of the artifact being annotated. In some cases we will put them on the same line just before
the class, method, or field, and in other cases we will put them on the line above. It is based com-
pletely upon the preferences of the person applying the annotations, and if you have not already
noticed, we think it makes sense to do one thing in some cases and the other in other cases. It
depends on how long the annotation is and what the most readable format seems to be.

The Java Persistence API annotations were designed to provide maximum readability, be
easy to specify, and be flexible enough to allow different combinations of metadata. Most
annotations are specified as siblings instead of being nested inside each other. As with all
trade-offs, the piper must be paid however, and the cost of flexibility is that many possible per-
mutations of top-level metadata will be syntactically correct but semantically invalid. The
compiler will be of no use, but the provider runtime will often do some basic checking for some
improper annotation groupings. The nature of annotations, however, is that when they are
unexpected, then they will often just not get noticed at all. This is worth remembering when
attempting to understand behavior that may not match what you thought you specified in the
annotations. It could be that one or more of the annotations are just being ignored.

I

72

CHAPTER 4 OBJECT-RELATIONAL MAPPING

The mapping annotations can be categorized as being in one or the other of the two cate-
gories: logical annotations and physical annotations. The annotations in the logical group are
those that describe the entity model from an object modeling view. They are tightly bound to
the domain model and are the sort of metadata that you might want to specify in UML or any
other object modeling language or framework. The physical annotations relate to the concrete
data model in the database. They deal with tables, columns, constraints, and other database-
level artifacts that the object model might never otherwise be aware of.

We will make use of both types of annotations throughout the examples and to demon-
strate the mapping metadata. Understanding and being able to distinguish between these two
levels of metadata will better qualify you to make decisions about where to declare metadata,
and where to use annotations and XML. As we will see in Chapter 10, there are XML equivalents
to all of the mapping annotations described in this chapter, giving you the freedom to use the
approach that best suits your development needs.

Accessing Entity State

The mapped state of an entity must be accessible to the provider at runtime, so that when it
comes time to write the data out, it can be obtained from the entity instance and stored in the
database. Similarly, when the state is loaded from the database, the provider runtime must be
able to insert it into a new entity instance. The way the state is accessed in the entity is called
the access mode.

In Chapter 2 we saw briefly that there were two different ways that could be used to specify
persistent entity state: we could either annotate the fields or annotate the JavaBean-style prop-
erties. The mechanism that we use to designate the persistent state is the same as the access
mode that the provider uses to access that state. If we annotate fields, then the provider will get
and set the fields of the entity using reflection. If the annotations are set on the getter methods
of properties, then those getter and setter methods will be invoked by the provider to access
and set the state.

Tip Some vendors may support annotating a mixture of fields and properties on the same entity class. Be
careful of relying upon this kind of behavior, as it could cause your entity class definitions to be non-portable.

Field Access

Annotating the fields of the entity will cause the provider to use field access to get and set the
state of the entity. Getter and setter methods may or may not be present, but if they are present,
they are ignored by the provider. All fields must be declared as either protected, package, or
private. Public fields are disallowed because it would open up the state fields to access by any
unprotected class in the VM. Doing so is not just an obviously bad practice but could also
defeat the provider implementation. Other classes must use the methods of an entity in order
to access its persistent state.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

The example in Listing 4-1 shows the Employee entity being mapped using field access.
The @Id annotation indicates not only that the id field is the persistent identifier or primary key
for the entity but also that field access should be assumed. The name and salary fields are then
defaulted to being persistent, and they get mapped to columns of the same name.

Listing 4-1. Using Field Access

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }
public void setSalary(long salary) { this. salary = salary; }

Property Access

When property access mode is used, the same contract as for JavaBeans applies, and there
must be getter and setter methods for the persistent properties. The type of the property is
determined by the return type of the getter method and must be the same as the type of the
single parameter passed into the setter method. Both methods must be either public or
protected visibility. The mapping annotations for a property must be on the getter method.

In Listing 4-2 the Employee class has an @1d annotation on the getId() getter method so
the provider will use property access to get and set the state of the entity. The name and salary
properties will be made persistent by virtue of the getter and setter methods that exist for them
and will be mapped to NAME and SALARY columns respectively. Note that the salary property is
backed by the wage field, which does not share the same name. This goes unnoticed by the pro-
vider, since by specifying property access, we are telling the provider to ignore the entity fields
and use only the getter and setter methods for naming.

Listing 4-2. Using Property Access

@Entity

public class Employee {
private int id;
private String name;
private long wage;

73

74

CHAPTER 4 OBJECT-RELATIONAL MAPPING

@Id public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

public long getSalary() { return wage; }
public void setSalary(long salary) { this.wage = salary; }

Mapping to a Table

We saw in Chapter 2 that mapping an entity to a table in the simplest case does not need any
mapping annotations at all. Only the @ntity and @Id annotations need to be specified to
create and map an entity to a database table.

In those cases the default table name, which is just the unqualified name of the entity
class, was perfectly suitable. If it happens that the default table name is not the name that we
like, or if a suitable table that contains the state already exists in our database with a different
name, then we must specify the name of the table. We do this by annotating the entity class
with the @Table annotation and by including the name of the table using the name element.
Many databases have terse names for tables. Listing 4-3 shows an entity that is mapped to a
table that has a name different than its class name.

Listing 4-3. Overriding the Default Table Name

@Entity
@Table(name="EMP")
public class Employee { ... }

Tip Default names are not specified to be either uppercase or lowercase. Most databases are not case-
sensitive, so it won’t generally matter whether a vendor uses the case of the entity name or converts it to
uppercase.

The @Table annotation provides the ability to not only name the table that the entity state is
being stored in but also to name a database schema or catalog. The schema name is commonly
used to differentiate one set of tables from another and is indicated by using the schema element.
Listing 4-4 shows an Employee entity that is mapped to the EMP table in the HR schema.

Listing 4-4. Setting a Schema

@Entity
@Table(name="EMP", schema="HR")
public class Employee { ... }

CHAPTER 4 OBJECT-RELATIONAL MAPPING 75

When specified, the schema name will be prepended to the table name when the persistence
runtime goes to the database to access the table. In this case the HR schema will be prepended
to the EMP table each time the table is accessed.

Tip Some vendors may allow the schema to be included in the name element of the table without having
to specify the schema element—for example, @Table (name="HR.EMP"). Support for inlining the name of
the schema with the table name is non-standard.

Some databases support the notion of a catalog. For these databases, the catalog element
of the @Table annotation may be specified. Listing 4-5 shows a catalog being explicitly set for
the EMP table.

Listing 4-5. Setting a Catalog

@Entity
@Table(name="EMP", catalog="HR")
public class Employee { ... }

Mapping Simple Types

Simple Java types are mapped as part of the immediate state of an entity in its fields or proper-
ties. The list of persistable types is quite lengthy and includes pretty much every type that you
would want to persist. They are

Primitive Java types: byte, int, short, long, boolean, char, float, double

Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Boolean,
Character, Float, Double

Byte and character array types: byte[], Byte[], char[], Character[]

Large numeric types: java.math.BigInteger, java.math.BigDecimal
Strings: java.lang.String

Java temporal types: java.util.Date, java.util.Calendar

JDBC temporal types: java.sql.Date, java.sql.Time, java.sql.Timestamp
Enumerated types: Any system or user-defined enumerated type

Serializable objects: Any system or user-defined serializable type

Sometimes the type of the database column being mapped to is not exactly the same as the
Java type. In almost all cases the provider runtime can convert the type returned by JDBC into
the correct Java type of the attribute. If the type from the JDBC layer cannot be converted to the
Java type of the field or property, then an exception will normally be thrown, although it is not
guaranteed.

76

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Tip When the persistent type does not match the JDBC type, some providers may choose to take propri-
etary action or make a best guess to convert between the two. In other cases, the JDBC driver may be
performing the conversion on its own.

When persisting a field or property, the provider looks at the type and ensures that it is
one of the persistable types listedearlier. If it is in the list, the provider will persist it using the
appropriate JDBC type and pass it through to the JDBC driver. At that point, if the field or prop-
erty is not serializable, the result is unspecified. The provider may choose to throw an
exception or just try and pass the object through to JDBC.

An optional @Basic annotation may be placed on a field or property to explicitly mark it as
being persistent. This annotation is mostly for documentation purposes and is not required for
the field or property to be persistent. Because of the annotation, we call mappings of simple
types basic mappings.

Now that we have seen how we can persist either fields or properties and how they are
virtually equivalent in terms of persistence, we will just call them attributes. An attribute is a
field or property of a class, and we will use the term attribute from now on to avoid having to
continually refer to fields or properties in specific terms when one or the other may apply.

Column Mappings

Where the persistent attributes can be thought of as being logical mappings that indicate that
a given attribute is persistent, the physical annotation that is the companion annotation to the
basic mapping is the @Column annotation. Specifying @olumn on the attribute indicates spe-
cific characteristics of the physical database column that the object model is less concerned
about. In fact, the object model might never even need to know to which column it is mapped,
and the column name and physical mapping metadata may be located in a separate XML file.

A number of annotation elements may be specified as part of @Column, but most of them
apply only to schema generation and will be covered in Chapter 9. The only one that is of con-
sequence is the name element, which is just a string that specifies the name of the column that
the attribute has been mapped to. This is used when the default column name is not appropri-
ate or does not apply to the schema being used. We can think of the name element of the
@Column annotation as a means of overriding the default column name that would have other-
wise been applied.

The example in Listing 4-6 shows how we can override the default column name for an
attribute.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Listing 4-6. Mapping Attributes to Columns

@Entity

public class Employee {
@Id
@Column(name="EMP_ID")
private int id;
private String name;
@Column(name="SAL")
private long salary;
@Column(name="COMM")
private String comments;
/...

To put these annotations in context, let’s look at the full table mapping represented by this
entity. The first thing that we notice is that no @Table annotation exists on the class, so the
default table name of “EMPLOYEE” will be applied to it.

The next thing we see is that @Column can be used with @Id mappings as well as with basic
mappings. The id field is being overridden to map to the EMP_ID column instead of the default
ID column. The name field is not annotated with @Column, so the default column name NAME
would be used to store and retrieve the employee name. The salary and comments fields, how-
ever, are annotated to map to the SAL and COMM columns, respectively. The Employee entity is
therefore mapped to the table that is shown in Figure 4-1.

EMPLOYEE

PK | EMP_ID

NAME
SAL
COMM

Figure 4-1. EMPLOYEE entity table

Lazy Fetching

On occasion, we know that certain portions of an entity will be seldom accessed. In these situ-
ations we can optimize the performance when retrieving the entity by fetching only the data
that we expect to be frequently accessed. We would like the remainder of the data to be fetched
only when or if it is required. There are many names for this kind of feature, including lazy
loading, deferred loading, lazy fetching, on-demand fetching, just-in-time reading, indirec-
tion, and others. They all mean pretty much the same thing, which is just that some data may
not be loaded when the object is initially read from the database but will be fetched only when
itis referenced or accessed.

77

78

CHAPTER 4 OBJECT-RELATIONAL MAPPING

The fetch type of a basic mapping can be configured to be lazily or eagerly loaded by specify-
ing the fetch element in the corresponding @Basic annotation. The FetchType enumerated type
defines the values for this element, which may be either EAGER or LAZY. Setting the fetch type of a
basic mapping to LAZY means that the provider may defer loading the state for that attribute until
itis referenced. The default is to eagerly load all basic mappings. Listing 4-7 shows an example of
overriding a basic mapping to be lazily loaded.

Listing 4-7. Lazy Field Loading

@Entity

public class Employee {
/...
@Basic(fetch=FetchType.LAZY)
@Column(name="COMM")
private String comments;
/...

We are assuming in this example that applications will seldom access the comments in
an employee record, so we mark it as being lazily fetched. Note that in this case the @Basic
annotation is not only present for documentation purposes but also required in order to spec-
ify the fetch type for the field. Configuring the comments field to be fetched lazily will allow an
Employee instance returned from a query to have the comments field empty. The application
does not have to do anything special to get it, however. By simply accessing the comments field,
it will be transparently read and filled in by the provider if it was not already loaded.

Before you use this feature you should be aware of a few pertinent points about lazy
attribute fetching. First and foremost, the directive to lazily fetch an attribute is meant only to
be a hint to the persistence provider to help the application achieve better performance. The
provider is not required to respect the request, since the behavior of the entity is not compro-
mised if the provider goes ahead and loads the attribute. The converse is not true, though,
since specifying that an attribute be eagerly fetched may be critical to being able to access the
entity state once the entity is detached from the persistence context. We will discuss detach-
ment more in Chapter 5 and explore the connection between lazy loading and detachment.

Second, on the surface it may appear that this is a good idea for certain attributes of an
entity, but in practice it is almost never a good idea to lazily fetch simple types. The reason
is that there is little to be gained in only returning part of a database row unless you are certain
that the state will not be accessed in the entity later on. The only times when lazy loading of a
basic mapping should be considered are when either there are many columns in a table (for
example, dozens or hundreds) or when the columns are large (for example, very large character
strings or byte strings). It could take significant resources to load the data, and not loading it
could save quite a lot of effort, time, and resources. Unless either of these two cases is true, then
in the majority of cases this will cause lazily fetching a subset of object attributes to end up
being more expensive than eagerly fetching them.

Lazy fetching is quite relevant when it comes to relationship mappings, though, so we will
be discussing this topic more later in the chapter.

CHAPTER 4 OBJECT-RELATIONAL MAPPING 79

Large Objects

A common database term for a character or byte-based object that can be very large (up to the
gigabyte range) is large object, or LOB for short. Database columns that can store these types of
large objects require special JDBC calls to be accessed from Java. To signal to the provider that
it should use the LOB methods when passing and retrieving this data to and from the JDBC
driver, an additional annotation must be added to the basic mapping. The @Lob annotation
acts as the marker annotation to fulfill this purpose and may appear in conjunction with the
@®Basic annotation, or it may appear when @Basic is absent and implicitly assumed to be on
the mapping.

Since a LOB mapping is just a specialized kind of basic mapping, it can also be accompa-
nied by an @Column annotation when the name of the LOB column needs to be overridden from
the assumed default name.

LOBs come in two flavors in the database: character large objects, called CLOBs, and
binary large objects, or BLOBs. As their names imply, a CLOB column holds a large character
sequence, and a BLOB column can store a large byte sequence. The Java types mapped to
BLOB columns are byte[], Byte[], and Serializable types, while char[], Character([],
and String objects are mapped to CLOB columns. The provider is responsible for making this
distinction based upon the type of the attribute being mapped.

An example of mapping an image to a BLOB column is shown in Listing 4-8. Here, the PIC
column is assumed to be a BLOB column to store the employee picture that is in the picture
field. We have also marked this field to be loaded lazily, a common practice applied to LOBs
that do not get referenced often.

Listing 4-8. Mapping a BLOB Column

@Entity

public class Employee {
@Id
private int id;
@Basic(fetch=FetchType.LAZY)
@Lob @Column(name="PIC")
private byte[] picture;
/7 ...

Enumerated Types

Another of the simple types that may be treated specially is the enumerated type. The values
of an enumerated type are constants that can be handled differently depending upon the
application needs.

As with enumerated types in other languages, the values of an enumerated type in Java
have an implicit ordinal assignment that is determined by the order in which they were
declared. This ordinal cannot be modified at runtime and can be used to represent and store
the values of the enumerated type in the database. Interpreting the values as ordinals is the
default way that providers will map enumerated types to the database, and the provider will
assume that the database column is an integer type.

80

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Consider the following enumerated type:

public enum EmployeeType {
FULL_TIME EMPLOYEE,
PART _TIME EMPLOYEE,
CONTRACT_EMPLOYEE

}

The ordinals assigned to the values of this enumerated type at compile time would be 0 for
FULL_TIME_EMPLOYEE, 1 for PART_TIME_EMPLOYEE, and 2 for CONTRACT_EMPLOYEE. In Listing 4-9
we define a persistent field of this type.

Listing 4-9. Mapping an Enumerated Type Using Ordinals

@Entity

public class Employee {
@Id private int id;
private EmployeeType type;
/...

We can see that mapping EmployeeType is trivially easy to the point where we don’t actu-
ally have to do anything at all. The defaults are applied, and everything will just work. The type
field will get mapped to an integer TYPE column, and all full-time employees will have an ordi-
nal of 0 assigned to them. Similarly the other employees will have their types stored in the TYPE
column accordingly.

If an enumerated type changes, however, then we have a problem. The persisted ordinal
data in the database will no longer apply to the correct value. For example, if the company
benefits policy changed and we started giving additional benefits to part-time employees
who worked over 20 hours a week, then we would want to differentiate between the two
types of part-time employees. By adding a PART _TIME BENEFITS EMPLOYEE value after
PART TIME EMPLOYEE, we would be causing a new ordinal assignment to occur, where our
new value would get assigned the ordinal of 2 and CONTRACT _EMPLOYEE would get 3. This would
have the effect of causing all of the contract employees on record to suddenly become part-
time employees with benefits, clearly not the result that we were hoping for.

We could go through the database and adjust all of the Employee entities to have their
correct type, but if the employee type is used elsewhere, then we would need to make sure that
they were all fixed as well. This is not a good maintenance situation to be in.

A better solution would be to store the name of the value as a string instead of storing the
ordinal. This would isolate us from any changes in declaration and allow us to add new types
without having to worry about the existing data. We can do this by adding an @Enumerated
annotation on the attribute and specifying a value of STRING.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

The @Enumerated annotation actually allows an EnumType to be specified, and the
EnumType is itself an enumerated type that defines values of ORDINAL and STRING. While it is
somewhat ironic that an enumerated type is being used to indicate how the provider should
represent enumerated types, it is wholly appropriate. Since the default value of @Enumerated is
ORDINAL, specifying @Enumerated (ORDINAL) is useful only when you want to make this map-
ping explicit.

In Listing 4-10 we are storing strings for the enumerated values. Now the TYPE column
must be a string-based type, and all of the full-time employees will have the string
“FULL_TIME_EMPLOYEE” stored in their corresponding TYPE column.

Listing 4-10. Mapping an Enumerated Type Using Strings

@Entity

public class Employee {
@1d
private int id;
@Enumerated(EnumType.STRING)
private EmployeeType type;
/...

Note that using strings will solve the problem of inserting additional values in the middle
of the enumerated type, but it will leave the data vulnerable to changes in the names of the val-
ues. For instance, if we wanted to change PART TIME EMPLOYEE to PT_EMPLOYEE, then we would
be in trouble. This is a less likely problem, though, because changing the names of an enumer-
ated type would cause all of the code that uses the enumerated type to have to change also.
This would be a bigger bother than reassigning values in a database column.

In general, storing the ordinal is going to be the best and most efficient way to store enu-
merated types as long as the likelihood of additional values inserted in the middle is not high.
New values could still be added on the end of the type without any negative consequences.

One final note about enumerated types is that they are defined quite flexibly in Java. In
fact, it is even possible to have values that contain state. There is currently no support within
the Java Persistence API for mapping state contained within enumerated values.

Temporal Types

Temporal types are the set of time-based types that may be used in persistent state mappings.
The list of supported temporal types includes the three java.sql types java.sql.Date,
java.sql.Time, and java.sql.Timestamp, and it includes the two java.util types
java.util.Date and java.util.Calendar.

The java.sql types are completely hassle-free. They act just like any other simple map-
ping type and do not need any special consideration. The two java.util types need additional
metadata, however, to indicate which of the JDBC java. sql types to use when communicating

81

82

CHAPTER 4 OBJECT-RELATIONAL MAPPING

with the JDBC driver. This is done by annotating them with the @Temporal annotation and
specifying the JDBC type as a value of the TemporalType enumerated type. There are three
enumerated values of DATE, TIME, and TIMESTAMP to represent each of the java.sql types.

Listing4-11 shows how java.util.Date and java.util.Calendar may be mapped to date
columns in the database.

Listing 4-11. Mapping Temporal Types

@Entity

public class Employee {
@Id
private int id;
@Temporal (TemporalType.DATE)
private Calendar dob;
@Temporal (TemporalType.DATE)
@Column(name="S DATE")
private Date startDate;
/...

Like the other varieties of basic mappings, the @olumn annotation may be used to over-
ride the default column name.

Transient State

Attributes that are part of a persistent entity but not intended to be persistent can either be
modified with the transient modifier in Java or be annotated with the @Transient annotation.
If either of these is specified, then the provider runtime will not apply its default mapping rules
to the attribute it was specified on.

Transient fields are used for various reasons. One might be when you want to cache some
in-memory state that you don’t want to have to recompute, rediscover, or reinitialize. For
example, in Listing 4-12 we are using a transient field to save the correct locale-specific word
for “Employee” so that we print it correctly wherever it is being displayed. We have used the
transient modifier instead of the @Transient annotation so that if the Employee gets serialized
from one VM to another then the translated name will get reinitialized to correspond to the
locale of the new VM. In cases where the non-persistent value should be retained across serial-
ization, the annotation should be used instead of the modifier.

Listing 4-12. Using a Transient Field

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
transient private String translatedName;
/...

CHAPTER 4 OBJECT-RELATIONAL MAPPING

public String toString() {
if (translatedName == null) {
translatedName =
ResourceBundle.getBundle("EmpResources").getString("Employee");
}

return translatedName +

id + + name;

Mapping the Primary Key

Every entity that is mapped to a relational database must have a mapping to a primary key in the
table. We have already learned the basics of how the @1d annotation indicates the identifier of
the entity. In this section we explore simple identifiers and primary keys in a little more depth
and learn how we can let the persistence provider generate unique identifier values for us.

Except for its special significance in designating the mapping to the primary key column,
an id mapping is almost the same as the basic mapping. Another difference is that id mappings
are generally restricted to the following types:

¢ Primitive Java types: byte, int, short, long, char

¢ Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Character
¢ Arrays of primitive or wrapper types: Byte, Integer, Short, Long, Character
 Strings: java.lang.String

¢ Large numeric types: java.math.BigInteger

¢ Temporal types: java.util.Date, java.sql.Date

Floating point types like float and double are permitted, as well as the Float and Double
wrapper classes and java.math.BigDecimal, but these are discouraged because of the nature
of rounding error and the untrustworthiness of the equals() operator when applied to them.
Using floating types for primary keys is a risky endeavor and definitely not recommended.

Just as with basic mappings, the @Column annotation may be used to override the column
name that the id attribute is mapped to. The same defaulting rules apply to id mappings as
apply to basic mappings, which is that the name of the column is assumed to be the same as
the name of the attribute.

Identifier Generation

Sometimes applications do not want to be bothered with trying to define and ensure uniqueness
in some aspect of their domain model and are content to let the identifier values be automatically
generated for them. This is called id generation and is specified by the @GeneratedValue
annotation.

When id generation is enabled, the persistence provider will generate an identifier value
for every entity instance of that type. Once the identifier value is obtained, the provider will
insert it into the newly persisted entity; however, depending upon the way it is generated, it
may not actually be present in the object until the entity has been inserted in the database. In

83

84

CHAPTER 4 OBJECT-RELATIONAL MAPPING

other words, the application cannot rely upon being able to access the identifier until after
either a flush has occurred or the transaction has completed.

Applications can choose one of four different id generation strategies by specifying a strat-
egy in the strategy element. The value may be any one of AUTO, TABLE, SEQUENCE, or IDENTITY
enumerated values of the GenerationType enumerated type.

Table and sequence generators may be specifically defined and then reused by multiple
entity classes. These generators are named and are globally accessible to all of the entities in
the persistence unit.

Automatic Id Generation

If an application does not care what kind of generation is used by the provider but wants gen-
eration to occur, then it can specify a strategy of AUTO. This means that the provider will use
whatever strategy it wants to generate identifiers. Listing 4-13 shows an example of using auto-
matic id generation. This will cause an identifier value to be created by the provider and
inserted into the id field of each Employee entity that gets persisted.

Listing 4-13. Using Auto Id Generation

@Entity

public class Employee {
@Id @GeneratedValue(strategy=GenerationType.AUTO)
private int id;
/...

There is a catch to using AUTO, though. The provider gets to pick its own strategy to store
the identifiers, but it needs to have some kind of persistent resource in order to do so. For
example, if it chooses a table-based strategy, then it needs to create a table; if it chooses a
sequence-based strategy, then it needs to create a sequence. The provider can’t always rely
upon the database connection that it obtains from the server to have permissions to create a
table in the database. This is normally a privileged operation that is often restricted to the DBA.
There will need to be some kind of creation phase or schema generation to cause the resource
to be created before the AUTO strategy is able to function.

The AUTO mode is really a generation strategy for development or prototyping. It works
well as a means of getting you up and running more quickly when the database schema is being
generated. In any other situation it would be better to use one of the other generation strategies
discussed in the later sections.

Id Generation Using a Table

The most flexible and portable way to generate identifiers is to use a database table. Not only
will it port to different databases, but it also allows for storing multiple different identifier
sequences for different entities within the same table. The easiest way to use a table to generate
identifiers is to simply specify the generation strategy to be TABLE in the strategy element:

@Id GeneratedValue(strategy=GenerationType.TABLE)
private int id;

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Since the generation strategy is indicated but no generator has been specified, the provider will
assume a table of its own choosing. If schema generation is used, then it will be created, but if
not, then the default table assumed by the provider must be known and must exist in the
database.

A more explicit approach would be to actually specify the table that is to be used for id
storage. This is done by defining a table generator that, contrary to what its name implies, does
not actually generate tables. Rather, it is an identifier generator that uses a table to store them.
We can define one by using a @TableGenerator annotation and then refer to it by name in the
@GeneratedValue annotation:

@TableGenerator(name="Emp _Gen")
@Id @GeneratedValue(generator="Emp Gen")
private int id;

Although we are showing the @TableGenerator annotating the identifier attribute, it can actu-
ally be defined on any attribute or class. Regardless of where it is defined, it will be available to
the entire persistence unit. A good practice would be to define it locally on the id attribute if
only one class is using it but to define it in XML, as described in Chapter 10, if it will be used for
multiple classes.

The name element globally names the generator, which then allows us to reference it in
@GeneratedValue. This is functionally equivalent to the previous example where we simply
said that we wanted to use table generation but did not specify the generator. Now we are spec-
itying the name of the generator but not supplying any of the generator details, leaving them to
be defaulted by the provider.

A further qualifying approach would be to specify the table details, as in the following:

@TableGenerator(name="Emp Gen",
table="ID GEN",
pkColumnName="GEN_NAME",
valueColumnName="GEN_VAL")

We have included some additional elements after the name of the generator. Following the
name are three elements, table, pkColumnName, and valueColumnName, which define the actual
table that stores the identifiers for “Emp_Gen”. The table element just indicates the name of
the table.

Every table that is used for id generation should have two columns. It could have more
than two columns, but only two will be used. The first column is of a string type and is used to
identify the particular generator sequence. It is the primary key for all of the generators in the
table. The name of this column is specified by pkColumnName. The second column is of an
integer type and stores the actual id sequence that is being generated. The value stored in this
column is the last identifier that was allocated in the sequence. The name of this column is
specified by valueColumnName. In our case our table is named “ID_GEN”. The name of the
primary key column of the table, or the column that stores the generator names, is named
“GEN_NAME”, and the column that stores the id sequence values is named “GEN_VAL”.

Each defined generator represents a row in the table. The name of the generator becomes
the value stored in the pkColumnName column for that row and is used by the provider to look
up the generator to obtain its last allocated value.

85

86

CHAPTER 4 OBJECT-RELATIONAL MAPPING

In our example we named our generator “Emp_Gen” so our table would look like the one
in Figure 4-2.

ID_GEN
GEN_NAME GEN_VAL
Emp_Gen 0

Figure 4-2. Table for identifier generation

We can see that the last allocated Employee identifier is 0, which tells us that no identifiers
have been generated yet. An initialValue element representing the last allocated identifier
may be specified as part of the generator definition, but the default setting of 0 will suffice in
almost every case. This setting is used only during schema generation when the table is cre-
ated. During subsequent executions, the provider will read the contents of the value column to
determine the next identifier to give out.

To avoid updating the row for every single identifier that gets requested, an allocation size
is used. This will cause the provider to pre-allocate a block of identifiers and then give out iden-
tifiers from memory as requested until the block is used up. Once this block is used up, the next
request for an identifier triggers another block of identifiers to be pre-allocated, and the iden-
tifier value is incremented by the allocation size. By default, the allocation size is set to 50. This
value can be overridden to be larger or smaller through the use of the allocationSize element
when defining the generator.

Tip The provider may allocate identifiers within the same transaction as the entity being persisted or in a
separate transaction. It is not specified, but you should check your provider documentation to see how it can
avoid the risk of deadlock when concurrent threads are creating entities and locking resources.

Shown in Listing 4-14 is an example of defining a second generator to be used for Address enti-
ties but that uses the same ID_GEN table to store the identifier sequence. In this case we are actually
explicitly dictating the value we are storing in the identifier table’s primary key column by specify-
ing the pkColumnvalue element. This element allows the name of the generator to be different from
the column value, although doing so is rarely needed. The example shows an Address id generator
named “Address_Gen” but then defines the value stored in the table for Address id generation as
“Addr_Gen”. The generator also sets the initial value to 10000 and the allocation size to 100.

Listing 4-14. Using Table Id Generation

@TableGenerator(name="Address Gen",
table="ID GEN",
pkColumnName="GEN_NAME",
valueColumnName="GEN_VAL",
pkColumnValue="Addr_Gen",
initialValue=10000,
allocationSize=100)

CHAPTER 4 OBJECT-RELATIONAL MAPPING

@Id @GeneratedValue(generator="Address Gen")
private int id;

If both “Emp_Gen” and “Address_Gen” generators were defined, then on application
startup the ID_GEN table would look like Figure 4-3. As the application allocates identifiers,
the values stored in the GEN_VAL column will increase.

ID_GEN
GEN_NAME GEN_VAL
Emp_Gen 0
Addr_Gen 10000

Figure 4-3. Table for generating Address and Employee identifiers

If schema generation has not been run, then the table must exist in the database and be
configured to be in this state when the application starts up for the first time. The following
SQL could be applied to create and initialize this table:

CREATE TABLE id gen (

gen name VARCHAR(80),

gen_val INTEGER,

CONSTRAINT pk_id_gen

PRIMARY KEY (gen_name)

)
INSERT INTO id_gen (gen_name, gen val) VALUES ('Emp_Gen', 0);
INSERT INTO id_gen (gen_name, gen_val) VALUES ('Addr _Gen', 10000);

Id Generation Using a Database Sequence

Many databases support an internal mechanism for id generation called sequences. A database
sequence may be used to generate identifiers when the underlying database supports them.

As we saw with table generators, if it is known that a database sequence should be used for
generating identifiers and we are not concerned that it be any particular sequence, then spec-
ifying the generator type alone should be sufficient:

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE)
private int id;

In this case no generator is named, so the provider will use a default sequence object of its own
choosing. Note that if multiple sequence generators are defined but not named, then it is not
specified whether they use the same default sequence or different ones. The only difference
between using one sequence for multiple entity types and using one for each entity would be
the ordering of the sequence numbers and possible contention on the sequence. The safer
route would be to define a named sequence generator and refer to it in the @GeneratedValue
annotation:

@SequenceGenerator (name="Emp _Gen", sequenceName="Emp Seq")
@Id @GeneratedValue(generator="Emp Gen")
private int getld;

87

88

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Unless schema generation is enabled, this would require that the sequence be defined and
already exist. The SQL to create such a sequence would be:

CREATE SEQUENCE Emp_Seq
MINVALUE 1
START WITH 1
INCREMENT BY 50

The initial value and allocation size can also be used in sequence generators and would
need to be reflected in the SQL to create the sequence. We can see that the default allocation
size is 50, just as it is with table generators. If schema generation is not being used and the
sequence is being manually created, then the INCREMENT BY clause would need to be config-
ured to match the setting or default value of the allocation size.

Id Generation Using Database Identity

Some databases support a primary key identity column sometimes referred to as an autonum-
ber column. Whenever a row is inserted into the table, then the identity column will get a
unique identifier assigned to it. This can be used to generate the identifiers for objects, but
once again is available only when the underlying database supports it.

To indicate that IDENTITY generation should occur, the @GeneratedValue annotation
should specify a generation strategy of IDENTITY. This will indicate to the provider that it must
reread the inserted row from the table after an INSERT has occurred. This will allow it to obtain
the newly generated identifier from the database and put it into the in-memory entity that was
just persisted:

@Id @GeneratedValue(strategy=CenerationType.IDENTITY)
private int id;

There is no generator annotation for IDENTITY since it must be defined as part of the database
schema for the primary key column itself. Identity generation obviously may not be shared
across multiple entity types.

Another difference, hinted at earlier, between using IDENTITY and other id generation
strategies is that the identifier will not be accessible until after the insert has occurred. While no
guarantee is made as to the accessibility of the identifier before the transaction has completed,
itis at least possible for other types of generation to eagerly allocate the identifier, but when
using identity, it is the action of inserting that causes the identifier to be generated. It would be
impossible for the identifier to be available before the entity is inserted into the database, and
because insertion of entities is most often deferred until commit time, the identifier would not
be available until after the transaction has been committed.

Relationships

If entities contained only simple persistent state then the business of object-relational
mapping would be a trivial one indeed. Most entities need to be able to reference, or have
relationships with, other entities. This is what produces the domain model graphs that are
common in business applications.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

In the following sections we will explore the different kinds of relationships that can exist
and show how to define and map them using Java Persistence API mapping metadata.

Relationship Concepts

Before we go off and start mapping relationships we should really take a quick tour through
some of the basic relationship concepts and terminology. Having a firm grasp on these con-
cepts will make it easier to understand the remainder of the relationship mapping sections.

Roles

There is an old adage that says every story has three sides: yours, mine, and the truth. Relation-
ships are kind of the same in that there are three different perspectives. The first is the view
from one side of the relationship, the second is from the other side, and the third is from a glo-
bal perspective that knows about both sides. The “sides” are called roles. In every relationship
there are two entities that are related to one another, and each entity is said to play a role in the
relationship.

Relationships are everywhere, so examples are not hard to come by. An employee has
a relationship to the department that he or she works in. The Employee entity plays the role
of working in the department, while the Department entity plays the role of having an
employee working in it.

Of course the role a given entity is playing differs according to the relationship, and an entity
may be participating in many different relationships with many different entities. We can con-
clude, therefore, that any entity may be playing a number of different roles in any given model. If
we think of an Employee entity, we realize that it does in fact play other roles in other relation-
ships, such as the role of working for a manager in its relationship with another Employee entity,
working on a project in its relationship with the Project entity, and so forth.

Unlike EJB 2.1, where the roles all had to be enumerated in metadata for every relation-
ship, the Java Persistence API does not have metadata requirements to declare the role an
entity is playing. Nevertheless, roles are still helpful as a means of understanding the nature
and structure of relationships.

Directionality

In order to have relationships at all, there has to be a way to create, remove, and maintain
them. The basic way this is done is by an entity having a relationship attribute that refers to its
related entity in a way that identifies it as playing the other role of the relationship. It is often
the case that the other entity in turn has an attribute that points back to the original entity.
When each entity points to the other, the relationship is bidirectional. If only one entity has a
pointer to the other, the relationship is said to be unidirectional.

Arelationship from an Employee to the Project that they work on would be bidirectional.
The Employee should know its Project, and the Project should point to the Employee working
on it. A UML model of this relationship is shown in Figure 4-4. The arrows going in both direc-
tions indicate the bidirectionality of the relationship.

An Employee and its Address would likely be modeled as a unidirectional relationship
because the Address is not expected to ever need to know its resident. If it did, of course, then
it would need to become a bidirectional relationship. Figure 4-5 shows this relationship.
Because the relationship is unidirectional the arrow points from the Employee to the Address.

89

90

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Employee Project

Figure 4-4. Employee and Project in a bidirectional relationship

Employee Address

Figure 4-5. Employee in a unidirectional relationship with Address

As we will see later in the chapter, although they both share the same concept of directional-
ity, the object and data models each see it a little differently because of the paradigm difference.
In some cases, unidirectional relationships in the object model can pose a problem in the data-
base model.

Source and Target

Even though we can use the directionality of a relationship to help describe and explain a
model, when it comes to actually discussing it in concrete terms, it makes sense to think of
every bidirectional relationship as a pair of unidirectional relationships.

So instead of having a single bidirectional relationship of an Employee working on a
Project, we would have one unidirectional “project” relationship where the Employee points
to the Project they work on, and another unidirectional “worker” relationship where the
Project points to the Employee that works on it. Each of these relationships has an entity that
is the source or referring role, and the side that is the target or referred-to role. The beauty of
this is that we can use the same terms no matter which relationship we are talking about and
no matter what the roles are in the relationship. Figure 4-6 shows how the two relationships
have source and target entities, and how from each relationship perspective the source and
target entities are different.

Source Target
Employee Project
Target Source
Employee Project

Figure 4-6. Unidirectional relationships between Employee and Project

Cardinality

Itisn’t very often that a project has only a single employee working on it. We would like to be
able to capture the aspect of how many entities exist on each side of the same relationship
instance. This is called the cardinality of the relationship. Each role in a relationship will have
its own cardinality, which indicates whether there can be only one instance of the entity or
many instances.

CHAPTER 4 OBJECT-RELATIONAL MAPPING 91

In our employee and department example, we might first say that one employee works
in one department, so the cardinality of both sides would be one. But chances are that more than
one employee works in the department. Because of this we would make the relationship have a
many cardinality on the Employee or source side, meaning that many Employee instances could
each point to the same Department. The target or Department side would keep its cardinality of
one. Figure 4-7 shows this many-to-one relationship. The “many” side is marked with a “*”.

Employee -] Department

Figure 4-7. Unidirectional many-to-one relationship

In our Employee and Project example, we have a bidirectional relationship, or two
relationship directions. If an employee can work on multiple projects and a project can have
multiple employees working on it, then we would end up with cardinalities of “many” on the
sources and targets of both directions. Figure 4-8 shows the UML diagram of this relationship.

Employee Project

* *

Figure 4-8. Bidirectional many-to-many relationship

Apicture is worth a thousand words, and describing these relationships in text is quite a lot
harder than simply showing a picture. In words, though, this picture indicates the following:

¢ Each employee can work on a number of projects

¢ Many employees can work on the same project

¢ Each project can have a number of employees working on it

¢ Many projects can have the same employee working on them

Implicit in this model is the fact that there can be sharing of Employee and Project
instances across multiple relationship instances.

Ordinality

A role may be further specified by determining whether or not it may be present at all. This is
called the ordinality and serves to show whether the target entity needs to be specified when
the source entity is created. Because the ordinality is really just a Boolean value, we also refer
to it as the optionality of the relationship.

In cardinality terms, ordinality would be indicated by the cardinality being a range instead
of a simple value, and the range would begin with 0 or 1 depending upon the ordinality. It is
simpler, though, to merely state that the relationship is either optional or mandatory. If
optional, then the target may not be present, but if mandatory, then a source entity without
areference to its associated target entity is in an invalid state.

92

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Mappings Overview

Now that we know enough theory and have the conceptual background to be able to discuss
relationships, we can go on to explaining and using relationship mappings.

Each one of the mappings is named for the cardinality of the source and target roles. As we
saw in the previous sections, we can view a bidirectional relationship as a pair of two unidirec-
tional mappings. Each of these mappings is really a unidirectional relationship mapping, and
if we take the cardinalities of the source and target of the relationship and combine them
together in that order, permuting them with the two possible values of “one” and “many”, we
end up with the following names given to the mappings:

1. Many-to-one
2. One-to-one
3. One-to-many

4, Many-to-many

These mapping names are also the names of the annotations that are used to indicate
the relationship types on the attributes that are being mapped. They are the basis for the logi-
cal relationship annotations, and they contribute to the object modeling aspects of the entity.

Like basic mappings, relationship mappings may be applied to either fields or properties
of the entity.

Single-Valued Associations

An association from an entity instance to another entity instance (where the cardinality of
the target is “one”) is called a single-valued association. The many-to-one and one-to-one
relationship mappings fall into this category because the source entity refers to at most one
target entity. We will discuss these relationships and some of their variants first.

Many-to-One Mappings

In our cardinality discussion of the Employee and Department relationship (shown in Figure 4-7)
we first thought of an employee working in a department, so we just assumed that it was a one-
to-one relationship. However, when we realized that more than one employee works in the same
department, we changed it to a many-to-one relationship mapping. It turns out that many-to-
one is the most common mapping and is the one that is normally used when creating an associ-
ation to an entity.

In Figure 4-9 we show a many-to-one relationship between Employee and Department.
Employee is the “many” side and the source of the relationship, and Department is the “one”
side and the target. Once again, because the arrow points in only one direction, from Employee
to Department, the relationship is unidirectional. Note that in UML, the source class has an
implicit attribute of the target class type if it can be navigated to. For example, Employee has an
attribute called department that will contain a reference to a single Department instance.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Employee Department
id: int id: int
name: String name: String
salary: long * 0.1

Figure 4-9. Many-to-one relationship from Employee to Department

A many-to-one mapping is defined by annotating the attribute in the source entity (the
attribute that refers to the target entity) with the @anyToOne annotation. In Listing 4-15 we can
see how the @ManyToOne annotation is used to map this relationship. The department field in
Employee is the source attribute that is annotated.

Listing 4-15. Many-to-One Relationship from Employee fo Department

@Entity
public class Employee {
/7 ...
@anyToOne
private Department department;
/7 ...
}

We have included only the bits of the class that are relevant to our discussion, but we see
from the previous example that the code was rather anticlimactic. A single annotation was all
that was required to map the relationship, and it turned out to be quite dull, really.

The same kinds of attribute flexibility and modifier requirements that were described for
basic mappings also apply to relationship mappings. The annotation may be present on either
the field or property, depending upon the strategy used for the entity.

Using Join Columns

In the database, a relationship mapping means that one table has a reference to another table.
The database term for a column that refers to a key (usually the primary key) in another table
is a foreign key column. In the Java Persistence API we call them join columns, and the
@JoinColumn annotation is the primary annotation used to configure these types of columns.

Consider the EMPLOYEE and DEPARTMENT tables shown in Figure 4-10 that correspond to
the Employee and Department entities. The EMPLOYEE table has a foreign key column named
DEPT_ID that references the DEPARTMENT table. From the perspective of the entity relationship,
DEPT_IDis the join column that associates the Employee and Department entities.

93

94

CHAPTER 4 OBJECT-RELATIONAL MAPPING

EMPLOYEE
DEPARTMENT
PK D
>0----OHPK |ID
NAME
SALARY NAME
FK1 DEPT_ID

Figure 4-10. EMPLOYEE and DEPARTMENT tables

In almost every relationship, independent of source and target sides, one of the two sides
is going to have the join column in its table. That side is called the owning side or the owner of
the relationship. The side that does not have the join column is called the non-owning or
inverse side.

Ownership is important for mapping because the physical annotations that define the
mappings to the columns in the database (for example, @JoinColumn) are always defined on
the owning side of the relationship. If they are not there, then the values are defaulted from the
perspective of the attribute on the owning side.

Many-to-one mappings are always on the owning side of a relationship, so if there is a
@JoinColumn to be found in the relationship that has a many-to-one side, then that is where it
will be located. To specify the name of the join column, the name element is used. For example,
the @JoinColumn(name="DEPT_ID") annotation means that the DEPT_ID column in the source
entity table is the foreign key to the target entity table, whatever the target entity of the relation-
ship happens to be.

If no @JoinColumn annotation accompanies the many-to-one mapping, then a default col-
umn name will be assumed. The name that is used as the default is formed from a combination
of both the source and target entities. It is the name of the relationship attribute in the source
entity, which is department in our example, plus an underscore character (“_"), plus the name
of the primary key column of the target entity. So if the Department entity were mapped to a
table that had a primary key column named ID, then the join column in the EMPLOYEE table
would be assumed to be named DEPARTMENT _ID. If this is not actually the name of the column,
then the @JoinColumn annotation must be defined to override the default.

Going back to Figure 4-10, the foreign key column isnamed DEPT_IDinstead of the defaulted
DEPARTMENT _ID column name. Listing 4-16 shows the @JoinColumn annotation being used to
override the join column name to be DEPT_ID.

Listing 4-16. Many-to-One Relationship Overriding the Join Column

@Entity

public class Employee {
@Id private int id;
@anyToOne
@JoinColumn(name="DEPT ID")
private Department department;
/7 ...

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Annotations allow us to specify @JoinColumn on either the same line as @anyToOne or on
a separate line, above or below it. By convention the logical mapping should appear first and
then the physical mapping. This makes the object model clear since the physical part is less
important to the object model.

One-to-One Mappings

If it really was the case that only one employee could work in a department, then we would be
back to the one-to-one association again. A more realistic example of a one-to-one association,
however, would be an employee who has a parking space. Assuming that every employee got

his or her own parking space, then we would create a one-to-one relationship from Employee

to ParkingSpace. Figure 4-11 shows this relationship.

Employee ParkingSpace
id: int id: int
name: String lot: int
salary: long 0.1 0.1 location: String

Figure 4-11. One-to-one relationship from Employee to ParkingSpace

We define the mapping in a similar way to the way we define a many-to-one mapping,
except that we use the @0neToOne annotation on the parkingSpace attribute instead of a
@anyToOne annotation. Just as with a many-to-one mapping, the one-to-one mapping has a
join column in the database and needs to override the name of the column in an @oinColumn
annotation when the default name does not apply. The default name is composed the same
way as for many-to-one mappings using the name of the source attribute and the target pri-
mary key column name.

Figure 4-12 shows the tables mapped by the Employee and ParkingSpace entities. The foreign
key column in the EMPLOYEE table is named PSPACE_ID and refers to the PARKING SPACE table.

EMPLOYEE PARKING_SPACE
PK D PK |ID
NAME o
LOT
SALARY
FK1 [PSPACE_ID LOCATION

Figure 4-12. EMPLOYEE and PARKING SPACE tables

As it turns out, one-to-one mappings are almost the same as many-to-one mappings except
for the fact that only one instance of the source entity is able to refer to the same target entity
instance. In other words, the target entity instance is not shared amongst the source entity
instances. In the database, this equates to having a uniqueness constraint on the source foreign

95

96

CHAPTER 4 OBJECT-RELATIONAL MAPPING

key column (that is, the foreign key column in the source entity table). If there were more than
one foreign key value that was the same, then it would contravene the rule that no more than one
source entity instance can refer to the same target entity instance.

In Listing 4-17 we see the mapping for this relationship. The @JoinColumn annotation has
been used to override the default join column name of PARKINGSPACE _ID to be PSPACE_1ID.

Listing 4-17. One-to-One Relationship from Employee to ParkingSpace

@Entity

public class Employee {
@Id private int id;
private String name;
@0neToOne
@JoinColumn(name="PSPACE_ID")
private ParkingSpace parkingSpace;
/...

Bidirectional One-to-One Mappings

It often happens that the target entity of the one-to-one has a relationship back to the source
entity; for example, ParkingSpace has a reference back to the Employee that uses it. When this
is the case, we call it a bidirectional one-to-one relationship. As we saw previously, we actually
have two separate one-to-one mappings, one in each direction, but we call the combination of
the two a bidirectional one-to-one relationship. To make our existing one-to-one employee
and parking space example bidirectional, we need only change the ParkingSpace to point back
to the Employee. Figure 4-13 shows the bidirectional relationship.

Employee ParkingSpace
id: int id: int
name: String lot: int
salary: long 0.1 0.1 location: String

Figure 4-13. One-to-one relationship between Employee and ParkingSpace

We already learned that the entity table that contains the join column determines the
entity that is the owner of the relationship. In a bidirectional one-to-one relationship both of
the mappings are one-to-one mappings, and either side may be the owner, so the join column
may end up being on one side or the other. This would normally be a data modeling decision
and not a Java programming decision, and it would likely be decided based upon the most fre-
quent direction of traversal.

Consider the ParkingSpace entity class shown in Listing 4-18. This example assumes the
table mapping shown in Figure 4-12, and it assumes that Employee is the owning side of the
relationship. We now have to add a reference from ParkingSpace back to Employee. This is
achieved by adding the @0neToOne relationship annotation on the employee field. As part of the

CHAPTER 4 OBJECT-RELATIONAL MAPPING

annotation we must add a mappedBy element to indicate that the owning side is the Employee
and not the ParkingSpace. Because ParkingSpace is the inverse side of the relationship, it does
not have to supply the join column information.

Listing 4-18. Inverse Side of a Bidirectional One-to-One Relationship
@Entity
public class ParkingSpace {

@Id private int id;

private int lot;

private String location;

@0neToOne (mappedBy="parkingSpace")

private Employee employee;

/...

The mappedBy element in the one-to-one mapping of the employee attribute of
ParkingSpace is needed to refer to the parkingSpace attribute in the Employee class.
The value of mappedBy is the name of the attribute in the owning entity that points back to
the inverse entity.

The two rules, then, for bidirectional one-to-one associations are:

1. The @JoinColumn annotation goes on the mapping of the entity that is mapped to
the table containing the join column, or the owner of the relationship. This may be on
either side of the association.

2. ThemappedBy element should be specified in the @neToOne annotation in the entity
that does not define a join column, or the inverse side of the relationship.

It would not be legal to have a bidirectional association that had mappedBy on both sides
just as it would be incorrect to not have it on either side. The difference is that if it were absent
on both sides of the relationship, then the provider would treat each side as an independent
unidirectional relationship. This would be fine except that it would assume that each side was
the owner and that each had a join column.

Bidirectional many-to-one relationships are explained later as part of the discussion of
multi-valued bidirectional associations.

One-to-One Primary Key Mappings

A specific case of a unique one-to-one relationship is when the primary keys of the related enti-
ties are always guaranteed to match. The two entities must always have been created with the
same identifiers, and in the database each primary key could also be used as a foreign key to
the other entity. Of course the direction in which the actual constraint occurs should dictate
which side is the owner since the owner is the one with the foreign key constraint in its table.

Imagine if every time an employee got hired, his or her employee id was used as their park-
ing space id (and employees were never allowed to change parking spaces!). This relationship
would be modeled in the database as shown in Figure 4-14.

97

98

CHAPTER 4 OBJECT-RELATIONAL MAPPING

EMPLOYEE PARKING_SPACE
PK |ID PK,FK1 1D
— —H—0+
NAME LOT
SALARY LOCATION

Figure 4-14. EMPLOYEE and PARKING SPACE tables with shared primary keys

The difference between mapping this kind of one-to-one relationship and the previous
kind is that there is no additional foreign key column in either table. The primary key in the
PARKING SPACE table is also a foreign key to the EMPLOYEE table. When this is the case, then an
@PrimaryKeyJoinColumn is used instead of an @oinColumn annotation. Because the foreign
key is now defined from ParkingSpace to Employee, we need to reverse the ownership of the
relationship and make ParkingSpace the owner. We specify the @PrimaryKeyJoinColumn
annotation on the employee field of the ParkingSpace entity.

Listing 4-19 shows the revised Employee and ParkingSpace entities. Note that since the
Employee is now the inverse side of the relationship, the join column mapping is removed, and
the @0neToOne annotation must now specify the mappedBy element.

Listing 4-19. One-to-One Primary Key Relationship

@Entity

public class Employee {
@Id private int id;
private String name;
@0neToOne (mappedBy="employee")
private ParkingSpace parkingSpace;
/...

}

@Entity

public class ParkingSpace {
@Id private int id;
private int lot;
private String location;
@0neToOne
@PrimaryKeyJoinColumn
private Employee employee;
/...

We did not have to specify anything more than the @PrimaryKeyJoinColumn annotation
since the entities had simple primary keys. If compound primary keys had been used, then
additional information would need to be specified in the @PrimaryKeyJoinColumn annotation.
We will discuss this case in Chapter 8.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Collection-Valued Associations

When the source entity references one or more target entity instances, a many-valued associa-
tion or associated collection is used. Both the one-to-many and many-to-many mappings fit
the criteria of having many target entities, and although the one-to-many association is the
most frequently used, many-to-many mappings are useful as well when there is sharing in
both directions.

One-to-Many Mappings

When an entity is associated with a Collection of other entities, it is most often in the form

of a one-to-many mapping. For example, a department would normally have a number of
employees. Figure 4-15 shows the Employee and Department relationship that we showed earlier
in the section Many-to-One Mappings, only this time the relationship is bidirectional in nature.

Employee Department
id: int id: int
name: String name: String
salary: long * 0.1

Figure 4-15. Bidirectional Employee and Department relationship

When a relationship is bidirectional, there are actually two mappings, one for each direc-
tion. A bidirectional one-to-many relationship always implies a many-to-one mapping back to
the source, so in our Employee and Department example there is a one-to-many mapping from
Department to Employee and a many-to-one mapping from Employee back to Department. We
could just as easily say that the relationship is a bidirectional many-to-one if we were looking
at it from the Employee perspective. They are equivalent, since bidirectional many-to-one
relationships imply a one-to-many mapping back from the target to source, and vice versa.

When a source entity has an arbitrary number of target entities stored in its collection,
there is no scalable way to store those references in the database table that it maps to. How
would it store an arbitrary number of foreign keys in a single row? It must, rather, let the tables
of the entities in the collection have foreign keys back to the source entity table. This is why the
one-to-many association is almost always bidirectional and never the owning side.

Furthermore, if the target entity tables have foreign keys that point back to the source
entity table then the target entities themselves should have many-to-one associations back to
the source entity object. Having a foreign key in a table for which there is no association in the
corresponding entity object model is not in keeping with the data model and not supported by
the APL.

Let’s look at a concrete example of a one-to-many mapping based on the Employee and
Department example shown in Figure 4-15. The tables for this relationship are exactly the same
as those shown in Figure 4-10, where we talked about many-to-one relationships. The only dif-
ference between the many-to-one example and this one is that we are now implementing the
inverse side of the relationship. Because Employee has the join column and is the owner of the
relationship, the Employee class is unchanged from Listing 4-16.

99

100

CHAPTER 4 OBJECT-RELATIONAL MAPPING

On the Department side of the relationship, we need to map the employees collection of
Employee entities as a one-to-many association using the @neToMany annotation. Listing 4-20
shows the Department class that uses this annotation. Note that because this is the inverse side
of the relationship, we need to include the mappedBy element just as we did in the bidirectional
one-to-one relationship example.

Listing 4-20. One-to-Many Relationship

@Entity

public class Department {
@Id private int id;
private String name;
@0OneToMany (mappedBy="department")
private Collection<Employee> employees;
/...

There are a couple of noteworthy points to mention about this class. The first is that a
generic type-parameterized Collection is being used to store the Employee entities. This pro-
vides the strict typing that guarantees that only objects of type Employee will exist in the
Collection. This, in and of itself, is quite useful since it not only provides compile-time check-
ing of our code but also saves us having to perform cast operations when we retrieve the
Employee instances from the collection.

The Java Persistence API assumes the availability of generics; however, it is still perfectly
acceptable to use a Collection that is not type-parameterized. We might just as well have
defined the Department class without using generics but defining only a simple Collection
type, as we would have done in releases of standard Java previous to Java SE 5 (except for
JDK 1.0 or 1.1 when java.util.Collection was not even standardized!). If we did, then we
would need to specify the type of entity that will be stored in the Collection that is needed by
the persistence provider. The code is shown in Listing 4-21 and looks almost identical, except
for the targetEntity element that indicates the entity type.

Listing 4-21. Using targetEntity

@Entity
public class Department {
@Id private int id;
private String name;
@0neToMany(targetEntity=Employee.class, mappedBy="department")
private Collection employees;
/...

There are two important points to remember when defining bidirectional one-to-many
(or many-to-one) relationships:

1. The many-to-one side is the owning side, so the join column is defined on that side.

2. The one-to-many mapping is the inverse side, so the mappedBy element must be used.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Failing to specify the mappedBy element in the @neToMany annotation will cause the pro-
vider to treat it as a unidirectional one-to-many relationship that is defined to use a join table
(described later). This is an easy mistake to make and should be the first thing you look for if
you see a missing table error with a name that has two entity names concatenated together.

Many-to-Many Mappings

When one or more entities are associated with a Collection of other entities and the entities have
overlapping associations with the same target entities, then we must model it as a many-to-many
relationship. Each of the entities on each side of the relationship will have a collection-valued asso-
ciation that contains entities of the target type. Figure 4-16 shows a many-to-many relationship
between Employee and Project. Each employee can work on multiple projects, and each project
can be worked on by multiple employees.

Employee Project
id: int id: int
name: String name: String
salary: long * *

Figure 4-16. Bidirectional many-to-many relationship

A many-to-many mapping is expressed on both the source and target entities as an
@ManyToMany annotation on the collection attributes. For example, in Listing 4-22 the Employee
has a projects attribute that has been annotated with @anyToMany. Likewise, the Project
entity has an employees attribute that has also been annotated with @anyToMany.

Listing 4-22. Many-to-Many Relationship Between Employee and Project

@Entity

public class Employee {
@Id private int id;
private String name;

@ManyToMany
private Collection<Project> projects;
/1 ...

}

@Entity

public class Project {
@Id private int id;
private String name;
@ManyToMany (mappedBy="projects")
private Collection<Employee> employees;
VA

101

102

CHAPTER 4 OBJECT-RELATIONAL MAPPING

There are some important differences between this many-to-many relationship and
the one-to-many relationship that we discussed earlier. The first is just a mathematical
inevitability and is that when a many-to-many relationship is bidirectional, both sides of
the relationship are many-to-many mappings.

The second difference is that there are no join columns on either side of the relationship. We
will see in the next section that the only way to implement a many-to-many relationship is with
a separate join table. The consequence of not having any join columns in either of the entity
tables is that there is no way to determine which side is the owner of the relationship. Because
every bidirectional relationship has to have both an owning side and an inverse side, we must
pick one of the two entities to be the owner. In this example we have picked Employee to be owner
of the relationship, but we could have just as easily picked Project instead. As in every other
bidirectional relationship, the inverse side must use the mappedBy element to identify the owning
attribute.

Note that no matter which side is designated as the owner, the other side should include
the mappedBy element, otherwise the provider will think that both sides are the owner and
that the mappings are separate unidirectional relationships.

Using Join Tables

Since the multiplicity of both sides of a many-to-many relationship is plural, neither of the two
entity tables can store an unlimited set of foreign key values in a single entity row. We must use
a third table to associate the two entity types. We call this association table a join table, and
each many-to-many relationship must have one.

Ajoin table consists simply of two foreign key or join columns to refer to each of the two
entity types in the relationship. A collection of entities is then mapped as multiple rows in the
table, each of which associates one entity with another. The set of rows that contains the same
value in the foreign key column to an entity represents the associations that entity instance has
with entity instances that it is related to.

In Figure 4-17 we see the EMPLOYEE and PROJECT tables for the Employee and Project
entities and the EMP_PROJ join table that associates them. The EMP_PROJ table contains only
foreign key columns that make up its compound primary key. The EMP_ID column refers to the
EMPLOYEE primary key, while the PROJ_ID column refers to the PROJECT primary key.

EMPLOYEE EMP_PROJ oROJECT
PK |ID PKFK1 |EMP_ID
—H——O<|pkrk2 |pROJID PO—H{PK |10
NAME
SALARY NAME

Figure 4-17. Join table for a many-to-many relationship

In order to map the tables described in Figure 4-17 we need to add some additional meta-
data to the Employee class that we have designated as the owner of the relationship. Listing 4-23
shows the many-to-many relationship with the accompanying join table annotations.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Listing 4-23. Using a Join Table

@Entity
public class Employee {
@Id private int id;
private String name;
@ManyToMany
@JoinTable(name="EMP_PROJ",
joinColumns=@JoinColumn(name="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PROJ_ID"))
private Collection<Project> projects;
VY

The @JoinTable annotation is used to configure the join table for the relationship. The
two join columns in the join table are distinguished by means of the owning and inverse sides.
The join column to the owning side is described in the joinColumns element while the join col-
umn to the inverse side is specified by the inverseJoinColumns element. We can see from the
previous example that the values of these elements are actually @JoinColumn annotations
embedded within the @JoinTable annotation. This provides the ability to declare all of the
information about the join columns within the table that defines them. The names are plural
for the case when there may be multiple columns for each foreign key when either the owning
entity or the inverse entity has a multipart primary key. This more complicated case will be dis-
cussed in Chapter 8.

In our example we fully specified the names of the join table and its columns because this
is the most common case. But if we were generating the database schema from the entities,
then we would not actually need to specify this information. We could have relied upon the
default values that would be assumed and used when the persistence provider generates the
table for us. When no @JoinTable annotation is present on the owning side, then a default join
table named <Owner>_<Inverse> is assumed, where <Owner> is the name of the owning entity
and <Inverse> is the name of the inverse or non-owning entity. Of course, the owner is basi-
cally picked at random by the developer so these defaults will apply according to the way the
relationship is mapped and whichever entity is designated as the owning side.

The join columns will be defaulted according to the join column defaulting rules that were
previously described in the section Using Join Columns. The default name of the join column
that points to the owning entity is the name of the attribute on the inverse entity that points to
the owning entity, appended by an underscore and the name of the primary key column of the
owning entity table. So in our example the Employee is the owning entity, and the Project has
an employees attribute that contains the collection of Employee instances. The Employee entity
maps to the EMPLOYEE table and has a primary key column of ID, so the defaulted name of the
join column to the owning entity would be EMPLOYEES_ID. The inverse join column would be
likewise defaulted to be PROJECTS_ID.

It is fairly clear that the defaulted names of a join table and the join columns within it are
not likely to match up with an existing table. This is why we mentioned that the defaults are
really useful only if the database schema being mapped to was generated by the provider.

103

104

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Unidirectional Collection Mappings

When an entity has a one-to-many mapping to a target entity but the @neToMany annotation
does not include the mappedBy element, it is assumed to be in a unidirectional relationship with
the target entity. This means that the target entity does not have a many-to-one mapping back
to the source entity. Figure 4-18 shows a unidirectional one-to-many association between
Employee and Phone.

Employee Phone
id: int id: int
name: String type: String
salary: long 0.1 * number: String

Figure 4-18. Unidirectional one-to-many relationship

Consider the data model in Figure 4-19. There is no join column to store the association back
from Phone to Employee. Therefore, we have used a join table to associate the Phone entity with
the Employee entity.

EMPLOYEE EMP_PHONE PHONE
PK |ID PKFK1 | PHONE_ID PK |ID
H——O<|pkrk2 |EMP_ID FO—H-
NAME TYPE
SALARY NUM

Figure 4-19. join table for a unidirectional one-to-many relationship

Similarly, when one side of a many-to-many relationship does not have a mapping to the
other, then it is a unidirectional relationship. The join table must still be used; the only differ-
ence is that only one of the two entity types actually uses the table to load its related entities or
updates it to store additional entity associations.

In both of these two unidirectional collection-valued cases the source code is similar to
the earlier examples, but there is no collection attribute in the target entity, and the mappedBy
element will not be present in the @neToMany annotation on the source entity. The join table
must now be specified as part of the mapping. Listing 4-24 shows Employee with a one-to-
many relationship to Phone using a join table.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Listing 4-24. Unidirectional One-to-Many Relationship

@Entity
public class Employee {
@Id private int id;
private String name;
@0neToMany
@JoinTable(name="EMP_PHONE",
joinColumns=@JoinColumn(name="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PHONE_ID"))
private Collection<Phone> phones;
VY

Note that when generating the schema, default naming for the join columns is slightly
different in the unidirectional case because there is no inverse attribute. The name of the join
table would default to EMPLOYEE_PHONE and would have a join column named EMPLOYEE_ID
after the name of the Employee entity and its primary key column. The inverse join column
would be named PHONES ID, which is the concatenation of the phones attribute in the Employee
entity and the ID primary key column of the PHONE table.

Tip Some vendors may provide support for a unidirectional one-to-many target foreign key mapping,
where a join column exists in the target table but no relationship exists from the target entity back to the
source entity. This is not supported in the current version of the Java Persistence API.

Using Different Collections

Different types of collections may be used to store multivalued entity associations. Depending
upon the needs of the application, any of Collection, Set, List, and Map may be used for mul-
tivalued associations. There are only a couple of basic rules that guide their usage.

The first step is to define the collection to be any one of the interface types just mentioned.
Implementation classes may not be used in the definition of the attribute but may be used as
initial values set by the constructor or in an initialization method of the entity class.

The implementation class may be invoked through its implementation API at any
time on a new object until the entity becomes managed or has been persisted by means of an
EntityManager.persist() call. After that point, the interface must always be used when oper-
ating on the collection, whether it has been read in from the database or has been detached
from the entity manager. This is because when the entity instance becomes managed, the per-
sistence provider may have replaced the initial concrete instance with an alternate Collection
implementation class of its own.

Using a Set or a Collection

The most common collection type used in associations is the standard Collection superinter-
face. This is used when it doesn’t matter which implementation is underneath and when the
common Collection methods are all that are required to access the entities stored in it.

105

106

CHAPTER 4 OBJECT-RELATIONAL MAPPING

A Set will prevent duplicate elements from being inserted and may be a simpler and more
concise collection model, while a vanilla Collection interface is the most generic. Neither of
these interfaces require accompanying annotations to further specify them. They are used the
same way that they would be used if they held non-persistent objects.

Using a List

Another common collection type is the List. A List is often used when the entities are to be
retrieved in some user-defined order, which may be optionally specified using an @0rderBy anno-
tation. The value of the annotation is a string that indicates one or more fields or properties that are
to be used to determine the order of the results, each of which may be optionally followed by an ASC
or DESC keyword to define whether the attribute should be ordered in ascending or descending
order. If the sequence direction is not specified, then the property will be listed in ascending order.
Multiple attributes may be specified, each with their own ascending or descending sequence. If
none are included then the list will be ordered using the primary keys of the entities. If the annota-
tion is not present then the List will be in some undefined order, typically in the order returned by
the database in the absence of any ORDER BY clause.

Let’s take our example in Listing 4-20 and use a List instead of a Collection interface in
the employees attribute of Department. By adding an @0rderBy annotation on the mapping,
we will indicate that we want the employees to be ordered in ascending order according to the
name attribute of the Employee. Listing 4-25 shows the updated example.

Listing 4-25. One-to-Many Relationship Using a List

@Entity

public class Department {
/...
@0neToMany (mappedBy="department")
@0rderBy("name ASC")
private List<Employee> employees;
/...

We needn’t have included the ASC in the @0rderBy annotation since it would be ascending
by default, but it is good documentation style to include it.

We might also want to have sub-orderings using multiple attributes, and we could do that
by specifying comma-separated <attribute name ASC/DESC> pairs in the annotation. For exam-
ple, if Employee had a status, then we might have ordered by status and then by name by using
an @0rderBy annotation of @rderBy("status DESC, name ASC"). Of course the prerequisite
for using an attribute in an @0rderBy annotation is that the attribute type be comparable.

Order is not preserved, however, when writing the List out to the database. Since data-
base rows do not have any inherent order, the entities in a Java List cannot retain their order
unless a designated database column has been created to store it. Then when an entity gets
added to the front of the List, each of the other entities in the List must be updated to reflect
their new order assignment in the List.

The Java Persistence API does not include support for persistent order preservation that is
not based upon some state of the entity, so changing the order of the items in a List in memory
will not cause that order to be stored in the database at commit time. The order specified in

CHAPTER 4 OBJECT-RELATIONAL MAPPING 107

@0rderBy, which depends upon some aspect of the entity state, will be used only when reading
the List backinto memory. The rule of thumb, then, is that the entity List order should always
be kept consistent by the application logic. Persisting the order of the List is being considered
for inclusion in a subsequent version of the specification.

Using a Map

Sometimes a collection of entities is stored as a Map keyed by some attribute of the target entity
type. When this is the case, the collection type may be declared to be of type Map, and the
@MapKey annotation may be applied to the collection.

The map key designates the attribute of the target entity that is to be used to key on. It may
be any persistent attribute on the target entity that is comparable and responds appropriately
to the hashCode () and equals () methods. It should also be unique, at least in the collection
domain, so that values are not lost or overwritten in memory.

If, for example, we want to use a Map instead of a List to store our employees in a depart-
ment, then we could key the map on the employee name for quick employee lookup. The
relevant Department code would look like Listing 4-26.

Listing 4-26. One-to-Many Relationship Using a Map

@Entity

public class Department {
/...
@0neToMany (mappedBy="department")
@MapKey (name="name"
private Map<String, Employee> employees;
/...

If, for some reason we did not want or were not able to use the generic version of
Map<KeyType, ValueType>, then we would instead define it using an old-style non-
parameterized Map as shown in Listing 4-27.

Listing 4-27. One-to-Many Relationship Using a Non-parameterized Map

@Entity
public class Department {
/...
@neToMany(targetEntity=Employee.class, mappedBy="department")
@MapKey (name="name"
private Map employees;
/...

When the collection is of type Map but no @apKey annotation is specified, the entities will
be keyed by their primary key attributes. Entities that have multiple primary key fields will be
keyed on instances of the primary key class.

108

CHAPTER 4 OBJECT-RELATIONAL MAPPING

Lazy Relationships

In previous sections we saw how we could configure an attribute to be loaded when it got
accessed and not necessarily before. We learned that lazy loading at the attribute level is not
normally going to be very beneficial.

At the relationship level, however, lazy loading can be a big boon to enhancing perfor-
mance. It can reduce the amount of SQL that gets executed and speed up queries and object
loading considerably.

The fetch mode can be specified on any of the four relationship mapping types. When not
specified on a single-valued relationship the related object is guaranteed to be loaded eagerly.
Collection-valued relationships default to be lazily loaded, but because lazy loading is only a
hint to the provider, they may be loaded eagerly if the provider decides to do so.

In bidirectional relationship cases, the fetch mode may be lazy on one side but eager on
the other. This kind of configuration is actually quite common since relationships are often
accessed in different ways depending upon the direction from which navigation occurs.

An example of overriding the default fetch mode would be if we didn’t want to load the
ParkingSpace for an Employee every time we loaded the Employee. Listing 4-28 shows the
parkingSpace attribute configured to use lazy loading.

Listing 4-28. Changing the Fetch Mode on a Relationship

@Entity

public class Employee {
@Id private int id;
@0neToOne (fetch=FetchType.LAZY)
private ParkingSpace parkingSpace;
/...

Tip Arelationship that is specified or defaulted to be lazily loaded may or may not cause the related object
to be loaded when the getter method is used to access the object. The object may be a proxy, so it may take
actually invoking a method on it to cause it to be faulted in.

Summary

Mapping objects to relational databases is of critical importance to persistence applications.
Dealing with the impedance mismatch requires a sophisticated suite of metadata. The Java
Persistence API not only provides this metadata, but also facilitates easy and convenient
development.

In this chapter we went through the process of mapping entity state that included simple
Java types, large objects, enumerated types, and temporal types. We also used the metadata to
do meet-in-the-middle mapping to specific table names and columns.

We went over how identifiers are generated and described four different strategies of gen-
eration. We saw the different strategies in action and differentiated them from each other.

CHAPTER 4 OBJECT-RELATIONAL MAPPING

We then reviewed some of the relationship concepts and applied them to object-relational
mapping metadata. We used join columns and join tables to map single-valued and collection-
valued associations and went over some examples of using different kinds of Collection types.

In the next chapter we will discuss using entity managers and persistence contexts in more
advanced ways than we did previously, delving into the practices and nuances of injecting and
using them in Java EE and Java SE environments.

109

CHAPTER 5

Entity Manager

Entities do not persist themselves when they are created. Nor do they remove themselves
from the database when they are garbage-collected. It is the business logic of the application
that must manipulate entities to manage their persistent life cycle. The Java Persistence API
provides the EntityManager interface for this purpose in order to let applications manage and
search for entities in the relational database. At first this might seem like a limitation of the Java
Persistence API. If the persistence runtime knows which objects are persistent, why should the
application have to be involved in the process? Rest assured that this design is both deliberate
and far more beneficial to the application than any transparent persistence solution. Persistence
applications are a partnership between the application and persistence provider. The Java
Persistence API brings a level of control and flexibility that cannot otherwise be achieved
without the active participation of the application.

In Chapter 2 we introduced the EntityManager interface and described some of the basic
operations that it provides for operating on entities. We extended that discussion in Chapter 3
to include an overview of the Java EE environment and the types of services that impact persis-
tence applications. Finally, in the previous chapter we described object-relational mapping,
the key to building entities out of objects. With that groundwork in place we are ready to revisit
entity managers, persistence contexts, and persistence units, and to begin a more in-depth
discussion of these concepts.

Persistence Contexts

Let’s begin by reintroducing the core terms of the Java Persistence API. A persistence unit

is a named configuration of entity classes. A persistence context is a managed set of entity
instances. Every persistence context is associated with a persistence unit, restricting the classes of
the managed instances to the set defined by the persistence unit. Saying that an entity instance
is managed means that it is contained within a persistence context and that it may be acted
upon by an entity manager. It is for this reason that we say an entity manager manages a persis-
tence context.

Understanding the persistence context is the key to understanding the entity manager. An
entity’s inclusion or exclusion from a persistence context will determine the outcome of any
persistent operations on it. If the persistence context participates in a transaction, then the in-
memory state of the managed entities will get synchronized to the database. Yet despite the
important role that it plays, the persistence context is never actually visible to the application.
It is always accessed indirectly through the entity manager and assumed to be there when we
need it.

m

112

CHAPTER 5 ENTITY MANAGER

So far so good, but how does the persistence context get created and when does this occur?
How does the entity manager figure into the equation? This is where it starts to get interesting.

Entity Managers

Up to this point we have demonstrated only basic entity manager operations in both the Java
SE and Java EE environments. We have reached a point, however, where we can finally reveal
the full range of entity manager configurations. The Java Persistence API defines no less than

three different types of entity managers, each of which has a different approach to persistence
context management that is tailored to a different application need. As we will see, the persis-
tence context is just one part of the puzzle.

Container-Managed Entity Managers

In the Java EE environment, the most common way to acquire an entity manager is by using
the @PersistenceContext annotation to inject one. An entity manager obtained in this way is
called container-managed, because the container manages the life cycle of the entity manager.
The application does not have to create it or close it. This is the style of entity manager we
demonstrated in Chapter 3.

Container-managed entity managers come in two varieties. The style of a container-managed
entity manager determines how it works with persistence contexts. The first and most common
style is called transaction-scoped. This means that the persistence contexts managed by the
entity manager are determined by the active JTA transaction. The second style is called extended.
Extended entity managers work with a single persistence context that is tied to the life cycle of
a stateful session bean.

Transaction-Scoped

All of the entity manager examples that we have shown so far for the Java EE environment have
been transaction-scoped entity managers. A transaction-scoped entity manager is returned
whenever the reference created by the @PersistenceContext annotation is resolved. As we
mentioned in Chapter 3, a transaction-scoped entity manager is stateless, meaning that it can
be safely stored on any Java EE component. Because the container manages it for us, it is also
basically maintenance-free.

Once again, let’s introduce a stateless session bean that uses a transaction-scoped entity
manager. Listing 5-1 shows the bean class for a session bean that manages project information.
The entity manager is injected into the em field using the @PersistenceContext annotation and
is then used in the business methods of the bean.

Listing 5-1. The ProjectService Session Bean

@Stateless

public class ProjectServiceBean implements ProjectService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

CHAPTER 5 ENTITY MANAGER

public void assignEmployeeToProject(int empId, int projectId) {
Project project = em.find(Project.class, projectld);
Employee employee = em.find(Employee.class, empId);
project.getEmployees().add(employee);
employee.getProjects().add(project);

/7 ...

We described the transaction-scoped entity manager as stateless. If that is the case, how
can it work with a persistence context? The answer lies with the JTA transaction. All container-
managed entity managers depend on JTA transactions. The reason for this is because they can
use the transaction as a way to track persistence contexts. Every time an operation is invoked
on the entity manager, it checks to see if a persistence context is associated with the transac-
tion. If it finds one, the entity manager will use this persistence context. If it doesn’t find one,
then it creates a new persistence context and associates it with the transaction. When the
transaction ends, the persistence context goes away.

Let’s walk through an example. Consider the assignEmployeeToProject() method from
Listing 5-1. The first thing the method does is search for the Employee and Project instances
using the find() operation. When the first find() method is invoked, the container checks for
a transaction. By default, the container will ensure that a transaction is active whenever a
session bean method starts, so the entity manager in this example will find one ready. It then
checks for a persistence context. This is the first time any entity manager call has occurred, so
there isn’t a persistence context yet. The entity manager creates a new one and uses it to find
the employee.

When the entity manager is used to search for the employee, it checks the transaction
again and this time finds the one it created when searching for the project. It then reuses this
persistence context to search for the employee. At this point employee and project are both
managed entity instances. The employee is then added to the project, updating both the employee
and project entities. When the method call ends, the transaction is committed. Because the
employee and project instances were managed, the persistence context is able to detect any
state changes in them, and it updates the database during the commit. When the transaction is
over, the persistence context goes away.

This process is repeated every time one or more entity manager operations are invoked
within a transaction.

Extended

In order to describe the extended entity manager, we must first talk a little about stateful session
beans. As we learned in Chapter 3, stateful session beans are designed to hold conversational
state. Once acquired by a client, the same bean instance is used for the life of the conversation
until the client invokes one of the methods marked @Remove on the bean. While the conversa-
tion is active, the business methods of the client may store and access information using the
fields of the bean.

113

114

CHAPTER 5 ENTITY MANAGER

Let’s try using a stateful session bean to help manage a department. Our goal is to create a
business object for a Department entity that provides business operations relating to that entity.
Listing 5-2 shows our first attempt. The business method init () is called by the client to initialize
the department id. We then store this department id on the bean instance, and the addEmployee ()
method uses it to find the department and make the necessary changes. From the perspective
of the client, they only have to set the department id once, and then subsequent operations always
refer to the same department.

Listing 5-2. First Attempt at Department Manager Bean

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;
int deptId;

public void init(int deptId) {
this.deptld = deptld;
}

public void setName(String name) {
Department dept = em.find(Department.class, deptld);
dept.setName(name);

}

public void addEmployee(int empId) {
Department dept = em.find(Department.class, deptld);
Employee emp = em.find(Employee.class, empId);
dept.getEmployees().add(emp);
emp.setDepartment(dept);

}

/...

@Remove
public void finished() {
}

The first thing that should stand out when looking at this bean is that it seems unnecessary
to have to search for the department every time. After all, we have the department id, why not
just store the Department entity instance as well? Listing 5-3 revises our first attempt by searching
for the department once during the init() method and then reusing the entity instance for
each business method.

CHAPTER 5 ENTITY MANAGER

Listing 5-3. Second Attempt at Department Manager Bean

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;
Department dept;

public void init(int deptId) {
dept = em.find(Department.class, deptId);
}

public void setName(String name) {
dept.setName(name);

}

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empId);
dept.getEmployees().add(emp);
emp.setDepartment (dept);

/7 ...

@Remove
public void finished() {
}

This version looks better-suited to the capabilities of a stateful session bean. It is certainly
more natural to reuse the Department entity instance instead of searching for it each time. But
there is a problem. The entity manager in Listing 5-3 is transaction-scoped. Assuming there is
no active transaction from the client, every method on the bean will start and commit a new
transaction since the default transaction attribute for each method is REQUIRED. Because there
is a new transaction for each method, the entity manager will use a different persistence context
each time.

Even though the Department instance still exists, the persistence context that used to
manage it went away when the transaction associated with the init() call ended. We refer to
the Department entity in this case as being detached from a persistence context. The instance is
still around and can be used, but any changes to its state will be ignored. For example, invoking
setName () will change the name in the entity instance, but the changes will never be reflected
in the database.

This is the situation that the extended entity manager is designed to solve. Designed
specifically for stateful session beans, it prevents entities from becoming detached when trans-
actions end. Before we go too much further, let’s introduce our third and final attempt at a
department manager bean. Listing 5-4 shows our previous example updated to use an extended
persistence context.

115

116

CHAPTER 5 ENTITY MANAGER

Listing 5-4. Using an Extended Entity Manager

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;

public void init(int deptId) {
dept = em.find(Department.class, deptld);
}

public void setName(String name) {
dept.setName(name);

}

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empId);
dept.getEmployees().add(emp);
emp.setDepartment(dept);

/7 ...

@Remove
public void finished() {

}

As you can see, we changed only one line. The @PersistenceContext annotation that we
introduced in Chapter 3 has a special type element that may be set to either TRANSACTION
or EXTENDED. These constants are defined by the PersistenceContextType enumerated type.
TRANSACTION is the default and corresponds to the transaction-scoped entity managers we have
been using up to now. EXTENDED means that an extended entity manager should be used.

With this change made, the department manager bean now works as expected. Extended
entity managers create a persistence context when a stateful session bean instance is created
that lasts until the bean is removed. Unlike the persistence context of a transaction-scoped
entity manager that begins when the transaction begins and lasts until the end of a transaction,
the persistence context of an extended entity manager will last for the entire length of the
conversation. Because the Department entity is still managed by the same persistence context,
any time it is used in a transaction, any changes will be automatically written to the database.

The extended persistence context allows stateful session beans to be written in a way that
is more natural with respect to their capabilities. Later we will discuss special limitations on the
transaction management of extended entity managers, but by and large they are well-suited to
the type of example we have shown here.

The biggest limitation of the extended entity manager is that it requires a stateful session
bean. Despite having been available in the EJB specification for many years, stateful session

CHAPTER 5 ENTITY MANAGER

beans are still not widely used. Partly due to the poor quality of early vendor implementations,
stateful session beans gained a reputation for poor performance and poor scalability. Even
though modern servers are very efficient in their management of stateful session beans, devel-
oper skepticism remains. Given that the HTTP session offers similar capabilities and is readily
available without developing new beans, developers have traditionally chosen that route over
stateful session beans for conversational data.

More importantly, Java EE applications are largely stateless in nature. Many business
operations do not require the kind of conversational state that stateful session beans provide.
But that said, with the new ease-of-use features introduced in EJB 3.0 and the extended persis-
tence context as a major new feature custom-tailored to stateful session beans, they may see
more use in the future.

Application-Managed Entity Managers

In Chapter 2 we introduced the Java Persistence API with an example written using Java SE.
The entity manager in that example, and any entity manager that is created from the
createEntityManager () call of an EntityManagerFactory instance, is what we call an application-
managed entity manager. This name comes from the fact that the application manages the life
cycle of the entity manager instead of the container.

Although we expect the majority of applications to be written using container-managed
entity managers, application-managed entity managers still have a role to play. They are the
only entity manager type available in Java SE, and as we will see, they can be used in Java EE
as well.

Creating an application-managed entity manager is simple enough. All you need is an
EntityManagerFactory to create the instance. What separates Java SE and Java EE for application-
managed entity managers is not how you create the entity manager but how you get the factory.
Listing 5-5 demonstrates use of the Persistence class to bootstrap an EntityManagerFactory
instance that is then used to create an entity manager.

Listing 5-5. Application-Managed Entity Managers in Java SE

public class EmployeeClient {
public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("EmployeeService");
EntityManager em = emf.createEntityManager();

Collection emps = em.createQuery("SELECT e FROM Employee e")
.getResultlist();
for (Iterator i = emps.iterator(); i.hasNext();) {
Employee e = (Employee) i.next();

System.out.println(e.getId() + ", " + e.getName());
}

em.close();
emf.close();

117

118

CHAPTER 5 ENTITY MANAGER

The Persistence class offers two variations of the same createEntityManager () method
that may be used to create an EntityManagerFactory instance for a given persistence unit name.
The first, specifying only the persistence unit name, returns the factory created with the default
properties defined in the persistence.xml file. The second form of the method call allows a map
of properties to be passed in, adding to or overriding the properties specified in persistence.xml.
This form is useful when required JDBC properties may not be known until the application is
started, perhaps with information provided as command-line parameters. We will discuss
persistence unit properties in Chapter 11.

Creating an application-managed entity manager in Java EE requires using the
@PersistenceUnit annotation to declare a reference to the EntityManagerFactory for a persis-
tence unit. Once acquired, the factory can be used to create an entity manager, which may be
used just as it would in Java SE. Listing 5-6 demonstrates injection of an EntityManagerFactory
into a servlet and the use of it to create a short-lived entity manager in order to verify a user id.

Listing 5-6. Application-Managed Entity Managers in Java EE

public class LoginServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;

protected void doPost(HttpServletRequest request, HttpServletResponse response)

{
String userId = request.getParameter("user");
// check valid user
EntityManager em = emf.createEntityManager();
try {
User user = em.find(User.class, userId);
if (user == null) {
// return error page
/...
}
} finally {
em.close();
}
/...
}
}

One thing in common in both of these examples is that the entity manager is explicitly
closed with the close() call when it is no longer needed. This is one of the lifecycle requirements of
an entity manager that must be performed manually in the case of application-managed entity
managers and that is normally taken care of automatically by container-managed entity managers.
Likewise, the EntityManagerFactory instance must also be closed, but only in the Java SE appli-
cation. In Java EE, the container closes the factory automatically, so no extra steps are required.

In terms of the persistence context, the application-managed entity manager is similar to
an extended container-managed entity manager. When an application-managed entity manager

CHAPTER 5 ENTITY MANAGER

is created, it creates it own private persistence context that lasts until the entity manager is
closed. This means that any entities managed by the entity manager will remain that way, inde-
pendent of any transactions.

The role of the application-managed entity manager in Java EE is somewhat specialized.
If resource-local transactions are required for an operation, an application-managed entity
manager is the only type of entity manager that can be configured with that transaction type
within the server. As we will describe in the next section, the transaction requirements of an
extended entity manager can make them difficult to deal with in some situations. Application-
managed entity managers can be safely used on stateful session beans to accomplish similar goals.

Transaction Management

Developing a persistence application is as much about transaction management as it is about
object-relational mapping. Transactions define when new, changed, or removed entities are
synchronized to the database. Understanding how persistence contexts interact with transac-
tions is a fundamental part of working with the Java Persistence API.

Note that we said persistence contexts, not entity managers. There are several different
entity manager types, but all use a persistence context internally. The entity manager type
determines the lifetime of a persistence context, but all persistence contexts behave the same
way when they are associated with a transaction.

There are two transaction-management types supported by the Java Persistence API. The
first is resource-local transactions. These are the native transactions of the JDBC drivers that
are referenced by a persistence unit. The second transaction-management type is the Java
Transaction API, or JTA transactions. These are the transactions of the Java EE server, supporting
multiple participating resources, transaction lifecycle management, and distributed XA
transactions.

Container-managed entity managers always use JTA transactions, while application-
managed entity managers may use either type. Because JTA is not typically available in Java SE
applications, the provider need only support resource-local transactions in that environment.
The default and preferred transaction type for Java EE applications is JTA. As we will describe
in the next section, propagating persistence contexts with JTA transactions is a major benefit to
enterprise persistence applications.

The transaction type is defined for a persistence unit and is configured using the
persistence.xml file. We will discuss this setting and how to apply it in Chapter 11.

JTA Transaction Management

In order to talk about JTA transactions, we must first discuss the difference between transaction
synchronization, transaction association, and transaction propagation. Transaction synchro-
nization is the process by which a persistence context is registered with a transaction so that
the persistence context may be notified when a transaction commits. The provider uses this
notification to ensure that a given persistence context is correctly flushed to the database.
Transaction association is the act of binding a persistence context to a transaction. You can also
think of this as the active persistence context within the scope of that transaction. Transaction
propagation is the process of sharing a persistence context between multiple container-managed
entity managers in a single transaction.

119

120

CHAPTER 5 ENTITY MANAGER

There can be only one persistence context associated with and propagated across a JTA
transaction. All container-managed entity managers in the same transaction must share the
same propagated persistence context.

Transaction-Scoped Persistence Contexts

As the name suggests, a transaction-scoped persistence context is tied to the life cycle of the
transaction. It is created by the container during a transaction and will be closed when

the transaction completes. Transaction-scoped entity managers are responsible for creating
transaction-scoped persistence contexts automatically when needed. We say only when needed
because transaction-scoped persistence context creation is lazy. An entity manager will create
a persistence context only when a method is invoked on the entity manager and when there is
no persistence context available.

When a method is invoked on the transaction-scoped entity manager, it must first check if
there is a propagated persistence context. If one exists, the entity manager uses this persistence
context to carry out the operation. If one does not exist, the entity manager requests a new
persistence context from the persistence provider and then marks this new persistence context
as the propagated persistence context for the transaction before carrying out the method call.
All subsequent transaction-scoped entity manager operations, in this component or any other,
will thereafter use this newly created persistence context. This behavior works independently
of whether or not container-managed or bean-managed transaction demarcation has been used.

Propagation of the persistence context simplifies the building of enterprise applications.
When an entity is updated by a component inside of a transaction, any subsequent references
to the same entity will always correspond to the correct instance, no matter what component
obtains the entity reference. Propagating the persistence context gives developers the freedom
to build loosely coupled applications knowing that they will always get the right data even
though they are not sharing the same entity manager instance.

To demonstrate propagation of a transaction-scoped persistence context, let’s introduce
an audit service bean that stores information about a successfully completed transaction.
Listing 5-7 shows the complete bean implementation. The logTransaction() method ensures
that an employee id is valid by attempting to find the employee using the entity manager.

Listing 5-7. AuditService Session Bean

@Stateless

public class AuditServiceBean implements AuditService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public void logTransaction(int empId, String action) {
// verify employee number is valid
if (em.find(Employee.class, empId) == null) {
throw new IllegalArgumentException("Unknown employee id");
}
LogRecord 1r = new LogRecord(empld, action);
em.persist(lr);

CHAPTER 5 ENTITY MANAGER

Now consider the fragment from the EmployeeService session bean example shown in
Listing 5-8. After an employee is created, the logTransaction() method of the AuditService
session bean is invoked to record the “created employee” event.

Listing 5-8. Logging EmployeeService Transactions

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

@EJB AuditService audit;

public void createEmployee(Employee emp) {
em.persist(emp);
audit.logTransaction(emp.getId(), "created employee");

/7 ...

Even though the newly created Employee is not yet in the database, the audit bean is able
to find the entity and verify that it exists. This works because the two beans are actually sharing
the same persistence context. The transaction attribute of the createEmployee() method is
REQUIRED by default since no attribute has been explicitly set. The container will guarantee that
a transaction is started before the method is invoked. When persist() is called on the entity
manager, the container checks to see if a persistence context is already associated with the trans-
action. Let’s assume in this case that this was the first entity manager operation in the transaction,
so the container creates a new persistence context and marks it as the propagated one.

When the logTransaction() method starts, it issues a find() call on the entity manager
from the AuditServiceBean. We are guaranteed to be in a transaction, since the transaction
attribute is also REQUIRED and the container-managed transaction from createEmployee() has
been extended to this method by the container. When the find() method is invoked, the container
again checks for an active persistence context. It finds the one created in the createEmployee()
method and uses that persistence context to search for the entity. Since the newly created
Employee instance is managed by this persistence context, it is returned successfully.

Now consider the case where logTransaction() has been declared with the REQUIRES NEW
transaction attribute instead of the default REQUIRED. Before the logTransaction() method call
starts, the container will suspend the transaction inherited from createEmployee() and start a
new transaction. When the find() method is invoked on the entity manager, it will check the
current transaction for an active persistence context only to determine that one does not exist.
A new persistence context will be created starting with the find() call, and this persistence
context will be the active persistence context for the remainder of the logTransaction() call.
Since the transaction started in createEmployee() has not yet committed, the newly created
Employee instance is not in the database and therefore is not visible to this new persistence
context. The find() method will return null, and the logTransaction() method will throw an
exception as a result.

121

122

CHAPTER 5 ENTITY MANAGER

The rule of thumb for persistence context propagation is that the persistence context
propagates as the JTA transaction propagates. Therefore it is important to understand not only
when transactions begin and end, but also when a business method expects to inherit the
transaction context from another method and when doing so would be incorrect. Having a
clear plan for transaction management in your application is key to getting the most out of
persistence context propagation.

Extended Persistence Contexts

The life cycle of an extended persistence context is tied to the stateful session bean to which it
is bound. Unlike a transaction-scoped entity manager that creates a new persistence context
for each transaction, the extended entity manager of a stateful session bean always uses the
same persistence context. The stateful session bean is associated with a single extended persis-
tence context that is created when the bean instance is created and closed when the bean instance
is removed. This has implications for both the association and propagation characteristics of
the extended persistence context.

Transaction association for extended persistence contexts is eager. In the case of container-
managed transactions, as soon as a method call starts on the bean, the container automatically
associates the persistence context with the transaction. Likewise in the case of bean-managed
transactions; as soon as UserTransaction.begin() is invoked within a bean method, the container
intercepts the call and performs the same association.

Because a transaction-scoped entity manager will use an existing persistence context
associated with the transaction before it will create a new persistence context, it is possible to
share an extended persistence context with other transaction-scoped entity managers. So long
as the extended persistence context is propagated before any transaction-scoped entity managers
are accessed, the same extended persistence context will be shared by all components.

Similar to the auditing EmployeeServiceBean we demonstrated in Listing 5-8, consider the
same change made to a stateful session bean DepartmentManagerBean to audit when an employee
is added to a department. Listing 5-9 shows this example.

Listing 5-9. Logging Department Changes

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB AuditService audit;

public void init(int deptId) {
dept = em.find(Department.class, deptld);

CHAPTER 5 ENTITY MANAGER

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empld);
dept.getEmployees().add(emp);
emp.setDepartment (dept);
audit.logTransaction(emp.getId(),
"added to department " + dept.getName());

/7 ...

The addEmployee () method has a default transaction attribute of REQUIRED. Since the
container eagerly associates extended persistence contexts, the extended persistence context
stored on the session bean will be immediately associated with the transaction when the
method call starts. This will cause the relationship between the managed Department and
Employee entities to be persisted to the database when the transaction commits. It also means
that the extended persistence context will now be shared by other transaction-scoped persis-
tence contexts used in methods called from addEmployee().

The logTransaction() method in this example will inherit the transaction context from
addEmployee() since its transaction attribute is the default REQUIRED and a transaction is active
during the call to addEmployee(). When the find() method is invoked, the transaction-scoped
entity manager checks for an active persistence context and will find the extended persistence
context from the DepartmentManagerBean. It will then use this persistence context to execute the
operation. All of the managed entities from the extended persistence context become visible to
the transaction-scoped entity manager.

Persistence Context Collision

We said earlier that only one persistence context could be propagated with a JTA transaction.
We also said that the extended persistence context would always try to make itself the active
persistence context. This can quickly lead to situations where the two persistence contexts
collide with each other. Consider, for example, that a stateless session bean with a transaction-
scoped entity manager creates a new persistence context and then invokes a method on a
stateful session bean with an extended persistence context. During the eager association of the
extended persistence context, the container will check to see if there is already an active persis-
tence context. If there is, it must be the same as the extended persistence context that it is
trying to associate, or an exception will be thrown. In this example, the stateful session bean
will find the transaction-scoped persistence context created by the stateless session bean, and
the call into the stateful session bean method will fail. There can only be one active persistence
context for a transaction.

While extended persistence context propagation is useful if a stateful session bean with an
extended persistence context is the first EJB to be invoked in a call chain, it limits the situations
in which other components can call into the stateful session bean if they too are using entity
managers. This may or may not be common depending on your application architecture, but
it is something to keep in mind when planning dependencies between components.

One way to work around this problem is to change the default transaction attribute for the
stateful session bean that uses the extended persistence context. If the default transaction
attribute is REQUIRES NEW, then any active transaction will be suspended before the stateful

123

124

CHAPTER 5 ENTITY MANAGER

session bean method starts, allowing it to associate its extended persistence context with the
new transaction. This is a good strategy if the stateful session bean calls in to other stateless

session beans and needs to propagate the persistence context. Note that excessive use of the
REQUIRES_NEW transaction attribute can lead to application performance problems as many more
transactions than normal will be created and active transactions will be suspended and resumed.

If the stateful session bean is largely self-contained, that is, it does not call other session
beans and does not need its persistence context propagated, then a default transaction attribute
type of NOT_SUPPORTED may be worth considering. In this case, any active transaction will be
suspended before the stateful session bean method starts, but no new transaction will be
started. If there are some methods that need to write data to the database, then those methods
can be overridden to use the REQUIRES _NEW transaction attribute.

Listing 5-10 repeats the DepartmentManager bean, this time with some additional getter
methods and customized transaction attributes. We have set the default transaction attribute
to REQUIRES_NEW to force a new transaction by default when a business method is invoked. For
the getName () method, we don’t need a new transaction since no changes are being made, so it
has been set to NOT_SUPPORTED. This will suspend the current transaction but won’t result in a
new transaction being created. With these changes, the DepartmentManager bean may be accessed
in any situation, even if there is already an active persistence context.

Listing 5-10. Customizing Transaction Attributes to Avoid Collision

@Stateful
@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB AuditService audit;

public void init(int deptId) {
dept = em.find(Department.class, deptld);
}

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public String getName() { return dept.getName(); }
public void setName(String name) { dept.setName(name); }

public void addEmployee(int empId) {
Employee emp = em.find(empId, Employee.class);
dept.getEmployees().add(emp);
emp.setDepartment(dept);
audit.logTransaction(emp.getId(),
"added to department

+ dept.getName());

YV

CHAPTER 5 ENTITY MANAGER

Finally, one last option to consider is using an application-managed entity manager instead of
an extended entity manager. If there is no need to propagate the persistence context, then the
extended entity manager is not adding a lot of value over an application-managed entity manager.
The stateful session bean can safely create an application-managed entity manager, store it on
the bean instance, and use it for persistence operations without having to worry about whether
or not an active transaction already has a propagated persistence context. An example of this
technique is demonstrated later in the section Application-Managed Persistence Contexts.

Persistence Context Inheritance

The restriction of only one stateful session bean with an extended persistence context being
able to participate in a JTA transaction can be a limitation in some situations. For example, the
pattern we followed earlier in this chapter for the extended persistence context was to encap-
sulate the behavior of an entity behind a stateful session fagade. In our example, clients worked
with a DepartmentManager session bean instead of the actual Department entity instance. Since
adepartment has a manager, it makes sense to extend this facade to the Employee entity as well.

Listing 5-11 shows changes to the DepartmentManager bean so that it returns an
EmployeeManager stateful session bean from the getManager () method in order to represent
the manager of the department. The EmployeeManager stateful session bean is injected and then
initialized during the invocation of the init() method.

Listing 5-11. Creating and Returning a Stateful Session Bean

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB EmployeeManager manager;

public void init(int deptId) {
dept = em.find(Department.class, deptId);
manager.init();

public EmployeeManager getManager() {
return manager;

}

/7 ...

Should the init() method succeed or fail? So far based on what we have described, it looks
like it should fail. When init() is invoked on the DepartmentManager bean, its extended persis-
tence context will be propagated with the transaction. In the subsequent call to init() on the
EmployeeManager bean, it will attempt to associate its own extended persistence context with
the transaction, causing a collision between the two.

125

126

CHAPTER 5 ENTITY MANAGER

Perhaps surprisingly, this example actually works. When a stateful session bean with an
extended persistence context creates another stateful session bean that also uses an extended
persistence context, the child will inherit the parent’s persistence context. The EmployeeManager
bean inherits the persistence context from the DepartmentManager bean when it is injected into
the DepartmentManager instance. The two beans can now be used together within the same
transaction.

Application-Managed Persistence Contexts

Like container-managed persistence contexts, application-managed persistence contexts may
be synchronized with JTA transactions. Synchronizing the persistence context with the trans-
action means that a flush will occur if the transaction commits, but the persistence context will
not be considered associated by any container-managed entity managers. There is no limit to
the number of application-managed persistence contexts that may be synchronized with a
transaction, but only one container-managed persistence context will ever be associated. This
is one of the most important differences between application-managed and container-managed
entity managers.

An application-managed entity manager participates in a JTA transaction in one of two
ways. If the persistence context is created inside the transaction, then the persistence provider
will automatically synchronize the persistence context with the transaction. If the persistence
context was created earlier (outside of a transaction or in a transaction that has since ended),
the persistence context may be manually synchronized with the transaction by calling
joinTransaction() on the EntityManager interface. Once synchronized, the persistence context
will automatically be flushed when the transaction commits.

Listing 5-12 shows a variation of the DepartmentManagerBean from Listing 5-11 that uses an
application-managed entity manager instead of an extended entity manager.

Listing 5-12. Using Application-Managed Entity Managers with JTA

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;
EntityManager em;
Department dept;

public void init(int deptId) {
em = emf.createEntityManager();
dept = em.find(Department.class, deptId);

public String getName() {
return dept.getName();

}

CHAPTER 5 ENTITY MANAGER

public void addEmployee(int empId) {
em.joinTransaction();
Employee emp = em.find(Employee.class, empIld);
dept.getEmployees().add(emp);
emp.setDepartment (dept);

/7 ...

@Remove
public void finished() {
em.close();

}

Instead of injecting an entity manager, we are injecting an entity manager factory. Prior to
searching for the entity, we manually create a new application-managed entity manager using
the factory. Because the container does not manage its life cycle, we have to close it later when
the bean is removed during the call to finished(). Like the container-managed extended
persistence context, the Department entity remains managed after the call to init(). When
addEmployee() is called, there is the extra step of calling joinTransaction() to notify the persis-
tence context that it should synchronize itself with the current JTA transaction. Without this
call, the changes to Department would not be flushed to the database when the transaction
commits.

Because application-managed entity managers do not propagate, the only way to share
managed entities with other components is to share the EntityManager instance. This can be
achieved by passing the entity manager around as an argument to local methods or by storing
the entity manager in a common place such as an HTTP session. Listing 5-13 demonstrates
a servlet creating an application-managed entity manager and using it to instantiate the
EmployeeService class we defined in Chapter 2. In these cases, care must be taken to ensure
that access to the entity manager is done in a thread-safe manner. While EntityManagerFactory
instances are thread-safe, EntityManager instances are not. Also, application code must not
call joinTransaction() on the same entity manager in multiple concurrent transactions.

Listing 5-13. Sharing an Application-Managed Entity Manager

public class EmployeeServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;
@Resource UserTransaction tx;

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
/...
int id = Integer.parseIlnt(request.getParameter("id"));
String name = request.getParameter("name");
long salary = Long.parselong(request.getParameter("salary"));
tx.begin();

127

128

CHAPTER 5 ENTITY MANAGER

EntityManager em = emf.createEntityManager();

try {
EmployeeService service = new EmployeeService(em);
service.createEmployee(id, name, salary);

} finally {
em.close();

}

tx.commit();

/...

Listing 5-13 demonstrates an additional characteristic of the application-managed entity
manager in the presence of transactions. If the persistence context becomes synchronized
with a transaction, changes will still be written to the database when the transaction commits,
even if the entity manager is closed. This allows entity managers to be closed at the point where
they are created without the need to worry about closing them after the transaction ends. Note
that closing an application-managed entity manager still prevents any further use of the entity
manager. It is only the persistence context that continues until the transaction has completed.

There is a danger in mixing multiple persistence contexts in the same JTA transaction. This
occurs when multiple application-managed persistence contexts become synchronized with
the transaction or when application-managed persistence contexts become mixed with container-
managed persistence contexts. When the transaction commits, each persistence context will
receive notification from the transaction manager that changes should be written to the database.
This will cause each persistence context to be flushed.

What happens if an entity with the same primary key is used in more than one persistence
context? Which version of the entity gets stored? The unfortunate answer is that there is no way
to know for sure. The container does not guarantee any ordering when notifying persistence
contexts of transaction completion. As a result, it is critical for data integrity that entities never
be used by more than one persistence context in the same transaction. When designing your
application, we recommend picking a single persistence context strategy (container-managed
or application-managed) and sticking to that strategy consistently.

Resource-Local Transactions

Resource-local transactions are controlled explicitly by the application. The application server,
if there is one, has no part in the management of the transaction. Applications interact with
resource-local transactions by acquiring an implementation of the EntityTransaction interface
from the entity manager. The getTransaction() method of the EntityManager interface is used
for this purpose.

The EntityTransaction interface is designed to imitate the UserTransaction interface
defined by the Java Transaction API, and the two behave very similarly. The main difference is
that EntityTransaction operations are implemented in terms of the transaction methods on
the JDBC Connection interface. Listing 5-14 shows the complete EntityTransaction interface.

CHAPTER 5 ENTITY MANAGER

Listing 5-14. The EntityTransaction Interface

public interface EntityTransaction {
public void begin();
public void commit();
public void rollback();
public void setRollbackOnly();
public void getRollbackOnly();
public void isActive();

There are only six methods on the EntityTransaction interface. The begin() method starts
anew resource transaction. If a transaction is active, isActive() will return true. Attempting to
start a new transaction while a transaction is active will result in an I1legalStateException
being thrown. Once active, the transaction may be committed by invoking commit () or rolled
back by invoking rollback(). Both operations will fail with an I1legalStateException if there
is no active transaction. A PersistenceException will be thrown if an error occurs during roll-
back, while a RollbackException will be thrown if the commit fails.

If a persistence operation fails while an EntityTransaction is active, the provider will mark
it for rollback. It is the application’s responsibility to ensure that the rollback actually occurs
by calling rollback(). If the transaction is marked for rollback and a commit is attempted, a
RollbackException will be thrown. To avoid this exception, the getRollbackOnly() method
may be called to determine whether the transaction is in a failed state. Until the transaction is
rolled back, it is still active and will cause any subsequent commit or begin operation to fail.

Listing 5-15 shows a Java SE application that uses the EntityTransaction API to perform a
password change for users who failed to update their passwords before they expired.

Listing 5-15. Using the EntityTransaction Interface

public class ExpirePasswords f{
public static void main(String[] args) {
int maxAge = Integer.parseInt(args[o0]);
String defaultPassword = args[1];

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("admin");

try {
EntityManager em = emf.createEntityManager();

Calendar cal = Calendar.getInstance();
cal.add(Calendar.DAY_OF_YEAR, -maxAge);

em.getTransaction().begin();
Collection expired =
em.createQuery("SELECT u FROM User u WHERE u.lastChange > ?1")
.setParameter(1, cal)
.getResultlist();

129

130

CHAPTER 5 ENTITY MANAGER

for (Iterator i = expired.iterator(); i.hasNext();) {
User u = (User) i.next();
System.out.println("Expiring password for
u.setPassword(defaultPassword);

n

+ u.getName());

}

em.getTransaction().commit();
em.close();

} finally {
emf.close();

}

Within the application server, JTA transaction management is the default and should be
used by most applications. One example use of resource-local transactions in the Java EE envi-
ronment might be for logging. If your application requires an audit log stored in the database
that must be written regardless of the outcome of any JTA transactions, then a resource-local
entity manager may be used to persist data outside of the current transaction. Resource trans-
actions may be freely started and committed any number of times within a JTA transaction
without impacting the state of the JTA transactions.

Listing 5-16 shows an example of a stateless session bean that provides audit logging that
will succeed even if the active JTA transaction fails.

Listing 5-16. Using Resource-Local Transactions in the Java EE Environment

@Stateless

public class LogServiceBean implements LogService {
@PersistenceUnit(unitName="1ogging")
EntityManagerFactory emf;

public void logAccess(int userId, String action) {
EntityManager em = emf.createEntityManager();
try {
LogRecord 1r = new LogRecord(userId, action);
em.getTransaction().begin();
em.persist(lr);
em.getTransaction().commit();
} finally {
em.close();

}

Of course, you could make the argument that this is overkill for a simple logging bean. Direct
JDBC would probably work just as easily, but these same log records may have uses elsewhere
in the application. It is a trade-off in configuration (defining a completely separate persistence
unit in order to enable the resource-local transactions) versus the convenience of having an
object-oriented representation of a log record.

CHAPTER 5 ENTITY MANAGER

Transaction Rollback and Entity State

When a database transaction is rolled back, all of the changes made during the transaction are
abandoned. The database reverts to whatever state it was in before the transaction began. But
as mentioned in Chapter 2, the Java memory model is not transactional. There is no way to take
a snapshot of object state and revert to it later if something goes wrong. One of the harder parts
of using an object-relational mapping solution is that while we can use transactional semantics
in our application to control whether or not data is committed to the database, we can’t truly
apply the same techniques to the in-memory persistence context that manages our entity
instances.

Any time we are working with changes that must be persisted to the database, we are
working with a persistence context synchronized with a transaction. At some point during the
life of the transaction, usually just before it commits, the changes we require will be translated
into the appropriate SQL statements and sent to the database. Whether we are using JTA trans-
actions or resource-local transactions is irrelevant. We have a persistence context participating
in a transaction with changes that need to be made.

If that transaction rolls back, two things happen. The first is that the database transaction
will be rolled back. The next thing that happens is that the persistence context is cleared, detaching
all of our managed entity instances. If the persistence context was transaction-scoped, then it
is removed.

Because the Java memory model is not transactional, we are basically left with a bunch of
detached entity instances. More importantly, these detached instances reflect the entity state
exactly as it was at the point when the rollback occurred. Faced with a rolled-back transaction
and detached entities, you might be tempted to start a new transaction, merge the entities into
the new persistence context, and start over. The following issues need to be considered in this case:

¢ If there is a new entity that uses automatic primary key generation, there may be a
primary key value assigned to the detached entity. If this primary key was generated
from a database sequence or table, the operation to generate the number may have been
rolled back with the transaction. This means that the same sequence number could be
given out again to a different object. Clear the primary key before attempting to persist
the entity again, and do not rely on the primary key value in the detached entity.

¢ Ifyour entity uses a version field for locking purposes that is automatically maintained
by the persistence provider, it may be set to an incorrect value. The value in the entity
will not match the correct value stored in the database. We will cover locking and versioning
in Chapter 9.

If you need to reapply some of the changes that failed and are currently sitting in the
detached entities, consider selectively copying the changed data into new managed entities.
This guarantees that the merge operation will not be compromised by stale data left in the
detached entity. To merge failed entities into a new persistence context, some providers may
offer additional options that avoid some or all of these issues.

Choosing an Entity Manager

With three different entity manager types, each with a different life cycle and different rules
about transaction association and propagation, it can all be a little overwhelming. What style is

131

132

CHAPTER 5 ENTITY MANAGER

right for your application? Application-managed or container-managed? Transaction-scoped
or extended?

Generally speaking, we believe that container-managed, transaction-scoped entity managers
are the best model for most applications. This is the design that originally inspired the Java
Persistence API and is the model that commercial persistence providers have been using for
years. The selection of this style to be the default for Java EE applications was no accident.

It offers the best combination of flexible transaction propagation with easy-to-understand
semantics.

Extended persistence contexts are effectively a new programming model introduced by
this specification. Although commercial vendors have had similar features to allow entities to
remain managed after commit, never before has such a feature been fully integrated into the
life cycle of a Java EE component, in this case the stateful session bean. There are some inter-
esting new techniques possible with the extended persistence context (some of which we will
describe later in this chapter), but these may not apply to all applications.

In most enterprise applications, application-managed entity managers are unlikely to see
much use. There is rarely a need for persistence contexts that are not associated with a container
transaction and that remain isolated from the rest of the container-managed persistence contexts.
The lack of propagation means that application-managed entity managers must be passed
around as method arguments or stored in a shared object in order to share the persistence
context. Evaluate application-managed entity managers based on your expected transactional
needs and the size and complexity of your application.

More than anything, we recommend that you try to be consistent in how entity managers
are selected and applied. Mixing all three entity manager types into an application is likely to
be frustrating as the different entity manager types can intersect in unexpected ways.

Entity Manager Operations

Armed with information about the different entity manager types and how they work with
persistence contexts, we can now revisit the basic entity manager operations we introduced in
Chapter 2 and reveal more of the details. The following sections describe the entity manager
operations with respect to the different entity manager and persistence context types.

Persisting an Entity

The persist() method of the EntityManager interface accepts a new entity instance and causes
it to become managed. If the entity to be persisted is already managed by the persistence context,
then it is ignored. The contains() operation can be used to check whether an entity is already
managed, but it is very rare that this should be required. It should not come as a surprise to the
application to find out which entities are managed and which are not. The design of the appli-
cation dictates when entities become managed.

For an entity to be managed does not mean that it is persisted to the database right away.
The actual SQL to create the necessary relational data will not be generated until the persistence
context is synchronized with the database, typically only when the transaction commits. However,
once a new entity is managed, any changes to that entity may be tracked by the persistence
context. Whatever state exists on the entity when the transaction commits is what will be written
to the database.

CHAPTER 5 ENTITY MANAGER

When persist() isinvoked outside of a transaction, the behavior depends on the type of entity
manager. A transaction-scoped entity manager will throw a TransactionRequiredException as
there is no persistence context available in which to make the entity managed. Application-
managed and extended entity managers will accept the persist request, causing the entity to
become managed, but no immediate action will be taken until a new transaction begins and
the persistence context becomes synchronized with the transaction. In effect, this queues up
the change to happen at a later point in time. It is only when the transaction commits that
changes will be written out to the database.

The persist() operation is intended for new entities that do not already exist in the data-
base. If the provider immediately determines that this is not true, then an EntityExistsException
will be thrown. If the provider does not make this determination and the primary key is in fact
a duplicate, then an exception will be thrown when the persistence context is synchronized to
the database.

Up to this point we have been discussing the persistence of entities only without relation-
ships. But, as we learned in Chapter 4, the Java Persistence API supports a wide variety of
relationship types. In practice, most entities are in a relationship with atleast one other entity.
Consider the following sequence of operations:

Department dept = em.find(Department.class, 30);
Employee emp = new Employee();

emp.setId(53);

emp.setName("Peter");

emp.setDepartment (dept);
dept.getEmployees().add(emp);

em.persist(emp);

Despite the brevity of this example, we have covered a lot of points relating to persisting a
relationship. We begin by retrieving a pre-existing Department instance. A new Employee instance
is then created, supplying the primary key and basic information about the Employee. We then
assign the employee to the department, by setting the department attribute of the Employee to
point to the Department instance we retrieved earlier. Because the relationship is bidirectional,
we then add the new Employee instance to the employees collection in the Department instance.
Finally the new Employee instance is persisted with the call to persist(). Assuming a transac-
tion then commits, the new entity will be stored in the database.

An interesting thing about this example is that the Department is a passive participant
despite the Employee instance being added to its collection. The Employee entity is the owner of
the relationship because it is in a many-to-one relationship with the Department. As we mentioned
in the previous chapter, the source side of the relationship is the owner, while the target is
the inverse in this type of relationship. When the Employee is persisted, the foreign key to the
Department is written out to the table mapped by the Employee, and no actual change is made to
the Department entity’s physical representation. Had we only added the employee to the collec-
tion and not updated the other side of the relationship, nothing would have been persisted to
the database.

Finding an Entity

The ever-present find() method is the workhorse of the entity manager. Whenever an entity
needs to be located by its primary key, find() is usually the best way to go. Not only does it have

133

134

CHAPTER 5 ENTITY MANAGER

simple semantics, but most persistence providers will also optimize this operation to use an
in-memory cache that minimizes trips to the database.

The find() operation returns a managed entity instance in all cases except when invoked
outside of a transaction on a transaction-scoped entity manager. In this case, the entity instance is
returned in a detached state. It is not associated with any persistence context.

There exists a special version of find() that may be used in one particular situation. That
situation is when a relationship is being created between two entities in a one-to-one or many-to-
one relationship where the target entity already exists and its primary key is well-known. Since we
are only creating a relationship, it may not be necessary to fully load the target entity in order to
create the foreign key reference to it. Only its primary key is required. The getReference()
operation may be used for this purpose. Consider the following example:

Department dept = em.getReference(Department.class, 30);
Employee emp = new Employee();

emp.setId(53);

emp.setName("Peter");

emp.setDepartment (dept);

dept.getEmployees().add(emp);

em.persist(emp);

The only difference between this sequence of operations and the ones we demonstrated
earlier is that the find() call has been replaced with a call to getReference(). When the
getReference() call is invoked, the provider may return a proxy to the Department entity
without actually retrieving it from the database. So long as only its primary key is accessed,
Department data does not need to be fetched. Instead, when the Employee is persisted, the
primary key value will be used to create the foreign key to the corresponding Department entry.
The getReference() call is effectively a performance optimization that removes the need to
retrieve the target entity instance.

There are some drawbacks to using getReference() that must be understood. The first is
that if a proxy is used, then it may throw an EntityNotFoundException exception if it is unable
to locate the real entity instance when an attribute other the primary key is accessed. The
assumption with getReference() is that you are sure the entity with the correct primary key
exists. If, for some reason, an attribute other than the primary key is accessed and the entity
does not exist, then an exception will be thrown. A corollary to this is that the object returned
from getReference() may not be safe to use if it is no longer managed. If the provider returns a
proxy, it will be dependent on there being an active persistence context to load entity state.

Given the very specific situation in which getReference() may be used, find() should be
used in virtually all cases. The in-memory cache of a good persistence provider is effective
enough that the performance cost of accessing an entity via its primary key will not usually be
noticed. In the case of TopLink Essentials, it has a fully integrated shared object cache, so not
only is local persistence context management efficient, but also all threads on the same server
can benefit from the shared contents of the cache. The getReference() call is a performance
optimization that should be used only when there is evidence to suggest that it will actually
benefit the application.

CHAPTER 5 ENTITY MANAGER

Removing an Entity

Removing an entity is not a complex task, but it can require several steps depending on the
number of relationships in the entity to be removed. At its most basic, removing an entity is
simply a case of passing a managed entity instance to the remove () method of an entity manager.
As soon as the associated persistence context becomes synchronized with a transaction and
commits, the entity is removed. At least that is what we would like to happen. As we will soon
show, removing an entity requires some attention to the relationships of an entity, or the integ-
rity of the database can be compromised in the process.

Let’s walk through a simple example. Consider the Employee and ParkingSpace relationship
that we demonstrated in Chapter 4. The Employee has a unidirectional one-to-one relationship
with the ParkingSpace entity. Now imagine that we execute the following code inside a transac-
tion, where empId corresponds to an Employee primary key:

Employee emp = em.find(Employee.class, empId);
em.remove(emp.getParkingSpace());

When the transaction commits, we see the DELETE statement for the PARKING_SPACE table
get generated, but then we get an exception containing a database error that shows that we have
violated a foreign key constraint. It turns out that a referential integrity constraint exists between
the EMPLOYEE table and the PARKING SPACE table. The row was deleted from the PARKING_SPACE
table, but the corresponding foreign key in the EMPLOYEE table was not set to NULL. To correct the
problem we have to explicitly set the parkingSpace attribute of the Employee entity to null
before the transaction commits:

Employee emp = em.find(Employee.class, empIld);
ParkingSpace ps = em.getParkingSpace();
em.setParkingSpace(null);

em.remove(ps);

Relationship maintenance is the responsibility of the application. We are going to repeat
this statement over the course of this book, but it cannot be emphasized enough. Almost every
problem related to removing an entity always comes back to this issue. If the entity to be removed
is the target of foreign keys in other tables, then those foreign keys must be cleared in order for
the remove to succeed. The remove operation will either fail as it did here, or it will result in
stale data being left in the foreign key columns referring to the removed entity in the event that
there is no referential integrity.

An entity may be removed only if it is managed by a persistence context. This means
that a transaction-scoped entity manager may be used to remove an entity only if there is an
active transaction. Attempting to invoke remove () when there is no transaction will result in a
TransactionRequiredException exception. Like the persist() operation we described earlier,
application-managed and extended entity managers can remove an entity outside of a trans-
action, but the change will not take place in the database until a transaction involving the
persistence context is committed.

After the transaction has committed, all entities that were removed in that transaction are
left in the state that they were in before they were removed. A removed entity instance can be
persisted again with the persist() operation, but the same issues with generated state that we
discussed in the Transaction Rollback and Entity State section apply here as well.

135

136

CHAPTER 5 ENTITY MANAGER

Cascading Operations

By default, every entity manager operation applies only to the entity supplied as an argument
to the operation. The operation will not cascade to other entities that have a relationship with
the entity that is being operated on. For some operations, such as remove (), this is usually the
desired behavior. We wouldn’t want the entity manager to make incorrect assumptions about
which entity instances should be removed as a side effect from some other operation. But the
same does not hold true for operations such as persist(). Chances are that if we have a new
entity and it has a relationship to another new entity, the two must be persisted together.

Consider the sequence of operations in Listing 5-17 that are required to create a new
Employee entity with an associated Address entity and make the two persistent. The second call
to persist() that makes the Address entity managed is bothersome. An Address entity is coupled to
the Employee entity that holds on to it. Whenever a new Employee is created, it makes sense to
cascade the persist() operation to the Address entity if it is present.

Listing 5-17. Persisting Employee and Address Entities

Employee emp = new Employee();
emp.setId(2);

emp.setName("Rob");

Address addr = new Address();
addr.setStreet("645 Stanton Way");
addr.setCity("Manhattan");
addr.setState("NY");
emp.setAddress(addr);
em.persist(addr);

em.persist(emp);

Fortunately the Java Persistence API provides a mechanism to define when operations
such as persist() should be cascaded across relationships. The cascade element, in all of the
logical relationship annotations (@0neToOne, @0neToMany, @anyToOne, and @ManyToMany), defines
the list of entity manager operations to be cascaded.

Entity manager operations are identified using the CascadeType enumerated type when
listed as part of the cascade element. The PERSIST, REFRESH, REMOVE, and MERGE constants pertain
to the entity manager operation of the same name. The constant ALL is shorthand for declaring
that all four operations should be cascaded.

The following sections will define the cascading behavior of the persist() and remove()
operations. We will introduce the merge() operation and its cascading behavior later in this
chapter in the section Merging Detached Entities. Likewise, we will introduce the refresh()
operation and its cascading behavior in Chapter 9.

Cascade Persist

To begin, let’s consider the changes required to make the persist() operation cascade from
Employee to Address. In the definition of the Employee class, there is an @anyToOne annotation
defined for the address relationship. To enable the cascade, we must add the PERSIST operation
to the list of cascading operations for this relationship. Listing 5-18 shows a fragment of the
Employee entity that demonstrates this change.

CHAPTER 5 ENTITY MANAGER 137

Listing 5-18. Enabling Cascade Persist

@Entity
public class Employee {
/...
@ManyToOne (cascade=CascadeType.PERSIST)
Address address;
/...

To leverage this change, we need only ensure that the Address entity has been set on the
Employee instance before invoking persist() on it. As the entity manager encounters the Employee
instance and adds it to the persistence context, it will navigate across the address relationship
looking for a new Address entity to manage as well. In comparison to the approach in Listing 5-16,
this change frees us from having to persist the Address separately.

Cascade settings are unidirectional. This means that it must be explicitly set on both sides
of arelationship if the same behavior is intended for both situations. For example, in Listing 5-17,
we only added the cascade setting to the address relationship in the Employee entity. If Listing 5-16
were changed to persist only the Address entity and not the Employee entity, then the Employee
entity would not become managed, because the entity manager has not been instructed to
navigate out from any relationships defined on the Address entity.

Even though it is legal to do so, it is still unlikely that we would add cascading operations
from the Address entity to the Employee entity, because it is a child of the Employee entity. While
causing the Employee instance to become managed as a side effect of persisting the Address
instance is harmless, application code would not expect the same from the remove () operation,
for example. Therefore we must be judicious in applying cascades, because there is an expec-
tation of ownership in relationships that influences what developers expect when interacting
with these entities.

In the Persisting an Entity section, we mentioned that the entity instance is ignored if it is
already persisted. This is true, but the entity manager will still honor the PERSIST cascade in this
situation. For example, consider our Employee entity again. If the Employee instance is already
managed and a new Address instance is set in it, then invoking persist () again on the Employee
instance will cause the Address instance to become managed. No changes will be made to the
Employee instance since it is already managed.

As adding the PERSIST cascade is a very common and desirable behavior for relationships,
it is possible to make this the default cascade setting for all relationships in the persistence
unit. We will discuss this technique in Chapter 10.

Cascade Remove

At first glance, having the entity manager automatically cascade remove () operations may
sound attractive. Depending on the cardinality of the relationship, it could eliminate the need
to explicitly remove multiple entity instances. And yet, while we could cascade this operation
in a number of situations, this should be applied only in certain cases. There are really only two
cases where cascading the remove () operation makes sense: one-to-one and one-to-many rela-
tionships where there is a clear parent-child relationship. It can’t be blindly applied to all one-
to-one and one-to-many relationships because the target entities might also be participating
in other relationships or might make sense as stand-alone entities. Because there is no way in

138

CHAPTER 5 ENTITY MANAGER

the logical annotations of the Java Persistence API to declare private ownership of the entities
across a relationship, care must be taken when using the REMOVE cascade option.

With that warning out of the way, let’s look at a situation where cascading the remove()
operation makes sense. If an Employee entity is removed (hopefully an uncommon occurrence),
it makes sense to cascade the remove() operation to both the ParkingSpace and Phone entities
related to the Employee. These are both cases in which the Employee is the parent of the target
entities. Listing 5-19 demonstrates the changes to the Employee entity class that enables this
behavior. Note that we have added the REMOVE cascade in addition to the existing PERSIST option.
Chances are, if an owning relationship is safe to use REMOVE, then it is also safe to use PERSIST.

Listing 5-19. Enabling Cascade Remove

@Entity
public class Employee {
/...
@0neToOne(cascade={CascadeType.PERSIST, CascadeType.REMOVE})
ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee",
cascade={CascadeType.PERSIST, CascadeType.REMOVE})
Collection<Phone> phones;
VY

Now let’s take a step back and look at what it means to cascade the remove() operation.
As it processes the Employee instance, the entity manager will navigate across the parkingSpace
and phones relationships and invoke remove() on those entity instances as well. Like the
remove () operation on a single entity, this is a database operation and has no effect at all on the
in-memory links between the object instances. When the Employee instance becomes detached,
its phones collection will still contain all of the Phone instances that were there before the
remove () operation took place. The Phone instances are detached because they were removed
as well, but the link between the two instances remains.

Because the remove() operation can be safely cascaded only from parent to child, it can’t
help the situation we encountered earlier in the Removing an Entity section. There is no setting
that can be applied to arelationship from one entity to another that will cause it to be removed
from a parent without also removing the parent in the process. For example, when trying to
remove the ParkingSpace entity, we hit an integrity constraint violation from the database
unless the parkingSpace field in the Employee entity is set to null. Setting the REMOVE cascade
option on the @neToOne annotation in the ParkingSpace entity would not cause it to be removed
from the Employee; rather it would cause the Employee instance itself to become removed.
Clearly this is not the behavior we desire. There are no shortcuts to relationship maintenance.

Clearing the Persistence Context

Occasionally it may be necessary to clear a persistence context of its managed entities. This is
usually required only for application-managed and extended persistence contexts that are
long-lived and have grown too large in size. For example, consider an application-managed
entity manager that issues a query returning several hundred entity instances. Once changes
are made to a handful of these instances and the transaction is committed, you have left in

CHAPTER 5 ENTITY MANAGER

memory hundreds of objects that you have no intention of changing any further. If you don’t
want to close the persistence context, then you need to be able to clear out the managed entities, or
else the persistence context will continue to grow over time.

The clear() method of the EntityManager interface can be used to clear the persistence
context. In many respects this is semantically equivalent to a transaction rollback. All entity
instances managed by the persistence context become detached with their state left exactly as
it was when the clear() operation was invoked. If a transaction was started at this point and
then committed, nothing would be written out to the database because the persistence context
is empty. The clear () operation is all or nothing. You cannot selectively cancel the manage-
ment of any particular entity instance while the persistence context is still open.

While technically possible, clearing the persistence context when there are uncommitted
changes is a dangerous operation. The persistence context is an in-memory structure, and
clearing it simply detaches the managed entities. If you are in a transaction and changes have
already been written to the database, they will not be rolled back when the persistence context
is cleared. The detached entities that result from clearing the persistence context also suffer
from all of the negative effects caused by a transaction rollback even though the transaction is
still active. For example, identifier generation and versioning should be considered suspect for
any entities detached as a result of using the clear() operation.

Synchronization with the Database

Any time the persistence provider generates SQL and writes it out to the database over a JDBC
connection, we say that the persistence context has been flushed. All pending changes that
require a SQL statement to become part of the transactional changes in the database have been
written out and will be made permanent when the database transaction commits. It also means
that any subsequent SQL operation that takes place after the flush will incorporate these changes.
This is particularly important for SQL queries that are executed in a transaction that is also
changing entity data.

If there are managed entities with changes pending, a flush is guaranteed to occur in two
situations. The first is when the transaction commits. A flush of any required changes will
occur before the database transaction has completed. The only other time a flush is guaranteed
to occur is when the entity manager flush() operation is invoked. This method allows devel-
opers to manually trigger the same process that the entity manager internally uses to flush the
persistence context.

That said, a flush of the persistence context could occur at any time if the persistence
provider deems it necessary. An example of this is when a query is about to be executed and it
depends on new or changed entities in the persistence context. Some providers will flush the
persistence context to ensure that the query incorporates all pending changes. A provider
might also flush the persistence context often if it uses an eager-write approach to entity updates.
Most persistence providers defer SQL generation to the last possible moment for performance
reasons, but this is not guaranteed.

Now that we have covered the circumstances where a flush can occur, let’s look at exactly
what it means to flush the persistence context. A flush basically consists of three components:
new entities that need to be persisted, changed entities that need to be updated, and removed
entities that need to be deleted from the database. All of this information is managed by the
persistence context. It maintains links to all of the managed entities that will be created or
changed as well as the list of entities that need to be removed.

139

140

CHAPTER 5 ENTITY MANAGER

When a flush occurs, the entity manager first iterates over the managed entities and looks
for new entities that have been added to relationships with cascade persist enabled. This is
logically equivalent to invoking persist() again on each managed entity just before the flush
occurs. The entity manager also checks to ensure the integrity of all of the relationships. If an
entity points to another entity that is not managed or has been removed, then an exception
may be thrown.

The rules for determining whether or not the flush fails in the presence of an unmanaged
entity can be complicated. Let's walk through an example that demonstrates the most common
issues. Figure 5-1 shows an object diagram for an Employee instance and some of the objects
that it is related to. The emp and ps entity objects are managed by the persistence context. The
addr object is a detached entity from a previous transaction, and the Phone objects are new
objects that have not been part of any persistence operation so far.

Persistence Context

/ addr: Address

emp: Employee phone1: Phone

™

ps: ParkingSpace phone2: Phone

Figure 5-1. Links to unmanaged entities from a persistence context

To determine the outcome of flushing the persistence context given the arrangement
shown in Figure 5-1, we must first look at the cascade settings of the Employee entity. Listing 5-20
shows the relationships as implemented in the Employee entity. Only the phones relationship
has the PERSIST cascade option set. The other relationships are all defaulted so they will not
cascade.

Listing 5-20. Relationship Cascade Settings for Employee

@Entity
public class Employee {
/...
@0neToOne
ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee", cascade=CascadeType.PERSIST)
Collection<Phone> phones;
@ManyToOne
Address address;
/...

CHAPTER 5 ENTITY MANAGER

Starting with the emp object, let’s walk through the flush process as if we are the persistence
provider. The emp object is managed and has links to four other objects. The first step in the
process is to navigate the relationships from this entity as if we are invoking persist() on it.
The first object we encounter in this process is the ps object across the parkingSpace relation-
ship. Since ps is also managed, we don’t have to do anything further.

Next we navigate the phones relationship to the two Phone objects. These entities are new,
and this would normally cause an exception, but since the PERSIST cascade option has been
set, we perform the equivalent of invoking persist() on each Phone object. This makes the
objects managed, making them part of the persistence context. The Phone objects do not have
any further relationships to cascade the persist operation, so we are done here as well.

Next we reach the addr object across the address relationship. Since this object is detached,
we would normally throw an exception, but this particular relationship is a special case in the
flush algorithm. Any time a detached object that is the target of the one-to-one or many-to-one
relationship is encountered where the source entity is the owner, the flush will still proceed
because the act of persisting the owning entity does not depend on the target. The owning entity
has the foreign key column and needs to store only the primary key value of the target entity.

This completes the flush of the emp object. The algorithm then moves to the ps object and
starts the process again. Since there are no relationships from the ps object to any other, the
flush process completes. So in this example even though three of the objects pointed to from
the emp object are not managed, the overall flush completes successfully due to the cascade
settings and rules of the flush algorithm.

Ideally during a flush all of the objects pointed to by a managed entity will also be managed
entities themselves. If this is not the case, the next thing we need to be aware of is the PERSIST
cascade setting. If the relationship has this setting, target objects in the relationship will also be
persisted, making them managed before the flush completes. If the PERSIST cascade option is
notset, an I1legalStateException exception will be thrown whenever the target of the relationship
is not managed, except in the special case related to one-to-one and many-to-one relation-
ships that we described previously.

In light of how the flush operation works, it is always safer to update relationships pointing
to entities that will be removed before carrying out the remove () operation. A flush may occur
atany time, so invoking remove () on an entity without clearing any relationships that point to the
removed entity could result in an unexpected I1legalStateException exception if the provider
decides to flush the persistence context before you get around to updating the relationships.

In Chapter 6, we will also discuss techniques to configure the data integrity requirements
of queries so that the persistence provider is better able to determine when a flush of the
persistence context is really necessary.

Detachment and Merging

Simply put, a detached entity is one that is no longer associated with a persistence context.

It was managed at one point, but the persistence context may have ended or the entity may have
been transformed in such a way that it has lost its association with the persistence context that
used to manage it. The persistence context, if there still is one, is no longer tracking the entity.
Any changes made to the entity won’t be persisted to the database, but all of the state that was
there on the entity when it was detached can still be used by the application. A detached entity
cannot be used with any entity manager operation that requires a managed instance.

141

142

CHAPTER 5 ENTITY MANAGER

The opposite of detachment is merging. Merging is the process by which an entity manager
integrates detached entity state into a persistence context. Any changes to entity state that
were made on the detached entity overwrite the current values in the persistence context.
When the transaction commits, those changes will be persisted. Merging allows entities to be
changed “offline” and then have those changes incorporated later on.

The following sections will describe detachment and how detached entities can be merged
back into a persistence context.

Detachment

There are two views on detachment. On one hand, it is a powerful tool that can be leveraged by
applications in order to work with remote applications or to support access to entity data long
after a transaction has ended. On the other hand, it can be a frustrating problem when the
domain model contains lots of lazy-loading attributes and clients using the detached entities
need to access this information.

There are many ways in which an entity can become detached. Each of the following situ-
ations will lead to detached entities:

e When the transaction that a transaction-scoped persistence context is associated with
commits, all of the entities managed by the persistence context become detached.

 Ifan application-managed persistence context is closed, all of its managed entities
become detached.

e If a stateful session bean with an extended persistence context is removed, all of its
managed entities become detached.

 Ifthe clear() method of an entity manager is used, it detaches all of the entities in the
persistence context managed by that entity manager.

* When transaction rollback occurs, it causes all entities in all persistence contexts associated
with the transaction to become detached.

* When an entity is serialized, the serialized form of the entity is detached from its
persistence context.

Some of these situations may be intentional and planned for, such as detachment after the
end of the transaction or serialization. Others may be unexpected, such as detachment due
to rollback.

In Chapter 4, we introduced the LAZY fetch type that can be applied to any basic mapping
or relationship. This has the effect of hinting to the provider that the loading of a basic or relation-
ship attribute should be deferred until it is accessed for the first time. Although not commonly used
on basic mappings, marking relationship mappings to be lazy loaded is an important part of
performance tuning.

We need to consider, however, the impact of detachment on lazy loading. Consider the
Employee entity shown in Listing 5-21. The address relationship will eagerly load because
many-to-one relationships eagerly load by default. In the case of the parkingSpace attribute,
which would also normally eagerly load, we have explicitly marked the relationship as being
lazy loading. The phones relationship, as a one-to-many relationship, will also lazy load by default.

CHAPTER 5 ENTITY MANAGER

Listing 5-21. Employee with Lazy-Loading Mappings

@Entity

public class Employee {
/...
@ManyToOne
private Address address;
@0neToOne (fetch=FetchType.LAZY)
private ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee")
private Collection<Phone> phones;
/...

So long as the Employee entity is managed, everything works as we expect. When the entity
is retrieved from the database, only the associated Address entity will be eagerly loaded. The
provider will fetch the necessary entities the first time the parkingSpace and phones relation-
ships are accessed.

If this entity becomes detached, the outcome of accessing the parkingSpace and phones
relationships is suddenly a more complex issue. If the relationships were accessed while the
entity was still managed, the target entities may also be safely accessed while the Employee
entity is detached. If the relationships were not accessed while the entity was managed, then
we have a problem.

The behavior of accessing an unloaded attribute when the entity is detached is not defined.
Some vendors may attempt to resolve the relationship, while others may simply throw an
exception or leave the attribute uninitialized. If the entity was detached due to serialization,
there is virtually no hope of resolving the relationship. The only portable thing to do with
attributes that are unloaded is leave them alone.

In the case where entities have no lazy-loading attributes, detachment is not a big deal. All
of the entity state that was there in the managed version is still available and ready to use in the
detached version of the entity. In the presence oflazy-loading attributes, care must be taken to
ensure that all of the information you need to access offline is triggered while the entity is still
managed. Later in the chapter we will demonstrate a number of strategies for planning for, and
working with, detached entities.

Merging Detached Entities

The merge() operation is used to merge the state of a detached entity into a persistence context.
The method is straightforward to use, requiring only the detached entity instance as an argu-
ment. There are some subtleties to using merge () that make it different to use than other entity
manager methods. Consider the following example, which shows a session bean method that
accepts a detached Employee parameter and merges it into the current persistence context:

public void updateEmployee(Employee emp) {
em.merge(emp);
emp.setlastAccessTime(new Date());

143

144

CHAPTER 5 ENTITY MANAGER

Assuming that a transaction begins and ends with this method call, any changes made to the
Employee instance while it was detached will be written to the database. What will not be written,
however, is the change to the last access time. The argument to merge () does not become managed
as aresult of the merge. A different managed entity (either a new instance or an existing managed
version already in the persistence context) is updated to match the argument, and then this
instance is returned from the merge() method. Therefore to capture this change, we need to
use the return value from merge() since it is the managed entity. The following example shows
the correct implementation:

public void updateEmployee(Employee emp) {
Employee managedEmp = em.merge(emp);
managedEmp.setlLastAccessTime(new Date());

Returning a managed instance other than the original entity is a critical part of the merge
process. If an entity instance with the same identifier already exists in the persistence context,
the provider will overwrite its state with the state of the entity that is being merged, but the
managed version that existed already must be returned to the client so that it can be used. If the
provider did not update the Employee instance in the persistence context, then any references
to that instance will become inconsistent with the new state being merged in.

When merge() is invoked on a new entity, it behaves similarly to the persist() operation. It
adds the entity to the persistence context, but instead of adding the original entity instance,
it creates a new copy and manages that instance instead. The copy that is created by the merge()
operation is persisted as if the persist() method was invoked on it.

In the presence of relationships, the merge() operation will attempt to update the managed
entity to point to managed versions of the entities referenced by the detached entity. If the
entity has a relationship to an object that has no persistent identity, then the outcome of the
merge operation is undefined. Some providers may allow the managed copy to point to the
non-persistent object, while others may throw an exception immediately. The merge() opera-
tion may be optionally cascaded in these cases to prevent an exception from occurring. We will
cover cascading of the merge() operation later in this section. If an entity being merged points
to a removed entity, an I1legalArgumentException exception will be thrown.

Lazy-loading relationships are a special case in the merge operation. If a lazy-loading relation-
ship was not triggered on an entity before it became detached, then that relationship will be
ignored when the entity is merged. If the relationship was triggered while managed and then
set to null while the entity was detached, then the managed version of the entity will likewise
have the relationship cleared during the merge.

To illustrate the behavior of merge() with relationships, consider the object diagram shown
in Figure 5-2. The detached emp object has relationships to three other objects. The addr and
dept objects are detached entities from a previous transaction, while the phone1 entity was
recently created and persisted using the persist() operation and is now managed as a result.
Inside the persistence context there is currently an Employee instance with a relationship to
another managed Address. The existing managed Employee instance does not have a relation-
ship to the newly managed Phone instance.

Persistence Context

addr1: Address

id=100
street=40 Juniper

addr: Address

id=100
street=53 Harold

CHAPTER 5

ENTITY MANAGER

emp1: Employee emp: Employee
id=10 id=10
name=John / name=John
salary=40000 salary=50000

phone1: Phone dept: Department

id=20 id=30

Figure 5-2. Entity state prior to merge

Let’s consider the effect of invoking merge () on the emp object. The first thing that happens
is that the provider checks the persistence context for a pre-existing entity instance with the
same identifier. In this example, the emp1 object from the persistence context matches the
identifier from the emp object we are trying to merge. Therefore the basic state of the emp object
overwrites the state of the emp1 object in the persistence context, and the emp1 object will be
returned from the merge() operation.

The provider next considers the Phone and Department entities pointed to from emp. The
phone1 object is already managed, so the provider can safely update emp1 to point to this instance.
In the case of the dept object, the provider checks to see if there is already a persistent Department
entity with the same identifier. In this case it finds one in the database and loads it into the
persistence context. The emp1 object is then updated to point to this version of the Department
entity. The detached dept object does not become managed again.

Finally the provider checks the addr object referenced from emp. In this case it finds a pre-
existing managed object addr1 with the same identifier. Since the emp1 object already points to
the addr1 object, no further changes are made. At this point let’s look at the state of the object
model after the merge. Figure 5-3 shows these changes.

145

146

CHAPTER 5 ENTITY MANAGER

Persistence Context
addr1: Address addr: Address
id=100 id=100
street=40 Juniper street=53 Harold
emp1: Employee emp: Employee
id=10 id=10
name=John name=John
salary=50000 salary=50000
dept1: Department phone1: Phone dept: Department
id=30 id=20 id=30

Figure 5-3. Entity state after merge

In Figure 5-3 we see that the emp1 object has been updated to reflect the state changes from
emp. The dept1 object is new to the persistence context after being loaded from the database.
The emp1 object now points to both the phone1 object and the dept1 object in order to match the
relationships of the emp object. The addr1 object has not changed at all. The fact that the addr1
object has not changed might come as a surprise. After all, the addr object had pending changes
and it was pointed to by the emp object that was merged.

To understand why, we must return to the issue of cascading operations with the entity
manager. By default, no operations are cascaded when an entity manager operation is applied
to an entity instance. The merge () operation is no different in this regard. In order for the merge
to be cascaded across relationships from an Employee, the MERGE cascade setting must be set on
the relationship mappings. Otherwise we would have to invoke merge() on each related object.

Looking back at our example, the problem with the updated Address entity was that the
Employee entity did not cascade the merge () operation to it. This had the unfortunate side effect
of effectively discarding the changes we had made to the Address entity in favor of the version
already in the persistence context. To obtain the behavior that we intended, we must either
invoke merge() explicitly on the addr object or change the relationship mappings of the Employee
entity to include the MERGE cascade option. Listing 5-22 shows the changed Employee class.

CHAPTER 5 ENTITY MANAGER

Listing 5-22. Employee Entity with Merge Cascade Setting

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;
@ManyToOne (cascade=CascadeType .MERGE)
private Address address;
@ManyToOne
private Department department;
@0neToMany (mappedBy="employee", cascade=CascadeType.MERGE)
private Collection<Phone> phones;
/...

With the Employee entity changed in this way, the merge operation will be cascaded to the
Address and Phone entities pointed to by any Employee instances. This is equivalent to invoking
merge () on each instance individually. Note that we did not cascade the merge operation to the
Department entity. We generally only cascade operations down from parent to child, not upwards
from child to parent. Doing so is not harmful but requires more effort from the persistence
provider to search out changes. If the Department entity changes as well, it is better to cascade
the merge from the Department to its associated Employee instances and then merge only a
single Department instance instead of multiple Employee instances.

Merging detached entities with relationships can be a tricky operation. Ideally we want to
merge the root of an object graph and have all related entities get merged in the process. This
can work, but only if the MERGE cascade setting has been applied to all relationships in the graph. If
it hasn’t, you must merge each instance that is the target of a non-cascaded relationship one at
atime.

Before we leave the topic of merging, we must mention that locking and versioning plays
avital role in ensuring data integrity in these situations. We will explore this topic in Chapter 9.

Working with Detached Entities

Let’s begin with a scenario that is very common with modern web applications. A servlet calls
out to a session bean in order to execute a query and receives a collection of entities in return.
The servlet then places these entities into the request map and forwards the request to a JSP for
presentation. This pattern is called Page Controller,! a variation of the Front Controller? pattern in
which there is a single controller for each view instead of one central controller for all views. In
the context of the familiar Model-View-Controller (MVC) architecture, the session bean provides
the model, the JSP page is the view, and the servlet is our controller.
First consider the session bean that will produce the results that will be rendered by the

JSP page. Listing 5-23 shows the bean implementation. In this example we are looking only at
the findAl1l() method, which returns all of the Employee instances stored in the database.

1. Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Addison-Wesley, 2002.
2. Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

147

148

CHAPTER 5 ENTITY MANAGER

Listing 5-23. The EmployeeService Session Bean

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public List findAll() {
return em.createQuery("SELECT e FROM Employee e")
.getResultlist();

}

/...

Listing 5-24 shows the source code for a simple servlet that invokes the findAl1() method
of the EmployeeService session bean to fetch all of the Employee entities in the database. It then
places the results in the request map and delegates to the “listEmployees.jsp” JSP page to render
the result.

Listing 5-24. The View Employees Servlet

public class EmployeeServlet extends HttpServlet {
@EJB EmployeeService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
List emps = bean.findAll();
request.setAttribute("employees”, emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")
.forward(request, response);

Finally, Listing 5-25 shows the last part of our MVC architecture, the JSP page to render the
results. It uses the JavaServer Pages Standard Tag Library (JSTL) to iterate over the collection of
Employee instances and display the name of each employee as well as the name of the depart-
ment to which that employee is assigned. The employees variable accessed by the <c:forEach/> tag
isthe List of Employee instances that was placed in the request map by the servlet.

Listing 5-25. JSP Page to Display Employee Information

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
<head>
<title>All Employees</title>
</head>

CHAPTER 5 ENTITY MANAGER

<body>
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<c:forkach items="${employees}" var="emp">
<tr>
<td><c:out value="${emp.name}"/></td>
<td><c:out value="${emp.department.name}"/></td>
</tr>
</c:forkach>
</tbody>
</table>
</body>
</html>

The findAl1() method of the EmployeeService session bean uses REQUIRED container-
managed transactions by default. Since the servlet invoking the method has not started a
transaction, the container will start a new transaction before findA11() is invoked and commit
the transaction after it finishes executing. As a result, the results of the query become detached
before they are returned to the servlet.

This causes us a problem. In this example, the department relationship of the Employee
class has been configured to use lazy fetching. As we learned previously in the section on
Detachment, the only portable thing to do is leave them alone. In this example, however, we
don’t want to leave them alone. In order to display the department name for the employee, the
JSP expression navigates to the Department entity from the Employee entity. Since this is a lazy-
loading relationship, the results are unpredictable. It might work, but then it might not.

This scenario forms the basis of our challenge. In the following sections we will look at a
number of strategies to either prepare the entities needed by the JSP page for detachment or
avoid detachment altogether.

Planning for Detachment

Knowing that the results of the findA11() method will be used to display employee information
and that the department name will be required as part of this process, we need to ensure that
the department relationship of the Employee entity has been resolved before the entities become
detached. There are several strategies that can be used to resolve lazy loaded associations in
preparation for detachment. We will discuss two of them here, focusing on how to structure
application code to plan for detachment. A third strategy, for Java Persistence QL queries called
fetch joins, will be discussed in Chapter 7.

149

150

CHAPTER 5 ENTITY MANAGER

Triggering Lazy Loading

The first strategy to consider in resolving lazy-loading associations is to simply trigger the lazy
loading behavior by accessing the field or relationship. It looks slightly odd in code since the
return values of the getter methods are discarded, but nevertheless it has the desired effect.
Listing 5-26 shows an alternate implementation of the findA11() method of the EmployeeService
session bean. In this case we iterate over the Employee entities, triggering the department relation-
ship before returning the original list from the method. Because findA11() is executed inside of
atransaction, the getDepartment() call completes successfully, and the Department entity instance
is guaranteed to be available when the Employee instance is detached.

Listing 5-26. Triggering a Lazy-Loading Relationship

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public List findAll() {
List<Employee> emps = (List<Employee>)
em.createQuery("SELECT e FROM Employee e")
.getResultlist();
for (Employee emp : emps) {
Department dept = emp.getDepartment();
if (dept != null) {
dept.getName();
}
}

return emps;

}

/...

One thing that might look odd from Listing 5-26 is that we not only invoked getDepartment ()
on the Employee instance, but we also invoked getName() on the Department instance. If you
recall from Chapter 4, the entity returned from a lazy-loading relationship may actually be a
proxy that further waits until a method is invoked on the proxy before the entity is faulted in.
We have to invoke a method on the entity to guarantee that it is actually retrieved from the
database. If this were a collection-valued relationship, the size() method of the Collection
would be commonly used to force eager loading.

If lazy-loading basic mappings were used on either the Employee or Department entities,
then those attributes would not be guaranteed to be present after detachment as well. This is
another reason why configuring basic mappings to use lazy loading is not recommended.
Developers often expect that a relationship is not eagerly loaded but can be caught off guard if
a basic state field such as the name attribute of the Employee instance is missing.

CHAPTER 5 ENTITY MANAGER

Configuring Eager Loading

When an association is continuously being triggered for detachment scenarios, at some point
it is worth revisiting whether or not the association should be lazy loaded in the first place.
Carefully switching some relationships to eager loading can avoid a lot of special cases in code
that attempt to trigger the lazy loading.

In this example, Employee has a many-to-one relationship with Department. The default
fetch type for a many-to-one relationship is eager loading, but the class was modeled by explicitly
using lazy loading. By removing the LAZY fetch type from the department relationship or by
specifying the EAGER fetch type explicitly, we ensure that the Department instance is always
available to the Employee instance.

Collection-valued relationships lazy load by default, so the EAGER fetch type must be
explicitly applied to those mappings if eager loading is desired. Be judicious in configuring
collection-valued relationships to be eagerly loaded, however, as it may cause excessive data-
base access in cases where detachment is not a requirement.

Avoiding Detachment

The only complete solution to any detachment scenario is not to detach at all. If your code
methodically triggers every lazy-loaded relationship or has marked every association on an
entity to be eagerly loaded in anticipation of detachment, then this is probably a sign that an
alternative approach is required.

Avoiding detachment really only boils down to two approaches. Either we don’t work with
entities in our JSP page, or we must keep a persistence context open for the duration of the JSP
rendering process so that lazy-loading relationships can be resolved.

Not using entities means copying entity data into a different data structure that does not
have the same lazy-loading behavior. One approach would be to use the Transfer Object?
pattern, but that seems highly redundant given the POJO nature of entities. A better approach,
which we will discuss in Chapters 6 and 7, is to use projection queries to retrieve only the entity
state that will be displayed on the JSP page instead of retrieving full entity instances.

Keeping a persistence context open requires additional planning but allows the JSP page
to work with entity data using the JavaBean properties of the entity class. In practical terms,
keeping a persistence context open means that there is either an active transaction for entities
fetched from transaction-scoped persistence contexts or that an application-managed or
extended persistence context is in use. This obviously isn’t an option when entities must be
serialized to a separate tier or remote client, but it suits the web application scenario we described
earlier. We'll cover each of these strategies here.

Transaction View

The persistence context created by a transaction-scoped entity manager remains open only as
long as the transaction in which it was created has not ended. Therefore, in order to use a trans-
action-scoped entity manager to execute a query and be able to render the query results while
resolving lazy-loading relationships, both operations must be part of the same transaction.
When a transaction is started in the web tier and includes both session bean invocation and JSP
page rendering before it is committed, we call this pattern a Transaction View.

3. Ibid.

151

152

CHAPTER 5 ENTITY MANAGER

The benefit of this approach is that any lazy-loading relationships encountered during the
rendering of the view will be resolved because the entities are still managed by a persistence
context. To implement this pattern in our example scenario, we start a bean-managed transaction
before the findAl1l() method is invoked and commit the transaction after the JSP page has
rendered the results. Listing 5-27 demonstrates this approach. Note that to conserve space we
have omitted the handling of the checked exceptions thrown by the UserTransaction opera-
tions. The commit () method alone throws no less than six checked exceptions.

Listing 5-27. Combining a Session Bean Method and JSP in a Single Transaction

public class EmployeeServlet extends HttpServlet {
@Resource UserTransaction tx;
@EJB EmployeeService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/...
try {
tx.begin();
List emps = bean.findAll();
request.setAttribute("employees”, emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")
.forward(request, response);
} finally {
tx.commit();
}
/...

With this solution in place, the lazy-loading relationships of the Employee entity do not
have to be eagerly resolved before the JSP page renders the results. The only downside to this
approach is that the servlet must now manage transactions and recover from transaction fail-
ures. A lot of logic also has to be duplicated between all of the servlet controllers that need this
behavior.

One way to work around this duplication is to introduce a common superclass for servlets
that use the Transaction View pattern that encapsulates the transaction behavior. If, however,
you are using the Front Controller pattern and controller actions are implemented using the
Command* pattern, this may become more difficult to manage, particularly if the page flow is
complex and multiple controllers collaborate to build a composite view. Then not only does
each controller need to start transactions, but they also need to be aware of any transactions
that were started earlier in the rendering sequence.

4. Gamma, Erich, Richard Helms, Ralph Johnson, and John Vlissades. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.

CHAPTER 5 ENTITY MANAGER

Another possible, though non-portable, solution is to move the transaction logic into a
servlet filter. It allows us to intercept the HTTP request before the first controller servlet is
accessed and wrap the entire request in a transaction. Such coarse-grained use of transactions
is something that needs to be managed carefully, however. If applied to all HTTP requests
equally, it may also cause trouble for requests that involve updates to the database. Assuming
that these operations are implemented as session beans, the REQUIRES_NEW transaction attribute
may be required in order to isolate entity updates and handle transaction failure without
impacting the overriding global transaction.

Entity Manager per Request

For applications that do not encapsulate their query operations behind session bean facades,
an alternative approach to the Transaction View pattern is to create a new application-managed
entity manager to execute reporting queries, closing it only after the JSP page has been rendered.
Because the entities returned from the query on the application-managed entity manager will
remain managed until the entity manager is closed, it offers the same benefits as the Transaction
View pattern without requiring an active transaction.

Listing 5-28 revisits our EmployeeServlet servlet again, this time creating an application-
managed entity manager to execute the query. The results are placed in the map as before, and
the entity manager is closed after the JSP page has finished rendering.

Listing 5-28. Using an Application-Managed Entity Manager for Reporting

public class EmployeeServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

EntityManager em = emf.createEntityManager();

try {
List emps = em.createQuery("SELECT e FROM Employee e")

.getResultlist();
request.setAttribute("employees", emps);
getServletContext().getRequestDispatcher("/listEmployees.jsp")
.forward(request, response);

} finally {

em.close();

}

153

154

CHAPTER 5 ENTITY MANAGER

Unfortunately, we now have query logic embedded in our servlet implementation. The
query is also no longer reusable the way it was when it was part of a stateless session bean.
There are a couple of other options we can explore as a solution to this problem. Instead of
executing the query directly, we could create a POJO service class that uses the application-
managed entity manager created by the servlet to execute queries. This is similar to the first
example we created in Chapter 2. We gain the benefit of encapsulating the query behavior
inside business methods while being decoupled from a particular style of entity manager.

Alternatively we can place our query methods on a stateful session bean that uses an
extended entity manager. When a stateful session bean uses an extended entity manager,
its persistence context lasts for the lifetime of the session bean, which ends only when the user
invokes a remove method on the bean. If a query is executed against the extended persistence
context of a stateful session bean, the results of that query can continue to resolve lazy-loading
relationships so long as the bean is still available.

Let’s explore this option and see how it would look instead of the application-managed
entity manager we showed in Listing 5-28. Listing 5-29 introduces a stateful session bean
equivalent to the EmployeeService stateless session bean that we have been using so far. In
addition to using the extended entity manager, we have also set the default transaction type to
be NOT_SUPPORTED. There is no need for transactions because the results of the query will never
be modified, only displayed.

Listing 5-29. Stateful Session Bean with Query Methods

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeQueryBean implements EmployeeQuery {
@PersistenceContext(type=PersistenceContextType.EXTENDED,
unitName="EmployeeService")
EntityManager em;

public List findAll() {
return em.createQuery("SELECT e FROM Employee e")

.getResultlist();
}
/...
@Remove
public void finished() {
}

Using this bean is very similar to using the application-managed entity manager. We create
an instance of the bean, execute the query, and then remove the bean when the JSP page has
finished rendering. Listing 5-30 shows this approach.

CHAPTER 5 ENTITY MANAGER

Listing 5-30. Using an Extended Entity Manager for Reporting

@EJB(name="queryBean", beanInterface=EmployeeQuery.class)
public class EmployeeServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
EmployeeQuery bean = createQueryBean();
try {
List emps = bean.findAll();
request.setAttribute("employees", emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")
.forward(request, response);
} finally {
bean.finished();
}
}

private EmployeeQuery createQueryBean() throws ServletException {
// look up queryBean
/...

At first glance this might seem like an overengineered solution. We gain the benefit of
decoupling queries from the servlet, but we have introduced a new session bean just to
accomplish this goal. Furthermore, we are using stateful session beans with very short life-
times. Doesn’t that go against the accepted practice of how to use a stateful session bean?

To a certain extent this is true, but the extended persistence context invites us to experi-
ment with new approaches. In practice, stateful session beans do not add a significant amount
of overhead to an operation, even when used for short durations. As we will see later in the
section Edit Session, moving the stateful session bean to the HTTP session instead of limiting
it to a single request also opens up new possibilities for web application design.

Merge Strategies

Creating or updating information is a regular part of most enterprise applications. Users typically
interact with an application via the web, using forms to create or change data as required. The
most common strategy to handle these changes in a Java EE application that uses the Java
Persistence API is to place the results of the changes into detached entity instances and merge
the pending changes into a persistence context so that they can be written to the database.

Let’s revisit our simple web application scenario again. This time, instead of simply viewing
Employee information, the user is able to select an Employee and update basic information
about that employee. The entities are queried for presentation in a form in one request and
then updated in a second request when the user submits the form with changes entered.

155

156

CHAPTER 5 ENTITY MANAGER

Using a Session Facade, this operation is straightforward. The changed entity is updated
and handed off to a stateless session bean to be merged. The only complexity involved is making
sure that relationships properly merge by identifying cases where the MERGE cascade setting
is required.

Similar to the question of whether we can avoid detaching entities to compensate for lazy
loading concerns, the long-lived nature of application-managed and extended persistence
contexts suggests that there may also be a way to apply a similar technique to this situation.
Instead of querying entities in one HTTP request and throwing the entity instances away after
the view has been rendered, we want to keep these entities around in a managed state so that
they can be updated in a subsequent HTTP request and persisted merely by starting and
committing a new transaction.

In the following sections we will revisit the traditional Session Facade approach to merging
and then look at new techniques possible with the extended entity manager that will keep entities
managed for the life of a user’s editing session.

Session Facade

To use a Session Fagade to capture changes to entities, we provide a business method that
will merge changes made to a detached entity instance. In our example scenario, this means
accepting an Employee instance and merging it into a transaction-scoped persistence context.
Listing 5-31 shows an implementation of this technique in our EmployeeService session bean.

Listing 5-31. Business Method to Update Employee Information

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public void updateEmployee(Employee emp) {
if (em.find(Employee.class, emp.getId()) == null) {
throw new IllegalArgumentException("Unknown employee id: " +
emp.getId());
}

em.merge(emp);

/...

The updateEmployee() method in Listing 5-31 is straightforward. Given the detached
Employee instance, it first attempts to check whether a matching identifier already exists. If no
matching Employee is found, then an exception is thrown since we don’t want to allow new
Employee records to be created. Then we use the merge() operation to copy the changes into
the persistence context, which are then saved when the transaction commits.

Using the facade from a servlet is a two-step approach. During the initial HTTP request to
begin an editing session, the Employee instance is queried (typically using a separate method
on the same facade) and used to create a web form on which the user can make their desired

CHAPTER 5 ENTITY MANAGER 157

changes. The detached instance is then stored in the HTTP session so it can be updated when
the user submits the form from their browser. We need to keep the detached instance around
in order to preserve any relationships or other state that will remain unchanged by the edit.
Creating a new Employee instance and supplying only partial values could have many negative
side effects when the instance is merged.

Listing 5-32 shows an EmployeeUpdateServlet servlet that collects the id, name, and salary
information from the request parameters and invokes the session bean method to perform the
update. The previously detached Employee instance is retrieved from the HTTP session, and
then the changes indicated by the request parameters are set into it. We have omitted valida-
tion of the request parameters to conserve space, but ideally this should happen before the
business method on the session bean is invoked.

Listing 5-32. Using a Session Bean to Perform Entity Updates

public class EmployeeUpdateServlet extends HttpServlet {
@EJB EmployeeService bean;

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

int id = Integer.parselnt(request.getParameter("id"));

String name = request.getParameter("name");

long salary = Long.parselong(request.getParameter("salary"));

HttpSession session = request.getSession();

Employee emp = (Employee) session.getAttribute("employee.edit");

emp.setId(id);

emp.setName(name);

emp.setSalary(salary);

bean.updateEmployee(emp);

/...

If the amount of information being updated is very small, we can avoid the detached
object and merge() operation entirely by locating the managed version and manually copying
the changes into it. Consider the following example:

public void updateEmployee(int id, String name, long salary) {
Employee emp = em.find(Employee.class, id);
if (emp == null) {
throw new IllegalArgumentException("Unknown employee id: " + id);
}
emp . setEmpName (name);
emp.setSalary(salary);

}

The beauty of this approach is its simplicity, but that is also its primary limitation. Typical web
applications today offer the ability to update large amounts of information in a single operation.
To accommodate these situations with this pattern, there would either have to be business
methods taking large numbers of parameters or many business methods that would have to

158

CHAPTER 5 ENTITY MANAGER

be invoked in sequence to completely update all of the necessary information. And, of course,
once you have more than one method involved, then it becomes important to maintain a
transaction across all of the update methods so that the changes are committed as a single unit.

As aresult, despite the availability of this approach, the web tier still commonly collects
changes into detached entities or transfer objects and passes the changed state back to session
beans to be merged and written to the database.

Edit Session

With the introduction of the extended entity manager, we can take a different approach to
building web applications that update entities. As we have discussed in this chapter, entities
associated with an extended entity manager remain managed so long as the stateful session
bean holding the extended entity manager is not removed. By placing a stateful session bean in
a central location such as the HTTP session, we can operate on entities managed by the extended
entity manager without having to merge in order to persist changes. We will refer to this as the
Edit Session pattern to reflect the fact that the primary goal of this pattern is to encapsulate
editing use cases using stateful session beans.

Listing 5-33 introduces a stateful session bean that represents an employee editing session.
Unlike the EmployeeService session bean that contains a number of reusable business methods,
this style of stateful session bean is targeted to a single application use case. In addition to using
the extended entity manager, we have also set the default transaction type to be NOT_SUPPORTED
with the exception of the save() method. There is no need for transactions for methods that
simply access the Employee instance. It is only when we want to persist the changes that we
need a transaction.

Listing 5-33. Stateful Session Bean to Manage an Employee Editing Session

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT SUPPORTED)
public class EmployeeEditBean implements EmployeeEdit {
@PersistenceContext(type=PersistenceContextType.EXTENDED,
unitName="EmployeeService")
EntityManager em;
Employee emp;

public void begin(int id) {
emp = em.find(Employee.class, id);
if (emp == null) {
throw new IllegalArgumentException("Unknown employee id: " + id);
}
}

public Employee getEmployee() {
return emp;

}

CHAPTER 5 ENTITY MANAGER

@Remove
@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public void save() {}

@Remove
public void cancel() {}

Let’s start putting the operations of the EmployeeEdit bean in context. When the HTTP
request arrives and starts the editing session, we will create a new EmployeeEdit stateful session
bean and invoke begin() using the id of the Employee instance that will be edited. The session
bean thenloads the Employee instance and caches it on the bean. The bean is then bound to the
HTTP session so that it can be accessed again in a subsequent request once the user has changed
the Employee information. Listing 5-34 shows the EmployeeEditServlet servlet that handles the
HTTP request to begin a new editing session.

Listing 5-34. Beginning an Employee Editing Session

@EJB(name="EmployeeEdit", beanInterface=EmployeeEdit.class)
public class EmployeeEditServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
int id = Integer.parselnt(request.getParameter("id"));
EmployeeEdit bean = getBean();
bean.begin(id);
HttpSession session = request.getSession();
session.setAttribute("employee.edit", bean);
request.setAttribute("employee", bean.getEmployee());
getServletContext().getRequestDispatcher("/editEmployee.jsp")
.forward(request, response);

}

public EmployeeEdit getBean() throws ServletException {
// lookup EmployeeEdit bean
/...

Now let’s look at the other half of the editing session, where we wish to commit the
changes. When the user submits the form that contains the necessary Employee changes, the
EmployeeUpdateServlet is invoked. It begins by retrieving the Employeetdit bean from the
HTTP session. The request parameters with the changed values are then copied into the
Employee instance obtained from called getEmployee() on the EmployeeEdit bean. If everything
is in order, the save() method is invoked to write the changes to the database. Listing 5-35
shows the EmployeeUpdateServlet implementation. Note that we need to remove the bean
from the HTTP session once the editing session has completed.

159

160

CHAPTER 5 ENTITY MANAGER

Listing 5-35. Completing an Employee Editing Session

public class EmployeeUpdateServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String name = request.getParameter("name");

long salary = Long.parselong(request.getParameter("salary"));

HttpSession session = request.getSession();

EmployeeEdit bean = (EmployeeEdit) session.getAttribute("employee.edit");

session.removeAttribute("employee.edit");

Employee emp = bean.getEmployee();

emp. setName(name);

emp.setSalary(salary);

bean.save();

/...

The pattern for using stateful session beans and extended entity managers in the web tier
is as follows:

1. For each application use case that modifies entity data, we create a stateful session
bean with an extended persistence context. This bean will hold onto all entity instances
necessary to make the desired changes.

2. The HTTP request that initiates the editing use case creates an instance of the stateful
session bean and binds it to the HTTP session. The entities are retrieved at this point
and used to populate the web form for editing.

3. The HTTP request that completes the editing use case obtains the previously bound
stateful session bean instance and writes the changed data from the web form into the
entities stored on the bean. A method is then invoked on the bean to commit the changes
to the database.

In our simple editing scenario this may seem somewhat excessive, but the beauty of
this technique is that it can easily scale to accommodate editing sessions of any complexity.
Department, Project, and other information may all be edited in one or even multiple sessions
with the results accumulated on the stateful session bean until the application is ready to persist
the results.

Another major benefit of this approach is that web application frameworks like JavaServer
Faces can directly access the bean bound in the HTTP session from within JSP pages. The
entity can be accessed both to display the form for editing and as the target of the form when
the user submits the results. In this scenario the developer only has to ensure that the neces-
sary save and cancel methods are invoked at the correct point in the application page flow.

There are a couple of other points that we need to mention about this approach. Once
bound to the HTTP session, the session bean will remain there until it is explicitly removed or
until the HTTP session expires. It is therefore important to ensure that the bean is removed
once the editing session is complete, regardless of whether the changes will be saved or

CHAPTER 5 ENTITY MANAGER

abandoned. The HttpSessionBindinglListener callback interface can be used by applications
to track when the HTTP session is destroyed and clean up corresponding session beans
appropriately.

The HTTP session is not thread-safe, and neither are stateful session bean references.
In some circumstances it may be possible for multiple HTTP requests from the same user to
access the HTTP session concurrently. This is mostly an issue when requests take a long time
to process and an impatient user refreshes the page or abandons their editing session for another
part of the web application. In these circumstances the web application will either have to deal
with possible exceptions occurring if the stateful session bean is accessed by more than one
thread, or proxy the stateful session bean with a synchronized wrapper.

Summary

In this chapter we have presented a thorough treatment of the entity manager and its interactions
with entities, persistence contexts, and transactions. As we have seen, the entity manager can
be used in many different ways to accommodate a wide variety of application requirements.

We began by reintroducing the core terminology of the Java Persistence API and explored
the persistence context. We then covered the three different types of entity manager: transaction-
scoped, extended, and application-managed. We looked at how to acquire and use each type
and the types of problems they are designed to solve.

In the Transaction Management section we looked at each of the entity manager types and
how they relate to container-managed JTA transactions and the resource-local transactions of
the JDBC driver. Transactions play an important role in all aspects of enterprise application
development with the Java Persistence AP

Next we revisited the basic operations of the entity manager, this time armed with the full
understanding of the different entity manager types and transaction-management strategies.
We introduced the notion of cascading and looked at the impact of relationships on persistence.

In our discussion of detachment, we introduced the problem and looked at it both from
the perspective of mobile entities to remote tiers and the challenge of merging offline entity
changes back into a persistence context. We presented several strategies to minimize the impact of
detachment and merging on application design by adopting design patterns specific to the
Java Persistence APL

In the next chapter we will turn our attention to the query facilities of the Java Persistence
API, showing how to create, execute, and work with the results of query operations.

161

CHAPTER 6

Using Queries

For most enterprise applications, getting data out of the database is at least as important as
the ability to put new data in. From searching, to sorting, to analytics and business intelligence,
efficiently moving data from the database to the application and presenting it to the user is a
regular part of enterprise development. Doing so requires the ability to issue bulk queries
against the database and interpret the results for the application. Although high-level lan-
guages and expression frameworks have attempted to insulate developers from the task of
dealing with database queries at alow level, it’s probably fair to say that most enterprise devel-
opers have worked with at least one SQL dialect at some point in their career.

Object-relational mapping adds another level of complexity to this task. Most of the time,
the developer will want the results converted to entities so that the query results may be used
directly by application logic. Similarly, if the domain model has been abstracted from the physical
model via object-relational mapping, then it makes sense to also abstract queries away from
SQL, which is not only tied to the physical model but also difficult to port between vendors.
Fortunately, as we will see, the Java Persistence API can handle a diverse set of query requirements.

The Java Persistence API supports two query languages for retrieving entities and other
persistent data from the database. The primary language is Java Persistence QL (JPQL), a
database-independent query language that operates on the logical entity model as opposed
to the physical data model. Queries may also be expressed in SQL in order to take advantage
of the underlying database. We will discuss SQL queries with the Java Persistence API later in
Chapter 9.

We will begin our discussion of queries with an introduction to Java Persistence QL, followed
by an exploration of the query facilities provided by the EntityManager and Query interfaces.

Java Persistence QL

Before discussing JPQL, we must first look to its roots in the EJB specification. The EJB Query
Language (EJB QL) was first introduced in the EJB 2.0 specification to allow developers to write
portable finder and select methods for container-managed entity beans. Based on a small sub-
set of SQL, it introduced a way to navigate across entity relationships both to select data and to
filter the results. Unfortunately it placed strict limitations on the structure of the query, limit-
ing results to either a single entity or a persistent field from an entity. Inner joins between
entities were possible but used an odd notation. The initial release didn’t even support sorting.

163

164

CHAPTER 6 USING QUERIES

The EJB 2.1 specification tweaked EJB QL a little bit, adding support for sorting, and intro-
duced basic aggregate functions; but again the limitation of a single result type hampered the
use of aggregates. You could filter the data, but there was no equivalent to SQL GROUP BY and
HAVING expressions.

Java Persistence Query Language significantly extends EJB QL, eliminating many weak-
nesses of the previous versions while preserving backwards compatibility. The following
features are available above and beyond EJB QL:

* Single and multiple value result types

» Aggregate functions, with sorting and grouping clauses

e Amore natural join syntax, including support for both inner and outer joins
¢ Conditional expressions involving subqueries

e Update and delete queries for bulk data changes

¢ Result projection into non-persistent classes

The next few sections provide a quick introduction to Java Persistence QL intended for
readers familiar with SQL or previous versions of EJB QL. A complete tutorial and reference for
Java Persistence QL can be found in Chapter 7.

Getting Started

The simplest JPQL query selects all of the instances of a single entity type. Consider the follow-
ing query:

SELECT e
FROM Employee e

If this looks similar to SQL, it should. JPQL uses SQL syntax where possible in order to give
developers experienced with SQL a head start in writing queries. The key difference between
SQL and JPQL for this query is that instead of selecting from a table, an entity from the applica-
tion domain model has been specified instead. The SELECT clause of the query is also slightly
different, listing only the Employee alias e. This indicates that the result type of the query is the
Employee entity, so executing this statement will result in a list of zero or more Employee
instances.

Starting with an alias, we can navigate across entity relationships using the dot (.) opera-
tor. For example, if we want just the names of the employees, the following query will suffice:

SELECT e.name
FROM Employee e

Each part of the expression corresponds to a persistent field of the entity or an association
leading to another entity or collection of entities. Since the Employee entity has a persistent
field named name of type String, this query will result in a list of zero or more String objects.

CHAPTER 6 USING QUERIES

We can also select an entity we didn’t even list in the FROM clause. Consider the following
example:

SELECT e.department
FROM Employee e

An employee has a many-to-one relationship with his or her department named department,
so therefore the result type of the query is the Department entity.

Filtering Results

Justlike SQL, JPQL supports the WHERE clause to set conditions on the data being returned. The
majority of operators commonly available in SQL are available in JPQL, including basic compar-
ison operators; IN, LIKE, and BETWEEN expressions; numerous function expressions (such as
SUBSTRING and LENGTH); and subqueries. The key difference for JPQL is that entity expres-
sions and not column references are used. Listing 6-1 demonstrates filtering using entity
expressions in the WHERE clause.

Listing 6-1. Filtering Criteria Using Entity Expressions

SELECT e

FROM Employee e

WHERE e.department.name = 'NA42' AND
e.address.state IN ('NY','CA")

Projecting Results

For applications that need to produce reports, a common scenario is selecting large numbers
of entity instances, but only using a portion of that data. Depending on how an entity is
mapped to the database, this can be an expensive operation if much of the entity data is
discarded. It would be useful to return only a subset of the properties from an entity. The fol-
lowing query demonstrates selecting only the name and salary of each Employee instance:

SELECT e.name, e.salary
FROM Employee e

Joins Between Entities

The result type of a select query cannot be a collection; it must be a single valued object such
as an entity instance or persistent field type. This means that expressions such as e. phones are
illegal in the SELECT clause because they would result in Collection instances. Therefore, just
as with SQL and tables, if we want to navigate along a collection association and return ele-
ments of that collection, then we must join the two entities together. Listing 6-2 demonstrates
a join between Employee and Phone entities in order to retrieve all of the cell phone numbers
for a specific department.

165

166

CHAPTER 6 USING QUERIES

Listing 6-2. Joining Two Entities Together

SELECT p.number

FROM Employee e, Phone p

WHERE e = p.employee AND
e.department.name = 'NA42' AND
p.type = 'Cell’

In JPQL, joins may also be expressed in the FROM clause using the JOIN operator. The
advantage of this operator is that the join can be expressed in terms of the association itself,
and the query engine will automatically supply the necessary join criteria when it generates
the SQL. Listing 6-3 shows the same query rewritten to use the JOIN operator. Just as in the
previous query, the alias p is of type Phone, only this time it refers to each of the phones in the
e.phones collection.

Listing 6-3. Joining Two Entities Together Using the JOIN Operator

SELECT p.number

FROM Employee e JOIN e.phones p

WHERE e.department.name = 'NA42"' AND
p.type = 'Cell’

JPQL supports multiple join types, including inner and outer joins, as well as a technique
called fetch joins for eagerly loading data associated to the result type of a query but not
directly returned. See the Joins section in Chapter 7 for more information.

Aggregate Queries

The syntax for aggregate queries in JPQL is very similar to that of SQL. There are five supported
aggregate functions (AVG, COUNT, MIN, MAX, and SUM), and results may be grouped in the
GROUP BY clause and filtered using the HAVING clause. Once again, the difference is the use
of entity expressions when specifying the data to be aggregated. Listing 6-4 demonstrates an
aggregate query with JPQL.

Listing 6-4. Query Returning Statistics for Departments with Five or More Employees

SELECT d, COUNT(e), MAX(e.salary), AVG(e.salary)
FROM Department d JOIN d.employees e

GROUP BY d

HAVING COUNT(e) >= 5

Query Parameters

JPQL supports two types of parameter binding syntax. The first is positional binding, where
parameters are indicated in the query string by a question mark followed by the parameter
number. When the query is executed, the developer specifies the parameter number that
should be replaced. Listing 6-5 demonstrates positional parameter syntax.

CHAPTER 6 USING QUERIES

Listing 6-5. Positional Parameter Notation

SELECT e

FROM Employee e

WHERE e.department = ?1 AND
e.salary > 72

Named parameters may also be used and are indicated in the query string by a colon
followed by the parameter name. When the query is executed, the developer specifies the
parameter name that should be replaced. Listing 6-6 demonstrates named parameter syntax.

Listing 6-6. Named Parameter Notation

SELECT e

FROM Employee e

WHERE e.department = :dept AND
e.salary > :base

Defining Queries

The Java Persistence API provides the Query interface to configure and execute queries. An
implementation of the Query interface for a given query is obtained through one of the factory
methods in the EntityManager interface. The choice of factory method depends on the type of
query JPQL or SQL) and whether or not the query has been predefined. For now, we will
restrict our discussion to JPQL queries. SQL query definition is discussed in Chapter 9.

There are two approaches to defining a query. A query may either be dynamically specified
at runtime or configured in persistence unit metadata (annotation or XML) and referenced by
name. Dynamic queries are nothing more than strings, and therefore may be defined on the fly
as the need arises. Named queries, on the other hand, are static and unchangeable but are
more efficient to execute as the persistence provider can translate the JPQL string to SQL once
when the application starts as opposed to every time the query is executed.

The following sections compare the two approaches and discuss when one should be used
instead of the other.

Dynamic Query Definition

A query may be defined dynamically by passing the JPQL query string to the createQuery()
method of the EntityManager interface. There are no restrictions on the query definition. All
JPQL query types are supported, as well as the use of parameters. The ability to build up a string
at runtime and use it for a query definition is useful, particularly for applications where the
user may specify complex criteria and the exact shape of the query cannot be known ahead
of time.

An issue to consider with dynamic queries, however, is the cost of translating the JPQL
string to SQL for execution. A typical query engine will have to parse the JPQL string into a syn-
tax tree, get the object-relational mapping metadata for each entity in each expression, and
then generate the equivalent SQL. For applications that issue many queries, the performance
cost of dynamic query processing can become an issue.

167

168

CHAPTER 6 USING QUERIES

Many query engines will cache the translated SQL for later use, but this can easily be
defeated if the application does not use parameter binding and concatenates parameter values
directly into query strings. This has the effect of generating a new and unique query every time
a query that requires parameters is constructed.

Consider the session bean method shown in Listing 6-7 that searches for salary informa-
tion given the name of a department and the name of an employee. There are two problems
with this example, one performance-related and one security-related. Because the names are
concatenated into the string instead of using parameter binding, it is effectively creating a new
and unique query each time. One hundred calls to this method could potentially generate one
hundred different query strings. This not only requires excessive parsing of JPQL but also
almost certainly makes it difficult for the persistence provider if it attempts to build a cache of
converted queries.

Listing 6-7. Defining a Query Dynamically

@Stateless

public class QueryServiceBean implements QueryService {
@PersistenceContext(unitName="DynamicQueries")
EntityManager em;

public long queryEmpSalary(String deptName, String empName) {
String query = "SELECT e.salary " +
"FROM Employee e " +
"WHERE e.department.name = '" + deptName + "' AND " +

e.name = + empName + 5
return (Long) em.createQuery(query).getSingleResult();

The second problem with this example is that a malicious user could pass in a value that
alters the query to his advantage. Consider a case where the department argument was fixed by
the application but the user was able to specify the employee name (the manager of the depart-
ment is querying the salaries of his or her employees, for example). If the name argument were
actually the text “* _UNKNOWN' OR e.name = 'Roberts'”. The actual query parsed by the query
engine would be as follows:

SELECT e.salary

FROM Employee e

WHERE e.department.name = 'NA65' AND
e.name = ' UNKNOWN' OR
e.name = 'Roberts’

By introducing the OR condition, the user has effectively given himself access to the salary
value for any employee in the company, since the original AND condition has a higher prece-
dence than OR and the fake employee name is unlikely to belong to a real employee in that
department.

CHAPTER 6 USING QUERIES 169

Parameter binding defeats this type of security threat, because the original query string is
never altered. The parameters are marshaled using the JDBC API and handled directly by the
database. The text of a parameter string is effectively quoted by the database, so the malicious
attack would actually end up producing the following query:

SELECT e.salary
FROM Employee e
WHERE e.department.name = 'NA65' AND
e.name = ' UNKNOWN'' OR e.name = ''Roberts’

The single quotes used in the query parameter here have been escaped by prefixing them with
an additional single quote. This removes any special meaning from them, and the entire
sequence is treated as a single string value.

This type of problem may sound unlikely, but in practice many web applications take text
submitted over a GET or POST request and blindly construct queries of this sort without con-
sidering side effects. One or two attempts that result in a parser stack trace displayed to the web
page and the attacker will learn everything he needs to know about how to alter the query to his
advantage.

Listing 6-8 shows the same method as in Listing 6-7 except that it uses named parameters
instead. This not only reduces the number of unique queries parsed by the query engine, but it
also eliminates the chance of the query being altered.

Listing 6-8. Using Parameters with a Dynamic Query

@Stateless
public class QueryServiceBean implements QueryService {
private static final String QUERY =
"SELECT e.salary " +

"FROM Employee e " +
"WHERE e.department.name = :deptName AND " +

" "

e.name = :empName ";

@PersistenceContext(unitName="DynamicQueries")
EntityManager em;

public long queryEmpSalary(String deptName, String empName) {
return (Long) em.createQuery(QUERY)
.setParameter("deptName", deptName)
.setParameter("empName", empName)
.getSingleResult();

We recommend statically defined named queries in general, particularly for queries that
are executed frequently. If dynamic queries are a necessity, take care to use parameter binding
instead of concatenating parameter values into query strings in order to minimize the number
of distinct query strings parsed by the query engine.

170

CHAPTER 6 USING QUERIES

Named Query Definition

Named queries are a powerful tool for organizing query definitions and improving application
performance. A named query is defined using the @amedQuery annotation, which may be
placed on the class definition for any entity. The annotation defines the name of the query, as
well as the query text. Listing 6-9 shows how the query string used in Listing 6-8 would be
declared as a named query.

Listing 6-9. Defining a Named Query

@NamedQuery (name="findSalaryForNameAndDepartment",
query="SELECT e.salary " +
"FROM Employee e " +
"WHERE e.department.name = :deptName AND " +

" e.name = :empName")

Note the use of string concatenation in the annotation definition. Formatting your queries
visually aids in the readability of the query definition. Named queries are typically placed on
the entity class that most directly corresponds to the query result, so the Employee entity would
be a good location for this named query.

The name of the query is scoped to the persistence unit and must be unique within that
scope. This is an important restriction to keep in mind, as commonly used query names such
as “findAl1” will have to be qualified for each entity. A common practice is to prefix the query
name with the entity name. For example, the “findA11” query for the Employee entity would be
named “Employee.findAll”. It is undefined what should happen if two queries in the same
persistence unit have the same name, but it is likely that either deployment of the application
will fail or one will overwrite the other, leading to unpredictable results at runtime. Entity-
scoped query names are planned for the next release of the Java Persistence API and will
remove the need for this kind of prefixing.

If more than one named query is to be defined for a class, they must be placed inside of a
@NamedQueries annotation, which accepts an array of one or more @NamedQuery annotations.
Listing 6-10 shows the definition of several queries related to the Employee entity. Queries may
also be defined (or redefined) using XML. This technique is discussed in Chapter 10.

Listing 6-10. Multiple Named Queries for an Entity

@NamedQueries ({
@NamedQuery (name="Employee.findAll",
query="SELECT e FROM Employee e"),
@NamedQuery (name="Employee.findByPrimaryKey",
query="SELECT e FROM Employee e WHERE e.id = :id"),
@NamedQuery (name="Employee.findByName",
query="SELECT e FROM Employee e WHERE e.name = :name")

1)

Because the query string is defined in the annotation, it cannot be altered by the applica-
tion at runtime. This contributes to the performance of the application and helps to prevent
the kind of security issues we discussed in the previous section. Due to the static nature of the
query string, any additional criteria that are required for the query must be specified using

CHAPTER 6 USING QUERIES

query parameters. Listing 6-11 demonstrates using the createNamedQuery() call on the
EntityManager interface to create and execute a named query that requires a query parameter.

Listing 6-11. Executing a Named Query

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public Employee findEmployeeByName(String name) {
return (Employee) em.createNamedQuery("Employee.findByName")
.setParameter("name", name)
.getSingleResult();
}

/7 ...

Named parameters are the most practical choice for named queries as it effectively self-
documents the application code that invokes the queries. Positional parameters are still
supported, however, and may be used instead.

Parameter Types

As mentioned earlier, the Java Persistence API supports both named and positional parameters
for JPQL queries. The query factory methods of the entity manager return an implementation
of the Query interface. Parameter values are then set on this object using the setParameter()
methods of the Query interface.

There are three variations of this method for both named parameters and positional
parameters. The first argument is always the parameter name or number. The second argu-
ment is the object to be bound to the named parameter. Date and Calendar parameters also
require a third argument that specifies whether the type passed to JDBCis a java.sql.Date,
java.sql.Time, or java.sql.TimeStamp value.

Consider the following named query definition, which requires two named parameters:

@NamedQuery (name="findEmployeesAboveSal",
query="SELECT e " +
"FROM Employee e " +
"WHERE e.department = :dept AND " +
" e.salary > :sal")

This query highlights one of the nice features of JPQL in that entity types may be used as
parameters. When the query is translated to SQL, the necessary primary key columns will be
inserted into the conditional expression and paired with the primary key values from the
parameter. It is not necessary to know how the primary key is mapped in order to write the
query. Binding the parameters for this query is a simple case of passing in the required
Department entity instance as well as a long representing the minimum salary value for

17

172

CHAPTER 6 USING QUERIES

the query. Listing 6-12 demonstrates how to bind the entity and primitive parameters required
by this query.

Listing 6-12. Binding Named Parameters

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public List findEmployeesAboveSal(Department dept, long minSal) {
return em.createNamedQuery("findEmployeesAboveSal™)
.setParameter("dept", dept)
.setParameter("sal", minSal)
.getResultlist();
}

/7 ...

Date and Calendar parameters are a special case because they represent both dates and
times. In Chapter 4, we discussed mapping temporal types by using the @Temporal annotation
and the TemporalType enumeration. This enumeration indicates whether the persistent field is
adate, time, or timestamp. When a query uses aDate or Calendar parameter, it must select the
appropriate temporal type for the parameter. Listing 6-13 demonstrates binding parameters
where the value should be treated as a date.

Listing 6-13. Binding Date Parameters

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public List findEmployeesHiredDuringPeriod(Date start, Date end) {
return em.createQuery("SELECT e " +
"FROM Employee e " +
"WHERE e.startDate BETWEEN ?1 AND ?2")
.setParameter(1, start, TemporalType.DATE)
.setParameter(2, end, TemporalType.DATE)
.getResultlist();

}

/7 ...

One thing to keep in mind with query parameters is that the same parameter can be used
multiple times in the query string yet only needs to be bound once using the setParameter ()

CHAPTER 6 USING QUERIES

method. For example, consider the following named query definition, where the “dept”
parameter is used twice in the WHERE clause:

@NamedQuery (name="findHighestPaidByDepartment",
query="SELECT e " +
"FROM Employee e " +
"WHERE e.department = :dept AND " +
" e.salary = (SELECT MAX(e.salary) " +

FROM Employee e " +
" WHERE e.department = :dept)")

To execute this query, the “dept” parameter only needs to be set once with setParameter() as
in the following example:

public Employee findHighestPaidByDepartment(Department dept) {
return (Employee) em.createNamedQuery("findHighestPaidByDepartment")
.setParameter("dept", dept)
.getSingleResult();

Executing Queries

The Query interface provides three different ways to execute a query, depending on whether
or not the query returns results and how many results should be expected. For queries that
return values, the developer may choose to call either getSingleResult() if the query is
expected to return a single result or getResultList() if more than one result may be returned.
The executeUpdate() method of the query interface is used to invoke bulk update and delete
queries. We will discuss this method later in the section Bulk Update and Delete.

The simplest form of query execution is via the getResultList () method. It returns a col-
lection containing the query results. If the query did not return any data, then the collection is
empty. The return type is specified as a List instead of Collection in order to support queries
that specify a sort order. If the query uses the ORDER BY clause to specify a sort order, then the
results will be put into the result list in the same order. Listing 6-14 demonstrates how a query
might be used to generate a menu for a command line application that displays the name of
each employee working on a project as well as the name of the department that the employee
is assigned to. The results are sorted by the name of the employee. Queries are unordered by
default.

Listing 6-14. Iterating over Sorted Results

public void displayProjectEmployees(String projectName) {
List result = em.createQuery("SELECT e " +
"FROM Project p JOIN p.employees e " +
"WHERE p.name = ?1 " +
"ORDER BY e.name")
.setParameter(1, projectName)
.getResultlist();
int count = 0;

173

174

CHAPTER 6 USING QUERIES

for (Iterator i = result.iterator(); i.hasNext();) {
Employee e = (Employee) i.next();
System.out.println(++count + ": " + e.getName() + ", " +
e.getDepartment().getName());

The getSingleResult() method is provided as a convenience for queries that return only a
single value. Instead of iterating to the first result in a collection, the object is directly returned. It is
important to note, however, that getSingleResult () behaves differently than getResultList() in
how it handles unexpected results. Whereas getResultList() returns an empty collection when
no results are available, getSingleResult() throws a NoResultException exception. Therefore if
there is a chance that the desired result may not be found, then this exception needs to be handled.

If multiple results are available after executing the query instead of the single expected
result, getSingleResult () will throw a NonUniqueResultException exception. Again, this can
be problematic for application code if the query criteria may result in more than one row being
returned in certain circumstances. Although getSingleResult() is convenient to use, be sure
that the query and its possible results are well understood, otherwise application code may
have to deal with an unexpected runtime exception. Unlike other exceptions thrown by entity
manager operations, these exceptions will not cause the provider to roll back the current trans-
action, if there is one.

Query objects may be reused as often as needed so long as the same persistence context
that was used to create the query is still active. For transaction-scoped entity managers, this
limits the lifetime of the Query object to the life of the transaction. Other entity manager types
may reuse Query objects until the entity manager is closed or removed.

Listing 6-15 demonstrates caching a Query object instance on the bean class of a stateful ses-
sion bean that uses an extended persistence context. Whenever the bean needs to find the list of
employees who are currently not assigned to any project, it reuses the same unassignedQuery
object that was initialized during PostConstruct.

Listing 6-15. Reusing a Query Object

@Stateful
public class ProjectManagerBean implements ProjectManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;

Query unassignedQuery;

@PostConstruct
public void init() {
unassignedQuery =
em.createQuery("SELECT e " +
"FROM Employee e " +
"WHERE e.projects IS EMPTY");

CHAPTER 6 USING QUERIES

public List findEmployeesWithoutProjects() {
return unassignedQuery.getResultlist();

}

/7 ...

Working with Query Results

The result type of a query is determined by the expressions listed in the SELECT clause of the
query. If the result type of a query is the Employee entity, then executing getResultList() will
resultin a collection of zero or more Employee entity instances. There is a wide variety of results
possible depending on the makeup of the query. The following are just some of the types that
may result from JPQL queries:

* Basic types, such as String, the primitive types, and JDBC types
¢ Entity types

e Anarray of Object

* User-defined types created from a constructor expression

For developers used to JDBC, the most important thing to remember when using the
Query interface is that the results are not encapsulated in a ResultSet. The collection or single
result corresponds directly to the result type of the query.

Whenever an entity instance is returned, it becomes managed by the active persistence
context. If that entity instance is modified and the persistence context is part of a transaction,
then the changes will be persisted to the database. The only exception to this rule is the use of
transaction-scoped entity managers outside of a transaction. Any query executed in this situa-
tion returns detached entity instances instead of managed entity instances. To make changes
on these detached entities, they must first be merged into a persistence context before they can
be synchronized with the database.

A consequence of the long-term management of entities with application-managed and
extended persistence contexts is that executing large queries will cause the persistence context
to grow as it stores all of the managed entity instances that are returned. If many of these per-
sistence contexts are holding onto large numbers of managed entities for long periods of time,
then memory use may become a concern. The clear () method of the EntityManager interface
may be used to clear application-managed and extended persistence contexts, removing
unnecessary managed entities.

Optimizing Read-Only Queries

When the query results will not be modified, queries using transaction-scoped entity managers
outside of a transaction are typically more efficient than queries executed within a transaction
when the result type is an entity. When query results are prepared within a transaction, the per-
sistence provider has to take steps to convert the results into managed entities. This usually
entails taking a snapshot of the data for each entity in order to have a baseline to compare
against when the transaction is committed. If the managed entities are never modified, then
the effort of converting the results into managed entities is wasted.

175

176

CHAPTER 6 USING QUERIES

Outside of a transaction, in some circumstances the persistence provider may be able
to optimize the case where the results will be detached immediately. Therefore it can avoid
the overhead of creating the managed versions. Note that this technique does not work on
application-managed or extended entity managers, since their persistence context outlives the
transaction. Any query result from this type of persistence context may be modified for later
synchronization to the database even if there is no transaction.

When encapsulating query operations behind a stateless session facade, the easiest way to
execute non-transactional queries is to use the NOT_SUPPORTED transaction attribute for the
session bean method. This will cause any active transaction to be suspended, forcing the query
results to be detached and enabling this optimization. Listing 6-16 shows an example of this
technique.

Listing 6-16. Executing a Query Outside of a Transaction

@Stateless

public class QueryServiceBean implements QueryService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.NOT SUPPORTED)
public List findAllDepartmentsDetached() {
return em.createQuery("SELECT d FROM Department d")
.getResultlist();

/7 ...

Special Result Types

The array of Object result occurs whenever a query involves more than one expression in the
SELECT clause. Common examples include projection of entity fields and aggregate queries
where grouping expressions or multiple functions are used. Listing 6-17 revisits the menu gen-
erator from Listing 6-14 using a projection query instead of returning full Employee entity
instances. Each element of the List is cast to an array of Object that is then used to extract the
employee and department name information.

CHAPTER 6 USING QUERIES

Listing 6-17. Handling Multiple Result Types

public void displayProjectEmployees(String projectName) {
List result = em.createQuery("SELECT e.name, e.department.name " +
"FROM Project p JOIN p.employees e " +
"WHERE p.name = ?1 " +
"ORDER BY e.name")
.setParameter(1, projectName)
.getResultlist();
int count = 0;
for (Iterator i = result.iterator(); i.hasNext();) {
Object[] values = (Object[]) i.next();
System.out.println(++count + ": "

n n

+ values[0] + ", " + values[1]);

Constructor expressions provide developers with a way to map array of Object result
types to custom objects. Typically this is used to convert the results into JavaBean-style classes
that provide getters for the different returned values. This makes the results easier to work with
and makes it possible to use the results directly in an environment such as JavaServer Faces
without additional translation.

A constructor expression is defined in JPQL using the NEW operator in the SELECT clause.
The argument to the NEW operator is the fully qualified name of the class that will be instanti-
ated to hold the results for each row of data returned. The only requirement on this class is that
it has a constructor with arguments matching the exact type and order that will be specified in
the query. Listing 6-18 shows an EmpMenu class defined in the package example that could be
used to hold the results of the query that was executed in Listing 6-17.

Listing 6-18. Defining a Class for Use in a Constructor Expression

package example;

public class EmpMenu {
private String employeeName;
private String departmentName;

public EmpMenu(String employeeName, String departmentName) {
this.employeeName = employeeName;
this.departmentName = departmentName;

}

public String getEmployeeName() { return employeeName; }
public String getDepartmentName() { return departmentName; }

177

178

CHAPTER 6 USING QUERIES

Listing 6-19 shows the same example as Listing 6-17 using the fully qualified EmpMenu class
name in a constructor expression. Instead of working with array indexes, each result is cast to
the EmpMenu class and used like a regular Java object.

Listing 6-19. Using Constructor Expressions

public void displayProjectEmployees(String projectName) {
List result =
em.createQuery("SELECT NEW example.EmpMenu(e.name, e.department.name) " +
"FROM Project p JOIN p.employees e " +
"WHERE p.name = ?1 " +
"ORDER BY e.name")
.setParameter(1, projectName)
.getResultlist();
int count = 0;
for (Iterator i = result.iterator(); i.hasNext();) {
EmpMenu menu = (EmpMenu) i.next();
System.out.printIn(++count + ": " + menu.getEmployeeName() + ", " +
menu.getDepartmentName());

Query Paging

Large result sets from queries are often a problem for many applications. In cases where it would be
overwhelming to display the entire result set, or if the application medium makes displaying
many rows inefficient (web applications, in particular), applications must be able to display
ranges of a result set and provide users with the ability to control the range of data that they are
viewing. The most common form of this technique is to present the user with a fixed-size table
that acts as a sliding window over the result set. Each increment of results displayed is called a
page, and the process of navigating through the results is called pagination.

Efficiently paging through result sets has long been a challenge for both application devel-
opers and database vendors. Before support existed at the database level, a common technique
was to first retrieve all of the primary keys for the result set and then issue separate queries for
the full results using ranges of primary key values. Later, database vendors added the concept
oflogical row number to query results, guaranteeing that so long as the result was ordered, the
row number could be relied on to retrieve portions of the result set. More recently, the JDBC
specification has taken this even further with the concept of scrollable result sets, which can be
navigated forwards and backwards as required.

The Query interface provides support for pagination via the setFirstResult() and
setMaxResults() methods. These methods specify the first result to be received (numbered
from zero) and the maximum number of results to return relative to that point. A persistence
provider may choose to implement support for this feature in a number of different ways, as
not all databases benefit from the same approach. It’s a good idea to become familiar with how
your vendor approaches pagination and what level of support exists in the target database plat-
form for your application.

CHAPTER 6 USING QUERIES

Caution The setFirstResult() and setMaxResults() methods should not be used with queries
that join across collection relationships (one-to-many and many-to-many) because these queries may return
duplicate values. The duplicate values in the result set make it impossible to use a logical result position.

To better illustrate pagination support, consider the stateful session bean shown in
Listing 6-20. Once created, it is initialized with the name of a query to count the total results
and the name of a query to generate the report. When results are requested, it uses the page
size and current page number to calculate the correct parameters for the setFirstResult()
and setMaxResults () methods. The total number of results possible is calculated by executing
the count query. By using the next (), previous(), and getCurrentResults() methods, pre-
sentation code can page through the results as required. If this session bean were bound into
an HTTP session, it could be directly used by a JSP or JavaServer Faces page presenting the
results in a data table.

Listing 6-20. Stateful Session Report Pager

@Stateful

public class ResultPagerBean implements ResultPager {
@PersistenceContext(unitName="QueryPaging")
private EntityManager em;

private String reportQueryName;
private int currentPage;
private int maxResults;
private int pageSize;

public int getPageSize() {
return pageSize;

}

public int getMaxPages() {
return maxResults / pageSize;

}

public void init(int pageSize, String countQueryName,

String reportQueryName) {

this.pageSize = pageSize;

this.reportQueryName = reportQueryName;

maxResults = (Long) em.createNamedQuery(countQueryName)

.getSingleResult();
maxResults = resultCount.longValue();
currentPage = 0;

179

180 CHAPTER 6 USING QUERIES

public List getCurrentResults() {
return em.createNamedQuery(reportQueryName)
.setFirstResult(currentPage * pageSize)
.setMaxResults(pageSize)
.getResultlist();

}

public void next() {
currentPage++;

}

public void previous() {
currentPage--;
if (currentPage < 0) {
currentPage = 0;
}
}

public int getCurrentPage() {
return currentPage;

}

public void setCurrentPage(int currentPage) {
this.currentPage = currentPage;

}

@Remove
public void finished() {

}

Queries and Uncommitted Changes

Executing queries against entities that have been created or changed in a transaction is a topic
that requires special consideration. As we discussed in Chapter 5, the persistence provider will
attempt to minimize the number of times the persistence context must be flushed within a trans-
action. Optimally this will occur only once, when the transaction commits. While the transaction
is open and changes are being made, the provider relies on its own internal cache synchroniza-
tion to ensure that the right version of each entity is used in entity manager operations. At most
the provider may have to read new data from the database in order to fulfill a request. All entity
operations other than queries can be satisfied without flushing the persistence context to the
database.

Queries are a special case because they are executed directly as SQL against the database.
Because the database executes the query and not the persistence provider, the active persis-
tence context cannot usually be consulted by the query. As a result, if the persistence context
has not been flushed and the database query would be impacted by the changes pending in the
persistence context, incorrect data is likely to be retrieved from the query. The entity manager

CHAPTER 6 USING QUERIES 181

find() operation, on the other hand, always checks the persistence context before going to the
database, so this is not a concern.

The good news is that by default, the persistence provider will ensure that queries are able
to incorporate pending transactional changes in the query result. It might accomplish this by
flushing the persistence context to the database, or it might leverage its own runtime informa-
tion to ensure the results are correct.

And yet, there are times when having the persistence provider ensure query integrity is not
necessarily the behavior we need. The problem is that it is not always easy for the provider to
determine the best strategy to accommodate the integrity needs of a query. There is no way the
provider can logically determine at a fine-grained level which objects have changed and there-
fore need to be incorporated into the query results. If the provider solution to ensuring query
integrity is to flush the persistence context to the database, then you might have a performance
problem if this is a frequent occurrence.

To put this issue in context, consider a message board application, which has modeled
conversation topics as Conversation entities. Each Conversation entity refers to one or more
messages represented by a Message entity. Periodically, conversations are archived when the
last message added to the conversation is more than 30 days old. This is accomplished by
changing the status of the Conversation entity from “ACTIVE” to “INACTIVE”. The two que-
ries to obtain the list of active conversations and the last message date for a given conversation
are shown in Listing 6-21.

Listing 6-21. Conversation Queries

@NamedQueries ({
@NamedQuery (name="findActiveConversations",
query="SELECT c " +
"FROM Conversation ¢ " +
"WHERE c.status = 'ACTIVE'"),
@NamedQuery (name="findLastMessageDate",
query="SELECT MAX(m.postingDate) " +
"FROM Conversation ¢ JOIN c.messages m " +
"WHERE ¢ = :conversation")

1)

Listing 6-22 shows the session bean method used to perform this maintenance, accepting
aDate argument that specifies the minimum age for messages in order to still be considered
an active conversation. In this example, we see that two queries are being executed. The
“findAllActiveConversations” query collects all of the active conversations, while the
“findLastMessageDate” returns the last date that a message was added to a Conversation
entity. As the code iterates over the Conversation entities, it invokes the “findLastMessage-
Date” query for each one. As these two queries are related, it is reasonable for a persistence
provider to assume that the results of the “findLastMessageDate” query will depend on the
changes being made to the Conversation entities. If the provider ensures the integrity of the
“findLastMessageDate” query by flushing the persistence context, this could become a very
expensive operation if hundreds of active conversations are being checked.

182

CHAPTER 6 USING QUERIES

Listing 6-22. Archiving Conversation Entities

@Stateless

public class ConversationMaintenanceBean implements ConversationMaintenance {
@PersistenceContext(unitName="MessageBoard")
EntityManager em;

public void archiveConversations(Date minAge) {
List<Conversation> active = (List<Conversation>)
em.createNamedQuery("findActiveConversations™)
.getResultlist();
Query maxAge = em.createNamedQuery("findLastMessageDate");
for (Conversation c : active) {
maxAge.setParameter("conversation”, c);
Date lastMessageDate = (Date) maxAge.getSingleResult();
if (lastMessageDate.before(minAge)) {
c.setStatus("INACTIVE");

}
}

/7 ...

To give developers more control over the integrity requirements of queries, the EntityManager
and Query interfaces support a setFlushMode () method to set the flush mode, an indicator to the
provider how it should handle pending changes and queries. There are two possible flush mode
settings, AUTO and COMMIT, which are defined by the FlushModeType enumerated type. The default
setting is AUTO, which means that the provider should ensure that pending transactional changes
are included in query results. If a query might overlap with changed data in the persistence context,
then this setting will ensure that the results are correct.

The COMMIT flush mode tells the provider that queries don’t overlap with changed data in
the persistence context, so it does not need to do anything in order to get correct results.
Depending on how the provider implements its query integrity support, this might mean that
it does not have to flush the persistence context before executing a query since you have indi-
cated that there is nothing in memory that will be queried from the database.

Although the flush mode is set on the entity manager, the flush mode is really a property of
the persistence context. For transaction-scoped entity managers, that means the flush mode
has to be changed in every transaction. Extended and application-managed entity managers
will preserve their flush-mode setting across transactions.

Setting the flush mode on the entity manager applies to all queries, while setting the flush
mode for a query limits the setting to that scope. Setting the flush mode on the query overrides
the entity manager setting as you would expect. If the entity manager setting is AUTO and one
query has the COMMIT setting, then the provider will guarantee query integrity for all of the

CHAPTER 6 USING QUERIES

queries other than the one with the COMMIT setting. Likewise if the entity manager setting is
COMMIT and one query has an AUTO setting, then only the query with the AUTO setting is guaran-
teed to incorporate pending changes from the persistence context.

Generally speaking, if you are going to execute queries in transactions where data is being
changed, AUTO is the right answer. If you are concerned about the performance implications of
ensuring query integrity, consider changing the flush mode to COMMIT on a per-query basis.
Changing the value on the entity manager, while convenient, can lead to problems if more
queries are added to the application later and they require AUTO semantics.

Coming back to the example at the start of this section, we can set the flush mode on the
Query object for the “findLastMessageDate” query to COMMIT because it does not need to see
the changes being made to the Conversation entities. The following fragment shows how this
would be accomplished for the archiveConversations() method shown in Listing 6-22:

public void archiveConversations(Date minAge) {
/...
Query maxAge = em.createNamedQuery("findLastMessageDate");
maxAge. setFlushMode(FlushModeType.COMMIT);
/...

Bulk Update and Delete

Like their SQL counterparts, JPQL bulk update and delete statements are designed to make
changes to large numbers of entities in a single operation without requiring the individual enti-
ties to be retrieved and modified using the entity manager. Unlike SQL, which operates on
tables, JPQL update and delete statements must take the full range of mappings for the entity
into account. These operations are challenging for vendors to implement correctly, and as a
result, there are restrictions on the use of these operations that must be well understood by
developers.

The full syntax for UPDATE and DELETE statements is described in Chapter 7. The follow-
ing sections will describe how to use these operations effectively and the issues that may result
when used incorrectly.

Using Bulk Update and Delete

Bulk update of entities is accomplished with the UPDATE statement. This statement operates
on a single entity type and sets one or more single-valued properties of the entity (either a state
field or a single-valued association) subject to the conditions in the WHERE clause. In terms of
syntax, it is nearly identical to the SQL version with the exception of using entity expressions
instead of tables and columns. Listing 6-23 demonstrates using a bulk update statement. Note
that the use of the REQUIRES NEW transaction attribute type is significant and will be discussed
following the examples.

183

184

CHAPTER 6 USING QUERIES

Listing 6-23. Bulk Update of Entities

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="BulkQueries")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public void assignManager(Department dept, Employee manager) {

em.createQuery("UPDATE Employee e " +
"SET e.manager = ?1 " +
"WHERE e.department = ?2 ")
.setParameter(1, manager)
.setParameter(2, dept)

.executeUpdate();

Bulk removal of entities is accomplished with the DELETE statement. Again, the syntax is
the same as the SQL version except that the target in the FROM clause is an entity instead of a
table and the WHERE clause is composed of entity expressions instead of column expressions.
Listing 6-24 demonstrates bulk removal of entities.

Listing 6-24. Bulk Removal of Entities

@Stateless

public class ProjectServiceBean implements ProjectService {
@PersistenceContext(unitName="BulkQueries")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public void removeEmptyProjects() {
em.createQuery("DELETE FROM Project p " +
"WHERE p.employees IS EMPTY ")
.executeUpdate();

The first issue for developers to consider when using these statements is that the persistence
context is not updated to reflect the results of the operation. Bulk operations are issued as SQL
against the database, bypassing the in-memory structures of the persistence context. Therefore
updating the salary of all of the employees will not change the current values for any entities
managed in memory as part of a persistence context. The developer can rely only on entities
retrieved after the bulk operation completes.

For developers using transaction-scoped persistence contexts, this means that the bulk
operation should either execute in a transaction all by itself or be the first operation in the
transaction. Running the bulk operation in its own transaction is the preferred approach as it
minimizes the chance of the developer accidentally fetching data before the bulk change
occurs. Executing the bulk operation and then working with entities after it completes is also

CHAPTER 6 USING QUERIES

safe, because then any find() operation or query will go to the database to get current results.
The examples in Listing 6-23 and Listing 6-24 used the REQUIRES NEW transaction attribute to
ensure that the bulk operations occurred within their own transactions.

A typical strategy for persistence providers dealing with bulk operations is to invalidate
any in-memory cache of datarelated to the target entity. This forces data to be fetched from the
database the next time it is required. How much cached data gets invalidated depends on the
sophistication of the persistence provider. If the provider can detect that the update impacts
only a small range of entities, then those specific entities may be invalidated, leaving other
cached data in place. Such optimizations are limited, however, and if the provider cannot be
sure of the scope of the change, then the entire cache must be invalidated. This can have per-
formance impacts on the application if bulk changes are a frequent occurrence.

Caution SQL update and delete operations should never be executed on tables mapped by an entity. The
JPQL operations tell the provider what cached entity state must be invalidated in order to remain consistent
with the database. Native SQL operations bypass such checks and can quickly lead to situations where the
in-memory cache is out of date with respect to the database.

The danger present in bulk operations and the reason they must occur first in a transac-
tion is that any entity actively managed by a persistence context will remain that way, oblivious
to the actual changes occurring at the database level. The active persistence context is separate
and distinct from any data cache that the provider may use for optimizations. Consider the fol-
lowing sequence of operations:

-

. Anew transaction starts.

Entity A is created by calling persist() to make the entity managed.
Entity B is retrieved from a find() operation and modified.

A bulk remove deletes entity A.

A bulk update changes the same properties on entity B that were modified in step 3.

U T o

The transaction commits.

What should happen to entities A and B in this sequence? In the case of entity A, the pro-
vider has to assume that the persistence context is correct and so will still attempt to insert the
new entity even though it should have been removed. In the case of entity B, again the provider
has to assume that managed version is the correct version and will attempt to update the ver-
sion in the database, undoing the bulk update change.

This brings us to the issue of extended persistence contexts. Bulk operations and extended
persistence contexts are a particularly dangerous combination because the persistence con-
text survives across transaction boundaries, but the provider will never refresh the persistence
context to reflect the changed state of the database after a bulk operation has completed. When
the extended persistence context is next associated with a transaction, it will attempt to syn-
chronize its current state with the database. Since the managed entities in the persistence

185

186

CHAPTER 6 USING QUERIES

context are now out of date with respect to the database, any changes made since the bulk
operation could result in incorrect results being stored. In this situation, the only option is to
refresh the entity state or ensure that the data is versioned in such a way that the incorrect
change can be detected. Locking strategies and refreshing of entity state are discussed in
Chapter 9.

Bulk Delete and Relationships

In our discussion of the remove () operation in the previous chapter, we emphasized that rela-
tionship maintenance is always the responsibility of the developer. The only time a cascading
remove occurs is when the REMOVE cascade option is set for a relationship. Even then, the per-
sistence provider won’t automatically update the state of any managed entities that refer to the
removed entity. As we are about to see, the same requirement holds true when using DELETE
statements as well.

A DELETE statement in JPQL corresponds more or less to a DELETE statement in SQL.
Writing the statement in JPQL gives you the benefit of working with entities instead of tables,
but the semantics are exactly the same. This has implications in how applications must write
DELETE statements in order to ensure that they execute correctly and leave the database in a
consistent state.

DELETE statements do not cascade to related entities. Even if the REMOVE cascade option
is set on a relationship, it will not be followed. It is your responsibility to ensure that relation-
ships are correctly updated with respect to the entities that have been removed. The
persistence provider also has no control over constraints in the database. If you attempt to
remove data that is the target of a foreign key relationship in another table, you will get a refer-
ential integrity constraint violation in return.

Let’s look at an example that puts these issues in context. Consider, for example, that a
company wishes to reorganize its department structure. We want to delete a number of depart-
ments and then assign the employees to new departments. The first step is to delete the old
departments, so the following statement is to be executed:

DELETE FROM Department d
WHERE d.name IN ('CA13', 'CA19', 'NY30')

This is a straightforward operation. We want to remove the department entities that match the
given list of names using a DELETE statement instead of querying for the entities and using the
remove () operation to dispose of them. But when this query is executed, a PersistenceException
exception is thrown, reporting that a foreign key integrity constraint has been violated. Therefore,
another table has a foreign key reference to one of the rows we are trying to delete. Checking the
database, we see that the table mapped by the Employee entity has a foreign key constraint against
the table mapped by the Department entity. Since the foreign key value in the Employee table is not
NULL, the parent key from the Department table can’t be removed.

Therefore we need to first update the Employee entities in question to make sure that they
do not point to the department we are trying to delete:

UPDATE Employee e
SET e.department = null
WHERE e.department.name IN ('CA13', 'CA19', 'NY30')

CHAPTER 6 USING QUERIES

With this change the original DELETE statement will work as expected. Now consider what
would have happened if the integrity constraint had not been in the database. The DELETE
operation would have completed successfully, but the foreign key values would still be sitting
in the Employee table. The next time the persistence provider tried to load the Employee entities
with dangling foreign keys, it would be unable to resolve the target entity. The outcome of this
operation is vendor-specific but will most likely lead to a PersistenceException exception
being thrown, complaining of the invalid relationship.

Query Hints

Query hints are the Java Persistence API extension point for vendor-specific query features. A
hint is simply a string name and object value. The meaning of both the name and value is
entirely up to the persistence provider. Every query may be associated with any number of
hints, set either in persistence unit metadata as part of the @NamedQuery annotation, or on the
Query interface itself using the setHint() method.

We left query hints until the end of this chapter because they are the only feature in the
query API that has no standard usage. Everything about hints is vendor-specific. The only
guarantee provided by the specification is that providers must ignore hints that they do not
understand. Listing 6-25 demonstrates the “toplink.cache-usage” hint supported by the Reference
Implementation of the Java Persistence API to indicate that the cache should not be checked
when reading an Employee from the database. Unlike the refresh() method of the EntityManager
interface, this hint will not cause the query result to override the current cached value.

Listing 6-25. Using Query Hints

public Employee findEmployeeNoCache(int empId) {
Query q = em.createQuery("SELECT e FROM Employee e WHERE e.id = ?1");
// force read from database
q.setHint("toplink.cache-usage", "DoNotCheckCache");
g.setParameter(1, empld);
try {
return (Employee) q.getSingleResult();
} catch (NoResultException e) {
return null;

}

If this query were to be executed frequently, a named query would be more efficient. The
following named query definition incorporates the cache hint used earlier:

@NamedQuery (name="findEmployeeNoCache",
query="SELECT e FROM Employee e WHERE e.id = :empId",
hints={@ueryHint(name="toplink.cache-usage", value="DoNotCheckCache")})

The hints element accepts an array of @ueryHint annotations, allowing any number of hints
to be set for a query.

187

188

CHAPTER 6 USING QUERIES

Query Best Practices

The typical application using the Java Persistence API is going to have many queries defined. It
is the nature of enterprise applications that information is constantly being queried from the
database, for everything from complex reports to drop-down lists in the user interface. There-
fore efficiently using queries can have a major impact on your application as a whole.

Named Queries

First and foremost, we recommend named queries whenever possible. Persistence providers
will often take steps to precompile JPQL named queries to SQL as part of the deployment or ini-
tialization phase of an application. This avoids the overhead of continuously parsing JPQL and
generating SQL. Even with a cache for converted queries, dynamic query definition will always
be less efficient than using named queries.

Named queries also enforce the best practice of using query parameters. Query parame-
ters help to keep the number of distinct SQL strings parsed by the database to a minimum.
Since databases typically keep a cache of SQL statements on hand for frequently accessed que-
ries, this is an essential part of ensuring peak database performance.

As we discussed in the Dynamic Query Definition section, query parameters also help to
avoid security issues caused by concatenating values into query strings. For applications
exposed to the web, security has to be a concern at every level of an application. You can either
spend a lot of effort trying to validate input parameters, or you can use query parameters and
let the database do the work for you.

When naming queries, decide on a naming strategy early in the application development
cycle with the understanding that the query namespace is global for each persistence unit. Col-
lisions between query names are likely to be a common frustration if there is no established
naming pattern.

Finally, using named queries allows for JPQL queries to be overridden with SQL queries or
even with vendor-specific languages and expression frameworks. For applications migrating
from an existing object-relational mapping solution, it is quite likely that the vendor will pro-
vide some support for invoking their existing query solution using the named query facility in
the Java Persistence API. We will discuss SQL named queries in Chapter 9.

Report Queries

If you are executing queries that return entities for reporting purposes and have no intention
of moditying the results, consider executing queries using a transaction-scoped entity man-
ager but outside of a transaction. The persistence provider may be able to detect the lack of a
transaction and optimize the results for detachment, often by skipping some of the steps
required to create an interim managed version of the entity results.

Likewise, if an entity is expensive to construct due to eager relationships or a complex
table mapping, consider selecting individual entity properties using a projection query instead
of retrieving the full entity result. If all you need is the name and office phone number for 500
employees, selecting only those two fields is likely to be far more efficient than fully construct-
ing 1,000 entity instances.

CHAPTER 6 USING QUERIES

Query Hints

It is quite likely that vendors will entice you with a variety of hints to enable different perfor-
mance optimizations for queries. Query hints may well be an essential tool in meeting your
performance expectations. We strongly advise, however, that you resist the urge to embed
query hints in your application code. The ideal location for query hints is in an XML mapping
file (which we will be describing in Chapter 10), or at the very least as part of a named query
definition. Hints are often highly dependent on the target platform and may well change over
time as different aspects of the application impact the overall balance of performance. Keep
hints decoupled from your code if at all possible.

Stateless Session Beans

We tried to demonstrate as many examples as possible in the context of a stateless session bean
method, as we believe that this is the best way to organize queries in a Java EE application.
Using the stateless session bean has a number of benefits over simply embedding queries all
over the place in application code:

» Clients can execute queries by invoking an appropriately named business method
instead of relying on a cryptic query name or multiple copies of the same query string.

* Stateless session bean methods can optimize their transaction usage depending on
whether or not the results need to be managed or detached.

» Using a transaction-scoped persistence context ensures that large numbers of entity
instances don’t remain managed long after they are needed.

» For existing entity bean applications, the stateless session bean is the ideal vehicle for
migrating finder queries away from the entity bean home interface. We will discuss this
technique in Chapter 13.

This is not to say that other components are unsuitable locations for queries, but state-
less session beans are a well-established best practice for hosting queries in the Java EE
environment.

Bulk Update and Delete

If bulk update and delete operations must be used, ensure that they are executed only in an iso-
lated transaction where no other changes are being made. There are many ways in which these
queries can negatively impact an active persistence context. Interweaving these queries with
other non-bulk operations requires careful management by the application.

Entity versioning and locking requires special consideration when bulk update operations
are used. Bulk delete operations can have wide ranging ramifications depending on how well
the persistence provider can react and adjust entity caching in response. Therefore we view
bulk update and delete operations as being highly specialized, to be used with care.

Provider Differences

Take time to become familiar with the SQL that your persistence provider generates for differ-
ent JPQL queries. Although understanding SQL is not necessary for writing JPQL queries,

189

190

CHAPTER 6 USING QUERIES

knowing what happens in response to the various JPQL operations is an essential part of per-
formance tuning. Joins in JPQL are not always explicit, and you may find yourself surprised at
the complex SQL generated for a seemingly simple JPQL query.

The benefits of features such as query paging are also dependent on the approach used
by your persistence provider. There are a number of different techniques that can be used to
accomplish pagination, many of which suffer from performance and scalability issues.
Because the Java Persistence API can’t dictate a particular approach that will work well in all
cases, become familiar with the approach used by your provider and whether or not it is
configurable.

Finally, understanding the provider strategy for when and how often it flushes the persis-
tence context is necessary before looking at optimizations such as changing the flush mode.
Depending on the caching architecture and query optimizations used by a provider, changing
the flush mode may or may not make a difference to your application.

Summary

We began this chapter with an introduction to JPQL, the query language defined by the Java
Persistence API. We briefly discussed the origins of JPQL and its role in writing queries that
interact with entities. We also provided an overview of major JPQL features for developers
already experienced with SQL or previous versions of EJB QL.

In the discussion on executing queries, we introduced the methods for defining queries
both dynamically at runtime and statically as part of persistence unit metadata. We looked at
the Query interface and the types of query results possible using JPQL. We also looked at
parameter binding, strategies for handling large result sets and how to ensure that queries in
transactions with modified data complete successfully.

In the section on bulk update and delete we looked at how to execute these types of queries
and how to ensure that they are used safely by the application. We provided details on how per-
sistence providers deal with bulk operations and the impact that they have on the active
persistence context.

We ended our discussion of query features with a look at query hints. We showed how to
specify hints and provided an example using hints supported by the Reference Implementation
of the Java Persistence API.

Finally, we summarized our view of best practices relating to queries, looking at named
queries, different strategies for the various query types, as well as the implementation details
that need to be understood for different persistence providers.

In the next chapter, we will continue to focus on queries by examining JPQL in detail.

CHAPTER 7

Query Language

Based on the EJB Query Language (EJB QL) first introduced in EJB 2.0, the Java Persistence
Query Language (JPQL), is a portable query language designed to combine the syntax and
simple query semantics of SQL with the expressiveness of an object-oriented expression lan-
guage. Queries written using this language can be portably compiled to SQL on all major
database servers.

In the last chapter, we looked at programming using the query interfaces and presented a
briefintroduction to JPQL for users already experienced with SQL. This chapter will explore the
query language in detail, breaking the language down piece by piece with examples to demon-
strate all of its features.

Introduction

In order to describe what JPQL is, it is important to make clear what it is not. JPQL is not SQL.
Despite the similarities between the two languages in terms of keywords and overall structure,
there are very important differences. Attempting to write JPQL as if it were SQL is the easiest way
to get frustrated with the language. The similarities between the two languages are intentional in
order to give developers a feel for what the language can accomplish, but the object-oriented
nature of the language requires a different mode of thinking.

IfJPQL is not SQL, then what is it? Put simply, JPQL is a language for querying entities.
Instead of tables and rows, the currency of the language is entities and objects. It provides us
with a way to express queries in terms of entities and their relationships, operating on the per-
sistent state of the entity as defined in the object model, not in the physical database model.

If the Java Persistence API supports SQL queries, why introduce a new query language?
There are a couple of important reasons to consider JPQL over SQL. The first is portability. It
may be translated into the SQL dialect of all major database vendors. The second reason is that
queries are literally written against the domain model of persistent entities. Queries may be
written without any need to know exactly how the entities are mapped to the database. We
hope that the examples in this chapter will demonstrate the power present in even the simplest
JPQL expressions.

Adopting JPQL does not mean losing all of the SQL features you have grown accustomed
to using. A broad selection of SQL features are directly supported, including subqueries, aggre-
gate queries, update and delete statements, numerous SQL functions, and more.

191

192

CHAPTER 7 QUERY LANGUAGE

Terminology

Queries fall into one of four categories: select, aggregate, update, and delete queries. Select
queries retrieve persistent state from one or more entities, filtering results as required. Aggre-
gate queries are variations of select queries that group the results and produce summary data.
Together, select and aggregate queries are sometimes called report queries, since they are
primarily focused on generating data for reporting. Update and delete queries are used to con-
ditionally modify or remove entire sets of entities. Each query type will be described in detail in
its own section as the chapter progresses.

Queries operate on the set of entities defined by a persistence unit. This set of entities is
known as the abstract persistence schema, the collection of which defines the overall domain
from which results may be retrieved.

Note To allow this chapter to be used as a companion to the Query Language chapter of the Java
Persistence API specification, the same terminology is used where possible.

In query expressions, entities are referred to by name. If an entity has not been explicitly
named (using the name attribute of the @Entity annotation, for example) the unqualified class
name is used by default. This name is the abstract schema name of the entity in the context of
a query.

Entities are composed of one or more persistence properties implemented as fields or
JavaBean properties. The abstract schema type of a persistent property on an entity refers to
the class or primitive type used to implement that property. For example, if the Employee entity
has a property name of type String, then the abstract schema type of that property in query
expressions is String as well. Simple persistent properties with no relationship mapping com-
prise the persistent state of the entity and are referred to as state fields. Persistent properties
that are also relationships are called association fields.

As we saw in the last chapter, queries may be defined dynamically or statically. The exam-
ples in this chapter will consist of queries that may be used either dynamically or statically
depending on the needs of the application.

Finally, itis important to note that queries are not case sensitive except in two cases. Entity
names and property names must be specified exactly as they are named.

Example Data Model

Figure 7-1 shows the domain model for the queries in this chapter. Continuing the examples
we have been using throughout the book, it demonstrates many different relationship types,
including unidirectional, bidirectional, and self-referencing relationships. We have added the
role names to this diagram to make the relationship property names explicit.

CHAPTER 7 QUERY LANGUAGE

0.1 manager
Phone * Employee employees dept Dept
number: String directs id: int) 0.1 id: int
type: String * 1 name: String name: String
salary: long 3¢
phones employee
* employee
* project Address
id: long
Project 0.1 street: String
. address city: String
id:int state: String
name: String zip: String
| DesignProject | | QualityProject |

Figure 7-1. Example application domain model

The object relational mappings for this model are not included in this chapter except where
we describe the SQL equivalent of a particular query. Knowing how a mapping is implemented is
only a performance concern and is not necessary to write queries since the query language is
based entirely on the object model and the logical relationships between entities. It is the job of
the query translator to take the object-oriented query expressions and interpret the mapping
metadata in order to produce the SQL required to execute the query on the database.

Example Application

Learning a new language can be a challenging experience. It’s one thing to read through page
after page of text describing the features of the language, but it’s another thing completely to

put these features into practice. To get used to writing queries, consider using an application

like the one shown in Listing 7-1. This simple application reads queries from the console and
executes them against the entities from a particular persistence unit.

Listing 7-1. Application for Testing Queries
package persistence;

import java.io.*;

import java.util.*;

import javax.persistence.*;
import org.apache.commons.lang.builder.*;

193

194 CHAPTER 7 QUERY LANGUAGE

public class QueryTester {

public static void main(String[] args) throws Exception {
String unitName = args[0];

EntityManagerFactory emf =
Persistence.createEntityManagerFactory(unitName);
EntityManager em = emf.createEntityManager();
BufferedReader reader =
new BufferedReader(new InputStreamReader(System.in));

for (5;) {

System.out.print("JPQL> ");

String query = reader.readlLine();

if (query.equals("quit")) {
break;

}

if (query.length() == 0) {
continue;

}

try {
List result = em.createQuery(query).getResultList();
if (result.size() » 0) {
int count = 0;
for (Object o : result) {
System.out.print(++count + " ");
printResult(o);
}
} else {
System.out.println("o results returned");
}
} catch (Exception e) {
e.printStackTrace();

}
}

private static void printResult(Object result) throws Exception {
if (result == null) {
System.out.print("NULL");
} else if (result instanceof Object[]) {
Object[] row = (Object[]) result;
System.out.print("[");
for (int i = 0; 1 < row.length; i++) {
printResult(row[i]);
}

CHAPTER 7 QUERY LANGUAGE

System.out.print("]");
} else if (result instanceof Long ||
result instanceof Double ||
result instanceof String) {
System.out.print(result.getClass().getName() + ":
} else {
System.out.print(ReflectionToStringBuilder.toString(result, w»
ToStringStyle.SHORT PREFIX STYLE));

}
System.out.println();

+ result);

The only requirement for using this application is the name of a persistence unit contain-
ing the entities you wish to query against. The application will read the persistence unit name
from the command line and attempt to create an EntityManagerFactory for that name. If ini-
tialization is successful, queries may be typed at the JPQL> prompt. The query will be executed
and the results printed out. The format of each result is the class name followed by each of the
properties for that class. This example uses the Apache Jakarta Commons-Lang library to gen-
erate the object summary. Listing 7-2 demonstrates a sample session with the application.

Listing 7-2. Example Session with QueryTester

JPQL> SELECT p FROM Phone p WHERE p.type NOT IN ('office', 'home')

1 Phone[id=5,number=516-555-1234, type=cell,employee=Employee@13c0b53
2 Phone[id=9,number=650-555-1234, type=cell,employee=Employee@193f6e2
3 Phone[id=12,number=650-555-1234,type=cell,employee=Employee@36527f
4 Phone[id=18,number=585-555-1234,type=cell, employee=Employee@bd6a5f
5 Phone[id=21,number=650-555-1234,type=cell, employee=Employee@979e8b]
JPQL> SELECT d.name, AVG(e.salary) FROM Department d JOIN d.employees e w»
GROUP BY d.name

1 [java.lang.String: QA

java.lang.Double: 52500.0

]

2 [java.lang.String: Engineering

java.lang.Double: 56833.333333333336

]
JPOL> quit

—_— e

Select Queries

Select queries are the primary query type and facilitate the bulk retrieval of data from the
database. Not surprisingly, select queries are also the most common form of query used in
applications. The overall form of a select query is as follows:

195

196

CHAPTER 7 QUERY LANGUAGE

SELECT <select expression>

FROM <from_clause>

[WHERE <conditional expression>]
[ORDER BY <order by clause>]

The simplest form of a select query consists of two mandatory parts, the SELECT clause
and the FROM clause. The SELECT clause defines the format of the query results, while the
FROM clause defines the entity or entities from which the results will be obtained. Consider the
following complete query that retrieves all of the employees in the company:

SELECT e
FROM Employee e

The structure of this query is very similar to a SQL query but with a couple of important differ-
ences. The first difference is that the domain of the query defined in the FROM clause is not a
table but an entity, in this case the Employee entity. As in SQL, it has been aliased to the identi-
fier e. This aliased value is known as an identification variable and is the key by which the entity
will be referred to in the rest of the select statement. Unlike queries in SQL, where a table alias
is optional, the use of identification variables is mandatory in JPQL.

The second difference is that the SELECT clause does not enumerate the fields of the table or
use a wildcard to select all of the fields. Instead, only the identification variable is listed in order
to indicate that the result type of the query is the Employee entity, not a tabular set of rows.

As the query processor iterates over the result set returned from the database, it converts
the tabular row and column data into a set of entity instances. The getResultList() method
of the Query interface will return a collection of zero or more Employee objects after evaluating
the query.

Despite the differences in structure and syntax, every query is translatable to SQL. In order
to execute a query, the query engine first builds an optimal SQL representation of the JPQL
query. The resulting SQL query is what actually gets executed on the database. In this simple
example the resulting SQL would look something like this:

SELECT id, name, salary, manager id, dept id, address_id
FROM emp

The SQL statement must read in all of the mapped columns required to create the entity
instance, including foreign key columns. Even if the entity is cached in memory, the query
engine will still typically read all required data in order to ensure that the cached version is up
to date. Note that, had the relationships between the Employee and the Department or Address
entities required eager loading, the SQL statement would either be extended to retrieve the
extra data or multiple statements would have been batched together in order to completely
construct the Employee entity. Every vendor will provide some method for displaying the SQL
it generates from translating JPQL. For performance tuning in particular, being familiar with
how your vendor approaches SQL generation can help you write more efficient queries.

Now that we have looked at a simple query and covered the basic terminology, the follow-
ing sections will move through each of the clauses of the select query, explaining the syntax
and features available.

CHAPTER 7 QUERY LANGUAGE

The SELECT Clause

The SELECT clause of a query can take several forms, including simple and complex path
expressions, transformation functions, multiple expressions (including constructor expres-
sions), and aggregate functions. The following sections introduce path expressions and discuss
the different styles of SELECT clauses and how they determine the result type of the query.
Aggregate functions are detailed later in the chapter in the section on Aggregate Queries.

Path Expressions

Path expressions are the building blocks of queries. They are used to navigate out from an
entity, either across a relationship to another entity (or collection of entities) or to one of the
persistent properties of an entity. Navigation that results in one of the persistent state fields
(either field or property) of an entity is referred to as a state field path. Navigation that leads to
asingle entity is referred to as a single-valued association path, while navigation to a collection
of entities is referred to as a collection-valued association path.

The dot operator (.) signifies path navigation in an expression. For example, if the
Employee entity has been mapped to the identification variable e, then e.name is a state field
path expression resolving to the employee name. Likewise, the path expression e.department
is a single-valued association from the employee to the department to which he or she is
assigned. Finally, e.directs is a collection-valued association that resolves to the collection
of employees reporting to an employee who is also a manager.

What makes path expressions so powerful is that they are not limited to a single naviga-
tion. Rather, navigation expressions can be chained together to traverse complex entity graphs,
so long as the path moves from left to right across single-valued associations. A path cannot
continue from a state field or collection-valued association. Using this technique, we can con-
struct path expressions such as e.department.name, which is the name of the department to
which the employee belongs.

Path expressions are used in every clause of a select query, determining everything from
the result type of the query to the conditions under which the results should be filtered. Expe-
rience with path expressions is the key to writing effective queries.

Entities and Objects

The first and simplest form of the SELECT clause is a single identification variable. The result
type for a query of this style is the entity to which the identification variable is associated. For
example, the following query returns all of the departments in the company:

SELECT d
FROM Department d

The keyword OBJECT may be used to indicate that the result type of the query is the entity
bound to the identification variable. It has no impact on the query, but it may be used as a
visual clue:

SELECT OBJECT(d)
FROM Department d

197

198

CHAPTER 7 QUERY LANGUAGE

The only problem with using OBJECT is that even though path expressions can resolve to an
entity type, the syntax of the OBJECT keyword is limited to identification variables. The expres-
sion OBJECT (e.department) is illegal even though Department is an entity type. For that
reason, we do not recommend the OBJECT syntax. It exists primarily for compatibility with
previous versions of the language that required the OBJECT keyword on the assumption that a
future revision to SQL would include the same terminology.

A path expression resolving to a state field or single-valued association may also be used in
the SELECT clause. The result type of the query in this case becomes the type of the path
expression, either the state field type or the entity type of a single-valued association. The fol-
lowing query returns the names for all employees:

SELECT e.name
FROM Employee e

The result type of the path expression in the SELECT clause is String, so executing this query
using getResultList() will produce a collection of zero or more String objects.

Entities reached from a path expression may also be returned. The following query dem-
onstrates returning a different entity as a result of path navigation:

SELECT e.department
FROM Employee e

The result type of this query is the Department entity since that is the result of traversing the
department relationship from Employee to Department. Executing the query will therefore
result in a collection of zero or more Department objects, including duplicates.

To remove the duplicates, the DISTINCT operator must be used:

SELECT DISTINCT e.department
FROM Employee e

The DISTINCT operator is functionally equivalent to the SQL operator of the same name. Once
the result set is collected, duplicate values (using entity identity if the query result type is an
entity) are removed so that only unique results are returned.

The result type of a select query is the type corresponding to each row in the result set pro-
duced by executing the query. This may include entities, primitive types and other persistent
attribute types, but never a collection type. The following query is illegal:

SELECT d.employees
FROM Department d

The path expression d.employees is a collection-valued path that produces a collection type.
Restricting queries in this way prevents the provider from having to combine successive rows
from the database into a single result object.

Combining Expressions

Multiple expressions may be specified in the same SELECT clause by separating them with
commas. The result type of the query in this case is an array of type Object, where the elements
of the array are the results of resolving the expressions in the order in which they appeared in
the query.

Consider the following query that returns only the name and salary of an employee:

CHAPTER 7 QUERY LANGUAGE

SELECT e.name, e.salary
FROM Employee e

When executed, a collection of zero or more instances of arrays of type Object will be returned.
Each array in this example has two elements, the first being a String containing the employee
name and the second being a Double containing the employee salary. The practice of reporting
only a subset of the state fields from an entity is called projection because the entity data is pro-
jected out from the entity into tabular form.

Projection is a useful technique for web applications where only a few pieces of informa-
tion are displayed from a large set of entity instances. Depending on how the entity has been
mapped, it may require a complex SQL query to fully retrieve the entity state. If only two fields
are required, then the extra effort spent constructing the entity instance may have been
wasted. A projection query that returns only the minimum amount of data is more useful in
these cases.

Constructor Expressions

A more powerful form of SELECT clause involving multiple expressions is the constructor
expression, which specifies that the results of the query are to be stored using a user-specified
object type. Consider the following query:

SELECT NEW example.EmployeeDetails(e.name, e.salary, e.department.name)
FROM Employee e

The result type of this query is the type example.EmployeeDetails. As the query processor
iterates over the results of the query, it instantiates new instances of EmployeeDetails using the
constructor that matches the expression types listed in the query. In this case the expression
types are String, Double, and String, so the query engine will search for a constructor with those
class types for arguments. Each row in the resulting query collection is therefore an instance of
EmployeeDetails containing the employee name, salary, and department name.

The result object type must be referred to using the fully qualified name of the object. The
class does not have to be mapped to the database in any way, however. Any class with a construc-
tor compatible with the expressions listed in the SELECT clause can be used in a constructor
expression.

Constructor expressions are powerful tools for constructing coarse-grained data transfer
objects or view objects for use in other application tiers. Instead of manually constructing
these objects, a single query can be used to gather together view objects ready for presentation
on a web page.

Inheritance and Polymorphism

The Java Persistence API supports inheritance between entities. As a result, the query language
supports polymorphic results where multiple subclasses of an entity can be returned by the
same query.

In the example model, Project is an abstract base class for QualityProject and
DesignProject. If an identification variable is formed from the Project entity, then the query
results will include a mixture of QualityProject and DesignProject objects, and the results
may be cast to these classes as necessary. There is no special syntax to enable this behavior.
The following query retrieves all projects with at least one employee:

199

200

CHAPTER 7 QUERY LANGUAGE

SELECT p
FROM Project p
WHERE p.employees IS NOT EMPTY

The impact that inheritance between entities has on the generated SQL is important to
understand for performance reasons and will be described in Chapter 8.

The FROM Clause

The FROM clause is used to declare one or more identification variables, optionally derived
from joined relationships, that form the domain over which the query should draw its results.
The syntax of the FROM clause consists of one or more identification variables and join clause
declarations.

Identification Variables

The identification variable is the starting point for all query expressions. Every query must have
at least one identification variable defined in the FROM clause, and that variable must corre-
spond to an entity type. When an identification variable declaration does not use a path
expression (that is, when it is a single entity name), it is referred to as a range variable declara-
tion. This terminology comes from set theory as the variable is said to range over the entity.

Range variable declarations use the following syntax: <entity name> [AS] <identifier>.
The identifier must follow the standard Java naming rules and may be referenced throughout
the query in a case-insensitive manner. Multiple declarations may be specified by separating
them with commas.

Path expressions may also be aliased to identification variables in the case of joins and
subqueries. The syntax for identification variable declarations in these cases will be covered in
their respective sections next.

Joins

Ajoin is a query that combines results from multiple entities. Joins in JPQL queries are logically

equivalent to SQL joins. Ultimately, once the query is translated to SQL, it is quite likely that the

joins between entities will produce similar joins amongst the tables to which the entities are

mapped. Understanding when joins occur is therefore important to writing efficient queries.
Joins occur whenever any of the following conditions are met in a select query:

1. Two or more range variable declarations are listed in the FROM clause
2. The JOIN operator is used to extend an identification variable using a path expression

3. Apath expression anywhere in the query navigates across an association field, to the
same or a different entity

The semantics of a join between entities are the same as SQL joins between tables. Most
queries contain a series of join conditions, expressions that define the rules for matching one
entity to another. Join conditions may be specified explicitly, such as using the JOIN operator
in the FROM clause of a query, or implicitly as a result of path navigation.

CHAPTER 7 QUERY LANGUAGE 201

An inner join between two entities returns the objects from both entity types that satisfy all
of the join conditions. Path navigation from one entity to another is a form of inner join. The
outer join of two entities is the set of objects from both entity types that satisfy the join condi-
tions plus the set of objects from one entity type (designated as the left entity) that have no
matching join condition in the other.

In the absence of join conditions between two entities, queries will produce a Cartesian
product. Each object of the first entity type is paired with each object of the second entity type,
squaring the number of results. Cartesian products are rare with JPQL queries given the navi-
gation capabilities of the language, but they are possible if two range variable declarations in
the FROM clause are specified without additional conditions specified in the WHERE clause.

Further discussion and examples of each join style are provided in the following sections.

Inner Joins

All of the example queries so far have been using the simplest form of FROM clause, a single
entity type aliased to an identification variable. However, as a relational language, JPQL sup-
ports queries that draw on multiple entities and the relationships between them.

Inner joins between two entities may be specified in one of two ways. The first and pre-
ferred form is the JOIN operator in the FROM clause. The second form requires multiple range
variable declarations in the FROM clause and WHERE clause conditions to provide the join
conditions.

The JOIN Operator and Collection Association Fields The syntax of an inner join using the JOIN oper-
ator is [INNER] JOIN <path _expression> [AS] <identifier>. Consider the following query:

SELECT p
FROM Employee e JOIN e.phones p

This query uses the JOIN operator to join the Employee entity to the Phone entity across the
phones relationship. The join condition in this query is defined by the object-relational map-
ping of the phones relationship. No additional criteria need to be specified in order to link the
two entities. By joining the two entities together, this query returns all of the Phone entity
instances associated with employees in the company.

The syntax for joins is similar to the JOIN expressions supported by ANSI SQL. For readers
who may not be familiar with this syntax, consider the equivalent SQL form of the previous
query written using the traditional join form:

SELECT p.id, p.phone_num, p.type, p.emp_id
FROM emp e, phone p
WHERE e.id = p.emp_id

The table mapping for the Phone entity replaces the expression e.phones. The WHERE clause
also includes the criteria necessary to join the two tables together across the join columns
defined by the phones mapping.

Note that the phones relationship has been mapped to the identification variable p. Even
though the Phone entity does not directly appear in the query, the target of the phones relation-
ship is the Phone entity, and this determines the identification variable type. This implicit
determination of the identification variable type can take some getting used to. Familiarity

202

CHAPTER 7 QUERY LANGUAGE

with how relationships are defined in the object model is necessary to navigate through a writ-
ten query.

Each occurrence of p outside of the FROM clause now refers to a single phone owned by
an employee. Even though a collection association field was specified in the JOIN clause, the
identification variable is really referring to entities reached by that association, not the collec-
tion itself. The variable can now be used as if the Phone entity was listed directly in the FROM
clause. For example, instead of returning Phone entity instances, phone numbers can be
returned instead:

SELECT p.number
FROM Employee e JOIN e.phones p

In the definition of path expressions earlier, it was noted that a path couldn’t continue
from a state field or collection association field. To work around this situation, the collection
association field must be joined in the FROM clause so that a new identification variable is cre-
ated for the path, allowing it to be the root for new path expressions.

IN VS. JOIN

The JOIN operator is new with the Java Persistence API. Previous versions of EJB QL defined by the EJB 2.0
and EJB 2.1 specifications used a special operator IN in the FROM clause to map collection associations to
identification variables. The equivalent form of the query used earlier in this section may be specified as:

SELECT DISTINCT p
FROM Employee e, IN(e.phones) p

The IN operator is intended to indicate that the variable p is an enumeration of the phones collection.
We believe that the JOIN operator is a more powerful and expressive way to declare relationships in a query.
The IN operator is still supported, but use of the JOIN operator is recommended.

The JOIN Operator and Single-Valued Association Fields The JOIN operator works with both collection-
valued association path expressions and single-valued association path expressions. Consider
the following example:

SELECT d
FROM Employee e JOIN e.department d

This query defines a join from Employee to Department across the department relationship.
This is semantically equivalent to using a path expression in the SELECT clause to obtain the
department for the employee. For example, the following query should result in similar if not
identical SQL representations involving a join between the Employee and Department entities:

SELECT e.department
FROM Employee e

CHAPTER 7 QUERY LANGUAGE

The primary use case for using a single-valued association path expression in the FROM
clause as opposed to just using a path expression in the SELECT clause is for outer joins. Path
navigation is equivalent to the inner join of all associated entities traversed in the path
expression.

Implicit inner joins resulting from path expressions is something that developers should
be aware of. Consider the following example that returns the distinct departments based in
California that are participating in the “Releasel” project:

SELECT DISTINCT e.department

FROM Project p JOIN p.employees e

WHERE p.name = 'Releasel’ AND
e.address.state = 'CA’

There are actually four logical joins here, not two. The translator will treat the query as if it had
been written with explicit joins between the various entities. We will cover the syntax for mul-
tiple joins later, but for now consider the following query that is equivalent to the previous
query, reading the join conditions from left to right:

SELECT DISTINCT d
FROM Project p JOIN p.employees e JOIN e.department d JOIN e.address a
WHERE p.name = 'Release1l’ AND

a.state = 'CA’

We say four logical joins because the actual physical mapping may involve more tables. In
this case the Employee and Project entities are related via a many-to-many association using
ajoin table. Therefore the actual SQL for such a query uses five tables, not four:

SELECT DISTINCT d.id, d.name
FROM project p, emp_projects ep, emp e, dept d, address a
WHERE p.id = ep.project_id AND

ep.emp_id = e.id AND

e.dept id = d.id AND

e.address_id = a.id AND

p.name = 'Release1l’ AND

a.state = 'CA’

The first form of the query is certainly easier to read and understand. However, during per-
formance tuning it may be helpful to understand how many joins can occur as the result of
seemingly trivial path expressions.

Join Conditions in the WHERE Clause SQL queries have traditionally joined tables together by list-
ing the tables to be joined in the FROM clause and supplying criteria in the WHERE clause of
the query to determine the join conditions. To join two entities without using a relationship,
use a range variable declaration for each entity in the FROM clause.

The previous join example between the Employee and Department entities could also have
been written like this:

SELECT DISTINCT d
FROM Department d, Employee e
WHERE d = e.department

203

204

CHAPTER 7 QUERY LANGUAGE

This style of query is usually used to compensate for the lack of an explicit relationship
between two entities in the domain model. For example, there is no association between the
Department entity and the Employee who is the manager of the department. We can use a join
condition in the WHERE clause to make this possible:

SELECT d, m

FROM Department d, Employee m

WHERE d = m.department AND
m.directs IS NOT EMPTY

In this example we are using one of the special collection expressions, IS NOT EMPTY, to check
that the collection of direct reports to the employee is not empty. Any employee with a non-
empty collection of directs is by definition a manager.

Multiple Joins More than one join may be cascaded if necessary. For example, the following
query returns the distinct set of projects belonging to employees who belong to a department:

SELECT DISTINCT p
FROM Department d JOIN d.employees e JOIN e.projects p

The query processor interprets the FROM clause from left to right. Once a variable has
been declared, it may be subsequently referenced by other JOIN expressions. In this case the
projects relationship of the Employee entity is navigated once the employee variable has been
declared.

Outer Joins

An outer join between two entities produces a domain where only one side of the relationship
is required to be complete. In other words, the outer join of Employee to Department across
the employee department relationship returns all employees and the department to which the
employee has been assigned, but the department is returned only if it is available.

An outer join is specified using the following syntax: LEFT [OUTER] JOIN <path expression>
[AS] <identifier>. The following query demonstrates an outer join between two entities:

SELECT e, d
FROM Employee e LEFT JOIN e.department d

If the employee has not been assigned to a department, then the department object (the
second element of the Object array) will be null. For readers familiar with Oracle SQL, the pre-
vious query would be equivalent to the following:

SELECT e.id, e.name, e.salary, e.manager id, e.dept id, e.address id,
d.id, d.name

FROM emp e, dept d

WHERE e.dept id = d.id (+)

Fetch Joins

Fetch joins are intended to help application designers optimize their database access and prepare
query results for detachment. They allow queries to specify one or more relationships that

CHAPTER 7 QUERY LANGUAGE

should be navigated and prefetched by the query engine so that they are not lazy loaded later
at runtime.

For example, if we have an Employee entity with a lazy loading relationship to its address,
the following query can be used to indicate that the relationship should be resolved eagerly
during query execution:

SELECT e
FROM Employee e JOIN FETCH e.address

Note that no identification variable is set for the e.address path expression. This is because
even though the Address entity is being joined in order to resolve the relationship, it is not part
of the result type of the query. The result of executing the query is still a collection of Employee
entity instances, except that the address relationship on each entity will not cause a secondary
trip to the database when it is accessed. This also allows the address relationship to be
accessed safely if the Employee entity becomes detached. A fetch join is distinguished from a
regular join by adding the FETCH keyword to the JOIN operator.

In order to implement fetch joins, the query is rewritten to turn the fetched association into
aregular join of the appropriate type: inner by default or outer if the LEFT keyword was specified.
The SELECT expression of the query is then expanded to include the joined relationship.

Consider the changes required to the previous example in order to implement the fetch join:

SELECT e, a
FROM Employee e JOIN e.address a

As the results are processed from this query, the query engine creates the Address entity in
memory and assigns it to the Employee entity but then drops it from the result collection that it
builds for the client. This eagerly loads the address relationship, which may then get accessed
normally via the Employee entity.

A consequence of implementing fetch joins in this way is that fetching a collection
association results in duplicate results. For example, consider a department query where the
employees relationship of the Department entity is eagerly fetched. The fetch join query, this
time using an outer join to ensure that departments without employees are retrieved, would be
written as follows:

SELECT d
FROM Department d LEFT JOIN FETCH d.employees

The actual query executed replaces the fetch with an outer join across the employees
relationship:

SELECT d, e
FROM Department d LEFT JOIN d.employees e

Once again, as the results are processed the Employee entity is constructed in memory
but dropped from the result collection. Each Department entity now has a fully resolved
employees collection, but the client receives one reference to each department per employee.
For example, if four departments with five employees each were retrieved, the result would be
a collection of 20 Department instances, with each department duplicated five times. The
actual entity instances all point back to the same managed versions, but the results are some-
what odd at the very least.

205

206

CHAPTER 7 QUERY LANGUAGE

To eliminate the duplicate values, either the DISTINCT operator must be used or the
results must be placed into a data structure such as a Set. Since it is not possible to write a SQL
query that uses the DISTINCT operator while preserving the semantics of the fetch join, the
provider will have to eliminate duplicates in memory after the results have been fetched. This
could have performance implications for large result sets.

Given the somewhat peculiar results generated from a fetch join to a collection, it may not be
the most appropriate way to eagerly load related entities in all cases. If a collection requires eager
fetching on a regular basis, then it is worth considering making the relationship eager by default.
Some persistence providers also offer batch reads as an alternative to fetch joins that issue multiple
queries in a single batch and then correlate the results to eagerly load relationships.

The WHERE Clause

The WHERE clause of a query is used to specify filtering conditions to reduce the result set. In
this section we will explore the features of the WHERE clause and the types of expressions that
can be formed to filter query results.

The definition of the WHERE clause is deceptively simple. It is simply the keyword
WHERE, followed by a conditional expression. However, as the following sections demon-
strate, JPQL supports a powerful set of conditional expressions to filter the most sophisticated
of queries.

Input Parameters

Input parameters for queries may be specified using either positional or named notation. Posi-
tional notation is defined by prefixing the variable number with a question mark. Consider the
following query:

SELECT e
FROM Employee e
WHERE e.salary > ?1

Using the Query interface, any double value can be bound into the first parameter in order
to indicate the lower bound for employee salaries in this query. The same positional parameter
may occur more than once in the query. The value bound into the parameter will be substi-
tuted for each of its occurrences.

Named parameters are specified using a colon followed by an identifier. Here is the same
query, this time using a named parameter:

SELECT e
FROM Employee e
WHERE e.salary > :sal

Input parameters were covered in detail in Chapter 6.

Basic Expression Form

Much of the conditional expression support in JPQL is borrowed directly from SQL. This is
intentional and serves to ease the transition for developers already familiar with SQL. The key
difference between conditional expressions in JPQL and SQL is that JPQL expressions can

CHAPTER 7 QUERY LANGUAGE 207

leverage identification variables and path expressions to navigate relationships during expres-
sion evaluation.

Conditional expressions are constructed in the same style as SQL conditional expressions,
using a combination of logical operators, comparison expressions, primitive and function
operations on fields, and so on. Although a summary of the operators is provided later, the
grammar for conditional expressions is not repeated here. The Java Persistence API specifica-
tion contains the grammar in Backus-Naur form (BNF) and is the place to look for the exact
rules about using basic expressions. The following sections do, however, explain the higher-
level operators and expressions, particularly those unique to JPQL, and they provide examples
for each.

Literal syntax is also similar to SQL. Single quotes are used for string literals and escaped
within a string by prefixing the quote with another single quote. Numeric expressions are
defined according to the conventions of the Java programming language. Boolean values are
represented by the literals TRUE and FALSE. There is no support in the query language for date
literals.

Operator precedence is as follows:

1. Navigation operator (.)

2. Unary +/-

3. Multiplication (*) and division (/)
4. Addition (+) and subtraction (-)

5. Comparison operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS
[NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

6. Logical operators (AND, OR, NOT)

BETWEEN Expressions

The BETWEEN operator may be used in conditional expressions to determine whether or not
the result of an expression falls within an inclusive range of values. Numeric, string, and date
expressions may be evaluated in this way. Consider the following example:

SELECT e
FROM Employee e
WHERE e.salary BETWEEN 40000 AND 45000

Any employee making $40,000 to $45,000 inclusively is included in the results. This is identical
to the following query using basic comparison operators:

SELECT e
FROM Employee e
WHERE e.salary >= 40000 AND e.salary <= 45000

The BETWEEN operator may also be negated with the NOT operator.

208

CHAPTER 7 QUERY LANGUAGE

LIKE Expressions

JPQL supports the SQL LIKE condition to provide for a limited form of string pattern matching.
Each LIKE expression consists of a string expression to be searched and a pattern string and
optional escape sequence that defines the match conditions. The wildcard characters used by
the pattern string are the underscore () for single character wildcards and the percent sign (%)
for multicharacter wildcards.

SELECT d
FROM Department d
WHERE d.name LIKE ' Eng%'

Example department names to match this query would be “CAEngOtt” or “USEngCal”, but not
“CADocOtt”. Note that pattern matches are case-sensitive.

If the pattern string contains an underscore or percent sign that should be literally
matched, the ESCAPE clause may be used to specify a character that, when prefixing a wildcard
character, indicates that it should be treated literally:

SELECT d
FROM Department d
WHERE d.name LIKE 'QA\ %' ESCAPE '\'

By escaping the underscore, it becomes a mandatory part of the expression. For example,
“QA_East” would match, but “QANorth” would not.

Subqueries

Subqueries may be used in the WHERE and HAVING clauses of a query. A subqueryis a
complete select query inside a pair of parentheses that is embedded within a conditional
expression. The results of executing the subquery (which will either be a scalar result or a col-
lection of values) are then evaluated in the context of the conditional expression. Subqueries
are a powerful technique for solving the most complex query scenarios.

Consider the following query:

SELECT e

FROM Employee e

WHERE e.salary = (SELECT MAX(e.salary)
FROM Employee e)

This query returns the employee with the highest salary from among all employees. A subquery
consisting of an aggregate query (described later in this chapter) is used to return the maxi-
mum salary value, and then this result is used as the key to filter the employee list by salary. A
subquery may be used in most conditional expressions and may appear on either the left or
right side of an expression.

The scope of an identifier variable name begins in the query where it is defined and extends
down into any subqueries. Identifiers in the main query may be referenced by a subquery, and
identifiers introduced by a subquery may be referenced by any subquery that it creates. If a
subquery declares an identifier variable of the same name, then it overrides the parent decla-
ration and prevents the subquery from referring to the parent variable. In the previous example,

CHAPTER 7 QUERY LANGUAGE

the declaration of the identification variable e in the subquery overrides the same declaration
from the parent query.

Note Overriding an identification variable name in a subquery is not guaranteed to be supported by all
providers. Unique names should be used to ensure portability.

The ability to refer to a variable from the main query in the subquery allows the two que-
ries to be correlated. Consider the following example:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT p
FROM Phone p
WHERE p.employee = e AND p.type = 'Cell')

This query returns all of the employees who have a cell phone number. This is also an example
ofa subquery that returns a collection of values. The EXISTS expression in this example returns
true if any results are returned by the subquery. Note that the WHERE clause of the subquery
references the identifier variable e from the main query and uses it to filter the subquery
results. Conceptually, the subquery can be thought of as executing once for each employee. In
practice, many database servers will optimize these types of queries into joins or inline views
in order to maximize performance.

This query could also have been written using a join between the Employee and Phone enti-
ties with the DISTINCT operator used to filter the results. The advantage in using the correlated
subquery is that the main query remains unburdened by joins to other entities. Quite often if a
join is used only to filter the results, there is an equivalent subquery condition that may alter-
nately be used in order to remove constraints on the join clause of the main query or even to
improve query performance.

The FROM clause of a subquery may also create new identification variables out of path
expressions using an identification variable from the main query. For example, the previous
query could also have been written as follows:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT p
FROM e.phones p
WHERE p.type = 'Cell")

In this version of the query, the subquery uses the collection association path phones from the
Employee identification variable e in the subquery. This is then mapped to alocal identification
variable p that is used to filter the results by phone type. Each occurrence of p refers to a single
phone associated with the employee.

To better illustrate how the translator handles this query, consider the equivalent query
written in SQL:

209

210

CHAPTER 7 QUERY LANGUAGE

SELECT e.id, e.name, e.salary, e.manager_id, e.dept id, e.address id
FROM emp e
WHERE EXISTS (SELECT 1
FROM phone p
WHERE p.emp_id = e.id AND
p.type = 'Cell")

The expression e.phones is converted to the table mapped by the Phone entity. The
WHERE clause for the subquery then adds the necessary join condition to correlate the sub-
query to the primary query, in this case the expression p.emp_id = e.id. The join criteria
applied to the PHONE table results in all of the phones owned by the related employee.
Returning the literal 1 from the subquery is a standard practice with SQL EXISTS expressions
because the actual columns selected by the subquery do not matter; only the number of rows
is relevant. Because literals are not allowed in the SELECT clause, the entity must still be
selected even though it will be ignored when the SQL is generated.

IN Expressions

The IN expression may be used to check whether a single-valued path expression is a member
of a collection. The collection may be defined inline as a set of literal values or may be derived
from a subquery. The following query demonstrates the literal notation by selecting all of the
employees who live in New York or California:

SELECT e
FROM Employee e
WHERE e.address.state IN ('NY', 'CA')

The subquery form of the expression is similar, replacing the literal list with a nested
query. The following query returns employees who work in departments that are contributing
to projects beginning with the prefix “QA”:

SELECT e

FROM Employee e

WHERE e.department IN (SELECT DISTINCT d
FROM Department d JOIN d.employees de JOIN de.projects p
WHERE p.name LIKE 'QA%')

The IN expression may also be negated using the NOT operator. For example, the follow-
ing query returns all of the Phone entities with a phone number other than office or home:

SELECT p
FROM Phone p
WHERE p.type NOT IN ('Office', 'Home')

Collection Expressions

The IS EMPTY operator is the logical equivalent of IS NULL for collections. Queries may use the
IS EMPTY operator or its negated form IS NOT EMPTY to check whether a collection associa-

tion path resolves to an empty collection or has at least one value. For example, the following
query returns all employees who are managers by virtue of having at least one direct report:

CHAPTER 7 QUERY LANGUAGE

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY

Note that IS EMPTY expressions are translated to SQL as subquery expressions. The query
translator may make use of an aggregate subquery or use the SQL EXISTS expression. There-
fore the following query is equivalent to the previous one:

SELECT m
FROM Employee m
WHERE (SELECT COUNT(e)
FROM Employee e
WHERE e.manager = m) > 0O

The MEMBER OF operator and its negated form NOT MEMBER OF are a shorthand way of
checking whether an entity is a member of or not a member of a collection association path.
The following query returns all managers who are incorrectly entered as reporting to
themselves:

SELECT e
FROM Employee e
WHERE e MEMBER OF e.directs

A more typical use of the MEMBER OF operator is in conjunction with an input parameter.
For example, the following query selects all employees who are assigned to a designated project:

SELECT e
FROM Employee e
WHERE :project MEMBER OF e.projects

Like the IS EMPTY expression, the MEMBER OF expression will be translated to SQL using
either an EXISTS expression or the subquery form of the IN expression. The previous example
is equivalent to the following query:

SELECT e
FROM Employee e
WHERE :project IN (SELECT p
FROM e.projects p)

EXISTS Expressions

The EXISTS condition returns true if a subquery returns any rows. Examples of EXISTS were
demonstrated earlier in the introduction to subqueries. The EXISTS operator may also be
negated with the NOT operator. The following query selects all employees who do not have a
cell phone:

SELECT e
FROM Employee e
WHERE NOT EXISTS (SELECT p
FROM e.phones p
WHERE p.type = 'Cell")

211

212

CHAPTER 7 QUERY LANGUAGE

ANY, ALL, and SOME Expressions

The ANY, ALL, and SOME operators may be used to compare an expression to the results of a
subquery. Consider the following example:

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY AND
e.salary < ALL (SELECT d.salary
FROM e.directs d)

This query returns all of the managers who are paid less than all of the employees who
work for them. The subquery is evaluated, and then each value of the subquery is compared to
the left-hand expression, in this case the manager salary. When the ALL operator is used, the
comparison between the left side of the equation and all subquery results must be true for the
overall condition to be true.

The ANY operator behaves similarly, but the overall condition is true so long as at least one
of the comparisons between the expression and the subquery result are true. For example, if
ANY were specified instead of ALL in the previous example, then the result of the query would
be all of the managers who were paid less than at least one of their employees. The SOME oper-
ator is an alias for the ANY operator.

There is symmetry between IN expressions and the ANY operator. Consider the following
variation of the project department example used previously:

SELECT e

FROM Employee e

WHERE e.department = ANY (SELECT DISTINCT d
FROM Department d JOIN d.employees de JOIN de.projects p
WHERE p.name LIKE 'QA%')

Function Expressions

Conditional expressions may leverage a number of functions that can be used to modify query
results in the WHERE and HAVING clauses of a select query. Table 7-1 summarizes the syntax
for each of the supported function expressions.

Table 7-1. Supported Function Expressions

Function Description

ABS(number) The ABS function returns the unsigned version of the
number argument. The result type is the same as the
argument type (integer, float, or double).

CONCAT(stringl, string?2) The CONCAT function returns a new string that is the
concatenation of its arguments, stringl and string2.

CURRENT_DATE The CURRENT_DATE function returns the current date
as defined by the database server.

CURRENT_TIME The CURRENT_TIME function returns the current time
as defined by the database server.

CHAPTER 7 QUERY LANGUAGE

Function

Description

CURRENT_TIMESTAMP

LENGTH(string)

LOCATE(stringl, string?2 [, start])

LOWER(string)

MOD (numberl, number2)

SIZE(collection)

SQRT(number)

SUBSTRING(string, start, end)

UPPER(string)

TRIM([[LEADINGITRAILINGIBOTH]
[char] FROM] string)

The CURRENT_TIMESTAMP function returns the
current timestamp as defined by the database server.

The LENGTH function returns the number of characters
in the string argument.

The LOCATE function returns the position of string2in
stringl, optionally starting at the position indicated by
start. The result is zero if the string cannot be found.

The LOWER function returns the lowercase form of the
string argument.

The MOD function returns the modulus of numeric
arguments numberl and number2 as an integer.

The SIZE function returns the number of elements in the
collection, or zero if the collection is empty.

The SQRT function returns the square root of the
number argument as a double.

The SUBSTRING function returns a portion of the input
string, starting at the index indicated by startup to
length characters. String indexes are measured starting
from one.

The UPPER function returns the uppercase form of the
string argument.

The TRIM function removes leading and/or trailing
characters from a string. If the optional LEADING,
TRAILING, or BOTH keyword is not used, then both
leading and trailing characters are removed. The default
trim character is the space character.

The SIZE function requires special attention, as it is shorthand notation for an aggregate
subquery. For example, consider the following query that returns all departments with only

two employees:

SELECT d
FROM Department d
WHERE SIZE(d.employees) = 2

Similar to the collection expressions IS EMPTY and MEMBER OF, the SIZE function will be
translated to SQL using a subquery. The equivalent form of the previous example using a sub-

query is as follows:

SELECT d
FROM Department d
WHERE (SELECT COUNT(e)
FROM d.employees e) = 2

213

214

CHAPTER 7 QUERY LANGUAGE

The ORDER BY Clause

Queries may optionally be sorted using one or more expressions comprised of identification
variables, a path expression resolving to a single entity, or a path expression resolving to a per-
sistent state field. The optional keywords ASC or DESC after the expression may be used to
indicate ascending or descending sorts respectively. The default sort order is ascending.

The following example demonstrates sorting by a single field:

SELECT e
FROM Employee e
ORDER BY e.name DESC

Multiple expressions may also be used to refine the sort order:

SELECT e
FROM Employee e JOIN e.department d
ORDER BY d.name, e.name DESC

If the SELECT clause of the query uses state field path expressions, then the ORDER BY
clause is limited to the same path expressions used in the SELECT clause. For example, the
following query is not legal:

SELECT e.name
FROM Employee e
ORDER BY e.salary DESC

Because the result type of the query is the employee name, which is of type String, the
remainder of the Employee state fields are no longer available for ordering.

Aggregate Queries

An aggregate query is a variation of a normal select query. An aggregate query groups results
and applies aggregate functions to obtain summary information about query results. A query
is considered an aggregate query if it uses an aggregate function or possesses a GROUP BY
clause and/or a HAVING clause. The most typical form of aggregate query involves the use of
one or more grouping expressions and aggregate functions in the SELECT clause paired with
grouping expressions in the GROUP BY clause. The syntax of an aggregate query is as follows:

SELECT <select expression>

FROM <from_ clause>

[WHERE <conditional expression>]
[GROUP BY <group by clause>]
[HAVING <conditional expression>]
[ORDER BY <order by clause>]

The SELECT, FROM, and WHERE clauses behave largely the same as previously described
under select queries, with the exception of some restrictions on how the SELECT clause is
formulated.

The power of an aggregate query comes from the use of aggregate functions over grouped
data. Consider the following simple aggregate example:

CHAPTER 7 QUERY LANGUAGE 215

SELECT AVG(e.salary)
FROM Employee e

This query returns the average salary of all employees in the company. AVG is an aggregate
function that takes a numeric state field path expression as an argument and calculates the
average over the group. Because there was no GROUP BY clause specified, the group here is the
entire set of employees. This was the only form of aggregate query supported by EJB QL as
defined in the EJB 2.1 specification.

Now consider this variation, where the result has been grouped by the department name:

SELECT d.name, AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This query returns the names of all departments and the average salary of the employees in
that department. The Department entity is joined to the Employee entity across the employees
relationship and then formed into a group defined by the department name. The AVG function
then calculates its result based on the employee data in this group.

This can be extended further to filter the data so that manager salaries are not included:

SELECT d.name, AVG(e.salary)

FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

GROUP BY d.name

Finally, we can extend this one last time to return only the departments where the average
salary is greater than $50,000. Consider the following version of the previous query:

SELECT d.name, AVG(e.salary)

FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

GROUP BY d.name

HAVING AVG(e.salary) > 50000

To better understand this query, let’s go through the logical steps that took place to exe-
cute it. Databases use many techniques to optimize these types of queries, but conceptually
the same process is being followed. First, the following non-grouping query is executed:

SELECT d.name, e.salary
FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

This will produce a result set consisting of all department name and salary value pairs. The
query engine then starts a new result set and makes a second pass over the data, collecting all
of the salary values for each department name and handing them off to the AVG function. This
function then returns the group average, which is then checked against the criteria from the
HAVING clause. If the average value is greater than $50,000 then the query engine generates a
result row consisting of the department name and average salary value.

The following sections describe the aggregate functions available for use in aggregate que-
ries and the use of the GROUP BY and HAVING clauses.

216

CHAPTER 7 QUERY LANGUAGE

Aggregate Functions

There are five aggregate functions that may be placed in the select clause of a query: AVG,
COUNT, MAX, MIN, and SUM.

AVG

The AVG function takes a state field path expression as an argument and calculates the average
value of that state field over the group. The state field type must be numeric, and the result is
returned as a Double.

COUNT

The COUNT function takes either an identification variable or a path expression as its argu-
ment. This path expression may resolve to a state field or a single-valued association field. The
result of the function is a Long value representing the number of values in the group. The argu-
ment to the COUNT function may optionally be preceded with the keyword DISTINCT, in
which case duplicate values are eliminated before counting.

The following query counts the number of phones associated with each employee as well
as the number of distinct number types (cell, office, home, and so on):

SELECT e, COUNT(p), COUNT(DISTINCT p.type)
FROM Employee e JOIN e.phones p
GROUP BY e

MAX

The MAX function takes a state field expression as an argument and returns the maximum
value in the group for that state field.

MIN

The MIN function takes a state field expression as an argument and returns the minimum
value in the group for that state field.

SUM

The SUM function takes a state field expression as an argument and calculates the sum of the val-
ues in that state field over the group. The state field type must be numeric, and the result type
must correspond to the field type. For example, if a Double field is summed, then the result will
be returned as a Double. If a Long field is summed, then the response will be returned as a Long.

The GROUP BY Clause

The GROUP BY clause defines the grouping expressions over which the results will be aggre-
gated. A grouping expression must either be a single-valued path expression (state field or
single-valued association field) or an identification variable. If an identification variable is
used, the entity must not have any serialized state or large object fields.

CHAPTER 7 QUERY LANGUAGE

The following query counts the number of employees in each department:

SELECT d.name, COUNT(e)
FROM Department d JOIN d.employees e
GROUP BY d.name

Note that the same field expression used in the SELECT clause is repeated in the GROUP
BY clause. All non-aggregate expressions must be listed this way. More than one aggregate
function may be applied to the same GROUP BY clause:

SELECT d.name, COUNT(e), AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This variation of the query calculates the average salary of all employees in each department in
addition to counting the number of employees in the department.
Multiple grouping expressions may also be used to further break down the results:

SELECT d.name, e.salary, COUNT(p)
FROM Department d JOIN d.employees e JOIN e.projects p
GROUP BY d.name, e.salary

Because there are two grouping expressions, the department name and employee salary must
be listed in both the SELECT clause and GROUP BY clause. For each department, this query
counts the number of projects assigned to employees based on their salary.

In the absence of a GROUP BY clause, the entire query is treated as one group, and the
SELECT list may contain only aggregate functions. For example, the following query returns
the number of employees and their average salary across the entire company:

SELECT COUNT(e), AVG(e.salary)
FROM Employee e

The HAVING Clause

The HAVING clause defines a filter to be applied after the query results have been grouped. It
is effectively a secondary WHERE clause, and its definition is the same, the keyword HAVING
followed by a conditional expression. The key difference with the HAVING clause is that its
conditional expressions are limited to state fields or single-valued association fields previously
identified in the GROUP BY clause.

Conditional expressions in the HAVING clause may also make use of aggregate functions.
In many respects, the primary use of the HAVING clause is to restrict the results based on the
aggregate result values. The following query uses this technique to retrieve all employees
assigned to two or more projects:

SELECT e, COUNT(p)

FROM Employee e JOIN e.projects p
GROUP BY e

HAVING COUNT(p) >= 2

217

218

CHAPTER 7 QUERY LANGUAGE

Update Queries

Update queries are a new feature in the Java Persistence APL. They provide an equivalent to the
SQL UPDATE statement but with JPQL conditional expressions. The form of an update query is:

UPDATE <entity name> [[AS] <identification variable>]
SET <update statement> {, <update_statement>}*
[WHERE <conditional expression>]

Each UPDATE statement consists of a single-valued path expression, assignment operator (=),
and an expression. Expression choices for the assignment statement are slightly restricted
compared to regular conditional expressions. The right side of the assignment must resolve to
a literal, simple expression resolving to a basic type, function expression, identification vari-
able, or input parameter. The result type of that expression must be compatible with the
simple association path or persistent state field on the left side of the assignment.

The following simple example demonstrates the update query by giving employees who
make $55,000 a year a raise to $60,000:

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 55000

The WHERE clause of an UPDATE statement functions the same as a SELECT statement
and may use the identification variable defined in the UPDATE clause in expressions. A slightly
more complex but more realistic update query would be to award a $5,000 raise to employees
who worked on a particular project:

UPDATE Employee e
SET e.salary = e.salary + 5000
WHERE EXISTS (SELECT p
FROM e.projects p
WHERE p.name = 'Release2')

More than one property of the target entity may be modified with a single UPDATE state-
ment. For example, the following query updates the phone exchange for employees in the city
of Ottawa and changes the terminology of the phone type from “Office” to “Business”:

UPDATE Phone p
SET p.number = CONCAT('288', SUBSTRING(p.number, LOCATE(p.number, '-'), 4)),
p.type = 'Business’
WHERE p.employee.address.city = 'Ottawa' AND
p.type = 'Office’

Delete Queries

Like the update query, the delete query is a new feature in the Java Persistence API. It provides
equivalent capability as the SQL DELETE statement but with JPQL conditional expressions.
The form of a delete query is:

CHAPTER 7 QUERY LANGUAGE

DELETE FROM <entity name> [[AS] <identification variable>]
[WHERE <condition>]

The following example demonstrates removes all employees who are not assigned to a
department:

DELETE FROM Employee e
WHERE e.department IS NULL

The WHERE clause for a DELETE statement functions the same as it would for a SELECT
statement. All conditional expressions are available to filter the set of entities to be removed. If
the WHERE clause is not provided, all entities of the given type are removed.

Delete queries are polymorphic. Any entity subclass instances that meet the criteria of the
delete query will also be deleted. Delete queries do not honor cascade rules, however. No enti-
ties other than the type referenced in the query and its subclasses will be removed, even if the
entity has relationships to other entities with cascade removes enabled.

Summary

In this chapter we have taken a complete tour of the Java Persistence Query Language, looking
at the numerous query types and the syntax for each. We covered the history of the language,
from its roots in the EJB 2.0 specification to the major enhancements introduced by the Java
Persistence API.

In the section on select queries, we explored each query clause and incrementally built up
more complex queries as the full syntax was described. We discussed identification variables
and path expressions, which are used to navigate through the domain model in query expres-
sions. We also looked at the various conditional expressions supported by the language.

In our discussion of aggregate queries we introduced the additional grouping and filtering
clauses that extend select queries. We also demonstrated the various aggregate functions.

In the sections on update and delete queries, we described the full syntax for bulk update
and delete statements, the runtime behavior of which was described in the previous chapter.

In the next chapter we switch back to object-relational mapping and cover advanced con-
cepts such as inheritance, composite primary keys and associations, and multiple table
mappings.

219

CHAPTER 8

Advanced Object-Relational
Mapping

Every application is different, and while most have some elements of complexity in them, the
difficult parts in one application will tend to be different than those in other types of applica-
tions. Chances are that whichever application you are working on at any given time will need
to make use of at least one advanced feature of the API. This chapter will introduce and explain
some of these more advanced ORM features.

As it turns out, an entity is just one of three different types of persistable classes that can be
used with the Java Persistence API. The provider must also manage classes called mapped
superclasses and embeddable classes. Collectively we refer to these three types as managed
classes because they are the classes that must be managed by the provider in order for them to
be made persistent.

Some of the features in this chapter are targeted at applications that need to reconcile the
differences between an existing data model and an object model. For example, when the data
in an entity table would be better decomposed in the object model as an entity and a dependent
sub-object that is referenced by the entity, then the mapping infrastructure should be able to
support that. Likewise, when the entity data is spread across multiple tables, the mapping layer
should allow for this kind of configuration to be specified.

There has been no shortage of discussion in this book about how entities in the Java
Persistence API are just regular Java classes and not the heavy persistent objects that were
generated by EJB 2.1 entity bean compilers. One of the benefits of entities being regular Java
classes is that they can adhere to already established concepts and practices that exist in object-
oriented systems. One of the traditional object-oriented innovations is the use of inheritance
and creating objects in a hierarchy in order to inherit state and behavior.

This chapter will discuss some of the more advanced mapping features and delve into
some of the diverse possibilities offered by the API and the mapping layer. We will see how
inheritance works within the framework of the Java Persistence API and how inheritance
affects the model.

Embedded Objects

An embedded objectis one that is dependent upon an entity for its identity. It has no identity of
its own but is merely part of the entity state that has been carved off and stored in a separate
Java object hanging off of the entity. In Java, embedded objects appear similar to relationships

221

222

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

in that they are referenced by an entity and appear in the Java sense to be the target of an asso-
ciation. In the database, however, the state of the embedded object is stored with the rest of the
entity state in the database row, with no distinction between the state in the Java entity and
that in its embedded object.

If the database row contains all of the data for both the entity and its embedded object,
why have such an object anyway? Why not just define the fields of the entity to reference all of
its persistence state instead of splitting it up into one or more sub-objects that are second-class
persistent objects dependent upon the entity for their existence?

This brings us back to the object-relational impedance mismatch. Since the database
record contains more than one logical type, it makes sense to make that relationship explicit in
the object model of the application even though the physical representation is different. You
could almost say that the embedded object is a more natural representation of the domain
concept than a simple collection of attributes on the entity. Furthermore, once we have identi-
fied a grouping of entity state that makes up an embedded object, we can share the same
embedded object type with any other entity that also has the same internal representation.!

An example of such reuse might be address information. Figure 8-1 shows an EMPLOYEE
table that contains a mixture of basic employee information as well as columns that correspond to
the home address of the employee.

EMPLOYEE

PK |ID

NAME
SALARY
STREET
CITY
STATE
ZIP_CODE

Figure 8-1. EMPLOYEE table with embedded address information

The STREET, CITY, STATE, and ZIP_CODE columns combine logically to form the address. In
the object model this is an excellent candidate to be abstracted into a separate Address embed-
ded type instead of listing each attribute on the entity class itself. The entity class would then
simply have an address attribute pointing to an embedded object of type Address. Figure 8-2
shows the relationship between Employee and Address. The UML composition association is
used to denote that the Employee wholly owns the Address and that an instance of Address
may not be shared by any other object other than the Employee instance that owns it.

With this representation, not only is the address information neatly encapsulated within
an object, but if another entity such as Company also has address information, then it can also
have an attribute that points to its own embedded Address object. We will describe this scenario
in the next section.

1. Even though embedded types can be shared or reused, the instances cannot. An embedded object
instance belongs to the entity that references it, and no other entity instance, of that entity type or
any other, may reference the same embedded instance.

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

Employee Address
id: int street: String
name: String @———————> city: String
salary: long 0.1 state: String
zip: String

Figure 8-2. Employee and Address relationship

An embedded type is marked as such by adding the @Embeddable annotation to the class
definition. This annotation serves to distinguish the class from other regular Java types. Once a
class has been designated as embeddable, then its fields and properties will be persistable as
part of an entity. Basic column mappings such as @Basic, @Temporal, @Enumerated, ®@Lob, and
@Column may be added to the attributes of the embedded class, but it may not contain any
relationships or other advanced mappings. Listing 8-1 shows the definition of the Address
embedded type.

Listing 8-1. Embeddable Address Type

@Embeddable

public class Address {
private String street;
private String city;
private String state;
@Column(name="ZIP_CODE")
private String zip;
/7 ...

To use this class in an entity, the entity must have an attribute of the same type annotated
with the @Embedded annotation. Listing 8-2 shows the Employee class using an embedded
Address object.

Listing 8-2. Using an Embedded Object

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
@Embedded private Address address;
/1 ...

When the provider persists an instance of Employee, it will access the attributes of the
Address object just as if they were present on the entity instance itself. Column mappings on
the Address type really pertain to columns on the EMPLOYEE table, even though they are listed
in a different type.

223

224

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

Support for an entity having a collection of embedded objects, an embedded object refer-
encing other embedded objects, or an embedded object having relationships to entities is not
in the current version of the Java Persistence API. It is also not portable to use embedded objects
as part of inheritance hierarchies. These are features that some persistence providers support
and that may be in future versions of the API.

The decision to use embedded objects or entities depends upon whether you think you
will ever need to create relationships to them or from them. Embedded objects are not meant
to be entities, and as soon as you start to treat them as entities then you should probably make
them first-class entities instead of embedded objects if the data model permits it.

Sharing Embedded Object Classes

Before we got to our example we mentioned that an Address class could be reused in both
Employee and Company entities. Ideally we would like the representation shown in Figure 8-3.
Even though both the Employee and Company classes compose the Address class, this is not a
problem, because each instance of Address will be used by only a single Employee or Company
instance.

Employee Address Company
id: int street: String name: String
name: String | @—————>{ city: String <@
salary: long 0.1 state: String 0.1
zip: String

Figure 8-3. Address shared by two entities

Given that the column mappings of the Address embedded type apply to the columns of
the containing entity, you might be wondering how sharing could be possible in the case where
the two entity tables may have different column names for the same fields. Figure 8-4 demon-
strates this problem. The COMPANY table matches the default and mapped attributes of the
Address type we defined earlier, but the EMPLOYEE table in this example has been changed to
match the address requirements of a person living in Canada. We need a way for an entity
to map the embedded object according to its own entity table needs, and we have one in the
@AttributeOverride annotation.

EMPLOYEE
COMPANY
PK |ID

PK | NAME
NAME
SALARY STREET
STREET cITy
cITY STATE
PROVINCE ZIP_CODE
POSTAL_CODE

Figure 8-4. EMPLOYEE and COMPANY tables

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING 225

We use an @AttributeOverride annotation for each attribute of the embedded object that
we want to override in the entity. We annotate the embedded field or property in the entity and
specify in the name element the field or property in the embedded object that we are overriding.
The column element allows us to specify the column that the attribute is being mapped to in the
entity table. We indicate this in the form of a nested @Column annotation. If we are overriding
multiple fields or properties, then we can use the plural @AttributeOverrides annotation and
nest multiple @AttributeOverride annotations inside of it.

In Listing 8-3 is an example of using Address in both Employee and Company. The Company
entity uses the Address type without change, but the Employee entity specifies two attribute
overrides to map the state and zip attributes of the Address to the PROVINCE and POSTAL_CODE
columns of the EMPLOYEE table.

Listing 8-3. Reusing an Embedded Object in Multiple Entities

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
@Embedded
@AttributeOverrides({
@AttributeOverride(name="state", column=@Column(name="PROVINCE")),
@AttributeOverride(name="zip", column=@Column(name="POSTAL CODE"))

1)
private Address address;
/...

}

@Entity

public class Company {
@Id private String name;
@Embedded
private Address address;
/...
}

Compound Primary Keys

In some cases an entity needs to have a primary key or identifier that is composed of multiple
fields, or from the database perspective the primary key in its table is made up of multiple columns.
This is more common for legacy databases and also occurs when a primary key is composed of
arelationship, a topic that we will discuss later in this chapter.

We have two options available to us for having compound primary keys in our entity, depend-
ing on how we want to structure our entity class. Both of them require that we use a separate
class containing the primary key fields called a primary key class; the difference between the
two options is determined by what the entity class contains.

Primary key classes must include method definitions for equals() and hashCode() in
order to be able to be stored and keyed upon by the persistence provider, and their fields or

226

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

properties must be in the set of valid identifier types listed in the previous chapter. They must
also be public, implement Serializable, and have a no-arg constructor.

As an example of a compound primary key, we will look at the Employee entity again, only
this time the employee number is specific to the country where he or she works. Two employees
in different countries can have the same employee number, but only one can be used within
any given country. Figure 8-5 shows the EMPLOYEE table structured with a compound primary
key to capture this requirement. Given this table definition, we will now look at how to map the
Employee entity using the two different styles of primary key class.

EMPLOYEE
PK | COUNTRY
PK | EMP_ID
NAME
SALARY

Figure 8-5. EMPLOYEE table with a compound primary key

Id Class

The first and most basic type of primary key class is an id class. Each field of the entity that
makes up the primary key is marked with the @1d annotation. The primary key class is defined
separately and associated with the entity by using the @IdClass annotation on the entity class
definition. Listing 8-4 demonstrates an entity with a compound primary key that uses an id class.

Listing 8-4. Using an Id Class

@Entity
@IdClass(Employeeld.class)
public class Employee {
@Id private String country;
@Id
@Column(name="EMP_ID")
private int id;
private String name;
private long salary;
/...

The primary key class must contain fields or properties that match the primary key attributes
in the entity in both name and type. Listing 8-5 shows the EmployeeId primary key class. It has
two fields, one to represent the country and one to represent the employee number. We have
also supplied equals() and hashCode () methods to allow the class to be used in sorting and
hashing operations.

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

Listing 8-5. The Employeeld Id Class

public class Employeeld implements Serializable {
private String country;
private int id;

public EmployeeId() {}

public EmployeeId(String country, int id) {
this.country = country;
this.id = id;

}

public String getCountry() { return country; }
public int getId() { return id; }

public boolean equals(Object o) {
return ((o instanceof Employeeld) &&
country.equals(((Employeeld)o).getCountry()) &8&
id == ((Employeeld)o).getId());
}

public int hashCode() {
return country.hashCode() + id;

}

Note that there are no setter methods on the EmployeeId class. Once it has been constructed
using the primary key values, it can’t be changed. We do this to enforce the notion that a primary
key value cannot be changed, even when it is made up of multiple fields. Because the @1d anno-
tation was placed on the fields of the entity, the provider will also use field access when it needs
to work with the primary key class.

The id class is useful as a structured object that encapsulates all of the primary key informa-
tion. For example, when doing a query based upon the primary key, such as the find() method of
the EntityManager interface, an instance of the id class can be used as an argument instead of
some unstructured and unordered collection of primary key data. Listing 8-6 shows the definition
of a method to search for an Employee instance given the name of the country and the employee
number. A new instance of the Employeeld class is constructed using the method arguments
and then used as the argument to the find() method.

Listing 8-6. Invoking a Primary Key Query on an Entity with an Id Class

public Employee findEmployee(String country, int id) {
return em.find(Employee.class, new EmployeeId(country, id));

}

227

228

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

Tip Because the argument to find() is of type Object, vendors may support passing in simple arrays
or collections of primary key information. Passing arguments that are not primary key classes is nonportable.

Embedded Id Class

An entity that contains a single field of the same type as the primary key class is said to use an
embedded id class. The embedded id class is just an embedded object that happens to be composed
of the primary key components. Instead of annotating the embedded id class with an @Embedded
annotation, though, we use an @mbeddedId annotation to indicate that it is not just a regular
embedded object but also a primary key class. When we use this approach there are no @Id
annotations on the class, nor is the @IdClass annotation used. You can think of @mbeddedId
as the logical equivalent to putting both @1d and @Embedded on the field.

Like other embedded objects, the embedded id class must be annotated with @mbeddable,
and access type must also match the access type of the entity that uses it. If the entity annotates
its fields, then the embedded id class should also annotate its fields if such annotations are
required. Listing 8-7 shows the Employeeld class again, this time as an embeddable primary
key class. The getter methods, equals () and hashCode () implementations, are the same as the
previous version from Listing 8-5.

Listing 8-7. Embeddable Primary Key Class

@Embeddable

public class Employeeld {
private String country;
@Column(name="EMP_ID")
private int id;

public EmployeeId() {}

public EmployeeId(String country, int id) {
this.country = country;
this.id = id;

}

/...

Using the embedded primary key class is no different than using a regular embedded type.
Listing 8-8 shows the Employee entity adjusted to use the embedded version of the Employeeld
class. Note that since the column mappings are present on the embedded type, we do not specify
the mapping for EMP_ID as was done in the case of the id class. If the embedded primary key
class is used by more than one entity, then the @AttributeOverride annotation can be used to
customize mappings just as you would for a regular embedded type. To return the country and
id attributes of the primary key from getter methods, we must delegate to the embedded id
object to obtain the values.

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

Listing 8-8. Using an Embedded Id Class

@Entity

public class Employee {
@EmbeddedId private Employeeld id;
private String name;
private long salary;

public Employee() {}

public Employee(String country, int id) {
this.id = new EmployeeId(country, id);

}

public String getCountry() { return id.getCountry(); }
public int getId() { return id.getId(); }
/...

We can create an instance of Employeeld and pass it to the find() method just as we did
for the id class example, but if we want to create the same query using JPQL and reference the
primary key, then we have to traverse the embedded id class explicitly. Listing 8-9 shows this
technique. Even though id is not a relationship, we still traverse it using the dot notation in
order to access the members of the embedded class.

Listing 8-9. Referencing an Embedded Id Class in a Query

public Employee findEmployee(String country, int id) {
return (Employee)
em.createQuery("SELECT e " +

"FROM Employee e " +
"WHERE e.id.country = ?1 AND e.id.id = ?2")

.setParameter(1, country)

.setParameter(2, id)

.getSingleResult();

Advanced Mapping Elements

Various other metadata may be specified on the @olumn and @JoinColumn annotations, some
of which applies to schema generation that will be discussed in Chapter 9. Other parts we can
describe separately as applying to columns and join columns in the following sections.

Read-Only Mappings

The Java Persistence API does not really define any kind of read-only entity, although it will

likely show up in a future release. The API does, however, define options to set individual mappings
tobe read-only using the insertable and updatable elements of the @Column and @JoinColumn
annotations. These two settings default to true but may be set to false if we want to ensure that

229

230

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

the provider will not insert or update information in the table in response to changes in the
entity instance. If the data in the mapped table already exists and we want to ensure that it will
not be modified at runtime, then the insertable and updatable elements can be set to false,
effectively preventing the provider from doing anything other than reading the entity from the
database. Listing 8-10 demonstrates the Employee entity with read-only mappings.

Listing 8-10. Making Entity Mappings Read-Only

@Entity

public class Employee {
@Id private int id;
@Column(insertable=false, updatable=false)
private String name;
@Column(insertable=false, updatable=false)
private long salary;

@ManyToOne

@®JoinColumn(name="DEPT_ID", insertable=false, updatable=false)
private Department department;

/...

We don’t need to worry about the identifier mapping being modified, because it is illegal
to modify identifiers. The other mappings, though, are marked as not being able to be inserted
or updated, so we are assuming that there are already entities in the database to be read in and
used. No new entities will be persisted, and existing entities will never be updated.

Note that this does not guarantee that the entity state will not change in memory.
Employee instances could still get changed either inside or outside a transaction, but at trans-
action commit time or whenever the entities get flushed to the database, this state will not be
saved. Be careful modifying read-only mappings in memory, however, as changing the entities
may cause them to become inconsistent with the state in the database and could wreak havoc
on any vendor-specific cache.

Even though all of these mappings are not updatable, the entity as a whole could still be
deleted. A proper read-only feature will solve this problem once and for all in a future release.

Optionality

As we will see in Chapter 9 when we talk about schema generation, there exists metadata that
either permits the database columns to be null or requires them to have values. While this setting
will affect the physical database schema, there are also settings on some of the logical mappings
that allow a basic mapping or a single-valued association mapping to be left empty or required
to be specified in the object model. The element that requires or permits such behavior is the
optional element in the @Basic, @ManyToOne, and @0neToOne annotations.

When the optional element is specified as false, it indicates to the provider that the field
or property mapping may not be null. The API does not actually define what the behavior is in
the case when it is, but the provider may choose to throw an exception or simply do something
else. For basic mappings, it is only a hint and may be completely ignored. The optional element

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

may also be used by the provider when doing schema generation, since if optional is set to true,
then the column in the database must also be nullable.

Because the API does not go into any detail about ordinality of the object model, there
is a certain amount of nonportability associated with using it. An example of setting the manager
to be arequired attribute is shown in Listing 8-11. The default value for optional is true, making
it necessary to be specified only if a false value is needed.

Listing 8-11. Using Optional Mappings

@Entity
public class Employee {
/...
@ManyToOne (optional=false)
@JoinColumn(name="DEPT_ID", insertable=false, updatable=false)
private Department department;
/...

Advanced Relationships

If your object model is able to dictate your physical schema, then it is likely that you will not
need to use many of the advanced relationship features that are offered by the API. The flexibility of
being able to define a data model usually makes for a less demanding mapping configuration.
Itis when the tables are already in place that an object model must work around the data schema
and go beyond the rudimentary relationship mappings that we have been using thus far. The
following sections describe a few of the more common relationship issues that you may encounter.

Compound Join Columns

Now that we know how to create entities with compound primary keys it is not a far stretch to
figure out that as soon as we have a relationship to an entity with a compound identifier, we
will need some way to extend the way we currently reference it.

Up to this point we have dealt with the physical relationship mapping only as a join column,
but if the primary key that we are referencing is composed of multiple fields, then we will need
multiple join columns. This is why we have the plural @JoinColumns annotation that can hold
as many join columns as we need to put into it.

There are no default values for join column names when we have multiple join columns.
The simplest answer is to simply require that the user assign them, so when multiple join columns
are used, both the name element and the referencedColumnName element, which indicates the
name of the primary key column in the target table, must be specified.

Now that we are getting into more complex scenarios, let’s add a more interesting relationship
to the mix. Let’s say that employees have managers and that each manager has a number of
employees that work for him or her. You may not find that very interesting until you realize that
managers are themselves employees, so the join columns are actually self-referential, that is,
referring to the same table they are stored in. Figure 8-6 shows the EMPLOYEE table with this
relationship.

231

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

EMPLOYEE
PK COUNTRY
PK EMP_ID
NAME
SALARY
FK1 MGR_COUNTRY
FK1 MGR_ID

Figure 8-6. EMPLOYEE table with self-referencing compound foreign key

Listing 8-12 shows a version of the Employee entity that has a manager relationship, which
is many-to-one from each of the managed employees to the manager, and a one-to-many directs
relationship from the manager to its managed employees.

Listing 8-12. Self-Referencing Compound Relationships

@Entity
@IdClass(Employeeld.class)
public class Employee {
@Id private String country;
@Id
@Column(name="EMP_ID")
private int id;

@ManyToOne

@®JoinColumns ({
@JoinColumn(name="MGR_COUNTRY", referencedColumnName="COUNTRY"),
@JoinColumn(name="MGR_ID", referencedColumnName="EMP_ID")

1

private Employee manager;

@0neToMany (mappedBy="manager")
private Collection<Employee> directs;
/...

Any number of join columns can be specified, although in practice very seldom are there
more than two. The plural form of @JoinColumns may be used on many-to-one or one-to-one
relationships or more generally whenever the single @JoinColumn annotation is valid.

Another example to consider is in the join table of a many-to-many relationship. We can
revisit the Employee and Project relationship described in Chapter 4 to take into account our
compound primary key in Employee. The new table structure for this relationship is shown in
Figure 8-7.

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

EMPLOYEE EMP_PROJECT
PROJECT
PK | COUNTRY PK,FK1 EMP_COUNTRY
PK EMP_ID —H——0g PK,FK1 EMP_ID SO—H- PK (ID
PK,FK2 PROJECT ID
NAME NAME
SALARY

Figure 8-7. join table with a compound primary key

If we keep the Employee entity as the owner, where the join table is defined, then the
mapping for this relationship will be as shown in Listing 8-13.

Listing 8-13. Join Table with Compound Join Columns

@Entity
@IdClass(EmployeeId.class)
public class Employee {
@Id private String country;
@Id
@Column(name="EMP_ID")
private int id;

@ManyToMany
@JoinTable(
name="EMP_PROJECT",
joinColumns={
@JoinColumn(name="EMP_COUNTRY", referencedColumnName="COUNTRY"),
@JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID")},
inverseJoinColumns=@JoinColumn(name="PROJECT ID"))
private Collection<Project> projects;
/] ...

Identifiers That Include a Relationship

It is possible for a compound primary key to actually include a relationship, which implies that
the object cannot exist without participating in the relationship that is part of its identifier.
Being that primary key fields may not be changed once they have been set, a relationship that
is part of a primary key is likewise immutable. Such a relationship must be set in order for the
entity to be created and must not be changed once the entity exists.

To demonstrate, let’s reconsider our Project entity. Instead of having a unique numeric
identifier, it will now consist of a name and a reference to the Department entity. Multiple projects
of the same name may exist, but only one name can be used with a given department. Figure 8-8
shows the data model for this relationship.

233

234

CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

PROJECT
DEPARTMENT
PKFK1 | DEPT_ID
PK |ID S O NAME
NAME START_DATE
END_DATE

Figure 8-8. Compound primary key with a foreign key dependency

We first need to create a primary key class that will store the compound primary key. This
primary key class will not contain the relationship mapping. Instead, it will just contain the
basic mappings for the actual primary key columns. Listing 8-14 shows the ProjectIdid class.

Listing 8-14. The ProjectId Id Class

public class ProjectId implements Serializable {
private int deptld;
private String name;

public ProjectId() {}

public ProjectId(int deptId, String name) {
this.deptld = deptld;
this.name = name;

}
/1 ...

Now we can update the Project entity to reference the Projectld id class and declare
the compound primary key. Listing 8-15 shows the Project entity. Note that we are placing
the @Id annotations on the basic attributes, not on the relationship. We have introduced an
@ManyToOne relationship to the Department entity that maps to the same DEPT_ID column as
the deptIdbasic mapping. Because the basic mapping has been changed so that it is not insertable
or updatable, it will be ignored when the entity is persisted. Instead, the foreign key mapped by
the department relationship will be inserted into the DEPT_ID column. Structuring it in this
way prevents the two mappings from colliding with each other when the provider writes entity
changes to the database.

Listing 8-15. Primary Key That Includes a Relationship

@Entity
@IdClass(ProjectId.class)
public class Project {
@Id
@Column(name="DEPT_ID", insertable=false, updatable=false)
private int deptld;
@Id private String name;

@anyToOne

CHAPTER 8

@JoinColumn(name="DEPT_ID")
private Department department;

@Temporal(TemporalType.DATE)
@Column(name="START DATE")
private Date startDate;
@Temporal(TemporalType.DATE)
@Column(name="END DATE")

private Date endDate;

/7 ...

ADVANCED OBJECT-RELATIONAL MAPPING

Tip Support for primary keys that include relationships or foreign keys is not explicitly mentioned in the
current version of the Java Persistence API even though the specifics of doing so are not disallowed. It may
be that some vendors will not support the duplicate mapping case that is described in this section or that a
slightly different mapping practice from the one described here is required.

Mapping Relationship State

There are times when a relationship actually has state associated with it. For example, let’s say
that we want to maintain the date an employee was assigned to work on a project. Storing the
state on the employee is possible but less helpful, since the date is really coupled to the employee’s
relationship to a particular project (a single entry in the many-to-many association). Taking an
employee off of a project should really just cause the assignment date to go away, so storing it
as part of the employee means that we have to ensure that the two are consistent with each
other, which is kind of bothersome. In UML, we would show this kind of relationship using an
association class. Figure 8-9 shows an example of this technique.

Employee

id: int
name: String
salary: long

Project

id: int

ProjectAssignment

startDate: Date

name: String

Figure 8-9. Modeling state on a relationship using an association class

235

236 CHAPTER 8 ADVANCED OBJECT-RELATIONAL MAPPING

In the database everything is rosy, since we can simply add a column to the join table. The
data model provides natural support for relationship state. Figure 8-10 shows the many-to-many
relationship between EMPLOYEE and PROJECT with an expanded join table.

EMPLOYEE EMP_PROJECT
PROJECT
PK |ID PKFK1 | EMP ID
—-H—1C03q) B>O———H- D
PKFK2 | PROJECT ID PK 11D
NAME o
SALARY START_DATE

Figure 8-10. join table with additional state

When we get to the object model, however, it becomes much more problematic. The issue
is that Java has no inherent support for relationship state. Relationships are just object references
or pointers, hence no state can ever exist on them. State exists on objects only, and relationships
are not first-class objects.

The Java solution is to turn the relationship into an entity that contains the desired state
and map the new entity to what was previously the join table. The new entity will have a many-
to-one relationship to each of the existing entity types, and each of the entity types will have a
one-to-many relationship back to the new entity representing the relationship. The primary
key of the new entity will be the combination of the two relationships to the two entity types.
Listing 8-16 shows all of the participants in the Employee and Project relationship.

Listing 8-16. Mapping Relationship State with an Intermediate Entity

@Entity
public class Employee {
@Id private int id;
/...
@0neToMany (mappedBy="employee")
private Collection<ProjectAssignment> assignments;
/...

@Entity
public class Project {
@Id private int id;
/...
@®0neToMany (mappedBy="project")
private Collection<ProjectAssignment> assignments;
/...

@Entity
@Table(name="EMP_PROJECT")